Dates are inconsistent

Dates are inconsistent

6130 results sorted by ID

2024/1284 (PDF) Last updated: 2024-08-15
Plaintext-Ciphertext Matrix Multiplication and FHE Bootstrapping: Fast and Fused
Youngjin Bae, Jung Hee Cheon, Guillaume Hanrot, Jai Hyun Park, Damien Stehlé
Public-key cryptography

Homomorphically multiplying a plaintext matrix with a ciphertext matrix (PC-MM) is a central task for the private evaluation of transformers, commonly used for large language models. We provide several RLWE-based algorithms for PC-MM that consist of multiplications of plaintext matrices (PC-MM) and comparatively cheap pre-processing and post-processing steps: for small and large dimensions compared to the RLWE ring degree, and with and without precomputation. For the algorithms with...

2024/1282 (PDF) Last updated: 2024-08-14
$\mathsf{NTRU}\mathsf{ }\mathsf{PKE}$: Efficient Public-Key Encryption Schemes from the NTRU Problem
Jonghyun Kim, Jong Hwan Park
Public-key cryptography

We propose a new NTRU-based Public-Key Encryption (PKE) scheme called $\mathsf{NTRU }\mathsf{PKE}$, which effectively incorporates the Fujisaki-Okamoto transformation for PKE (denoted as $\mathsf{FO}_{\mathsf{PKE}}$) to achieve chosen-ciphertext security in the Quantum Random Oracle Model (QROM). While $\mathsf{NTRUEncrypt}$, a first-round candidate in the NIST PQC standardization process, was proven to be chosen-ciphertext secure in the Random Oracle Model (ROM), it lacked corresponding...

2024/1280 (PDF) Last updated: 2024-08-14
A Survey on SoC Security Verification Methods at the Pre-silicon Stage
Rasheed Kibria, Farimah Farahmandi, Mark Tehranipoor
Foundations

This paper presents a survey of the state-of-the-art pre-silicon security verification techniques for System-on-Chip (SoC) designs, focusing on ensuring that designs, implemented in hardware description languages (HDLs) and synthesized circuits, meet security requirements before fabrication in semiconductor foundries. Due to several factors, pre-silicon security verification has become an essential yet challenging aspect of the SoC hardware lifecycle. The modern SoC design process often...

2024/1279 (PDF) Last updated: 2024-08-13
Improved Polynomial Division in Cryptography
Kostas Kryptos Chalkias, Charanjit Jutla, Jonas Lindstrom, Varun Madathil, Arnab Roy
Cryptographic protocols

Several cryptographic primitives, especially succinct proofs of various forms, transform the satisfaction of high-level properties to the existence of a polynomial quotient between a polynomial that interpolates a set of values with a cleverly arranged divisor. Some examples are SNARKs, like Groth16, and polynomial commitments, such as KZG. Such a polynomial division naively takes $O(n \log n)$ time with Fast Fourier Transforms, and is usually the asymptotic bottleneck for these...

2024/1277 (PDF) Last updated: 2024-08-13
Robust but Relaxed Probing Model
Nicolai Müller, Amir Moradi
Applications

Masking has become a widely applied and heavily researched method to protect cryptographic implementations against SCA attacks. The success of masking is primarily attributed to its strong theoretical foundation enabling it to formally prove security by modeling physical properties through so-called probing models. Specifically, the robust $d$-probing model enables us to prove the security for arbitrarily masked hardware circuits, manually or with the assistance of automated tools, even when...

2024/1265 (PDF) Last updated: 2024-08-09
Safe curves for elliptic-curve cryptography
Daniel J. Bernstein, Tanja Lange
Public-key cryptography

This paper surveys interactions between choices of elliptic curves and the security of elliptic-curve cryptography. Attacks considered include not just discrete-logarithm computations but also attacks exploiting common implementation pitfalls.

2024/1253 (PDF) Last updated: 2024-08-08
FELIX (XGCD for FALCON): FPGA-based Scalable and Lightweight Accelerator for Large Integer Extended GCD
Sam Coulon, Tianyou Bao, Jiafeng Xie
Implementation

The Extended Greatest Common Divisor (XGCD) computation is a critical component in various cryptographic applications and algorithms, including both pre- and post-quantum cryptosystems. In addition to computing the greatest common divisor (GCD) of two integers, the XGCD also produces Bezout coefficients $b_a$ and $b_b$ which satisfy $\mathrm{GCD}(a,b) = a\times b_a b\times b_b$. In particular, computing the XGCD for large integers is of significant interest. Most recently, XGCD computation...

2024/1251 (PDF) Last updated: 2024-08-06
EMI Shielding for Use in Side-Channel Security: Analysis, Simulation and Measurements
Daniel Dobkin, Edut Katz, David Popovtzer, Itamar Levi
Attacks and cryptanalysis

Considering side-channel analysis (SCA) security for cryptographic devices, the mitigation of electromagnetic leakage and electromagnetic interference (EMI) between modules poses significant challenges. This paper presents a comprehensive review and deep analysis of the utilization of EMI shielding materials, devised for reliability purposes and standards such as EMI/EMC, as a countermeasure to enhance EM-SCA security. We survey the current landscape of EMI-shields materials, including...

2024/1250 (PDF) Last updated: 2024-08-06
AutoHoG: Automating Homomorphic Gate Design for Large-Scale Logic Circuit Evaluation
Zhenyu Guan, Ran Mao, Qianyun Zhang, Zhou Zhang, Zian Zhao, Song Bian
Applications

Recently, an emerging branch of research in the field of fully homomorphic encryption (FHE) attracts growing attention, where optimizations are carried out in developing fast and efficient homomorphic logic circuits. While existing works have pointed out that compound homomorphic gates can be constructed without incurring significant computational overheads, the exact theory and mechanism of homomorphic gate design have not yet been explored. In this work, we propose AutoHoG, an automated...

2024/1249 (PDF) Last updated: 2024-08-06
Koala: A Low-Latency Pseudorandom Function
Parisa Amiri Eliasi, Yanis Belkheyar, Joan Daemen, Santosh Ghosh, Daniël Kuijsters, Alireza Mehrdad, Silvia Mella, Shahram Rasoolzadeh, Gilles Van Assche
Secret-key cryptography

This paper introduces the Koala PRF, which maps a variable-length sequence of $64$-bit input blocks to a single $257$-bit output block. Its design focuses on achieving low latency in its implementation in ASIC. To construct Koala, we instantiate the recently introduced Kirby construction with the Koala-P permutation and add an input encoding layer. The Koala-P permutation is obtained as the $8$-fold iteration of a simple round function inspired by that of Subterranean. Based on...

2024/1248 (PDF) Last updated: 2024-08-06
A Not So Discrete Sampler: Power Analysis Attacks on HAWK signature scheme
Morgane Guerreau, Mélissa Rossi
Attacks and cryptanalysis

HAWK is a lattice-based signature scheme candidate to the fourth call of the NIST's Post-Quantum standardization campaign. Considered as a cousin of Falcon (one of the future NIST post-quantum standards) one can wonder whether HAWK shares the same drawbacks as Falcon in terms of side-channel attacks. Indeed, Falcon signature algorithm and particularly its Gaussian sampler, has shown to be highly vulnerable to power-analysis attacks. Besides, efficiently protecting Falcon's signature...

2024/1246 (PDF) Last updated: 2024-08-06
MSMAC: Accelerating Multi-Scalar Multiplication for Zero-Knowledge Proof
Pengcheng Qiu, Guiming Wu, Tingqiang Chu, Changzheng Wei, Runzhou Luo, Ying Yan, Wei Wang, Hui Zhang
Implementation

Multi-scalar multiplication (MSM) is the most computation-intensive part in proof generation of Zero-knowledge proof (ZKP). In this paper, we propose MSMAC, an FPGA accelerator for large-scale MSM. MSMAC adopts a specially designed Instruction Set Architecture (ISA) for MSM and optimizes pipelined Point Addition Unit (PAU) with hybrid Karatsuba multiplier. Moreover, a runtime system is proposed to split MSM tasks with the optimal sub-task size and orchestrate execution of Processing Elements...

2024/1245 (PDF) Last updated: 2024-08-11
Garuda and Pari: Faster and Smaller SNARKs via Equifficient Polynomial Commitments
Michel Dellepere, Pratyush Mishra, Alireza Shirzad
Cryptographic protocols

SNARKs are powerful cryptographic primitives that allow a prover to produce a succinct proof of a computation. Two key goals of SNARK research are to minimize the size of the proof and to minimize the time required to generate the proof. In this work, we present new SNARK constructions that push the frontier on both of these goals. Our first construction, Pari, is a SNARK that achieves the smallest proof size amongst *all* known SNARKs. Specifically, Pari achieves a proof size...

2024/1243 (PDF) Last updated: 2024-08-06
Tailoring two-dimensional codes for structured lattice-based KEMs and applications to Kyber
Thales B. Paiva, Marcos A. Simplicio Jr, Syed Mahbub Hafiz, Bahattin Yildiz, Eduardo L. Cominetti
Public-key cryptography

Kyber is a post-quantum lattice-based key encapsulation mechanism (KEM) selected by NIST for standardization as ML-KEM. The scheme is designed to ensure that the unintentional errors accumulated during decryption do not prevent the receiver to correctly recover the encapsulated key. This is done by using a simple error-correction code independently applied to each bit of the message, for which it is possible to show that the decryption failure rate (DFR) is negligible. Although there have...

2024/1242 (PDF) Last updated: 2024-08-07
Beyond the Whitepaper: Where BFT Consensus Protocols Meet Reality
David Wong, Denis Kolegov, Ivan Mikushin
Implementation

This paper presents a collection of lessons learned from analyzing the real-world security of various Byzantine Fault Tolerant (BFT) consensus protocol implementations. Drawing upon our experience as a team of security experts who have both developed and audited BFT systems, including BA★, HotStuff variants, Paxos variants, and DAG-based algorithms like Narwhal and Bullshark, we identify and analyze a variety of security vulnerabilities discovered in the translation of theoretical protocols...

2024/1241 (PDF) Last updated: 2024-08-06
PROF: Protected Order Flow in a Profit-Seeking World
Kushal Babel, Nerla Jean-Louis, Yan Ji, Ujval Misra, Mahimna Kelkar, Kosala Yapa Mudiyanselage, Andrew Miller, Ari Juels
Applications

Users of decentralized finance (DeFi) applications face significant risks from adversarial actions that manipulate the order of transactions to extract value from users. Such actions---an adversarial form of what is called maximal-extractable value (MEV)---impact both individual outcomes and the stability of the DeFi ecosystem. MEV exploitation, moreover, is being institutionalized through an architectural paradigm known Proposer-Builder Separation (PBS). This work introduces a system...

2024/1239 (PDF) Last updated: 2024-08-05
Efficient Differentially Private Set Intersection
Xinyu Peng, Yufei Wang, Weiran Liu, Liqiang Peng, Feng Han, Zhen Gu, Jianling Sun, Yuan Hong
Implementation

Private Set Intersection (PSI) enables a sender and a receiver to jointly compute the intersection of their sets without disclosing other information about items not in the intersection. However, in many cases of joint data analysis, it is not just the items outside the intersection that are sensitive but the items within it. To protect such sensitive information, prior work presents a Differentially Private version of PSI (DPSI) based on a circuit-PSI using Fully Homomorphic Encryption....

2024/1236 (PDF) Last updated: 2024-08-03
Optimizing Big Integer Multiplication on Bitcoin: Introducing w-windowed Approach
Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista, Belove Bist
Implementation

A crucial component of any zero-knowledge system is operations with finite fields. This, in turn, leads to the implementation of the fundamental operation: multiplying two big integers. In the realm of Bitcoin, this problem gets revisited, as Bitcoin utilizes its own stack-based and not Turing-complete scripting system called Bitcoin Script. Inspired by Elliptic Curve scalar multiplication, this paper introduces the $w$-windowed method for multiplying two numbers. We outperform...

2024/1235 (PDF) Last updated: 2024-08-06
Blue fish, red fish, live fish, dead fish
Victor Shoup
Cryptographic protocols

We show that the DAG-based consensus protocol Tusk [DKSS22] does not achieve liveness, at least under certain reasonable assumptions on the implementation that are consistent with its specification. In addition, we give a simple 2-round variation of Tusk with lower latency and strong liveness properties, but with suboptimal resilience. We also show that another 2-round protocol, GradedDAG [DZX 24], which has optimal resilience, also has liveness problems analogous to Tusk.

2024/1234 (PDF) Last updated: 2024-08-06
EagleSignV3 : A new secure variant of EagleSign signature over lattices
Abiodoun Clement Hounkpevi, Sidoine Djimnaibeye, Michel Seck, Djiby Sow
Public-key cryptography

With the potential arrival of quantum computers, it is essential to build cryptosystems resistant to attackers with the computing power of a quantum computer. With Shor's algorithm, cryptosystems based on discrete logarithms and factorization become obsolete. Reason why NIST has launching two competitions in 2016 and 2023 to standardize post-quantum cryptosystems (such as KEM and signature ) based on problems supposed to resist attacks using quantum computers. EagleSign was prosed to NIT...

2024/1232 (PDF) Last updated: 2024-08-02
Efficient and Privacy-Preserving Collective Remote Attestation for NFV
Ghada Arfaoui, Thibaut Jacques, Cristina Onete
Cryptographic protocols

The virtualization of network functions is a promising technology, which can enable mobile network operators to provide more flexibility and better resilience for their infrastructure and services. Yet, virtualization comes with challenges, as 5G operators will require a means of verifying the state of the virtualized network components (e.g. Virtualized Network Functions (VNFs) or managing hypervisors) in order to fulfill security and privacy commitments. One such means is the use of...

2024/1229 (PDF) Last updated: 2024-08-02
Benchmarking Attacks on Learning with Errors
Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter
Attacks and cryptanalysis

Lattice cryptography schemes based on the learning with errors (LWE) hardness assumption have been standardized by NIST for use as post-quantum cryptosystems, and by HomomorphicEncryption.org for encrypted compute on sensitive data. Thus, understanding their concrete security is critical. Most work on LWE security focuses on theoretical estimates of attack performance, which is important but may overlook attack nuances arising in real-world implementations. The sole existing concrete...

2024/1227 (PDF) Last updated: 2024-07-31
ZIPNet: Low-bandwidth anonymous broadcast from (dis)Trusted Execution Environments
Michael Rosenberg, Maurice Shih, Zhenyu Zhao, Rui Wang, Ian Miers, Fan Zhang
Cryptographic protocols

Anonymous Broadcast Channels (ABCs) allow a group of clients to announce messages without revealing the exact author. Modern ABCs operate in a client-server model, where anonymity depends on some threshold (e.g., 1 of 2) of servers being honest. ABCs are an important application in their own right, e.g., for activism and whistleblowing. Recent work on ABCs (Riposte, Blinder) has focused on minimizing the bandwidth cost to clients and servers when supporting large broadcast channels for such...

2024/1225 (PDF) Last updated: 2024-07-31
SIGNITC: Supersingular Isogeny Graph Non-Interactive Timed Commitments
Knud Ahrens
Public-key cryptography

Non-Interactive Timed Commitment schemes (NITC) allow to open any commitment after a specified delay $t_{\mathrm{fd}}$ . This is useful for sealed bid auctions and as primitive for more complex protocols. We present the first NITC without repeated squaring or theoretical black box algorithms like NIZK proofs or one-way functions. It has fast verification, almost arbitrary delay and satisfies IND-CCA hiding and perfect binding. Additionally, it needs no trusted setup. Our protocol is based on...

2024/1223 (PDF) Last updated: 2024-07-31
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation

For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...

2024/1222 (PDF) Last updated: 2024-07-31
Quantum Implementation and Analysis of ARIA
Yujin Oh, Kyungbae Jang, Yujin Yang, Hwajeong Seo
Implementation

The progression of quantum computing is considered a potential threat to traditional cryptography system, highlighting the significance of post-quantum security in cryptographic systems. Regarding symmetric key encryption, the Grover algorithm can approximately halve the search complexity. Despite the absence of fully operational quantum computers at present, the necessity of assessing the security of symmetric key encryption against quantum computing continues to grow. In this paper, we...

2024/1221 (PDF) Last updated: 2024-07-31
Depth Optimized Quantum Circuits for HIGHT and LEA
Kyungbae Jang, Yujin Oh, Minwoo Lee, Dukyoung Kim, Hwajeong Seo
Implementation

Quantum computers can model and solve several problems that have posed challenges for classical super computers, leveraging their natural quantum mechanical characteristics. A large-scale quantum computer is poised to significantly reduce security strength in cryptography. In this context, extensive research has been conducted on quantum cryptanalysis. In this paper, we present optimized quantum circuits for Korean block ciphers, HIGHT and LEA. Our quantum circuits for HIGHT and LEA...

2024/1217 (PDF) Last updated: 2024-07-30
A Compact and Parallel Swap-Based Shuffler based on butterfly Network and its complexity against Side Channel Analysis
Jong-Yeon Park, Wonil Lee, Bo Gyeong Kang, Il-jong Song, Jaekeun Oh, Kouichi Sakurai
Foundations

A prominent countermeasure against side channel attacks, the hiding countermeasure, typically involves shuffling operations using a permutation algorithm. Especially in the era of Post-Quantum Cryptography, the importance of the hiding coun- termeasure is emphasized due to computational characteristics like those of lattice and code-based cryptography. In this context, swiftly and securely generating permutations has a critical impact on an algorithm’s security and efficiency. The widely...

2024/1210 (PDF) Last updated: 2024-07-27
More Optimizations to Sum-Check Proving
Quang Dao, Justin Thaler
Cryptographic protocols

Many fast SNARKs apply the sum-check protocol to an $n$-variate polynomial of the form $g(x) = \text{eq}(w,x) \cdot p(x)$, where $p$ is a product of multilinear polynomials, $w \in \mathbb{F}^n$ is a random vector, and $\text{eq}$ is the multilinear extension of the equality function. In this setting, we describe an optimization to the sum-check prover that substantially reduces the cost coming from the $\text{eq}(w, x)$ factor. Our work further improves on a prior optimization by Gruen...

2024/1209 (PDF) Last updated: 2024-07-27
Collaborative CP-NIZKs: Modular, Composable Proofs for Distributed Secrets
Mohammed Alghazwi, Tariq Bontekoe, Leon Visscher, Fatih Turkmen
Cryptographic protocols

Non-interactive zero-knowledge (NIZK) proofs of knowledge have proven to be highly relevant for securely realizing a wide array of applications that rely on both privacy and correctness. They enable a prover to convince any party of the correctness of a public statement for a secret witness. However, most NIZKs do not natively support proving knowledge of a secret witness that is distributed over multiple provers. Previously, collaborative proofs [51] have been proposed to overcome this...

2024/1208 (PDF) Last updated: 2024-08-09
Hekaton: Horizontally-Scalable zkSNARKs via Proof Aggregation
Michael Rosenberg, Tushar Mopuri, Hossein Hafezi, Ian Miers, Pratyush Mishra
Cryptographic protocols

Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs) allow a prover to convince a verifier of the correct execution of a large computation in private and easily-verifiable manner. These properties make zkSNARKs a powerful tool for adding accountability, scalability, and privacy to numerous systems such as blockchains and verifiable key directories. Unfortunately, existing zkSNARKs are unable to scale to large computations due to time and space complexity requirements...

2024/1204 (PDF) Last updated: 2024-07-25
A fast heuristic for mapping Boolean circuits to functional bootstrapping
Sergiu Carpov
Implementation

Functional bootstrapping in FHE schemes such as FHEW and TFHE allows the evaluation of a function on an encrypted message, in addition to noise reduction. Implementing programs that directly use functional bootstrapping is challenging and error-prone. In this paper, we propose a heuristic that automatically maps Boolean circuits to functional bootstrapping instructions. Unlike other approaches, our method does not limit the encrypted data plaintext space to a power-of-two size, allowing the...

2024/1203 (PDF) Last updated: 2024-07-25
Preservation of Speculative Constant-time by Compilation
Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter, Benjamin Grégoire, Vincent Laporte
Applications

Compilers often weaken or even discard software-based countermeasures commonly used to protect programs against side-channel attacks; worse, they may also introduce vulnerabilities that attackers can exploit. The solution to this problem is to develop compilers that preserve these countermeasures. Prior work establishes that (a mildly modified version of) the CompCert and Jasmin formally verified compilers preserve constant-time, an information flow policy that ensures that programs are...

2024/1202 (PDF) Last updated: 2024-07-25
Prover - Toward More Efficient Formal Verification of Masking in Probing Model
Feng Zhou, Hua Chen, Limin Fan
Implementation

In recent years, formal verification has emerged as a crucial method for assessing security against Side-Channel attacks of masked implementations, owing to its remarkable versatility and high degree of automation. However, formal verification still faces technical bottlenecks in balancing accuracy and efficiency, thereby limiting its scalability. Former efficient tools like \textsf{maskVerif} and CocoAlma are often inaccurate when verifying schemes utilizing properties of Boolean functions....

2024/1201 (PDF) Last updated: 2024-08-02
Designing a General-Purpose 8-bit (T)FHE Processor Abstraction
Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey
Applications

Making the most of TFHE programmable bootstrapping to evaluate functions or operators otherwise difficult to perform with only the native addition and multiplication of the scheme is a very active line of research. In this paper, we systematize this approach and apply it to build an 8-bit FHE processor abstraction, i.e., a software entity that works over FHE-encrypted 8-bits data and presents itself to the programmer by means of a conventional-looking assembly instruction set. In doing so,...

2024/1198 (PDF) Last updated: 2024-07-25
ECO-CRYSTALS: Efficient Cryptography CRYSTALS on Standard RISC-V ISA
Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao, Jingqiang Lin
Implementation

The field of post-quantum cryptography (PQC) is continuously evolving. Many researchers are exploring efficient PQC implementation on various platforms, including x86, ARM, FPGA, GPU, etc. In this paper, we present an Efficient CryptOgraphy CRYSTALS (ECO-CRYSTALS) implementation on standard 64-bit RISC-V Instruction Set Architecture (ISA). The target schemes are two winners of the National Institute of Standards and Technology (NIST) PQC competition: CRYSTALS-Kyber and CRYSTALS-Dilithium,...

2024/1196 (PDF) Last updated: 2024-07-24
Client-Aided Privacy-Preserving Machine Learning
Peihan Miao, Xinyi Shi, Chao Wu, Ruofan Xu
Cryptographic protocols

Privacy-preserving machine learning (PPML) enables multiple distrusting parties to jointly train ML models on their private data without revealing any information beyond the final trained models. In this work, we study the client-aided two-server setting where two non-colluding servers jointly train an ML model on the data held by a large number of clients. By involving the clients in the training process, we develop efficient protocols for training algorithms including linear regression,...

2024/1195 (PDF) Last updated: 2024-08-01
Efficient Implementation of Super-optimal Pairings on Curves with Small Prime Fields at the 192-bit Security Level
Jianming Lin, Chang-An Zhao, Yuhao Zheng
Implementation

For many pairing-based cryptographic protocols such as Direct Anonymous Attestation (DAA) schemes, the arithmetic on the first pairing subgroup $\mathbb{G}_1$ is more fundamental. Such operations heavily depend on the sizes of prime fields. At the 192-bit security level, Gasnier and Guillevic presented a curve named GG22D7-457 with CM-discriminant $D = 7$ and embedding degree $k = 22$. Compared to other well-known pairing-friendly curves at the same security level, the curve GG22D7-457 has...

2024/1194 (PDF) Last updated: 2024-07-24
Hardware Implementation and Security Analysis of Local-Masked NTT for CRYSTALS-Kyber
Rafael Carrera Rodriguez, Emanuele Valea, Florent Bruguier, Pascal Benoit
Implementation

The rapid evolution of post-quantum cryptography, spurred by standardization efforts such as those led by NIST, has highlighted the prominence of lattice-based cryptography, notably exemplified by CRYSTALS-Kyber. However, concerns persist regarding the security of cryptographic implementations, particularly in the face of Side-Channel Attacks (SCA). The usage of operations like the Number Theoretic Transform (NTT) in CRYSTALS-Kyber introduces vulnerabilities to SCA, especially single-trace...

2024/1192 (PDF) Last updated: 2024-07-24
Towards ML-KEM & ML-DSA on OpenTitan
Amin Abdulrahman, Felix Oberhansl, Hoang Nguyen Hien Pham, Jade Philipoom, Peter Schwabe, Tobias Stelzer, Andreas Zankl
Implementation

This paper presents extensions to the OpenTitan hardware root of trust that aim at enabling high-performance lattice-based cryptography. We start by carefully optimizing ML-KEM and ML-DSA - the two primary algorithms selected by NIST for standardization - in software targeting the OTBN accelerator. Based on profiling results of these implementations, we propose tightly integrated extensions to OTBN, specifically an interface from OTBN to OpenTitan's Keccak accelerator (KMAC core) and...

2024/1188 (PDF) Last updated: 2024-07-23
Lightweight Dynamic Linear Components for Symmetric Cryptography
S. M. Dehnavi, M. R. Mirzaee Shamsabad
Foundations

‎In this paper‎, ‎using the concept of equivalence of mappings we characterize all of the one-XOR matrices which are used in hardware applications and propose a family of lightweight linear mappings for software-oriented applications in symmetric cryptography‎. ‎Then‎, ‎we investigate interleaved linear mappings and based upon this study‎, ‎we present generalized dynamic primitive LFSRs along with dynamic linear components for construction of diffusion layers. ‎From the mathematical...

2024/1187 (PDF) Last updated: 2024-07-23
STORM — Small Table Oriented Redundancy-based SCA Mitigation for AES
Yaacov Belenky, Hennadii Chernyshchyk, Oleg Karavaev, Oleh Maksymenko, Valery Teper, Daria Ryzhkova, Itamar Levi, Osnat Keren, Yury Kreimer
Attacks and cryptanalysis

Side-channel-analysis (SCA) resistance with cost optimization in AES hardware implementations remains a significant challenge. While traditional masking-based schemes offer provable security, they often incur substantial resource overheads (latency, area, randomness, performance, power consumption). Alternatively, the RAMBAM scheme introduced a redundancy-based approach to control the signal-to-noise ratio, and achieves exponential leakage reduction as redundancy increases. This method...

2024/1186 (PDF) Last updated: 2024-07-25
MATTER: A Wide-Block Tweakable Block Cipher
Roberto Avanzi, Orr Dunkelman, Kazuhiko Minematsu
Secret-key cryptography

In this note, we introduce the MATTER Tweakable Block Cipher, designed principally for low latency in low-area hardware implementations, but that can also be implemented in an efficient and compact way in software. MATTER is a 512-bit wide balanced Feistel network with three to six rounds, using the ASCON permutation as the round function. The Feistel network defines a keyed, non-tweakable core, which is made tweakable by using the encryption of the tweak as its key. Key and tweak are...

2024/1182 (PDF) Last updated: 2024-07-22
Hyperion: Transparent End-to-End Verifiable Voting with Coercion Mitigation
Aditya Damodaran, Simon Rastikian, Peter B. Rønne, Peter Y A Ryan
Cryptographic protocols

We present Hyperion, an end-to-end verifiable e-voting scheme that allows the voters to identify their votes in cleartext in the final tally. In contrast to schemes like Selene or sElect, identification is not via (private) tracker numbers but via cryptographic commitment terms. After publishing the tally, the Election Authority provides each voter with an individual dual key. Voters identify their votes by raising their dual key to their secret trapdoor key and finding the matching...

2024/1180 (PDF) Last updated: 2024-07-22
Fast computation of 2-isogenies in dimension 4 and cryptographic applications
Pierrick Dartois
Implementation

Dimension 4 isogenies have first been introduced in cryptography for the cryptanalysis of Supersingular Isogeny Diffie-Hellman (SIDH) and have been used constructively in several schemes, including SQIsignHD, a derivative of SQIsign isogeny based signature scheme. Unlike in dimensions 2 and 3, we can no longer rely on the Jacobian model and its derivatives to compute isogenies. In dimension 4 (and higher), we can only use theta-models. Previous works by Romain Cosset, David Lubicz and Damien...

2024/1178 (PDF) Last updated: 2024-07-21
Towards Quantum-Safe Blockchain: Exploration of PQC and Public-key Recovery on Embedded Systems
Dominik Marchsreiter
Applications

Blockchain technology ensures accountability, transparency, and redundancy in critical applications, includ- ing IoT with embedded systems. However, the reliance on public-key cryptography (PKC) makes blockchain vulnerable to quantum computing threats. This paper addresses the urgent need for quantum-safe blockchain solutions by integrating Post- Quantum Cryptography (PQC) into blockchain frameworks. Utilizing algorithms from the NIST PQC standardization pro- cess, we aim to fortify...

2024/1174 (PDF) Last updated: 2024-07-20
Grafted Trees Bear Better Fruit: An Improved Multiple-Valued Plaintext-Checking Side-Channel Attack against Kyber
Jinnuo Li, Chi Cheng, Muyan Shen, Peng Chen, Qian Guo, Dongsheng Liu, Liji Wu, Jian Weng
Attacks and cryptanalysis

As a prominent category of side-channel attacks (SCAs), plaintext-checking (PC) oracle-based SCAs offer the advantages of generality and operational simplicity on a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently proposed the multiple-valued (MV) PC oracle, significantly reducing the required number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing with environmental noise or inaccuracies in the waveform classifier, they...

2024/1170 (PDF) Last updated: 2024-07-29
Rudraksh: A compact and lightweight post-quantum key-encapsulation mechanism
Suparna Kundu, Archisman Ghosh, Angshuman Karmakar, Shreyas Sen, Ingrid Verbauwhede
Public-key cryptography

Resource-constrained devices such as wireless sensors and Internet of Things (IoT) devices have become ubiquitous in our digital ecosystem. These devices generate and handle a major part of our digital data. In the face of the impending threat of quantum computers on our public-key infrastructure, it is impossible to imagine the security and privacy of our digital world without integrating post-quantum cryptography (PQC) into these devices. Usually, due to the resource constraints of these...

2024/1169 (PDF) Last updated: 2024-07-19
Attacking Tropical Stickel Protocol by MILP and Heuristic Optimization Techniques
Sulaiman Alhussaini, Serge˘ı Sergeev
Attacks and cryptanalysis

Known attacks on the tropical implementation of Stickel protocol involve solving a minimal covering problem, and this leads to an exponential growth in the time required to recover the secret key as the used polynomial degree increases. Consequently, it can be argued that Alice and Bob can still securely execute the protocol by utilizing very high polynomial degrees, a feasible approach due to the efficiency of tropical operations. The same is true for the implementation of Stickel protocol...

2024/1162 (PDF) Last updated: 2024-07-17
Practical Traceable Receipt-Free Encryption
Henri Devillez, Olivier Pereira, Thomas Peters
Public-key cryptography

Traceable Receipt-free Encryption (TREnc) is a verifiable public-key encryption primitive introduced at Asiacrypt 2022. A TREnc allows randomizing ciphertexts in transit in order to remove any subliminal information up to a public trace that ensures the non-malleability of the underlying plaintext. A remarkable property of TREnc is the indistinguishability of the randomization of chosen ciphertexts against traceable chosen-ciphertext attacks (TCCA). This property can support applications...

2024/1160 (PDF) Last updated: 2024-07-17
Post-Quantum Access Control with Application to Secure Data Retrieval
Behzad Abdolmaleki, Hannes Blümel, Giacomo Fenzi, Homa Khajeh, Stefan Köpsell, Maryam Zarezadeh
Cryptographic protocols

Servan-Schreiber et al. (S&P 2023) presented a new notion called private access control lists (PACL) for function secret sharing (FSS), where the FSS evaluators can ensure that the FSS dealer is authorized to share the given function. Their construction relies on costly non-interactive secret-shared proofs and is not secure in post-quantum setting. We give a construction of PACL from publicly verifiable secret sharing (PVSS) under short integer solution (SIS). Our construction adapts the...

2024/1153 (PDF) Last updated: 2024-07-16
Designated-Verifier zk-SNARKs Made Easy
Chen Li, Fangguo Zhang
Cryptographic protocols

Zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) is a kind of proof system that enables a prover to convince a verifier that an NP statement is true efficiently. In the last decade, various studies made a lot of progress in constructing more efficient and secure zk-SNARKs. Our research focuses on designated-verifier zk-SNARKs, where only the verifier knowing some secret verification state can be convinced by the proof. A natural idea of getting a designated-verifier...

2024/1149 (PDF) Last updated: 2024-07-15
Improved High-Order Masked Generation of Masking Vector and Rejection Sampling in Dilithium
Jean-Sébastien Coron, François Gérard, Tancrède Lepoint, Matthias Trannoy, Rina Zeitoun
Implementation

In this work, we introduce enhanced high-order masking techniques tailored for Dilithium, the post-quantum signature scheme recently standardized by NIST. We improve the masked generation of the masking vector $\vec{y}$, based on a fast Boolean-to-arithmetic conversion modulo $q$. We also describe an optimized gadget for the high-order masked rejection sampling, with a complexity independent from the size of the modulus $q$. We prove the security of our gadgets in the classical ISW...

2024/1146 (PDF) Last updated: 2024-07-15
Breaking Free: Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions
Minglang Dong, Yu Chen, Cong Zhang, Yujie Bai
Cryptographic protocols

Multi-party private set union (MPSU) protocol enables $m$ $(m > 2)$ parties, each holding a set, to collectively compute the union of their sets without revealing any additional information to other parties. There are two main categories of MPSU protocols: The first builds on public-key techniques. All existing works in this category involve a super-linear number of public-key operations, resulting in poor practical efficiency. The second builds on oblivious transfer and symmetric-key...

2024/1145 (PDF) Last updated: 2024-07-14
A Practical and Scalable Implementation of the Vernam Cipher, under Shannon Conditions, using Quantum Noise
Adrian Neal
Secret-key cryptography

The one-time pad cipher is renowned for its theoretical perfect security, yet its practical deployment is primarily hindered by the key-size and distribution challenge. This paper introduces a novel approach to key distribution called q-stream, designed to make symmetric-key cryptography, and the one-time pad cipher in particular, a viable option for contemporary secure communications, and specifically, post-quantum cryptography, leveraging quantum noise and combinatorics to ensure secure...

2024/1143 (PDF) Last updated: 2024-07-13
LR-OT: Leakage-Resilient Oblivious Transfer
Francesco Berti, Carmit Hazay, Itamar Levi
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic primitive, becoming a crucial component of a practical secure protocol. OT is typically implemented in software, and one way to accelerate its running time is by using hardware implementations. However, such implementations are vulnerable to side-channel attacks (SCAs). On the other hand, protecting interactive protocols against SCA is highly challenging because of their longer secrets (which include inputs and randomness), more...

2024/1141 (PDF) Last updated: 2024-07-13
Optimized Privacy-Preserving Clustering with Fully Homomorphic Encryption
Chen Yang, Jingwei Chen, Wenyuan Wu, Yong Feng
Public-key cryptography

Clustering is a crucial unsupervised learning method extensively used in the field of data analysis. For analyzing big data, outsourced computation is an effective solution but privacy concerns arise when involving sensitive information. Fully homomorphic encryption (FHE) enables computations on encrypted data, making it ideal for such scenarios. However, existing privacy-preserving clustering based on FHE are often constrained by the high computational overhead incurred from FHE, typically...

2024/1132 (PDF) Last updated: 2024-07-23
A New PPML Paradigm for Quantized Models
Tianpei Lu, Bingsheng Zhang, Xiaoyuan Zhang, Kui Ren
Cryptographic protocols

Model quantization has become a common practice in machine learning (ML) to improve efficiency and reduce computational/communicational overhead. However, adopting quantization in privacy-preserving machine learning (PPML) remains challenging due to the complex internal structure of quantized operators, which leads to inefficient protocols under the existing PPML frameworks. In this work, we propose a new PPML paradigm that is tailor-made for and can benefit from quantized models. Our...

2024/1131 (PDF) Last updated: 2024-07-11
Jolt-b: recursion friendly Jolt with basefold commitment
Hang Su, Qi Yang, Zhenfei Zhang
Implementation

The authors of Jolt [AST24] pioneered a unique method for creating zero-knowledge virtual machines, known as the lookup singularity. This technique extensively uses lookup tables to create virtual machine circuits. Despite Jolt’s performance being twice as efficient as the previous state-of-the-art1 , there is potential for further enhancement. The initial release of Jolt uses Spartan [Set20] and Hyrax [WTs 18] as their backend, leading to two constraints. First, Hyrax employs Pedersen...

2024/1124 (PDF) Last updated: 2024-07-10
OPPID: Single Sign-On with Oblivious Pairwise Pseudonyms
Maximilian Kroschewski, Anja Lehmann, Cavit Özbay
Cryptographic protocols

Single Sign-On (SSO) allows users to conveniently authenticate to many Relying Parties (RPs) through a central Identity Provider (IdP). SSO supports unlinkable authentication towards the RPs via pairwise pseudonyms, where the IdP assigns the user an RP-specific pseudonym. This feature has been rolled out prominently within Apple's SSO service. While establishing unlinkable identities provides privacy towards RPs, it actually emphasizes the main privacy problem of SSO: with every...

2024/1123 (PDF) Last updated: 2024-07-10
Switching Off your Device Does Not Protect Against Fault Attacks
Paul Grandamme, Pierre-Antoine Tissot, Lilian Bossuet, Jean-Max Dutertre, Brice Colombier, Vincent Grosso
Attacks and cryptanalysis

Physical attacks, and among them fault injection attacks, are a significant threat to the security of embedded systems. Among the means of fault injection, laser has the significant advantage of being extremely spatially accurate. Numerous state-of-the-art studies have investigated the use of lasers to inject faults into a target at run-time. However, the high precision of laser fault injection comes with requirements on the knowledge of the implementation and exact execution time of the...

2024/1122 (PDF) Last updated: 2024-07-09
Finding Bugs and Features Using Cryptographically-Informed Functional Testing
Giacomo Fenzi, Jan Gilcher, Fernando Virdia
Implementation

In 2018, Mouha et al. (IEEE Trans. Reliability, 2018) performed a post-mortem investigation of the correctness of reference implementations submitted to the SHA3 competition run by NIST, finding previously unidentified bugs in a significant portion of them, including two of the five finalists. Their innovative approach allowed them to identify the presence of such bugs in a black-box manner, by searching for counterexamples to expected cryptographic properties of the implementations under...

2024/1121 (PDF) Last updated: 2024-07-09
Implementation and Performance Evaluation of Elliptic Curve Cryptography over SECP256R1 on STM32 Microprocessor
Onur İşler
Implementation

The use of Internet of Things (IoT) devices in embedded systems has become increasingly popular with advancing technologies. These devices become vulnerable to cyber attacks as they gain popularity. The cryptographic operations performed for the purpose of protection against cyber attacks are crucial to yield fast results in open networks and not slow down network traffic. Therefore, to enhance communication security, studies have been conducted in the literature on using asymmetric...

2024/1120 (PDF) Last updated: 2024-07-09
A Fast and Efficient SIKE Co-Design: Coarse-Grained Reconfigurable Accelerators with Custom RISC-V Microcontroller on FPGA
Jing Tian, Bo Wu, Lang Feng, Haochen Zhang, Zhongfeng Wang
Implementation

This paper proposes a fast and efficient FPGA-based hardware-software co-design for the supersingular isogeny key encapsulation (SIKE) protocol controlled by a custom RISC-V processor. Firstly, we highly optimize the core unit, the polynomial-based field arithmetic logic unit (FALU), with the proposed fast convolution-like multiplier (FCM) to significantly reduce the resource consumption while still maintaining low latency and constant time for all the four SIKE parameters. Secondly, we pack...

2024/1117 (PDF) Last updated: 2024-07-10
Oryx: Private detection of cycles in federated graphs
Ke Zhong, Sebastian Angel
Cryptographic protocols

This paper proposes Oryx, a system for efficiently detecting cycles in federated graphs where parts of the graph are held by different parties and are private. Cycle detection is an important building block in designing fraud detection algorithms that operate on confidential transaction data held by different financial institutions. Oryx allows detecting cycles of various length while keeping the topology of the graphs secret, and it does so efficiently; Oryx achieves quasilinear...

2024/1116 (PDF) Last updated: 2024-07-09
A Simple Post-Quantum Oblivious Transfer Protocol from Mod-LWR
Shen Dong, Hongrui Cui, Kaiyi Zhang, Kang Yang, Yu Yu
Cryptographic protocols

Oblivious transfer (OT) is a fundamental cryptographic protocol that plays a crucial role in secure multi-party computation (MPC). Most practical OT protocols by, e.g., Naor and Pinkas (SODA'01) or Chou and Orlandi (Latincrypt'15), are based on Diffie-Hellman (DH)-like assumptions and not post-quantum secure. In contrast, many other components of MPC protocols, including garbled circuits and secret sharings, are post-quantum secure. The reliance on non-post-quantum OT protocols presents a...

2024/1113 (PDF) Last updated: 2024-07-09
Ringtail: Practical Two-Round Threshold Signatures from Learning with Errors
Cecilia Boschini, Darya Kaviani, Russell W. F. Lai, Giulio Malavolta, Akira Takahashi, Mehdi Tibouchi
Cryptographic protocols

A threshold signature scheme splits the signing key among $\ell$ parties, such that any $t$-subset of parties can jointly generate signatures on a given message. Designing concretely efficient post-quantum threshold signatures is a pressing question, as evidenced by NIST's recent call. In this work, we propose, implement, and evaluate a lattice-based threshold signature scheme, Ringtail, which is the first to achieve a combination of desirable properties: (i) The signing...

2024/1110 (PDF) Last updated: 2024-07-08
Legacy Encryption Downgrade Attacks against LibrePGP and CMS
Falko Strenzke, Johannes Roth
Attacks and cryptanalysis

This work describes vulnerabilities in the specification of the AEAD packets as introduced in the novel LibrePGP specification that is implemented by the widely used GnuPG application and the AES-based AEAD schemes as well as the Key Wrap Algorithm specified in the Cryptographic Message Syntax (CMS). These new attacks exploit the possibility to downgrade AEAD or AES Key Wrap ciphertexts to valid legacy CFB- or CBC-encrypted related ciphertexts and require that the attacker learns the...

2024/1109 (PDF) Last updated: 2024-07-23
QuickPool: Privacy-Preserving Ride-Sharing Service
Banashri Karmakar, Shyam Murthy, Arpita Patra, Protik Paul
Applications

Online ride-sharing services (RSS) have become very popular owing to increased awareness of environmental concerns and as a response to increased traffic congestion. To request a ride, users submit their locations and route information for ride matching to a service provider (SP), leading to possible privacy concerns caused by leakage of users' location data. We propose QuickPool, an efficient SP-aided RSS solution that can obliviously match multiple riders and drivers simultaneously,...

2024/1106 (PDF) Last updated: 2024-07-07
Masked Vector Sampling for HQC
Maxime Spyropoulos, David Vigilant, Fabrice Perion, Renaud Pacalet, Laurent Sauvage
Implementation

Anticipating the advent of large quantum computers, NIST started a worldwide competition in 2016 aiming to define the next cryptographic standards. HQC is one of these post-quantum schemes still in contention, with four others already in the process of being standardized. In 2022, Guo et al. introduced a timing attack that exploited an inconsistency in HQC rejection sampling function to recover its secret key in 866,000 calls to an oracle. The authors of HQC updated its specification by...

2024/1105 (PDF) Last updated: 2024-07-25
A New CRT-based Fully Homomorphic Encryption
Anil Kumar Pradhan
Cryptographic protocols

We have proposed a novel FHE scheme that uniquely encodes the plaintext with noise in a way that prevents the increasing noise from overflowing and corrupting the plaintext. This allows users to perform computations on encrypted data smoothly. The scheme is constructed using the Chinese Remainder Theorem (CRT), supporting a predefined number of modular operations on encrypted plaintext without the need for bootstrapping. Although FHE recently became popular after Gentry's work and various...

2024/1091 (PDF) Last updated: 2024-07-04
MatcHEd: Privacy-Preserving Set Similarity based on MinHash
Rostin Shokri, Charles Gouert, Nektarios Georgios Tsoutsos
Applications

Fully homomorphic encryption (FHE) enables arbitrary computation on encrypted data, but certain applications remain prohibitively expensive in the encrypted domain. As a case in point, comparing two encrypted sets of data is extremely computationally expensive due to the large number of comparison operators required. In this work, we propose a novel methodology for encrypted set similarity inspired by the MinHash algorithm and the CGGI FHE scheme. Doing comparisons in FHE requires...

2024/1087 (PDF) Last updated: 2024-07-04
Tyche: Probabilistic Selection over Encrypted Data for Generative Language Models
Lars Folkerts, Nektarios Georgios Tsoutsos
Applications

Generative AI, a significant technological disruptor in recent years, has impacted domains like augmented reality, coding assistance, and text generation. However, use of these models requires users to trust the model owners with their sensitive data given as input to the model. Fully Homomorphic Encryption (FHE) offers a promising solution, and many earlier works have investigated the use this technology for machine learning as a service (MLaaS) applications. Still, these efforts do not...

2024/1084 (PDF) Last updated: 2024-07-03
Enabling Complete Atomicity for Cross-chain Applications Through Layered State Commitments
Yuandi Cai, Ru Cheng, Yifan Zhou, Shijie Zhang, Jiang Xiao, Hai Jin
Applications

Cross-chain Decentralized Applications (dApps) are increasingly popular for their ability to handle complex tasks across various blockchains, extending beyond simple asset transfers or swaps. However, ensuring all dependent transactions execute correctly together, known as complete atomicity, remains a challenge. Existing works provide financial atomicity, protecting against monetary loss, but lack the ability to ensure correctness for complex tasks. In this paper, we introduce Avalon, a...

2024/1083 (PDF) Last updated: 2024-07-03
LEA Block Cipher in Rust Language: Trade-off between Memory Safety and Performance
Sangwon Kim, Siwoo Eum, Minho Song, Hwajeong Seo
Implementation

Cryptography implementations of block cipher have been written in C language due to its strong features on system-friendly features. However, the C language is prone to memory safety issues, such as buffer overflows and memory leaks. On the other hand, Rust, novel system programming language, provides strict compile-time memory safety guarantees through its ownership model. This paper presents the implementation of LEA block cipher in Rust language, demonstrating features to prevent...

2024/1082 (PDF) Last updated: 2024-07-03
Quantum Implementation of LSH
Yujin Oh, Kyungbae Jang, Hwajeong Seo
Implementation

As quantum computing progresses, the assessment of cryptographic algorithm resilience against quantum attack gains significance interests in the field of cryptanalysis. Consequently, this paper implements the depth-optimized quantum circuit of Korean hash function (i.e., LSH) and estimates its quantum attack cost in quantum circuits. By utilizing an optimized quantum adder and employing parallelization techniques, the proposed quantum circuit achieves a 78.8\% improvement in full depth and a...

2024/1079 (PDF) Last updated: 2024-07-16
QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup
Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, Alexander Koch, Sacha Servan-Schreiber
Cryptographic protocols

Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many applications in cryptography. Over two decades of work have led to extremely efficient protocols for evaluating OT instances in the preprocessing model, through a paradigm called OT extension. A few OT instances generated in an offline phase can be used to perform many OTs in an online phase efficiently, i.e., with very low communication and computational overheads. Specifically, traditional OT...

2024/1078 (PDF) Last updated: 2024-07-02
GAuV: A Graph-Based Automated Verification Framework for Perfect Semi-Honest Security of Multiparty Computation Protocols
Xingyu Xie, Yifei Li, Wei Zhang, Tuowei Wang, Shizhen Xu, Jun Zhu, Yifan Song
Cryptographic protocols

Proving the security of a Multiparty Computation (MPC) protocol is a difficult task. Under the current simulation-based definition of MPC, a security proof consists of a simulator, which is usually specific to the concrete protocol and requires to be manually constructed, together with a theoretical analysis of the output distribution of the simulator and corrupted parties' views in the real world. This presents an obstacle in verifying the security of a given MPC protocol. Moreover, an...

2024/1077 (PDF) Last updated: 2024-07-09
Securely Training Decision Trees Efficiently
Divyanshu Bhardwaj, Sandhya Saravanan, Nishanth Chandran, Divya Gupta
Cryptographic protocols

Decision trees are an important class of supervised learning algorithms. When multiple entities contribute data to train a decision tree (e.g. for fraud detection in the financial sector), data privacy concerns necessitate the use of a privacy-enhancing technology such as secure multi-party computation (MPC) in order to secure the underlying training data. Prior state-of-the-art (Hamada et al.) construct an MPC protocol for decision tree training with a communication of $\mathcal{O}(hmN\log...

2024/1076 (PDF) Last updated: 2024-07-02
A More Compact AES, and More
Dag Arne Osvik, David Canright
Implementation

We reduce the number of bit operations required to implement AES to a new minimum, and also compute improvements to elements of some other ciphers. Exploring the algebra of AES allows choices of basis and streamlining of the nonlinear parts. We also compute a more efficient implementation of the linear part of each round. Similar computational optimizations apply to other cryptographic matrices and S-boxes. This work may be incorporated into a hardware AES implementation using minimal...

2024/1070 (PDF) Last updated: 2024-07-01
Protecting cryptographic code against Spectre-RSB
Santiago Arranz Olmos, Gilles Barthe, Chitchanok Chuengsatiansup, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Peter Schwabe, Yuval Yarom, Zhiyuan Zhang
Implementation

It is fundamental that executing cryptographic software must not leak secrets through side-channels. For software-visible side-channels, it was long believed that "constant-time" programming would be sufficient as a systematic countermeasure. However, this belief was shattered in 2018 by attacks exploiting speculative execution—so called Spectre attacks. Recent work shows that language support suffices to protect cryptographic code with minimal overhead against one class of such attacks,...

2024/1068 (PDF) Last updated: 2024-07-01
From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive Remote Attestation
Shahriar Ebrahimi, Parisa Hassanizadeh
Applications

Remote attestation (RA) protocols have been widely used to evaluate the integrity of software on remote devices. Currently, the state-of-the-art RA protocols lack a crucial feature: transparency. This means that the details of the final attestation verification are not openly accessible or verifiable by the public. Furthermore, the interactivity of these protocols often limits attestation to trusted parties who possess privileged access to confidential device data, such as pre-shared...

2024/1067 (PDF) Last updated: 2024-07-01
Efficient Lattice-Based Threshold Signatures with Functional Interchangeability
Guofeng Tang, Bo Pang, Long Chen, Zhenfeng Zhang
Public-key cryptography

A threshold signature scheme distributes the ability to generate signatures through distributed key generation and signing protocols. A threshold signature scheme should be functionally interchangeable, meaning that a signature produced by a threshold scheme should be verifiable by the same algorithm used for non-threshold signatures. To resist future attacks from quantum adversaries, lattice-based threshold signatures are desirable. However, the performance of existing lattice-based...

2024/1065 (PDF) Last updated: 2024-06-30
AITIA: Efficient Secure Computation of Bivariate Causal Discovery
Truong Son Nguyen, Lun Wang, Evgenios M. Kornaropoulos, Ni Trieu
Cryptographic protocols

Researchers across various fields seek to understand causal relationships but often find controlled experiments impractical. To address this, statistical tools for causal discovery from naturally observed data have become crucial. Non-linear regression models, such as Gaussian process regression, are commonly used in causal inference but have limitations due to high costs when adapted for secure computation. Support vector regression (SVR) offers an alternative but remains costly in an...

2024/1063 (PDF) Last updated: 2024-06-30
VIMz: Verifiable Image Manipulation using Folding-based zkSNARKs
Stefan Dziembowski, Shahriar Ebrahimi, Parisa Hassanizadeh
Applications

With the rise of generative AI technology, the media's credibility as a source of truth has been significantly compromised. This highlights the need to verify the authenticity of media and its originality. Ensuring the integrity of media during capture using the device itself presents a straightforward solution to this challenge. However, raw captured media often require certain refinements or redactions before publication. Zero-knowledge proofs (ZKP) offer a solution by allowing...

2024/1062 (PDF) Last updated: 2024-06-29
Compact Key Function Secret Sharing with Non-linear Decoder
Chandan Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay
Foundations

We present a variant of Function Secret Sharing (FSS) schemes tailored for point, comparison, and interval functions, featuring compact key sizes at the expense of additional comparison. While existing FSS constructions are primarily geared towards $2$-party scenarios, exceptions such as the work by Boyle et al. (Eurocrypt 2015) and Riposte (S&P 2015) have introduced FSS schemes for $p$-party scenarios ($p \geq 3$). This paper aims to achieve the most compact $p$-party FSS key size to date....

2024/1061 (PDF) Last updated: 2024-06-29
Insta-Pok3r: Real-time Poker on Blockchain
Sanjam Garg, Aniket Kate, Pratyay Mukherjee, Rohit Sinha, Sriram Sridhar
Cryptographic protocols

We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party. Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...

2024/1059 (PDF) Last updated: 2024-06-28
HEProfiler: An In-Depth Profiler of Approximate Homomorphic Encryption Libraries
Jonathan Takeshita, Nirajan Koirala, Colin McKechney, Taeho Jung
Cryptographic protocols

Fully Homomorphic Encryption (FHE) allows computation on encrypted data. Various software libraries have implemented the approximate- arithmetic FHE scheme CKKS, which is highly useful for applications in machine learning and data analytics; each of these libraries have differing performance and features. It is useful for developers and researchers to learn details about these libraries’ performance and their differences. Some previous work has profiled FHE and CKKS implementations for...

2024/1054 (PDF) Last updated: 2024-06-28
Optimized Computation of the Jacobi Symbol
Jonas Lindstrøm, Kostas Kryptos Chalkias
Implementation

The Jacobi Symbol is an essential primitive in cryptographic applications such as primality testing, integer factorization, and various encryption schemes. By exploring the interdependencies among modular reductions within the algorithmic loop, we have developed a refined method that significantly enhances computational efficiency. Our optimized algorithm, implemented in the Rust language, achieves a performance increase of 72% over conventional textbook methods and is twice as fast as the...

2024/1052 (PDF) Last updated: 2024-06-28
A New Fine Tuning Method for FHEW/TFHE Bootstrapping with IND-CPAD Security
Deokhwa Hong, Young-Sik Kim, Yongwoo Lee, Eunyoung Seo
Public-key cryptography

Fully homomorphic encryption (FHE) schemes enable computations on encrypted data, making them a crucial component of privacy-enhancing technologies. Ducas and Micciancio introduced FHEW (Eurocrypt '15), and Chillotti et al. improved it in TFHE (Asiacrypt '16), both of which provide homomorphic binary (or larger) gate evaluations with fast latency due to their small parameters. However, their evaluation failure probability is highly sensitive to parameter selection, resulting in a limited...

2024/1049 (PDF) Last updated: 2024-06-28
KyberSlash: Exploiting secret-dependent division timings in Kyber implementations
Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus Kiefer, Thales Paiva, Prasanna Ravi, Goutam Tamvada
Implementation

This paper presents KyberSlash1 and KyberSlash2 – two timing vulnerabilities in several implementations (including the official reference code) of the Kyber Post-Quantum Key Encapsulation Mechanism, currently undergoing standardization as ML-KEM. We demonstrate the exploitability of both KyberSlash1 and KyberSlash2 on two popular platforms: the Raspberry Pi 2 (Arm Cortex-A7) and the Arm Cortex-M4 microprocessor. Kyber secret keys are reliably recovered within minutes for KyberSlash2 and a...

2024/1048 (PDF) Last updated: 2024-07-01
Distributional Secure Merge
Gayathri Garimella, Srinivasan Raghuramam, Peter Rindal
Cryptographic protocols

Secure merge refers to the problem of merging two sorted lists. The problem appears in different settings where each list is held by one of two parties, or the lists are themselves shared among two or more parties. The output of a secure merge protocol is secret shared. Each variant of the problem offers many useful applications. The difficulty in designing secure merge protocols vis-a-vis insecure merge protocols (which work in linear time with a single pass over the lists) has to do...

2024/1046 (PDF) Last updated: 2024-06-27
The Sum-Check Protocol over Fields of Small Characteristic
Suyash Bagad, Yuval Domb, Justin Thaler
Cryptographic protocols

The sum-check protocol of Lund, Fortnow, Karloff, and Nisan underlies SNARKs with the fastest known prover. In many of its applications, the prover can be implemented with a number of field operations that is linear in the number, $n$, of terms being summed. We describe an optimized prover implementation when the protocol is applied over an extension field of a much smaller base field. The rough idea is to keep most of the prover's multiplications over the base field, at the cost of...

2024/1035 (PDF) Last updated: 2024-06-26
Reading It like an Open Book: Single-trace Blind Side-channel Attacks on Garbled Circuit Frameworks
Sirui Shen, Chenglu Jin
Attacks and cryptanalysis

Garbled circuits (GC) are a secure multiparty computation protocol that enables two parties to jointly compute a function using their private data without revealing it to each other. While garbled circuits are proven secure at the protocol level, implementations can still be vulnerable to side-channel attacks. Recently, side-channel analysis of GC implementations has garnered significant interest from researchers. We investigate popular open-source GC frameworks and discover that the AES...

2024/1034 (PDF) Last updated: 2024-06-26
A Practical Protocol for Quantum Oblivious Transfer from One-Way Functions
Eleni Diamanti, Alex B. Grilo, Adriano Innocenzi, Pascal Lefebvre, Verena Yacoub, Álvaro Yángüez
Cryptographic protocols

We present a new simulation-secure quantum oblivious transfer (QOT) protocol based on one-way functions in the plain model. With a focus on practical implementation, our protocol surpasses prior works in efficiency, promising feasible experimental realization. We address potential experimental errors and their correction, offering analytical expressions to facilitate the analysis of the required quantum resources. Technically, we achieve simulation security for QOT through an equivocal and...

2024/1031 (PDF) Last updated: 2024-06-26
SACfe: Secure Access Control in Functional Encryption with Unbounded Data
Uddipana Dowerah, Subhranil Dutta, Frank Hartmann, Aikaterini Mitrokotsa, Sayantan Mukherjee, Tapas Pal
Cryptographic protocols

Privacy is a major concern in large-scale digital applications, such as cloud-computing, machine learning services, and access control. Users want to protect not only their plain data but also their associated attributes (e.g., age, location, etc). Functional encryption (FE) is a cryptographic tool that allows fine-grained access control over encrypted data. However, existing FE fall short as they are either inefficient and far from reality or they leak sensitive user-specific...

2024/1030 (PDF) Last updated: 2024-06-26
GRASP: Accelerating Hash-based PQC Performance on GPU Parallel Architecture
Yijing Ning, Jiankuo Dong, Jingqiang Lin, Fangyu Zheng, Yu Fu, Zhenjiang Dong, Fu Xiao
Implementation

$SPHINCS^ $, one of the Post-Quantum Cryptography Digital Signature Algorithms (PQC-DSA) selected by NIST in the third round, features very short public and private key lengths but faces significant performance challenges compared to other post-quantum cryptographic schemes, limiting its suitability for real-world applications. To address these challenges, we propose the GPU-based paRallel Accelerated $SPHINCS^ $ (GRASP), which leverages GPU technology to enhance the efficiency of...

2024/1020 (PDF) Last updated: 2024-06-24
chainBoost: A Secure Performance Booster for Blockchain-based Resource Markets
Zahra Motaqy, Mohamed E. Najd, Ghada Almashaqbeh
Cryptographic protocols

Cryptocurrencies and blockchain technology provide an innovative model for reshaping digital services. Driven by the movement toward Web 3.0, recent systems started to provide distributed services, such as computation outsourcing or file storage, on top of the currency exchange medium. By allowing anyone to join and collect cryptocurrency payments for serving others, these systems create decentralized markets for trading digital resources. Yet, there is still a big gap between the promise of...

2024/1019 (PDF) Last updated: 2024-06-24
Exploiting Clock-Slew Dependent Variability in CMOS Digital Circuits Towards Power and EM SCA Resilience
Archisman Ghosh, Md. Abdur Rahman, Debayan Das, Santosh Ghosh, Shreyas Sen
Applications

Mathematically secured cryptographic implementations leak critical information in terms of power, EM emanations, etc. Several circuit-level countermeasures are proposed to hinder side channel leakage at the source. Circuit-level countermeasures (e.g., IVR, STELLAR, WDDL, etc) are often preferred as they are generic and have low overhead. They either dither the voltage randomly or attenuate the meaningful signature at $V_{DD}$ port. Although any digital implementation has two generic ports,...

2024/1016 (PDF) Last updated: 2024-06-24
A Succinct Range Proof for Polynomial-based Vector Commitment
Rui Gao, Zhiguo Wan, Yuncong Hu, Huaqun Wang
Cryptographic protocols

A range proof serves as a protocol for the prover to prove to the verifier that a committed number lies in a specified range, such as $[0,2^n)$, without disclosing the actual value. Range proofs find extensive application in various domains. However, the efficiency of many existing schemes diminishes significantly when confronted with batch proofs encompassing multiple elements. To improve the scalability and efficiency, we propose MissileProof, a vector range proof scheme, proving that...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.