
Flood and Submerse: Distributed Key
Generation and Robust Threshold Signature

from Lattices

Thomas Espitau1 , Guilhem Niot1,2 , and Thomas Prest1

1 PQShield
thomas@espitau.com, guilhem@gniot.fr, thomas.prest@pqshield.com

2 Univ Rennes, CNRS, IRISA

Abstract. We propose a new framework based on random submer-
sions—that is projection over a random subspace blinded by a small
Gaussian noise—for constructing verifiable short secret sharing and show-
case it to construct efficient threshold lattice-based signatures in the
hash-and-sign paradigm, when based on noise flooding. This is, to our
knowledge, the first hash-and-sign lattice-based threshold signature.
Our threshold signature enjoys the very desirable property of robust-
ness, including at key generation. In practice, we are able to construct
a robust hash-and-sign threshold signature for threshold and provide a
typical parameter set for threshold T “ 16 and signature size 13kB. Our
constructions are provably secure under standard MLWE assumption in
the ROM and only require basic primitives as building blocks. In partic-
ular, we do not rely on FHE-type schemes.

This is the full version of a paper appearing in the proceedings of the 44th
Annual International Cryptology Conference (CRYPTO 2024). This version in-
cludes additional security proofs that were omitted in the proceedings version.

https://orcid.org/0000-0002-7655-9594
https://orcid.org/0000-0002-2497-8770
https://orcid.org/0000-0003-1445-6212

Table of Contents

1 Introduction and State-of-the-Art . 3

1.1 Post-Quantum Surge and Multiparty Protocols 3

1.2 Distributed Key Generation and Verifiable Secret Sharing 3

1.3 Our Proposal: Full-Fledged (publicly) V3S, synchronous DKG
and Threshold Signatures from MLWE and MSIS in the ROM . . . 4

2 Technical Overview . 6

2.1 A lattice verifiable short secret sharing proposal 6

2.2 A Proposal for Robust Secret Sharing and Robust DKG 8

2.3 Robust Threshold Lattice-Based Signature 10

2.4 Some open problems and directions . 12

3 Preliminaries . 12

3.1 Notations . 12

3.2 Distributions . 12

3.3 Shamir Secret Sharing over Modules . 13

3.4 Hardness Assumptions . 14

3.5 Generalization of Hint-MLWE . 14

4 Verifiable Short Secret Sharing . 16

4.1 Security notions . 16

4.2 Formal definition of our VSSS. 17

4.3 Towards Applications . 22

5 Pelican: A Robust Threshold Signature Scheme . 23

5.1 Robust Distributed Key Generation (DKG) 24

5.2 Robust Distributed Signing Procedure . 26

6 Parameter Selection and Instantiation . 29

6.1 Reminder: Parameter Selection in Plover . 30

6.2 Parameter Selection for the Signing Procedure of Pelican 30

6.3 Distributed Key Generation . 33

6.4 Selected parameter sets . 33

A Proof of security of the V3S . 36

B Security proof of Pelican . 41

B.1 Robustness . 42

B.2 Unforgeability . 46

C Security proof of Pelican with DKG . 50

C.1 Robustness . 50

C.2 Unforgeability . 51

C.3 A note on the distributed generation of the salt 54

D Proof of MatrixHint-MLWE . 54

E Distribution of submersion matrices R . 55

1 Introduction and State-of-the-Art

1.1 Post-Quantum Surge and Multiparty Protocols

The field of post-quantum cryptography has experienced significant growth, un-
derscored by numerous standardization efforts over the past decade. Lattice-
based cryptosystems have demonstrated their versatility and efficiency. A key
area of development is threshold cryptography, which enables secure collabora-
tive generation of information (e.g., secrets, signatures, encryptions). For exam-
ple, a T -out-of-N threshold signature scheme [Des90,DF90] allows any group of
T ď N participants to jointly sign a message, ensuring that groups with strictly
fewer than T members cannot produce a valid signature. The security of these
protocols is nuanced, requiring mechanisms to address potential misbehavior of
parties—including those acting dishonestly or those who are honest but curi-
ous [PMB], merely observing the protocol’s execution. These aspects are often
referred to as robustness properties. While extensively studied in the classical
context, the exploration of post-quantum solutions for these issues is relatively
recent. Notably, NIST is set to announce a call for proposals on multiparty
threshold schemes [BP23], with submissions expected by the first half of 2025.

1.2 Distributed Key Generation and Verifiable Secret Sharing

Classical DKGs... A core concept in threshold cryptography is distributed key
generation (DKG). This protocol allows n participants to collaboratively gen-
erate a public key while distributing its corresponding secret key among them.
Once completed, this setup enables a subset of T or more members to perform
operations requiring the secret key, such as decryption or signing, without a
central trusted authority.

... from VSS. The subproblem of secret sharing extends beyond mere se-
cret distribution to include robustness through verification, allowing any party
to verify the secret. This led to the development of publicly verifiable secret
sharing schemes (pVSS), introduced by Stadler [Sta96], although the initial
VSS concept by Chor et al.[CGMA85] already incorporated verifiability. Sev-
eral VSS have been proposed over the years [BGW88,Ped92,ABCP23,KGS23],
see [ABCP23,KGS23] for excellent comparative introductions. These VSS are
easily instantiated in the discrete logarithm setting.

Threshold Signatures, Old and New. Robust threshold protocols based on
RSA [GRJK00] and DSS [GJKR96] have been proposed, with most robustness-
oriented works employing a reliable broadcast model. More recently, ROAST
[RRJ`22] build over the the FROST [KG20] proposal and offers a generic frame-
work for enhancing semi-interactive threshold signatures with robustness3.

3 It requires only a semi-trusted coordinator instead of broadcast channels but neces-
sitating 2p|S| ´ T q ` 3 asynchronous rounds.

3

Once again with lattices, achieving practical, let alone robust, post-quantum
threshold signatures has been challenging. [BKP13] laid a theoretical foundation
for robust threshold signatures within the GPV framework [GPV08]. In a higher-
level view, by relying on the universal thresholdizer of [BGG`18], Agrawal et
al. [ASY22] introduced a two-round threshold signature based on threshold fully
homomorphic encryption (FHE), achieving robustness through homomorphic
signatures. This incurs a high cost. Following this initial attempt, Gur et al.
[GKS23] optimized this approach and removed homomorphic signatures, but
also lost robustness in the process. They obtain a signature size of 11.5kB and a
communication cost per party of 1.5MB for signing. [JTZ23] proposed a robust
threshold signature scheme based on Fiat-Shamir with aborts, however requiring
the participation of all non-corrupted users.

Analogously to the classical setting, it is expected that a VSS with shortness
proof such as [GHL22] could be used for concretizing a post-quantum DKG and
robust threshold signature scheme. However, adding to the complexity of using
zero-knowledge proofs, their current instantiation relies on discrete-log assump-
tions, and moving it to post-quantum secure assumptions is deemed impractical.

When it comes to constructing post-quantum threshold signature schemes
without robustness, several works [TPCZ23,PKM`24] managed to have quite ef-
ficient instantiations. But, achieving robustness via their mechanisms is deemed
highly nontrivial. In short, it seems that we can get efficient threshold from
lattices at the cost of loosing robustness, or we can get robust threshold at the
cost of relying on highly inefficient primitives. As such, remains the following
interrogation:

Can we reconcile efficiency and robustness in the post-quantum era, using
lattices?

1.3 Our Proposal: Full-Fledged (publicly) V3S, synchronous DKG
and Threshold Signatures from MLWE and MSIS in the ROM

We study and propose a solution for robust (short) secret sharing, turn it into a
robust distributed key generation (DKG), and as a byproduct get a lattice-based
threshold signature using noise flooding. Before further presentation, we shed
light on that all our primitives are underpinned by standard lattice assumptions
and do not require advanced additional primitives such as (threshold) FHE.

Lattice-Based Verifiable (Short) Secret Sharing Scheme: We propose a
“random submersion” technique for secret sharing, enabling the secure gen-
eration and distribution of Learning With Errors (LWE) samples. This ap-
proach provides a form of zero-knowledge proof to affirm the shortness of
these samples, a critical aspect in maintaining both the integrity and confi-
dentiality of secrets in a distributed environment. Our proposal is inspired
by [ABCP23] for its syntax and challenge sampling, and [GHL22] for its
compactness proof, employing Johnson-Lindenstrauss-type projections. We

4

adopt a pragmatic approach for our VSS and prove approximate shortness
only, with a small loss factor in the norm proven of about 10. This small loss
allows us to improve over the practicality of [GHL22] by removing complex
zero-knowledge proofs – which are computationally intensive, and large in
size – and the use of classical hardness assumptions in their instantiation.

Robust Distributed Key Generation: Building upon our V3S, we build a
robust DKG. The protocol is three-round, synchronous, and uses a general
complaint round to reach a consensus on the trustable parties.

More precisely, we propose a broadcast protocol where each party performs
its own verifiable secret sharing via the V3S protocol highlighted above.
Next, each party broadcasts its list of trustees, and the (public) intersection
of these lists is computed, effectively forming a public clique of mutually
trusted parties. Finally, each party aggregates the shares they received from
trusted parties, which yields a secret sharing of a jointly generated short
secret key, thanks to the linearity of Shamir’s secret sharing.

While this solution has a nonnegligible communication cost (as the proofs
are sent to every party by every party, it ensures maximal robustness for a
minimal number of rounds.

Robust Threshold Signatures: We can adapt this methodology, almost ver-
batim, to construct threshold signatures. This follows from the fact that in
the underlying signature scheme4, the signing algorithm is essentially the
key generation procedure with extra steps and slightly different parame-
ters. As a consequence, the robustness of such signatures follows from sim-
ilar arguments to the ones used for the DKG protocol. Our approach re-
lies on the noise-flooding technique to create signatures; here the flooding
involves linearly concealing secret values with sufficiently large noise and
ensuring security by quantifying the residual statistical leakage. Due to its
linearity, this method has proven to be very effective in masking-friendly
[dEK`23,EEN`24] and threshold-friendly signatures [PKM`24,ASY22]. In
our case, it is also very amenable to Shamir’s secret sharing.

We instantiate our framework in Pelican – a threshold signature scheme system
featuring a 3-round distributed key generation and a 4-round signing protocol.5

Pelican boasts a signature size of 12.3kB and a communication overhead of 59.8`

19NkB per participant for a threshold T “ 16 among N parties. It is noteworthy
that, while our framework solely depends on LWE in the ROM, it is sufficiently
versatile to accommodate thresholding for both the Fiat-Shamir and Hash-And-
Sign paradigms.

While Pelican builds upon the digital signature scheme Plover, we emphasize
that our robust threshold signature and distributed key generation constructions

4 In our case this scheme is the hash-then-sign scheme Plover, but the same comment
would apply to the Fiat-Shamir signature Raccoon.

5 We continue the “tradition” of naming lattice-based hash-then-sign schemes after
birds: Falcon, Eagle, Robin, Plover, etc. Since our scheme relies on random submer-
sions and noise flooding, we named it after the aquatic, diving species Pelican.

5

are generic and could for instance be applied to the NIST submission Raccoon
[dEK`23]. We leave this as future work.

Before training to the details and security proofs of all these protocols, we
propose a high-level overview of the main technicalities, caveats, and ideas used
further.

2 Technical Overview

We now turn to a high-level introduction of our techniques and protocols. Our
first contribution is a proposal for a lattice-based verifiable short secret sharing
scheme, for which we can control its leakage very precisely, but which is not
technically zero-knowledge. From this essential building framework, we show how
to extend it to devise a protocol for robust distributed key generation and robust
threshold signatures. All of these are secure under standard lattice assumptions
and does not require more advanced primitives such as FHE.

2.1 A lattice verifiable short secret sharing proposal

Many lattice-based cryptographic schemes hinge on variants of the Learning
With Errors (LWE) assumption, which is crucially based on the shortness of some
secret elements. In particular, in the context of devising a threshold scheme, the
verification of this shortness is critical. Addressing this challenge, we introduce
a new technique coined random submersion. This method enables the secure
generation and distribution of an LWE sample, concurrently providing a zero-
knowledge proof to confirm the shortness of the sample. It ensures both the in-
tegrity and the confidentiality of the secret and we will leverage the technique to
ensure the robustness of our threshold scheme in Section 5.2. Our technique aims
for practicality, and only provides approximate shortness bounds in exchange for
a lower communication and computational cost than prior work [GHL22]. Ran-
dom submersion relies on a Johnson-Lindenstrauss type lemma, blinded by a
Gaussian noise for confidentiality. This type of lemma was already successfully
applied for verifiable secret sharing with approximate shortness – relying on re-
jection sampling – in [GHL22, Section 3.4], but differs in the distribution of its
blindings, which removes the need for rejection sampling and provides tighter
shortness proofs.

We present a tweakable framework for securely distributing a small secret
vector among N parties, with the provision that a maximum of T ă N{2 among
these parties may be untrustworthy. Our approach revolves on the sharing of
secrets that are derived from a Gaussian distribution and also accommodates
secret vectors chosen by adversaries, provided these vectors have a norm capped
at B. We name our secret sharing technique V3S (Verifiable Short Secret Shar-
ing).

Methodology. The cornerstone of our method is to construct a scheme as
linear as feasible, to ensure compatibility with lattice-based operations. Our

6

initial step involves defining the most fundamental requirements for our scheme,
starting with the secret itself.

1. The secret is represented as a compact vector, which is then distributed
linearly into a series of random vectors.

2. The verification of the secret’s smallness is achieved through a random linear
transformation applied to itself.

3. To prevent excessive leakage of the secret by the output of this transforma-
tion, we blind it by incorporating an additive mask within its image space.

4. The choice of the randomness used to construct the transformation shall be
verifiable by the parties.

Writing what precedes as an algorithm would yield a blueprint of the following
shape, using a Merkle tree to handle the randomness verifiability:

1. The dealer samples an ephemeral Gaussian blinding value y, that will be used
within their individual proof to prove the shortness of x without leaking its
value.

2. Then they generate a linear random secret sharing for x and y of order T ,
noted JxK, and JyK.

3. To generate verifiable randomness, the dealer hashes the shares JxKiPt1,...,Nu

and JyKiPt1,...,Nu into a Merkle tree of hash h. It also produces individual
proofs proofi allowing each party to verify that JxKi, JyKi belongs to the tree.

4. It derives a challenge matrix R “ Hphq from a suitable distribution, and
computes the value JvK “ R ¨ JxK ` JyK.

5. The broadcast proof π is ph, JvKq. Individual proofs are πi “ pJyKi, proofiq.

Any party i, given its share JxKi and proofs π “ ph, JvKq and πi “ pJyKi, proofiq
performs the following verifications:

1. proofi correctly proves that JxKi and JyKi are included in Merkle tree h.
2. Derive R “ Hphq and verify that JvKi “ R ¨ JxKi ` JyKi.
3. Verify that }v} is smaller than some fixed bound B1.

The reconstruction hinges here on the fact that we can see Shamir’s secret shar-
ing as from a Reed-Solomon code, which allows to recover b even if a set of users
behaved dishonestly by the robustness of error correction.

Guaranteeing soundness and correctness. While the verification of the
randomness is classical thanks to the Merkle tree, the crux of the shortness
proof will lie in the following requirements:

small secret implies small proof — The proof R ¨ x ` y must be small—
with overwhelming probability—if both x and y are small, for instance when
Gaussian is drawn.

big secret implies big proof — It must become large if }x} is compromised,
that is when it is larger than the desired acceptance bound B.

7

few collisions — Obviously, for correctness, we can not tolerate too many col-
lisions in the values, so we should not have too many pairs px,yq being sent
to the same value Rx ` y mod q.

This means that from a geometric perspective, we are asking the matrix R to act
as a random pseudo-isometry in the modq hypercube. This is very reminiscent
of the Johnson-Lindenstrauss type lemma [JLS86], which has been successfully
applied to the modular setting in cryptography in [GHL22]. In the following,
we say that such distributions satisfy property G (see Definition 8 for a formal
definition).

Adding zero-knowledge. Revealing the pair pR,R ¨ x` yq leaks some statis-
tical information on x. However, when the dealer is honest, y is sampled from
a Gaussian distribution of sufficiently large variance with regards to }R ¨ x},
so that this information leakage is very mitigated. More precisely, we can even
estimate it when generating an MLWE sample from x: after the secret sharing,
parties can additionally sample a matrix A P Rkˆℓ, and a MLWE sample A ¨ x.
From there we get an instance of the recent “MLWE problem with hint” R¨x`y,
which in turn reduces to an MLWE with a smaller standard deviation.

2.2 A Proposal for Robust Secret Sharing and Robust DKG

From V3S to Distributed Secret Sharing. Consider a scenario where N
users aim to collectively generate a secret and each obtains a share of a short
vector s as a secret share. Each user i P t1, . . . , Nu will possess JsKi “ P piq, where
P is an interpolation polynomial such that P p0q “ s. To achieve this, we require
each participant to generate their own share of the global secret and transmit
it to all other participants. However, for reasons of robustness and security,
direct broadcast of their share is inadvisable, as it would allow any eavesdropper
to learn all the shares and, by extension, the secret. Instead, each participant
divides their share into smaller shares (termed local shares) and distributes these
local shares to others. To ensure each local share between parties i and j remains
confidential to them, we assume the existence of symmetric encryption between
each pair of parties.

This method alone does not guarantee robustness, nor does it prevent poten-
tial dishonesty in the generation of local shares. To address this, our approach
involves using a V3S scheme to allow parties to verify the local shares they re-
ceive. If a proof of a local share fails – say, if party i detects an incorrect proof
from party j – then i broadcasts a complaint against j along with a proof of
the error, enabling all parties to verify the incorrectness of j’s proof to i and
exclude j from their list of trusted parties. After addressing these complaints,
every honest party knows the other parties that shared a secret honestly, and
the correct local shares, allowing them to aggregate the local shares they have
received to form their share of the secret. The protocol proceeds as follows:

(V1) Round 1 (Secret-Share Individual Secret). Each party i:

8

a. Generates a short vector si.
b. Utilizes the V3S as dealer to secret-share si and generate a distributed

proof of shortness, denoting JsiK as the secret-sharing and πiÑj as the
partial proof for j.

c. For each j, encrypts JsiKj , πiÑj under a symmetric key known only to
i and j.

d. Broadcasts the encrypted proofs and shares.
(V2) Round 2 (Verify and Complain). Each party i:

a. Decrypts all secret shares JsjKi and partial proofs πjÑi sent by others.
b. Only keep secret shares with valid partial V3S proofs. We note validi

the set of participants j with valid proofs, and complaintsi as those
without.

c. Broadcasts complaintsi along with proof of incorrectness for the partial
V3S proofs.

(V3) Round 3 (Review Complaints). Each party i:
a. Receives complaintsj from user j, including ”proof of incorrectness”.
b. Removes any user from validi if proven invalid by j’s complaint.

(V4) Round 4 (Aggregate Valid Secrets). Each party i, now with a con-
firmed list validi of valid users:
a. Aggregates the valid secret shares received: JsKi “

ř

jPvalidi
JsjKi, thus

forming a secret sharing of s “
ř

jPvalidi
sj .

When the protocol ends, when a sufficient number of honest users participate,
each honest user i holds a share JsKi of the aggregated secret s “

ř

jPvalidi
sj .

h

i

jk

l

ct
iÑ

h , π
iÑ

h

ct
i

Ñ
j
,
π
i

Ñ
j

ct i
Ñ

k
, π

iÑ
k

ctiÑl, πiÑl

(a) Secret-Share

h

i

jk

l

C
om

plain
vs

j

C
o
m

p
la

in
v
s
j

C
om

pl
ai
n
vs

j

Complain vs j

(b) Verify and
Complain

h

i

jk

l

R
eview

i
vs

j

R
ev

ie
w

i
vs

j

(c) Review
Complaints

h

i

jk

l

(d) Aggregate
Secrets

Fig. 1: Our blueprint for secret-sharing a jointly generated short secret x “
ř

iPhonest xi. This structured underlies the distributed signing (Figs. 6 and 7)
and key generation (Fig. 5) protocols of Pelican.

Turning a V3S into a Robust DKG. Leveraging our robust secret shar-
ing protocol, we can readily derive a robust distributed key generation (DKG)
protocol. After all, a secret is essentially comprised of the secret itself and a
bit of salt. Our protocol is robust and secure as long as T ď N{3 for the final
reconstruction.

9

(K1) Round 1. Each participant i undertakes the following:
a. Generate, secret-share, prove, and encrypt the shares and partial proofs

of a short secret vector si, following the procedure outlined in (V1).
b. Concurrently, generate an individual salt salti and broadcast it.

(K2) Round 2. Participant i continues by:
a. Decrypting and verifying the shares+proofs received, and broadcasting

complaints against users who submitted invalid shares/proofs, mirror-
ing the steps in (V2).

(K3) Round 3. Participant i proceeds to:
a. Review the complaints issued by all users, update validi accordingly,

and compute an aggregate secret share JsKi “
ř

jPvalidi
JsjKi, akin to

the method described in (V3).
b. Produce a public salt salt by hashing the salts of all users in validi.
c. Utilize salt to generate a public matrix A “

“

Ā I
‰

, which is identical
for all honest users. Calculate a partial public key JbKi “ A ¨ JsKi.

d. Broadcast the salt salt and the partial public key JbKi.
(K4) Round 4. Participant i:

a. Retrieves the salt from the previous round, and in case of conflicting
contributions, employ majority voting.

b. Reconstructs the secrets using the V3S for a robust reconstruction.

Upon completion, provided a sufficient number of honest users participate, the
public key A,b “ A ¨ s can be recovered using the error-correcting features of
Reed-Solomon codes/Shamir’s secret sharing. Each honest participant i retains
a share JsKi of s. Our DKG is formally described and proven in Section 5.1.

2.3 Robust Threshold Lattice-Based Signature

Another application of our robust distributed secret-sharing protocol is threshold
signing, wherein the secrets being shared and combined are the shares of the
signature itself. Utilizing our technique, we can robustly adapt both signatures
in the Hash-and-Sign paradigm and the Fiat-Shamir paradigm. For example,
we can develop robust variants of both recent proposals Raccoon and Plover. In
this section, we focus on presenting a threshold Hash-and-Sign method based on
Plover, marking the first instance of a robust hash and sign threshold signature
grounded in standard lattice assumptions. We emphasize again the adaptability
of our techniques.

Noise-Flooded Hash-and-Sign in a Nutshell. Before delving further into
our design, we briefly revisit the concept behind the masking-friendly hash and
sign signature Plover. The scheme’s core idea is straightforward: within the GPV-
like framework, it obviates the need to produce a signature that is zero-knowledge
concerning the secret key by employing sufficiently large noise to independently
conceal the secret. This approach involves replacing the traditional choice of
Gaussian distribution, which relies solely on the (public) lattice and not on
the short secret key, with a substantial sum of uniform noise. The leak is miti-
gated through the Hint-RLWE problem, which encapsulates this scenario: a public
RLWE sample accompanied by a leak.

10

Key Generation. The process initiates by sampling a public polynomial a, de-
rived from a seed. The second component of the public key is essentially an
RLWE sample b offset by β, an integer power of two.

Signing Procedure. The procedure begins by hashing the provided message msg
to a target polynomial u. It then employs its trapdoor to locate a short pre-
image z “ pz1, z2, c1q such that A ¨ z ” z1 ` a ¨ z2 ` b ¨ c1 “ u ´ c2 mod q
for a short c2 and A ”

“

1 a b
‰

. To prevent the trapdoor’s disclosure, a noise
vector p is sampled and added to the pre-image z. The actual signature is z2,
as z1 ` c2 “ u ´ a ¨ z2 ´ b ¨ c1 is recoverable in the verification process.

Verification. The verification commences with the recovery of z1
1 :“ u´a¨z2´b¨c1

(equivalent to z1`c2), followed by verifying the shortness of pz1
1, z2q. This concise

description lays the algorithmic groundwork for our methodology.

Towards Pelican: A Robust Threshold Hash-and-Sign. Now presenting
our third application of the technique, we opt for a more condensed exposi-
tion. The principal idea remains unchanged from the distributed key generation:
signers are tasked with generating and locally sharing their portion of what will
become the perturbation vector p – akin to the noise from Plover, employing
the V3S. Upon reaching a consensus on the perturbation share (via a four-round
protocol that identifies dishonest participants through a complaint round), each
portion of the final signature is derived from the perturbation share, given the
linear nature of the Plover signing operations. We propose the following protocol:

(S1) Round 1. Each user i performs the following:
a. Generate, secret-share, prove, and encrypt the shares and partial proofs

of a short perturbation vector pi, akin to (V1).
(S2) Round 2. Each user i performs the following:

a. Decrypt and verify the shares and partial proofs received, broadcasting
complaints against users who sent invalid shares/proofs, as in (V2).
Complaints are also raised if user i fails to receive another user’s share.

(S3) Round 3. Each user i performs the following:
a. Review complaints from all users, adjust validi accordingly, and com-

pute an aggregate secret share JpKi “
ř

jPvalidi
JpjKi, as in (V3).

b. Compute a partial commitment JwKi “ A ¨ JpKi.
c. Broadcast validi and JwKi.

(S4) Round 4. Each user i reconstructs w “ A ¨p from the shares JwKi, derives
a salt from w which acts as a source of randomness, and concludes the
signature as in the non-threshold scenario. The sole distinction lies in the
necessity to calculate shares of z using the shares JsKi and JpKi.

At the protocol’s conclusion, if a sufficient number of honest users are present,
a valid vector z “ p`c¨s can be assembled using the error-correcting properties of
Reed-Solomon codes. Consequently, sig “ psalt, c, zq constitutes a valid signature
for the message msg under a Plover public key.

11

2.4 Some open problems and directions

The protocol we constructed is synchronous as we must wait for each round to
be completed, in particular for the complaint round. It is in particular quite easy
to perform a forking-like attack web we do not have all complaints.

3 Preliminaries

3.1 Notations

Sets, functions, and distributions. For an integerN ą 0, we note rN s “ t0, . . . , N´

1u. To denote the assign operation, we use y :“ fpxq when f is deterministic and
y Ð fpxq when randomized. When S is a finite set, we note UpSq the uniform

distribution over S, and shorthand x
$

Ð S for x Ð UpSq.

Linear algebra. Throughout the work, for a fixed power-of-two n, we note K “

Qrxs{pxn ` 1q and R “ Zrxs{pxn ` 1q the associated cyclotomic field and cyclo-
tomic ring. We also note Rq “ R{pqRq. Given x P Kℓ, we abusively note }x}

the Euclidean norm of the pn ℓq-dimensional vector of the coefficients of x. By
default, vectors are treated as column vectors (unless specified otherwise).

Rounding. Let β P N, β ě 2 be a power-of-two. Any integer x P Z can be
decomposed uniquely as x “ β ¨ x1 ` x2, where x2 P t´β{2, . . . , β{2´ 1u. In this

case, |x1| ď

Q

x
β

U

, where r¨s denote rounding up to the nearest integer. For odd

q, we note Decomposeβ : Zq Ñ Z ˆ Z the function which takes as input x P Zq,
takes its unique representative in x̄ P t´pq´1q{2, . . . , pq´1q{2u, and decomposes
x̄ “ β ¨ x1 ` x2 as described above and outputs px1, x2q. We extend Decomposeβ
to polynomials in Zqrxs, by applying the function to each of its coefficients. For

c
$

Ð Zq and pc1, c2q :“ Decomposeβpcq, we have |c1| ď

Q

q´1
2β

U

, Erc1s “ 0 and

Erc21s ď M2
´1

12 for M “ 2
Q

q´1
2β

U

` 1.

Polynomials. Given a finite commutative ring R, we note Rrxs the set of uni-
variate polynomials over R. We also note RăT rxs the subset of polynomials of
degree ă T .

3.2 Distributions

Definition 1 (Discrete Gaussians). Given a positive definite Σ P Rmˆm, we

note ρ?
Σ the Gaussian function defined over Rm as ρ?

Σpxq “ exp
´

´xt
¨Σ´1

¨x
2

¯

.

The above definition may be extended to pΣ,xq P Kmˆm ˆ Km by treating Σ
as a block-circulant matrix in Rnmˆnm and x as a vector in Rnm.

We may note ρ?
Σ,cpxq “ ρ?

Σpx ´ cq. When Σ is of the form σ ¨ Im, where

σ P K`` and Im is the identity matrix, we note ρσ,c as shorthand for ρ?
Σ,c.

12

For any countable set S Ă Km, we note ρ?
Σ,cpSq “

ř

xPKm ρ?
Σ,cpxq when-

ever this sum converges. Finally, when ρ?
Σ,cpSq converges, the discrete Gaussian

distribution DS,c,
?
Σ is defined over S by its probability distribution function:

DS,
?
Σ,cpxq “

ρ?
Σ,cpxq

ρ?
Σ,cpSq

. (1)

3.3 Shamir Secret Sharing over Modules

Let F be a finite field. Given a P F, 1 ď T and S Ď F˚, a pT,Sq-sharing of a is
obtained by doing the following:

1. Generate P P FăT rxs uniformly at random, conditioned to P p0q “ a.
2. For s P S, compute JaKPs “ P psq.
3. The output is the indexed tuple JaKPS “ pJaKPs qsPS .

Given pa, P,Sq, JaKPS is uniquely defined. We say that an indexed tuple JaK is a
valid T -sharing of a if there exists a polynomial P P FăT rxs and an evaluation set
S Ď F˚ such that JaK “ JaKPS . If |S| ě T , then for any indexed tuple b “ pbsqsPS
there exists at most a single pair pa, P q such that b “ JaKPS .

When P and/or S are clear from context, we may omit them and note JaKP ,
JaKS or JaK. The set of valid pT,Sq-sharings is a F-linear space of dimension T .
Indeed, given λ, µ P F:

λ JaKPS ` µ JbKQS “ Jλ aKλP
S ` Jµ bKµQ

S “ Jλ a ` µ bKλP`µQ
S (2)

Given a T -sharing JaKS where |S| “ T , we can recover a using Lagrange inter-
polation. Note that this recovery process is independent of P .

a “
ÿ

sPS
λs,S JaKs, where λs,S “

ź

s1PSzs

s1

s1 ´ s
. (3)

Generalizations. We can generalize secret-sharing as follows:

– Composite rings. We can generalize secret-sharing to any finite commu-
tative ring R. Instead of S Ď F zt0u, this requires the stronger condition
t@s, s1 P S, ps´ s1q P Rˆu, where Rˆ is the multiplicative group of invertible
elements of R.
This allows us to secret-share over Zq, where q “ q1 ¨ q2 and q1 ă q2 are
two prime numbers. Over this ring, we can perform secret-sharing for any
set S Ď t1, . . . , q1 ´ 1u.

– Vectors.We can perform secret-sharing for vector secrets a “ paiqiPrks P Rk.
This is done by secret-sharing each coefficient independently: @i P rks we
secret-share ai with a distinct polynomial Pipxq “

ř

jăT pi,j x
j P Rrxs.

If we note JaKS “ pJaKsqsPS the tuple obtained, and pj “ ppi,jqiPrks P Rk,
we can see that @s P S, JaKs “

ř

jăT sj ¨ pj . Abusing notation, we note

P pxq “
ř

jăT xj ¨ pj and will refer to P pxq as the interpolation polynomial

of JaKS , which we may also note JaKPS . This notation is abusive since Rk is
not a ring but a module when k ą 1, however, it is helpful for our purposes.

13

The set of polynomials over the module Rk, which we note Rkrxs, is a R-module.
In particular, operations such as addition and multiplication by a scalar a P R
are well-defined over Rkrxs. Given a matrix M P Rℓˆk, one can check that:

M ¨ JaKPS “ JM ¨ aKM¨P
S (4)

3.4 Hardness Assumptions

We recall the Ring-SIS (RSIS) assumption.

Definition 2 (RSIS). Let ℓ, q be integers and B2 ą 0 be a real number. The
advantage AdvRSISA pκq of an adversary A against the Ring Short Integer Solutions
problem RSISq,ℓ,B2

is defined as:

AdvRSISA pκq “ Pr
”

a
$

Ð Rℓ
q, z Ð Apaq : 0 ă }z} ď B2 ^

“

1 aJ
‰

z “ 0 mod q
ı

.

The RSISq,ℓ,B2
assumption states that any efficient adversary A has a negligible

advantage AdvRSISA pκq.

Another assumption of interest is the Hint-MLWE problem which was in-
troduced recently in [KLSS23a] and enjoys a dimension-preserving reduction to
RLWE.

Recall however from the technical overview that our DKG and threshold
signatures reveal matricial hints R ¨ s`y1 and R1 ¨p`y2 through the use of our
V3S, and then computes combined hints of the form c ¨ s ` p. The Hint-MLWE
problem doesn’t capture the use of matrices in hints, nor leakage on noises.

The following section thus introduces a generalized variant of Hint-MLWE.

3.5 Generalization of Hint-MLWE

We introduce a generalized version of Hint-MLWE, allowing matrix hints and vari-
able perturbation standard deviations. We call it MatrixHint-MLWE. Although
we do not make full use of them in this paper, we believe they are of independent
interest. Like Hint-MLWE, MatrixHint-MLWE reduces efficiently to MLWE.

Definition 3 (MatrixHint-MLWE). Let k, ℓ, q,Q be integers, Dsk, pDpiq
p qiPrQs be

probability distributions over Zk`ℓ, and M be a distribution of challenge matri-

ces over
`

Znpk`ℓqˆnpk`ℓq
˘Q

. The advantage AdvMatrixHint-MLWE
A pκq of an adversary

A against MatrixHint-MLWE
k,ℓ,q,Q,Dsk,pDpiq

p qi,M
— Matrix Hint Module Learning

with Errors problem — is defined as:
ˇ

ˇ

ˇ
Pr

“

1 Ð A
`

A,
“

Ik A
‰

¨ s, pMi, ziqiPrQs

˘‰

´ Pr
“

1 Ð A
`

A,u, pMi, ziqiPrQs

˘‰

ˇ

ˇ

ˇ
,

where pA,uq
$

Ð Rkˆℓ
q ˆRk

q , s Ð Dsk and for i P rQs: Mi Ð M, yi Ð Dpiq
p , and

zi “ Mi ¨s`yi. The MatrixHint-MLWE
k,ℓ,q,Q,Dsk,pDpiq

p qi,M
assumption states that

any efficient adversary A has a negligible advantage.

14

Note that in the product Mi ¨ s, we consider s as a vector of npk ` ℓq scalars
in Z. We can recover the polynomial version of Hint-MLWE by taking Mi to be
a matrix in blocs with negacyclic matrices of size n ˆ n corresponding to the
desired polynomial on the diagonal. We also recover the classical RLWE problem
by taking Q “ 0: RLWEq,Dsk

“ MatrixHint-MLWE
q,Q“0,Dsk,pDpiq

pertqi,M
.

The spectral norm s1pMq of a matrixM is defined as the value maxx‰0
}Mx}

}x}
. We

recall that if M is symmetric, then its spectral norm is also its largest eigenvalue.

Theorem 1 (Hardness of MatrixHint-MLWE). Let k, ℓ, q,Q, be positive inte-

gers, and M be a distribution over Znpk`ℓqˆnpk`ℓqˆQ. For σsk, pσ
piq
y qiPrQs ą 0,

let σ ą 0 be a real number defined as 1
σ2 “ 2p 1

σ2
sk

`
ř

iPrQs

s1pMJ
i Miq

pσ
piq
y q2

q. If σ ě
?
2¨ηεpZnpk`ℓqq for some ε P p0, 1{2s, then there exists an efficient reduction from

MLWEk,ℓ,q,σ to MatrixHint-MLWE
k,ℓ,q,Q,σsk,pσ

piq
y qi,M

that reduces the advantage by

at most 2ε.
Note that we recover the Hardness of MatrixHint-MLWE again by taking Mi

equal to a matrix in blocs with the negacyclic matrix of some polynomial γ on
the diagonal.

When the distributions Dsk and pDpiq
p qi are discrete Gaussians, the proof relies

as in [KLSS23a] on the fact that the distribution of s conditioned on the values
pMi ¨ s ` yiqi still follows a discrete Gaussian distribution. We provide a proof
of Lemma 1 in Appendix D, and refer to the proof of Theorem 2 for Theorem 1.

Lemma 1. Let Q ą 0 be an integer, and σsk, pσ
piq
y qiPrQs be reals ą 0. Take

M0, ...,MQ´1 P Znpk`ℓqˆnpk`ℓq. We define Σ0 :“ p 1
σ2
sk

¨I`
ř

iPrQs
1

σ2
y,i

¨MJ
i Miq

´1.

Then the following two distributions over RˆZnpk`ℓq¨Q are statistically identical.

1.
!

ps, z0, ..., zQ´1q | s Ð DZnpk`ℓq,σsk
,yi Ð DZnpk`ℓq,σ

piq
y
, zi “ Mi ¨ s ` yi

)

2.

#

pŝ, z0, ..., zm´1q

ˇ

ˇ

ˇ

ˇ

ˇ

s Ð DZnpk`ℓq,σsk
,yi Ð DZnpk`ℓq,σ

piq
y
, zi “ Mi ¨ s ` yi,

c “ Σ0 ¨
ř

iPrQs
1

pσ
piq
y q2

MJ
i zi, ŝ Ð DZnpk`ℓq,c,

?
Σ0

+

Lemma 1 actually suffices to prove results in this paper. Intuitively, when s
follows a Gaussian distribution parameterized with Σ0, we can reexpress it as
the sum of an isotropic Gaussian of variance equal to the minimal radius of
Σ0, plus some smaller Gaussian. When y has sufficiently large deviation, the
minimal radius of Σ0 is close to σ2

sk. This lemma allows us to extract some “good
randomness” from the si and perturbations pi in Pelican even after revealing
hints on them.

Elliptic MatrixHint-MLWE. Interestingly, it is possible to obtain a more general
reduction of MatrixHint-MLWE covering the case of leakage on the perturbations.
We give a quick introduction to it here, although we decided to not make use of
it in our proofs and rather rely on Lemma 1 as it doesn’t lead to a substancial
gain in parameters in our case.

15

Theorem 2 (Hardness of Elliptic MatrixHint-MLWE). Let k, ℓ,Q, q, be pos-
itive integers, and M be a distribution over Znpk`ℓqˆnpk`ℓqˆQ. For Σsk,Σy,i

symmetric positive definite matrices, vectors cs, pc
piq
y qi P Znpk`ℓq. Let σ ą 0

be a real number defined as 1
σ2 “ 2 ¨ ps1pΣ´1

sk q `
ř

iPrQs s1pMJ
i Miqs1pΣ´1

y,iqq. If

σ ě
?
2 ¨ηεpZnpk`ℓqq for some ε P p0, 1{2s, then there exists an efficient reduction

from MLWEk,ℓ,q,σ to MatrixHint-MLWE
k,ℓ,q,Q,Dsk:“D

cs,
?

Σ1
,pDpiq

pert:“Dci,
?

Σy,i
qiPrQs,M

that reduces the advantage by at most 2ε.

We include a proof overview in Appendix D.
In our case, secrets and perturbations are of the form r “

ř

i ri, and the
reveal of hints Ri ¨ ri `yi modifies their distribution. We can see with Lemma 1
that the resulting distribution has covariance matrix:

Σr :“
ÿ

i

ˆ

1

σ2
r

I `
1

σ2
y

RJ
i Ri

˙´1

If B is an overwhelming bound on s1pRJ
i Riq, then the minimum eigenvalue

ofΣr is at least
ř

ip
1
σ2
r

` B
σ2
y

q´1. When taking such a sum with k elements for both

the secret and perturbations, we obtain a reduction to MLWE with σ verifying:

1

σ2
“ 2 ¨

1

k

¨

˝

1

σ2
sk

`
B

σ2
y,sk

`
ÿ

iPrQs

s1pcic
˚
i q ¨

ˆ

1

σ2
p

`
B

σ2
y,p

˙

˛

‚

4 Verifiable Short Secret Sharing

We start with our new proposal for verifiable (short) secret sharing. As presented
in Section 2.1, we introduce a new random submersion technique allowing one
to distribute and prove the shortness of a secret among N parties. This short-
ness is crucial in the context of lattice-based cryptographic schemes based on
variants of the Learning With Errors (LWE) assumption, which is based on the
shortness of secret elements. Importantly, our technique controls the leakage on
the secret and can be leveraged to sample short secrets in threshold schemes,
as will be formalized for a threshold robust signature scheme, and a distributed
key generation protocol in Section 5.

4.1 Security notions

We first define in Definition 4 the syntax of a verifiable short secret sharing, as
well as standard security properties in Definitions 5 and 6.

Definition 4 (Verifiable Short Secret Sharing). Let Dx be a distribution
(corresponding to honestly generated secrets), and V be a subset of its support
Sec (the acceptable secrets). Let N ą T be two nonnegative integers. Assume
that we have N parties communicating and yet another distinguished party called
dealer. A Verifiable Short Secret Sharing (V3S) is defined as a tuple of functions:

16

– V3S.SharepN,T,xq Ñ pJxK1, ..., JxKN , π, π1, ..., πN q P SecN ˆ pt0, 1u˚q
N
, run

by the dealer.
– V3S.VerifyipJxKi, π, πiq Ñ ptrue | falseq: run by the party i if sufficiently

enough parties accept the proof from the dealer, they are guaranteed to have
shares from an acceptable secret, i.e. belonging to V .

– V3S.ReconstructpJxKi1 , ..., JxKikq Ñ px | Kq: reconstruct the secret from k ě T
shares. Returns K in case of failure.

– V3S.RobustReconstructpJxKi1 , ..., JxKikq Ñ x: reconstruct the secret from k ě

T shares in the presence of up to pk ´ T q{2 invalid shares.

Definition 5 (V3S Correctness). A V3S scheme is said to be correct if when
V3S.Sharepq is honestly executed with a secret x sampled from the honest dis-
tribution Dx, then verification correctly passes for all parties with overwhelming
probability, and V3S.Reconstructpq correctly recovers the secret.

Definition 6 (V3S Soundness). A V3S scheme is said sound if for any S Ď

t1, ..., Nu of cardinal at least T , and any sharing JxK, with corresponding proofs
π, πi, verification will fail with overwhelming probability if either:

– shares are inconsistent among S, i.e. reconstructions over shares of S returns
K. Then, at least one party in S will fail verification.

– or the secret is invalid, i.e. the secret reconstructed by parties in S does not
belong to V . Then verification will fail for at least one party in S.

This is formalized as requiring any efficient adversary A to win Game V3S-sound
defined in Figure 2 with negligible probability.

We say that a V3S has the fragmentary knowledge property if knowledge of
at most T ´1 shares and proofs leaks only partial information on the secret key,
and keeps sufficient entropy. This is formalized with two simulators as follows:

Definition 7 (Computational/Statistical V3S Fragmentary Knowledge).
A V3S has the fragmentary knowledge property if there exists two simulators
SimProofpSq Ñ ppJxKiqiPS , π, pπiqiPSq, defined for subsets S Ă t1, ..., Nu of car-
dinality at most T ´1, and SimSecretpπ, pπiqiPSq such that the output distribution
px, pJxKiqiPS , π, pπiqiPSq of the two processes

– ppJxKiqiPS , π, pπiqiPSq Ð SimProofpSq, and x Ð SimSecretpπ, pπiqiPSq

– or x Ð Dx, ppJxKiqiPt1,...,Nu, π, pπiqiPt1,...,Nuq Ð V3S.SharepN,T,xq

are (computationally/statistically) indistinguishable. This is formalized as re-
quiring the winning advantage of any efficient adversary A to win Game V3S-fk
defined in Figure 3 to be at a negligible distance from 1/2.

4.2 Formal definition of our VSSS

The protocol drafted in the technical overview translates to pseudo-code quite
straightforwardly and is given in Figure 4. The syntax and formalization are
inspired by the recent work of [ABCP23], as well as the use of hash functions
to commit on secret shares and derive a challenge for verification. We formalize
the requirements on the submersion matrices which were hinted in Section 2.1.

17

GameV3S-sound

1: LH :“ H
2: N,T, S Ð Apq ▷ The adversary A chooses a subset S of parties to target
3: assert{ S Ă t1, ..., Nu ^ |S| ě T } ▷ S must be large enough to allow

reconstruction
4: psiqiPt1,...,Nu, π, pπiqiPt1,...,Nu Ð AHp¨q

pN,T, Sq ▷ A produces a T -sharing
among N parties

5: if @i P S,V3S.Verifypsi, π, πiq “ false then
6: return 0 ▷ If a party in S fails verification, A loses

7: x “ V3S.ReconstructppsiqiPSq

8: if x “ K then ▷ Verification passes but shares are inconsistent in S
9: return 1

10: if x R V then ▷ Verification passes but the secret is invalid
11: return 1
12: return 0 ▷ The sharing chosen by the adversary is valid

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 2: Soundness game for a V3S. A wins if the game V3S-sound returns 1.

Definition 8 (Property G). A distribution of matrices R is said to satisfy
the property Gp1,p2,p3

if there exists two bounds B,B1 such that we have:

separation if px,yq ‰ px1,y1q, PrRÐDR
rRx ` y mod q “ Rx1 ` y1 mod qs “

p1 with p1 “ neglpκq: the matrices R send different secrets to different points.
large norm detection if }x} ą B, for any y, PrRÐDR

r}Rx ` y mod q} ą B1s “

1 ´ p2 with p2 “ neglpκq: intuitively, if x is large, we want the challenge to
also be large with overwhelming probability.

honest execution PrxÐDn
σx

,yÐDσy ,RÐDR
r}Rx ` y mod q} ď B1s “ 1´p3 with

p3 “ neglpκq: in case of honest generation of the secret, the challenge is small.

Assuming this crucial property in the construction, we show that our V3S con-
struction is secure for the notions introduced in Section 4.1. We classically work
in the ROM and assume that hash functions are modeled as random oracles with
output size 2κ.

Theorem 3 (Security of V3S in the ROM). Let QH be the maximum num-
ber of queries allowed to the random oracle. For the V3S in Fig. 4, taking as set
of valid secrets V “ tx | }x} ď Bu, if the distribution of matrices R satisfies
property Gp1,p2,p3

, then we have:

18

GameV3S-fkb , with b P t0, 1u

1: LH :“ H
2: N,T, S Ð Apq ▷ The adversary chooses a subset S of parties to target
3: assert{ S Ă t1, ..., Nu ^ |S| “ T ´ 1 }
4: if b “ 0 then
5: xÐ Dx

6: pJxKiqiPt1,...,Nu, π, pπiqiPt1,...,Nu Ð V3S.Sharepxq ▷ Honest sharing of x
7: else
8: pJxKiqiPt1,...,Nu, π, pπiqiPt1,...,Nu Ð SimProofpSq ▷ Simulation of the sharing

transcript
9: xÐ SimSecretpπ, pπiqiPSq

10: b1
Ð AH

px, pJxKiqiPS , π, pπiqiPSq

11: return b1

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 3: Fragmentary Knowledge game for a VSSS. We consider the distinguishing
advantage of an adversary A between the games with b “ 0, and b “ 1.

– Correctness with probability 1 ´ p3.

– Soundness with an advantage of at most:
Q2

H

22κ´1 ` QH ¨ pp1 ` p2q

– Fragmentary knowledge with an advantage of at most N ¨
QH

22κ , where for
a set |S| “ T ´ 1 the simulators are defined in Algorithms 5 and 6.

Algorithm 5 SimProofpSq

1: @i P S, JxKi, JyKi
$
Ð Zq, ri

$
Ð t0, 1u2κ

2: Generate Merkle tree h containing pJxKi, JyKi, riqiPS and complete the hashes of
missing shares j R S by uniform i.i.d values in t0, 1u2κ.

3: Produce proofi for shares in S.
4: x,yÐ Dn

σx
,Dd

σy

5: Compute JvK such that:
– for i P S, JvKi “ R ¨ JxKi ` JyKi
– JvK0 “ R ¨ x` y

6: return pJxKiqiPS , π “ ph, JvKq, pπiqiPS “ pJyKi, ri, proofiqiPS

19

Algorithm 1 V3S.SharepN,T,xq

1: yÐ Dd
σy

; priqiPt1,...,Nu
$
Ð t0, 1uN ¨2κ

2: Generate T -out-of-N sharings JxK “ JxKt1,...,Nu, JyK “ JyKt1,...,Nu ▷ Section 3.3
3: h :“ root of Merkle tree Tree with leaves leafi “ pJxKi, JyKi, riq for i P t1, ..., Nu
4: for i P t1, ..., Nu do
5: proofi :“ co-path of leafi in the tree Tree ▷ Proves pJxKi, JyKi, riq is in h
6: πi :“ pJyKi, proofiq
7: R :“ HRphq ▷ Hash h to obtain a random matrix from DR

8: JvK :“ R ¨ JxK` JyK ▷ Johnson-Lindenstrauss
9: π :“ ph, JvKq ▷ Challenge polynomial and Merkle tree root

10: return pJxK, π, pπiqiPt1,...,Nuq

Algorithm 2 V3S.VerifypJxKi, π, πiq

1: Parse π :“ ph, JvKq and πi :“ pJyKi, ri, proofiq
2: Recover v from JvK ▷ See Section 3.3
3: if (proofi is not a valid proof that pJxKi, JyKi, riq is in Tree) then
4: return false
5: R :“ HRphq
6: if pJvKi ‰ R ¨ JxKi ` JyKiq _ p}v} ą B1

q then
7: return false ▷ Check the consistency of shares, and shortness of secret vector

8: return true

Algorithm 3 V3S.ReconstructpJxKIq, with |I| ě T

1: J “ tthe first T indices in Iu ▷ Reconstruct over a set of size T
2: Compute the unique P P pZqqăT rXs such that @j P J, P pjq “ JxKj
3: if Di P IzJ s.t. P piq ‰ JxKi then
4: return K
5: return x :“ P p0q

Algorithm 4 V3S.RobustReconstructppJxKiqiPIq, with |I| ě T

1: Interpret pJxKiqiPI as a Reed-Solomon codeword of

"

block length T
message length |I|

2: Run error correction on pJxKiqiPI ▷ Fixes up to p|I| ´ T q{2 errors
3: return V3S.ReconstructppJxKiqiPIq

Fig. 4: Algorithms for our Verifiable Short Secret Sharing (V3S). Shamir’s sharing
modulo q is done using standard Lagrange interpolation. Secrets space is Zn, and
matrices R are sampled in Zdˆn following distribution DR. The support for the
honest secrets x is Dx “ Dn

σx
, and the support for the blinding y is Dd

σy
.

20

Algorithm 6 SimSecretpπ ” ph, JvKq, pπi ” pJyKi, ri, proofiqqiPSq

1: Compute R “ HRphq.
2: c ” Σ0 ¨

1
σ2
y
¨RJ

¨ z

3: Σ0 ”

´

1
σ2
x
¨ I` 1

σ2
y
¨RJR

¯´1

4: z “ JvK0.
5: return xÐ DZn,c,

?
Σ0

We demonstrate in Section 6 how to efficiently construct such a desirable
distribution.

The proof of this theorem is quite lengthy and relies on a certain number of
hybrids, we defer it to the appendix: we let the reader refer to Appendix A. For
completeness purposes, we still give here the main sketch and ideas upon which
the proofs are built.

Correctness. V3S.Sharepq correctly constructs a Shamir’s sharing and a corre-
sponding Merkle tree for secure sharing and verification. The V3S.Reconstruct
function can accurately reconstruct the original value for any subset of shares
of size at least T , and the V3S.Verifypq function consistently passes its checks
by the honest execution property of the distribution of R.

Soundness. The proof employs a hybrid argument approach, consisting of three
main steps:
– The first game is the actual soundness game.
– Hybrid2 is a tweak of the soundness game ensuring that the matrix R

is sampled after the shares are chosen, which is the crux for applying
separation and large norm detection properties of DR. This hybrid aims
to maintain the integrity of the Merkle tree hashes and the random
oracle’s programming, penalizing the adversary for any inconsistency or
attempts to exploit the hash function’s collision or pre-image resistance.

– Hybrid3: modifies the conditions under which an adversary can win,
specifically targeting inconsistencies and too large norms in the recon-
structed secret during the verification process.

– Probability of Winning: Rely on the separation and large norm detection
to limit the probability of an adversary’s success.

Fragmentary Knowledge. The proof also goes by three hybrids.
– Hybrid1 : Adversary observes the real distribution of transcripts, corre-

sponding to b “ 0 in the V3S-fk game.
– Hybrid2 : Introduces uniform random strings in place of the hashes of

shares not in set S, arguing the adversary’s view changes negligibly
if they had not queried these shares (basically, the view of the adver-
sary differs only if it did query the random oracle on one of the shares
pJxKi, JyiK, riq with i R S in Hybrid1)

– Hybrid3 : Further modifies by replacing shares in S with uniformly ran-
dom vectors and simulating the adversary’s view under b “ 1. It uses the
correctness of the secret sharing and the indistinguishability proved in
Lemma 1 to argue the adversary’s advantage remains unchanged from
Hybrid 2.

21

4.3 Towards Applications

Our definition of V3S is agnostic to the communication means used. We describe
at a high level in this section two generic ways for using our V3S in protocols to
obtain different guarantees and cost tradeoffs. Further, we demonstrate concrete
usage and security proofs in Section 5.

VSSS protocol with detection of malicious behavior. The first protocol
we introduce allows us to detect misbehavior during the protocol execution and
abort in that case. It requires lightweight communication assumptions, i.e. confi-
dential and authenticated pairwise channels, additionally reliable for correctness
when all the parties are honest. However, the counterpart is that as soon as at
least one of the parties is dishonest, the protocol may abort with no possibility
of recovery. We assume from now on that there are at least T honest parties.
The protocol proceeds in several rounds:

1. In the first round, the dealer samples x Ð Dx and runs pJxKiqiPt1,...,Nu, π,
pπiqiPt1,...,Nu Ð V3S.Sharepxq. It then sends pJxKi, π, πiq to each other party
i over the pairwise channel between them.

2. In the second round, everyone checks the data provided by the dealer. They
run b “ V3S.VerifypJxKi, π, πiq. After that, they send b to each other party,
along with a hash of π to prove they had the same common proof.

3. Finally, each party accepts the sharing only if it receives a positive response
from all other parties, along with the same hash as theirs.

From the good properties of our V3S proposal, we can easily show that this
protocol has also:

– correctness: in case all parties behave honestly, then the protocol terminates
and all honest parties accept the sharing.

– soundness: in case the dealer sends inconsistent shares to any honest party,
or reconstructing to an invalid secret, it will be detected with overwhelming
probability and the protocol will abort.

– fragmentary knowledge: in case the dealer is honest, and the protocol ter-
minates, the transcript is indistinguishable from the one simulated by the
fragmentary knowledge property of our VSSS.

Robust V3S protocol. We propose a second protocol providing guaranteed
delivery in case the dealer is honest, and, in case the dealer is dishonest and
misbehaves, all honest parties simultaneously abort. This protocol assumes the
existence of an authenticated reliable (even for corrupted parties) non-ordered
broadcast channel, and that a majority of the parties are honest.

It works with an IND-CPA symmetric encryption scheme SKE to implement
non-repudiable pairwise communication. We assume that pairwise keys skSKEi are
shared prior to the protocol execution to communicate with the dealer, along
with a signature sigi “ Signpsk, pi, ski,jqq signed by the dealer for a verified reveal

22

of the key. Note, that requirements on these prior steps could be reduced by
using non-repudiable and publicly verifiable signcryption. We could then simply
assume that their public keys are pre-shared, and the verified reveal can be
replaced by proofs that a given ciphertext is invalid, or corresponds to a given
message using the non-repudiability property.

Our robust protocol also works in three rounds:

1. The dealer samples x, and runs V3S.Sharepxq. It broadcasts the proof π along
with individual encryptions produced with the SKE for each other party of
JxKi, πi.

2. In the second round, each party decrypts the message from the dealer and
runs V3S.Verifypq on its share. If decryption or verification fails, the party
broadcasts a complaint containing the secret key of its communication chan-
nel with the dealer skSKEi , along with sigi.

3. The third round consists of opening and verifying all the complaints. If any
of the complaints is valid, it means that the dealer behaved dishonestly, if
no complaint is valid, the sharing is valid, and the party can accept it.

In this protocol, we achieve:

– unframeability: if the dealer is honest, no corrupted party will be able to
make honest parties reject. Indeed, as the signature scheme is unforgeable,
only a complaint with the correct SKE key can be produced, and then the
message sent by the dealer will be correctly decrypted.

– accountability: if the dealer is corrupted, the use of a broadcast channel
ensures that all honest parties will receive the same set of complaints and
will conclude identically. If they accept the shares, the shares of all honest
parties pass verification, which means that the shares are consistent, and the
secret is valid.

We could reduce the communication of our protocol by exchanging ciphertexts
on pairwise channels instead of broadcasting them. We would then add an extra
round after the round of complaints to allow dealers to answer complaints by
broadcasting the share of the plaintiff in case there was a complaint.

5 Pelican: A Robust Threshold Signature Scheme

We make the following assumptions in our communication model:

– Authenticated broadcast. All contributions by user i are broadcast on a
reliable public channel. In addition, they are signed by i and therefore au-
thenticated. Concretely, i has a signing key ski and signs all their contribu-
tions: SIG.Signpski, contribjrisq, where SIG is an UF-CMA standard signature
scheme SIG “ tKeygen,Sign,Verifyu.
These signatures are checked by other parties upon reception, and the con-
tribution is declared invalid if the signature is invalid. For conciseness, this
is omitted from the descriptions of the distributed key generation and dis-
tributed signing protocols.

23

– Signed pairwise keys. For any ordered pair of users pi, jq, i and j share
a pairwise symmetric key KiÑj that has been signed by i. This secret key
is used by i to send encrypted data to i using an IND-CPA symmetric key
encryption scheme SKE “ tEncrypt,Decryptu.
Encrypted messages are sent over the broadcast channel in order to authen-
ticate the sender. When j files a complaint against i, they reveal the KiÑj

along with the signature. This binds i to the data they have sent to j, and
in case of misbehavior, revealing KiÑj allows other parties to acknowledge
the misbehavior.
Concretely, signed pairwise keys can be easily established in a setup phase. It
suffices that i generates a KEM ciphertext i encapsulating a KEM symmetric
key, and uses this KEM symmetric key to encrypt KiÑj and a signature
sigiÑj Ð SIG.Signpski, ti, j,KiÑjuq.

Our protocols are round-based, with one algorithm per round. Rounds are run
sequentially and synchronously, with the returned value being posted to the
broadcast channel.

5.1 Robust Distributed Key Generation (DKG)

We present a first application of our framework, allowing one to verifiably sample
and share a short secret among parties, assuming that 2 out of 3 participants are
honest. We apply it to the key generation of Pelican and prove that the resulting
scheme remains robust and unforgeable.

In environments where the key generation cannot be entitled to a single
trusted entity, it is important to provide the possibility to distribute the key
generation process among several actors.

Distributed key generation description Our Distributed Key Generation
was informally presented in Section 2.2. We now provide a formal description of
its algorithms in Figure 5. Note that usual rounding techniques on the public
key apply. We omit them in our description for simplicity. Introducing rounding
only incurs a small loss in the SIS bound B2, and requires introducing an infinite
norm bound on c in the verification procedure.

As our DKG allows the adversary to partly bias the distribution of the secret
key, it makes it very complex to define a secrecy notion for our DKG that is
independent of the underlying primitive.

While the literature introduced zero-knowledge notions [KGS23] to abstract
the unbiased behavior of a DKG, and leverage it in any threshold scheme, this
does not easily generalize to our setting where the key generation allows some
bias. It would be possible to define a generic notion with several simulators sim-
ilar to V3S-fk, but we concluded that the added complexity in the proofs was
not worth the small gain in generality. Instead, we introduce in Theorem 4 new
robustness and unforgeability notions for a signature scheme used in conjunc-
tion with a DKG. The unforgeability and robustness of our scheme is stated in
Theorem 5 (resp. Theorem 4), which are proven in Appendix C.

24

Algorithm 7 Pelican.ShareKeygen1pstateiq

1: assert{ state.rnd “ ∅ }; state.rnd “ 1

2: salti
$
Ð t0, 1uκ

3: si Ð D2
σt

4: pJsiK, πi, pπi,jqjPt1,...,Nuq Ð V3S.SharepN,T, siq ▷ Share JsiK and make proofs
5: if {Dj s.t. V3S.VerifypJsiKj , πi, πiÑjq “ false} then {restart} ▷ Invalid proof
6: for j P t1, ..., Nu do
7: ptj :“ pJsiKj , πi,jq

8: cti,j Ð SKE.EncryptpKiÑj , ptjq ▷ Encrypt (share, proof) to each party

9: return contrib1ris :“ salti, πi, pcti,jqjPt1,...,Nu

Algorithm 8 Pelican.ShareKeygen2pstatei, contrib1q

1: assert{ state.rnd “ 1 }; state.rnd “ 2;
2: complaintsi :“ tu
3: for pj P contrib1q do ▷ Set of round 1 contributors
4: saltj , πj , pctjÑkqkPt1,...,Nu :“ contrib1rjs
5: JsjKi, πjÑi :“ SKE.DecryptpKjÑi, ctjÑiq

6: if (SKE.Decrypt failed) or pV3S.VerifypJsjKi, πj , πjÑiq “ falseq then
7: complaintsirjs “ tKjÑi, sigjÑiu ▷ i complains against j

8: validi “ tj P contrib1uzcomplaintsi
9: statei.session.valid :“ validi

10: statei.session.contrib1 :“ contrib1
11: statei.session.shares :“ pJsjKiqjPvalidi

12: return contrib2ris :“ complaintsi

Algorithm 9 Pelican.ShareKeygen3pstatei, contrib2q

1: assert{ state.rnd “ 2 }; state.rnd “ 3
2: validi :“ statei.session.validX tj P contrib2u
3: for j P t1, ..., Nu do
4: for k P complaintsj do ▷ Lines 5 to 9 study j’s complaint against k
5: tKkÑj , sigkÑju :“ complaintsjrks
6: if {SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false} then {continue}
7: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

8: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
9: validi “ validiztku ▷ If j’s complaint against k is valid, invalidate j

10: statei.session.salt :“ HsaltppsaltjqjPvalidiq

11: a :“ Hapstatei.session.saltqP Rq ▷ Derive the public key a P Rq from a seed
12: JsKi :“

ř

jPvalidi
JsjKi ▷ s “

ř

jPvalid sj

13: JbKi :“ β´
“

1 a
‰

¨ JsKi
14: Store JsKi in statei
15: return contrib3ris :“ pstatei.session.salt, JbKiq

Algorithm 10 Pelican.CombineKeypcontrib3q

1: Retrieve salt from contrib3 ▷ If contradictory contributions use majority vote
2: b :“ V3S.RobustReconstructpJbKi, ..., JbKN q
3: assert{ b ‰ K }
4: return vk :“ psalt, bq

Fig. 5: Algorithms for the distributed Keygen. For conciseness, we omit the pars-
ing of pcontribiqiPt1,2,3u in Algorithms 8 to 10.

25

Definition 9 (Unforgeability and robustness with DKG). A threshold
signature scheme with DKG pShareKeygeniqiPt1,...,rndKeygenu, pShareSigniqiPt1,...,rndsigu,
CombineKey, Combine is unforgeable (resp. robust) if all probabilistic polynomial-
time adversaries A win the game GameDKG-TH-UF (resp. GameDKG-TH-RB) from
Figure 30 with negligible probability.

Theorem 4. Consider K a distribution of keys of the form
ř

j sj such that:
1. at most pT ´ 1q vectors sj have norm bounded by B;
2. the other vectors sj are sampled from D2

sk.
Assume that we have }pz1, z2, c1q} ď B2 with overwhelming probability p for

any set valid, p “
ř

jPvalid pj with (i) at most T ´ 1 arbitrary perturbations of
norm bounded by B, (ii) the others sampled from Gaussians of standard deviation
σp, and over any distribution of keys K.

The advantage of any polynomial-time adversary A in the game DKG-TH-RB
from Figure 29 reduces to the robustness of Pelican with a small advantage loss.
Formally, there exist adversaries B1 against the UF-CMA security of SIG, B2

against the V3S-sound security of V3S, B3 against the Leak-TH-RB security of
Pelican, with running time TB1 « TB2 « TB3 « TA.

AdvDKG-TH-RB
A pκq ďN ¨ AdvUF-CMA

B1
pκq ` AdvV3S-soundB2

pκq ` AdvLeak-TH-RBB3
pκq

` N ¨ p1 ´ Pr rV3S correctnesssq

Theorem 5. Define σ1
sk as

1
σ12
sk

“ 2
´

1
σ2
sk

` B
σ2
y

¯

, with B such that Pr
“

s1pRJRq ď B
‰

with overwhelming probability and σ1
sk ě

?
2ηεpZ2nq.

The advantage of any polynomial-time adversary A in the game DKG-TH-UF
from Figure 30 reduces to the unforgeability of Pelican with a small advantage
loss. Formally, there exist adversaries B1 against the UF-CMA security of SIG,
B2 against the IND-CPA security of SKE, B3 against the V3S-sound security of
V3S, B4 against the V3S-fk security of V3S, B5 against the Leak-TH-UF security
of Pelican with σt “ σ1

sk, with running time TBi
« TA for i P t1, ..., 5u.

AdvDKG-TH-UF
A pκq ďN ¨ AdvUF-CMA

B1
pκq ` N2 ¨ AdvIND-CPA

B2
pκq ` AdvV3S-soundB3

pκq

` N ¨ AdvV3S-fkB4
pκq ` AdvLeak-TH-UF

B5
pκq

` 4N ¨ ε ` N ¨ Pr rV3S correctnesss

5.2 Robust Distributed Signing Procedure

We present as a second application of our result an efficient lattice-based robust
threshold signature based on standard assumptions . It provides additional guar-
antees over the existing threshold schemes such as threshold Raccoon [PKM`24]
which provides unforgeability, but no guarantee of termination.

Assuming the existence of an authenticated reliable broadcast channel, and
that at least 2{3 of the parties are honest, it ensures that the signature protocol
will produce a valid signature.

26

5.2.1 Description of Pelican Pelican was drafted in the Technical Overview,
in Section 2.3. It relies on a symmetric encryption scheme SKE, a signature
scheme SIG, and a Verifiable Short Secret Sharing V3S.

Our informal description of Pelican easily translates to formal algorithms,
described in Figures 6 and 7.

Robustness of Pelican. The robustness property of Pelican lies in its ability to
generate signatures even in the presence of malicious signers. We prove it when
Pelican is used over a broadcast channel by following the methodology of [KGS23]
with successive rounds. The robustness of Pelican is stated in Theorem 6, which
is proven in Appendix B.1.

Theorem 6. Assume that selected parameters are such that we have }pz1, z2, c1q} ď

B2 with overwhelming probability p for any set valid, p “
ř

jPvalid pj with (i) at
most T ´ 1 arbitrary perturbations of norm bounded by B, (ii) the others sam-
pled from Gaussians of standard deviation σp, and over the distribution of keys.

Recall that pz1, z2, c1q “

„

c1 ¨ s ` p
c1

ȷ

`

»

–

c2
0
0

fi

fl.

The advantage of any polynomial-time adversary A making at most Qs sign-
ing queries in the game TH-RB from Figure 16 is bounded by

N ¨ AdvUF-CMA
B1

pκq ` AdvV3S-soundB2
pκq ` NQs ¨ p1 ´ Pr rV3S correctnesssq ` p1 ´ pq

where B1 is an adversary against the UF-CMA security of SIG, B2 is an adversary
against the V3S-sound security of V3S, with running time TB1

« TB2
« TA.

Unforgeability of Pelican. Importantly, we also want our scheme to remain un-
forgeable in the presence of dishonest signers. The unforgeability of our scheme
is stated in Theorem 7, which is proven in Appendix B.2.

Theorem 7. Define σ1
p as 1

σ1
p
2 “ 2

´

1
σ2
p

` B
σ2
y

¯

, with B such that s1pRJRq ď B

with overwhelming probability and σ1
p ě

?
2ηεpZ2nq.

Pelican is TH-UF secure in the random oracle model.

Formally, let A be an adversary against the TH-UF security game from Figure
21 starting at most Qs signing sessions, and making at most QH random oracles
queries.

Then there exists adversaries B1 against the UF-CMA security of SIG, B2

against the IND-CPA security of SKE, B3 against the V3S-sound security of V3S,
B4 against the V3S-fk security of V3S, B5 against Hint-RLWEq,QSign,Dσt ,Dσ1

p
,C1 , B6

against RLWEq,Upr´B2{
?
2n,B2{

?
2nsnq2 , B7 against RSISq,2,2B2

, and running time

TBi
« TA for i P t1, ..., 7u, such that

27

Algorithm 11 Pelican.ShareSign1pstatei, sid,msgq

1: assert{ statei.sessionrsids does not exist } ▷
2: pi Ð D2

p

3: JpiK, πi, pπiÑjqjPt1,...,Nu Ð V3S.SharepN,T,piq

4: if Dj s.t. V3S.VerifypJpjKi, πj , πjÑiq “ false then
5: restart ▷ Restart if the V3S produced an invalid proof

6: for j P t1, ..., Nu do
7: ctiÑj Ð SKE.EncryptpKiÑj , pJpiKj , πiÑjqq

8: statei.sessionrsids :“ trnd “ 1,msg, JpiK,∅,∅u
9: return contrib1ris :“ pπi, pctiÑjqjPt1,...,Nuq

Algorithm 12 Pelican.ShareSign2pstatei, sid, contrib1q

1: Fetch prnd,msgq from statei.sessionrsids
2: assert{ rnd “ 1 } ▷
3: complaintsi :“ tu
4: for pj P contrib1q do
5: πj , pctjÑkqkPt1,...,Nu :“ contrib1rjs
6: JpjKi, πjÑi :“ SKE.DecryptpKjÑi, ctjÑiq

7: if (SKE.Decrypt failed) or pV3S.VerifypJpjKi, πj , πjÑiq “ falseq then
8: complaintsirjs “ tKjÑi, sigjÑiu ▷ j’s ciphertext or proof is invalid

9: validi “ tj P contrib1uzcomplaintsi
10: statei.sessionrsids :“ trnd “ 2,msg, pJpjKiqjPvalidi , validi, contrib1u
11: return contrib2ris :“ complaintsi

Algorithm 13 Pelican.ShareSign3pstatei, sid, contrib2q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 2 }
3: validi :“ validi X tj P contrib2u
4: for j P t1, ..., Nu do
5: for k P complaintsj do ▷ Lines 6 to 11 study j’s complaint against k
6: tKkÑj , sigkÑju :“ complaintsjrks
7: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then ▷ See Section 5
8: continue
9: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

10: if (SKE.Decrypt failed) or V3S.VerifypJpkKj , πk, πkÑjq “ false then
11: validi “ validiztku

12: JpKi :“
ř

jPvalidi
JpjKi ▷ p “ pp1, p2q

13: statei.sessionrsids :“ t3,msg, pJpjKiqjPvalidi , validi, contrib1u
14: return contrib3ris :“ pJwKi :“ A ¨ JpKiq ▷ A “

“

1 a b
‰

Fig. 6: Algorithms for robust threshold signature, part 1/2. For conciseness, we
omit the parsing of pcontribiqiPt1,2u in Algorithms 12 and 13.

28

Algorithm 14 Pelican.ShareSign4pstatei, sid, contrib3q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 3 }
3: Parse contrib3 “ pJwKjqj
4: w :“ V3S.RobustReconstructppJwKjqjPvalidiq ▷ w “ A ¨ p, where p “

ř

jPvalidi
pj

5: salt :“ Hsaltpwq
6: u :“ Hupvk, salt,msgqP Rq ▷ Hash the message msg to a random u P Rq

7: c :“ u´ w
8: pc1, c2q :“ Decomposeβpcq ▷ Recall c “ β ¨ c1 ` c2
9: JzKi :“ c1 ¨ JsKi ` Jp2Ki ▷ Recall s “ pe, sq and p “ pp1, p2q

10: statei.sessionrsids :“ ∅
11: return contrib4ris “ psalt, JzKi, c1q

Algorithm 15 Pelican.Combinepvk,msg, contrib4q

1: Parse contrib4 “ psaltj , JzKj , c1qj
2: Retrieve salt, c1 from contrib3 ▷ If contradictory contributions: majority vote
3: u “ Hupvk, salt,msgqP Rq

4: z :“ V3S.RobustReconstructppJzKjqjPcontrib4q

5: return sig :“ psalt, z, c1q

Algorithm 16 Pelican.Verifypvk “ pseed, bq,msg, sig “ psalt, z, c1qq

1: a :“ Hapseedq P Rq

2: u :“ Hupvk, salt,msgq P Rq

3: z2 :“ z
4: z1 :“ u´ a ¨ z2 ´ b ¨ c1
5: return ||pz1, z2, c1q|| ď B2

Fig. 7: Algorithms for robust threshold signature, part 2/2. For conciseness, we
omit the parsing of pcontribiqiPt1,3,4u, vk and sig in Algorithms 14 to 16.

AdvTH-UF
A pκq ďN ¨ AdvUF-CMA

B1
pκq ` N2 ¨ AdvIND-CPA

B2
pκq ` AdvV3S-soundB3

pκq

` Qs ¨ N ¨ AdvV3S-fkB4
pκq ` N ¨ Qs ¨ p1 ´ Pr rV3S correctnesssq

` AdvHint-RLWE
B5

pκq ` QH ¨ AdvRLWE
B6

pκq ` AdvRSISB7
pκq

`
Qs

22κ
` 4QsN ¨ ε ` Qs ¨ 2´n`2 ` pc

for some pc ď 2´np2 log2p2B2{
?
2nq´log2pqqq.

6 Parameter Selection and Instantiation

We now move on to instantiation of our constructions. The main component
required is a proper distribution of matrices R verifying property G from Defini-

29

tion 8. We chose to leverage matrices R P t0,˘1u256ˆ2n where each coefficient of
R is 0 with probability 1{2, and ˘1 with probability 1{4. They have strong distri-
bution properties, and have been already successfully applied in [GHL22,Ngu22].
We note this distribution DR. We will rely on Lemmas 2 to 4. Proofs are included
in Appendix E.

Lemma 2 (Large Norm Detection, Lemma 3.2.5 from [Ngu22]). Fix
n, q P N, and a bound b ď q{p82nq, and let s P r˘q{2s2n, with }s}2 ě b. Let
y P r˘q{2s256. Then PrRÐDR

“

}R ¨ s ` y mod q}2 ă 1
2b

?
26

‰

ă 2´128.

Lemma 3 (separation). Fix n, q P N, and ps,yq ‰ ps1,y1q P r˘q{2s2n`256.
Then PrRÐDR

rR ¨ s ` y “ R ¨ s1 ` y1 mod qs ď 2´256.

Lemma 4 (small spectral norm). Fix n, q P N and R P t0,˘1u256ˆ2n.
s1pRJRq ď 512 ¨ n. For fixed values of n, we can obtain better average bounds.
For n “ 2048,

Pr
RÐDR

“

s1pRJRq ă 20096
‰

ě 1 ´ 2´142

6.1 Reminder: Parameter Selection in Plover

In the (standard) signature scheme Plover, a signature is essentially a pair
psalt, z “ pz1, z2, c1qtq, where z is of the form:

z “

»

–

e
s
1

fi

fl ¨ c1 `

»

–

p1
p2
0

fi

fl `

»

–

c2
0
0

fi

fl

One can see that
“

1 a b
‰

¨z “ Hpvk, salt,msgq. Following the analysis of [EEN`24,

Section 3.5], and assuming σsk “
β2

q
?
2n

:

E
”

}z}
2
ı

« n

ˆ

2σ2
p `

β2

12
`

q2 n

6β2
σ2
sk

˙

« 2n

ˆ

σ2
p `

β2

12

˙

Following the security reduction of [EEN`24], Plover is unforgeable under the
RSISq,ℓ,B2

and Hint-RLWEq,QSign,Dsk,Dp,C1
assumptions. In our case, all distribu-

tions are Gaussians, so that Hint-RLWEq,QSign,σsk,σp,C1
ě RLWEq,σred

, where 1
σ2
red

“

2
´

1
σ2
sk

`
BHRLWE

σ2
p

¯

«
2BHRLWE

σ2
p

, where BHRLWE «
nQSign q

2

12 β2 , see Lemma 2 in [EEN`24].

If σp “ opβ
a

QSignq, then σsk “ ωp
σp?

BHRLWE
q and therefore σred „

σp?
2¨BHRLWE

.

6.2 Parameter Selection for the Signing Procedure of Pelican

Parameter selection for Pelican is much more involved than for Plover. Note
that a parameter set defined for a threshold T also supports any 1 ď T 1 ď T
with the same security and verification procedure. We thus limit our analysis
to an upper bound T on supported thresholds, while ensuring that Pelican is

30

σred
a

n{6 ¨ pq{βq
a

QSign q{β

{RLWE}{Hint-RLWE ě RLWE (Thm. 1)}

RSISσp

Fig. 8: Constraints on the modulus q in Plover [EEN`24]. We represent q in
logarithmic scale. Each constraint adds an overhead to the mimimum size of q.
As a rule of thumb, dimensions must scale in Õplog qq for security, and as a result
the cryptosystem’s bitsizes scale in Õpplog qq2q.

interchangeable6. It is achieved by increasing σsk and σp by a factor
a

T {T 1.
Parameter selection for Pelican can be fairly delicate since we need to balance
several (sometimes conflicting) conditions. Therefore we present in Table 1 the
relationship between parameters (modulus, dimensions, etc.) and security met-
rics (RLWE, RSIS, etc.).

Parameter RLWE
{Hint-RLWE
ě RLWE} RSIS V3S Slack

Public key
bitsize

Signature
bitsize

q ŒŒŒ ««« ÕÕÕ ««« ŒŒŒ «««

n ÕÕÕ ŒŒŒ ÕÕÕ ««« ŒŒŒ ŒŒŒ

σsk ÕÕÕ ««« ««« ««« ÕÕÕ «««

σp ÕÕÕ ÕÕÕ ŒŒŒ ««« ««« ŒŒŒ

q{β ««« ŒŒŒ ÕÕÕ ««« ««« ŒŒŒ

T ««« ÕÕÕ ÕÕÕ ÕÕÕ ««« ŒŒŒ

QSign ««« ŒŒŒ ««« ««« ««« ŒŒŒ

Table 1: Relationship between the parameters of Pelican and the associated se-
curity and efficiency metrics. For the cell in the X-th row and Y -th column, we
use the symbol ÕÕÕ (resp. ŒŒŒ, resp. «««) to indicate that increasing the parameter
X has a positive (resp. negative, resp. limited) influence on the metric Y . Note
that the signature size increases logarithmically in the maximum values of T
and QSign, but the public key size can be made essentially independent of them
using appropriate bit-dropping, see Section 6.4.

Let us fix an upper bound T on supported thresholds. For simplicity, we
assume here that the set of signers S satisfies |S| “ 3T ;7, our analysis is easily

6 Interchangeability guarantees that a threshold scheme has static public parameters
for any supported threshold and number of parties.

7 If |S| ă 2T , then we still have unforgeability but the V3S can no longer detect
dishonest users. Taking |S| ą 3T is also of limited interest since it cannot detect
more than T ´ 1 dishonest users.

31

extended to other values of |S|. For our choice of S, at least 2{3 of the users
are honest, so that the vector p “

ř

iPS pi contains at least 2T vectors that are
unknown to the set of corrupted users; as a benefit, the Hint-RLWE reduction
can support

?
2T more queries.

The signing procedure of Pelican (Figs. 6 and 7) provides, for each ppiqiPrQSigns,
a V3S proof which contains vi “ R ¨ pi ` yi. This has two consequences:

1. The V3S proves a slightly looser bound on the norm of pi.
2. The pair pRi,vi “ R ¨ pi ` yi, iq biases the conditional distribution of pi.

Slack of the V3S. Lemma 2 tells us that
?
26
2 }pi} ď }vi} with overwhelming

probability. On the other hand, [Ngu22, Lemma 3.2.4] tells us:

}vi} ď }Ri ¨ p ` y} ď
?
337 ¨ }p} ` }y}, (5)

where τ is a value such that PxÐD256
σp

“

}x} ě τσp

?
256

‰

ď 2´128, here τ ď 1.4. If

we set σy “
?
337 ¨ σp and note SlackV3S “ τ

?
337 2?

26
« 10, our V3S proves:

}pi} ď SlackV3S ¨ pσp

?
2nq (6)

There is a gap SlackV3S between the expected norm of pi, which is σp

?
2n, and

the norm that is actually proven, which is the one in Eq. (6). While SlackV3S

is constant due to the lemmas we use, increasing the security parameter κ will
also increase SlackV3S. In order to have robustness, we need to use the latter
norm in our verification procedure. In addition, S perturbations pi are added
in the signature and this needs to be taken into account. Therefore we pick this
bound on the norm in the verification procedure:

B2 “ |S| ¨ SlackV3S ¨ pσp

?
2nq (7)

Leakage from the V3S. The pair pRi,vi “ Ri ¨ pi ` yiq is a hint on the value
of pi. More precisely, Lemma 1 tells us that the conditional distribution of pi

conditioned on pRi,viq follows a (non-spherical) Gaussian DR2,c,
?
Σ0

, where:

Σ´1
0 :“ σ´2

p ¨ I ` σ´2
y ¨ RJ

i Ri (8)

Theorem 7 tells us that we can safely use an isotropic Gaussian from each pi

of standard deviation σ1
p verifying 1

σ12
p

“ 1
σ2
p

`
s1pRJ

i Riq

σ2
y

(we ignore the factor 2

which could be removed in the proof using Theorem 2).
Recall that according to Lemma 4, for n “ 2048, we have s1pRJ

i Riq ă 20096
with overwhelming probability. Combining this with Eq. (8) and the fact that
σy “

?
337 ¨σp, the usable part of perturbations pi for n “ 2048 has a standard

deviation σ1
p “ Θpσpq since:

σ1
p :“

`

σ´2
p ` σ´2

y ¨ 20096
˘´1{2

«

c

337

20096
¨ σp «

1
?
60

¨ σp (9)

32

Reduction from Hint-RLWE to RLWE. Hints on the secrets are masked with
the sum of the honest perturbations. The resulting perturbation has standard
deviation

a

|honest| ¨ σ1
p, where |honest| ě 2

3 |S| “ 2T . The analysis of Plover

thus adapts with σred „

?
T ¨σ1

p?
2¨BHRLWE

.

σred pq{βq ¨
a

n{p2T q
a

QSign
?
60 3T ¨ SlackV3S q{β

RLWE tHint-RLWE ě RLWEu {V3S leakage}

{Slack in Eq. (7)}

RSIS

σp

Fig. 9: Constraints on the modulus q in Pelican. We represent q in logarithmic
scale. Each constraint adds an overhead to the mimimum size of q.

6.3 Distributed Key Generation

Parameter selection for our DKG is analogous to the signing procedure of Pelican.
Similarly, the resulting σsk usable in the Hint-MLWE reduction after revealing

Ri ¨ si ` yi is σ
1
sk :“

?
2T?
60

σsk.

However, since σp was selected so that s1pRq ¨ σsk is negligible compared to
σp, the norm of R ¨s remains negligible compared to the norm of p even with the
slack of the V3S on the bound on }s}, and the norm of the signatures produced
by our scheme is not affected by our V3S. Hence, we simply need to ensure that
Hint-MLWE remains hard with σ1

sk.

6.4 Selected parameter sets

We rely on the lattice estimator [APS15] – an open-source tool available at
https://github.com/malb/lattice-estimator – for estimating the concrete
hardness of RLWE. We provide three possible parameter sets in Table 2, providing
different tradeoffs between security, size, and the maximum supported threshold.

Note that in order to use Lemma 2, we need to fulfill the condition b ď

q{p82nq. It would be inefficient to increase q in the entire scheme for this, and
we instead introduce qV3S a multiple of q, for use during V3S secret sharing.
Local shares are later reduced mod q before use in round 3 and 4.

We express the communication cost per party in round 1 as a function of T .
It increases linearly with T as our V3S broadcasts an entire sharing. The total
communication cost of our protocol hence evolves quadratically T . We recall
that the bytesizes of vk and sig are computed as:

8 ¨ |vk| “ 2 ¨ κ ` n rlog2 qs (10)

8 ¨ |sig| « 2 ¨ κ ` n rlog2pT ¨ σpqs ` n rlog2pq{βqs (11)

33

https://github.com/malb/lattice-estimator

This omits the optimization that consists of performing bit-dropping in vk. The
formula for |sig| is approximate since it depends on the exact encoding used for
the vector z.

κ n log β tqV3Su T σp QSign |vk| |sig| Hint-RLWE RSIS comm. per party
C/Q C/Q rnd1 rnd3 rnd4

128 2048 43 265 16 232 236 12.8 12.3 113/99 113/99 56T 12.8 14
192 4096 43 268 1024 231 248 25.6 26.4 227/199 222/195 115T 25.6 28.2
256 4096 45 270 64 233 248 25.6 25.1 251/220 249/219 119T 25.6 27.4

Table 2: Parameter sets for Pelican. We showcase parameter sets for different
security levels κ, and value of T . We take N “ 3T , q « 250 and σsk « 220. All
sizes are in kilobytes (kB). We indicate the core-SVP hardness of Hint-RLWE
and RSIS, a metric which ignores several polynomial factors. We also give ap-
proximate communication cost per participant in each round of key generation
and threshold signature, excluding authentication of broadcast communication.
Note that round 4 happens only for signature generation.

References

ABCP23. Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Pedersen. VSS
from distributed ZK proofs and applications. In ASIACRYPT (1), volume
14438 of Lecture Notes in Computer Science, pages 405–440. Springer, 2023.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

ASY22. Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-
based threshold signatures, revisited. In Mikolaj Bojanczyk, Emanuela
Merelli, and David P. Woodruff, editors, ICALP 2022, volume 229 of
LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

BGG`18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
565–596. Springer, Heidelberg, August 2018.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

BKP13. Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice
trapdoor: Threshold protocols for signatures and (H)IBE. In Michael J.
Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh Safavi-
Naini, editors, ACNS 13, volume 7954 of LNCS, pages 218–236. Springer,
Heidelberg, June 2013.

34

BP23. Lúıs T. A. N. Brandão and Rene Peralta. Nist first call for multi-party
threshold schemes. NIST Internal Report (IR) 8214C, National Institute
of Standards and Technology, January 2023. Initial Public Draft.

CGMA85. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults. In
26th Annual Symposium on Foundations of Computer Science (sfcs 1985),
pages 383–395. IEEE, 1985.

dEK`23. Rafael del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice
Mouhartem, Thomas Prest, Mélissa Rossi, and Markku-Juhani Saarinen.
Raccoon. Technical report, National Institute of Standards and Technol-
ogy, 2023. available at https://csrc.nist.gov/Projects/pqc-dig-sig/

round-1-additional-signatures.
Des90. Yvo Desmedt. Abuses in cryptography and how to fight them. In Shafi

Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 375–389.
Springer, Heidelberg, August 1990.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, August 1990.

EEN`24. Muhammed Esgin, Thomas Espitau, Guilhem Niot, Thomas Prest, Amin
Sakzad, and Ron Steinfeld. Plover: Masking-friendly hash-and-sign lattice
signatures. In EUROCRYPT, 2024.

GHL22. Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-
interactive publicly verifiable secret sharing with thousands of parties. In
Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 458–487. Springer, Heidelberg,
May / June 2022.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.
Robust threshold DSS signatures. In Ueli M. Maurer, editor, EURO-
CRYPT’96, volume 1070 of LNCS, pages 354–371. Springer, Heidelberg,
May 1996.

GKS23. Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round thresh-
old lattice signatures from threshold homomorphic encryption. Cryptology
ePrint Archive, Paper 2023/1318, 2023. https://eprint.iacr.org/2023/
1318.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008.

GRJK00. Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo Krawczyk.
Robust and efficient sharing of RSA functions. Journal of Cryptology,
13(2):273–300, March 2000.

JLS86. William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Exten-
sions of lipschitz maps into banach spaces. Israel Journal of Mathematics,
54(2):129–138, 1986.

JTZ23. Yunfeng Ji, Yang Tao, and Rui Zhang. Robust (t, n)-threshold lattice
signature. 2023.

KG20. Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized
Schnorr threshold signatures. In Orr Dunkelman, Michael J. Jacobson Jr.,
and Colin O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 34–65.
Springer, Heidelberg, October 2020.

35

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2023/1318
https://eprint.iacr.org/2023/1318

KGS23. Chelsea Komlo, Ian Goldberg, and Douglas Stebila. A formal treatment
of distributed key generation, and new constructions. Cryptology ePrint
Archive, Report 2023/292, 2023. https://eprint.iacr.org/2023/292.

KLSS23a. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward
practical lattice-based proof of knowledge from hint-MLWE. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume
14085 of LNCS, pages 549–580. Springer, Heidelberg, August 2023.

KLSS23b. Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward
practical lattice-based proof of knowledge from hint-mlwe. In Helena Hand-
schuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO
2023, pages 549–580, Cham, 2023. Springer Nature Switzerland.

Ngu22. Ngoc Khanh Nguyen. Lattice-Based Zero-Knowledge Proofs Under a Few
Dozen Kilobytes. PhD thesis, ETH Zurich, Zürich, Switzerland, 2022.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 129–140. Springer, Heidelberg, August 1992.

PKM`24. Rafaël Del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem,
Thomas Prest, and Markku-Juhani O. Saarinen. Threshold raccoon: Prac-
tical threshold signatures from standard lattice assumptions, 2024.

PMB. Andrew Paverd, Andrew Martin, and Ian Brown. Modelling and automat-
ically analysing privacy properties for honest-but-curious adversaries.

RRJ`22. Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Do-
minique Schröder. ROAST: Robust asynchronous schnorr threshold signa-
tures. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 2551–2564. ACM Press, November 2022.

Sta96. Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 190–199. Springer,
Heidelberg, May 1996.

TPCZ23. Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang. Efficient lattice-
based threshold signatures with functional interchangeability. IEEE Trans-
actions on Information Forensics and Security, 18:4173–4187, 2023.

A Proof of security of the V3S

Proof (of Correctness). By construction, the function V3S.Sharepq constructs a
valid Shamir’s sharing based on Lagrange interpolations for JxK and JyK, in
addition to a (valid) corresponding Merkle tree. Thus, V3S.Reconstruct recon-
structs the expected value x for any subset of size T by definition. Now re-
mark that in V3S.Verifypq, the Merkle tree proof verification, and equality check
JvKi “ R ¨ JxKi ` JyKi always pass. Additionally, when the execution is hon-
est, we have v “ R ¨ x ` y, where R,x,y are independently sampled from
DR,Dσx

,Dσy
. By the honest execution property of the distribution DR, we have

}v} “ }R ¨ x ` y} ď B1 with a loss of at most p3 “ neglpκq. [\

Proof (of Soundness). We follow a hybrid proof approach where we define:

Hybrid1. First hybrid corresponds to the real V3S-sound game of Figure 2.

36

https://eprint.iacr.org/2023/292

Hybrid2

1: LH ,Programmedr¨s :“ H

2: N,T, S Ð Apq ▷ The adversary chooses a subset S of parties to target
3: assert{ S Ă t1, ..., Nu ^ |S| ě T } ▷ S must be large enough to allow

reconstruction
4: psiqiPt1,...,Nu, π, pπiqiPt1,...,Nu Ð AHp¨q

pN,T, Sq ▷ The adversary produces a
T -sharing among N parties

5: Parse π “ ph, JvKq, pπiqiPS “ pJyKi, ri, proofiqiPS

6: if Programmedrhs ‰ psi, JyKiqiPS then

7: return 0

8: if @i P S,V3S.Verifypsi, π, πiq “ false then
▷ In case a party in S fails verification, the adversary loses

9: return 0
10: x “ V3S.ReconstructppsiqiPSq

11: if x “ K then ▷ Verification passes but shares are inconsistent in S
12: return 1
13: if x R V then ▷ Verification passes but the secret is invalid
14: return 1
15: return 0 ▷ The sharing chosen by the adversary is valid

HRphq

1: if Dr.ph, ”R”, rq P LH then
2: return r
3: else if DpJxKj , JyKj , rjqjPS s.t. they are in the Merkle tree described by h

then
4: RÐ DR

5: Programmedrhs “ ppJxKj , JyKjqjPSq

6: LH :“ LH Y tph, ”R”,Rqu
7: return R
8: else
9: RÐ DR

10: LH :“ LH Y tph, ”R”,Rqu
11: return R

Fig. 10: The second hybrid of the security proof of the soundness of our VSSS
construction. Difference with the previous hybrid are highlighted .

Hybrid2. This hybrid ensures that the matrix R is sampled after the shares
pJxKj , JyKjqjPS are chosen by checking the RO calls. It is given in Figure 10.
This will allow us to apply separation and large norm detection properties of
DR in the next hybrids as then R will be independent of the tested value. The
added check makes the adversary lose in several cases:

37

– pJxKj , JyKj , rjqjPS do not correctly hash in the Merkle tree h. But then, at
least one of the proofs proofi fails, and one of the calls to V3S.Verify would
have failed. Hence, this case does not introduce an advantage loss.

– The shares correctly hash to h but Programmingrhs “ K at the time of
programming of the random oracle, one of the intermediary hash of the
Merkle tree hadn’t been queried yet. This may only happen if the adversary
is able to break the pre-image resistance of the hash function. This happens
with probability at most Q2

H{22κ.
– The shares given by the adversary correctly hash to h but Programmingrhs is

equal to a different set of shares. This can only happen if the adversary breaks
the collision resistance of the hash function. This happens with probability
at most Q2

H{p22κq.

Overall,

|Adv
Hybrid2
A pκq ´ Adv

Hybrid1
A pκq| ď

Q2
H

22κ´1

Hybrid3. This hybrid ensures that in case the random oracle is programmed
on shares JxK, JyK, then if they are inconsistent or if the reconstructed secret is
large, then R ¨ x ` y will be inconsistent or large. In case one of these checks,
we consider that the adversary wins, and remove the previous winning checks.
This is formalized in Figure 11.

These modifications allow the adversary to win in more cases. Indeed, in
Hybrid2, the adversary could win in two ways:

– If reconstruction over S fails, but V3S.Verifypq returns true over S. But then,
it means in particular that shares of R ¨ JxK ` JyK were all consistent over
S, and that it correctly reconstructs. In Hybrid3, this case is covered by the
first assertion added in HRphq that makes the adversary in that case.

– If the reconstructed secret x has a norm larger than B, but R ¨ x ` y has
a norm smaller than B1. Similarly, the second assertion added in HR would
fail when called on h, and allow the adversary to win.

As such:

Adv
Hybrid2
A pκq ď Adv

Hybrid3
A pκq

Probability of winning Hybrid3. First, consider the event where some call to HR

works on inconsistent shares for JxK, JyK over S butR¨JxK`JyK are all consistent.
Noting px,yq ‰ px1,y1q the secrets reconstructed from I, I 1 two subsets of S of
cardinal T , as R is independent of these vectors, we can apply the separation
property of R to bound its probability:

Pr
“

Rx ` y mod q “ Rx1 ` y1 mod q
‰

“ p1

By the union-bound the probability that the first assertion succeeds for all the
calls to the random oracles is at most QH ¨p1. Similarly, for the second assertion,

38

Hybrid3

1: LH ,Programmedr¨s :“ H
2: N,T, S Ð Apq ▷ The adversary chooses a subset S of parties to target
3: assert{ S Ă t1, ..., Nu ^ |S| ě T } ▷ S must be large enough to allow

reconstruction
4: psiqiPt1,...,Nu, π, pπiqiPt1,...,Nu Ð AHp¨q

pN,T, Sq ▷ The adversary produces a
T -sharing among N parties

5: Parse π “ ph, JvKq, pπiqiPS “ pJyKi, ri, proofiqiPS

6: if Programmedrhs ‰ psi, JyKiqiPS then
7: return 0
8: if @i P S,V3S.Verifypsi, π, πiq “ false then

▷ In case a party in S fails verification, the adversary loses
9: return 0

10: return 0 ▷ The sharing chosen by the adversary is valid

HRphq

1: if Dr.ph, ”R”, rq P LH then
2: return r
3: else if DpJxKj , JyKjqjPS s.t. they are in the Merkle tree described by h then
4: RÐ DR

5: Programmedrhs “ ppJxKj , JyKjqjPSq

6: if V3S.ReconstructppJxKj , JyKjqjPSq “ K then
▷ If shares of x,y are inconsistent over S

7: assert{ V3S.ReconstructppR ¨ JxKj ` JyKjqjPSq “ K }
▷ Then the shares of R ¨ x` y are also inconsistent

8: else
9: Reconstruct x,y from the shares in S

10: if }x} ą B then

11: assert{ }R ¨ x` y} ą B1 }

12: LH :“ LH Y tph, ”R”,Rqu
13: return R
14: else
15: RÐ DR

16: LH :“ LH Y tph, ”R”,Rqu
17: return R

Fig. 11: The third hybrid of the security proof of the soundness of our VSSS
construction. Difference with the previous hybrid are highlighted . In case one
of the assertions in HR fails, consider that the adversary wins.

the matrix R is independent of the reconstructed value and the large norm
detection property of DR allows us to bound the probability of failure by QH ¨p2.

We can conclude:

Adv
Hybrid3
A pκq ď QH ¨ pp1 ` p2q.

39

Summing all the intermediary advantage losses gives the final result. [\

Proof (of fragmentary knowledge). We proceed once again with a series of hy-
brids.

Hybrid1. The first hybrid corresponds to the case b “ 0 of the V3S-fk game, i.e.
where the adversary observes the real distribution of transcripts.

Hybrid2

1: LH :“ H
2: N,T, S Ð Apq ▷ The adversary chooses a subset S of parties to target
3: assert{ S Ă t1, ..., Nu ^ |S| “ T ´ 1 }
4: xÐ Dx

ŻŻŻ Content of V3S.Sharepq ŽŽŽ

5: yÐ Dd
σy

, priq
$
Ð t0, 1uN ¨2κ

6: Sample random sharings JxK, JyK of order T
7: h :“ hash of Merkle tree containing pJxKi, JyKi, riq for i P S, and

replacing hashes of other shares by random values.
8: for i P S do
9: proofi :“ proof that pJxKi, JyKi, riq is in Merkle tree h

10: πi :“ pJyKi, ri, proofiq
11: R :“ HRphq ▷ Hash h to obtain a random matrix from DR

12: JvK :“ R ¨ JxK` JyK
13: π :“ ph, JvKq ▷ Publish challenge polynomial and Merkle tree hash
14: b1

Ð AH
px, pJxKiqiPS , π, pπiqiPSq

15: return b1

Fig. 12: The second hybrid of the security proof of the fragmentary knowledge
of our VSSS construction. Difference with the previous hybrid are highlighted .

Hybrid2. The second hybrid replaces the hashes of shares not in S in the Merkle
tree by uniform strings. This change is depicted in Figure 12.

The view of the adversary differs only if it did query the random oracle on
one of the shares pJxKi, JyiK, riq with i R S in Hybrid1 and the Merkle tree hash
does not correspond in Hybrid2. However, since each share pJxKi, JyiK, riqiPS has
min-entropy at least Hpriq “ 2κ, this happens for each share with probability
at most QH{22κ. By union bound for all shares we have:

|Adv
Hybrid2
A pκq ´ Adv

Hybrid1
A pκq| ď N ¨

QH

22κ

40

Hybrid3

1: LH :“ H
2: N,T, S Ð Apq ▷ The adversary chooses a subset S of parties to target
3: assert{ S Ă t1, ..., Nu ^ |S| “ T ´ 1 }
4: xÐ Dx

ŻŻŻ Content of V3S.Sharepq ŽŽŽ

5: yÐ Dd
σy

6: JxKiPS , JyKiPS
$
Ð Zn`d

q ▷ Sample observed shares randomly

7: h :“ hash of Merkle tree containing pJxKi, JyKiq for i P S, and replacing hashes
of other shares by random values.

8: for i P S do
9: proofi :“ proof that pJxKi, JyKiq is in Merkle tree h

10: πi :“ pJyKi, proofiq
11: R :“ HRphq ▷ Hash h to obtain a random matrix from DR

12: Compute JvK s.t. JvK0 “ R ¨ x` y, and for i P S, JvKi “ R ¨ JxKi ` JyKi
13: π :“ ph, JvKq ▷ Publish challenge polynomial and Merkle tree hash

14: x̂Ð DZn,c,
?
Σ0

15: b1
Ð AH

p x̂ , pJxKiqiPS , π, pπiqiPSq

16: return b1

Fig. 13: The third hybrid of the security proof of the fragmentary knowledge of
our VSSS construction. Difference with the previous hybrid are highlighted .

Hybrid3. This hybrid replaces the shares of x in S by uniformly drawn vectors of
Zn
q , and the x send to the adversary by a Gaussian variable following DZn,c,

?
Σ0

.
This is formalized in 13. We observe that this corresponds to the case b “ 1 of
the V3S-fk game, and implements perfectly the simulators SimProof, SimSecret
we previously described. The computation of JvK as a function of R ¨ x ` y and
pR ¨ JxKi, JyKiqiPS is equivalent to the one done in Hybrid2 due to the correctness
of the sharing of x, and as we only need T points of JvK to recover its full
value. Hence, this change does not induce an advantage loss. We also note that
the adversary observes outputs computed from exactly T ´ 1 shares of JxK in
Hybrid3 and they are thus randomly distributed independently from x. We can
sample them directly with no advantage loss. Finally, applying Lemma 1, we
have that px,R ¨ x ` yq follows the same distribution as px̂,R ¨ x ` yq. We

conclude that: Adv
Hybrid3
A pκq “ Adv

Hybrid2
A pκq. [\

B Security proof of Pelican

We define in Figure 15 variants of the key generation from Figure 14 coined
LeakyKeygenRB and LeakyKeygenUF. LeakyKeygen allows an adversary to bias
the distribution of the key. In this section, we prove stronger unforgeability and

41

robustness results using LeakyKeygen. It will be used to prove the security of our
distributed key generation.

Pelican.Setupppp, Nq

1: for i P t1, ..., Nu do
2: skSIGi , pkSIGi Ð SIG.Keygenpppq
3: for j P t1, ..., Nu do
4: KiÑj Ð SKE.Keygenpppq
5: sigiÑj “ SIG.Signpski, ti, k,KiÑjuq

6: return ppkSetupi :“ pkSIGi qiPt1,...,Nu, psk
Setup
i :“ pKjÑk, sigjkqj“i_k“iqiPt1,...,Nu

Pelican.Keygenppp, T,Nq

1: ppkSetupi , skSetupi qiPt1,...,Nu Ð Pelican.Setupppp, Nq
2: sÐ D2

σt

3: Sample P P R2
qrXs of degree ă T such that P p0q “ s

4: saltÐ t0, 1uκ

5: a :“ Hapsaltq
6: b :“ β ´

“

1 a
‰

¨ s mod q

7: return vk “ pa, bq, pski :“ pP piq, ppk
Setup
j qjPt1,...,Nu, sk

Setup
i qqiPt1,...,Nu

Fig. 14: Algorithms for the key generation of Pelican.

B.1 Robustness

Proof (of Theorem 6). We start by proving a slightly more general variant of
Theorem 6, with keys generated with LeakyKeygenRB and allowing the adversary
to bias generated keys. This result will be leveraged for the robustness proof of
Pelican used with our DKG in Appendix C.1.

Lemma 5. Take a polynomial-time adversary A in the game Leak-TH-RB from
Figure 17. Consider K the distribution of the keys generated by LeakyKeygenRB
with the adversarial input from A. Assume that over the distribution of keys K,
we have }pz1, z2, c1q} ď B2 with overwhelming probability p for any set valid,
p “

ř

jPvalid pj with (i) at most T ´ 1 arbitrary perturbations of norm bounded
by B, (ii) the others sampled from Gaussians of standard deviation σp.

The advantage of A in the game Leak-TH-RB is then bounded by

N ¨AdvUF-CMA
B1

pκq ` AdvV3S-soundB2
pκq ` N ¨ Qs ¨ p1 ´ Pr rV3S correctnesssq

` Qs ¨ p1 ´ pq

where B1 is an adversary against the UF-CMA security of SIG, B2 is an adversary
against the V3S-sound security of V3S, with running time TB1

« TB2
« TA.

42

Pelican.LeakyKeygenRBppp, T,N, aux “ ppJs1K, saltq, ppkSetupi , skSetupi qiPt1,...,Nuq

1: s1 :“ V3S.ReconstructppJs1Kiqiq
2: assert{ s1

‰ K } ▷ Corrupted contribution is a valid sharing
3: a :“ Hapsaltq
4: b :“ β ´

“

1 a
‰

¨ s1 mod q

5: return vk “ pa, bq, pski :“ pJs1Ki, ppkSKEj qjPt1,...,Nu, sk
SKE
i qqiPt1,...,Nu

Pelican.LeakyKeygenUFppp, T,N, aux “ ppJs1K, saltq, ppkSetupi , skSetupi qiPt1,...,Nuq

1: s1 :“ V3S.ReconstructppJs1Kiqiq
2: assert{ s1

‰ K } ▷ Corrupted contribution is a valid sharing
3: sÐ D2

σt

4: Sample P P R2
rXs of degree ă T such that P p0q “ s

5: a :“ Hapsaltq
6: b :“ β ´

“

1 a
‰

¨ ps` s1
q mod q

7: return vk “ pa, bq, pski :“ pP piq ` Js1Ki, ppkSKEj qjPt1,...,Nu, sk
SKE
i qqiPt1,...,Nu

Fig. 15: Algorithms for the leaky key generation of Pelican, used respectively for
robustness proofs, and for unforgeability proofs. These algorithms are used to
model bias that can be introduced by the adversary in generated keys when
using our distributed key generation. Note that we can recover Keygen from
Fig. 14 by calling LeakyKeygenUF (resp. LeakyKeygenRBqwith aux “ J0K0 (resp.

aux Ð JD2
σt

K), salt $
Ð t0, 1uκ and ppkSetupi , skSetupi qiPt1,...,Nu Ð Pelican.Setuppppq.

LeakyKeygen is useful for proofs but not used in any actual implementation.

Theorem 6 is directly implied by Lemma 5. We construct an efficient adver-
sary B for the game Leak-TH-RB from the adversary A for the game TH-RB:

– B samples and return a random salt
$

Ð t0, 1uκ.
– It samples aux “ JDσt

K.
– It runs A normally after obtaining the output of LeakyKeygenRB.

With the above bias aux, and a uniform salt, B recovers the behavior of the
trusted Keygen, and the view of A is the same as in the game TH-RB. The
assumption in Theorem 6 also ensures that for the distribution of keys from
Keygen, we have }pz1, z2, c1q} ď B2 with overwhelming probability.

The advantage of B in Leak-TH-RB, is the same as the advantage of A in
TH-RB.

[\

Proof (of Lemma 5).
We proceed with a series of hybrids starting with the robustness game from

Figure 17.

Hybrid2. The second hybrid asserts that all honest parties agree on the same
valid set at the end of round 3. This is formalized in Figure 18.

43

GameTH-RB

1: LH , Lsid :“ H
2: vk0, sk0 :“ ∅
3: pN,T, corruptq Ð Appp, 1κq
4: assert{ corrupt Ď t1, ..., Nu ^ T ď N{3 }
5: assert{ |corrupt| ă T }
6: honest :“ t1, ..., Nuzcorrupt
7: pvk, pskiqiPt1,...,Nuq Ð Sign.Keygenppp, T,Nq
8: for i P honest do
9: statei.sk :“ ski

10: statei.vk :“ vk

11: sid, poutiqiPcorrupt Ð AH,pOPerformRoundip¨qqiPrrndSignspvk, pskiqiPcorruptq

12: Fetch Lsidrsids “ trnd, poutiqiPhonest,msgu
13: if rnd ‰ rndSign then
14: return 0 ▷ The adversary did not finish the protocol

15: status, sig :“ Sign.Combinepvk,msg, poutiqiPt1,...,Nuq

16: if status “ ok^ Sign.Verifypvk, sigq then
17: return 0 ▷ The protocol produced a valid signature

18: return 1

OPerformRound1psid,msgq

1: assert{ sid R Lsid }
2: for i P honest do
3: outi :“ Sign.ShareSign1pstatei, sid,msgq

4: Lsidrsids “ t1, poutiqiPhonest,msgu

OPerformRoundkppiniqiPcorruptq, for k P t2, ..., rndSignu

1: Fetch Lsidrsids “ trnd, piniqiPhonest,msgu
2: assert{ rnd “ k ´ 1 }
3: for i P honest do
4: outi :“ Sign.ShareSignkpstatei, sid, pinqiPt1,...,Nuq

5: Lsidrsids “ tk, poutiqiPhonest,msgu

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 16: Robustness game. The adversary A wins if the game TH-RB returns 1,
i.e. if it is able to prevent the protocol from producing a valid signature.

44

As we rely on a broadcast channel, all the honest parties will observe the
same messages in round 2 and round 3. In particular, they will observe empty
contributions for the same parties in round 2 and will read the same complaints
in round 3. As the algorithms Decryptpq and V3S.Verifypq are deterministic, all
honest parties will simultaneously accept or reject the complaints.

So,

Adv
Hybrid2
A pκq “ Adv

Hybrid1
A pκq

Hybrid3. In this hybrid, we ensure that honest parties do not raise or accept
complaints against other honest parties. We additionally assert that shares from
honest parties correctly reconstruct. This is formalized in Figure 19.

First, since honest contributions failing verification are rejected in round 1,
honest shares received in round 2 will always pass verification and honest parties
won’t complain about other honest parties.

As for complaints coming from corrupted parties, recall that the contributions
sent by honest parties always pass verification by construction of the protocol.
So the only way a corrupted complaint may be accepted is if they provide an
incorrect key in their complaint. But then it means that they forged a signature
of ti, j,KiÑju for some i P honest. This reduces the advantage by at most |honest|¨

AdvUF-CMA
pκq.

The check honest Ă Lvalidrsids finally automatically passes as honest parties
correctly send contributions in round 1 and round 2, and as we ensured no
complaints against them are accepted.

Hence, there exists and adversary B1 against the UF-CMA security of SIG
such that

|Adv
Hybrid3
A pκq ´ Adv

Hybrid2
A pκq| ď N ¨ AdvUF-CMA

B1
pκq

Hybrid4. This hybrid removes the restart in round 1 in case verification fails,
and asserts that honest shares are consistent. It also asserts that accepted shares
coming from corrupted parties reconstruct to valid secrets. This is formalized in
Figure 20.

By the correctness of the V3S, during each signing session, restart in round
1 will happen with probability bounded by |honest| ¨ p1 ´ Pr rV3S correctnesssq.
The VSSS correctness also ensures that honest shares correctly reconstruct.

As for the shares coming from corrupted parties, this directly reduces to the
soundness of the V3S. If the new assertion fails, it gives us an invalid sharing
that passes verification over the set of honest parties honest which has a cardinal
larger than T .

Thus, for an adversary B2 against the V3S-sound security of V3S, we have

|Adv
Hybrid4
A pκq´Adv

Hybrid3
A pκq| ď NQs ¨p1´Pr rV3S correctnesssq`AdvV3S-soundB2

pκq

45

Conclusion. We are then able to conclude on the robustness of all opened signing
sessions.

At the end of round 3, honest parties agree on the same set valid, and only
use contributions that correctly reconstruct to perturbations ppjqj P valid. In
particular, the shares pJpKiqiPhonest correctly reconstruct to p “

ř

jPvalid pj .

In round 4, parties will thus receive at least |honest| correct shares of w “

A ¨ p, and as we assumed N ě 3T , V3S.RobustReconstruct will recover its value
correctly.

Honest parties will also correctly compute shares of z “ c1¨s`p2. Same as pre-
viously, as N ě 3T , the value of z will be correctly recovered in Pelican.Combine.

Since we assumed that over the distribution of keys, and honest perturba-
tions, we have }pz1, z2, c1q} ď B2 with overwhelming probability p when there
are at most T ´ 1 corrupted perturbations all in the set V , we conclude that
a valid signature will be produced with probability at least p in each signing
session.

Finally, we conclude with the probability that all signing sessions succeed,

Adv
Hybrid4
A pκq ď Qs ¨ p1 ´ pq

[\

B.2 Unforgeability

Proof (of Theorem 7). As in our proof of robustness, we wish to prove a more
general variant of unforgeability for our scheme. Namely, we allow the adversary
to bias keys by generating them with LeakyKeygenUF from Fig. 15. This result
will be leveraged for the unforgeability proof of Pelican used with our DKG in
Appendix C.2.

Lemma 6. Define σ1
p as 1

σ12
p

“ 2
´

1
σ2
p

` B
σ2
y

¯

, with B such that s1pRJRq ď B

with overwhelming probability and σ1
p ě

?
2ηεpZ2nq.

Pelican instanciated with pSetup, LeakyKeygenUFq as defined in Figures 14 and
15 is Leak-TH-UF secure in the random oracle model.

Formally, let A be an adversary against the Leak-TH-UF security game from
Figure 22 starting at most Qs signing sessions, making at most QH random
oracles queries, and Qa queries to the random oracle Ha.

Then there exists adversaries B1 against the UF-CMA security of SIG, B2

against the IND-CPA security of SKE, B3 against the V3S-sound security of V3S,
B4 against the V3S-fk security of V3S, B5 against Hint-RLWEq,QSign,Dσt ,Dσ1

p
,C1 , B6

against RLWEq,Upr´B2{
?
2n,B2{

?
2nsnq2 , B7 against RSISq,2,2B2

, and running time

TBi
« TA for i P t1, ..., 7u, such that

46

AdvLeak-TH-UFA pκq ďN ¨ AdvUF-CMA
B1

pκq ` N2 ¨ AdvIND-CPA
B2

pκq ` AdvV3S-soundB3
pκq

` Qs ¨ N ¨ AdvV3S-fkB4
pκq ` N ¨ Qs ¨ p1 ´ Pr rV3S correctnesssq

` Qa ¨ AdvHint-RLWE
B5

pκq ` QH ¨ AdvRLWE
B6

pκq ` AdvRSISB7
pκq

`
Qs

22κ
` 4QsN ¨ ε ` Qs ¨ 2´n`2 ` pc

for some pc ď 2´np2 log2p2B2{
?
2nq´log2pqqq.

The proof of Theorem 7 directly derives from Lemma 6. Indeed, we can
recover the behavior of Keygen by taking the leaks in LeakyKeygen equal to 0,
i.e. aux “ pJ0K0q, and sample the salt from t0, 1uκ. Only one query to Ha is
performed and we can thus take Qa “ 1. [\

Proof (of Lemma 6). Let A be an adversary against the unforgeability of the
threshold Pelican signature scheme with leaky keygen. We use a series of hybrid
games where Hybrid1 corresponds to the original unforgeability game defined in
Figure 22. The final hybrid is designed such that a reduction B1 can simulate it
given a RSIS instance, and extract a solution to this problem from a successful
adversary.

Hybrid1. This is the unforgeability security game.

Hybrid2, Hybrid3, and Hybrid4. The hybrid 2, 3, and 4 perform the same changes
as for the robustness game. They ensure respectively that (i) all parties agree
on the same valid set, (ii) no complaint is raised or accepted against honest
parties, and (iii) that accepted contributions are consistent, and that no restart
is performed in round 1. They are formalized in Figures 18, 19, 20.

The advantage loss is for some adversaries B1,B3

|Adv
Hybrid4
A pκq ´ Adv

Hybrid1
A pκq| ďN ¨ AdvUF-CMA

B1
pκq ` AdvV3S-soundB3

pκq

` Qs ¨ N ¨ Pr rV3S correctnesss

Hybrid5. In this hybrid, we replace the plaintexts in round 1 destined to other
honest parties using the SKE with ∅. This is formalized in Figure 23.

Previous hybrids made sure no decryption of ciphertexts between honest par-
ties is performed, and keys KiÑj are never sent to the adversary for i, j P honest.
Hence, this reduces to the IND-CPA security of the underlying SKE scheme.

We can define an adversary B2 against the IND-CPA security of SKE verifying

ˇ

ˇ

ˇ
Adv

Hybrid5
A pκq ´ Adv

Hybrid4
A pκq

ˇ

ˇ

ˇ
ď N2 ¨ AdvIND-CPA

B2
pκq

47

Hybrid6. In this hybrid, we remove the dependency on honest shares of the secret
s and of honest perturbations pi. This is formalized in Figure 24.

Recall that Lagrange interpolation allows us to recover the value in 0 of any
polynomial of degree less than T given T of its images. Specifically, for given
images over the set SYtiu for i P honest, there exist coefficients pλi

kqkPSYtiu such
that for any polynomial P of degree less than T , we have P p0q “

ř

kPSYtiu λ
i
kP pkq.

Due to the correctness of the Fiat Shamir sharing of honest parties, we have
s “

ř

kPSYtiu λ
i
kJsKk and for any i, j P honest, pj “

ř

kPSYtiu λ
i
kJpjKk, or equiva-

lently JsKi “ ps´
ř

kPS λi
kJsKkq ¨ pλi

iq
´1 and JpjKi “ ppj ´

ř

kPS λi
kJpjKkq ¨ pλi

iq
´1.

This is exactly the expression used to replace JsKi and JpjKi in ShareSign3
and ShareSign4, so there is no advantage loss.

Adv
Hybrid6
A pκq “ Adv

Hybrid5
A pκq

Hybrid7. In this hybrid, we replace V3S proofs and shares observed by the at-
tacker using V3S fragmentary knowledge simulators. This is formalized in Fig-
ure 25.

In the previous hybrid, the adversary’s view does no longer depend on JpiKj , πiÑj

for i, j P honest, which implies that it only depends on at most T ´ 1 shares. So
we can simulate proofs and shares observed by the adversary and directly reduce
the indistinguishability of doing so to the advantage of an attacker against the
fragmentary knowledge property of the underlying V3S. Since we want to simu-
late Qs ¨ |honest| ď N transcripts, we lose at most an advantage Qs ¨N ¨AdvV3S-fk.

So, for an adversary B4 efficiently derived from A,
ˇ

ˇ

ˇ
Adv

Hybrid7
A pκq ´ Adv

Hybrid6
A pκq

ˇ

ˇ

ˇ
ď Qs ¨ N ¨ AdvV3S-fkB4

pκq

Hybrid8. In this hybrid, we extract a Gaussian of standard deviation
a

|honest|σ1
p

from the simulated secrets. This is formalized in Figure 26.
Recall that σ1

p is defined such that:

1

σ12
p

“ 2

ˆ

1

σ2
p

`
B

σy

2˙

with B s.t. Pr
“

s1pRJRq ă B
‰

with overwhelming probability. We additionally
assume σ1

p ě 2ηεpZ2nq.
We perform this extraction by applying a similar strategy as in the proof of

Theorem 1. We proceed in two steps:

– We first extract Gaussians of standard deviation σ1
p from each Gaussian

DZ2n,c1,
?
Σ0

produced by SimSecret. This incurs a statistical difference 2ε for
each replacement: 2Qs|honest|ε in total.

– The second step consists in joining all the DZ2n,0,σ1
p
together. Again this

incurs an advantage loss of at most 2ε for each replacement.

Hence,
ˇ

ˇ

ˇ
Adv

Hybrid8
A pκq ´ Adv

Hybrid7
A pκq

ˇ

ˇ

ˇ
ď 4QsN ¨ ε

48

Hybrid9. In this hybrid, we program the honest responses zi in ShareSign3. This
is formalized in Figure 27.

Our changes start by computing the shares JwKi for i P honest, and recon-
struct w the corresponding value. This will always succeed as Hybrid4 ensured
that all shares for perturbations from the valid set are consistent.

The second step consists in programming the random oracle Hsalt on w. We
note that w is of the form A ¨ HonestPrsids ` Z, where Z is independent of the
honest perturbation. For considered parameters, A ¨ phonest has min-entropy at
least n´1 with overwhelming probability 1´2´n`1 and under that condition pro-
gramming fails with probability at most 2´n`1. We refer to [PKM`24][Lemma
B.4] for a detailed proof of this min-entropy bound. As we do at most Qs signing
session, we can bound the probability of programming failure by Qs ¨ 2´n`2.

Programming of Hu on salt fails with probability at most Qs

22κ .
Finally, this hybrid reexpresses equivalently the JwKi and JzKi as functions of

hhonest :“ c1 ¨ s ` HonestPrsids and whonest :“ A ¨ HonestPrsids.
Summing up everything,

ˇ

ˇ

ˇ
Adv

Hybrid9
A pκq ´ Adv

Hybrid8
A pκq

ˇ

ˇ

ˇ
ď Qs ¨ 2´n`2 `

Qs

22κ

Hybrid10. In this hybrid, we start with the computation of hhonest, and derive
other variables from it to preserve the same distribution of the adversary’s view.
This is formalized in Figure 28.

In Hybrid9, we had u :“ A ¨

¨

˝

„

z
c1

ȷ

`

»

–

c2
0
0

fi

fl

˛

‚ with z “ c1 ¨ s ` p and p re-

constructed from the shares pJ
ř

jPvalid pKiqiPhonest. And pc1, c2q “ Decomposeβpcq
where c “ u ´ w.

We observe that c is uniformly sampled in R when u is uniform. We can thus
exchange computations:

1. We first sample c
$

Ð R.
2. We compute hhonest “ c1 ¨s`HonestPrsids, and whonest as a function of hhonest

and b.
3. z can also be computed equivalently as it is a function of c1 and hhonest.
4. Finally, to preserve the adversary’s view distribution, we simply need to

compute u with the expression given above, as a function of c1, c2, z.

Finally,

Adv
Hybrid10
A pκq “ Adv

Hybrid9
A pκq

Conclude. The rest of the proof is analogous to the proof of unmasked Plover
[EEN`24, section 3.2] and we just briefly describe it here.

Specifically, our proof concludes in a few more steps:

49

1. We replace b by a random value, which reduces to Hint-MLWE. There is
however a difference here as we allow the adversary to adversarially choose
a seed for generating a. We need an instance of Hint-MLWE for each call to
Ha which makes us a lose a factor in the advantage.
The total advantage loss of this step is:

Qa ¨ AdvHint-MLWE
pκq

where Qa is the number of queries allowed to Ha.

2. Next step, we replace the random oracle Hu by a sample A ¨ z with z
$

Ð

t0u ˆ pr´B2{
?
2n,B2{

?
2nsnq2. This loses an advantage QH ¨ AdvRLWE

pκq.
3. After that, we reduce to RSIS with bound 2B2 up to an advantage pc ď

2´np2 log2p2B2{
?
2nq´log2pqqq.

This concludes our proof.
[\

C Security proof of Pelican with DKG

In this section, we prove that Pelican remains robust and unforgeable when used
in combination with our DKG.

C.1 Robustness

Proof (of Theorem 4). As the robustness proof of Pelican with DKG uses hybrids
very similar to the ones introduced to prove the robustness of Pelican, we only
give a quick overview of the proof here and refer to other sections for detailed
hybrids.

We proceed with a series of hybrids starting from the game GameDKG-TH-RB

from Figure 29.

Hybrid2. The second hybrid asserts that all parties agree on the same valid set
at the end of round 3 of key generation. We refer to 18 for how it is formalized
for the robustness of Pelican.

Due to the use of a broadcast channel, all honest parties observe the same
messages in round 2 and round 3, and will simultaneously accept or reject com-
plaints.

Hence,

AdvDKG-TH-RB
A pκq “ Adv

Hybrid2
A pκq

Hybrid3. In this hybrid, we assert that honest parties do not raise or accept
complaints against other honest parties in the key generation.

Since honest contributions failing verification are rejected in both key gener-
ation and signature rounds, no honest party will complain about another.

As for complaints coming from corrupted parties, recall that the contributions
sent by honest parties always pass verification by construction of the protocol.

50

So the only way a corrupted complaint may be accepted is if they provide an
incorrect key in their complaint in order to alter decryption. But then it means
that they forged a signature of ti, j,KiÑju for some i P honest. This reduces the

advantage by at most |honest| ¨ AdvUF-CMA
pκq:

ˇ

ˇ

ˇ
Adv

Hybrid3
A pκq ´ Adv

Hybrid2
A pκq

ˇ

ˇ

ˇ
ď N ¨ AdvUF-CMA

B1
pκq

Hybrid4. This hybrid removes the restart in round 1 of key generation in case
verification fails, and asserts that honest shares are consistent. It also asserts
that accepted shares coming from corrupted parties reconstruct to valid secrets.
We refer to Figure 20 for an analogous formalization for the robustness of the
threshold signature.

By the correctness of the V3S, restart in round 1 will happen with probabil-
ity bounded by |honest| ¨ p1 ´ Pr rV3S correctnesssq. The VSSS correctness also
ensures that honest shares correctly reconstruct.

As for the shares coming from corrupted parties, this directly reduces to the
soundness of the V3S. If the new assertion fails, it gives us an invalid sharing
that passes verification over the set of honest parties honest which has a cardinal
larger than T .

Thus,

|Adv
Hybrid4
A pκq ´ Adv

Hybrid3
A pκq| ď N ¨ p1 ´ Pr rV3S correctnesssq ` AdvV3S-soundB2

pκq

Conclusion. We observe at this stage that the key generation necessarily com-
pletes with the assertion added, and provides all honest parties with consistent
shares of some secret p “

ř

iPvalid pi, where (i) at most T ´ 1 pi are adversari-
ally chosen and of norm bounded by B, and (ii) the others are sampled from a
Gaussian of standard deviation σsk.

The view of the adversary is then the same as in the game Leak-TH-RB, and
we can derive an adversary B3 playing the Leak-TH-RB game from A. B3 first
runs Auntil key generation completes, and calls LeakyKeygenRB with the secret
produced. Then it normally executes the adversary A.

Note that the distribution of keys K produced by LeakyKeygenRB with input
generated by B3 is such that }pz1, z2, c1q} ď B2 with overwhelming probability
p by assumption of 4, and we can correctly apply 5. [\

C.2 Unforgeability

Proof (of Theorem 5). We start with the GameDKG-TH-UF from Figure 30, and
go through a series of hybrids to reduce the advantage of an adversary A to its
advantage against the unforgeability of Pelican with leaky keygen.

For readability, in each hybrid, we omit unmodified functions and directly
rewrite the algorithms Keygen.ShareKeygeni instead of their associated oracles.

51

Hybrid2. In this hybrid, we ensure that no complaint against an honest party is
accepted by another honest party. This is formalized in Figure 31.

The only case an honest party will complain against another honest party
is if the VSSS verification wrongly fails. However, this happens with negligible
probability due to the VSSS correctness. This introduces a loss of advantage
|honest| ¨ Pr rVSSS correctnesss.

As for the possibility that a complaint against an honest party is accepted,
there are two possibilities:

– VSSS verification actually fails on some corrupted share. But this is also
bounded by the correctness of the VSSS.

– The adversary is able to forge a signature allowing it to complain against an
honest party with an invalid pairwise key. This introduces an advantage loss
of at most |honest| ¨ AdvUF-CMA

B1
pκq.

Overall,
ˇ

ˇ

ˇ
Adv

GameDKG-TH-UF

A pκq ´ Adv
Hybrid1
A pκq

ˇ

ˇ

ˇ
ď N ¨pPr rVSSS correctnesss`AdvUF-CMA

B1
pκqq

Hybrid3. In this hybrid, we replace the plaintexts in round 1 destined to other
honest parties using the SKE with ∅. This is formalized in Figure 32.

As the previous hybrid made sure ski,j is not used in any other place for
i, j P honest, this reduces to the IND-CPA security of the underlying SKE scheme.

ˇ

ˇ

ˇ
Adv

Hybrid2
A pκq ´ Adv

Hybrid3
A pκq

ˇ

ˇ

ˇ
ď N2 ¨ AdvIND-CPA

B2
pκq

for some efficient adversary B2 against the IND-CPA security of SKE.

Hybrid4. In this hybrid, we remove the dependency on honest shares over honest
secrets. This is formalized in Figure 33.

Recall that Lagrange interpolation allows us to recover the value in 0 of any
polynomial of degree less than T given T of its images. Specifically, for given
images over the S Y tiu for i P honest, there exists coefficients pλi

kqkPSYtiu such
that for any polynomial P , we have P p0q “

ř

kPSYtiu λ
i
kP pkq.

Due to the correctness of the Fiat Shamir sharing of honest parties, we
have for any i, j P honest sj “

ř

kPSYtiu λ
i
kJsjKk, or equivalently JsjKi “ psj ´

ř

kPS λi
kJsjKkq ¨ pλi

iq
´1.

This is exactly the expression used to replace JsjKi in ShareKeygen3, so there
is no advantage loss.

Adv
Hybrid3
A pκq “ Adv

Hybrid4
A pκq

Hybrid5. In this hybrid, we assert that accepted shares from corrupted parties
correctly reconstruct among honest parties. This is formalized in Figure 34.

This is enforced by the soundness of the V3S:
ˇ

ˇ

ˇ
Adv

Hybrid5
A pκq ´ Adv

Hybrid4
A pκq

ˇ

ˇ

ˇ
ď AdvV3S-soundB3

pκq

52

Hybrid6. In this hybrid, we replace V3S proofs and shares observed by the at-
tacker using V3S fragmentary knowledge simulators. This is formalized in Fig-
ure 35.

This directly relates to the advantage of an attacker against the fragmentary
knowledge property of the underlying V3S. Since we want to simulate |honest| ď

N transcripts, we lose at most an advantage:

ˇ

ˇ

ˇ
Adv

Hybrid6
A pκq ´ Adv

Hybrid5
A pκq

ˇ

ˇ

ˇ
ď N ¨ AdvV3S-fkB4

pκq

Hybrid7. In this hybrid, we extract a Gaussian of standard deviation
a

|honest|σ1
sk

from the simulated secrets. This is formalized in Figure 36.
Recall that σ1

sk is defined such that:

1

σ12
sk

“ 2

ˆ

1

σ2
sk

`
B

σy

2˙

with B s.t. s1pRJRq ă B with overwhelming probability. We additionally as-
sume σ1

sk ě 2ηεpZ2nq.
We perform this extraction by applying a similar strategy as in the proof of

Theorem 1. We proceed in two steps:

– We first extract Gaussians of standard deviation σ1
sk from each Gaussian

DZ2n,c1,
?
Σ0

. This incurs a statistical difference 2ε for each replacement:
2|honest|ε in total.

– The second step consists in joining all the DZ2n,0,σ1
sk

together. Again this
incurs an advantage loss of at most 2ε for each replacement.

Hence,

ˇ

ˇ

ˇ
Adv

Hybrid7
A pκq ´ Adv

Hybrid6
A

ˇ

ˇ

ˇ
ď 4N ¨ ε

Reduction to the unforgeability of leaky Pelican. We can then reduce the advan-
tage of an adversary against Hybrid7 to the unforgeability of leaky Pelican. In-
deed, we can simulate the view of an adversary in Hybrid6 by calling LeakyKeygenUF
in round 3 as a replacement for the sampling of shonest.

In Hybrid7, we can equivalently express secret shares as:

JsKi “ X ¨ pλi
iq `

˜

ÿ

jPvalidXcorrupt

JsjKi ` pY ´
ÿ

jPhonest^kPS

λi
kJsjKkq ¨ pλi

iq

¸

l jh n

:“Js1Ki

for X “ DZ2n,
?

|honest|σ1
sk

.

Thus each honest share is shifted by Js1Ki. We call LeakyKeygenUF with
aux “ pJs1KiqiPhonest. Note that thanks to the assertion on the reconstructability
of accepted corrupted shares, pJs1KiqiPhonest also correctly reconstructs, and the
assertion in LeakyKeygenUF is fulfilled. [\

53

C.3 A note on the distributed generation of the salt

Although there are several similarities between the distributed key generation
(Fig. 5) and distributed signing (Figs. 6 and 7) protocols, they use different
methods for generating the salt (signing salt in ShareSign1,2,3,4, and salt for
generating a in ShareKeygen1,2,3). A natural question is why distinct methods
are used in both cases.

The method used in ShareKeygen1,2,3,4 for generating the salt consists of
having each party generate a salt, and of computing the final salt by hashing
the individual salts of valid signers. In this setting, this adds a factor QH to the
Hint-RLWE advantage, which we deem acceptable as allowing the adversary to
bias a does not reduce security in practice, and distributed key generation would
typically be short-lived and only permit a limited number of hash generations.
However, using the same method in ShareSign1,2,3,4 would require programming
the random oracle on salts corresponding to signatures, which would result in a
Hint-RLWE with QH hints. This would result in an unacceptable degradation of
the parameters.

Conversely, in ShareSign1,2,3 the salt is generated by using the randomness
inside the commitment w. Transposing this method to the key generation would
entail an additional round, which is undesirable.

D Proof of MatrixHint-MLWE

Proof (of Lemma 1).
The proof is analogous to the proof of [KLSS23a, Lemma 7], the main differ-

ences being that: (i) we directly consider the full vector r instead of one of its
coordinates, and (ii) we replace polynomials with matrices.

We compute the probability of sampling a value s “ v with the first distri-
bution conditioned on the values of the zi:

Pr
”

s “ v ^ Mi ¨ s ` yi “ wi | s Ð DZnpk`ℓq,σ1
,yi Ð DZnpk`ℓq,σy,i

ı

“DZnpk`ℓq,σ1
pvq ¨

ź

iPrQs

DZnpk`ℓq,σy,i
pwi ´ Mi ¨ vq

9 exp

»

–´
1

2
¨

¨

˝

1

σ2
1

vJv `
ÿ

iPrQs

1

σ2
y,i

pwi ´ Mi ¨ vqJpwi ´ Mi ¨ vq

˛

‚

fi

fl

“ exp

»

–´
1

2
¨

¨

˝pv ´ cqJΣ´1
0 pv ´ cq ´ cJΣ´1

0 c `
ÿ

iPrQs

1

σ2
y,i

wJ
i wi

˛

‚

fi

fl

where c “ Σ0 ¨
ř

iPrQs
1

σ2
y,i

MJ
i wi.

We deduce that the conditional probability Pr rs “ v | Mi ¨ s ` yi “ wis is
proportional to exp

“

´ 1
2 ¨ pv ´ cqJΣ´1

0 pv ´ cq
‰

9ρ?
Σ0

pv´cq for anyw0, ...,wm´1 P

R. So the two distributions are identical. [\

54

Proof (of Theorem 2).
The proof of this theorem is analogous to the proof of [KLSS23b, Theorem

1].
Let us take A,b an MLWE sample for parameters k, ℓ, q, σ.
We start by sampling s Ð DZnpk`ℓq,

?
Σ1,cs

,y Ð DZnpk`ℓq,
?

Σy,i,ci
.

We then compute for i P rQs, zi “ Mi ¨ s ` yi, as well as:

– Σ0 “ pΣ´1
1 `

ř

iPrQs M
J
i Σ

´1
y,iMiq

´1.

– ci “ Σ0 ¨
ř

iPrQs M
J
i Σ

´1
y,izi.

.
The smallest eigenvalue λ of Σ0 is equal to the inverse of the largest eigen-

value of Σ´1
1 `

ř

iPrQs M
J
i Σ

´1
y,iMi. And we can bound it with the spectral norm:

λ ě s1pΣ´1
1 `

ÿ

iPrQs

MJ
i Σ

´1
y,iMiq

´1

ě

¨

˝s1pΣ´1
1 q `

ÿ

iPrQs

s1pMJ
i Miq ¨ s1pΣ´1

y,iq

˛

‚

´1

“ 2σ2

In particular, Σ0 ´ σ2I is positive semi-definite, and the matrix
?
Σ0 ´ σ2I is

well defined.
After that, we sample t Ð DZnpk`ℓq,ci,

?
Σ0´σ2I.

We use those polynomials to transform theMLWE sample into anMatrixHint-MLWE
sample as pA,b `

“

I A
‰

¨ t, c0, ..., cQ´1, z0, ..., zQ´1q.
Let us show that is has correct distribution.

– First, if b is uniformly sampled, then so is b`
“

I A
‰

t as t is independent of
b. The distribution of the ci, zi is correct by construction.

– Now consider that b “
“

I A
‰

s1, with s1 Ð DZnpk`ℓq,σ.
Then, conditioned on the values of the Mi, zi, we have that s1 ` t follows
the distribution DZnpk`ℓq,σ ` DZnpk`ℓq,c,

?
Σ0´σ2I.

Same as in [KLSS23b], this distribution is at statistical distance at most 2ε
of ŝ Ð DZnpk`ℓq,c,

?
Σ0

. We can thus replace s1 ` t with ŝ.
We can finally apply Lemma 1 – sligthly generalized, in order to replace
pŝ, c0, ..., cQ´1, z0, ..., zQ´1q with ps, c0, ..., cQ´1, z0, ..., zQ´1q.

[\

E Distribution of submersion matrices R

Proof (of Lemma 3).

– Case 1: s “ s1 and y ‰ y1.
Then, pRs1 ` y1q ´ pRs ` y1q “ py ´ y1q ‰ 0 mod q.
Equality never happens in that case.

55

– Case 2: s ‰ s1. Note i such that si ‰ s1
i.

Then, for each line rj of R, we have

xrj , sy “ xrj , s
1y mod q

ðñ rj,ipsi ´ s1
iq “

ÿ

i1‰i

rj,i1 ps1
i1 ´ si1 q mod q

The term on the left is independent of the term on the right, and since
si ´ s1

i ‰ 0, the above equality happens for at most one of rj,i P t0,˘1u.
Hence, it happens with probability at most 1{2.
Thus the probability that all the coefficients xrj , sy are equal to xrj , s

1y is at
most 2´256.

[\

Proof (of Lemma 4). We want to evaluate s1pRJRq “ s1pRRJq. For j P r256s,
let us note rj the i-th row of Ri.

We haveRRJ “ pxrj , rkyqj,kPr256s. SinceRRJ is symmetric, its largest eigen-
value is also its spectral norm. For any j, k P r256s, we have |xrj , rjy| ď 2n.
Therefore via Gershgorin’s disc theorem, s1pRRJq ď 512 ¨ n.

As noted in the theorem’s statement this analysis is very coarse, and when
fixing n we can perform a more refined average analysis.

One method is to bound
ř

jPr256s^j‰i0
|xri0 , rjy| with overwhelming prob-

ability for any i0. We observe that when ri0 is fixed, the worse case is for
ri0 having no zero coordinate. We can actually prove that the distribution of
ř

jPr256s^j‰i0
|xri0 , rjy| conditioned on the number of zeros k in ri0 only disperses

towards higher value when k increases. It is thus sufficient to overwhelmingly
bound

ř

j‰i0
|x1, rjy|.

The latter is easier to perform as it is a sum of independent variables. For
n “ 2048, a software evaluation of the distribution

ř

j‰i0
|x1, rjy| using the

security scripts for Kyber8 tells us that it is lower than 16000 with probability
at least 1 ´ 2´142. It follows with Gershgorin’s disc theorem that s1pRiR

J
i q ď

16000 ` 2n “ 20096 with overwhelming probability. [\

8 https://github.com/pq-crystals/security-estimates

56

https://github.com/pq-crystals/security-estimates

GameLeak-TH-RB

1: LH , Lsid :“ H
2: vk0, sk0 :“ ∅
3: pN,T, corruptq Ð Appp, 1κq
4: assert{ corrupt Ď t1, ..., Nu ^ T ď N{3 }
5: assert{ |corrupt| ă T }
6: honest :“ t1, ..., Nuzcorrupt
7: ppkSetupi , skSetupi qiPt1,...,Nu Ð Sign.Setupppp, Nq

8: auxÐ AH
pppkSetupi qiPt1,...,Nu, psk

Setup
i qiPcorruptq

▷ aux allows the adversary to bias key generationy
9: pvk, pskiqiPt1,...,Nuq Ð Sign.LeakyKeygenppp, T,N, aux, ppkSetupi , skSetupi qiPt1,...,Nuq

10: for i P honest do
11: statei.sk :“ ski
12: statei.vk :“ vk

13: sid, poutiqiPcorrupt Ð AH,pOPerformRoundip¨qqiPrrndSignspvk, pskiqiPcorruptq

14: Fetch Lsidrsids “ trnd, poutiqiPhonest,msgu
15: if rnd ‰ rndSign then
16: return 0 ▷ The adversary did not finish the protocol

17: status, sig :“ Sign.Combinepvk,msg, poutiqiPt1,...,Nuq

18: if status “ ok^ Sign.Verifypvk, sigq then
19: return 0 ▷ The protocol produced a valid signature

20: return 1

OPerformRound1psid,msgq

1: assert{ sid R Lsid }
2: for i P honest do
3: outi :“ Sign.ShareSign1pstatei, sid,msgq

4: Lsidrsids “ t1, poutiqiPhonest,msgu

OPerformRoundkppiniqiPcorruptq, for k P t2, ..., rndSignu

1: Fetch Lsidrsids “ trnd, piniqiPhonest,msgu
2: assert{ rnd “ k ´ 1 }
3: for i P honest do
4: outi :“ Sign.ShareSignkpstatei, sid, pinqiPt1,...,Nuq

5: Lsidrsids “ tk, poutiqiPhonest,msgu

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 17: Robustness game for a leaky threshold signature. The adversary A wins
if the game Leak-TH-RB returns 1, i.e. if it is able to prevent the protocol from
producing a valid signature.

57

Hybrid2

1: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign3pstatei, sid, contrib2q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 2 }
3: validi :“ validi X tj P contrib2u
4: for j P validi do
5: for k P complaintsj do
6: tKkÑj , sigkÑju :“ complaintsjrks
7: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then
8: continue
9: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

10: if (SKE.Decrypt failed) or V3S.VerifypJpkKj , πk, πkÑjq “ false then
11: validi “ validiztku

12: if sid R Lvalid then

13: Lvalidrsids “ validi

14: assert{ validi “ Lvalidrsids }
15: JpKi :“

ř

jPvalidi
JpjKi ▷ p “ pp1, p2q

16: statei.sessionrsids :“ t3,msg, pJpjKiqjPvalidi , validi, contrib1u
17: return contrib3ris :“ pJwKi :“ A ¨ JpKiq

Fig. 18: The second hybrid of the security proof of the robustness of Pelican.
Difference with the previous hybrid are highlighted .

58

Hybrid3

1: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign2pstatei, sid, contrib1q

1: Fetch prnd,msgq from statei.sessionrsids
2: assert{ rnd “ 1 }
3: complaintsi :“ tu
4: for pj P contrib1 Xcorrupt q do

5: πj , pctjÑkqkPt1,...,Nu :“ contrib1rjs
6: JpjKi, πjÑi :“ SKE.DecryptpKjÑi, ctjÑiq

7: if (SKE.Decrypt failed) or pV3S.VerifypJpjKi, πj , πjÑiq “ falseq then
8: complaintsirjs “ tKjÑi, sigjÑiu

9: validi “ tj P contrib1uzcomplaintsi
10: statei.sessionrsids :“ trnd “ 2,msg, pJpjKiqjPvalidi , validi, contrib1u
11: return contrib2ris :“ complaintsi
ShareSign3pstatei, sid, contrib2q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 2 }
3: validi :“ validi X tj P contrib2u
4: for j P t1, ..., Nu do
5: for k P complaintsj do
6: if k P honest then
7: continue

8: tKkÑj , sigkÑju :“ complaintsjrks
9: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then

10: continue
11: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

12: if (SKE.Decrypt failed) or V3S.VerifypJpkKj , πk, πkÑjq “ false then
13: validi “ validiztku

14: if sid R Lvalid then
15: Lvalidrsids “ validi

16: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
17: JpKi :“

ř

jPvalidi
JpjKi ▷ p “ pp1, p2q

18: statei.sessionrsids :“ t3,msg, pJpjKiqjPvalidi , validi, contrib1u
19: return contrib3ris :“ pJwKi :“ A ¨ JpKiq

Fig. 19: The third hybrid of the security proof of the robustness of Pelican. Dif-
ference with the previous hybrid are highlighted .

59

Hybrid4

1: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign1pstatei, sid, contrib2q

ŻŻŻ Remove restart in case verification fails ŽŽŽ

ShareSign3pstatei, sid, contrib2q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 2 }
3: validi :“ validi X tj P contrib2u
4: for j P t1, ..., Nu do
5: for k P complaintsj do
6: if k P honest then
7: continue
8: tKkÑj , sigkÑju :“ complaintsjrks
9: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then

10: continue
11: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

12: if (SKE.Decrypt failed) or V3S.VerifypJpkKj , πk, πkÑjq “ false then
13: validi “ validiztku

14: if sid R Lvalid then
15: Lvalidrsids “ validi

16: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
17: for j P validi do
18: if j P corrupt then

19: assert{ V3S.ReconstructppJpjKkqkPhonestq P V }
20: else
21: assert{ V3S.ReconstructppJpjKkqkPhonestq ‰ K }

22: JpKi :“
ř

jPvalidi
JpjKi ▷ p “ pp1, p2q

23: statei.sessionrsids :“ t3,msg, pJpjKiqjPvalidi , validi, contrib1u
24: return contrib3ris :“ pJwKi :“ A ¨ JpKiq

Fig. 20: The fourth hybrid of the security proof of the robustness of Pelican.
Difference with the previous hybrid are highlighted .

60

GameTH-UF

1: LH , Lsid, Lsig :“ H
2: pN,T, corruptq Ð Appp, 1κq
3: assert{ corrupt Ď t1, ..., Nu ^ T ď N{3 }
4: assert{ |corrupt| ă T }
5: honest :“ t1, ..., Nuzcorrupt
6: pvk, pskiqiPt1,...,Nuq Ð Sign.Keygenppp, T,Nq
7: for i P honest do
8: statei.sk :“ ski
9: statei.vk :“ vk

10: pmsg, sigq Ð AH,pOPerformRoundip¨qqiPrrndSignspvk, pskiqiPcorruptq

11: if pmsg P Lsigq or ␣Sign.Verifypvk,msg, sigq then
12: return 0
13: return 1

OPerformRound1psid,msgq

1: assert{ sid R Lsid }
2: for i P honest do
3: outi :“ Sign.ShareSign1pstatei, sid,msgq

4: Lsig :“ Lsig Y tmsgu
5: Lsidrsids “ t1, poutiqiPhonest,msgu

OPerformRoundkppiniqiPcorruptq, for k P t2, ..., rndSignu

1: Fetch Lsidrsids “ trnd, piniqiPhonest,msgu
2: assert{ rnd “ k ´ 1 }
3: for i P honest do
4: outi :“ Sign.ShareSignkpstatei, sid, pinqiPt1,...,Nuq

5: Lsidrsids “ tk, poutiqiPhonest,msgu

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 21: Unforgeability game for a threshold signature. The adversary A wins if
the game TH-UF returns 1, i.e. if it forged a new signature.

61

GameLeak-TH-UF

1: LH , Lsid, Lsig :“ H
2: pN,T, corruptq Ð Appp, 1κq
3: assert{ corrupt Ď t1, ..., Nu ^ T ď N{3 }
4: assert{ |corrupt| ă T }
5: honest :“ t1, ..., Nuzcorrupt
6: ppkSetupi , skSetupi qiPt1,...,Nu Ð Sign.Setupppp, Nq

7: auxÐ AH
pppkSetupi qiPt1,...,Nu, psk

Setup
i qiPcorruptq

▷ aux allows the adversary to bias key generation
8: pvk, pskiqiPt1,...,Nuq Ð Sign.LeakyKeygenppp, T,N, aux, ppkSetupi , skSetupi qiPt1,...,Nuq

9: for i P honest do
10: statei.sk :“ ski
11: statei.vk :“ vk

12: pmsg, sigq Ð AH,pOPerformRoundip¨qqiPrrndSignspvk, pskiqiPcorruptq

13: if pmsg P Lsigq or ␣Sign.Verifypvk,msg, sigq then
14: return 0
15: return 1

OPerformRound1psid,msgq

1: assert{ sid R Lsid }
2: for i P honest do
3: outi :“ Sign.ShareSign1pstatei, sid, ,msgq

4: Lsig :“ Lsig Y tmsgu
5: Lsidrsids “ t1, poutiqiPhonest,msgu

OPerformRoundkppiniqiPcorruptq, for k P t2, ..., rndSignu

1: Fetch Lsidrsids “ trnd, piniqiPhonest,msgu
2: assert{ rnd “ k ´ 1 }
3: for i P honest do
4: outi :“ Sign.ShareSignkpstatei, sid, pinqiPt1,...,Nuq

5: Lsidrsids “ tk, poutiqiPhonest,msgu

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 22: Unforgeability game for a threshold signature with leaky keygen. The
adversary A wins if the game Leak-TH-UF returns 1, i.e. if it forged a new
signature.

62

Hybrid5

1: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign1pstatei, sid, act,msgq

1: pi Ð D2
p

2: JpiK, πi, pπiÑjqjPt1,...,Nu Ð V3S.SharepN,T,piq

3: if Dj s.t. V3S.VerifypJpjKi, πj , πjÑiq “ false then
4: restart
5: for j P t1, ..., Nu do
6: if j P honest then
7: ptj :“ ∅
8: else
9: ptj :“ pJpiKj , πiÑjq

10: ctiÑj Ð SKE.EncryptpKiÑj , ptjq

11: statei.sessionrsids :“ trnd “ 1,msg, JpiKi,∅,∅u
12: return contrib1ris :“ pπi, pctiÑjqjPt1,...,Nuq

ShareSign3pstatei, sid, contrib2q

ŻŻŻ Store honest shares in round 1 and recover them in round 3 ŽŽŽ

Fig. 23: The fifth hybrid of the security proof of the unforgeability of Pelican.
Difference with the previous hybrid are highlighted .

63

Hybrid6

1: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign1pstatei, sid, act,msgq

1: Fix a set S of cardinal T ´ 1 s.t. corrupt Ă S for the session

2: pi Ð D2
p

3: JpiK, πi, pπiÑjqjPt1,...,Nu Ð V3S.SharepN,T,piq

4: if Dj s.t. V3S.VerifypJpjKi, πj , πjÑiq “ false then
5: restart
6: for j P t1, ..., Nu do
7: if j P honest then
8: ptj :“ ∅
9: else

10: ptj :“ pJpiKj , πiÑjq

11: ctiÑj Ð SKE.EncryptpKiÑj , ptjq

12: statei.sessionrsids :“ trnd “ 1,msg, JpiKi,∅,∅u
13: return contrib1ris :“ pπi, pctiÑjqjPt1,...,Nuq

ShareSign3pstatei, sid, contrib2q

ŻŻŻ Other lines are identical ŽŽŽ

1: if sid R Lvalid then
2: Lvalidrsids “ validi

3: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
4: for j P validi do
5: if j P corrupt then
6: assert{ V3S.ReconstructppJpjKkqkPhonestq P V }
7: else
8: assert{ V3S.ReconstructppJpjKkqkPhonestq ‰ K }
9: JpKi :“

ř

jPvalidi
JpjKi ▷ p “ pp1, p2q

10: statei.sessionrsids :“ t3,msg, pJpjKiqjPvalidi , validi, contrib1u
11: JwKi :“ A ¨

ř

jPvalidXcorruptJpjKi

12: JwKi “ JwKi `A ¨
ř

jPhonestppj ´
ř

kPS λi
kJpjKkq ¨ pλi

iq
´1

13: return contrib3ris :“ pJwKiq
ShareSign4pstatei, sid, contrib3q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 3 }
3: Parse contrib3 “ pvalidj , JwKjqjPact

4: w :“ V3S.RobustReconstructppJwKjqjPvalidiq ▷ w “ A ¨ p, where
p “

ř

jPvalidi
pj

5: salt :“ Hsaltpwq
6: u :“ Hupvk, salt,msgq
7: c :“ u´ w
8: pc1, c2q :“ Decomposeβpcq
9: JzKi :“

ř

jPvalidiXcorruptJpj,2Ki

10: JzKi “ JzKi ` c1 ¨ ps´
ř

kPS λi
kJsKk ¨ pλi

iq
´1
q

11: JzKi “ JzKi `
ř

jPhonestppj,2 ´
ř

kPS λi
kJpj,2Kkq ¨ pλi

iq
´1

▷ Recall s “ ps, eq and pj “ ppj,1, pj,2q
12: statei.sessionrsids :“ ∅
13: return contrib4ris “ psalt, JzKi, c1q

Fig. 24: The sitxh hybrid of the security proof of the unforgeability of Pelican.
Difference with the previous hybrid are highlighted .

64

Hybrid7

1: HonestPr¨s :“ H

2: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign1pstatei, sid, act,msgq

1: Fix a set S of cardinal T ´ 1 s.t. corrupt Ă S for the session

2: pJpiKjPSq, πi, pπiÑjqjPS Ð SimProofpSq

3: for j P t1, ..., Nu do
4: if j P honest then
5: ptj :“ ∅
6: else
7: ptj :“ pJpiKj , πiÑjq

8: ctiÑj Ð SKE.EncryptpKiÑj , ptjq

9: statei.sessionrsids :“ trnd “ 1,msg, JpiKi,∅,∅u
10: return contrib1ris :“ pπi, pctiÑjqjPt1,...,Nuq

ShareSign3pstatei, sid, contrib2q

ŻŻŻ Other lines are identical ŽŽŽ

1: if sid R Lvalid then
2: Lvalidrsids “ validi

3: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
4: for j P validi do
5: if j P corrupt then
6: assert{ V3S.ReconstructppJpjKkqkPhonestq P V }
7: else
8: assert{ V3S.ReconstructppJpjKkqkPhonestq ‰ K }
9: if HonestPrsids “ K then

10: HonestPrsids Ð
ř

jPhonest SimSecretpπj , pπjÑkqkPSq

11: JwKi :“ A ¨
ř

jPvalidXcorruptJpjKi

12: JwKi “ JwKi `A ¨
´

HonestPrsids ´
ř

jPhonest

ř

kPS λi
kJpjKk

¯

¨ pλi
iq

´1

13: return contrib3ris :“ pJwKiq
ShareSign4pstatei, sid, contrib3q

ŻŻŻ Replace occurence of
ř

jPhonest pj with HonestPrsids ŽŽŽ

Fig. 25: The seventh hybrid of the security proof of the unforgeability of Pelican.
Difference with the previous hybrid are highlighted .

65

Hybrid8

1: HonestPr¨s :“ H
2: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign3pstatei, sid, contrib2q

1: Fetch prnd,msg, pJpjKiqjPvalidi , validi, contrib1q from statei.sessionrsids
2: assert{ rnd “ 2 }
3: validi :“ validi X tj P contrib2u
4: for j P validi do
5: for k P complaintsj do
6: if k P honest then
7: continue
8: tKkÑj , sigkÑju :“ complaintsjrks
9: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then

10: continue
11: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

12: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
13: validi “ validiztku

14: if sid R Lvalid then
15: Lvalidrsids “ validi

16: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
17: for j P validi do
18: if j P corrupt then
19: assert{ V3S.ReconstructppJpjKkqkPhonestq P V }
20: else
21: assert{ V3S.ReconstructppJpjKkqkPhonestq ‰ K }
22: if HonestPrsids “ K then

23: HonestPrsids Ð DZ2n,
?

|honest|σ1
p
` Y

▷ Where Y is a random variable independent of the Gaussian

24: JwKi :“ A ¨
ř

jPvalidXcorruptJpjKi

25: JwKi “ JwKi `A ¨
´

HonestPrsids ´
ř

jPhonest

ř

kPS λi
kJpjKk

¯

¨ pλi
iq

´1

26: return contrib3ris :“ pJwKiq

Fig. 26: The eigth hybrid of the security proof of the unforgeability of Pelican.
Difference with the previous hybrid are highlighted .

66

Hybrid9

1: HonestPr¨s,Programmedr¨s :“ H

2: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign3pstatei, sid, contrib2q

ŻŻŻ Other lines are identical ŽŽŽ

1: if sid R Lvalid then
2: Lvalidrsids “ validi

3: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
4: for j P validi do
5: if j P corrupt then
6: assert{ V3S.ReconstructppJpjKkqkPhonestq P V }
7: else
8: assert{ V3S.ReconstructppJpjKkqkPhonestq ‰ K }
9: if HonestPrsids “ K then

10: HonestPrsids Ð DZ2n,
?

|honest|σ1
p
` Y

11: whonest “ A ¨HonestPrsids

12: for j P honest do
13: JwKj :“ A ¨

ř

jPvalidXcorruptJpjKi
14: JwKj “ JwKj `

`

whonest ´A ¨
ř

lPhonest

ř

kPS λi
kJpjKk

˘

¨ pλj
jq

´1

15: w :“ V3S.ReconstructppJwKiqiPhonestq

16: salt
$
Ð t0, 1u2κ

17: u
$
Ð R

18: c :“ u´ w
19: pc1, c2q :“ Decomposeβpcq

20: hhonest “ c1 ¨ s`HonestPrsids

21: JzKi :“
ř

jPvalidXcorruptJpj,2Ki
22: JzKi “ JzKi`hhonest,1 ¨pλ

i
iq

´1
`

ř

jPhonestp
ř

kPS λi
kpc1 ¨JsKk`Jpj,2Kkqq¨pλi

iq
´1

23: Programmedrsids :“ pJwKi, JzKiqiPhonest

24: Hsaltpwq :“ salt; Hupvk, salt,msgq “ u ▷ Program random oracle

25: return contrib3ris :“ pvalidi,Programmedrsidsr0siq

ShareSign4pstatei, sid, contrib3q

ŻŻŻ Return JzKi as programmed in Programmedrsids ŽŽŽ

Fig. 27: The nineth hybrid of the security proof of the unforgeability of Pelican.
Difference with the previous hybrid are highlighted . In case the random ora-
cle has previously been queried on programmed values, we consider that the
adversary wins.

67

Hybrid10

1: HonestPr¨s,Programmedr¨s :“ H
2: Lsig, LH , Lvalid :“ H

ŻŻŻ Other lines are identical ŽŽŽ

ShareSign3pstatei, sid, contrib2q

ŻŻŻ Other lines are identical ŽŽŽ

1: if sid R Lvalid then
2: Lvalidrsids “ validi

3: assert{ validi “ Lvalidrsids ^ honest Ă Lvalidrsids }
4: for j P validi do
5: if j P corrupt then
6: assert{ V3S.ReconstructppJpjKkqkPhonestq P V }
7: else
8: assert{ V3S.ReconstructppJpjKkqkPhonestq ‰ K }
9: if HonestPrsids “ K then

10: c
$
Ð R

11: pc1, c2q :“ Decomposeβpcq
12: HonestPrsids Ð DZ2n,

?
|honest|σ1

p
` Y

13: hhonest “ c1 ¨ s`HonestPrsids

14: whonest “
“

1 a
‰

¨ hhonest ´ c1 ¨ b´ c1 ¨ β ▷ Recall b “ a ¨ s` e

15: for j P honest do
16: JwKj :“ A ¨

ř

jPvalidXcorruptJpjKi
17: JwKj “ JwKj `

`

whonest ´A ¨
ř

lPhonest

ř

kPS λi
kJpjKk

˘

¨ pλj
jq

´1

18: w :“ V3S.ReconstructppJwKiqiPhonestq

19: salt
$
Ð t0, 1u2κ

20: JzKi :“
ř

jPvalidXcorruptJpjKi
21: JzKi “ JzKi`hhonest ¨ pλ

i
iq

´1
`

ř

jPhonestp
ř

kPS λi
kpc1 ¨ JsKk` JpjKkqq ¨ pλi

iq
´1

22: Programmedrsids :“ pJwKi, JzKiqiPhonest

23: z1 :“

„

V3S.ReconstructppJzKiqiPhonestq

c1

ȷ

`

»

–

c2
0
0

fi

fl

24: u :“ A ¨ z1

25: Hsaltpwq :“ salt; Hupvk, salt,msgq “ u ▷ Program random oracle

26: return contrib3ris :“ pvalid,Programmedrsidsr0siq

Fig. 28: The tenth hybrid of the security proof of the unforgeability of Pelican.
Difference with the previous hybrid are highlighted .

68

GameDKG-TH-RB

1: Lsig, LH , Lsid :“ H
2: LKeygen “ ∅
3: vk0, sk0 :“ ∅
4: pN,T, corruptq Ð Appp, 1κq
5: assert{ corrupt Ď t1, ..., Nu ^ |corrupt| ă T }
6: honest :“ t1, ..., Nuzcorrupt
7: for i P honest do
8: pkini , sk

in
i :“ Setuppq

9: statei.sk :“ skini
10: ppkini qiPcorrupt, stateA Ð AH

pppkini qiPhonestq

11: for i P honest do
12: statei.pk :“ ppkini qiPt1,...,Nu

ŻŻŻ Run first round ŽŽŽ

13: for i P honest do
14: outi :“ Keygen.ShareKeygen1pstateiq

15: LKeygen.rnd “ 1; LKeygen.out “ out
16: poutKeygeni qiPcorrupt, pout

Sign
i qiPcorrupt, pmsg, sigq Ð Aoracles

pstateA, LKeygen.outq
17: if LKeygen.rnd ‰ rndKeygen then
18: return 0 ▷ The adversary must finish key generation

19: status, vk :“ Keygen.CombineKeypcontrib3q
20: if status “ abort then
21: return 1 ▷ The adversary made the DKG fail

22: Fetch Lsidrsids “ trnd, pout
Sign
i qiPhonest,msgu

23: if rnd ‰ rndSign then
24: return 0 ▷ The adversary did not finish the protocol

25: status, sig :“ Sign.Combinepvk,msg, poutSigni qiPt1,...,Nuq

26: if status “ ok^ Sign.Verifypvk, sigq then
27: return 0 ▷ The protocol produced a valid signature

28: return 1

OPerformRoundkppiniqiPcorruptq, for k P t2, ..., rndKeygenu

1: assert{ LKeygen.rnd “ k ´ 1 }
2: for i P honest do
3: outi :“ Keygen.ShareKeygenkpstatei, LKeygen.outq

4: LKeygen.rnd “ k;LKeygen.out “ poutiqiPhonest

5: return poutiqiPhonest

OPerformSignRound1psid,msgq

1: assert{ LKeygen.rnd “ rndKeygen ^ sid R Lsid }
2: for i P honest do
3: outi :“ Sign.ShareSign1pstatei, sid,msgq

4: Lsig :“ Lsig Y tmsgu
5: Lsidrsids “ t1, poutiqiPhonest,msgu
6: return poutiqiPhonest

OPerformSignRoundkppiniqiPcorruptq, for k P t2, ..., rndSignu

1: Fetch Lsidrsids “ trnd, piniqiPhonest,msgu
2: assert{ rnd “ k ´ 1 }
3: for i P honest do
4: outi :“ Sign.ShareSignkpstatei, sid, pinqiPt1,...,Nuq

5: Lsidrsids “ tk, poutiqiPhonest,msgu
6: return poutiqiPhonest

Hpstr, digestq

1: assert{ str P pp.HashParams } ▷ Check domain string
2: if Dr.pstr, digest, rq P LH then
3: return r
4: else
5: Sample r uniformly
6: LH :“ LH Y tpstr, digest, rqu
7: return r

Fig. 29: Robustness game of threshold signature with DKG. The adversary wins
A if GameDKG-TH-RB

A returns 1.

69

GameDKG-TH-UF

1: Lsig, LH , Lsid :“ H
2: LKeygen “ ∅
3: vk0, sk0 :“ ∅
4: pN,T, corruptq Ð Appp, 1κq
5: assert{ corrupt Ď t1, ..., Nu }
6: assert{ |corrupt| ă T }
7: honest :“ t1, ..., Nuzcorrupt
8: for i P honest do
9: pkini , sk

in
i :“ Setuppq

10: statei.sk :“ skini
11: ppkini qiPcorrupt, stateA Ð AH

pppkini qiPhonestq

12: for i P honest do
13: statei.pk :“ ppkini qiPt1,...,Nu

ŻŻŻ Run first round ŽŽŽ

14: for i P honest do
15: outi :“ Keygen.ShareKeygen1pstateiq

16: LKeygen.rnd “ 1; LKeygen.out “ out
17: poutiqiPcorrupt, pmsg, sigq Ð Aoracles

pstateA, LKeygen.outq
18: if LKeygen.rnd ‰ rndKeygen then
19: return 0 ▷ The adversary must finish key generation

20: status, vk :“ Keygen.CombineKeypcontrib3q
21: if status “ abort then ▷ The adversary must return a valid DKG output
22: return 0
23: if pmsg P Lsigq or Sign.Verifypvk,msg, sigq “ 0 then
24: return 0
25: return 1

ŻŻŻ Same oracles pOPerformRoundiq, pOPerformSignRoundiq, H as Fig. 29. ŽŽŽ

Fig. 30: Unforgeability game of threshold signature with DKG. The adversary
wins A if GameDKG-TH-UF

A returns 1.

70

Hybrid2

ŻŻŻ Identical to Hybrid1 ŽŽŽ

ShareKeygen2pstatei, contrib1q

1: assert{ state.rnd “ 1 }; state.rnd “ 2; valid “ tu
2: complaintsi :“ tu

3: for pj P contrib1 X corruptq do

4: salti, πj , pctjÑkqkPt1,...,Nu :“ contrib1rjs
5: JsjKi, πjÑi :“ SKE.DecryptpKjÑi, ctjÑiq

6: if (SKE.Decrypt failed) or pV3S.VerifypJsjKi, πj , πjÑiq “ falseq then
7: complaintsrjs “ tKjÑi, sigjÑiu

8: validi “ tj P contrib1uzcomplaintsi
9: statei.session.valid “ validi

10: statei.session.contrib1 :“ contrib1
11: statei.session.shares :“ pJpjKiqjPvalid

▷ Implicitly retrieve honest shares from round 1
12: return contrib2ris :“ complaintsi
ShareKeygen3pstatei, contrib2q

1: assert{ state.rnd “ 2 }; state.rnd “ 3
2: validi :“ statei.session.validX tj P contrib2u
3: for j P validi do
4: for k P complaintsj do

5: if k P honest then

6: continue ▷ Ignore complaints against honest parties

7: tKkÑj , sigkÑju :“ complaintsjrks
8: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then
9: continue

10: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

11: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
12: validi “ validiztku

13: statei.session.salt :“ HsaltppsaltjqjPvalidiq

14: a :“ Hapstatei.session.saltq
15: JsKi :“

ř

jPvalidi
JsjKi ▷ s “

ř

jPvalid sj

16: JbKi :“
“

a 1
‰

¨ JsKi
17: Store JsKi in statei
18: return contrib3ris :“ pstatei.session.salt, JbKiq

Fig. 31: The second hybrid of the security proof of the unforgeability of Pelican
with DKG. Difference with the previous hybrid are highlighted .

71

Hybrid3

ŻŻŻ Identical to Hybrid1 ŽŽŽ

ShareKeygen1pstateiq

1: assert{ state.rnd “ ∅ }; state.rnd “ 1

2: salti
$
Ð t0, 1uκ

3: si Ð D2
σt

4: pJsiK, πi, pπi,jqjPt1,...,Nuq Ð V3S.SharepN,T, siq
5: for j P t1, ..., Nu do
6: if j P honest then
7: ptj :“ ∅
8: else
9: ptj :“ pJsiKj , πi,jq

10: cti,j Ð SKE.EncryptpKi,j , ptjq

11: return contrib1ris :“ salti, πi, pcti,jqjPt1,...,Nu

Fig. 32: The third hybrid of the security proof of the unforgeability of Pelican
with DKG. Difference with the previous hybrid are highlighted .

72

Hybrid4

ŻŻŻ Identical to Hybrid1 ŽŽŽ

ShareKeygen1pstateiq

1: assert{ state.rnd “ ∅ }; state.rnd “ 1

2: Fix a set S Ě corrupt of cardinal T ´ 1

3: salti
$
Ð t0, 1uκ

4: si Ð D2
σt

5: pJsiK, πi, pπi,jqjPt1,...,Nuq Ð V3S.SharepN,T, siq
6: for j P t1, ..., Nu do
7: if j P honest then
8: ptj :“ ∅
9: else

10: ptj :“ pJsiKj , πi,jq

11: cti,j Ð SKE.EncryptpKi,j , ptjq

12: return contrib1ris :“ salti, πi, pcti,jqjPt1,...,Nu

ShareKeygen3pstatei, contrib2q

1: assert{ state.rnd “ 2 }; state.rnd “ 3
2: validi :“ statei.session.validX tj P contrib2u
3: for j P validi do
4: for k P complaintsj do
5: if k P honest then
6: continue
7: tKkÑj , sigkÑju :“ complaintsjrks
8: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then
9: continue

10: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

11: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
12: validi “ validiztku

13: statei.session.salt :“ HsaltppsaltjqjPvalidiq

14: a :“ Hapstatei.session.saltq
15: JbKi :“ β ´

“

1 a
‰

¨
ř

jPvalidiXcorruptJsjKi

16: JbKi “ JbKi ´
“

1 a
‰

¨
ř

jPhonestpsj ´
ř

kPS λi
kJsKkq ¨ pλi

iq
´1

17: Store JsKi in statei
18: return contrib3ris :“ pstatei.session.salt, JbKiq

Fig. 33: The fourth hybrid of the security proof of the unforgeability of Pelican
with DKG. Difference with the previous hybrid are highlighted .

73

Hybrid5

ŻŻŻ Identical to Hybrid1 ŽŽŽ

ShareKeygen3pstatei, contrib2q

1: assert{ state.rnd “ 2 }; state.rnd “ 3
2: validi :“ statei.session.validX tj P contrib2u
3: for j P validi do
4: for k P complaintsj do
5: if k P honest then
6: continue
7: tKkÑj , sigkÑju :“ complaintsjrks
8: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then
9: continue

10: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

11: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
12: validi “ validiztku

13: assert{ V3S.Reconstruct
´´

ř

jPvalidiXcorruptJsjKi
¯

iPhonest

¯

‰ K }

14: statei.session.salt :“ HsaltppsaltjqjPvalidiq

15: a :“ Hapstatei.session.saltq
16: JbKi :“ β ´

“

1 a
‰

¨
ř

jPvalidiXcorruptJsjKi
17: JbKi “ JbKi ´

“

1 a
‰

¨
ř

jPhonestpsj ´
ř

kPS λi
kJsKkq ¨ pλi

iq
´1

18: Store JsKi in statei
19: return contrib3ris :“ pstatei.session.salt, JbKiq

Fig. 34: The fifth hybrid of the security proof of the unforgeability of Pelican
with DKG. Difference with the previous hybrid are highlighted .

74

Hybrid6

1: shonest :“ ∅
ŻŻŻ Identical to Hybrid1 ŽŽŽ

ShareKeygen1pstateiq

1: assert{ state.rnd “ ∅ }; state.rnd “ 1
2: Fix a set S Ě corrupt of cardinal T ´ 1

3: salti
$
Ð t0, 1uκ

4: ppJsiKjqjPS , πi, pπi,jqjPSq Ð V3S.SimProofpSq

5: for j P t1, ..., Nu do
6: if j P honest then
7: ptj :“ ∅
8: else
9: ptj :“ pJsiKj , πi,jq

10: cti,j Ð SKE.EncryptpKi,j , ptjq

11: return contrib1ris :“ salti, πi, pcti,jqjPt1,...,Nu

ShareKeygen3pstatei, contrib2q

1: assert{ state.rnd “ 2 }; state.rnd “ 3
2: validi :“ statei.session.validX tj P contrib2u
3: for j P validi do
4: for k P complaintsj do
5: if k P honest then
6: continue
7: tKkÑj , sigkÑju :“ complaintsjrks
8: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then
9: continue

10: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

11: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
12: validi “ validiztku

13: assert{ V3S.Reconstruct
´´

ř

jPvalidiXcorruptJsjKi
¯

iPhonest

¯

‰ K }
14: statei.session.salt :“ HsaltppsaltjqjPvalidiq

15: a :“ Hapstatei.session.saltq
16: JbKi :“ β ´

“

1 a
‰

¨
ř

jPvalidiXcorruptJsjKi
17: if shonest “ ∅ then
18: shonest :“

ř

jPhonest V3S.SimSecretpπj , pπjÑkqkPSq

19: JbKi “ JbKi ´
“

1 a
‰

¨

´

shonest ´
ř

jPhonest

ř

kPS λi
kJsjKk

¯

¨ pλi
iq

´1

20: Store JsKi in statei
21: return contrib3ris :“ pstatei.session.salt, JbKiq

Fig. 35: The sixth hybrid of the security proof of the unforgeability of Pelican
with DKG. Difference with the previous hybrid are highlighted .

75

Hybrid7

ŻŻŻ Identical to Hybrid6 ŽŽŽ

ShareKeygen3pstatei, contrib2q

1: assert{ state.rnd “ 2 }; state.rnd “ 3
2: validi :“ statei.session.validX tj P contrib2u
3: for j P validi do
4: for k P complaintsj do
5: if k P honest then
6: continue
7: tKkÑj , sigkÑju :“ complaintsjrks
8: if SIG.Verifyppkk, sigkÑj , tk, j,KkÑjuq “ false then
9: continue

10: JskKj , πkÑj :“ SKE.DecryptpKkÑj , ctkÑjq

11: if (SKE.Decrypt failed) or V3S.VerifypJskKj , πk, πkÑjq “ false then
12: validi “ validiztku

13: assert{ V3S.Reconstruct
´´

ř

jPvalidiXcorruptJsjKi
¯

iPhonest

¯

‰ K }
14: statei.session.salt :“ HsaltppsaltjqjPvalidiq

15: a :“ Hapstatei.session.saltq
16: JbKi :“ β ´

“

1 a
‰

¨
ř

jPvalidiXcorruptJsjKi
17: if shonest “ ∅ then
18: shonest Ð DZ2n,

?
|honest|σ1

sk
` Y

▷ Where Y is a random variable independent of the Gaussian

19: JbKi “ JbKi ´
“

1 a
‰

¨

´

shonest ´
ř

jPhonest

ř

kPS λi
kJsjKk

¯

¨ pλi
iq

´1

20: Store JsKi in statei
21: return contrib3ris :“ pstatei.session.salt, JbKiq

Fig. 36: The seventh hybrid of the security proof of the unforgeability of Pelican
with DKG. Difference with the previous hybrid are highlighted .

76

	Introduction and State-of-the-Art
	Post-Quantum Surge and Multiparty Protocols
	Distributed Key Generation and Verifiable Secret Sharing
	Our Proposal: Full-Fledged (publicly) V3S, synchronous DKG and Threshold Signatures from MLWE and MSIS in the ROM

	Technical Overview
	A lattice verifiable short secret sharing proposal
	A Proposal for Robust Secret Sharing and Robust DKG
	Robust Threshold Lattice-Based Signature
	Some open problems and directions

	Preliminaries
	Notations
	Distributions
	Shamir Secret Sharing over Modules
	Hardness Assumptions
	Generalization of Hint-MLWE

	Verifiable Short Secret Sharing
	Security notions
	Formal definition of our VSSS
	Towards Applications

	Pelican: A Robust Threshold Signature Scheme
	Robust Distributed Key Generation (DKG)
	Robust Distributed Signing Procedure

	Parameter Selection and Instantiation
	Reminder: Parameter Selection in Plover
	Parameter Selection for the Signing Procedure of Pelican
	Distributed Key Generation
	Selected parameter sets

	Proof of security of the V3S
	Security proof of Pelican
	Robustness
	Unforgeability

	Security proof of Pelican with DKG
	Robustness
	Unforgeability
	A note on the distributed generation of the salt

	Proof of MatrixHint-MLWE
	Distribution of submersion matrices R

