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Abstract. This work expands the machinery we have for isogeny-based
cryptography in genus 2 by developing a toolbox of several essential algo-
rithms for Kummer surfaces, the dimension-2 analogue of x-only arith-
metic on elliptic curves. Kummer surfaces have been suggested in hyper-
elliptic curve cryptography since at least the 1980s and recently these
surfaces have reappeared to efficiently compute (2, 2)-isogenies. We con-
struct several essential analogues of techniques used in one-dimensional
isogeny-based cryptography, such as pairings, deterministic point sam-
pling and point compression and give an overview of (2, 2)-isogenies on
Kummer surfaces. We furthermore show how Scholten’s construction can
be used to transform isogeny-based cryptography over elliptic curves over
Fp2 into protocols over Kummer surfaces over Fp.
As an example of this approach, we demonstrate that SQIsign verification
can be performed completely on Kummer surfaces, and, therefore, that
one-dimensional SQIsign verification can be viewed as a two-dimensional
isogeny between products of elliptic curves. Curiously, the isogeny is then
defined over Fp rather than Fp2 . Contrary to expectation, the cost of
SQIsign verification using Kummer surfaces does not explode: verifica-
tion costs only 1.5× more in terms of finite field operations than the
SQIsign variant AprèsSQI, optimised for fast verification. Furthermore,
it is plausible that arithmetic on Kummer surfaces can be efficiently vec-
torised, giving Kummer-based protocols over Fp a potential performance
boost on modern architectures, possibly surpassing the performance of
elliptic-curve analogues over Fp2 .

Keywords: post-quantum cryptography, isogenies, Kummer surface,
SQIsign, genus 2

1 Introduction

Post-quantum cryptography aims to develop cryptographic primitives that are
secure when the adversary has access to a classical and quantum computer.
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Due to the growing investment into quantum computing, this field has garnered
a significant amount of attention in the last decade, culminating in the NIST
standardisation of the key encapsulation mechanism Kyber [7] and the digital
signature schemes Dilithium [31], Falcon [33], and SPHICNS+ [5]. Nevertheless,
post-quantum signatures still deserve more attention: we rely mostly on lattice-
based security assumptions, and the signature sizes are significantly larger than
pre-quanum signatures. Due to this, NIST is still actively seeking new post-
quantum secure signature schemes [58].

Isogeny-based cryptography offers an answer to these problems. SQIsign [16,
29, 30] relies on the hardness of the general isogeny problem and boasts the
smallest combined signature and public key size of any signature scheme in
Round 1 of NIST’s alternate call for signatures.

The main disadvantage of isogeny-based primitives is their speed. The signing
operation in SQIsign and variants is a few orders of magnitude slower than the
lattice-based alternatives, and verification requires at least a few milliseconds.
Therefore, there has been a surge of recent research that aims to improve the effi-
ciency of SQIsign. We highlight two schemes in particular. First, SQIsignHD [26],
a new scheme that offers much more competitive signing times and improved se-
curity reductions, at the cost of verification speed. Second, AprèsSQI [22], a
variant of SQIsign optimised for verification speed, with additional trade-offs
between verification time and signature size.

Recent works [2, 32, 46] have shown incredible advancements in the per-
formance of higher-dimensional SQIsign, achieving relatively fast signing and
verification in a few milliseconds. These approaches verify using a 2-dimensional
(2n, 2n)-isogeny over Fp2 between products of elliptic curves, using the machin-
ery developed after the SIDH attacks [14, 45, 51] and in particular using fast
isogeny formulas derived from theta structures [27].

1.1 Our contributions

In this work, we make a step towards having a full-fledged toolbox for isogeny-
based cryptography in genus 2. We give an overview of Kummer surfaces (includ-
ing improvements to crucial maps between different Kummer surface models) and
give a detailed concrete explanation on how pairings and isogenies of Kummer
surfaces work. We then show how to apply these in the context of isogeny-
based cryptography by developing several algorithms including CheckOrigin,
PointDifference and PointCompression, whose analogues on elliptic curves have
existed for years.

We further describe how to exploit Scholten’s construction [56] to identify a
dimension 2 Kummer surface over Fp to any elliptic curve over Fp2 that has
Fp2-rational 2-torsion. We also detail the extension of this construction due
to Costello [24], which depicts how isogenies φ : E1 → E2 of degree 2 be-
tween elliptic curves can be associated to (2, 2)-isogenies ϕ : K1 → K2 between
the corresponding Kummer surfaces. In this way, isogeny-based primitives using
supersingular elliptic curves defined over Fp2 can be modified to work with super-
special Kummer surfaces instead, with all computations now over Fp. Addition-
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ally, by restricting to Kummer surfaces that arise from level-2 theta structure,
we can potentially exploit vectorisation for the core Kummer arithmetic, shown
by Bernstein, Chuengsatiansup, Lange, and Schwabe [4] to be very efficient on
modern architectures.

We show that these special (2, 2)-isogenies between Scholten Kummer sur-
faces, first described by Costello [24], are a natural restriction of the general
(2, 2)-isogenies defined for these objects. Compared to the (2, 2)-isogenies derived
from theta structures [27], in this work, we use the more geometric interpreta-
tion from Costello [24], which views such (2, 2)-isogenies as morphisms between
Jacobians of hyperelliptic curves, and in particular their Kummer surfaces. Fun-
damentally, our approach relies on theta structures too, but the geometric inter-
pretation using hyperelliptic curves allows us to more naturally develop similar
techniques as those used for elliptic curves.

As a showcase of these tools and techniques, we show that the original
SQIsign verification [16, 29, 30], or its AprèsSQI variant [22], can also be per-
formed completely over Kummer surfaces defined over Fp. Using Scholten’s
construction [56], this turns the one-dimensional response isogeny into a two-
dimensional isogeny between products over elliptic curves over Fp, instead of
Fp2 . We analyze the viability and performance of such an approach. At its core,
SQIsign verification requires the computation of an isogeny of degree 2e between
supersingular elliptic curves defined over Fp2 , where e ≈ 1000 for NIST Level
I security. Using Scholten’s construction, we perform this verification on super-
special Kummer surfaces instead. To achieve this, a number of tools need to be
developed. Indeed, in dimension 1, we require pairing-based techniques, point
compression, and optimised isogeny formulæ, all of which are underdeveloped in
the Kummer surface literature3.

In more detail, we do the following.

– Section 2 describes general Kummer surfaces and squared Kummer surfaces,
including those that arise from Scholten’s construction and their twists. We
explicitly construct maps between these, if they exist, and give improved
maps between the squared Kummer and the Jacobian. We also categorise
elliptic Kummer surfaces.

– Section 3 describes the use of the generalised Tate pairing to describe the
image of isogenies, which allows us to generalise previous results [22, Thm.
2] to the dimension 2 (and higher) case in Theorem 2.

– Section 4 develops essential tools for cryptography on Kummer surfaces,
namely CheckOrigin and PointDifference, and apply those to efficiently sample
and compress points in PointCompression.

– Sections 5 and 6 contain an overview and improvement to the computation
of the fifteen (2, 2)-isogenies between squared Kummer surfaces, including a
new derivation of the three elliptic (2, 2)-isogenies between elliptic Kummer
surfaces described by Costello [24]. We show that the codomain, and its

3We choose to do SQIsign on Kummer surfaces “not because it is easy, but because
it is hard; because that goal will serve to organise and measure the best of our energies
and skills”.
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Rosenhain invariants, cost4 at most 11M and 32a with point evaluation
being at most 8M and 16a. This improves on the state of the art [27] for
these specific (2, 2)-isogenies.

– Section 7 combines all of the above to enable SQIsign verification to be per-
formed on Kummer surfaces for both compressed and uncompressed signa-
tures. We furthermore provide benchmarks in terms of finite-field operations.

Software. Alongside the theory developed in this article, we provide accom-
panying software, written in MAGMA [9], Python and SageMath [59]. Our code is
available under the MIT license in the following repository:

https://github.com/Krijn-math/return-of-the-kummer

The source code contains the following:

– Optimised Python code that implements the compressed and uncompressed
variants of SQIsign verification on Kummer surfaces, used for benchmarking.
To implement PointCompression, an algorithm to be performed in signing,
we use SageMath for Jacobian arithmetic.

– All the algorithms and maps in this article are implemented in MAGMA, with
the aim to allow a reader to verify many of the claims made throughout and
gain an understanding on how the various objects behave. To this end, we
have documented the MAGMA code to expose various useful tricks and insights.

1.2 Related work

Kummer surfaces of genus-2 Jacobians were first introduced to cryptography
by Chudnovsky and Chudnovsky [18], who gave a variant of Lenstra’s ECM fac-
toring algorithm. Gaudry [35] then proposed these Kummer surfaces as a setting
for efficient discrete-logarithm-based cryptosystems. Many later works built on
this to demonstrate that high-speed, high-security Kummer-based implementa-
tions of Diffie–Hellman key exchange [4, 8, 49] and signature schemes [49, 50]
give significant improvements over elliptic curves in many contexts. In partic-
ular, we highlight a work by Bernstein, Chuengsatiansup, Lange, and Schwabe
[4] which develops several new techniques for efficient vectorization of Kummer
surface computations, leading to new speed records for high-security constant-
time (hyper)elliptic curve Diffie–Hellman. In parallel to this, Lubicz and Robert
[43] developed algorithms for efficient arithmetic on Kummer surfaces using the
theory of theta functions of level 2. Further, Lubicz and Robert [44] give efficient
algorithms for pairing computation, which were later improved on by Robert [52]

More recently, in a work by Costello [24], Kummer surfaces were introduced
to isogeny-based cryptography in the context of SIDH. In particular, Costello
extended Scholten’s construction to transport any chain of 2-isogenies between
elliptic curves over Fp2 to a chain of (2, 2)-isogenies between Kummer surfaces,
now defined over Fp. Kummer surfaces are also implicitely used in the work

4Using the notation M for Fp-multiplications, S for squarings and a for additions.
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by Dartois, Maino, Pope, and Robert [27], who give algorithms to compute
(2, 2)-isogenies between theta structures of level 2. These have since been used to
accelerate verification in SQIsign variants. We note that the three (2, 2)-isogenies
described by Costello, which are also rederived in this work, are somewhat spe-
cial, in the sense that they arise from 2-isogenies between elliptic curves. We
therefore call these elliptic isogenies. We observe that this subset of isogenies
can be computed more efficiently than the general formulæ given in [27].

Very recently, new variants of SQIsign have emerged [2, 32, 46] that use
higher-dimensional techniques to achieve fast signing and verification for SQIsign.
The breakthroughs are spectacular and shift the focus in SQIsign from one-
dimensional to two-dimensional verification. Our work is different in that it
transforms the one-dimensional verification of SQIsign into a two-dimensional
isogeny. In this way, we demonstrate that one-dimensional SQIsign can itself
be viewed as having two-dimesional verification. More generally, the aim of this
work is to show that it is possible to transform one-dimensional protocols into
two-dimensional protocols, whilst still relying on the one-dimensional hardness
assumptions which are arguably better understood. Furthermore, because of the
generality of the techniques developed in this work, we believe it can be applied
in the context of two-dimensional SQIsign, and our exposition of genus-2 cryp-
tography from the perspective of Kummer surfaces may clarify and complement
the description of two-dimensional SQIsign for some readers.

Acknowledgements. We thank Craig Costello for general advice on the tech-
nicalities and writing of this paper. We thank Damien Robert for helpful advice
on technical details. We thank Lars Ran for helpful advice on the use of Gröbner
bases in the derivation of our results. We thank Peter Schwabe for helpful dis-
cussions on vectorised implementations of Kummer arithmetic.

2 Kummer Surfaces

This work concerns itself with different models of Kummer surfaces, associated
to the same (or isomorphic) hyperelliptic curve C defined over a field k. Given
a hyperelliptic curve C of genus 2 with Jacobian JC , the corresponding Kum-
mer surface is given by the quotient K := JC/〈±1〉. The Kummer surface has a
quartic model in P3, so that K can be embedded into projective space with coor-
dinates (X1 : X2 : X3 : X4) ∈ P3. Furthermore, K has sixteen point singularities,
called nodes, given by the images of the 2-torsion points of JC under this quo-
tient, as these are precisely the points fixed by −1. The quotient map destroys
the group law on the Jacboian JC and thus K only inherits scalar multiplication
from JC . However, as we see in Section 2.6, we still have a pseudo-group law on
K. For example, to add two points P,Q ∈ K, we require knowledge of P −Q.

There are many types of Kummer surface models. For any hyperelliptic curve
C, we can construct the general Kummer surface Kgen

C , which we discuss in
Section 2.1. When C is isomorphic over a field k to a curve in Rosenhain form
then Cλ,µ,ν also admits a canonical and squared Kummer surface. These two
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other Kummer surfaces are closely related; we describe these in Sections 2.3
and 2.4, and give maps Kgen

C → Kgen
λ,µ,ν and Kgen

λ,µ,ν → K
Sqr
λ,µ,ν . We then introduce

and classify squared Kummer surfaces with ν = λ ·µ in Section 2.5. These allow
several optimizations beyond regular squared Kummer surfaces and we show
their connection to elliptic curves through Scholten’s construction in Section 2.8.

In many cases, the literature may call any of these models the Kummer
surface K. In this work, as we deal with several different isomorphic curves and
their associated Kummers, we avoid this and use the following explicit notation.

For a general hyperelliptic curve C of genus 2, with Jacobian JC , we denote

– the general Kummer surface by Kgen
C ,

– the squared Kummer surface by KSqr
C , if it exists.

For a curve Cλ,µ,ν in Rosenhain form, with Jacobian Jλ,µ,ν , we denote

– the associated general Kummer surface by Kgen
λ,µ,ν ,

– the associated squared Kummer surface by KSqr
λ,µ,ν ,

– the associated elliptic Kummer surface by KSqr
λ,µ,λµ, only if ν = λµ,

For a curve Cα associated to an elliptic curve Eα through Scholten’s construction,
with Jacobian Jα, we denote

– the general Kummer surface by Kgen
α ,

– the squared Kummer surface by Kα, a special form of KSqr
λ,µ,λµ.

Any hyperelliptic curve of genus 2 has five or six x-values wi where the curve
intersects with y = 0. These are called the Weierstrass points (wi, 0). In a degree
5 model, we consider the (single) point at infinity as the Weierstrass point ∞.
For a curve in Rosenhain form, the six Weierstrass points are w1 =∞, w2 = 0,
w3 = 1, w4 = λ, w5 = µ and w6 = ν. This numbering is strictly and often
used throughout this work whenever we work with curves in Rosenhain form, in
particular to describe two-torsion.

With our main motivation being Kummer surfaces for use in isogeny-based
cryptography, throughout this work we often restrict to superspecial Jacobians
of genus-2 curves and their associated Kummer surfaces, the natural analogue
of supersingular elliptic curves to arbitrary dimension [10, 13, 41]. We refer
to a hyperelliptic curve as superspecial when its Jacobian is superspecial. We
furthermore require rational 2-torsion on the Jacobians and Kummer surfaces.

2.1 General Kummer surfaces

We begin by discussing the general Kummer surface in more detail. Readers only
interested in the cryptographically relevant Kummer surfaces used later in this
work can skip directly to Section 2.4.
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Construction of Kummer surface. Consider a genus-2 curve C defined over
field k. We follow Cassels and Flynn [12, §3] to compute the corresponding
general Kummer surface. Let

C : y2 : c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6, ci ∈ k,

where c6 can equal 0 if C is in the degree 5 model.5 The Kummer surface Kgen

corresponding to curve C is defined over k and is given by elements (X1 : X2 :
X3 : X4) ∈ P3 such that

Kgen : K2X
2
4 +K1X4 +K0 = 0,

where

K2 := X2
2 − 4X1X3,

K1 := − 2

(
2c0X

3
1 + c1X

2
1X2 + 2c2X

2
1X3 + c3X1X2X3

+2c4X1X
2
3 + c5X2X

2
3 + 2c6X

3
3

)
,

K0 := (c21 − 4c0c2)X4
1 − 4c0c3X

3
1X2 − 2c1c3X

3
1X3 − 4c0c4X

2
1X

2
2

+ 4(c0c5 − c1c4)X2
1X2X3 + (c23 + 2c1c5 − 4c2c4 − 4c0c6)X2

1X
2
3

− 4c0c5X1X
3
2 + 4(2c0c6 − c1c5)X1X

2
2X3 + 4(c1c6 − c2c5)X1X2X

2
3

− 2c3c5X1X
3
3 − 4c0c6X

4
2 − 4c1c6X

3
2X3 − 4c2c6X

2
2X

2
3

− 4c3c6X2X
3
3 + (c25 − 4c4c6)X4

3 .

The identity point o ∈ Kgen is given by o = (0 : 0 : 0 : 1).

Maps to the General Kummer surface. We can map pairs of points (x1, y1),
(x2, y2) lying on C to Kgen, where x1 6= x2, as follows:

ρ : C(2) → Kgen, ((x1, y1), (x2, y2)) 7→ (X1 : X2 : X3 : X4),

where

X1 := 1, X2 := x1 + x2, X3 := x1x2, X4 :=
F (x1, x2)− 2y1y2

(x1 − x2)2
,

with

F (x1, x2) = 2c0 + c1(x1 + x2) + 2c2x1x2 + c3(x1 + x2)x1x2 + 2c4(x1x2)2

+ c5(x1 + x2)(x1x2)2 + 2c6(x1x2)3.

We construct the map ρ̃ : JC → Kgen, from the Jacobian JC of C to Kgen, by
exploiting the fact that, given a divisor6〈x2 + a1x + a0, b1x + b0〉 ∈ JC , we can

5Equivalently, called the odd degree model.
6In this work, we always use the Mumford representation for elements of Jacobians.
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construct all the rational functions in the map ρ above in terms of a0, a1, b0, b1.
The map ρ̃ is given as follows.

ρ̃ : 〈x2 + a1x+ a0, b1x+ b0〉 7→ (X : Y : Z : T )

where

X1 := 1, X2 := −a1, X3 := a0, X4 :=
F ′(a0, a1)− 2(b21a0 − b0b1a1 + b20)

a2
1 − 4a0

,

with

F ′(a0, a1) = 2c0 − c1a1 + 2c2a0 − c3a0a1 + 2c4a
2
0 − c5a1a

2
0 + 2c6a

3
0.

We emphasise that this construction of Kgen associated with C applies to any
hyperelliptic curve C of genus 2.

Points of order 2 on Kgen. The map ρ̃ : J → K is of order 2 except at the
sixteen points in J [2] which map precisely to the sixteen nodes K[2] ⊂ K.

The elements of order 2 in J are given by divisors Di,j , where the index i and
j refer to pairs of Weierstrass points (wi, 0) + (wj , 0) in the support of Di,j for
1 ≤ i < j ≤ 6. The Mumford representation of Di,j is 〈x2−(wi+wj)x+wi ·wj , 0〉
whenever wi, wj 6=∞. Whenever ∞ is a Weierstrass point (i.e., when using the
degree 5 model) we consider w1 = ∞ and the Mumford representation of L1,j

simply ignores this factor (x− w1).
Using ρ̃, we find the sixteen points Li,j of order 2 on K given by

Li,j = (1 : wi + wj : wiwj : F (wi, wj)/(wi − wj)2), when wi, wj 6=∞,
L1,j = (0 : 1 : wj : w2

j ), where w1 =∞.

Addition by points of order 2 on Kgen. Addition of points of order 2 on
Kummer surfaces is well-defined, and yields a linear map from Kgen to itself. For
Li,j ∈ K[2] of order 2, we can represent the translation by Li,j , e.g. P 7→ P+Li,j ,
as a 4 × 4 matrix Wi,j over k. As these maps are involutions on Kgen, we get
W 2
i,j = c · I4 for some c ∈ k. These matrices are computed and described by

Cassels and Flynn [12], we provide a compact presentation in Appendix A.

2.2 Rosenhain form of a hyperelliptic curve

To construct the canonical and squared Kummer surfaces, we require a hyper-
elliptic curves in Rosenhain form Cλ,µ,ν defined over k. These Kummer surfaces
models are theta structures of level 2, which implies that K[2] plays an important
role in their arithmetic. We will see this in later sections when we give efficient
algorithms to compute 2-pairings on and (2, 2)-isogenies between these Kummer
surfaces using their points of order 2.
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Definition 1. A hyperelliptic curve Cλ,µ,ν is in Rosenhain form over a field k,
when

Cλ,µ,ν : y2 = x(x− 1)(x− λ)(x− µ)(x− ν) with λ, µ, ν ∈ k .

The values λ, µ and ν are called the Rosenhain invariants of Cλ,µ,ν .

The Rosenhain form of a hyperelliptic curve of genus 2 can be viewed as an
analogue to the Montgomery form of elliptic curves. Whereas a general elliptic
curve in (short) Weierstrass form admits x-only arithmetic, this x-only arith-
metic is much more efficient for curves in Montgomery form. We find a similar
situation in genus 2: the general Kummer surface can be constructed for any
hyperelliptic curve C, yet high-speed cryptography requires the use of the more
efficient Kummer surfaces, which arise from the theory of theta functions.

The original idea to use such Kummer surfaces in cryptography is due to the
Chudnovsky brothers [18] in 1986. These more efficient Kummer surfaces come
in two forms: the canonical Kummer surface, as described by Gaudry [35]; and
the closely related squared Kummer surface, described by Bernstein [3].

2.3 Canonical Kummer surface

Following Gaudry [35], the canonical Kummer surface associated to a hyperel-
liptic curve Cλ,µ,ν over k in Rosenhain form is defined by four fundamental theta
constants which can be computed from the Rosenhain invariants of Cλ,µ,ν . Given
a hyperelliptic curve Cλ,µ,ν with Rosenhain invariants λ, µ, ν ∈ k, we define the
fundamental theta constants a, b, c, d ∈ k and dual fundamental theta constants
A,B,C,D ∈ k such that

A2 = a2 + b2 + c2 + d2, B2 = a2 + b2 − c2 − d2,

C2 = a2 − b2 + c2 − d2, D2 = a2 − b2 − c2 + d2.
(1)

The theta constants are related to the Rosenhain invariants in the following way

λ =
a2c2

b2d2
, µ =

c2e2

d2f2
, ν =

a2e2

b2f2
,

where e, f ∈ k such that e2/f2 = (AB + CD)/(AB − CD). Note that the
constants a, b, c, d are defined up to sign, but the resulting Kummer surfaces are
isomorphic. The canonical Kummer surface Kcan

λ,µ,ν defined over k is then given
by the following equation.

Kcan
λ,µ,ν :

T 4
1 + T 4

2 + T 4
3 + T 4

4 + 2E · T1T2T3T4

=
F · (T 2

1 T
2
4 + T 2

2 T
2
3 ) +G · (T 2

1 T
2
3 + T 2

2 T
2
4 ) +H · (T 2

1 T
2
2 + T 2

3 T
2
4 ).

where

E :=
(16ABCD)2 · abcd

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
, and

F :=
a4 − b4 − c4 + d4

a2d2 − b2c2
, G :=

a4 − b4 + c4 − d4

a2c2 − b2d2
, H :=

a4 + b4 − c4 − d4

a2b2 − c2d2
.
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Note that as the A2, B2, C2, D2 are linear combinations of a2, b2, c2, d2, the equa-
tion for Kcan is determined entirely by a, b, c, d. The identity point o ∈ Kcan is
given by o = (a : b : c : d) ∈ Kcan.

As this article does not use this model of Kummer surface, we defer a dis-
cussion of the arithemtic on these surfaces to Gaudry [35].

Points of order 2 on Kcan
λ,µ,ν . The 16 points of order 2 on Kcan are

o = (a : b : c : d), (a : b : −c : −d), (a : −b : c : −d), (a : −b : −c : d),

(b : a : d : c), (b : a : −d : −c), (b : −a : d : −c), (b : −a : −d : c),

(c : d : a : b), (c : d : −a : −b), (c : −d : a : −b), (c : −d : −a : b),

(d : c : b : a), (d : c : −b : −a), (d : −c : b : −a), (d : −c : −b : a).

For the addition matrices for these points, see Appendix A.2.

2.4 Squared Kummer surface

The squared Kummer surface has been the subject of interest in hyperelliptic
curve cryptography [3, 4, 8, 49] as it boasts the fastest arithmetic when one can
stay on a single surface.

Construction of the squared Kummer surface. The squared Kummer sur-
face corresponding to Cλ,µ,ν/k is related to the canonical Kummer surface corre-
sponding to Cλ,µ,ν/k via the squaring map (T1 : T2 : T3 : T4)→ (T 2

1 : T 2
2 : T 2

3 : T 2
4 ).

The squared Kummer surface KSqr
λ,µ,ν is defined by four constants

(µ1 : µ2 : µ3 : µ4) := (a2 : b2 : c2 : d2),

where now µi ∈ k as long as Cλ,µ,ν is defined over k. From this, we obtain a
relation between the µi and the dual fundamental theta constants as follows

A2 = µ1 + µ2 + µ3 + µ4, B2 = µ1 + µ2 − µ3 − µ4

C2 = µ1 − µ2 + µ3 − µ4, D2 = µ1 − µ2 − µ3 + µ4.
(2)

The equation defining the squared Kummer is given by

KSqr
λ,µ,ν : E ·X1X2X3X4 =

(
X2

1 +X2
2 +X2

3 +X2
4 − F · (X1X4 +X2X3)

−G · (X1X2 +X2X4)−H · (X1X2 +X3X4)

)2

.

with

F :=
µ2

1 − µ2
2 − µ2

3 + µ2
4

µ1µ4 − µ2µ3
, G :=

µ2
1 − µ2

2 + µ2
3 − µ2

4

µ1µ3 − µ2µ4
, H :=

µ2
1 + µ2

2 − µ2
3 − µ2

4

µ1µ2 − µ3µ4
,

E := 4µ1µ2µ3µ4

(
A2B2C2D2

(µ1µ1 − µ3µ4)(µ1µ3 − µ2µ4)(µ1µ4 − µ2µ3)

)2

.
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The identity point o ∈ KSqr
λ,µ,ν is o = (µ1 : µ2 : µ3 : µ4). As given by Bos,

Costello, Hisil, and Lauter [8], we can derive the constants µ1, µ2, µ3, µ4 from
the Rosenhain invariants λ, µ, ν ∈ k as

µ4 = 1, µ3 =

√
λµ

ν
, µ2 =

√
µ(µ− 1)(λ− ν)

ν(ν − 1)(λ− µ)
, µ1 = µ2µ3

ν

µ
. (3)

Mapping to KSqr
λ,µ,ν . The map ρSqr : Jλ,µ,ν → KSqr

λ,µ,ν is given by [19, 23]:

D = 〈x2 + u1x+ u0, v1x+ v0〉 7→ (X1 : X2 : X3 : X4),

where

X1 = µ1 ·
(
u0(w3w5 − u0)(w4 + w6 + u1)− v2

0

)
,

X2 = µ2 ·
(
u0(w4w6 − u0)(w3 + w5 + u1)− v2

0

)
,

X3 = µ3 ·
(
u0(w3w6 − u0)(w4 + w5 + u1)− v2

0

)
,

X4 = µ4 ·
(
u0(w4w5 − u0)(w3 + w6 + u1)− v2

0

)
.

(4)

Here, w3 = 1, w4 = λ, w5 = µ, and w6 = ν are the Weierstrass points with our
fixed numbering.

Points of order 2 on KSqr
λ,µ,ν . The 16 points in KSqr

λ,µ,ν [2], which we denote
K[2], correspond precisely to the 16 elements Di,j of order 2 on Jλ,µ,ν [2]. To fill
a gap in the literature on this topic, we give a full description of K[2].

Suppose µ1, µ2, µ3, µ4 are the theta constants of KSqr
λ,µ,ν with Rosenhain in-

variants λ, µ, ν ∈ k.7 Let τ and τ̃ denote the roots of x2 − Gx + 1 (where G is
the same as in the defining equation), so that τ̃ = 1/τ . Let Li,j be the element
in K[2] corresponding to

Di,j := 〈(x− wi)(x− wj), 0〉 ∈ Jλ,µ,ν [2].

If wi = w1 =∞, then D1,j = 〈(x− wj), 0〉, and similarly if wj =∞. We have

o = (µ1 : µ2 : µ3 : µ4), L1,2 = (µ2 : µ1 : µ4 : µ3),

L5.6 = (µ3 : µ4 : µ1 : µ2), L3,4 = (µ4 : µ3 : µ2 : µ1),

L4,5 = (µ · µ4 : µ3 : 0 : 0), L3,6 = (µ3 : µ · µ4 : 0 : 0),

L4,6 = (0: 0 : µ · µ4 : µ3), L3,5 = (0: 0 : µ3 : µ · µ4),

L2,3 = ((ν − 1)µ2 : 0 : (µ− 1)µ4 : 0), L1,4 = ((µ− 1)µ4 : 0 : (ν − 1)µ2 : 0),

L1,3 = (0: (ν − 1)µ2 : 0 : (µ− 1)µ4), L2,4 = (0: (µ− 1)µ4 : 0 : (ν − 1)µ2),

L2,5 = (τ : 0 : 0 : 1), L1,6 = (1: 0 : 0 : τ),

L2,6 = (0: 1 : τ : 0), L1,5 = (0: τ : 1 : 0).

7Do not confuse the Rosenhain invariant µ with the theta constants µi.
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Remark 1. We can also write these 2-torsion points in terms of dual constants
A,B,C,D rather than Rosenhain invariants. Indeed, following Gaudry in the
proof of Lemma 4.2 in [35] and [35, §7.5], we have that

AB + CD

AB − CD
= µ · µ4

µ3
,

AC +BD

AC −BD
=

(ν − 1)µ2

(µ− 1)µ4
,

AD +BC

AD −BC
=

(µ− λ)µ2

(µ− 1)µ3
.

Addition by points of order 2 on KSqr
λ,µ,ν . As far as we are aware, the linear

maps Wi,j that represent addition by a point Li,j of order 2 on the squared
Kummer surface do not appear in the literature. We present an approach to
derive such matrices, with more details given in Appendix A.2. The resulting
matrices Wi,j are available in our code.

This approach differs from the usual algebraic approach and a similar ap-
proach works for any Kummer surface or, generally, any projective linear map.

Let Di,j ∈ J [2] denote the pre-image of Li,j ∈ K[2]. Our goal is to find a
description of Wi,j . On the Jacobian, it is easy to add Di,j to any random element
DQ ∈ J . Thus, we can take a large enough sequence of points AJ = [D1, . . . , Dm]
and apply this translation to get BJ = [D1 +Di,j , . . . , Dm +Di,j ].

We map both sequences AJ and BJ down to KSqr to get AK and BK. Let
An denote the n-th element of AK, and similarly for Bn. Then Wi,j must map
An to λnBn for some λn ∈ k, as points on the Kummer are defined up to a
scalar. Hence, we get

Wi,jAK = BKΛ,

where Λ denotes the diagonal matrix of size m × m with λn on the diagonal.
Assuming Wi,j and Λ are unknown, with m large enough, a Gröbner basis com-
putation readily yields a solution for Wi,j , up to some unknown scaling factor.
Given such a solution for Wi,j , we normalise the top-left corner to 1. By per-
forming this for a few different concrete instantiations of curves C and primes
p, we are able to determine the coefficients of each Wi,j in terms of the theta
constants µi and the Rosenhain invariants λ, µ, ν. We then verify the correctness
of the resulting matrices Wi,j .

2.5 Elliptic Kummer surfaces

In this article, we will work with a special squared Kummer surface which arises
from a Rosenhain curve Cλ,µ,ν with ν = λµ. Such Kummer surfaces have strong
ties to elliptic curves, as we show in Lemma 1. This also becomes apparent
when we introduce Scholten’s construction in Section 2.8. We therefore call such
Kummer surfaces elliptic. In this section, we discuss special properties of the
elliptic Kummer surface, which are needed to construct our toolbox for Kummer
surfaces in Sections 3 and 4.

Lemma 1. The Jacobian of a curve C/k is (2, 2)-isogenous to a product of el-
liptic curves E×E′ if and only if C has Rosenhain invariants satisfying ν = λµ.

12



Proof. Let Jλ,µ,λµ be the Jacobian of a Rosenhain curve Cλ,µ,λµ of genus 2.
In particular, here ν = λµ. The quadratic splitting (see [57, § 8.2]) of Cλ,µ,λµ
by G1 = x, G2 = (x − 1)(x − ν), G3 = (x − λ)(x − µ) has determinant 0,
hence Jλ,µ,λµ is (2, 2)-isogenous to a product of elliptic curves. For the other
direction, let Jλ,µ,ν be (2, 2)-isogenous to a product of elliptic curves. Then,
up to some reordering, this Richelot isogeny is given by the splitting G1 = x,
G2 = (x− 1) · (x− wi), G3 = (x− wj)(x− wk) for some assignment of i, j, k to
{4, 5, 6}. By det(G1, G2, G3) = 0 we get wi = wj ·wk. Permuting the Rosenhain
invariants, this gives ν = λµ. ut

Lemma 1 suggests that the moduli space of elliptic Kummers given by the Igusa-
Clebsch invariants [38, p. 620] is a ‘nice’ subspace of the general moduli space.

Construction of the elliptic Kummer surface KSqr
λ,µ,λµ. We construct an

elliptic Kummer surface KSqr
λ,µ,λµ in the same way as any squared Kummer sur-

face, depicted in Section 2.4. However, given ν = λ ·µ, Equation (3) tells us that

µ3 = µ4 = 1, greatly simplifying the equation defining KSqr
λ,µ,λµ. For example, in

this case G = µ1 + µ2.

Points of order 2 on KSqr
λ,µ,λµ. In the case where ν = λµ, we have that

µ3 = µ4 = 1 and τ = (µ−1)µ4

(ν−1)µ2
. In this way, twelve of the sixteen two-torsion

points simplify as follows:

o = (µ1 : µ2 : 1 : 1), L1,2 = (µ2 : µ1 : 1 : 1),

L5,6 = (1: 1 : µ1 : µ2), L3,4 = (1: 1 : µ2 : µ1),

L4,5 = (µ : 1 : 0 : 0), L3,6 = (1: µ : 0 : 0),

L4,6 = (0: 0 : µ : 1), L3,5 = (0: 0 : 1 : µ),

L2,3 = (1: 0 : τ : 0), L1,4 = (τ : 0 : 1 : 0),

L1,3 = (0: 1 : 0 : τ), L2,4 = (0: τ : 0 : 1).

The other points are as before:

L2,5 = (τ : 0 : 0 : 1), L1,6 = (1: 0 : 0 : τ),

L2,6 = (0: 1 : τ : 0), L1,5 = (0: τ : 1 : 0).

We highlight the symmetry between the left and right column. This symmetry
positively impacts the efficiency of arithmetic on the elliptic Kummer surface.

Addition by points of order 2 on KSqr
λ,µ,λµ. The matrices that describe

addition by points of order 2 on KSqr
λ,µ,λµ are easily derived giving the matrices

Wi,j for addition by Li,j on KSqr
λ,µ,ν , specialised to µ3 = µ4 = 1. Their concrete

form is found in Appendix A.2.
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2.6 Arithmetic of Squared Kummer surfaces

As with elliptic curves, the construction of the Kummer surface K as the quo-
tient of J by ±1 implies that we only have a pseudo-group structure on K.
Nevertheless, this is enough to compute scalar multiplications P 7→ [n]P and dif-
ferential addition, and in general is rich enough for cryptographic applications.
The pseudo-group structure on squared Kummer surfaces looks particularly nice
due to surprisingly elegant symmetries.

Basic morphisms. The arithmetic on Kummer surfaces is constructed from
four basic morphisms fron P3 to P3, namely the squaring map S, the Hadamard
involution H, the scaling map CP , and the inversion map Inv, defined as follows:

S : (X : Y : Z : T ) 7→ (X2 : Y 2 : Z2 : T 2),

H : (X : Y : Z : T ) 7→ (X + Y + Z + T : X + Y − Z − T :

X − Y + Z − T : X − Y − Z + T ),

C(P1 : P2 : P3 : P4) : (X : Y : Z : T ) 7→ (P1 ·X : P2 · Y : P3 · Z : P4 · T ),

Inv : (X : Y : Z : T ) 7→ (1/X : 1/Y : 1/Z : 1/T )

= (Y ZT : XZT : XY T : XY Z).

The map S costs 4M, H costs 8a, CP costs 4M, and Inv costs 6M.

Doubling, scalar multiplication and other arithmetic operations. The
four basic morphisms S, H, C and Inv are enough to define the curve operations
doubling xDBL : P 7→ 2P , differential addition xADD : P,Q, P − Q 7→ P + Q,
scalar multiplication xMUL : P 7→ [n]P (see [19, Appendix A]), and the three-
point ladder P,Q, P −Q, s 7→ P + sQ.

2.7 Maps between Kummer surfaces

Maps induced from κ : C → Cλ,µ,ν . When the Weierstrass points of C are
k-rational, there is a k-rational isomorphism κ : C → Cλ,µ,ν between a general
hyperelliptic curve C and a curve Cλ,µ,ν in Rosenhain form [55]. It is given by
five values (a, b, c, d, e) ∈ k, namely

κ : C → Cλ,µ,ν , (x, y) 7→
(
ax+ b

cx+ d
,

ey

(cx+ d)2

)
as described by Costello [24, §2]. This map κ induces a map κ∗ : J → Jλ,µ,ν
between their Jacobians [24, §3]. From κ∗, we construct the induced map κ∗∗ :
Kgen → Kgen

λ,µ,ν between their general Kummer surfaces, given in terms of the

values a, b, c, d, e2 ∈ k. For simplicity, we normalise the inputs and outputs to
the first coordinate.

κ∗∗ : (1 : X2 : X3 : X4) 7→ (1 : X ′2 : X ′3 : X ′4)
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with

X ′2 =
2acX3 + (ad+ bc)K2 + 2bd

c2X3 + cdX2 + d2
, X ′3 =

a2X3 + abX2 + b2

c2X3 + cdX2 + d2

and X ′4 computed in terms of the defining polynomials K1,K2,K3 for the domain
and K ′1,K

′
2,K

′
3 for the codomain as

X ′4 = −K
′
1(1, X ′2, X

′
3) + 4v′

2(X ′22 − 4X ′3)

where

v′ = −e
2 · (K1(1, X2, X3) + 2X4K2(1, X2, X3))

4(c2X3 + cdX2 + d2)3
.

Map between general and squared Kummer surface. Let Kgen
λ,µ,ν and

KSqr
λ,µ,ν be the general and squared Kummer surface associated to the same hy-

perelliptic curve Cλ,µ,ν . The isomorphism between Kgen
λ,µ,ν and KSqr

λ,µ,ν is given
by Chung, Costello, and Smith [19] as a linear map M, by interpolating image
points under both ρ∗λ,µ,ν and ρSqr of divisors of D ∈ Jλ,µ,ν .

Map from Kummer to Jacobian. For several applications later in this
work (see Sections 3 and 4), we require a (partial) inverse of the map ρSqr :

Jλ,µ,ν → KSqr
λ,µ,ν , i.e., a map that computes D,−D ∈ Jλ,µ,ν given a point

P = (X1 : X2 : X3 : X4) ∈ KSqr
λ,µ,ν such that ρSqr(D) = ρSqr(−D) = P . Of-

ten, recovering the values u0, u1 or the value v2
0 of the Mumford representation

is enough. Such maps were originally given by Gaudry [35], making use of addi-
tional theta constants and functions. When working on a single Kummer surface,
these constants and functions are fixed, and we can easily precompute these. In
isogeny-based cryptography, however, we no longer have this luxury, and the
computation of these additional constants and functions is rather expensive.

Using algebraic tools, detailed in Appendix C, we find more elegant and
efficient maps

(ρSqr)−1 : KSqr
λ,µ,ν → Jλ,µ,ν , P = (X1 : X2 : X3 : X4)→ {D,−D}

using three polynomials F0, F1, F2 ∈ k[X] to recover u0 and u1, given by

F0 =(w4 − w6)X̃1 + (w3 − w5)X̃2 − (w4 − w5)X̃3 − (w3 − w6)X̃4,

F1 =(w3 − w5)w4w6X̃1 + (w4 − w6)w3w5X̃2

− (w3 − w6)w4w5X̃3 − (w4 − w5)w3w6X̃4,

F2 =− (X̃1 + X̃2 − X̃3 − X̃4)(w3w4 − w5w6).

(5)

We then recover u0 and u1 as

u0 = F1(X̃)/F0(X̃), u1 = F2(X̃)/F0(X̃), (6)
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where X̃i = Xi/µi. This recovery works regardless of the projective representa-
tion of P , i.e. we recover the same u0 and u1 if we consider P = (ωX1 : ωX2 :
ωX3 : ωX4) for any ω ∈ k as the image of D under ρSqr. In particular, we can

apply this to any randomly sampled point on KSqr
λ,µ,ν . To recover v2

0 , we require
an additional polynomial G ∈ k[X], which allow us to recover ω.

G = −(w3 − w4)(w5 − w6)(w3w4 − w5w6)F1(X̃),

ω = G(X̃)/F 2
0 (X̃).

(7)

Together with u0 and u1, we recover v2
0 by computing

v2
0 = u0(w3w5 − u0)(w4 + w6 + u1)− ωX̃1. (8)

For a number of applications, having u0, u1, v
2
0 is already sufficient. However, to

recover the points {D,−D}, we need to compute the corresponding v0, v1. To do
so, we compute the two roots x1, x2 of x2 + u1x+ u0 and get the corresponding
y-values y1, y2 such that (x1,±y1) and (x2,±y2) lie on the curve Cλ,µ,ν . Noting
that there are two possible y-values for each xi, we set

ṽ0 =
(y1 − x2)(y2 − x2)

x2 − x1

and choose the y-values such that (ṽ0)2 matches the v2
0 computed above. We

then compute v1 as v1 = (y1 − y2)/(x1 − x2).

2.8 Scholten’s construction

In 2003, Scholten [56] introduced a specific Kummer surface Kα defined over Fp
associated to a given elliptic curve Eα over Fp2 with rational 2-torsion. This con-
struction provides a tool to translate cryptographic protocols defined between
elliptic curves to one between Kummer surfaces, which we will exploit in Sec-
tion 7. The Kummer surfaces Kα derived in this construction have the property
that they are isomorphic to elliptic Kummer surfaces, that is, they can be de-
scribed as the squared Kummer surfaces of a curve C with Rosenhain invariants
λ, µ, λµ (see Section 2.5). This subsection describes Scholten’s derivation.

As this class of Kummer surfaces will be of most interest to us, from this point
forward in the article, we will restrict to k = Fp or k = Fp2 . For simplicity, we
restrict to p ≡ 3 mod 4 and write Fp2 = Fp(i) where i is a root of x2 + 1 ∈ Fp[x],
though we remark that our results hold more generally than this.

Relation to an elliptic curve. Let Eα/Fp2 : y2 = x(x − α)(x − 1
α ) be an

elliptic curve where x = x0 + ix1, y = y0 + iy1, and α = α0 + iα1. The Weil
restriction Wα of Eα is an abelian surface defined over Fp given by

Wα := Res
Fp2
Fp (Eα) = V (W0,W1),
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with W0 and W1 given by the real and imaginary part (respectively) of

(y0 + iy1)2 − (x0 + ix1) ((x0 + ix1)− (α0 + iα1)) ((x0 + ix1)− 1/(α0 + iα1)) .

Scholten [56] showed that the Weil restriction of Eα/Fp2 is (2, 2)-isogenous to the
Jacobian of a hyperelliptic curve Cα/Fp with defining equation given by Costello
[24, Prop. 1]. To the Jacobian Jα of Cα, we can associate a general Kummer
surface Kgen

α . As we prefer to work with the squared Kummer model, the next
proposition follows Costello [24, §5] to present the isomorphism that maps Cα
to a curve in Rosenhain form. We exploit the fact that, by construction, Cα has
6 Fp-rational Weierstrass points. We emphasise that for this construction it is
necessary that the associated Jacobian Jα is superspecial [10, 13, 41].

Proposition 1 ([24]). Consider the hyperelliptic curve Cα/Fp of genus 2 with
superspecial Jacobian Jα, and let β = β0 + iβ1, γ = γ0 + iγ1 ∈ Fp2 such that
γ2 = α and β2 = (α2 − 1)/α. Then Cα is isomorphic over Fp to Cλ,µ,ν where

λ = − (β0γ1 + β1γ0)(β0γ0 + β1γ1)

(β0γ1 − β1γ0)(β0γ0 − β1γ1)
, µ =

(β0γ0 + β1γ1)(β0γ0 − β1γ1)

(β0γ1 + β1γ0)(β0γ1 − β1γ0)
,

and ν = −(β0γ0 + β1γ1)2/(β0γ1 − β1γ0)2.

One can verify that ν = λµ and hence, by Lemma 1, Kλ,µ,ν is elliptic. By
Section 2.7, the isomorphism κ : Cα → Cλ,µ,ν will induce an isomorphism

κ∗∗ : Kgen
α → Kgen

λ,µ,ν . Composing this with M : Kgen
λ,µ,ν → K

Sqr
λ,µ,ν , we obtain

a map Kgen
α → KSqr

λ,µ,ν . The theta constants can be computed using Equation (3)
combined with γ0 and γ1 as

µ1 =
√
λ ·
(
γ2

0 − γ2
1

γ2
0 + γ2

1

)
, µ2 = µ1/λ, µ3 = µ4 = 1. (9)

Mapping points from Eα to Kα. Explicit maps between the Weil restriction
of Eα and Jα are given by Bernstein and Lange [6]. Costello [24, §3] gives this
(2, 2)-isogeny η : Wα(Fp) → Jα(Fp) as a composition of several maps, with
the map Eα(Fp2) → Wα(Fp) implicitly assumed. By extending η with the map
ρSqr◦κ? from Section 2.7 to get η̄ := ρSqr◦κ?◦η, we can map points P ∈ Eα(Fp2)
to η̄(P ) ∈ Kα(Fp). We summarise this in Figure 1.

2.9 Elliptic twists of elliptic Kummer surfaces

We now investigate elliptic Kummer surfaces arising from an elliptic curve Eα
and its twist E−α. We describe how this influences our choice of map η (i.e.,
what constant e we choose) from Section 2.7. To the best of our knowledge, the
discussion on twists in this section does not appear in previous literature.

Definition 2. The elliptic twist of a squared Kummer surface KSqr, denoted
KT is defined as the surface with theta coordinates (−µ1,−µ2, µ3, µ4), where µi
are the theta coordinates of KSqr.
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Eα/Fp2 Cα/Fp Cλ,µ,ν/Fp

Eα × E(p)
α /Fp2 Jα/Fp2 Jλ,µ,ν/Fp2

Wα/Fp Jα/Fp Jλ,µ,ν/Fp

Kgen
α Kgen

λ,µ,ν KSqr
λ,µ,ν(Fp)

κ

κ∗

κ∗

κ∗∗ M

η

ρJac Jac

T T

ρ∗ ρ∗λ,µ,ν ρSqr

Fig. 1. The maps involved when finding the (squared) Kummer surface defined over
Fp corresponding to an elliptic curve defined over Fp2 , including the maps between
Kummers described in this section.

We remark that KT is always isomorphic to KSqr over Fp using the isomorphism

Ω : (X : Y : Z : T ) 7→ (−X : −Y : Z : T ).

The values F,G,H that define KSqr change to F,−G,H for KT . The name
elliptic twist is justified by the following lemma.

Lemma 2. Let Kα/Fp be the elliptic Kummer surface associated to Eα/Fp2 .
Then KTα/Fp is the elliptic Kummer surface associated to E−α, the twist of Eα.
In other words, the following square commutes.

Eα E−α

Kα KTα

η̄

Ω

η̄

Proof. The twist map δ : (x, y) 7→ (−x, iy) maps Eα to E−α. We want to show
that, for P±α ∈ E±α(Fp2),

(ρSqr ◦ κ∗ ◦ η ◦ δ)(Pα) = (Ω ◦ ρSqr ◦ κ∗ ◦ η)(Pα).

Viewing η : Eα(Fp2)→ Jα(Fp) as the composition T ◦ρ◦ψ (where ψ, ρ, T are the
maps given by Costello [24, pg. 8]), we get that η(P−α) = (η ◦δ)(Pα). Therefore,
it suffices to show that for divisors D±α ∈ J±α(Fp) Ω ◦ ρSqr(Dα) = ρSqr(D−α).
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To show this, we observe that, if α 7→ −α, we have β 7→ iβ and γ 7→
iγ. Writing β = β0 + iβ1 and γ = γ0 + iγ1 we have β0 7→ β1, β1 7→ −β0

(similar for γ0, γ1). Looking at the formulæ for the Rosenhain’s in terms of α, β, γ
in Proposition 1, the Rosenhain invariants λ, µ, ν are unchanged by α 7→ −α.

Therefore, by Equation (9), we get that µ1 7→ −µ1 and µ2 7→ −µ2. 8 So,
ρSqr : Jα(Fp) → Kα maps a divisor Dα ∈ Jα(Fp) to (X1 : X2 : X3 : X4) and
ρSqr : J−α(Fp)→ K−α maps D−α ∈ J−α(Fp) to (−X1 : −X2 : X3 : X4). ut

Note that the proof for Lemma 2 shows that both Cα and C−α map to the same
Rosenhain curve Cλ,µ,ν . However, the choice of constants µi defining the Kummer
surface Kα not only depends on λ, µ, ν, but also on the concrete values of βi and
γi. This choice impacts the design slightly: the map κ : Cα → Cλ,µ,ν is given by
five values (a, b, c, d, e). The constants a, b, c, d can be computed over Fp, however,
e is defined as the square root of e2 ∈ Fp, and therefore lies in Fp only half the
time. Whenever e ∈ Fp2 \Fp, the map κ is only defined over Fp2 , even though the
curves themselves are isomorphic over Fp. As e only determines the y-coordinate
of the image, this does not affect the composition map η : Eα → Kα, however
it impacts the difficulty of implementation and efficiency of η. Fortunately, the
following result shows that we can always avoid this.

Lemma 3. Denote by κ : Cα → Cλ,µ,ν the map given by (a, b, c, d, e) and by κT :
C−α → Cλ,µ,ν the analogous map for the elliptic twist given by (aT , bT , cT , dT , eT ).
Then, either κ or κT is defined over Fp. In other words, e ∈ Fp if and only if
eT /∈ Fp, and vice versa.

Proof. As both (a, b, c, d) and (aT , bT , cT , dT ) are always defined over Fp by
definition, we only need to show that e2 and (eT )2 differ by a non-square in Fp.
Direct computation shows that

e2 = −
(
γ0

γ1

)6

· eT 2
,

where −
(
γ0
γ1

)6

is a non-square. 9 This ensures that precisely one of e2 or eT
2

has a square root over Fp, which proves that statement. ut

Lemma 3 allows us to always choose η defined over Fp by taking it to be Eα → Kα
or the equivalent map Eα → E−α → KTα → Kα.

2.10 Scholten’s construction is gluing

Let Jα be as in Section 2.5. The constructed Jα is (2, 2)-isogenous over Fp2 to

the product of elliptic curves Eα×E(p)
α (where E

(p)
α is the Frobenius conjugate),

say
ϕα : Jα → Eα × E(p)

α .

8For a Magma version of this proof, see TwistProof.m.
9See TwistProof.m for a proof of this in MAGMA.
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Such an isogeny is often called a splitting and its dual is the gluing of Eα and

E
(p)
α over some two-torsion. Note that the projections Eα × E

(p)
α → Eα and

Eα×E(p)
α → E

(p)
α are not defined over Fp (otherwise this would have implications

on the quantum security).

Lemma 4. Let α = α0 + α1i ∈ Fp2 with α0, α1 6= 0. Then the Weil restriction

Wα is (2, 2)-isogenous over Fp to some Jα/Fp. For the right gluing, Eα × E(p)
α

is (2, 2)-isogenous to the extension of this Jα over Fp2 .

We summarise this observation in Figure 2.

Eα × E(p)
α Jα/Fp2 KSqr/Fp2

Eα

Wα Jα/Fp KSqr/Fp
(2,2) ζ◦κ∗

glue

Weil

Conj

T T∗

Fig. 2. A clearer picture of the Weil Restriction maps

3 Using pairings on Kummer surfaces

Pairings on abelian varieties have proven to be essential in the construction and
cryptanalysis of many cryptographic primitives [1, 36, 39]. Most relevant to this
article is their use in isogeny-based cryptography, in particular recent work [22,
25, 42] that shows how the degree 2 Tate pairing can be used to deterministically
sample specific 2n-torsion points on elliptic curves. The aim of this section is
to generalise this result to Kummer surfaces in order to enable efficient point
compression. To this end, we introduce the general theory to describe the image
of isogenies using pairings in Section 3.1, we apply this to Jacobians in genus
2 in Section 3.2 to generalise [22, Thm. 2] to Kummer surfaces. We then show
how to concretely compute such pairings of degree 2 in Section 3.4.

We remark that, though our target application is compression of SQIsign
signatures, the possible applications of generalised Tate pairings to study the
image of isogenies spread much wider than SQIsign, or even Kummer surfaces10.

10Even pre-quantum elliptic curve subgroup membership testing [40] can be rewrit-
ten in this language.
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3.1 Describing the image of isogenies using pairings

In a step towards generalising the elliptic curve techniques for deterministic
point sampling to Kummer surfaces, we describe a general method to decompose
A/ Im ϕ̂ in terms of kerϕ for any isogeny ϕ : A → B between abelian varieties.
A similar interpretation of the Tate pairing was independently given by Robert
[54]. In this work, we apply such techniques in concrete cases and decompose
[2]JC , resp. [2]KC using similar methods as used before to describe [2]E. Such
techniques allows us to sample points with improved precision in JC \ [2]JC , and
in general this technique has proven useful for isogeny-based cryptography.

In dimension 1. Before stating the general theorem, let us recall the following
classical result in dimension 1 on the image under doubling [2]E.

Theorem 1 (Thm. 4.1, [37]). Let E/k : y2 = (x − λ1)(x − λ2)(x − λ3) be
an elliptic curve. Then P ∈ [2]E if and only if

(x− λ1), (x− λ2) and (x− λ3) are all squares.

This can be rephrased and specialised in terms of reduced Tate pairings [22,
Thm. 2]: A point P ∈ E is in [2]E if and only if the reduced Tate pairing with
all three 2-torsion points (λi, 0) is trivial. Furthermore, points P ∈ E \ [2]E lie
above Li = (λi, 0) if t2(Li, P ) = 1 and t2(Lj , P ) = −1 for j 6= i.

General Theorem. The above result is a particular instantiation of a much
more general result on generalised Tate pairings, associated to any isogeny ϕ :
A → B between abelian varieties. We first sketch this general framework, and
detail how the dimension 1 example is a specific case, before applying it in the
dimension 2 setting.

As shown by Bruin [11], to any separable isogeny ϕ : A→ B between abelian
varieties over Fq (q a prime power) such that the kernel of ϕ̂ is annihilated by
[q − 1], we can associate a perfect pairing

kerϕ× coker ϕ̂→ F∗q .

We refer to the above pairing as the generalised ϕ-Tate pairing. This pairing has
been studied in the context of cryptography [15] for elliptic curves.

As Robert [54] notes, perfectness implies that we can precisely identify Im ϕ̂
using kerϕ and this pairing, in the following sense.

Lemma 5 (Cor. 5.2, [54]). Let tϕ denote the (reduced) ϕ-Tate pairing. Then

Q ∈ Im ϕ̂ ⇔ tϕ(P,Q) = 1 for all P ∈ kerϕ.

Beyond this, we can decompose the cosets of coker ϕ̂ = A/ Im ϕ̂ using the profile
of a point Q ∈ A.
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Definition 3. Let tϕ denote the (reduced) ϕ-Tate pairing and let Q ∈ A. The
profile of Q is the array of evaluations of tϕ(P,Q) in all points P ∈ kerϕ. We
denote the profile of Q for the reduced ϕ-Tate pairing by tkerϕ(Q).

By Lemma 5, the generalised ϕ-Tate pairing is constant on each coset, so the
profile of a point Q determines precisely in which coset of A/ Im ϕ̂ it lies.

By bilinearity of the Tate pairing, the profile of Q + Q′ is the pointwise
multiplication of their profiles. Furthermore, any basis of kerϕ is enough to
determine the full profile, and we therefore use the smaller array of evaluations
(tϕ(Pi, Q))i for Pi a basis of kerϕ.

When we take ϕ = [2] to be the multiplication-by-2 map on an elliptic curve
E, we recover the dimension 1 example given in the previous section. If, instead,
we take ϕ : E → E/〈Li〉 be the isogeny with kernel generated by Li (as defined
in the paragraph following Theorem 1), we have that coker ϕ̂ consists precisely
of two cosets: O + [2]E and Li + [2]E. Then tϕ(Li, P ) = 1 if and only if P
is above Li, for P /∈ [2]E. As tkerϕ gives information only with respect to the
smaller set kerϕ about the coarser cosets A/ Im ϕ̂, we see that tkerϕ gives a
subset of information of tker[degϕ]. However, this information is given with fewer
computations, and may in some settings give enough information.

As an example, the technique, used in SIDH/SIKE, CSIDH and SQIsign, to
sample points on Montgomery curves whose order is divisible by 2f by sampling a
non-square x-coordinate xP can be rephrased as sampling points in the coset E\
Im ϕ̂, where ϕ : E → E/〈(0, 0)〉, given that the reduced Tate pairing tϕ((0, 0), P )
is exactly the Legendre symbol of xP .

The cokernel as a group. The group structure of cokerϕ for a separable
d-isogeny ϕ with d prime and kernel of dimension n is the same as that of the
kernel: both are isomorphic to µnd . Assuming µd is rational, both are isomorphic
to (Z/dZ)n by some choice of primitive root ζd ∈ Fq. Using tkerϕ, this result
becomes intuitive.

Lemma 6. For principally polarised abelian varieties A,B over Fq, let ϕ : A→
B be a separable d-isogeny with d prime and rational kernel generators, such
that the generalised Tate pairing tϕ is perfect. Then

kerϕ
∼−→ coker ϕ̂(Fq)

∼−→ µnd ,

where µd are the d-th roots of unity in Fq.

Proof. Per definition of ϕ, its kernel is a Z-module of rank n. Let K1, . . . ,Kn ∈
A(Fq) be a basis of kerϕ. The map tkerϕ : coker ϕ̂(Fq)→ µnd given by

tkerϕ : P 7→ (tϕ(K1, P ), . . . , tϕ(Kg, P )

gives a surjective map A(Fq) → µnd , with kernel Im ϕ̂(Fq) [54, Cor. 5.2]. Hence,

the map induces an isomorphism A(Fq)/ Im ϕ̂(Fq) = coker ϕ̂(Fq)
∼−→ µnd . ut
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This result is used in some cases in pairing-based cryptography, where the
Tate pairing of level n can sometimes be viewed as a pairing E[n]×E[n]→ F∗q ,
and in general is useful in practical applications of profiles of generalised Tate
pairings, as we see in next sections.

3.2 Decomposing JC in dimension 2 using profiles

This section uses the Tate pairing for the multiplication-by-2 map [2] on JC to
decompose JC into cosets JC/[2]JC , following the general theory developed in
Section 3.1. In contrast to elliptic curves, for our dimension 2 setting we require
this decomposition to identify the right coset, rather than simply identifying
JC \ [2]JC (that is, all but the trivial coset). For the rest of this work, we assume
Jacobians whose complete 2-torsion is rational, so that Lemma 6 applies over
the base field.

We demonstrate how [22, Thm. 2] can be generalised to dimension 2 (or more
generally to any dimension). This aligns with a description of [2]JC sketched
by Cassels and Flynn [12, Ch. 10]. The core idea is to identify the coset of
Q in JC/[2]JC using the profile tker[2] (see Definition 3) of Q. As we are able
to compute these pairing values on KC too, both for the general and squared
models, we get an analogous result for Kummer surfaces.

Theorem 2. Let P ∈ KC and let {Li,j}1≤i<j≤6 denote the fifteen points of order
2. Then P ∈ [2]KC if and only if tker[2](P ) is trivial, e.g.

t2(Li,j , P ) = 1 for all 1 ≤ i < j ≤ 6.

Proof. This follows from Lemma 5, or more directly, the non-degeneracy of the
Tate pairing implies P ∈ [2]KC if and only if t2(K,P ) = 1 for any K ∈ KC [2]. ut

By bilinearity of the Tate pairing, given a basis B1, . . . , B4 for KC [2] and
writing Li,j = a ·B1 + b ·B2 + c ·B3 +d ·B4 for a, b, c, d ∈ {0, 1}, we can compute
t2(Li,j , P ) in terms of the four Tate pairings t2(Bi, P ) as

t2(Li,j , P ) = t2(B1, P )a · t2(B2, P )b · t2(B3, P )c · t2(B4, P )d.

and thus Theorem 2 can more succintly be given as follows.

Corollary 1. Let P ∈ KC and let {B1, B2, B3, B4} be a basis for KC [2]. Then
P ∈ [2]KC if and only if t2(Bi, P ) = 1 for all 1 ≤ i ≤ 4.

Hence, we can quickly identify points in KC \ [2]KC , by sampling a random point
P until t2(Bi, P ) = −1 for some 1 ≤ i ≤ 4.

Remark 2. Let f be such that 2f is the maximal power-of-two torsion on KC(Fp).
It is tempting to think that P ∈ KC\[2]KC if and only if the order of P is divisible
by 2f . However, this implication only works in one direction: Any P with order
divisible by 2f cannot be in [2]KC(Fp) as this contradicts the maximality of f .
However, points in KC \ [2]KC do not necessarily have an order divisible by 2f .
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3.3 Decomposing Jacobians isogenous to Weil restrictions

Consider the superspecial Jacobian Jα that is (2, 2)-isogenous to the Weil re-
striction of a supersingular Eα, and thus, has Rosenhain invariants λ, µ, ν such
that λ · µ = ν. Let m = p+1

2 and let 2f be the largest power of 2 dividing m.
Then, as a group, Jα is isomorphic to

Zm × Zm × Z2 × Z2.

In the following paragraphs, we show how profiles tker[2](P ) identify points P ∈
Zm×Zm whose order is divisible by 2f , e.g. have maximal power-of-two torsion.
This is in general useful for isogeny-based cryptography, and we will rely heavily
on this fact in later sections.

Decomposition into cosets. Let B = (P1, P2, P3, P4) be a basis for JC such
that P1 and P2 generate the subgroup Zm×Zm, and P3 and P4 generates Z2×Z2.
Theorem 2 gives us that P ∈ [2]JC if and only if tker[2](P ) is trivial. We find
that JC/[2]JC decomposes into 16 cosets

aP1 + bP2 + cP3 + dP4 + [2]JC , a, b, c, d ∈ {0, 1}

with the trivial coset [2]JC given by a = b = c = d = 0, and so the group
structure of JC/[2]JC is isomorphic to (Z/2Z)4. As the profile of points in a
coset is constant given the basis B, we can write tB,[2](a, b, c, d) for the profile
associated to the coset aP1 +bP2 +cP3 +dP4 +[2]JC . We compute tB,[2](a, b, c, d)
simply as tker[2](Q) for Q = aP1 + bP2 + cP3 + dP4, given B = (P1, . . . , P4). By
bilinearity of the Tate pairing, addition of these profiles is well-defined.

The three cosets, P3 +[2]JC , P4 +[2]JC and P3 +P4 +[2]JC contain precisely
all points of JC whose order is divisible by 2f−1, besides the trivial coset. Hence,
such points have profile tB,[2](0, 0, c, d) with c, d ∈ {0, 1}.

All 12 other cosets therefore contain precisely all points whose order is divis-
ible by 2f . In particular, the points in Zm×Zm whose order is divisble by 2f are
given precisely by the cosets P1 + [2]JC , P2 + [2]JC and P1 + P2 + [2]JC . That
is, they are identified by profiles tB,[2](a, b, 0, 0) with a, b ∈ {0, 1}. Summarizing,
we get the following theorem, improving on Theorem 2.

Theorem 3. Let P ∈ JC. Let B = (P1, P2, P3, P4) be a basis of JC as given
above. Let tB,[2](a, b, c, d) := tker[2](aP1 + bP2 + cP3 + dP4). Then we get

P ∈ [2]JC ⇔ tker[2](P ) = tB,[2](0, 0, 0, 0),

and
2f - ord(P ) ⇔ tker[2](P ) = tB,[2](0, 0, c, d),

and
2f | ord(P ) ⇔ tker[2](P ) 6= tB,[2](0, 0, c, d).

Furthermore, P ∈ 〈P1, P2〉 with order divisible by 2f if and only if

tker[2](P ) = tB,[2](a, b, 0, 0), with not both a, b = 0.

The above theorem can similarly be adapted to the general Tate pairing ϕ to
decompose cokerϕ using profiles.
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3.4 Computing pairings of degree 2 in dimension 2

The general theory to compute pairings on Jacobians of hyperelliptic curves is
well-developed and a good overview is given by Galbraith, Hess, and Vercauteren
[34]. In this section, we compute pairings of degree 2 on Jacobians and Kummers.

On Jacobians. Let Di,j = (wi, 0) + (wj , 0) be an element of JC of order 2 i.e.,
the divisor on JC with support {(wi, 0), (wj , 0)} where wj are the Weierstrass
values, and DP = (x1, y1) + (x2, y2) any element of JC(Fp). Whenever Di,j and
DP are coprime (i.e., have disjoint support), the Tate pairing 〈Di,j , DP 〉2 is
computed as

T2(Di,j , DP ) = 〈Di,j , DP 〉2 = (wi − x1)(wi − x2)(wj − x1)(wj − x2). (10)

Using resultants, we can express this computation in terms of the Mumford
representations of Di,j and DP , ensuring computations can stay over the base
field. The reduced Tate pairing t2(Di,j , DP ) is then defined as

t2(Di,j , DP ) = 〈Di,j , DP 〉
pk−1

2
2 ,

where k is the embedding degree. Note that, when k = 1, this coincides with
the Legendre symbol of the Tate pairing. When Di,j and DP are not coprime,
we take any random element S ∈ JC such that Di,j is coprime with both S and
DP + S. which allows us to compute t2(Di,j , DP ) as

t2(Di,j , DP ) = t2(Di,j , DP + S)/t2(Di,j , S).

On general Kummers. As in Section 2.1, let Kgen[2] \ {o} = {Li,j}1≤i<j≤6

with pre-images Di,j = (wi, 0) + (wj , 0) ∈ JC , where (wi, 0) ∈ C are the six

Weierstrass points. Then Li,j = (1 : l
(i,j)
2 : l

(i,j)
3 : l

(i,j)
4 ) ∈ Kgen with

l
(i,j)
2 = wi + wj , l

(i,j)
3 = wi · wj ,

and where l
(i,j)
4 can be derived from l2 and l3. We can rewrite the Tate pairing

t2(Di,j , DP ) for i, j 6= 1 in terms of Kummer coordinates Li,j = (1 : l2 : l3 : l4)
and any other coprime Kummer point P = (1 : k2 : k3 : k4) as

〈Li,j , P 〉2 = l23 + k2
3 − (k2l2l3 + k2k3l2) + k2

2l3 + k3l
2
2 − 2 · k3l3. (11)

Whenever i = 1, the point L1,j has the form (0 : 1 : wj : w2
j ) and one can

compute similar formulas for ti,j
11. Whenever Li,j and P are not co-prime, we

add some element Li′,j′ ∈ Kgen[2] to P to obtain the required co-primality.12

11Alternatively, one can find suitable Li′,j′ to compute ti,j(P ) as t2(Li,j +
Li′,j′ , P )/t2(Li′,j′ , P ), where the above formula can be applied as long as both
Li,j + Li′,j′ and Li′,j′ are of the required form.

12As discussed throughout Section 2, the action of a 2-torsion point Li,j on K is
well-defined and given by a matrix Wi,j .
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On Squared Kummers. On squared Kummers, there are three distinct meth-
ods to compute the degree-2 Tate pairing: (a) follow a similar method to that
used for general Kummer surfaces; (b) follow the monodromy approach due to
Robert [52]; and (c) map the Kummer points to partial Jacobian elements and
compute the pairing on the Jacobian. We will write Ti,j(P ) or ti,j(P ) to re-
fer to the unreduced, resp. reduced, Tate pairing of degree 2 between Li,j and
P ∈ KSqr.

(a) using squared Kummer coordinates. The approach used for general Kummers
also works on the squared Kummer surface. Due to the more difficult map from
Jλ,µ,ν to KSqr

λ,µ,ν , we require the use of additional theta functions, beyond the
four coordinate functions X1, X2, X3, X4, to compute such pairings. Specifically,
we require the coordinate functions X8 and X10, as given by Gaudry [35], to
compute all possible Tate pairings of degree 2. However, due to the need for
additional theta functions, the above approach is neither efficient nor elegant.

(b) monodromy approach by Robert. An alternative approach to compute such
a Tate pairing on Kummer surfaces is sketched by Lubicz and Robert [44]. To
compute ti,j(Q), we require the matrix Wi,j representing the translation-by-Li,j
map. For elliptic Kummers, these are given in Appendix A.2. These computations
are explained more generally by Robert [52]; we apply their Algorithm 5.2 to
Kummer surfaces of genus-2 hyperelliptic curves for a fixed pairing Ti,j . See
Appendix B for a detailed explanation.

(c) using the efficient maps to recover u0 and u1. The last method uses the
efficient map to recover u0 and u1 for a point P as given by Equation (6). The
values u0 and u1 allow us to compute the left-side of the Mumford representation
a(x) = x2 +u1x+u0. All pairings ti,j(P ) can then be computed as the resultant
of a(x) with (x−wi)(x−wj). This has the additional advantage that many values
can be re-used to compute multiple pairings ti,j(P ) for the same P , which we
heavily rely on in later sections to compute the profile tker[2](P ).

4 Algorithms for Kummer-based cryptography

The aim of this section is to introduce several tools required to transport isogeny-
based cryptography to Kummer surfaces. Throughout this section, the tools we
develop are largely motivated by our showcasing example: compressed SQIsign
verification between Kummer surfaces. To develop an efficient point compression
algorithm in Section 4.3, we require the following tools.

– For many of our algorithms, we often assume that two points P,Q ∈ KSqr
λ,µ,ν

both arise either from the Jacobian Jλ,µ,ν or from its twist. We can check
this by ensuring CheckOrigin (K,o, P ) = CheckOrigin (K,o, Q).

– To compress the point K defining our (2f , 2f )-isogeny in Section 5, we need

to write K as P + [s]Q for some deterministically sampled P,Q ∈ KSqr
λ,µ,ν [2f ]

and some scalar s ∈ {1, . . . , 2f}. In Section 4.3, we develop an algorithm to
deterministically sample P,Q using pairings on Kummer surfaces.
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– To decompress P,Q, s and compute the kernel generator K we require a
three point ladder – 3ptLadder – which takes as input P,Q, P − Q and s.
The point difference, P − Q, will not be known a priori, and so must be
computed using PointDifference.

We emphasise that these algorithms are more widely applicable beyond the scope
of this work and make a step towards making isogeny-based cryptography using
Kummer surfaces practical.

4.1 Identifying twist points

The rational points on the Kummer surface Kλ,µ,ν(Fp) consist of the points
originally coming from Jλ,µ,ν(Fp) as well as from its twist J Tλ,µ,ν(Fp)13. In other
words, the elements

D = 〈x2 + u1x+ u0, i · (v1x+ v0)〉 ∈ Jλ,µ,ν(Fp2)

also map to Fp-rational points P ∈ KSqr
λ,µ,ν(Fp).

Recognizing if a random point P ∈ KSqr
λ,µ,ν(Fp) is an image point of the original

Jacobian Jλ,µ,ν(Fp) or its twist is essential for many steps in later algorithms. For
example, the algorithm PointDifference, which computes P ±Q given P,Q ∈ K,
requires both P and Q to originate from the same Jacobian in order to return
rational points P ±Q ∈ K(Fp).

The map (ρSqr)−1 : KSqr
λ,µ,ν → Jλ,µ,ν described by polynomials F0, F1, F2 over

Fp (see Equations (5) and (6)) gives us the criteria we need to recognise the

origin of a points on KSqr
λ,µ,ν , as summarised by the following lemma.

Lemma 7. Let KSqr
λ,µ,ν be a squared Kummer surface with o = (µ1 : µ2 : µ3 : µ4),

arising from a hyperelliptic curve Cλ,µ,ν with Weierstrass points (wi, 0). A point

P = (X1 : X2 : X3 : X4) ∈ KSqr
λ,µ,ν(Fp) originates from an element D ∈ Jλ,µ,ν(Fp)

if and only if the following value z is a square in Fp:

z = u0(w3w4 − u0)(w4 + w6 + u1)− ωX1/µ1 ∈ Fp

with u0, u1 as given in Equation (6), and ω in Equation (7). Otherwise, P orig-
inates from an element D ∈ J Tλ,µ,ν(Fp).

Proof. Direct computation shows that the values u0 and u1 are such that the
pre-image DP ∈ J (Fp2) of P has Mumford representation 〈x2 + u1x,+u0,−〉.
As DP maps to P ∈ K(Fp), using Equation (4) we find that u0, u1 and v2

0 must
be rational. Hence, either DP ∈ J (Fp), with v0 ∈ Fp, or DP ∈ J T (Fp), with
v0 = i · α for some α ∈ Fp.

As z = v2
0 (see Equation (8)), when DP ∈ J (Fp), this is therefore a square

in Fp. Conversely, if DP ∈ J T (Fp), we find z = (iα)2 = −α2, which is not a
square for p ≡ 3 mod 4. ut

13This is a different twist than the elliptic twist defined in Section 2.9. The elliptic
twist KT originates from twisting the elliptic curve Eα, whereas this twist originates
from a twist of the hyperelliptic curve Cλ,µ,ν .
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We use this lemma to construct the algorithm CheckOrigin. Given a point P ∈
KSqr
λ,µ,ν , it will output true if P ∈ ρSqr(Jλ,µ,ν(Fp)) or false if P ∈ ρSqr(J Tλ,µ,ν(Fp)).

Algorithm 1 CheckOrigin.

Input: A Kummer surface K = KSqr
λ,µ,ν with zero o = (µ1 : µ2 : µ3 : µ4) and a point

P = (X1 : X2 : X3 : X4) ∈ K(Fp)
Output: true if P ∈ ρSqr(Jλ,µ,ν(Fp)) or false if P ∈ ρSqr(J Tλ,µ,ν(Fp)).
1: X̃ ← CInv(o)(P )

2: Compute u0 ← F1(X̃)/F0(X̃) and u1 ← F2(X̃)/F0(X̃).

3: Compute ω ← G(X̃)/F 2
0 (X̃) and v2

0 ← u0(w3w5 − u0)(w4 + w6 + u1)− ωX̃1.
4: return IsSquare (v2

0)

Remark 3. CheckOrigin is much simpler than the general maps given by theta
functions, described by Gaudry [35], to compute the origin. Previous works [8]
using the general maps would avoid computing the origin as the computations
are too involved, and would simply work their way around such problems. The
above algorithm may therefore also improve, for example, the twist security of
hyperelliptic curve Diffie–Hellman-style protocols.

4.2 Difference of points

Though we want to do arithmetic on the Kummer surfaceK for efficiency, we only
have a pseudo-group law. In particular, to compute P+Q ∈ K or P+[s]Q ∈ K, we
require the knowledge of P,Q and P −Q ∈ K. For many applications, however,
we will only have access to P,Q ∈ K a priori. To overcome this, we develop an
algorithm to compute P ±Q ∈ K, given P,Q ∈ K, defined only up to sign.

Let S = P +Q and D = P −Q, given on the Kummer surface as S = (S1 :
S2 : S3 : S4) and D = (D1 : D2 : D3 : D4). We follow the approach by Renes and
Smith [50, Prop. 4], using the biquadratic forms Bij associated to the Kummer
surface with the property

Si ·Dj +Di · Sj = λijBij(P,Q),

i.e., they are equal up to some projective constant λij ∈ Fp. Writing Bij for
Bij(P,Q), we get six degree-2 forms fi,j in variables x1, x2, x3, and x4 for
1 ≤ i < j ≤ 4 given by

fi,j(xi, xj) = Bjj · x2
i − 2Bijxixj +Biix

2
j ,

such that fi,j(Xi, Xj) = 0 if and only if R = (X1 : X2 : X3 : X4) corresponds to
either S or D. Without loss of generality, we set X1 = 1 and solve each subse-
quent equation to determine a solution R = (X1 : X2 : X3 : X4) to this system of
equations corresponding to either S or D. In this way, we can deterministically
find R = P ± Q given P and Q. In practice, we compute the greatest common
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divisor of two polynomials of degree-2 to derive the shared root between e.g. f1,3

and f2,3, which corresponds to the root X3. In our implementation, we specialise
the inversion-free Euclid algorithm from [20] to polynomials of degree-2 to get a
precise cost for such a computation. The resulting algorithm PointDifference is
optimised to reduce finite field arithmetic.

Algorithm 2 PointDifference
Input: A Kummer surface K with two points P,Q ∈ K.
Output: A deterministic point R = (X1 : X2 : X3 : X4) ∈ K, with R = P ±Q.
1: for i, j ∈ [1..4] with i ≤ j do
2: Ai,j ← BKi,j(P,Q)
3: for 1 ≤ i, j ≤ 4 with i < j do
4: fi,j ← Aj,jx

2
i − 2Ai,jxixj +Ai,ix

2
j

5: Write f1,2(1, x2) as (x2 − α1)(x2 − α2) with α1 > α2.
6: Write gcd(f1,3(1, x3), f2,3(α2, x3)) as (x3 − α3)
7: Write gcd(f1,4(1, x4), f2,4(α2, x4)) as (x4 − α4)
8: return R = (1 : α2 : α3 : α4)

It is possible to return both S and D (without knowing which one is which)
by using the other root α1 of f1,2(1, x2). The extra cost for this is only two extra
gcd computations. This version of the algorithm is used in later sections, which
we show by setting a flag both to true.

On the Squared Kummer surface. The above approach works well on the
canonical Kummer surface Kcan, as the bilinear forms are symmetric and effi-
ciently computable for this surface. However, as explained well by Renes and
Smith [50], this is not the case on KSqr which has costly equations for Bij . Nev-
ertheless, there exists another Kummer surface model, called the Intermediate
Kummer surface KInt, which has elegant bilinear forms and is related to KSqr

via a Hadamard map KSqr H−→ KInt. Therefore, rather than working with the
inefficient biquadratics of KSqr we simply use the efficient isomorphisms

KSqr H−→ KInt H−→ KSqr.

That is, we map P and Q to H(P ) and H(Q) on KInt, compute the point difference
R of H(P ) and H(Q) using PointDifference on KInt, and map back R 7→ H(R) ∈
KSqr to find the required H(R) = P ±Q.

4.3 Point sampling with certain profile

A well-known trick [25] to sample points on Montgomery curves EA/Fp : y2 =
x3+Ax2+x with all available 2f -torsion, is to sample random non-square x ∈ Fp
until x3 + Ax2 + x is square. This is an application of Theorem 1, as x being
non-square is equivalent to t2((0, 0), (x,−)) = −1, cleverly using the well-chosen
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Weierstrass point (0, 0) on EA to make the Tate pairing efficient and, more
importantly, independent from EA

14.
In a similar way, the profiling technique from Section 3 can be used to sample

random points on Kummer surfaces with specific profiles and can be applied to
efficiently compress a point K of order 2f on elliptic Kummer surfaces, as we
can deterministically sample points P,Q such that their pre-images DP and DQ

span the Z/2f × Z/2f subgroup containing the pre-image of K. By applying
PointCompression to P,Q and K, we find a scalar s such that K = P + [s]Q.

Naive Point Sampling. We first sample P as a deterministic random element
of KSqr, and compute the profile tker[2](P ) until tker[2](P ) is as predescribed.
We then similarly sample Q deterministically random until tker[2](Q) is as pre-
described and, additionally, different from tker[2](P ). We then multiply by the

right cofactor to ensure both P and Q have order 2f .

Elegant Point Sampling. As a generic element DP of the Jacobian JC can
be obtained by two curve points P1 = (x1, y1), P2 = (x2, y2) on C(Fp), we
can sample deterministic quasi-random points on K by sampling random points
Pi on C, and mapping them to K. We fix P2 = (wi, 0) to be a Weierstrass
point of C, so that we get quasi-random elements DP = (P1) + (P2) ∈ JC with
Mumford representation DP = 〈(x − x1)(x − wi),−〉. The profile tker[2](DP ) =
(t2(Dk,m, DP ))1≤k,m≤6 is completely determined by products of the Legendre
symbols of (x1 − wj) and (wi − wj) for 1 ≤ j ≤ 6. By Equation (10),

T2(Dk,m, DP ) = (wi − wk)(wi − wm)(x1 − wk)(x1 − wm). (12)

Adapting the main theorem of Ohashi [47], we derive the quadratic residues of
wi − wj for Cλ,µ,ν as in Scholten’s construction.

Lemma 8. Let Cλ,µ,ν be a superspecial hyperelliptic curve of genus 2 with Rosen-
hain invariants λ, µ, ν, associated to a supersingular elliptic curve Eα through
Scholten’s construction. Then,

λ, 1− µ, 1− ν, λ− µ, µ− ν are squares in Fp,

and
µ, ν, 1− λ, ν − λ are non-squares in Fp.

Proof. First, λ = µ1/µ2 is a square and, per technical details of Scholten’s
construction, the quadratic reciprocity of µ is the opposite of λ. This proves
both µ and ν = λµ are non-squares. The quadratic reciprocities of 1 − µ, 1 −
ν and λ − µ are identical through their relation to the theta constants (see
Section 2.5). By direct computation, λ − µ has the same quadratic reciprocity
as (β2

0 + β2
1) · (γ2

0 + γ2
1) = n(β)n(γ), and γ, β are squares [24, Lemma 1]. For

14This allows precomputation of the quadratic residues of a pre-determined set of
x-values, which allows particularly efficient sampling of 2f -torsion points.
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1 − λ, observe by [35, §7.5] that the quadratic reciprocity of λ − 1 is that of
(ν − 1) · (µ− 1) and thus 1− λ is non-square. Then, combining these results, we
find that µ− ν = µ · (1− λ) is square, and ν − λ = −λ · (1− µ) non-square. ut

Efficient point sampling. By fixing P2 = (wi, 0) for some index i, we know
the quadratic residues of (wi − wj) a priori. Thus, to sample a point with the
right profile, we do the following:

1. Sample a random x1 ∈ Fp until x1(x1− 1)(x1− λ)(x1−µ)(x1− ν) is square
i.e. P1 = (x1,−) ∈ Cλ,µ,ν .

2. Compute the Legendre symbols of x1, x1 − 1, x1 − µ and x1 − ν.
3. Use these values to determine the profile of DP using Equation (12). Start

over if the profile is not as predescribed.
4. Map DP to KSqr

λ,µ,ν to obtain a point P ∈ KSqr
λ,µ,ν of pre-described profile.

We can go one step further: instead of sampling a random x1 ∈ Fp, for the fixed
system parameter p, we precompute a list Lb0,b1 of small Fp-values x, where x
has a Legendre symbol b0 ∈ {1,−1} and x− 1 a Legendre symbol b1 ∈ {1,−1}.
Thus, Step 3 only requires the computation of the Legendre symbol of x−µ and
x− ν to derive the full profile tker[2](P ).

The value t2(DP , D2,3) is the Legendre symbol of x1(x1 − 1)wi(wi − 1) and
thus the specific element t2,3(P ) of the profile tker[2](P ) is completely precom-
putable by precomputing the sets Lb0,b1 . Thus, to find a point with a given profile
T = (t′i,j)1≤i<j≤6, we can find the associated list Lb0,b1 that matches up to t′2,3 =
t2,3(P ). We then go through the x ∈ Lb0,b1 until we find P1 = (x, y) ∈ Cλ,µ,ν ,
compute the Legendre symbols of x − µ and x − ν, and derive tker[2](DP ). If

tker[2](DP ) = T , we map DP 7→ P ∈ KSqr
λ,µ,ν . This computes a point on K using

one square root (to get y) and two Legendre symbols, plus the multiplications

required to map to KSqr
λ,µ,ν using Equation (4). With no loss in performance, we

fix P2 = (w4, 0). This is summarised in Algorithm 3, where DeriveProfileL
determines tker[2](P ) using Equation (12) given the Legendre symbols of x − µ
and x− ν for x ∈ Lb0,b1 .

4.4 Point Compression

We now describe how to perform point compression for points on Kummer sur-
faces. More precisely, we show how to compress a point K of order 2f to a scalar
s ∈ Z/2fZ, where P + [s]Q and P,Q ∈ K[2f ] are deterministically sampled
points. This is useful in cryptographic settings where K is sent over a public
channel, as we can send s instead of K thus reducing the communication cost.
As long as the receiver deterministically arrives at the same points P,Q, they
can recompute the same K = P +[s]Q given only s. With our target application
in mind, we will restrict to elliptic Kummer surfaces Kα, though the theory is
more widely applicable.

Using Section 4.3, we may assume two elements DP , DQ ∈ JC [N ] that span
a subgroup ZN × ZN with N = 2f and P,Q ∈ KC [N ] their images. We want to
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Algorithm 3 Improved point sampling on squared Kummer surfaces

Input: A squared Kummer surface KSqr
λ,µ,ν , a target profile T , and a precomputed list

of Fp-values L = [x1, x2, . . .] such that t2,3(DP ) = T2,3 if (xi,−) ∈ Cλ,µ,ν(Fp).
Output: A point P ∈ KSqr

λ,µ,ν with profile tker[2](P ) = T .
1: for x ∈ L do
2: RHS← x(x− 1)(x− λ)(x− µ)(x− ν)
3: if IsSquare(RHS) then
4: y ← Sqrt(RHS), γ1 ← IsSquare(x− µ), γ2 ← IsSquare(x− ν)
5: tker[2](DP )← DeriveProfileL(γ1, γ2)
6: if tker[2](DP ) = T then
7: u0 ← x · w4, u1 ← −(x+ w4), v2

0 ← (w4/(x− w4))2 · RHS
8: X1 ← µ1 ·

(
u0(w3w5 − u0)(w4 + w6 + u1)− v2

0

)
9: X2 ← µ2 ·

(
u0(w4w6 − u0)(w3 + w5 + u1)− v2

0

)
10: X3 ← µ3 ·

(
u0(w3w6 − u0)(w4 + w5 + u1)− v2

0

)
11: X4 ← µ4 ·

(
u0(w4w5 − u0)(w3 + w6 + u1)− v2

0

)
12: return P = (X1 : X2 : X3 : X4)

compress a given point K ∈ KSqr, whose pre-image on J Sqr
λ,µ,ν is in the subgroup

〈DP , DQ〉. In general, this is feasible as long as we can solve a discrete logarithm
in base N , which is simple in our specific case N = 2f . Thus, after finding
preimages for the points P,Q and K on JC , we can solve the discrete logarithm
on JC by adapting algorithms from [48] to obtain s. We then compute both
D,S = P±Q,P∓Q and recompute bothKD = 3ptLadder(P,Q,D, s) andKS =
3ptLadder(P,Q, S, s). One of KD and KS will then equal K. The compression
is thus the bit s plus an additional bit to indicate the use of D or S.

Algorithm 4 PointCompression
Input: A Kummer surface K, deterministically generated points P,Q of order N and

a point K of order N such that DK ∈ 〈DP , DQ〉 ⊂ JC .
Output: A value s ∈ [1..N ] and b ∈ {0, 1} such that K = 3ptLadder(P,Q,Db, s).
1: DP ← ρ−Sqr(P ), DQ ← ρ−Sqr(Q), DK ← ρ−Sqr(K).
2: s← DiscLog(K,P,Q)
3: D0, D1 ← PointDifference(P,Q, both = true)
4: K0 ← 3ptLadder(P,Q,D0, s)
5: if K0 = K then
6: return s, 0
7: return s, 1

We remark that to use PointCompression, we need to know that DK ∈
〈DP , DQ〉 before running the algorithm. The results from Section 3 allow us
to do this as long as we can compute the pairing tN . Decompression requires
the value s and a single bit to determine whether to use D or S in 3ptLadder.
We then recompute K by deterministically sampling P,Q, recomputing P − Q
as either D or S, and deriving K = 3ptLadder(P,Q, P − Q, s), as shown in
algorithm PointDecompression.
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Algorithm 5 PointDecompression
Input: A Kummer surface K, deterministically generated points P,Q of order N , a

scalar s and bit b ∈ {0, 1}.
Output: A point K of order N on K.
1: D0, D1 ← PointDifference(P,Q, both = true)
2: return 3ptLadder(P,Q,Db, s)

Remark 4. Using the elegant sampling method, we essentially find elements
DP , DQ ∈ JC before we map these down to P,Q ∈ KSqr. To compress K ∈ KSqr,
we therefore do not need to find pre-images DP and DQ, as we already have
these from this approach to sampling points.

5 (2, 2)-isogenies on Kummer surfaces

This work aims to showcase Kummer surfaces as objects that can lead to prac-
tical isogeny-based cryptography. Central to this, therefore, is an understanding
of isogenies between Kummer surfaces. This section describes the known and
new theory of isogenies between squared Kummer surfaces. In particular, let
J /Fp be the Jacobian of a genus 2 curve in Rosenhain form, with corresponding
squared Kummer surface KSqr defined over Fp.

In Section 5.1, we discuss (2, 2)-isogenies on (squared) Kummer surfaces,
described as pairs of 2-torsion points Li,j , Lk,` on KSqr whose preimages Di,j ,
Dk,m generate a (2, 2)-subgroup of J [2]. For each of these kernels, in Section 5.2,
we give efficient formulae for computing the corresponding (2, 2)-isogeny defined
over Fp. For the construction of efficient cryptographic protocols, we require the
isogenies to be defined over the base field Fp. In Section 5.3, we describe how this
can be achieved for certain isogenies, which will be sufficient for our application.

Comparison with other works. Computing (2, 2)-isogenies between Kummer
surfaces has been studied by various other works. Cassels and Flynn [12, Ch. 9]
study (2, 2)-isogenies between general Kummer surfaces, whilst Dartois, Maino,
Pope, and Robert [27] use the theta model to give efficient formulæ for computing
(2, 2)-isogenies between canonical Kummer surfaces, later improved by [53, §8].
In the latter work, the authors also provide a constant-time implementation of
their algorithm in Rust. In constrast, in Section 5.2 we focus instead on deriving
isogenies between squared Kummer surfaces.

5.1 From subgroups to (2, 2)-isogenies

Consider an (N,N)-subgroup G ⊆ J1[N ] (i.e., a group G = 〈DR, DS〉 generated
by two N -torsion points DR, DS ∈ J1[N ] with eN (R,S) = 1, where eN is the
N -Weil pairing). Any (N,N)-isogeny between Jacobians of genus 2 curves is a
surjective finite morphism Φ : J1 → J2 = J1/G, with kernel a (N,N)-subgroup
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G ⊆ J1[N ], and where Φ(O1) = O2. Any (N,N)-isogeny Φ descends to a mor-

phism of squared Kummer surfaces ϕ : KSqr
1 → KSqr

2 , such that the following
diagram commutes:

J1 J2

KSqr
1 KSqr

2

Φ

ρSqr ρSqr

ϕ

With our target application in mind, we focus in particular to the case N = 2. By
abuse of notation, we then call ϕ a (2, 2)-isogeny of squared Kummer surfaces,

whose kernel is given by the image of G in KSqr
1 .

To construct such (2, 2)-isogenies, we must understand how the map ϕ is
derived from two 2-torsion points in KSqr[2], described in Section 2.4. As long
as {i, j}∩{k, `} = ∅, two points Li,j , Lk,` ∈ K[2] will generate a (2, 2)-subgroup,
and thus give us a kernel of a (2, 2)-isogeny15. These fifteen (2, 2)-subgroups are
given by 〈Li,j , Lk,`〉 =

{
o, Li,j , Lk,`, Li,j + Lk,`

}
, where

(i, j, k, `) ∈

 (1, 2, 3, 4), (1, 2, 4, 6), (1, 2, 3, 6), (2, 3, 5, 6), (1, 3, 5, 6),
(1, 6, 3, 4), (2, 6, 3, 4), (2, 3, 4, 5), (1, 3, 4, 5), (1, 4, 3, 6),
(2, 4, 3, 6), (2, 3, 4, 6), (1, 3, 4, 6), (1, 4, 3, 5), (2, 4, 3, 5)


Note here that Li,j + Lk,` = Lm,n where {m,n} = {1, 2, 3, 4, 5, 6}\{i, j, k, `}.
This gives fifteen corresponding (2, 2)-isogenies given by ϕijk` : KSqr

1 → KSqr
2 =

KSqr
1 /〈Li,j , Lk,`〉.

5.2 Isogenies defined over Fp
We first analyse the general case, where the (2, 2)-isogenies are defined over Fp.
For each (2, 2)-subgroup G, we associate a morphism α : KSqr

1 → KSqr
1 induced

by a linear map on A4 defined by a matrix A whose entries lie in {0,±1,±i},
where i is the root of x2 + 1 ∈ Fp[x], such that the corresponding (2, 2)-isogeny
ϕ is given by

ϕ := S ◦ α ◦ CInv(A:B:C:D) ◦ H,
where the maps S, C and H are as defined in Section 2.6. The matrix A for each
(2, 2)-subgroup is specified in [21, Appendix A].

Field of definition of the (2, 2)-isogeny. For KSqr defined over Fp, the maps
H and S are defined over Fp. Let Fp2 = Fp(i), where i is as defined above. The
linear map α is defined over Fp2 . When A contains entries in {0,±1}, however,
it is defined over Fp. This is the case for kernels 〈Li,j , Lk,`〉, where

(i, j, k, `) ∈ {(1, 2, 3, 4), (1, 2, 4, 6), (2, 3, 5, 6), (1, 6, 3, 4), (2, 3, 4, 5), (1, 4, 3, 6)} .
15This is equivalent to a quadratic splitting [57] of the curve equation as used to

compute Richelot isogenies.
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The scaling map CInv(A:B:C:D), however, requires the computation of (A : B :
C : D) from o = (µ1 : µ2 : µ3 : µ4) which in turn requires at most three square
roots (and a handful of additions) in Fp, using the fact that

(A2 : B2 : C2 : D2) = H(o).

In some cases, however, (A : B : C : D) can be computed more efficiently without
taking square roots.

For the kernel 〈L1,2, L3,4〉, the map α is the identity, and so the corresponding
(2, 2)-isogeny is given by

ϕ = S ◦ CInv(A:B:C:D) ◦ H = CInv(A2:B2:C2:D2) ◦ S ◦ H,

where we swap S and C to avoid taking square roots, so ϕ is defined over Fp.
For kernels 〈Li,j , Lk,`〉, where

(i, j, k, `) ∈
{

(2, 3, 4, 5), (1, 3, 4, 5), (1, 4, 3, 6), (2, 4, 3, 6),
(2, 3, 4, 6), (1, 3, 4, 6), (1, 4, 3, 5), (2, 4, 3, 5)

}
,

the required square roots can be extracted from the 4-torsion points lying above
the kernel points. More precisely, let R,S be such that [2]R = Li,j and [2]S =
Lk,`, and let h(P )i be the i-th coordinate of H(P ). For the sake of clarity, we sup-
pose that Li,j and Lk,` are of the form (1: ? : 0 : 0) and (1: 0 : ? : 0), respectively.
The other cases follow similarly.

We compute the scaling value (1/A : 1/B : 1/C : 1/D) using the points lying
above the kernel by noting that

A

B
= c1

h(R)1

h(R)2
,
A

C
= c2

h(S)1

h(S)3
, and

C

D
= c3

h(R)3

h(R)4
, (13)

for some constants ci ∈ {1,−i}. From this, we get (1/A : 1/B : 1/C : 1/D) by(
h(R)2h(S)3h(S)3h(R)4 : c1h(R)1h(S)3h(S)3h(R)4 :

: c2h(R)2h(S)1h(S)3h(R)4 : c2c3h(R)2h(S)3h(S)1h(R)3

)
.

We see that (1/A : 1/B : 1/C : 1/D) requires no inversions, and only needs oper-
ations in Fp or Fp2 , assuming we have Fp- or Fp2 -rational 4-torsion (respectively)
and depending on the constants ci, which are given in Appendix D.

5.3 (2, 2)-isogenies defined over Fp

To obtain efficient protocols, we are interested in (2, 2)-isogenies that are defined
over Fp. Such isogenies arise from kernels such that α is defined over Fp and
where the scaling point can be computed using Fp-operations, i.e., the constants
ci involved lie in Fp and we have Fp-rational points R, S lying above Li,j , Lk,`,
respectively.
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Assuming we have rational 4-torsion points lying above, the isogeny ϕ is
defined over Fp for kernels 〈Li,j , Lk,`〉 where

(i, j, k, `) ∈ {(1, 2, 3, 4), (2, 3, 4, 5), (1, 4, 3, 6)} .

These kernels coincide precisely with the isogenies derived by Costello [24]
which we will require in Section 7 to define SQIsign verification using squared
Kummer surfaces. However, when using elliptic Kummer surfaces KSqr

λ,µ,λµ arising
from Scholten’s construction, the kernels can be generated by a single point
rather than a subgroup of KSqr[2]. We discuss this in more depth in Section 6.

Cost of computing a (2, 2)-isogeny over Fp. The maps H, C, Inv and S

together cost 14M and 8a. For kernel 〈L1,2, L3,4〉 we compute (A2 : B2 : C2 : D2)
as H(o) using 8a, meaning the corresponding (2, 2)-isogeny requires 14M and 16a
to compute. For kernels 〈L2,3, L4,5〉 and 〈L1,4, L3,6〉, we compute the scaling point
(1/A : 1/B : 1/C : 1/D) using the 4-torsion points, as shown in Equation (13),
with (at most) 6M and 16a.

6 (2, 2)-isogenies on elliptic Kummer surfaces

In this section, we specialise to (2n, 2n)-isogenies between elliptic Kummer sur-
faces as derived from Scholten’s construction. In particular, we consider (2n, 2n)-
isogenies generated by a single point P ∈ K[2n] that arise from 2-isogenies be-
tween elliptic curves. We refer to such isogenies, induced by isogenies between
elliptic curves, as elliptic isogenies.

Consider the elliptic curve Eα/Fp2 : x(x − α)(x − 1
α ). There are three 2-

isogenies with kernels generated by 2-torsion points D0 = (0, 0), Dα = (α, 0),
D1/α = ( 1

α , 0) ∈ Eα(Fp2)[2]. We obtain the elliptic Kummer surface Kα/Fp
associated to Eα using Scholten’s construction. We first describe the isogenies
ϕi : Kα → K′α that correspond to the elliptic curve isogenies φ : Eα → E′α =
Eα/〈D〉, thus recovering the isogenies given by Costello [24]. In particular, these
elliptic (2, 2)-isogenies can be computed more efficiently than quoted for general
(2, 2)-isogenies between Kummer surfaces arising from theta coordinates [27]. We
then discuss how to use these formulæ to efficiently compute chains of elliptic
isogenies between these Kummer surfaces. This will be key to our application
in Section 7 on SQIsign verification, as there we will need to compute (2n, 2n)-
isogenies.

6.1 Elliptic (2, 2)-isogenies

Let D ∈ Eα[8] be a 8-torsion point such that [4]D ∈ {D0, Dα, D1/α}. We assume
throughout this section that D is Fp2-rational so that the image of D on Kα is
Fp-rational. We remark that as Eα is supersingular, we can ensure there is an
Fp2-rational 8-torsion point by enforcing 8 | #Eα(Fp2) = (p± 1)2.
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Recall that η̄ : Eα → Kα is itself a (2, 2)-isogeny, thus, when we map D down
to the Kummer surface Kα, we obtain a 4-torsion point P := η̄(D). Furthermore,
[2]P completely describes the (2, 2)-isogeny corresponding to the elliptic curve
isogeny φ. We depict this in Figure 3.

In the lemma that follows, we give explicit equations for the 3 possible elliptic
(2, 2)-isogenies corresponding to the 2-isogenies generated by D0, Dα, D1/α on

Eα In particular, we see that the isogenies defined over Fp given in Section 5.3
collapse to the isogenies given by Costello [24] in this special setting when ν = λµ.

Lemma 9 ([24]). Let D ∈ Eα[8] such that [4]D ∈ {D0, Dα, D1/α}, and define
Kα be the corresponding elliptic Kummer surface with identity o. Let P ′ :=
η̄(D) ∈ Kα[4] and P := [2]P ′ ∈ Kα[2], and denote their images under the
Hadamard map by H(P ) = (h1 : h2 : h3 : h4) and H(P ′) = (h′1 : h′2 : h′3 : h′4). Then:

1. If D = D0, then P ∈ {L5,6, L3,4} describes the isogeny given by ϕ0 = CS◦S◦H,
where S = Inv(H(o)).

2. If D = Dα, then P ∈ {L2,3, L1,6} describes ϕα = S ◦ H ◦ CS ◦ H, where

– S = (h2h
′
4 : h1h

′
4 : h2h

′
1 : h2h

′
1), if P = L1,6, or

– S = (h2h
′
3 : h1h

′
3 : h2h

′
1 : h2h

′
1), if P = L2,3.

3. If D = D1/α, then P ∈ {L1,4, L2,5} describes ϕ1/α = S ◦ H ◦ CS ◦ H, where

– S = (h2h
′
4 : h1h

′
4 : h2h

′
1 : h2h

′
1), if P = L2,5, or

– S = (h2h
′
3 : h1h

′
3 : h2h

′
1 : h2h

′
1), if P = L1,4.

We briefly describe how the isogenies given in Section 5.3 that can be defined
over Fp collapse to the isogenies in Lemma 9 in this specific setting.

The isogeny ϕ0 follows directly noting that α is the identity map. For the
isogeny ϕα from Item 2, we have α = H and S = Inv(A : B : C : D), where S is
as in the statement of the lemma. Indeed, observing that for ellpitic Kummer
surfaces we have C = D = 1, we have that H(P ) = (A : B : B : A) and so
h1/h2 = A/B.

When P = L2,3 = (1: 0 : ? : 0), using Equation (13) we have that h′1/h
′
3 = A.

Therefore S = (1: h1/h2 : h′1/h
′
3 : h′1/h

′
3). In the other case, P = (1: 0 : 0 : ?)

and h′1/h
′
4 = A. Therefore S = (1: h1/h2 : h′1/h

′
4 : h′1/h

′
4).

For the isogeny ϕ1/α from Item 3, we find that α(X1 : X2 : X3 : X4) =
H(−X1 : X2 : X3 : X4). We can verify that S = Inv(−A : B : C : D) in a simi-
lar method to above, and so α ◦ CInv(A : B : C : D) = H ◦ CS , as required.

In this way, the isogenies are fully described by a point P , rather than two
points as in the previous sections.

Remark 5. If we only have Fp2-rational 4-torsion on Eα, computing the isogeny
corresponding to Dα or D1/α requires the computation of 3 square roots (in Fp2)
as discussed in Section 5.2.

In what follows, we describe how we compute the codomain of elliptic isogenies,
the Rosenhain invariants of the codomain, and the image of points through the
isogeny. We give explicit counts for each procedure, which refer to the optimised
implementation of each routine found in the accompanying code.
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Computing the codomain of an elliptic isogeny. To compute the image of an ellip-
tic (2, 2)-isogeny ϕ, it suffices to compute the constants defining the codomain,
given by ϕ(o). For isogeny 1, we have that ϕ(o) = H(o), which can be computed
in 8a. For isogenies 2 and 3, we compute the constants by evaluating ϕ at o in
11M and 32a.

Computing the Rosenhain invariants of the codomain. Key to many of the algo-
rithms in Sections 3 and 4 is the knowledge of the Rosenhain invariants of the
curve Cα associated to the Kummer surface Kα. Gaudry [35, §4.2] shows that
for elliptic Kummer surfaces, we have

λ =
µ1

µ2
, µ =

τµ2 − 1

τλµ2 − 1
, ν = λµ. (14)

Thus, to compute the Rosenhain invariants of the codomain, it suffices to com-
pute τ , which we can extract from the 2-torsion points on the Kummer surface
Kα in the following sense. Consider the elliptic isogeny ϕ : Kα → K′α described
by K ∈ Kα[2]. Assuming we have Fp-rational 4-torsion on the domain Kummer
surface, let K ′ be the Fp-rational point such that K = [2]K ′. Then, ϕ(K ′) is a
point of order 2. If it describes ϕα or ϕ1/α, using the description of the 2-torsion
on elliptic Kummer surfaces in Section 2.5, we find that the non-zero coordinates
of ϕ(K ′) will be 1 and τ or 1/τ (after normalisation), respectively. We use one
bit of information to communicate whether we compute τ or 1/τ , which we then
use to compute the Rosenhain invariants of the codomain from Equation (14).

Pushing a point through an elliptic isogeny. This amounts to evaluating the maps
from Lemma 9 at a point (X1 : X2 : X3 : X4). We assume we have the point S
used in the scaling map CS defined in Lemma 9. For isogeny 1, this takes 8M
and 8a. For isogenies 2 and 3, this takes of 8M and 16a.

Eα Eα/〈[4]D〉

Kα Kα/〈[2]η̄(D)〉

φ

η̄ η̄′

ϕ

Fig. 3. The elliptic (2, 2)-isogeny ϕ induced by a 2-isogeny φ.

6.2 Chains of elliptic (2, 2)-isogenies

Following the blueprint from the previous section, assuming Fp2-rational 2n+2-
torsion on Eα we can compute an Fp-rational elliptic (2n, 2n)-isogeny between
elliptic Kummer surfaces, by taking elliptic (2, 2)-isogeny steps and using the
Fp-rational 4-torsion on Kα at each step to compute the point S needed for the
scaling map. We depict this in Figure 4.
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For each isogeny ϕ0, ϕα, and ϕ1/α which maps Kα → K′α, the dual isogeny
is of type 1 in Lemma 9, with kernel 〈L′1,2, L′3,4〉 ⊂ K ′α, namely ϕ′0 : K′α → Kα.
Therefore, to avoid backtracking, after the first step we only take (2, 2)-isogenies
of type 2 and 3, namely ϕα or ϕ1/α. We can therefore use the technique described
in the previous section to compute the Rosenhain invariants corresponding to
the codomain Kummer surface, where we require Fp2-rational 2n+2-torsion on
Eα. For most cryptographic applications, we can enforce rational 2n+2-torsion
by letting 2n+2 | p2 − 1, as Eα is supersingular.

Strategies. Given a point K ∈ Kα[2n+1], we compute the corresponding (2n, 2n)-
isogeny as a chain of elliptic (2, 2)-isogenies of length n. A naive way of doing
this is the following. Set K0 := K and K0 := Kα, and then do the following steps
for each k = 1 to n:

1. Compute the 4-torsion point P ′ = [2n−i]Ki and 2-torsion point P = [2]P ′.
2. From Lemma 9, use P and P ′ to compute the (2, 2)-isogeny ϕi : Ki−1 → Ki

corresponding to P .
3. Compute Ki+1 = ϕ(Ki) and compute the constants defining the codomain

Kummer surface Ki.

The elliptic (2n, 2n)-isogeny ϕ described by K will be ϕn ◦ · · · ◦ ϕ1 : K0 → Kn,
as depicted in Figure 4.

Eα E1 . . . En−1 Eα/〈[4]D〉

Kα K1 . . . Kn−1 Kα/〈[2]η̄(D)〉

φ1

η̄

φ2 φn−1 φn

η̄′

ϕ1 ϕ2 ϕn−1 ϕn

Fig. 4. The elliptic (2n, 2n)-isogeny ϕ induced by the 2n-isogeny φ .

A better way to compute chains of isogenies is to use optimal strategies. This
was first introduced in the context of SIDH/SIKE [28], and has shown to be
adaptable to the Kummer surface setting [17, 21, 27]. By using optimal strate-
gies, we reduce the number of doublings performed by instead storing interme-
diate points obtained during repeated doublings and pushing them through the
isogeny. Taking the cost model M = 0.8S, the cost of doubling is around 1.8x
the cost of computing the image of a point under the isogeny. By shifting the
cost in this way, and noting that in our setting we only need to push a single
Kummer point through the isogeny (rather than two points), we precompute
the optimal strategy to take when computing our chain of (2, 2)-isogenies. Using
these strategies in our implementation, we observe roughly a factor two reduc-
tion in the cost compared to the naive isogeny evaluation. We thank Michael
Meyer for the implementation of this optimization.
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7 SQIsign Verification on Kummer Surfaces

We now have the necessary tools in place to turn to our target application: per-
forming SQIsign on Kummer surfaces. We refer to [16, 29] for more details on
SQIsign. The essential tool is Scholten’s construction, which allows us to con-
struct an elliptic Kummer surface Kα = KSqr

λ,µ,λµ defined over Fp corresponding
to an elliptic curve Eα defined over Fp2 . Beyond Scholten’s construction, we
require the techniques from Sections 3 and 4 to enable efficient compression of
isogenies between Kummer surfaces, and we require the theory from Sections 5
and 6 to efficiently compute elliptic isogenies between Kummer surfaces. We
emphasise that we initiate this construction for supersingular curves Eα which
ensures superspecial elliptic Kummer surfaces Kα.

7.1 Using Scholten’s construction

Let Eα : y = x(x− α)(x− 1
α ) be a supersingular elliptic curve defined over Fp2 .

Let f be the largest positive integer such that 2f | p+ 1. This ensures we have
Fp2-rational 2f -torsion on Eα. A SQIsign response isogeny ϕresp is an isogeny
of degree 2e, with e ≈ 1000. To compute only Fp2 -rational 2-isogenies, SQIsign
verification splits up ϕresp into n = de/fe blocks ϕi : Ei → Ei+1, such that
ϕresp = ϕn ◦ . . . ◦ ϕ1, with kerϕi = 〈Ki〉 for some Ki ∈ Ei(Fp2) of order 2f . We

use Scholten’s construction to compute the superspecial elliptic Kummer KSqr
i

associated to the elliptic curve Ei, giving us the following commuting diagram.

E0 E1 . . . En

KSqr
0 KSqr

1 . . . KSqr
n

φ1 φ2 φn

ϕ1 ϕ2 ϕn

η̄0 η̄1 η̄n

Thus, we can verify a SQIsign response ϕresp : E0 → En by computing the

corresponding chain of elliptic (2f , 2f )-isogenies ϕ : KSqr
0 → KSqr

n , now defined
over Fp. By Lemma 4, one can also see the first and last steps of this diagram
as gluing and splitting isogenies. Thus, ϕresp : E0 → En can similarly be viewed
as a two-dimensional isogeny

Φresp : E0 × E(p)
0 → KSqr

0 → . . .→ KSqr
n → En × E(p)

n .

7.2 Computing a single block

We first describe how to transport the computation of a single block ϕi : Ei →
Ei+1 to a computation involving Kummer surfaces.

We start with a point P on Ei(Fp2) of order 2f . Pushing P down to KSqr
i

through the (2, 2)-isogeny η̄i, the point η̄i(P ) has order 2f−1 on KSqr
i (Fp), which

is the maximal power-of-two torsion on K. As depicted in Section 6, the elliptic
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isogenies ϕi we derive from η̄i(P ) are those given by Lemma 9. It is most cost
effective to use η̄i(P ) to perform f − 2 (2, 2)-isogenies, so that we always have
Fp-rational 4-torsion lying above our kernel generators to compute our isoge-
nies. This elliptic (2f−2, 2f−2)-isogeny ϕi then corresponds to the elliptic curve
isogeny φi with kernel 〈[4]P 〉 ⊂ Ei[2f−2].

In this way, by moving to the Kummers we lose 2 bits in the length of the
isogeny per block. However, this should not have a large effect on performance
as long as we perform SQIsign verification with the same number of blocks, as
observed in AprèsSQI [22].

7.3 Uncompressed SQIsign signatures

Uncompressed SQIsign is a variant of SQIsign where we assume that the kernel
Ki of the i-th block ϕi : Ei → Ei+1 is simply given as (the x-coordinate of)
a point Ki, not using any compression techniques. SQIsign verification then
consists of the recomputation of two isogenies: the above-mentioned response
ϕresp : EA → E2 and (the dual of) the challenge ϕchall : E1 → E2.

The challenge isogeny. As we only have considered efficient (2, 2)-isogenies
in this work, we require the challenge isogeny to be of degree 2λ, where λ is the
security parameter. Hence, we require f ≥ λ to be able to describe the challenge
isogeny again using a single Kummer point K ∈ K. Beyond that, the signer needs
to be slightly more careful in constructing the challenge isogeny: they should
not use the deterministic basis of E1 to hash to a random isogeny ϕchall, as the
verifier will only see the Kummer surface, on which the deterministically sampled
basis is different. So, the signer computes the associated Kummer surface KSqr

2

and hashes to a challenge isogeny ϕchall, then lifts ϕchall to the elliptic curve to
compute the curve E2. Only then can the signer craft a response isogeny between
EA and E2 and push this down to Kummer surfaces.

The response isogeny. With the theory given in Sections 2 and 6, we can use
Scholten’s construction to push the full isogeny ϕresp to give an isogeny between
sqaured Kummer surfaces using Scholten’s construction. We split up ϕresp into
n = de/(f − 2)e isogenies of degree 2f−2 to ensure that we can perform a single
block on the Kummer isogenies when starting with a point of order 2f on the
elliptic curve. The response isogeny is then given as (x1, . . . , xn), where xi is the
x-coordinate of a point Ki generating the kernel of the i-block ϕi.

Remark 6. A minor difference between the isogeny on the elliptic curves and the
Kummer surfaces is that we sometimes end up on the twist of KSqr

i+1, which we
need to correct for. However, we can simply communicate this in the signature at
the cost of 1 bit, and the cost for twist correction is negligible (see Section 2.9).
This does not impact security, as one could lexicographically decide on either
Kummer surface to normalise this choice, and all information required is public.
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7.4 Compressed SQIsign signatures

Compressing SQIsign signatures requires many of the general techniques de-
scribed in Sections 3 and 4. More generally, we apply the theory we developed
to improve the performance of isogeny-based cryptography on Kummer surfaces.

Before describing compressed isogenies between Kummer surfaces, we recall
the two core tools used for compression of elliptic curve SQIsign signatures:

1. An efficient and deterministic method to sample a basis P,Q for E[2f ],
2. A recomputation of Ki as P + [s]Q given a scalar s ∈ Z/2fZ.

AprèsSQI [22] gives a detailed analysis of the cost of both steps, with several
optimizations which we can generalise to the higher-dimensional case.

Using the sampling method from Section 4.3, we can compress the kernel
point K more efficiently than the general method sketched in PointCompression,
by using that, in signing, we can compute the divisor DK on the Jacobian JC
corresponding to K as the image of the kernel point in the associated elliptic
curve. This allows us to forgo Line 1 of Algorithm 4 (which maps the kernel
point K to DK), and instead start the point compression directly on JC , with
the caveat that we must ensure the results stay consistent for the verifier.

Our approach is as follows. Given the element DK ∈ Im(η) ⊂ JC(Fp), the
signer samples D ∈ JC(Fp) by sampling a deterministic sequence of points P ∈
Cλ,µ,ν until D = (P ) + ((wi, 0)) − D∞ has the same profile as DK and sets
DP ← D. The signer then samples DQ similarly until we ensure DK ∈ 〈DP , DQ〉
and computes a, b such that DK = [a][p+1

2f
]Dp+[b][p+1

2f
]DQ. As DK has the same

profile as DP , we are ensured that a is odd and set s = b/a ∈ Z/2f . Thus, the
signer updates DK ← [s−1]DK .

The signer then pushes DK , DP and DQ to KSqr
λ,µ,ν as K, P and Q, and derives

D,S ∈ KSqr
λ,µ,ν using PointDifference. Finally, the signer recomputes both KD ←

xMUL(3ptLadder(P,Q,D, s), 2f ) and KS ← xMUL(3ptLadder(P,Q, S, s), 2f ) to
find which one equals K, and adds this information as a bit b. The compression
of K is then given as the pair (s, b). The verifier can then use the same deter-

ministic sampling procedure to derive P,Q ∈ KSqr
λ,µ,ν , and use efficient Kummer

arithmetic, instead of expensive Jacobian arithmetic, to derive K ∈ KSqr
λ,µ,ν .

7.5 Performance

Our benchmarks, using the same cost model as AprèsSQI, show that SQIsign
verification on Kummer surfaces, in comparison to elliptic curves, takes less than
1.5× the number of Fp-operations for both the uncompressed variant and the
compressed variant. As shown in [4], the core Kummer arithmetic (H, S and
CP ) can be very efficiently vectorised on larger CPUs, where vector units are
typically the most powerful computational units. If such efficient vectorisation
scales to the primes used in SQIsign, this may potentially allow for faster SQIsign
verification on Kummer surfaces than elliptic curves. Furthermore, many of the
proposed algorithms in this work are new, and although we have optimised these
to the best of our knowledge, we assume further optimizations are possible.
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8 Conclusions

We have described, used, and implemented several techniques and tools to ad-
vance the toolbox of isogeny-based cryptography in higher dimensions. Using
Scholten’s construction, we have shown that SQIsign verification can also be
viewed as a very unique (2n, 2n)-isogeny between products of elliptic curves,
with relatively little overhead. With vectorised arithmetic [4], this can poten-
tially outperform SQIsign verification between elliptic curves, and compete with
the two-dimensional approaches over Fp2 [2, 32, 46] in terms of verification speed.

Two-dimensional approaches seem to achieve close-to-optimal results for the
length of the response isogeny, and therefore potential improvements most likely
come from lower-level improvements, such as better isogeny formulas and opti-
mised finite field arithmetic. Our approach, however, can still improve in several
aspects. First, the techniques developed in this work are novel, and closer anal-
ysis might significantly improve their performance. Second, the overall length of
the response isogeny is far off from the theoretical best. Improvements to KLPT,
or other approaches to achieve a shorter response therefore potentially allow for
drastic improvements to verification.

In a more general sense, our work shows that isogeny-based cryptography
in higher dimensions has access to a similar toolbox as isogeny-based elliptic-
curve cryptography. In particular, the use of Scholten’s construction allows to
transport primitives to higher dimensions. Using the tools developed in this
work, it is not out of reach to similarly analyze higher-dimensional analogues of
other isogeny-based cryptosystems.
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A Addition matrices for Kummer surfaces

The addition by points of order 2 is well-defined on Kummer surfaces, and can
be described by a 4 × 4-matrix. This appendix describes these matrices for the
general Kummer surface, as described by Cassels and Flynn [12] as well as for
the squared Kummer surface, which is original work.

A.1 The general Kummer surface

Let Li,j ∈ K[2], whose x-part of the Mumford representation on J is given by
a(x) = x2− (wi +wj)x+wi ·wj . Then a divides the defining polynomial f of C.
Write f = a · h with h =

∑
hix

i, that is, h =
∏
k 6=i,j(x− wk). Then the matrix

Wi,j is given by the composition of the 4× 3 matrix
g2

2h0 + g0g2h2 − g2
0h4 g0g2h3 − g0g1h4 g1g2h3 − g2

1h4 + 2g0g2h4

−g0g2h1 − g0g1h2 + g2
0h3 g2

2h0 − g0g2h2 + g2
0h4 g2

2h1 − g1g2h2 − g0g2h3

−g2
1h0 + 2g0g2h0 + g0g1h1 −g1g2h0 + g0g2h1 −g2

2h0 + g0g2h2 + g2
0h4

w41 w42 w43

 ,

adjoined on the right by the column (g2,−g1, g0, w44)T , with

w41 =− g1g
2
2h0h1 + g2

1g2h0h2 + g0g
2
2h

2
1 − 4g0g

2
2h0h2

− g0g1g2h1h2 + g0g1g2h0h3 − g2
0g2h1h3,

w42 =g2
1g2h0h3 − g3

1h0h4 − 2g0g
2
2h0h3 − g0g1g2h1h3

+ 4g0g1g2h0h4 + g0g
2
1h1h4 − 2g2

0g2h1h4,

w43 =− g0g
2
2h1h3 − g0g1g2h2h3 + g0g1g2h1h4 + g0g

2
1h2h4

+ g2
0g2h

2
3 − 4g2

0g2h2h4 − g2
0g1h3h4,

w44 =− g2
2h0 − g0g2h2 − g2

0h4.

A.2 Addition matrices for canonical and squared Kummer surfaces

The canonical Kummer surface. For the canonical Kummer surface, addi-
tion by a point of order 2 is very simple. As described by Gaudry [35], each
point of order 2 is some permutation of o, followed by multiplication by −1
for either 0 or 2 of the coordinates. Similarly, addition of a point of order 2 to
P = (T1 : T2 : T3 : T4) is computed by applying the same permutation to the
Ti, and multiplying the same coordinates by −1. For example, adding a point
P = (T1 : T2 : T3 : T4) by (c : −d : −a : b) we get (T3 : −T4 : −T1 : T2), and the
addition matrix for (c : −d : −a : b) is given by

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .
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The squared Kummer surface. For squared Kummer surfaces, the addition
matrices Wi,j that represent P 7→ P +Li,j can be computed using the algebraic
method sketched in Section 2.4. This gives 4×4-matrices in terms of the Rosen-
hain values λ, µ, ν and the theta constants µi. As these matrices look rather
daunting in general form yet are easily derivable from the given values, we do
not put them in full form here. Their derivation and their description are given
in Magma code in the file wij squared kummer.m.

The elliptic Kummer surface. For elliptic Kummer surfaces we can specialise
the derived Wi,j for the squared Kummer surface to the case µ3 = µ4 = 1 and
ν = λ · µ, which greatly improves their visual appearance. As we use these
throughout the work, we give their full versions here.

Let τ and τ̃ be the roots of x2−Gx+ 1. In particular, τ̃ = 1/τ , and τ + τ̃ =
µ1 + µ2. The terms µ1−τ

µ2−τ , and their τ̃ variants, appear often in these matrices.
For brevity and clarity, we denote them by

γ :=
µ1 − τ
µ2 − τ

, γ̃ :=
µ1 − τ̃
µ2 − τ̃

.

Then the addition matrices are given by

W1,2 :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

W3,4 :=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

W5,6 :=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



W1,3 :=


1 −γ τ · γ −τ
γ −1 τ −τ · γ
τ · γ −τ 1 −γ
τ −τ · γ γ −1

W1,4 :=


1 −γ τ̃ · γ −τ̃
γ −1 τ̃ −τ̃ · γ
τ̃ · γ −τ̃ 1 −γ
τ̃ −τ̃ · γ γ −1



W1,5 :=


1 −γ̃ −τ̃ τ̃ · γ̃
γ̃ −1 −τ̃ · γ̃ τ̃
τ̃ −τ̃ · γ̃ −1 γ̃
τ̃ · γ̃ −τ̃ −γ̃ 1

W1,6 :=


1 −γ̃ −τ τ · γ̃
γ̃ −1 −τ · γ̃ τ
τ −τ · γ̃ −1 γ̃
τ · γ̃ −τ −γ̃ 1



W2,3 :=


1 −γ̃ τ · γ̃ −τ
γ̃ −1 τ −τ · γ̃
τ · γ̃ −τ 1 −γ̃
τ −τ · γ̃ γ̃ −1

W2,4 :=


1 −γ̃ τ̃ · γ̃ −τ̃
γ̃ −1 τ̃ −τ̃ · γ̃
τ̃ · γ̃ −τ̃ 1 −γ̃
τ̃ −τ̃ · γ̃ γ̃ −1



W2,5 :=


1 −γ −τ̃ τ̃ · γ
γ −1 −τ̃ · γ τ̃
τ̃ −τ̃ · γ −1 γ
τ̃ · γ −τ̃ −γ 1

W2,6 :=


1 −γ −τ τ · γ
γ −1 −τ · γ τ
τ −τ · γ −1 γ
τ · γ −τ −γ 1
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W3,5 :=


1 1 −τ −τ̃
1 1 −τ̃ −τ
τ τ̃ −1 −1
τ̃ τ −1 −1

 W3,6 :=


1 τ̃2 −τ̃ −τ̃
τ̃2 1 −τ̃ −τ̃
τ̃ τ̃ −1 −τ̃2

τ̃ τ̃ −τ̃2 −1



W4,5 :=


1 τ2 −τ −τ
τ2 1 −τ −τ
τ τ −1 −τ2

τ τ −τ2 −1

 W4,6 :=


1 1 −τ̃ −τ
1 1 −τ −τ̃
τ̃ τ −1 −1
τ τ̃ −1 −1



B Kummer pairings à la Robert

This section details a concrete instantiation to computing pairings of degree 2 on
(squared) Kummer surfaces using Algorithm 5.2 by Robert [52]. We assume we
want to compute the Tate pairing t2(Li,j , Q) with Li,j ∈ K[2] and Q ∈ K, which
we also denote ti,j(Q). By Appendix A.2, we have Wi,j , the addition matrix with
respect to Li,j .

We first normalise the point L := Li,j by its first non-zero coefficient, whose

index we denote ni,j . We then apply Wi,j to get L̃, and set λi,j = L̃ni,j/µni,j .
The pairing value ti,j(Q) for some Q ∈ K can then be computed by computing
D = Li,j ±Q as Wi,j ·Q λQ = Dni,j/Qni,j . This gives us Algorithm 6.

Algorithm 6 Monodromy pairing computation.

Input: A Kummer surface K, an index (i, j) with 1 ≤ i < j ≤ 6, a point Q ∈ K
normalised to ni,j and the precomputed λi,j .

Output: The reduced 2-Tate pairing ti,j(Q) = t2(Li,j , Q).
1: D ←Wi,j ·Q
2: λQ ← Dni,j/Qni,j

3: return IsSquare(
λQ
λi,j

)

This approach is elegant once Wi,j and λi,j are computed, and only requires
a matrix multiplication and a Legendre symbol. The divisions can be replaced
by multiplications for improved performance, as this does not affect the final
Legendre symbol.

All in all, to perform a monodromy pairing computation of degree 2 on a given
Kummer surface, we require only the translation-by-Li,j maps Wi,j . For both the
general Kummer surface as well as the squared Kummer surfaces, these are given
in this work, and more generally they can be computed given the biquadratic
forms of a Kummer surface.
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C Algebraic Derivations

C.1 Derivation of lift KSqr
λ,µ,ν → Jλ,µ,ν

In this section, we briefly describe the derivation of the polynomials F0, F1, F2

and G that give a more efficient map to recover u0, u1 and v2
0 on Jλ,µ,ν given a

point P ∈ KSqr
λ,µ,ν , as described in Section 2.7.

Any such point P = (X1 : X2 : X3 : X4) in the image of ρSqr : Jλ,µ,ν →
KSqr
λ,µ,ν is given by a scalar multiple ω ∈ Fp of the image of some D ∈ Jλ,µ,ν as

in Equation (4).

Hence, we have a system of equations

X1 = ωµ1 ·
(
u0(w3w5 − u0)(w4 + w6 + u1)− v2

0

)
,

X2 = ωµ2 ·
(
u0(w4w6 − u0)(w3 + w5 + u1)− v2

0

)
,

X3 = ωµ3 ·
(
u0(w3w6 − u0)(w4 + w5 + u1)− v2

0

)
,

X4 = ωµ4 ·
(
u0(w4w5 − u0)(w3 + w6 + u1)− v2

0

)
.

with known values Xi, Kummer coefficients µi and Rosenhain invariants wi,
and unknowns u0, u1, v0 and ω. Let X̃i = Xi/µi, then we rewrite this system as

f1 : u0(w3w5 − u0)(w4 + w6 + u1)− X̃1/ω = v2
0 ,

f2 : u0(w4w6 − u0)(w3 + w5 + u1)− X̃2/ω = v2
0 ,

f3 : u0(w3w6 − u0)(w4 + w5 + u1)− X̃3/ω = v2
0 ,

f4 : u0(w4w5 − u0)(w3 + w6 + u1)− X̃4/ω = v2
0 .

and so the differences fi−j = fi − fj = 0 for all 1 ≤ i < j ≤ 4 give us six
equations. By assuming u2

0, u0u1, u0 and ω as independent linear variables, this
gives us a matrix F such that F (u2

0, u0u1, u0, ω)T = (fi−j)1≤i<j≤4. After row-
echelon reduction of F , we find simple equations

u2
0 = h1(X̃i, wi) · 1/ω,

u0u1 = h2(X̃i, wi) · 1/ω,
u0 = h3(X̃i, wi) · 1/ω

for some polynomials hi in the coefficients X̃i and wi, and as we must have
(u2

0) = (u0)2, the first as the squared variable – the second as the variable
squared, we get ω = h2

3/h1. Thus, we derive equations for u0, u1 and ω from
h1, h2 and h3. Finally, by any of the fi, we then similarly recover an equation
for v2

0 . By gathering common factors, we find the polynomials F0, F1, F2 and G
defined in the coefficients µi, Xi, wi.

The derivation in Magma code can be found in the file v2 derive.m.
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D Constants for scaling map in (2, 2)-isogeny compuation

Let Fp2 = Fp(i) where i is a root of x2 + 1 ∈ Fp[x]. For kernels 〈Li,j , Lk,`〉 where

(i, j, k, `) ∈
{

(2, 3, 4, 5), (1, 3, 4, 5), (1, 4, 3, 6), (2, 4, 3, 6),
(2, 3, 4, 6), (1, 3, 4, 6), (1, 4, 3, 5), (2, 4, 3, 5)

}
,

the required square roots can be extracted from the 4-torsion points lying above
the kernel points. More precisely, let R,S be such that

[2]R = Li,j , [2]S = Lk,`,

and let h(P )i be the i-th coordinate of H(P ). For the sake of clarity, we suppose
that Li,j and Lk,` are of the form (1: ? : 0 : 0) and (1: 0 : ? : 0), respectively. The
other cases follow similarly.

We compute the scaling value (1/A : 1/B : 1/C : 1/D) using the points lying
above the kernel by noting that

A

B
= c1

h(R)1

h(R)2
,
A

C
= c2

h(S)1

h(S)3
, and

C

D
= c3

h(R)3

h(R)4
,

for some constants ci ∈ {1,−i}. From this we can derive A
B , A

C , and A
D to get(

1

A
:

1

B
:

1

C
:

1

D

)
=
(
h(R)2h(R)4h(S)3 : c1h(R)1h(R)4h(S)3 :

: c2h(R)2h(R)4h(S)1 : c2c3h(R)2h(R)3h(S)1

)
.

The constants for each kernel are then given as follows:

– If (i, j, k, `) = (2, 3, 4, 5) or (1, 4, 3, 6), then (c1, c2, c2c3) = (1, 1, 1).
– If (i, j, k, `) = (1, 3, 4, 5) or (2, 4, 3, 6), then (c1, c2, c2c3) = (1,−i,−i).
– If (i, j, k, `) = (2, 3, 4, 6) or (1, 4, 3, 5), then (c1, c2, c2c3) = (−i, 1,−i).
– If (i, j, k, `) = (1, 3, 4, 6) or (2, 4, 3, 5), then (c1, c2, c2c3) = (−i,−i, 1).
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