Dates are inconsistent

Dates are inconsistent

97 results sorted by ID

2024/1335 (PDF) Last updated: 2024-08-26
Perfect Monomial Prediction for Modular Addition
Kai Hu, Trevor Yap
Attacks and cryptanalysis

Modular addition is often the most complex component of typical Addition-Rotation-XOR (ARX) ciphers, and the division property is the most effective tool for detecting integral distinguishers. Thus, having a precise division property model for modular addition is crucial in the search for integral distinguishers in ARX ciphers. Current division property models for modular addition either (a) express the operation as a Boolean circuit and apply standard propagation rules for basic...

2024/1324 (PDF) Last updated: 2024-08-29
CLAASPing ARADI: Automated Analysis of the ARADI Block Cipher
Emanuele Bellini, Mattia Formenti, David Gérault, Juan Grados, Anna Hambitzer, Yun Ju Huang, Paul Huynh, Mohamed Rachidi, Raghvendra Rohit, Sharwan K. Tiwari
Attacks and cryptanalysis

In early August 2024, three NSA researchers -- Patricia Greene, Mark Motley, and Bryan Weeks -- published the technical specifications for a new low-latency block cipher, ARADI, along with its corresponding authenticated encryption mode, LLAMA, which is specifically designed for memory encryption applications. Their manuscript offered minimal security analysis of the design, only briefly discussing the differential, linear and algebraic properties of cipher's underlying components. In this...

2024/793 (PDF) Last updated: 2024-05-22
Hide-and-Seek and the Non-Resignability of the BUFF Transform
Jelle Don, Serge Fehr, Yu-Hsuan Huang, Jyun-Jie Liao, Patrick Struck
Public-key cryptography

The BUFF transform, due to Cremers et al. (S&P'21), is a generic transformation for digital signature scheme, with the purpose of obtaining additional security guarantees beyond unforgeability: exclusive ownership, message-bound signatures, and non-resignability. Non-resignability (which essentially challenges an adversary to re-sign an unknown message for which it only obtains the signature) turned out to be a delicate matter, as recently Don et al. (CRYPTO'24) showed that the initial...

2024/686 (PDF) Last updated: 2024-05-04
Unstructured Inversions of New Hope
Ian Malloy
Attacks and cryptanalysis

Introduced as a new protocol implemented in “Chrome Canary” for the Google Inc. Chrome browser, “New Hope” is engineered as a post-quantum key exchange for the TLS 1.2 protocol. The structure of the exchange is revised lattice-based cryptography. New Hope incorporates the key-encapsulation mechanism of Peikert which itself is a modified Ring-LWE scheme. The search space used to introduce the closest-vector problem is generated by an intersection of a tesseract and hexadecachoron, or the...

2024/592 (PDF) Last updated: 2024-07-27
Asymptotics for the standard block size in primal lattice attacks: second order, formally verified
Daniel J. Bernstein
Attacks and cryptanalysis

Many proposals of lattice-based cryptosystems estimate security levels by following a recipe introduced in the New Hope proposal. This recipe, given a lattice dimension n, modulus q, and standard deviation s, outputs a "primal block size" β and a security level growing linearly with β. This β is minimal such that some κ satisfies ((n κ)s^2 1)^{1/2} < (d/β)^{1/2} δ^{2β−d−1} q^{κ/d}, where d = n κ 1 and δ = (β(πβ)^{1/β}/(2π exp 1))^{1/2(β−1)}. This paper identifies how β grows with n,...

2024/555 (PDF) Last updated: 2024-04-19
Quantum Algorithms for Lattice Problems
Yilei Chen

We show a polynomial time quantum algorithm for solving the learning with errors problem (LWE) with certain polynomial modulus-noise ratios. Combining with the reductions from lattice problems to LWE shown by Regev [J.ACM 2009], we obtain polynomial time quantum algorithms for solving the decisional shortest vector problem (GapSVP) and the shortest independent vector problem (SIVP) for all $n$-dimensional lattices within approximation factors of $\tilde{\Omega}(n^{4.5})$. Previously, no...

2024/006 (PDF) Last updated: 2024-01-27
Towards general-purpose program obfuscation via local mixing
Ran Canetti, Claudio Chamon, Eduardo Mucciolo, Andrei Ruckenstein
Foundations

We explore the possibility of obtaining general-purpose obfuscation for all circuits by way of making only simple, local, functionality preserving random perturbations in the circuit structure. Towards this goal, we use the additional structure provided by reversible circuits, but no additional algebraic structure. We start by formulating a new (and relatively weak) obfuscation task regarding the ability to obfuscate random circuits of bounded length. We call such obfuscators random...

2023/1293 (PDF) Last updated: 2023-08-29
Applications of Finite non-Abelian Simple Groups to Cryptography in the Quantum Era
María Isabel González Vasco, Delaram Kahrobaei, Eilidh McKemmie
Cryptographic protocols

The theory of finite simple groups is a (rather unexplored) area likely to provide interesting computational problems and modelling tools useful in a cryptographic context. In this note, we review some applications of finite non-abelian simple groups to cryptography and discuss different scenarios in which this theory is clearly central, providing the relevant definitions to make the material accessible to both cryptographers and group theorists, in the hope of stimulating further...

2023/650 (PDF) Last updated: 2023-05-08
Pseudorandom Correlation Functions from Variable-Density LPN, Revisited
Geoffroy Couteau, Clément Ducros
Public-key cryptography

Pseudorandom correlation functions (PCF), introduced in the work of (Boyle et al., FOCS 2020), allow two parties to locally gen- erate, from short correlated keys, a near-unbounded amount of pseu- dorandom samples from a target correlation. PCF is an extremely ap- pealing primitive in secure computation, where they allow to confine all preprocessing phases of all future computations two parties could want to execute to a single short interaction with low communication and computation,...

2023/577 (PDF) Last updated: 2023-04-24
Exploring Formal Methods for Cryptographic Hash Function Implementations
Nicky Mouha
Implementation

Cryptographic hash functions are used inside many applications that critically rely on their resistance against cryptanalysis attacks and the correctness of their implementations. Nevertheless, vulnerabilities in cryptographic hash function implementations can remain unnoticed for more than a decade, as shown by the recent discovery of a buffer overflow in the implementation of SHA-3 in the eXtended Keccak Code Package (XKCP), impacting Python, PHP, and several other software projects. This...

2022/1744 (PDF) Last updated: 2022-12-19
Worst and Average Case Hardness of Decoding via Smoothing Bounds
Thomas Debris-Alazard, Nicolas Resch
Foundations

In this work, we consider the worst and average case hardness of the decoding problems that are the basis for code-based cryptography. By a decoding problem, we consider inputs of the form $(\mathbf{G}, \mathbf{m} \mathbf{G} \mathbf{t})$ for a matrix $\mathbf{G}$ that generates a code and a noise vector $\mathbf{t}$, and the algorithm's goal is to recover $\mathbf{m}$. We consider a natural strategy for creating a reduction to an average-case problem: from our input we simulate a...

2022/1638 (PDF) Last updated: 2022-11-24
The Security of Quasigroups Based Substitution Permutation Networks
George Teseleanu
Secret-key cryptography

The study of symmetric structures based on quasigroups is relatively new and certain gaps can be found in the literature. In this paper, we want to fill one of these gaps. More precisely, in this work we study substitution permutation networks based on quasigroups that make use of permutation layers that are non-linear relative to the quasigroup operation. We prove that for quasigroups isotopic with a group $\mathbb{G}$, the complexity of mounting a differential attack against this type of...

2022/1580 (PDF) Last updated: 2023-03-17
Multi-ciphertext security degradation for lattices
Daniel J. Bernstein
Attacks and cryptanalysis

Typical lattice-based cryptosystems are commonly believed to resist multi-target attacks. For example, the New Hope proposal stated that it avoids "all-for-the-price-of-one attacks". An ACM CCS 2021 paper from Duman–Hövelmanns–Kiltz–Lyubashevsky–Seiler stated that "we can show that Adv_{PKE}^{IND-CPA} ≈ Adv_{PKE}^{(n,q_C)-IND-CPA} for "lattice-based schemes" such as Kyber, i.e. that one-out-of-many-target IND-CPA is as difficult to break as single-target IND-CPA, assuming "the hardness of...

2022/1553 (PDF) Last updated: 2023-02-27
Lower Bound Framework for Differentially Private and Oblivious Data Structures
Giuseppe Persiano, Kevin Yeo
Cryptographic protocols

In recent years, there has been significant work in studying data structures that provide privacy for the operations that are executed. These primitives aim to guarantee that observable access patterns to physical memory do not reveal substantial information about the queries and updates executed on the data structure. Multiple recent works, including Larsen and Nielsen [Crypto'18], Persiano and Yeo [Eurocrypt'19], Hubáček et al. [TCC'19] and Komargodski and Lin [Crypto'21], have shown that...

2022/1545 (PDF) Last updated: 2024-01-22
On Structure-Preserving Cryptography and Lattices
Dennis Hofheinz, Kristina Hostáková, Roman Langrehr, Bogdan Ursu
Foundations

The Groth-Sahai proof system is a highly efficient pairing-based proof system for a specific class of group-based languages. Cryptographic primitives that are compatible with these languages (such that we can express, e.g., that a ciphertext contains a valid signature for a given message) are called "structure-preserving". The combination of structure-preserving primitives with Groth-Sahai proofs allows to prove complex statements that involve encryptions and signatures, and has proved...

2022/1412 (PDF) Last updated: 2022-10-23
Boolean Polynomial Evaluation for the Masses
Charles Bouillaguet
Implementation

This article gives improved algorithms to evaluate a multivariate Boolean polynomial over all the possible values of its input variables. Such a procedure is often used in cryptographic attacks against symmetric schemes. More precisely, we provide improved and simplified versions of the Fast Exhaustive Search algorithm presented at CHES'10 and of the space-efficient Moebius transform given by Dinur at EUROCRYPT'21. The new algorithms require $\mathcal{O}(d 2^n)$...

2022/1151 (PDF) Last updated: 2022-12-06
A Survey on Exotic Signatures for Post-Quantum Blockchain: Challenges & Research Directions
Maxime Buser, Rafael Dowsley, Muhammed F. Esgin, Clémentine Gritti, Shabnam Kasra Kermanshahi, Veronika Kuchta, Jason T. LeGrow, Joseph K. Liu, Raphael C.-W. Phan, Amin Sakzad, Ron Steinfeld, Jiangshan Yu
Public-key cryptography

Blockchain technology provides efficient and secure solutions to various online activities by utilizing a wide range of cryptographic tools. In this paper, we survey the existing literature on post-quantum secure digital signatures that possess exotic advanced features and which are crucial cryptographic tools used in the blockchain ecosystem for (i) account management, (ii) consensus efficiency, (iii) empowering scriptless blockchain, and (iv) privacy. The exotic signatures that we...

2022/1039 (PDF) Last updated: 2023-01-03
Theoretical Limits of Provable Security Against Model Extraction by Efficient Observational Defenses
Ari Karchmer
Attacks and cryptanalysis

Can we hope to provide provable security against model extraction attacks? As a step towards a theoretical study of this question, we unify and abstract a wide range of "observational" model extraction defenses (OMEDs) --- roughly, those that attempt to detect model extraction by analyzing the distribution over the adversary's queries. To accompany the abstract OMED, we define the notion of complete OMEDs --- when benign clients can freely interact with the model --- and sound OMEDs --- when...

2022/982 (PDF) Last updated: 2022-07-31
Random-Index Oblivious RAM
Shai Halevi, Eyal Kushilevitz
Cryptographic protocols

We study the notion of Random-index ORAM (RORAM), which is a weak form of ORAM where the Client is limited to asking for (and possibly modifying) random elements of the $N$-items memory, rather than specific ones. That is, whenever the client issues a request, it gets in return a pair $(r,x_r)$ where $r\in_R[N]$ is a random index and $x_r$ is the content of the $r$-th memory item. Then, the client can also modify the content to some new value $x'_r$. We first argue that the limited...

2022/960 (PDF) Last updated: 2022-11-22
Scan, Shuffle, Rescan: Machine-Assisted Election Audits With Untrusted Scanners
Douglas W. Jones, Sunoo Park, Ronald L. Rivest, Adam Sealfon
Applications

We introduce a new way to conduct election audits using untrusted scanners. Post-election audits perform statistical hypothesis testing to confirm election outcomes. However, existing approaches are costly and laborious for close elections---often the most important cases to audit---requiring extensive hand inspection of ballots. We instead propose automated consistency checks, augmented by manual checks of only a small number of ballots. Our protocols scan each ballot twice, shuffling the...

2022/639 (PDF) Last updated: 2022-05-29
Anamorphic Encryption: Private Communication against a Dictator
Giuseppe Persiano, Duong Hieu Phan, Moti Yung
Public-key cryptography

Cryptosystems have been developed over the years under the typical prevalent setting which assumes that the receiver’s key is kept secure from the adversary, and that the choice of the message to be sent is freely performed by the sender and is kept secure from the adversary as well. Under these fundamental and basic operational assumptions, modern Cryptography has flourished over the last half a century or so, with amazing achievements: New systems (including public-key Cryptography),...

2022/624 (PDF) Last updated: 2022-05-23
Cryptanalysis of Three Quantum Money Schemes
Andriyan Bilyk, Javad Doliskani, Zhiyong Gong
Public-key cryptography

We investigate the security assumptions behind three public-key quantum money schemes. Aaronson and Christiano proposed a scheme based on hidden subspaces of the vector space $\mathbb{F}_2^n$ in 2012. It was conjectured by Pena et al in 2015 that the hard problem underlying the scheme can be solved in quasi-polynomial time. We confirm this conjecture by giving a polynomial time quantum algorithm for the underlying problem. Our algorithm is based on computing the Zariski tangent space of a...

2022/601 (PDF) Last updated: 2022-05-17
A Better Method to Analyze Blockchain Consistency
Lucianna Kiffer, Rajmohan Rajaraman, abhi shelat
Applications

The celebrated Nakamoto consensus protocol ushered in several new consensus applications including cryptocurrencies. A few recent works have analyzed important properties of blockchains, including most significantly, consistency, which is a guarantee that all honest parties output the same sequence of blocks throughout the execution of the protocol. To establish consistency, the prior analysis of Pass, Seeman and shelat required a careful counting of certain combinatorial events that was...

2021/1150 (PDF) Last updated: 2023-08-04
Silver: Silent VOLE and Oblivious Transfer from Hardness of Decoding Structured LDPC Codes
COUTEAU Geoffroy, Peter Rindal, Srinivasan Raghuraman
Cryptographic protocols

We put forth new protocols for oblivious transfer extension and vector OLE, called \emph{Silver}, for SILent Vole and oblivious transfER. Silver offers extremely high performances: generating 10 million random OTs on one core of a standard laptop requires only 300ms of computation and 122KB of communication. This represents 37% less computation and ~1300x less communication than the standard IKNP protocol, as well as ~4x less computation and ~4x less communication than the recent protocol of...

2021/1035 (PDF) Last updated: 2022-03-10
SoK: Cryptanalysis of Encrypted Search with LEAKER - A framework for LEakage AttacK Evaluation on Real-world data
Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber, Michael Yonli

An encrypted search algorithm (ESA) allows a user to encrypt its data while preserving the ability to search over it. As all practical solutions leak some information, cryptanalysis plays an important role in the area of encrypted search. Starting with the work of Islam et al. (NDSS'12), many attacks have been proposed that exploit different leakage profiles under various assumptions. While these attacks improve our understanding of leakage, it can sometimes be difficult to draw definite...

2021/592 (PDF) Last updated: 2021-05-10
Side Channel Analysis against the ANSSI’s protected AES implementation on ARM
Loïc Masure, Rémi Strullu
Applications

In 2019, the ANSSI released a protected software implementation of AES running on an STM32 platform with ARM Cortex-M architecture, publicly available on Github. The release of the code was shortly followed by a first paper written by Bronchain et al. at Ches 2020, analyzing the security of the implementation and proposing some attacks. In order to propose fair comparisons for future attacks on this target device, this paper aims at presenting a new publicly available dataset, called ASCADv2...

2021/458 (PDF) Last updated: 2021-04-08
FAMILY KEY CRYPTOGRAPHY: Interchangeable Symmetric Keys; a Different Cryptographic Paradigm
Gideon Samid
Secret-key cryptography

In the current crypto paradigm a single secret key transforms a plaintext into a ciphertext and vice versa, or at most a different key is doing the reverse action. Attackers exposed to the ciphertext are hammering it to extract that single key and the plaintext. This paradigm may be challenged with an alternate setup: using a particular crypto algorithm, there is an infinite number of keys that are perfectly interchangeable -- each has the same effect. Nonetheless they are hard to find. And...

2021/287 (PDF) Last updated: 2021-03-22
A Deeper Look at Machine Learning-Based Cryptanalysis
Adrien Benamira, David Gerault, Thomas Peyrin, Quan Quan Tan
Secret-key cryptography

At CRYPTO'19, Gohr proposed a new cryptanalysis strategy based on the utilisation of machine learning algorithms. Using deep neural networks, he managed to build a neural based distinguisher that surprisingly surpassed state-of-the-art cryptanalysis efforts on one of the versions of the well studied NSA block cipher speck (this distinguisher could in turn be placed in a larger key recovery attack). While this work opens new possibilities for machine learning-aided cryptanalysis, it remains...

2021/281 (PDF) Last updated: 2021-03-07
Subquadratic SNARGs in the Random Oracle Model
Alessandro Chiesa, Eylon Yogev
Foundations

In a seminal work, Micali (FOCS 1994) gave the first succinct non-interactive argument (SNARG) in the random oracle model (ROM). The construction combines a PCP and a cryptographic commitment, and has several attractive features: it is plausibly post-quantum; it can be heuristically instantiated via lightweight cryptography; and it has a transparent (public-coin) parameter setup. However, it also has a significant drawback: a large argument size. In this work, we provide a new construction...

2021/053 (PDF) Last updated: 2024-01-21
On Algebraic Embedding for Unstructured Lattices
Madalina Bolboceanu, Zvika Brakerski, Devika Sharma
Foundations

Lattice-based cryptography, the study of cryptographic primitives whose security is based on the hardness of so-called lattice problems, has taken center stage in cryptographic research in recent years. It potentially offers favorable security features, even against quantum algorithms. One of the main obstacles for wide adoption of this type of cryptography is its unsatisfactory efficiency. To address this point, efficient lattice-based cryptography usually relies on the intractability of...

2020/1538 (PDF) Last updated: 2020-12-13
Homological Characterization of bounded $F_2$-regularity
Timothy J. Hodges, Sergio Molina
Foundations

Semi-regular sequences over $\mathbb{F}_2$ are sequences of homogeneous elements of the algebra $ B^{(n)}=\mathbb{F}_2[X_1,...,X_n]/(X_1^2,...,X_n^2)$, which have as few relations between them as possible. It is believed that most such systems are semi-regular and this property has important consequences for understanding the complexity of Grobner basis algorithms such as F4 and F5 for solving such systems. In fact even in one of the simplest and most important cases, that of quadratic...

2020/1419 (PDF) Last updated: 2022-05-02
The Resiliency of MPC with Low Interaction: The Benefit of Making Errors
Benny Applebaum, Eliran Kachlon, Arpita Patra
Cryptographic protocols

We study information-theoretic secure multiparty protocols that achieve full security, including guaranteed output delivery, at the presence of an active adversary that corrupts a constant fraction of the parties. It is known that 2 rounds are insufficient for such protocols even when the adversary corrupts only two parties (Gennaro, Ishai, Kushilevitz, and Rabin; Crypto 2002), and that perfect protocols can be implemented in $3$ rounds as long as the adversary corrupts less than a quarter...

2020/1343 (PDF) Last updated: 2020-10-26
Improved Cryptanalysis of UOV and Rainbow
Ward Beullens
Public-key cryptography

The contributions of this paper are twofold. First, we simplify the description of the Unbalanced Oil and Vinegar scheme (UOV) and its Rainbow variant, which makes it easier to understand the scheme and the existing attacks. We hope that this will make UOV and Rainbow more approachable for cryptanalysts. Secondly, we give two new attacks against the UOV and Rainbow signature schemes; the intersection attack that applies to both UOV and Rainbow and the rectangular MinRank attack that applies...

2020/627 (PDF) Last updated: 2020-06-03
Attacking Zcash For Fun And Profit
Duke Leto, The Hush Developers
Implementation

This paper will outline, for the first time, exactly how the ITM Attack (a linkability attack against shielded transactions) works against Zcash Protocol and how Hush is the first cryptocoin with a defensive mitigation against it, called ”Sietch ”. Sietch is already running live in production and undergoing rounds of improvement from expert feedback. This is not an academic paper about pipedreams. It describes production code and networks. We begin with a literature review of all known...

2020/621 (PDF) Last updated: 2022-06-26
How to Base Security on the Perfect/Statistical Binding Property of Quantum Bit Commitment?
Junbin Fang, Dominique Unruh, Jun Yan, Dehua Zhou
Cryptographic protocols

The concept of quantum bit commitment was introduced in the early 1980s for the purpose of basing bit commitments solely on principles of quantum theory. Unfortunately, such unconditional quantum bit commitments still turn out to be impossible. As a compromise like in classical cryptography, Dumais et al. [DMS00] introduce the conditional quantum bit commitments that additionally rely on complexity assumptions. However, in contrast to classical bit commitments which are widely used in...

2020/610 Last updated: 2021-08-19
Stronger Multilinear Maps from Indistinguishability Obfuscation
Navid Alamati, Hart Montgomery, Sikhar Patranabis
Foundations

We show how to construct new multilinear maps from subexponentially secure indistinguishability obfuscation (iO) and standard assumptions. In particular, we show how to construct multilinear maps with arbitrary predetermined degree of multilinearity where each of the following assumptions hold: SXDH, exponent-DDH (for both symmetric and asymmetric multilinear maps), and all other assumptions implied by these assumptions (including k-party-DDH and k-Lin and its variants). Our constructions...

2020/415 (PDF) Last updated: 2020-04-13
Indistinguishability Obfuscation Without Maps: Attacks and Fixes for Noisy Linear FE
Shweta Agrawal, Alice Pellet-Mary
Foundations

Candidates of Indistinguishability Obfuscation (iO) can be categorized as ``direct'' or ``bootstrapping based''. Direct constructions rely on high degree multilinear maps [GGH13,GGHRSW13] and provide heuristic guarantees, while bootstrapping based constructions [LV16,Lin17,LT17,AJLMS19,Agr19,JLMS19] rely, in the best case, on bilinear maps as well as new variants of the Learning With Errors (LWE) assumption and pseudorandom generators. Recent times have seen exciting progress in the...

2020/240 (PDF) Last updated: 2020-02-25
MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture
T-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, Elaine Shi
Foundations

Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend...

2020/119 (PDF) Last updated: 2020-06-23
Hardness of LWE on General Entropic Distributions
Zvika Brakerski, Nico Döttling
Foundations

The hardness of the Learning with Errors (LWE) problem is by now a cornerstone of the cryptographic landscape. In many of its applications the so called ``LWE secret'' is not sampled uniformly, but comes from a distribution with some min-entropy. This variant, known as ``Entropic LWE'', has been studied in a number of works, starting with Goldwasser et al. (ICS 2010). However, so far it was only known how to prove the hardness of Entropic LWE for secret distributions supported inside a ball...

2020/088 (PDF) Last updated: 2020-09-12
Streamlet: Textbook Streamlined Blockchains
Benjamin Y Chan, Elaine Shi
Cryptographic protocols

In the past five years or so, numerous blockchain projects have made tremendous progress towards improving permissioned consensus protocols (partly due to their promised applications in Proof-of-Stake cryptocurrencies). Although a significant leap has silently taken place in our understanding of consensus protocols, it is rather difficult to navigate this body of work, and knowledge of the new techniques appears scattered. In this paper, we describe an extremely simple and natural paradigm...

2020/087 (PDF) Last updated: 2020-02-05
Streamlined Blockchains: A Simple and Elegant Approach (A Tutorial and Survey)
Elaine Shi
Cryptographic protocols

A blockchain protocol (also called state machine replication) allows a set of nodes to agree on an ever-growing, linearly ordered log of transactions. The classical consensus literature suggests two approaches for constructing a blockchain protocol: 1) through composition of single-shot consensus instances often called Byzantine Agreement; and 2) through direct construction of a blockchain where there is no clear-cut boundary between single-shot consensus instances. While conceptually...

2019/1375 (PDF) Last updated: 2019-12-02
New ideas to build noise-free homomorphic cryptosystems
Gérald Gavin, Sandrine Tainturier
Public-key cryptography

We design a very simple private-key encryption scheme whose decryption function is a rational function. This scheme is not born naturally homomorphic. To get homomorphic properties, a nonlinear additive homomorphic operator is specifically developed. The security analysis is based on symmetry considerations and we prove some formal results under the factoring assumption. In particular, we prove IND-CPA security in the generic ring model. Even if our security proof is not complete, we think...

2019/1080 (PDF) Last updated: 2019-10-14
Preimages and Collisions for Up to 5-Round Gimli-Hash Using Divide-and-Conquer Methods
Fukang Liu, Takanori Isobe, Willi Meier
Secret-key cryptography

The Gimli permutation was proposed in CHES 2017 and the hash mode Gimli-Hash is now included in the Round 2 candidate Gimli in NIST's Lightweight Cryptography Standardization process. In the Gimli document, the security of the Gimli permutation has been intensively investigated. However, little is known about the security of Gimli-Hash. The designers of Gimli have claimed $2^{128}$ security against all attacks on Gimli-Hash, whose hash is a 256-bit value. Firstly, we present the trivial...

2019/924 (PDF) Last updated: 2019-08-18
Your Money or Your Life---Modeling and Analyzing the Security of Electronic Payment in the UC Framework
Dirk Achenbach, Roland Gröll, Timon Hackenjos, Alexander Koch, Bernhard Löwe, Jeremias Mechler, Jörn Müller-Quade, Jochen Rill
Cryptographic protocols

EMV, also known as Chip and PIN, is the world-wide standard for card-based electronic payment. Its security wavers: over the past years, researchers have demonstrated various practical attacks, ranging from using stolen cards by disabling PIN verification to cloning cards by pre-computing transaction data. Most of these attacks rely on violating certain unjustified and not explicitly stated core assumptions upon which EMV is built, namely that the input device (e.g. the ATM) is trusted and...

2019/694 (PDF) Last updated: 2019-06-12
A Unified and Composable Take on Ratcheting
Daniel Jost, Ueli Maurer, Marta Mularczyk
Cryptographic protocols

Ratcheting, an umbrella term for certain techniques for achieving secure messaging with strong guarantees, has spurred much interest in the cryptographic community, with several novel protocols proposed as of lately. Most of them are composed from several sub-protocols, often sharing similar ideas across different protocols. Thus, one could hope to reuse the sub-protocols to build new protocols achieving different security, efficiency, and usability trade-offs. This is especially desirable...

2019/433 (PDF) Last updated: 2022-01-09
Secure Communication Channel Establishment: TLS 1.3 (over TCP Fast Open) versus QUIC
Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, Cristina Nita-Rotaru
Cryptographic protocols

Secure channel establishment protocols such as Transport Layer Security (TLS) are some of the most important cryptographic protocols, enabling the encryption of Internet traffic. Reducing latency (the number of interactions between parties before encrypted data can be transmitted) in such protocols has become an important design goal to improve user experience. The most important protocols addressing this goal are TLS 1.3, the latest TLS version standardized in 2018 to replace the widely...

2019/356 (PDF) Last updated: 2019-04-07
Ad Hoc Multi-Input Functional Encryption
Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam O’Neill, Justin Thaler
Cryptographic protocols

Consider sources that supply sensitive data to an aggregator. Standard encryption only hides the data from eavesdroppers, but using specialized encryption one can hope to hide the data (to the extent possible) from the aggregator itself. For flexibility and security, we envision schemes that allow sources to supply encrypted data, such that at any point a dynamically chosen subset of sources can allow an agreed-upon joint function of their data to be computed by the aggregator. A primitive...

2019/187 (PDF) Last updated: 2019-02-26
Fully homomorphic encryption modulo Fermat numbers
Antoine Joux
Public-key cryptography

In this paper, we recast state-of-the-art constructions for fully homomorphic encryption in the simple language of arithmetic modulo large Fermat numbers. The techniques used to construct our scheme are quite standard in the realm of (R)LWE based cryptosystems. However, the use of arithmetic in such a simple ring greatly simplifies exposition of the scheme and makes its implementation much easier. In terms of performance, our test implementation of the proposed scheme is slower than the...

2018/1162 (PDF) Last updated: 2019-01-31
On the Concrete Security of Goldreich’s Pseudorandom Generator
Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, Yann Rotella

Local pseudorandom generators allow to expand a short random string into a long pseudo-random string, such that each output bit depends on a constant number d of input bits. Due to its extreme efficiency features, this intriguing primitive enjoys a wide variety of applications in cryptography and complexity. In the polynomial regime, where the seed is of size n and the output of size n^s for s > 1, the only known solution, commonly known as Goldreich's PRG, proceeds by applying a simple...

2018/672 (PDF) Last updated: 2018-07-13
Cold Boot Attacks on Ring and Module LWE Keys Under the NTT
Martin R. Albrecht, Amit Deo, Kenneth G. Paterson
Public-key cryptography

In this work, we consider the ring- and module- variants of the LWE problem and investigate cold boot attacks on cryptographic schemes based on these problems, wherein an attacker is faced with the problem of recovering a scheme's secret key from a noisy version of that key. The leakage resilience of cryptography based on the learning with errors (LWE) problem has been studied before, but there are only limited results considering the parameters observed in cold boot attack scenarios. There...

2018/647 (PDF) Last updated: 2018-07-06
A new perspective on the powers of two descent for discrete logarithms in finite fields
Thorsten Kleinjung, Benjamin Wesolowski
Foundations

A new proof is given for the correctness of the powers of two descent method for computing discrete logarithms. The result is slightly stronger than the original work, but more importantly we provide a unified geometric argument, eliminating the need to analyse all possible subgroups of $\mathrm{PGL}_2(\mathbb{F}_q)$. Our approach sheds new light on the role of $\mathrm{PGL}_2$, in the hope to eventually lead to a complete proof that discrete logarithms can be computed in quasi-polynomial...

2018/133 (PDF) Last updated: 2018-02-07
Quasi-Optimal SNARGs via Linear Multi-Prover Interactive Proofs
Dan Boneh, Yuval Ishai, Amit Sahai, David J. Wu

Succinct non-interactive arguments (SNARGs) enable verifying NP computations with significantly less complexity than that required for classical NP verification. In this work, we focus on simultaneously minimizing the proof size and the prover complexity of SNARGs. Concretely, for a security parameter $\lambda$, we measure the asymptotic cost of achieving soundness error $2^{-\lambda}$ against provers of size $2^\lambda$. We say a SNARG is quasi-optimally succinct if its proof length is...

2018/059 (PDF) Last updated: 2018-01-16
New Insights into Divide-and-Conquer Attacks on the Round-Reduced Keccak-MAC
Chen-Dong Ye, Tian Tian
Secret-key cryptography

Keccak is the final winner of SHA-3 competition and it can be used as message authentic codes as well. The basic and balanced divide-and-conquer attacks on Keccak-MAC were proposed by Dinur et al. at Eurocrypt 2015. The idea of cube attacks is used in the two attacks to divide key bits into small portions. In this paper, by carefully analysing the mappings used in Keccak-MAC, it is found that some cube variables could divide key bits into smaller portions and so better divide-and-conquer...

2017/1185 (PDF) Last updated: 2018-04-25
Complete Attack on RLWE Key Exchange with reused keys, without Signal Leakage
Jintai Ding, Scott Fluhrer, Saraswathy RV

Key Exchange (KE) from RLWE (Ring-Learning with Errors) is a potential alternative to Diffie-Hellman (DH) in a post quantum setting. Key leakage with RLWE key exchange protocols in the context of key reuse has already been pointed out in previous work. The initial attack described by Fluhrer is designed in such a way that it only works on Peikert's KE protocol and its variants that derives the shared secret from the most significant bits of the approximately equal keys computed by both...

2017/1172 (PDF) Last updated: 2017-12-06
A Note on Stream Ciphers that Continuously Use the IV
Matthias Hamann, Matthias Krause, Willi Meier
Secret-key cryptography

Time-memory-data tradeoff (TMD-TO) attacks limit the security level of many classical stream ciphers (like $E_0$, A5/1, Trivium, Grain) to $n/2$, where $n$ denotes the inner state length of the underlying keystream generator. This implies that to withstand TMD tradeoff attacks, the state size should be at least double the key size. In 2015, Armknecht and Mikhalev introduced a new line of research, which pursues the goal of reducing the inner state size of lightweight stream ciphers below...

2017/1052 (PDF) Last updated: 2017-10-31
Early Detection and Analysis of Leakage Abuse Vulnerabilities
Charles V. Wright, David Pouliot
Applications

In order to be useful in the real world, efficient cryptographic constructions often reveal, or ``leak,'' more information about their plaintext than one might desire. Up until now, the approach for addressing leakage when proposing a new cryptographic construction has focused entirely on qualifying exactly what information is leaked. Unfortunately there has been no way to predict what the real-world impact of that leakage will be. In this paper, we argue in favor of an analytical...

2017/871 (PDF) Last updated: 2017-09-13
Non-Interactive Multiparty Computation without Correlated Randomness
Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, Eylon Yogev

We study the problem of non-interactive multiparty computation (NI-MPC) where a group of completely asynchronous parties can evaluate a function over their joint inputs by sending a single message to an evaluator who computes the output. Previously, the only general solutions to this problem that resisted collusions between the evaluator and a set of parties were based on multi-input functional encryption and required the use of complex correlated randomness setup. In this work, we present...

2017/424 (PDF) Last updated: 2017-09-24
HILA5: On Reliability, Reconciliation, and Error Correction for Ring-LWE Encryption
Markku-Juhani O. Saarinen

We describe a new reconciliation method for Ring-LWE that has a significantly smaller failure rate than previous proposals while reducing ciphertext size and the amount of randomness required. It is based on a simple, deterministic variant of Peikert's reconciliation that works with our new ``safe bits'' selection and constant-time error correction techniques. The new method does not need randomized smoothing to achieve non-biased secrets. When used with the very efficient ``New Hope''...

2017/388 (PDF) Last updated: 2017-05-04
Post-Quantum Key Exchange on ARMv8-A -- A New Hope for NEON made Simple
Silvan Streit, Fabrizio De Santis
Implementation

NewHope and NewHope-Simple are two recently proposed post-quantum key exchange protocols based on the hardness of the Ring-LWE problem. Due to their high security margins and performance, there have been already discussions and proposals for integrating them into Internet standards, like TLS, and anonymity network protocols, like Tor. In this work, we present time-constant and vector-optimized implementations of NewHope and NewHope-Simple for ARMv8-A 64-bit processors which target high-speed...

2017/384 (PDF) Last updated: 2017-06-27
Time-Memory-Data Tradeoff Attacks against Small-State Stream Ciphers
Matthias Hamann, Matthias Krause, Willi Meier, Bin Zhang
Secret-key cryptography

Time-memory-data (TMD) tradeoff attacks limit the security level of many classical stream ciphers (like $E_0$, A5/1, Trivium, Grain) to $\frac{1}{2}n$, where $n$ denotes the inner state length of the underlying keystream generator. This implies that to withstand TMD tradeoff attacks, the state size should be at least double the key size. In 2015, Armknecht and Mikhalev introduced a new line of research, which pursues the goal of reducing the inner state size of lightweight stream ciphers...

2017/359 (PDF) Last updated: 2017-06-12
Conditional Disclosure of Secrets via Non-Linear Reconstruction
Tianren Liu, Vinod Vaikuntanathan, Hoeteck Wee

We present new protocols for conditional disclosure of secrets (CDS), where two parties want to disclose a secret to a third party if and only if their respective inputs satisfy some predicate. - For general predicates $\text{pred} : [N] \times [N] \rightarrow \{0,1\}$, we present two protocols that achieve $o(N^{1/2})$ communication: the first achieves $O(N^{1/3})$ communication and the second achieves sub-polynomial $2^{O(\sqrt{\log N \log\log N})} = N^{o(1)}$ communication. - As a...

2017/221 (PDF) Last updated: 2017-04-18
A Hybrid Lattice Basis Reduction and Quantum Search Attack on LWE
Florian Göpfert, Christine van Vredendaal, Thomas Wunderer

Recently, an increasing amount of papers proposing post-quantum schemes also provide concrete parameter sets aiming for concrete post-quantum security levels. Security evaluations of such schemes need to include all possible attacks, in particular those by quantum adversaries. In the case of lattice-based cryptography, currently existing quantum attacks are mainly classical attacks, carried out with quantum basis reduction as subroutine. In this work, we propose a new quantum attack on the...

2017/072 (PDF) Last updated: 2017-02-03
How to Circumvent the Two-Ciphertext Lower Bound for Linear Garbling Schemes
Carmen Kempka, Ryo Kikuchi, Koutarou Suzuki
Foundations

At EUROCRYPT 2015, Zahur et al.\ argued that all linear, and thus, efficient, garbling schemes need at least two $k$-bit elements to garble an AND gate with security parameter $k$. We show how to circumvent this lower bound, and propose an efficient garbling scheme which requires less than two $k$-bit elements per AND gate for most circuit layouts. Our construction slightly deviates from the linear garbling model, and constitutes no contradiction to any claims in the lower-bound proof. With...

2016/562 (PDF) Last updated: 2016-06-05
Deniable Attribute Based Encryption for Branching Programs from LWE
Daniel Apon, Xiong Fan, Feng-Hao Liu
Public-key cryptography

Deniable encryption (Canetti et al. CRYPTO '97) is an intriguing primitive that provides a security guarantee against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and security against selective opening attacks. Despite its conceptual usefulness, our...

2016/454 (PDF) Last updated: 2016-09-22
Analysis of the Blockchain Protocol in Asynchronous Networks
Rafael Pass, Lior Seeman, abhi shelat
Foundations

Nakamoto's famous blockchain protocol enables achieving consensus in a so-called \emph{permissionless setting}---anyone can join (or leave) the protocol execution, and the protocol instructions do not depend on the identities of the players. His ingenious protocol prevents ``sybil attacks'' (where an adversary spawns any number of new players) by relying on computational puzzles (a.k.a. ``moderately hard functions'') introduced by Dwork and Naor (Crypto'92). The analysis of the blockchain...

2016/413 (PDF) Last updated: 2019-09-17
Efficient algorithms for supersingular isogeny Diffie-Hellman
Craig Costello, Patrick Longa, Michael Naehrig

We propose a new suite of algorithms that significantly improve the performance of supersingular isogeny Diffie-Hellman (SIDH) key exchange. Subsequently, we present a full-fledged implementation of SIDH that is geared towards the 128-bit quantum and 192-bit classical security levels. Our library is the first constant-time SIDH implementation and is up to 2.9 times faster than the previous best (non-constant-time) SIDH software. The high speeds in this paper are driven by compact,...

2015/1097 (PDF) Last updated: 2016-06-07
On the Communication required for Unconditionally Secure Multiplication
Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou, Michael Raskin
Cryptographic protocols

Many information-theoretic secure protocols are known for general secure multi-party computation, in the honest majority setting, and in the dishonest majority setting with preprocessing. All known protocols that are efficient in the circuit size of the evaluated function follow the same ''gate-by-gate'' design pattern: we work through an arithmetic (boolean) circuit on secret-shared inputs, such that after we process a gate, the output of the gate is represented as a random secret sharing...

2015/1092 (PDF) Last updated: 2019-07-10
Post-quantum key exchange - a new hope
Erdem Alkim, Léo Ducas, Thomas Pöppelmann, Peter Schwabe
Public-key cryptography

In 2015, Bos, Costello, Naehrig, and Stebila (IEEE Security & Privacy 2015) proposed an instantiation of Ding's ring-learning-with-errors (Ring-LWE) based key-exchange protocol (also including the tweaks proposed by Peikert from PQCrypto 2014), together with an implementation integrated into OpenSSL, with the affirmed goal of providing post-quantum security for TLS. In this work we revisit their instantiation and stand-alone implementation. Specifically, we propose new parameters and a...

2015/993 (PDF) Last updated: 2015-11-01
Bi-Deniable Inner Product Encryption from LWE
Daniel Apon, Xiong Fan, Feng-Hao Liu
Public-key cryptography

Deniable encryption (Canetti et al. CRYPTO '97) is an intriguing primitive that provides a security guarantee against not only eavesdropping attacks as required by semantic security, but also stronger coercion attacks performed after the fact. The concept of deniability has later demonstrated useful and powerful in many other contexts, such as leakage resilience, adaptive security of protocols, and security against selective opening attacks. Despite its conceptual usefulness, our...

2015/967 (PDF) Last updated: 2016-02-22
Freestart collision for full SHA-1
Marc Stevens, Pierre Karpman, Thomas Peyrin

This article presents an explicit freestart colliding pair for SHA-1, i.e. a collision for its internal compression function. This is the first practical break of the full SHA-1, reaching all 80 out of 80 steps. Only 10 days of computation on a 64-GPU cluster were necessary to perform this attack, for a cost of approximately $2^{57.5}$ calls to the compression function of SHA-1. This work builds on a continuous series of cryptanalytic advancements on SHA-1 since the theoretical collision...

2015/499 (PDF) Last updated: 2015-10-12
Algebraic partitioning: Fully compact and (almost) tightly secure cryptography
Dennis Hofheinz
Public-key cryptography

We describe a new technique for conducting ``partitioning arguments''. Partitioning arguments are a popular way to prove the security of a cryptographic scheme. For instance, to prove the security of a signature scheme, a partitioning argument could divide the set of messages into ``signable'' messages for which a signature can be simulated during the proof, and ``unsignable'' ones for which any signature would allow to solve a computational problem. During the security proof, we would then...

2015/315 (PDF) Last updated: 2015-06-12
Query-Complexity Amplification for Random Oracles
Grégory Demay, Peter Gaži, Ueli Maurer, Björn Tackmann
Foundations

Increasing the computational complexity of evaluating a hash function, both for the honest users as well as for an adversary, is a useful technique employed for example in password-based cryptographic schemes to impede brute-force attacks, and also in so-called proofs of work (used in protocols like Bitcoin) to show that a certain amount of computation was performed by a legitimate user. A natural approach to adjust the complexity of a hash function is to iterate it $c$~times, for some...

2014/848 (PDF) Last updated: 2014-10-22
Private Key Recovery Combination Attacks: On Extreme Fragility of Popular Bitcoin Key Management, Wallet and Cold Storage Solutions in Presence of Poor RNG Events
Nicolas T. Courtois, Pinar Emirdag, Filippo Valsorda
Cryptographic protocols

In this paper we study the question of key management and practical operational security in bitcoin digital currency storage systems. We study the security two most used bitcoin HD Wallet key management solutions (e.g. in BIP032 and in earlier systems). These systems have extensive audit capabilities but this property comes at a very high price. They are excessively fragile. One small security incident in a remote corner of the system and everything collapses, all private keys can be...

2014/791 (PDF) Last updated: 2014-10-10
Quantum Bit Commitment with Application in Quantum Zero-Knowledge Proof
Dongdai Lin, Yujuan Quan, Jian Weng, Jun Yan
Foundations

Watrous (STOC 2006) proved that plugging classical bit commitment scheme that is secure against quantum attack into the GMW-type construction of zero-knowledge gives a classical zero-knowledge proof that is secure against quantum attack. In this paper, we showed that plugging quantum bit commitment scheme (allowing quantum computation and communication) into the GMW-type construction also gives a quantum zero-knowledge proof, as one expects. However, since the binding condition of quantum...

2013/557 (PDF) Last updated: 2013-09-04
Black-Box Obfuscation for d-CNFs
Zvika Brakerski, Guy N. Rothblum
Secret-key cryptography

We show how to securely obfuscate a new class of functions: {\em conjunctions of $NC0_d$ circuits}. These are functions of the form $C(x) = \bigwedge_{i=1}^m C_i(x)$, where each $C_i$ is a boolean $NC0_d$ circuit, whose output bit is only a function of $d = O(1)$ bits of the input $x$. For example, $d$-CNFs, where each clause is a disjunction of at most $d$ variables, are in this class. Given such a function, we produce an obfuscated program that preserves the input-output functionality of...

2013/305 (PDF) Last updated: 2013-05-25
Towards Fresh Re-Keying with Leakage-Resilient PRFs: Cipher Design Principles and Analysis
Sonia Belaid, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel Medwed, Jorn-Marc Schmidt, Francois-Xavier Standaert, Stefan Tillich
Implementation

Leakage-resilient cryptography aims at developing new algorithms for which physical security against side-channel attacks can be formally analyzed. Following the work of Dziembowski and Pietrzak at FOCS 2008, several symmetric cryptographic primitives have been investigated in this setting. Most of them can be instantiated with a block cipher as underlying component. Such an approach naturally raises the question whether certain block ciphers are better suited for this purpose. In order to...

2012/629 (PDF) Last updated: 2017-01-02
SCAPI: The Secure Computation Application Programming Interface
Yael Ejgenberg, Moriya Farbstein, Meital Levy, Yehuda Lindell
Implementation

Secure two-party and multiparty computation has long stood at the center of the foundations of theoretical cryptography. Recently, however, interest has grown regarding the efficiency of such protocols and their application in practice. As a result, there has been significant progress on this problem and it is possible to actually carry out secure computation for non-trivial tasks on reasonably large inputs. Part of this research goal of making secure computation practical has also involved...

2012/307 (PDF) Last updated: 2012-06-03
Multi-Channel Broadcast Encryption
Duong Hieu Phan, David Pointcheval, Viet Cuong Trinh
Cryptographic protocols

Broadcast encryption aims at sending a content to a large arbitrary group of users at once. Currently, the most efficient schemes provide constant-size headers, that encapsulate ephemeral session keys under which the payload is encrypted. However, in practice, and namely for pay-TV, providers have to send various contents to different groups of users. Headers are thus specific to each group, one for each channel: as a consequence, the global overhead is linear in the number of channels....

2012/273 (PDF) Last updated: 2012-05-29
Public-Key Cryptography from New Multivariate Quadratic Assumptions
Yun-Ju Huang, Feng-Hao Liu, Bo-Yin Yang
Public-key cryptography

In this work, we study a new multivariate quadratic (MQ) assumption that can be used to construct public-key encryption schemes. In particular, we research in the following two directions: We establish a precise \emph{asymptotic} formulation of a family of hard MQ problems, and provide empirical evidence to confirm the hardness. %Since there are many practical solvers studied and implemented during the studies of algebraic attacks, we use We construct public-key encryption schemes, and...

2012/228 (PDF) Last updated: 2012-04-30
Physical Unclonable Functions in Cryptographic Protocols: Security Proofs and Impossibility Results
Marten van Dijk, Ulrich Rührmair
Foundations

We investigate the power of physical unclonable functions (PUFs) as a new primitive in cryptographic protocols. Our contributions split into three parts. Firstly, we focus on the realizability of PUF-protocols in a special type of stand-alone setting (the “stand-alone, good PUF setting”) under minimal assumptions. We provide new PUF definitions that require only weak average security properties of the PUF, and prove that these definitions suffice to realize secure PUF-based oblivious...

2012/182 (PDF) Last updated: 2013-10-08
How to Construct Quantum Random Functions
Mark Zhandry

In the presence of a quantum adversary, there are two possible definitions of security for a pseudorandom function. The first, which we call standard-security, allows the adversary to be quantum, but requires queries to the function to be classical. The second, quantum-security, allows the adversary to query the function on a quantum superposition of inputs, thereby giving the adversary a superposition of the values of the function at many inputs at once. Existing techniques for proving...

2011/394 (PDF) Last updated: 2012-06-30
A More Efficient Computationally Sound Non-Interactive Zero-Knowledge Shuffle Argument
Helger Lipmaa, Bingsheng Zhang

We propose a new non-interactive (perfect) zero-knowledge (NIZK) shuffle argument that, when compared the only previously known efficient NIZK shuffle argument by Groth and Lu, has a small constant factor times smaller computation and communication, and is based on more standard computational assumptions. Differently from Groth and Lu who only prove the co-soundness of their argument under purely computational assumptions, we prove computational soundness under a necessary knowledge...

2011/314 (PDF) Last updated: 2011-06-17
Tamper-Proof Circuits: How to Trade Leakage for Tamper-Resilience
Sebastian Faust, Krzysztof Pietrzak, Daniele Venturi
Foundations

Tampering attacks are cryptanalytic attacks on the implementation of cryptographic algorithms (e.g., smart cards), where an adversary introduces faults with the hope that the tampered device will reveal secret information. Inspired by the work of Ishai et al. [Eurocrypt'06], we propose a compiler that transforms any circuit into a new circuit with the same functionality, but which is resilient against a well-defined and powerful tampering adversary. More concretely, our transformed circuits...

2011/095 (PDF) Last updated: 2011-05-26
ALRED Blues: New Attacks on AES-Based MAC's
Orr Dunkelman, Nathan Keller, Adi Shamir
Secret-key cryptography

The ALRED family of Message Authentication Codes (MAC's) is based on three principles: Using a keyless block cipher in CBC mode to process the message, choosing AES-128 as this cipher, and reducing the effective number of rounds to 4 in order to speed up the processing. In this paper we show that each one of these principles creates significant weaknesses. More specifically, we show that any ALRED-type MAC which uses a keyless block cipher is vulnerable to new time/memory tradeoff...

2010/144 (PDF) Last updated: 2012-05-09
New Definitions and Separations for Circular Security
David Cash, Matthew Green, Susan Hohenberger

Traditional definitions of encryption security guarantee secrecy for any plaintext that can be computed by an outside adversary. In some settings, such as anonymous credential or disk encryption systems, this is not enough, because these applications encrypt messages that depend on the secret key. A natural question to ask is do standard definitions capture these scenarios? One area of interest is n-circular security} where the ciphertexts E(pk_1, sk_2), E(pk_2, sk_3), ... E(pk_{n-1},...

2009/432 Last updated: 2011-04-25
Practical Distributed Key Generation Scheme
Chen Huiyan, Li Zichen, Fang Yong

Generating a distributed key, where a constant fraction of the players can reconstruct the key, is an essential component of thresh- old cryptography. Previous solutions are based on univariate polynomi als. We present a new distributed key generation (DKG) protocol. The key idea of our scheme is to use bivariate symmetric polynomial. Compared with other solutions, our construction is efficient in computation and simple and flexible in applications. In addition, our construction admits a...

2009/247 (PDF) (PS) Last updated: 2009-12-06
On the Necessary and Sufficient Assumptions for UC Computation
Ivan Damgård, Jesper Buus Nielsen, Claudio Orlandi
Foundations

We study the necessary and sufficient assumptions for universally composable (UC) computation, both in terms of setup and computational assumptions. We look at the common reference string model, the common random string model and the key-registration authority (KRA) model, and provide new result for all of them. Perhaps most interestingly we show that: - For even the minimal meaningful KRA, where we only assume that the secret key is a value which is hard to compute from the public key, one...

2009/033 (PDF) Last updated: 2009-05-02
NESHA-256, NEw 256-bit Secure Hash Algorithm (Extended Abstract)
Yaser Esmaeili Salehani, Amir Tabatabaei, Mohammad Reza Sohizadeh Abyaneh, Mehdi Mohammad Hassanzadeh

In this paper, we introduce a new dedicated 256-bit hash function: NESHA-256. The recently contest for hash functions held by NIST, motivates us to design the new hash function which has a parallel structure. Advantages of parallel structures and also using some ideas from the designing procedure of block-cipher-based hash functions strengthen our proposed hash function both in security and in efficiency. NESHA-256 is designed not only to have higher security but also to be faster than...

2009/004 Last updated: 2009-01-26
On Stateless Schemes for Message Authentication Using Pseudorandom Functions
Palash Sarkar
Cryptographic protocols

We consider the construction and analysis of pseudorandom functions (PRF) for message authentication. Earlier work due to Bernstein and Vaudenay show how to reduce the analysis of PRFs to some probability calculations. We revisit this result and use it to prove some general results on constructions which use a PRF with ``small'' domain to build a PRF with ``large'' domain. These results are then used to analyse several existing and new constructions. Important among them is a...

2008/422 (PDF) Last updated: 2008-10-02
A New Approach for Algebraically Homomorphic Encryption
Frederik Armknecht, Ahmad-Reza Sadeghi
Foundations

The existence of an efficient and provably secure algebraically homomorphic scheme (AHS), i.e., one that supports both addition and multiplication operations, is a long stated open problem. All proposals so far are either insecure or not provable secure, inefficient, or allow only for one multiplication (and arbitrary additions). As only very limited progress has been made on the existing approaches in the recent years, the question arises whether new methods can lead to more satisfactory...

2007/064 (PDF) Last updated: 2007-02-20
Algebraic Lower Bounds for Computing on Encrypted Data
Rafail Ostrovsky, William E. Skeith III
Cryptographic protocols

In cryptography, there has been tremendous success in building primitives out of homomorphic semantically-secure encryption schemes, using homomorphic properties in a black-box way. A few notable examples of such primitives include items like private information retrieval schemes and collision-resistant hash functions. In this paper, we illustrate a general methodology for determining what types of protocols can be implemented in this way and which cannot. This is accomplished by analyzing...

2006/463 (PDF) (PS) Last updated: 2007-03-08
Obfuscation for Cryptographic Purposes
Dennis Hofheinz, John Malone-Lee, Martijn Stam
Foundations

An obfuscation O of a function F should satisfy two requirements: firstly, using O it should be possible to evaluate F; secondly, O should not reveal anything about F that cannot be learnt from oracle access to F. Several definitions for obfuscation exist. However, most of them are either too weak for or incompatible with cryptographic applications, or have been shown impossible to achieve, or both. We give a new definition of obfuscation and argue for its reasonability and usefulness. In...

2006/402 (PDF) (PS) Last updated: 2007-09-09
Algebraic Cryptanalysis of the Data Encryption Standard
Nicolas T. Courtois, Gregory V. Bard
Secret-key cryptography

In spite of growing importance of AES, the Data Encryption Standard is by no means obsolete. DES has never been broken from the practical point of view. The triple DES is believed very secure, is widely used, especially in the financial sector, and should remain so for many many years to come. In addition, some doubts have been risen whether its replacement AES is secure, given the extreme level of ``algebraic vulnerability'' of the AES S-boxes (their low I/O degree and exceptionally large...

2006/097 (PDF) Last updated: 2006-04-18
A Cryptographic Tour of the IPsec Standards
Kenneth G. Paterson
Applications

In this article, we provide an overview of cryptography and cryptographic key management as they are specified in IPsec, a popular suite of standards for providing communications security and network access control for Internet communications. We focus on the latest generation of the IPsec standards, recently published as Request for Comments 4301–4309 by the Internet Engineering Task Force, and how they have evolved from earlier versions of the standards.

2004/355 (PDF) Last updated: 2004-12-14
A Small-Scale Voting Protocol Hiding Vote-Counts of All Candidates
Pei-yih Ting, Po-Yueh Hung
Cryptographic protocols

In this paper, we focus on the design of the winner-determination procedure of an electronic voting protocol used at critical elections, e.g. at the meeting of the board of a company for critical business decisions or a parliamentary committee for legislation. The number of participating voters is limited to several hundreds but the voting should satisfy a new privacy requirement that the accumulated vote-counts of all candidates should be kept as secret as possible. This additional...

2004/264 (PDF) Last updated: 2004-10-14
Musings on the Wang et al. MD5 Collision
Philip Hawkes, Michael Paddon, Gregory G. Rose
Secret-key cryptography

Wang et al. caused great excitement at CRYPTO2004 when they announced a collision for MD5~\cite{R92_MD5}. This paper is examines the internal differences and conditions required for the attack to be successful. There are a large number of conditions that must be satisfied, thus indicating Wang at al. have found a clever way to generate message pairs for which the conditions are satisfied. The large number of conditions suggests that an attacker cannot use these differentials to cause second...

2002/133 (PDF) (PS) Last updated: 2002-10-16
Efficient Construction of (Distributed) Verifiable Random Functions
Yevgeniy Dodis
Foundations

We give the first simple and efficient construction of {\em verifiable random functions} (VRFs). VRFs, introduced by Micali et al. [MRV99], combine the properties of regular pseudorandom functions (PRFs) [GGM86] (i.e., indistinguishability from a random function) and digital signatures [GMR88] (i.e., one can provide an unforgeable proof that the VRF\ value is correctly computed). The efficiency of our VRF construction is only slightly worse than that of a regular PRF construction of Naor and...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.