Dates are inconsistent

Dates are inconsistent

5290 results sorted by ID

2024/1287 (PDF) Last updated: 2024-08-15
Basic Lattice Cryptography: The concepts behind Kyber (ML-KEM) and Dilithium (ML-DSA)
Vadim Lyubashevsky
Public-key cryptography

This tutorial focuses on describing the fundamental mathematical concepts and design decisions used in the two ``main'' lattice schemes standardized by NIST and included in the CNSA 2.0 algorithmic suite. They are the KEM / encryption scheme CRYSTALS-Kyber (ML-KEM) and the signature scheme CRYSTALS-Dilithium (ML-DSA) . In addition, we will also give the main ideas behind other lattice-based KEMs like Frodo and NTRU.

2024/1283 (PDF) Last updated: 2024-08-14
Password-authenticated Cryptography from Consumable Tokens
Ghada Almashaqbeh
Cryptographic protocols

Passwords are widely adopted for user authentication in practice, which led to the question of whether we can bootstrap a strongly-secure setting based on them. Historically, this has been extensively studied for key exchange; bootstrap from a low-entropy password to a high entropy key securing the communication. Other instances include digital lockers, signatures, secret sharing, and encryption. Motivated by a recent work on consumable tokens (Almashaqbeh et al., Eurocrypt 2022), we...

2024/1282 (PDF) Last updated: 2024-08-14
$\mathsf{NTRU}\mathsf{ }\mathsf{PKE}$: Efficient Public-Key Encryption Schemes from the NTRU Problem
Jonghyun Kim, Jong Hwan Park
Public-key cryptography

We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU }\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...

2024/1279 (PDF) Last updated: 2024-08-13
Improved Polynomial Division in Cryptography
Kostas Kryptos Chalkias, Charanjit Jutla, Jonas Lindstrom, Varun Madathil, Arnab Roy
Cryptographic protocols

Several cryptographic primitives, especially succinct proofs of various forms, transform the satisfaction of high-level properties to the existence of a polynomial quotient between a polynomial that interpolates a set of values with a cleverly arranged divisor. Some examples are SNARKs, like Groth16, and polynomial commitments, such as KZG. Such a polynomial division naively takes $O(n \log n)$ time with Fast Fourier Transforms, and is usually the asymptotic bottleneck for these...

2024/1267 (PDF) Last updated: 2024-08-09
Chrysalis Cipher Suite
Ian Malloy, Dennis Hollenbeck
Foundations

The formal verification of architectural strength in terms of computational complexity is achieved through reduction of the Non-Commutative Grothendieck problem in the form of a quadratic lattice. This multivariate form relies on equivalences derived from a k-clique problem within a multigraph. The proposed scheme reduces the k-clique problem as an input function, resulting in the generation of a quadratic used as parameters for the lattice. By Grothendieck’s inequality, the satisfiability...

2024/1266 (PDF) Last updated: 2024-08-09
Information-Theoretic Topology-Hiding Broadcast: Wheels, Stars, Friendship, and Beyond
D'or Banoun, Elette Boyle, Ran Cohen
Cryptographic protocols

Topology-hiding broadcast (THB) enables parties communicating over an incomplete network to broadcast messages while hiding the network topology from within a given class of graphs. Although broadcast is a privacy-free task, it is known that THB for certain graph classes necessitates computational assumptions, even against "honest but curious" adversaries, and even given a single corrupted party. Recent works have tried to understand when THB can be obtained with information-theoretic (IT)...

2024/1265 (PDF) Last updated: 2024-08-09
Safe curves for elliptic-curve cryptography
Daniel J. Bernstein, Tanja Lange
Public-key cryptography

This paper surveys interactions between choices of elliptic curves and the security of elliptic-curve cryptography. Attacks considered include not just discrete-logarithm computations but also attacks exploiting common implementation pitfalls.

2024/1264 (PDF) Last updated: 2024-08-16
Succinct Non-Subsequence Arguments
San Ling, Khai Hanh Tang, Khu Vu, Huaxiong Wang, Yingfei Yan
Public-key cryptography

Lookup arguments have recently attracted a lot of developments due to their applications in the constructions of succinct non-interactive arguments of knowledge (SNARKs). A closely related topic is subsequence arguments in which one can prove that string $\mathbf{s}$ is a subsequence of another string $\mathbf{t}$, i.e., deleting some characters in $\mathbf{t}$ can achieve $\mathbf{s}$. A dual notion, namely, non-subsequence arguments, is to prove that $\mathbf{s}$ is not a subsequence of...

2024/1262 (PDF) Last updated: 2024-08-09
Dilithium-Based Verifiable Timed Signature Scheme
Erkan Uslu, Oğuz Yayla
Cryptographic protocols

Verifiable Timed Signatures (VTS) are cryptographic constructs that enable obtaining a signature at a specific time in the future and provide evidence that the signature is legitimate. This framework particularly finds utility in applications such as payment channel networks, multiparty signing operations, or multiparty computation, especially within blockchain architectures. Currently, VTS schemes are based on signature algorithms such as BLS signature, Schnorr signature, and ECDSA. These...

2024/1240 (PDF) Last updated: 2024-08-05
ARADI and LLAMA: Low-Latency Cryptography for Memory Encryption
Patricia Greene, Mark Motley, Bryan Weeks
Secret-key cryptography

In this paper, we describe a low-latency block cipher (ARADI) and authenticated encryption mode (LLAMA) intended to support memory encryption applications.

2024/1234 (PDF) Last updated: 2024-08-06
EagleSignV3 : A new secure variant of EagleSign signature over lattices
Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, Michel Seck, Djiby Sow
Public-key cryptography

With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...

2024/1231 (PDF) Last updated: 2024-08-10
A Constructive View of Homomorphic Encryption and Authenticator
Ganyuan Cao
Public-key cryptography

Homomorphic Encryption (HE) is a cutting-edge cryptographic technique that enables computations on encrypted data to be mirrored on the original data. This has quickly attracted substantial interest from the research community due to its extensive practical applications, such as in cloud computing and privacy-preserving machine learning. In addition to confidentiality, the importance of authenticity has emerged to ensure data integrity during transmission and evaluation. To address...

2024/1229 (PDF) Last updated: 2024-08-02
Benchmarking Attacks on Learning with Errors
Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter
Attacks and cryptanalysis

Lattice cryptography schemes based on the learning with errors (LWE) hardness assumption have been standardized by NIST for use as post-quantum cryptosystems, and by HomomorphicEncryption.org for encrypted compute on sensitive data. Thus, understanding their concrete security is critical. Most work on LWE security focuses on theoretical estimates of attack performance, which is important but may overlook attack nuances arising in real-world implementations. The sole existing concrete...

2024/1223 (PDF) Last updated: 2024-07-31
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation

For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...

2024/1222 (PDF) Last updated: 2024-07-31
Quantum Implementation and Analysis of ARIA
Yujin Oh, Kyungbae Jang, Yujin Yang, Hwajeong Seo
Implementation

The progression of quantum computing is considered a potential threat to traditional cryptography system, highlighting the significance of post-quantum security in cryptographic systems. Regarding symmetric key encryption, the Grover algorithm can approximately halve the search complexity. Despite the absence of fully operational quantum computers at present, the necessity of assessing the security of symmetric key encryption against quantum computing continues to grow. In this paper, we...

2024/1221 (PDF) Last updated: 2024-07-31
Depth Optimized Quantum Circuits for HIGHT and LEA
Kyungbae Jang, Yujin Oh, Minwoo Lee, Dukyoung Kim, Hwajeong Seo
Implementation

Quantum computers can model and solve several problems that have posed challenges for classical super computers, leveraging their natural quantum mechanical characteristics. A large-scale quantum computer is poised to significantly reduce security strength in cryptography. In this context, extensive research has been conducted on quantum cryptanalysis. In this paper, we present optimized quantum circuits for Korean block ciphers, HIGHT and LEA. Our quantum circuits for HIGHT and LEA...

2024/1217 (PDF) Last updated: 2024-07-30
A Compact and Parallel Swap-Based Shuffler based on butterfly Network and its complexity against Side Channel Analysis
Jong-Yeon Park, Wonil Lee, Bo Gyeong Kang, Il-jong Song, Jaekeun Oh, Kouichi Sakurai
Foundations

A prominent countermeasure against side channel attacks, the hiding countermeasure, typically involves shuffling operations using a permutation algorithm. Especially in the era of Post-Quantum Cryptography, the importance of the hiding coun- termeasure is emphasized due to computational characteristics like those of lattice and code-based cryptography. In this context, swiftly and securely generating permutations has a critical impact on an algorithm’s security and efficiency. The widely...

2024/1211 (PDF) Last updated: 2024-08-06
A Generic Framework for Side-Channel Attacks against LWE-based Cryptosystems
Julius Hermelink, Silvan Streit, Erik Mårtensson, Richard Petri
Attacks and cryptanalysis

Lattice-based cryptography is in the process of being standardized. Several proposals to deal with side-channel information using lattice reduction exist. However, it has been shown that algorithms based on Bayesian updating are often more favorable in practice. In this work, we define distribution hints; a type of hint that allows modelling probabilistic information. These hints generalize most previously defined hints and the information obtained in several attacks. We define two...

2024/1206 (PDF) Last updated: 2024-07-26
Applying Post-Quantum Cryptography Algorithms to a DLT-Based CBDC Infrastructure: Comparative and Feasibility Analysis
Daniel de Haro Moraes, Joao Paulo Aragao Pereira, Bruno Estolano Grossi, Gustavo Mirapalheta, George Marcel Monteiro Arcuri Smetana, Wesley Rodrigues, Courtnay Nery Guimarães Jr., Bruno Domingues, Fábio Saito, Marcos Simplício
Implementation

This article presents an innovative project for a Central Bank Digital Currency (CBDC) infrastructure. Focusing on security and reliability, the proposed architecture: (1) employs post-quantum cryptography (PQC) algorithms for long-term security, even against attackers with access to cryptographically-relevant quantum computers; (2) can be integrated with a Trusted Execution Environment (TEE) to safeguard the confidentiality of transaction contents as they are processed by third-parties; and...

2024/1198 (PDF) Last updated: 2024-07-25
ECO-CRYSTALS: Efficient Cryptography CRYSTALS on Standard RISC-V ISA
Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao, Jingqiang Lin
Implementation

The field of post-quantum cryptography (PQC) is continuously evolving. Many researchers are exploring efficient PQC implementation on various platforms, including x86, ARM, FPGA, GPU, etc. In this paper, we present an Efficient CryptOgraphy CRYSTALS (ECO-CRYSTALS) implementation on standard 64-bit RISC-V Instruction Set Architecture (ISA). The target schemes are two winners of the National Institute of Standards and Technology (NIST) PQC competition: CRYSTALS-Kyber and CRYSTALS-Dilithium,...

2024/1194 (PDF) Last updated: 2024-07-24
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation

The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...

2024/1193 (PDF) Last updated: 2024-07-31
The syzygy distinguisher
Hugues RANDRIAMBOLOLONA
Attacks and cryptanalysis

We present a new distinguisher for alternant and Goppa codes, whose complexity is subexponential in the error-correcting capability, hence better than that of generic decoding algorithms. Moreover it does not suffer from the strong regime limitations of the previous distinguishers or structure recovery algorithms: in particular, it applies to the codes used in the Classic McEliece candidate for postquantum cryptography standardization. The invariants that allow us to distinguish are graded...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1188 (PDF) Last updated: 2024-07-23
Lightweight Dynamic Linear Components for Symmetric Cryptography
S. M. Dehnavi, M. R. Mirzaee Shamsabad
Foundations

‎In this paper‎, ‎using the concept of equivalence of mappings we characterize all of the one-XOR matrices which are used in hardware applications and propose a family of lightweight linear mappings for software-oriented applications in symmetric cryptography‎. ‎Then‎, ‎we investigate interleaved linear mappings and based upon this study‎, ‎we present generalized dynamic primitive LFSRs along with dynamic linear components for construction of diffusion layers. ‎From the mathematical...

2024/1186 (PDF) Last updated: 2024-07-25
MATTER: A Wide-Block Tweakable Block Cipher
Roberto Avanzi, Orr Dunkelman, Kazuhiko Minematsu
Secret-key cryptography

In this note, we introduce the MATTER Tweakable Block Cipher, designed principally for low latency in low-area hardware implementations, but that can also be implemented in an efficient and compact way in software. MATTER is a 512-bit wide balanced Feistel network with three to six rounds, using the ASCON permutation as the round function. The Feistel network defines a keyed, non-tweakable core, which is made tweakable by using the encryption of the tweak as its key. Key and tweak are...

2024/1185 (PDF) Last updated: 2024-07-23
Erebor and Durian: Full Anonymous Ring Signatures from Quaternions and Isogenies
Giacomo Borin, Yi-Fu Lai, Antonin Leroux
Public-key cryptography

We construct two efficient post-quantum ring signatures with anonymity against full key exposure from isogenies, addressing limitations of existing isogeny-based ring signatures. First, we present an efficient concrete distinguisher for the SQIsign simulator when the signing key is provided using one transcript. This shows that turning SQIsign into an efficient full anonymous ring signature requires some new ideas. Second, we propose a variant of SQIsign that is resistant to the...

2024/1180 (PDF) Last updated: 2024-07-22
Fast computation of 2-isogenies in dimension 4 and cryptographic applications
Pierrick Dartois
Implementation

Dimension 4 isogenies have first been introduced in cryptography for the cryptanalysis of Supersingular Isogeny Diffie-Hellman (SIDH) and have been used constructively in several schemes, including SQIsignHD, a derivative of SQIsign isogeny based signature scheme. Unlike in dimensions 2 and 3, we can no longer rely on the Jacobian model and its derivatives to compute isogenies. In dimension 4 (and higher), we can only use theta-models. Previous works by Romain Cosset, David Lubicz and Damien...

2024/1179 (PDF) Last updated: 2024-07-22
Inner Product Ring LWE Problem, Reduction, New Trapdoor Algorithm for Inner Product Ring LWE Problem and Ring SIS Problem
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai
Foundations

Lattice cryptography is currently a major research focus in public-key encryption, renowned for its ability to resist quantum attacks. The introduction of ideal lattices (ring lattices) has elevated the theoretical framework of lattice cryptography. Ideal lattice cryptography, compared to classical lattice cryptography, achieves more acceptable operational efficiency through fast Fourier transforms. However, to date, issues of impracticality or insecurity persist in ideal lattice problems....

2024/1178 (PDF) Last updated: 2024-07-21
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications

Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...

2024/1177 (PDF) Last updated: 2024-07-21
Cryptanalysis of two post-quantum authenticated key agreement protocols
Mehdi Abri, Hamid Mala
Attacks and cryptanalysis

As the use of the internet and digital devices has grown rapidly, keeping digital communications secure has become very important. Authenticated Key Agreement (AKA) protocols play a vital role in securing digital communications. These protocols enable the communicating parties to mutually authenticate and securely establish a shared secret key. The emergence of quantum computers makes many existing AKA protocols vulnerable to their immense computational power. Consequently, designing new...

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1171 (PDF) Last updated: 2024-07-19
Tight Time-Space Tradeoffs for the Decisional Diffie-Hellman Problem
Akshima, Tyler Besselman, Siyao Guo, Zhiye Xie, Yuping Ye
Foundations

In the (preprocessing) Decisional Diffie-Hellman (DDH) problem, we are given a cyclic group $G$ with a generator $g$ and a prime order $N$, and we want to prepare some advice of size $S$, such that we can efficiently distinguish $(g^{x},g^{y},g^{xy})$ from $(g^{x},g^{y},g^{z})$ in time $T$ for uniformly and independently chosen $x,y,z$ from $\mathbb{Z}_N$. This is a central cryptographic problem whose computational hardness underpins many widely deployed schemes, such as the Diffie–Hellman...

2024/1170 (PDF) Last updated: 2024-07-29
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography

Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...

2024/1169 (PDF) Last updated: 2024-07-19
Attacking Tropical Stickel Protocol by MILP and Heuristic Optimization Techniques
Sulaiman Alhussaini, Serge˘ı Sergeev
Attacks and cryptanalysis

Known attacks on the tropical implementation of Stickel protocol involve solving a minimal covering problem, and this leads to an exponential growth in the time required to recover the secret key as the used polynomial degree increases. Consequently, it can be argued that Alice and Bob can still securely execute the protocol by utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical operations. The same is true for the implementation of Stickel protocol...

2024/1156 (PDF) Last updated: 2024-07-16
On affine forestry over integral domains and families of deep Jordan-Gauss graphs
Tymoteusz Chojecki, Grahame Erskine, James Tuite, Vasyl Ustimenko
Foundations

Let K be a commutative ring. We refer to a connected bipartite graph G = G_n(K) with partition sets P = K^n (points) and L = K^n (lines) as an affine graph over K of dimension dim(G) = n if the neighbourhood of each vertex is isomorphic to K. We refer to G as an algebraic affine graph over K if the incidence between a point (x_1, x_2, . . . , x_n) and line [y_1, y_2, . . . , y_n] is defined via a system of polynomial equations of the kind f_i = 0 where f_i ∈ K[x_1, x_2, . . . , x_n, y_1,...

2024/1150 (PDF) Last updated: 2024-07-15
Finding Practical Parameters for Isogeny-based Cryptography
Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, Francisco Rodríguez-Henríquez
Public-key cryptography

Isogeny-based schemes often come with special requirements on the field of definition of the involved elliptic curves. For instance, the efficiency of SQIsign, a promising candidate in the NIST signature standardisation process, requires a large power of two and a large smooth integer $T$ to divide $p^2-1$ for its prime parameter $p$. We present two new methods that combine previous techniques for finding suitable primes: sieve-and-boost and XGCD-and-boost. We use these methods to find...

2024/1145 (PDF) Last updated: 2024-07-14
A Practical and Scalable Implementation of the Vernam Cipher, under Shannon Conditions, using Quantum Noise
Adrian Neal
Secret-key cryptography

The one-time pad cipher is renowned for its theoretical perfect security, yet its practical deployment is primarily hindered by the key-size and distribution challenge. This paper introduces a novel approach to key distribution called q-stream, designed to make symmetric-key cryptography, and the one-time pad cipher in particular, a viable option for contemporary secure communications, and specifically, post-quantum cryptography, leveraging quantum noise and combinatorics to ensure secure...

2024/1140 (PDF) Last updated: 2024-07-13
Permutation Superposition Oracles for Quantum Query Lower Bounds
Christian Majenz, Giulio Malavolta, Michael Walter
Foundations

We propose a generalization of Zhandry’s compressed oracle method to random permutations, where an algorithm can query both the permutation and its inverse. We show how to use the resulting oracle simulation to bound the success probability of an algorithm for any predicate on input-output pairs, a key feature of Zhandry’s technique that had hitherto resisted attempts at generalization to random permutations. One key technical ingredient is to use strictly monotone factorizations to...

2024/1137 (PDF) Last updated: 2024-07-12
Cryptanalysis of EagleSign
Ludo N. Pulles, Mehdi Tibouchi
Attacks and cryptanalysis

EagleSign is one of the 40 “Round 1 Additional Signatures” that is accepted for consideration in the supplementary round of the Post-Quantum Cryptography standardization process, organized by NIST. Its design is based on structured lattices, and it boasts greater simplicity and performance compared to the two lattice signatures already selected for standardization: Falcon and Dilithium. In this paper, we show that those claimed advantages come at the cost of security. More precisely, we...

2024/1134 (PDF) Last updated: 2024-07-12
Exploiting signature leakages: breaking Enhanced pqsigRM
Thomas Debris-Alazard, Pierre Loisel, Valentin Vasseur
Attacks and cryptanalysis

Enhanced pqsigRM is a code-based hash-and-sign scheme proposed to the second National Institute of Standards and Technology call for post-quantum signatures. The scheme is based on the $(U,U V)$-construction and it enjoys remarkably small signature lengths, about $1$KBytes for a security level of $128$ bits. Unfortunately we show that signatures leak information about the underlying $(U,U V)$-structure. It allows to retrieve the private-key with~$100, 000$ signatures.

2024/1130 (PDF) Last updated: 2024-07-11
Distributed Verifiable Random Function With Compact Proof
Ahmet Ramazan Ağırtaş, Arda Buğra Özer, Zülfükar Saygı, Oğuz Yayla
Cryptographic protocols

Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear...

2024/1128 (PDF) Last updated: 2024-07-11
Cryptiny: Compacting Cryptography for Space-Restricted Channels and its Use-case for IoT-E2EE
Liron David, Omer Berkman, Avinatan Hassidim, David Lazarov, Yossi Matias, Moti Yung

We present a novel cryptographic paradigm denoted ``cryptiny:'' Employing a single cryptographic value for several security goals, thus ``compacting'' the communication sent over a space-restricted (narrow) channel, while still proving security. Cryptiny is contrary to the classical cryptographic convention of using a separate cryptographic element for each security goal. Demonstrating the importance of cryptiny, we employ it for securing a critical IoT configuration in which a...

2024/1126 (PDF) Last updated: 2024-08-08
Is ML-Based Cryptanalysis Inherently Limited? Simulating Cryptographic Adversaries via Gradient-Based Methods
Avital Shafran, Eran Malach, Thomas Ristenpart, Gil Segev, Stefano Tessaro
Foundations

Given the recent progress in machine learning (ML), the cryptography community has started exploring the applicability of ML methods to the design of new cryptanalytic approaches. While current empirical results show promise, the extent to which such methods may outperform classical cryptanalytic approaches is still somewhat unclear. In this work, we initiate exploration of the theory of ML-based cryptanalytic techniques, in particular providing new results towards understanding whether...

2024/1122 (PDF) Last updated: 2024-07-09
Finding Bugs and Features Using Cryptographically-Informed Functional Testing
Giacomo Fenzi, Jan Gilcher, Fernando Virdia
Implementation

In 2018, Mouha et al. (IEEE Trans. Reliability, 2018) performed a post-mortem investigation of the correctness of reference implementations submitted to the SHA3 competition run by NIST, finding previously unidentified bugs in a significant portion of them, including two of the five finalists. Their innovative approach allowed them to identify the presence of such bugs in a black-box manner, by searching for counterexamples to expected cryptographic properties of the implementations under...

2024/1121 (PDF) Last updated: 2024-07-09
Implementation and Performance Evaluation of Elliptic Curve Cryptography over SECP256R1 on STM32 Microprocessor
Onur İşler
Implementation

The use of Internet of Things (IoT) devices in embedded systems has become increasingly popular with advancing technologies. These devices become vulnerable to cyber attacks as they gain popularity. The cryptographic operations performed for the purpose of protection against cyber attacks are crucial to yield fast results in open networks and not slow down network traffic. Therefore, to enhance communication security, studies have been conducted in the literature on using asymmetric...

2024/1120 (PDF) Last updated: 2024-07-09
A Fast and Efficient SIKE Co-Design: Coarse-Grained Reconfigurable Accelerators with Custom RISC-V Microcontroller on FPGA
Jing Tian, Bo Wu, Lang Feng, Haochen Zhang, Zhongfeng Wang
Implementation

This paper proposes a fast and efficient FPGA-based hardware-software co-design for the supersingular isogeny key encapsulation (SIKE) protocol controlled by a custom RISC-V processor. Firstly, we highly optimize the core unit, the polynomial-based field arithmetic logic unit (FALU), with the proposed fast convolution-like multiplier (FCM) to significantly reduce the resource consumption while still maintaining low latency and constant time for all the four SIKE parameters. Secondly, we pack...

2024/1116 (PDF) Last updated: 2024-07-09
A Simple Post-Quantum Oblivious Transfer Protocol from Mod-LWR
Shen Dong, Hongrui Cui, Kaiyi Zhang, Kang Yang, Yu Yu
Cryptographic protocols

Oblivious transfer (OT) is a fundamental cryptographic protocol that plays a crucial role in secure multi-party computation (MPC). Most practical OT protocols by, e.g., Naor and Pinkas (SODA'01) or Chou and Orlandi (Latincrypt'15), are based on Diffie-Hellman (DH)-like assumptions and not post-quantum secure. In contrast, many other components of MPC protocols, including garbled circuits and secret sharings, are post-quantum secure. The reliance on non-post-quantum OT protocols presents a...

2024/1111 (PDF) Last updated: 2024-08-01
Collision Attacks on Galois/Counter Mode (GCM)
John Preuß Mattsson
Secret-key cryptography

Advanced Encryption Standard in Galois/Counter Mode (AES-GCM) is the most widely used Authenticated Encryption with Associated Data (AEAD) algorithm in the world. In this paper, we analyze the use of GCM with all the Initialization Vector (IV) constructions and lengths approved by NIST SP 800-38D when encrypting multiple plaintexts with the same key. We derive attack complexities in both ciphertext-only and known-plaintext models, with or without nonce hiding, for collision attacks...

2024/1106 (PDF) Last updated: 2024-07-07
Masked Vector Sampling for HQC
Maxime Spyropoulos, David Vigilant, Fabrice Perion, Renaud Pacalet, Laurent Sauvage
Implementation

Anticipating the advent of large quantum computers, NIST started a worldwide competition in 2016 aiming to define the next cryptographic standards. HQC is one of these post-quantum schemes still in contention, with four others already in the process of being standardized. In 2022, Guo et al. introduced a timing attack that exploited an inconsistency in HQC rejection sampling function to recover its secret key in 866,000 calls to an oracle. The authors of HQC updated its specification by...

2024/1101 (PDF) Last updated: 2024-07-06
Stickel’s Protocol using Tropical Increasing Matrices
Any Muanalifah, Zahari Mahad, Nurwan, Rosalio G Artes
Public-key cryptography

In this paper we introduce new concept of tropical increasing matrices and then prove that two tropical increasing matrices are commute. Using this property, we modified Stickel’s protocol. This idea similar to [5] where modified Stickel’s protocol using commuting matrices (Linde De La Puente Matrices).

2024/1099 (PDF) Last updated: 2024-07-05
FHE-MENNs: Opportunities and Pitfalls for Accelerating Fully Homomorphic Private Inference with Multi-Exit Neural Networks
Lars Wolfgang Folkerts, Nektarios Georgios Tsoutsos
Applications

With concerns about data privacy growing in a connected world, cryptography researchers have focused on fully homomorphic encryption (FHE) for promising machine learning as a service solutions. Recent advancements have lowered the computational cost by several orders of magnitude, but the latency of fully homomorphic neural networks remains a barrier to adoption. This work proposes using multi-exit neural networks (MENNs) to accelerate the FHE inference. MENNs are network architectures that...

2024/1094 (PDF) Last updated: 2024-07-04
Notes on Multiplying Cyclotomic Polynomials on a GPU
Joseph Johnston

Lattice cryptography has many exciting applications, from homomorphic encryption to zero knowledge proofs. We explore the algebra of cyclotomic polynomials underlying many practical lattice cryptography constructions, and we explore algorithms for multiplying cyclotomic polynomials on a GPU.

2024/1083 (PDF) Last updated: 2024-07-03
LEA Block Cipher in Rust Language: Trade-off between Memory Safety and Performance
Sangwon Kim, Siwoo Eum, Minho Song, Hwajeong Seo
Implementation

Cryptography implementations of block cipher have been written in C language due to its strong features on system-friendly features. However, the C language is prone to memory safety issues, such as buffer overflows and memory leaks. On the other hand, Rust, novel system programming language, provides strict compile-time memory safety guarantees through its ownership model. This paper presents the implementation of LEA block cipher in Rust language, demonstrating features to prevent...

2024/1079 (PDF) Last updated: 2024-07-16
QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, Sacha Servan-Schreiber
Cryptographic protocols

Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension. A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads. Specifically, traditional OT...

2024/1070 (PDF) Last updated: 2024-07-01
Protecting cryptographic code against Spectre-RSB
Santiago Arranz Olmos, Gilles Barthe, Chitchanok Chuengsatiansup, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Peter Schwabe, Yuval Yarom, Zhiyuan Zhang
Implementation

It is fundamental that executing cryptographic software must not leak secrets through side-channels. For software-visible side-channels, it was long believed that "constant-time" programming would be sufficient as a systematic countermeasure. However, this belief was shattered in 2018 by attacks exploiting speculative execution—so called Spectre attacks. Recent work shows that language support suffices to protect cryptographic code with minimal overhead against one class of such attacks,...

2024/1054 (PDF) Last updated: 2024-06-28
Optimized Computation of the Jacobi Symbol
Jonas Lindstrøm, Kostas Kryptos Chalkias
Implementation

The Jacobi Symbol is an essential primitive in cryptographic applications such as primality testing, integer factorization, and various encryption schemes. By exploring the interdependencies among modular reductions within the algorithmic loop, we have developed a refined method that significantly enhances computational efficiency. Our optimized algorithm, implemented in the Rust language, achieves a performance increase of 72% over conventional textbook methods and is twice as fast as the...

2024/1050 (PDF) Last updated: 2024-06-28
On Sequential Functions and Fine-Grained Cryptography
Jiaxin Guan, Hart Montgomery
Foundations

A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...

2024/1043 (PDF) Last updated: 2024-06-30
Cryptography in the Common Haar State Model: Feasibility Results and Separations
Prabhanjan Ananth, Aditya Gulati, Yao-Ting Lin
Foundations

Common random string model is a popular model in classical cryptography. We study a quantum analogue of this model called the common Haar state (CHS) model. In this model, every party participating in the cryptographic system receives many copies of one or more i.i.d Haar random states. We study feasibility and limitations of cryptographic primitives in this model and its variants: - We present a construction of pseudorandom function-like states with security against computationally...

2024/1034 (PDF) Last updated: 2024-06-26
A Practical Protocol for Quantum Oblivious Transfer from One-Way Functions
Eleni Diamanti, Alex B. Grilo, Adriano Innocenzi, Pascal Lefebvre, Verena Yacoub, Álvaro Yángüez
Cryptographic protocols

We present a new simulation-secure quantum oblivious transfer (QOT) protocol based on one-way functions in the plain model. With a focus on practical implementation, our protocol surpasses prior works in efficiency, promising feasible experimental realization. We address potential experimental errors and their correction, offering analytical expressions to facilitate the analysis of the required quantum resources. Technically, we achieve simulation security for QOT through an equivocal and...

2024/1030 (PDF) Last updated: 2024-06-26
GRASP: Accelerating Hash-based PQC Performance on GPU Parallel Architecture
Yijing Ning, Jiankuo Dong, Jingqiang Lin, Fangyu Zheng, Yu Fu, Zhenjiang Dong, Fu Xiao
Implementation

$SPHINCS^ $, one of the Post-Quantum Cryptography Digital Signature Algorithms (PQC-DSA) selected by NIST in the third round, features very short public and private key lengths but faces significant performance challenges compared to other post-quantum cryptographic schemes, limiting its suitability for real-world applications. To address these challenges, we propose the GPU-based paRallel Accelerated $SPHINCS^ $ (GRASP), which leverages GPU technology to enhance the efficiency of...

2024/1023 (PDF) Last updated: 2024-06-25
Constant-Size Unbounded Multi-Hop Fully Homomorphic Proxy Re-Encryption from Lattices
Feixiang Zhao, Huaxiong Wang, Jian Weng
Public-key cryptography

Proxy re-encryption is a cryptosystem that achieves efficient encrypted data sharing by allowing a proxy to transform a ciphertext encrypted under one key into another ciphertext under a different key. Homomorphic proxy re-encryption (HPRE) extends this concept by integrating homomorphic encryption, allowing not only the sharing of encrypted data but also the homomorphic computations on such data. The existing HPRE schemes, however, are limited to a single or bounded number of hops of...

2024/1017 (PDF) Last updated: 2024-06-24
Accelerating pairings on BW10 and BW14 Curves
Senegue Gomez Nyamsi, Laurian Guimagang Azebaze, Emmanuel Fouotsa
Implementation

Since the advent of pairing based cryptography, many researchers have developed several techniques and variants of pairings to optimise the speed of pairing computations. The selection of the elliptic curve for a given pairing based protocol is crucial for operations in the first and second pairing groups of points of the elliptic curve and for many cryptographic schemes. A new variant of superoptimal pairing was proposed in 2023, namely x-superoptimal pairing on curves with odd prime...

2024/1013 (PDF) Last updated: 2024-06-22
Tempora-Fusion: Time-Lock Puzzle with Efficient Verifiable Homomorphic Linear Combination
Aydin Abadi

To securely transmit sensitive information into the future, Time-Lock Puzzles (TLPs) have been developed. Their applications include scheduled payments, timed commitments, e-voting, and sealed-bid auctions. Homomorphic TLP is a key variant of TLP that enables computation on puzzles from different clients. This allows a solver/server to tackle only a single puzzle encoding the computation's result. However, existing homomorphic TLPs lack support for verifying the correctness of the...

2024/1012 (PDF) Last updated: 2024-06-22
Supersonic OT: Fast Unconditionally Secure Oblivious Transfer
Aydin Abadi, Yvo Desmedt
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic protocol with applications in secure Multi-Party Computation, Federated Learning, and Private Set Intersection. With the advent of quantum computing, it is crucial to develop unconditionally secure core primitives like OT to ensure their continued security in the post-quantum era. Despite over four decades since OT's introduction, the literature has predominantly relied on computational assumptions, except in cases using unconventional...

2024/1009 (PDF) Last updated: 2024-06-21
Improved Reductions from Noisy to Bounded and Probing Leakages via Hockey-Stick Divergences
Maciej Obremski, João Ribeiro, Lawrence Roy, François-Xavier Standaert, Daniele Venturi
Attacks and cryptanalysis

There exists a mismatch between the theory and practice of cryptography in the presence of leakage. On the theoretical front, the bounded leakage model, where the adversary learns bounded-length but noiseless information about secret components, and the random probing model, where the adversary learns some internal values of a leaking implementation with some probability, are convenient abstractions to analyze the security of numerous designs. On the practical front, side-channel attacks...

2024/1007 (PDF) Last updated: 2024-06-21
On the vector subspaces of $\mathbb{F}_{2^n}$ over which the multiplicative inverse function sums to zero
Claude Carlet
Secret-key cryptography

We study the behavior of the multiplicative inverse function (which plays an important role in cryptography and in the study of finite fields), with respect to a recently introduced generalization of almost perfect nonlinearity (APN), called $k$th-order sum-freedom, that extends a classical characterization of APN functions, and has also some relationship with integral attacks. This generalization corresponds to the fact that a vectorial function $F:\mathbb F_2^n\mapsto \mathbb F_2^m$ sums...

2024/993 (PDF) Last updated: 2024-06-19
Limits on the Power of Prime-Order Groups: Separating Q-Type from Static Assumptions
George Lu, Mark Zhandry
Foundations

Subgroup decision techniques on cryptographic groups and pairings have been critical for numerous applications. Originally conceived in the composite-order setting, there is a large body of work showing how to instantiate subgroup decision techniques in the prime-order setting as well. In this work, we demonstrate the first barrier to this research program, by demonstrating an important setting where composite-order techniques cannot be replicated in the prime-order setting. In...

2024/984 (PDF) Last updated: 2024-07-01
Side-Channel and Fault Resistant ASCON Implementation: A Detailed Hardware Evaluation (Extended Version)
Aneesh Kandi, Anubhab Baksi, Peizhou Gan, Sylvain Guilley, Tomáš Gerlich, Jakub Breier, Anupam Chattopadhyay, Ritu Ranjan Shrivastwa, Zdeněk Martinásek, Shivam Bhasin
Implementation

In this work, we present various hardware implementations for the lightweight cipher ASCON, which was recently selected as the winner of the NIST organized Lightweight Cryptography (LWC) competition. We cover encryption tag generation and decryption tag verification for the ASCON AEAD and also the ASCON hash function. On top of the usual (unprotected) implementation, we present side-channel protection (threshold countermeasure) and triplication/majority-based fault protection. To the...

2024/976 (PDF) Last updated: 2024-06-17
PIR with Client-Side Preprocessing: Information-Theoretic Constructions and Lower Bounds
Yuval Ishai, Elaine Shi, Daniel Wichs
Cryptographic protocols

It is well-known that classical Private Information Retrieval (PIR) schemes without preprocessing must suffer from linear server computation per query. Moreover, any such single-server PIR with sublinear bandwidth must rely on public-key cryptography. Several recent works showed that these barriers pertaining to classical PIR can be overcome by introducing a preprocessing phase where each client downloads a small hint that helps it make queries subsequently. Notably, the Piano PIR scheme...

2024/973 (PDF) Last updated: 2024-06-16
ICICLE v2: Polynomial API for Coding ZK Provers to Run on Specialized Hardware
Karthik Inbasekar, Yuval Shekel, Michael Asa
Applications

Polynomials play a central role in cryptography. In the context of Zero Knowledge Proofs (ZKPs), protocols can be exclusively expressed using polynomials, making them a powerful abstraction tool, as demonstrated in most ZK research papers. Our first contribution is a high-level framework that enables practitioners to implement ZKPs in a more natural way, based solely on polynomial primitives. ZK provers are considered computationally intensive algorithms with a high degree of...

2024/970 (PDF) Last updated: 2024-06-16
Cryptography at the Crossroads: Ethical Responsibility, the Cypherpunk Movement and Institutions
Eric Blair
Foundations

This paper explores the intersection of cryptographic work with ethical responsibility and political activism, inspired by the Cypherpunk Manifesto and Phillip Rogaway's analysis of the moral character of cryptography. The discussion encompasses the historical context of cryptographic development, the philosophical underpinnings of the cypherpunk ideology, and contemporary challenges posed by mass surveillance and privacy concerns. By examining these facets, the paper calls for a renewed...

2024/969 (PDF) Last updated: 2024-06-16
Analysis, modify and apply in IIOT form light-weight PSI in CM20
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai
Cryptographic protocols

Multi-party computation (\textsf{MPC}) is a major research interest in modern cryptography, and Privacy Set Intersection (\textsf{PSI}) is an important research topic within \textsf{MPC}. Its main function is to allow two parties to compute the intersection of their private sets without revealing any other information. Therefore, \textsf{PSI} can be applied to various real-world scenarios, such as the Industrial Internet of Things (\textsf{IIOT}). Chase and Miao presented a paper on...

2024/965 (PDF) Last updated: 2024-06-15
Efficient and Secure Post-Quantum Certificateless Signcryption for Internet of Medical Things
Shiyuan Xu, Xue Chen, Yu Guo, Siu-Ming Yiu, Shang Gao, Bin Xiao
Public-key cryptography

Internet of Medical Things (IoMT) has gained significant research focus in both academic and medical institutions. Nevertheless, the sensitive data involved in IoMT raises concerns regarding user validation and data privacy. To address these concerns, certificateless signcryption (CLSC) has emerged as a promising solution, offering authenticity, confidentiality, and unforgeability. Unfortunately, most existing CLSC schemes are impractical for IoMT due to their heavy computational and storage...

2024/962 (PDF) Last updated: 2024-06-14
Secure Account Recovery for a Privacy-Preserving Web Service
Ryan Little, Lucy Qin, Mayank Varia
Cryptographic protocols

If a web service is so secure that it does not even know—and does not want to know—the identity and contact info of its users, can it still offer account recovery if a user forgets their password? This paper is the culmination of the authors' work to design a cryptographic protocol for account recovery for use by a prominent secure matching system: a web-based service that allows survivors of sexual misconduct to become aware of other survivors harmed by the same perpetrator. In such a...

2024/960 (PDF) Last updated: 2024-06-14
Designs for practical SHE schemes based on Ring-LWR
Madalina Bolboceanu, Anamaria Costache, Erin Hales, Rachel Player, Miruna Rosca, Radu Titiu
Public-key cryptography

The Learning with Errors problem (LWE) and its variants are among the most popular assumptions underlying lattice-based cryptography. The Learning with Rounding problem (LWR) can be thought of as a deterministic variant of LWE. While lattice-based cryptography is known to enable many advanced constructions, constructing Fully Homomorphic Encryption schemes based on LWR remains an under-explored part of the literature. In this work, we present a thorough study of Somewhat Homomorphic...

2024/955 (PDF) Last updated: 2024-06-14
ElectionGuard: a Cryptographic Toolkit to Enable Verifiable Elections
Josh Benaloh, Michael Naehrig, Olivier Pereira, Dan S. Wallach
Applications

ElectionGuard is a flexible set of open-source tools that---when used with traditional election systems---can produce end-to-end verifiable elections whose integrity can be verified by observers, candidates, media, and even voters themselves. ElectionGuard has been integrated into a variety of systems and used in actual public U.S. elections in Wisconsin, California, Idaho, Utah, and Maryland as well as in caucus elections in the U.S. Congress. It has also been used for civic voting in the...

2024/948 (PDF) Last updated: 2024-08-14
Return of the Kummer: a Toolbox for Genus-2 Cryptography
Maria Corte-Real Santos, Krijn Reijnders
Public-key cryptography

This work expands the machinery we have for isogeny-based cryptography in genus 2 by developing a toolbox of several essential algorithms for Kummer surfaces, the dimension-2 analogue of $x$-only arithmetic on elliptic curves. Kummer surfaces have been suggested in hyper-elliptic curve cryptography since at least the 1980s and recently these surfaces have reappeared to efficiently compute $(2,2)$-isogenies. We construct several essential analogues of techniques used in one-dimensional...

2024/947 (PDF) Last updated: 2024-06-12
A Modular Approach to Registered ABE for Unbounded Predicates
Nuttapong Attrapadung, Junichi Tomida
Public-key cryptography

Registered attribute-based encryption (Reg-ABE), introduced by Hohenberger et al. (Eurocrypt’23), emerges as a pivotal extension of attribute-based encryption (ABE), aimed at mitigating the key-escrow problem. Although several Reg-ABE schemes with black-box use of cryptography have been proposed so far, there remains a significant gap in the class of achievable predicates between vanilla ABE and Reg-ABE. To narrow this gap, we propose a modular framework for constructing Reg-ABE schemes for a...

2024/939 (PDF) Last updated: 2024-06-11
Two RSA-based Cryptosystems
A. Telveenus
Public-key cryptography

The cryptosystem RSA is a very popular cryptosystem in the study of Cryptography. In this article, we explore how the idea of a primitive m th root of unity in a ring can be integrated into the Discrete Fourier Transform, leading to the development of new cryptosystems known as RSA-DFT and RSA-HGR.

2024/927 (PDF) Last updated: 2024-06-12
MATHEMATICAL SPECULATIONS ON CRYPTOGRAPHY
Anjali C B
Foundations

The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...

2024/924 (PDF) Last updated: 2024-07-02
Climbing and descending tall volcanos
Steven Galbraith
Public-key cryptography

We revisit the question of relating the elliptic curve discrete logarithm problem (ECDLP) between ordinary elliptic curves over finite fields with the same number of points. This problem was considered in 1999 by Galbraith and in 2005 by Jao, Miller, and Venkatesan. We apply recent results from isogeny cryptography and cryptanalysis, especially the Kani construction, to this problem. We improve the worst case bound in Galbraith's 1999 paper from $\tilde{O}( q^{1.5} )$ to (heuristically)...

2024/911 (PDF) Last updated: 2024-07-11
Generalized Indifferentiable Sponge and its Application to Polygon Miden VM
Tomer Ashur, Amit Singh Bhati
Secret-key cryptography

Cryptographic hash functions are said to be the work-horses of modern cryptography. One of the strongest approaches to assess a cryptographic hash function's security is indifferentiability. Informally, indifferentiability measures to what degree the function resembles a random oracle when instantiated with an ideal underlying primitive. However, proving the indifferentiability security of hash functions has been challenging due to complex simulator designs and proof arguments. The Sponge...

2024/910 (PDF) Last updated: 2024-06-07
A Tight Security Proof for $\mathrm{SPHINCS^{ }}$, Formally Verified
Manuel Barbosa, François Dupressoir, Andreas Hülsing, Matthias Meijers, Pierre-Yves Strub
Public-key cryptography

$\mathrm{SPHINCS^{ }}$ is a post-quantum signature scheme that, at the time of writing, is being standardized as $\mathrm{SLH\text{-}DSA}$. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed—as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for $\mathrm{SPHINCS^{ }}$ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the...

2024/905 (PDF) Last updated: 2024-07-16
On the Semidirect Discrete Logarithm Problem in Finite Groups
Christopher Battarbee, Giacomo Borin, Ryann Cartor, Nadia Heninger, David Jao, Delaram Kahrobaei, Laura Maddison, Edoardo Persichetti, Angela Robinson, Daniel Smith-Tone, Rainer Steinwandt
Attacks and cryptanalysis

We present an efficient quantum algorithm for solving the semidirect discrete logarithm problem (SDLP) in any finite group. The believed hardness of the semidirect discrete logarithm problem underlies more than a decade of works constructing candidate post-quantum cryptographic algorithms from nonabelian groups. We use a series of reduction results to show that it suffices to consider SDLP in finite simple groups. We then apply the celebrated Classification of Finite Simple Groups to...

2024/904 (PDF) Last updated: 2024-06-06
On round elimination for special-sound multi-round identification and the generality of the hypercube for MPCitH
Andreas Hülsing, David Joseph, Christian Majenz, Anand Kumar Narayanan
Public-key cryptography

A popular way to build post-quantum signature schemes is by first constructing an identification scheme (IDS) and applying the Fiat-Shamir transform to it. In this work we tackle two open questions related to the general applicability of techniques around this approach that together allow for efficient post-quantum signatures with optimal security bounds in the QROM. First we consider a recent work by Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue (Asiacrypt'23) that showed...

2024/884 (PDF) Last updated: 2024-06-03
Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs
Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, Giovanni Tognolini
Foundations

Interactive proofs are a cornerstone of modern cryptography and as such used in many areas, from digital signatures to multy-party computation. Often the knowledge error $\kappa$ of an interactive proof is not small enough, and thus needs to be reduced. This is usually achieved by repeating the interactive proof in parallel t times. Recently, it was shown that parallel repetition of any $(k_1, \ldots , k_\mu)$-special-sound multi-round public-coin interactive proof reduces the knowledge...

2024/880 (PDF) Last updated: 2024-06-14
Extending class group action attacks via pairings
Joseph Macula, Katherine E. Stange
Foundations

We introduce a new tool for the study of isogeny-based cryptography, namely pairings which are sesquilinear (conjugate linear) with respect to the $\mathcal{O}$-module structure of an elliptic curve with CM by an imaginary quadratic order $\mathcal{O}$. We use these pairings to study the security of problems based on the class group action on collections of oriented ordinary or supersingular elliptic curves. This extends work of of both (Castryck, Houben, Merz, Mula, Buuren, Vercauteren,...

2024/878 (PDF) Last updated: 2024-06-02
Radical Vélu Isogeny Formulae
Thomas Decru
Public-key cryptography

We provide explicit radical $N$-isogeny formulae for all odd integers $N$. The formulae are compact closed-form expressions which require one $N$th root computation and $\mathcal{O}(N)$ basic field operations. The formulae are highly efficient to compute a long chain of $N$-isogenies, and have the potential to be extremely beneficial for speeding up certain cryptographic protocols such as CSIDH. Unfortunately, the formulae are conjectured, but we provide ample supporting evidence which...

2024/876 (PDF) Last updated: 2024-06-02
Distributing Keys and Random Secrets with Constant Complexity
Benny Applebaum, Benny Pinkas
Cryptographic protocols

In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...

2024/866 (PDF) Last updated: 2024-05-31
Ripple: Accelerating Programmable Bootstraps for FHE with Wavelet Approximations
Charles Gouert, Mehmet Ugurbil, Dimitris Mouris, Miguel de Vega, Nektarios Georgios Tsoutsos
Cryptographic protocols

Homomorphic encryption can address key privacy challenges in cloud-based outsourcing by enabling potentially untrusted servers to perform meaningful computation directly on encrypted data. While most homomorphic encryption schemes offer addition and multiplication over ciphertexts natively, any non-linear functions must be implemented as costly polynomial approximations due to this restricted computational model. Nevertheless, the CGGI cryptosystem is capable of performing arbitrary...

2024/864 (PDF) Last updated: 2024-05-31
Collaborative, Segregated NIZK (CoSNIZK) and More Efficient Lattice-Based Direct Anonymous Attestation
Liqun Chen, Patrick Hough, Nada El Kassem
Cryptographic protocols

Direct Anonymous Attestation (DAA) allows a (host) device with a Trusted Platform Module (TPM) to prove that it has a certified configuration of hardware and software whilst preserving the privacy of the device. All deployed DAA schemes are based on classical security assumptions. Despite a long line of works proposing post-quantum designs, the vast majority give only theoretical schemes and where concrete parameters are computed, their efficiency is far from practical. Our first...

2024/861 (PDF) Last updated: 2024-05-31
A new multivariate primitive from CCZ equivalence
Marco Calderini, Alessio Caminata, Irene Villa
Public-key cryptography

Multivariate Cryptography is one of the main candidates for Post-quantum Cryptography. Multivariate schemes are usually constructed by applying two secret affine invertible transformations $\mathcal S,\mathcal T$ to a set of multivariate polynomials $\mathcal{F}$ (often quadratic). The secret polynomials $\mathcal{F}$ posses a trapdoor that allows the legitimate user to find a solution of the corresponding system, while the public polynomials $\mathcal G=\mathcal S\circ\mathcal...

2024/860 (PDF) Last updated: 2024-05-31
HAWKEYE – Recovering Symmetric Cryptography From Hardware Circuits
Gregor Leander, Christof Paar, Julian Speith, Lukas Stennes
Implementation

We present the first comprehensive approach for detecting and analyzing symmetric cryptographic primitives in gate-level descriptions of hardware. To capture both ASICs and FPGAs, we model the hardware as a directed graph, where gates become nodes and wires become edges. For modern chips, those graphs can easily consist of hundreds of thousands of nodes. More abstractly, we find subgraphs corresponding to cryptographic primitives in a potentially huge graph, the sea-of-gates, describing an...

2024/858 (PDF) Last updated: 2024-05-31
Ascon-Keccak AEAD Algorithm
Stephan Müller
Secret-key cryptography

The Ascon specification defines among others an encryption scheme offering authenticated encryption with associated data (AEAD) which is based on a duplex mode of a sponge. With that it is the first of such algorithm selected and about to be standardized by NIST. The sponge size is comparatively small, 320 bits, as expected for lightweight cryptography. With that, the strength of the defined AEAD algorithm is limited to 128 bits. Albeit, the definition of the Ascon AEAD algorithm integrates...

2024/851 (PDF) Last updated: 2024-05-30
On the parallelization of square-root Vélu's formulas
Jorge Chávez-Saab, Odalis Ortega, Amalia Pizarro-Madariaga
Implementation

A primary challenge in isogeny-based cryptography lies in the substantial computational cost associated to computing and evaluating prime-degree isogenies. This computation traditionally relied on Vélu's formulas, an approach with time complexity linear in the degree but which was further enhanced by Bernstein, De Feo, Leroux, and Smith to a square-root complexity. The improved square-root Vélu's formulas exhibit a degree of parallelizability that has not been exploited in major...

2024/841 (PDF) Last updated: 2024-05-29
Two generalizations of almost perfect nonlinearity
Claude Carlet
Secret-key cryptography

Almost perfect nonlinear (in brief, APN) functions are (so-called vectorial) functions $F: F_2^n\to F_2^n$ playing roles in several domains of information protection, at the intersection of computer science and mathematics. Their definition comes from cryptography and is also related to coding theory. The cryptographic motivation for studying APN functions is that, when they are used as substitution boxes (S-boxes), ensuring nonlinearity in block ciphers, they contribute optimally to the...

2024/838 (PDF) Last updated: 2024-05-28
Verifiable Secret Sharing from Symmetric Key Cryptography with Improved Optimistic Complexity
Ignacio Cascudo, Daniele Cozzo, Emanuele Giunta
Cryptographic protocols

In this paper we propose verifiable secret sharing (VSS) schemes secure for any honest majority in the synchronous model, and that only use symmetric-key cryptographic tools, therefore having plausibly post-quantum security. Compared to the state-of-the-art scheme with these features (Atapoor et al., Asiacrypt `23), our main improvement lies on the complexity of the ``optimistic'' scenario where the dealer and all but a small number of receivers behave honestly in the sharing phase: in this...

2024/836 (PDF) Last updated: 2024-05-28
The Round Complexity of Proofs in the Bounded Quantum Storage Model
Alex B. Grilo, Philippe Lamontagne
Foundations

The round complexity of interactive proof systems is a key question of practical and theoretical relevance in complexity theory and cryptography. Moreover, results such as QIP = QIP(3) (STOC'00) show that quantum resources significantly help in such a task. In this work, we initiate the study of round compression of protocols in the bounded quantum storage model (BQSM). In this model, the malicious parties have a bounded quantum memory and they cannot store the all the qubits that are...

2024/831 (PDF) Last updated: 2024-05-28
Tight Characterizations for Preprocessing against Cryptographic Salting
Fangqi Dong, Qipeng Liu, Kewen Wu
Foundations

Cryptography often considers the strongest yet plausible attacks in the real world. Preprocessing (a.k.a. non-uniform attack) plays an important role in both theory and practice: an efficient online attacker can take advantage of advice prepared by a time-consuming preprocessing stage. Salting is a heuristic strategy to counter preprocessing attacks by feeding a small amount of randomness to the cryptographic primitive. We present general and tight characterizations of preprocessing...

2024/830 (PDF) Last updated: 2024-05-28
How (not) to Build Quantum PKE in Minicrypt
Longcheng Li, Qian Li, Xingjian Li, Qipeng Liu
Foundations

The seminal work by Impagliazzo and Rudich (STOC'89) demonstrated the impossibility of constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-box manner. However, the question remains: can quantum PKE (QPKE) be constructed from quantumly secure OWF? A recent line of work has shown that it is indeed possible to build QPKE from OWF, but with one caveat --- they rely on quantum public keys, which cannot be authenticated and reused. In this work, we...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.