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Abstract
Nair and Song (USENIX 2023) introduce the concept of a
Multi-Factor Key Derivation Function (MFKDF), along with
constructions and a security analysis. MFKDF integrates
dynamic authentication factors, such as HOTP and hardware
tokens, into password-based key derivation. The aim is to
improve the security of password-derived keys, which can
then be used for encryption or as an alternative to multi-factor
authentication. The authors claim an exponential security
improvement compared to traditional password-based key
derivation functions (PBKDF).

We show that the MFKDF constructions proposed by Nair
and Song fall short of the stated security goals. Underspeci-
fied cryptographic primitives and the lack of integrity of the
MFKDF state lead to several attacks, ranging from full key
recovery when an HOTP factor is compromised, to bypassing
factors entirely or severely reducing their entropy. We reflect
on the different threat models of key-derivation and authen-
tication, and conclude that MFKDF is always weaker than
plain PBKDF and multi-factor authentication in each setting.

1 Introduction

With more and more data stored online or distributed across
multiple devices, an increasing number of security-sensitive
applications face the challenge of combining data availability
with user-friendly key management. The traditional solu-
tion is passwords, for both authentication and key derivation.
Password-based systems are relieved from some of the diffi-
culties of key management, since users do not have to handle
cryptographic keys. In return, allowing (and even encourag-
ing) human-memorable secrets means that passwords often
have low entropy, come from a small and predictable “dictio-
nary” and may be highly correlated.

In response to a wide variety of attacks stemming from
these issues, password-only authentication to web services is
being phased out. Instead, users are offered a two step verifica-
tion process, where they need to provide a second “factor” in

addition to their password. This is known as Two-Factor Au-
thentication (2FA), or more generally, Multi-Factor Authenti-
cation (MFA). Examples of such second factors include Time-
Based and HMAC-Based One-Time-Passwords (T/HOTP),
Out-Of-Band (OOB) authentication and codes generated by
hardware tokens such as YubiKeys. Surveys show a sharp
increase in the adoption of MFA among users [14], and cy-
bersecurity advisory bodies such as CISA now advise the use
of MFA in their recommended best practices [15].

In contrast, passwords are still commonly used as the sole
source of entropy for key derivation, as input to Password-
Based Key Derivation Functions (PBKDFs), in systems per-
forming client-side encryption. Examples of this include full
disk encryption, end-to-end encrypted cloud storage, pass-
word managers and cryptocurrency wallets. In all of these
settings, keys derived from passwords remain as (in)secure as
the passwords from which they stem.

MFKDF. In an attempt to remedy this, Nair and Song pro-
pose the concept of a “Multi-Factor Key Derivation Func-
tion” (MFKDF) as a way to integrate the advantages of multi-
factor authentication into password-based key derivation [37].
MFKDF extracts entropy from existing authentication factors,
such as T/HOTP, and combines them with the password before
applying a PBKDF to derive a key. The goal is to derive a key
that has the entropy of all the factors and password combined,
and to retain security even against partial compromise of the
source key material (i.e., the password and the authentication
factors). The security guarantees claimed for MFKDF state
that attackers should not be able to separately guess individual
MFKDF factors, and that the difficulty of correctly guessing
all factors simultaneously gives an “exponential security im-
provement over password-based key derivation” [37].

Nair and Song (NS) propose to use MFKDF-derived keys
directly in other applications requiring a symmetric key, such
as database encryption in a password manager. We will refer
to this setting as the key derivation setting. Additionally, the
authors state that MFKDF-derived keys can be used to au-
thenticate users, as a replacement for MFA, since an MFKDF
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key implicitly verifies the user’s authentication factors. We
will refer to this setting as the authentication setting.

The concept of MFKDF was presented at USENIX
2023 [37], and is accompanied by a Javascript reference im-
plementation [34].

1.1 Our Contributions

We analyzed MFKDF and discovered several issues, ranging
from a fundamental problem with the idea of using authentica-
tion factors for key derivation (Attack 3.1), to vulnerabilities
in the proposed constructions (Attacks in 3.2–3.3). We briefly
outline the attacks below.

1. The Dynamic Factor Attack (3.1) surfaces a critical
mismatch between the goals of key derivation and au-
thentication, and shows that the use of the most common
authentication factors is unsuitable for key derivation.
By construction, key derivation functions are determin-
istic; they need to always re-derive the same key on the
same input. Hence, MFKDF extracts static key material
from so called dynamic authentication factors, such as
T/HOTP. This attack shows that an adversary can recom-
pute this static key material from a single one-time code
from the authentication factor, thereby permanently de-
grading the security of MFKDF. This is in sharp conflict
with the original security models of TOTP and HOTP.

The threat models for authentication and key derivation allow
for different kinds of leakage of secret values. In particular,
“one-timeness” of authentication codes is not reflected in the
confidentiality requirement of KDF inputs. So while the
idea of using authentication factors to strengthen password-
derived keys is praiseworthy, our first attack shows that—
because of these disparate threat models—the use of existing
authentication factors for key derivation is problematic.

We present many other attacks, showcasing vulnerabilities
in the MFKDF construction that undermine the claimed secu-
rity guarantees. These attacks fall into two main categories:

2. The State Integrity Attacks (3.2) leverage the fact that
a malicious server can modify the MFKDF state: this
allows the adversary to control the output of the key
derivation, to bypass factors, and even to recover derived
keys when users interact with the MFKDF construction.

3. The Specification Attacks (3.3) exploit incorrect or
missing assumptions in the specification of MFKDF. In
particular, we show that MFKDF as currently built from
H/TOTP is insecure. Additionally, MFKDF relies on
properties of symmetric cryptography that do not follow
from traditional security notions such as IND-CPA, and
incorrectly assume information theoretical security of
the many-time pad. These mistakes, and others, invali-
date the security theorems presented by NS.

Most of the above attacks impact not only the formal specifica-
tion of MFKDF, but also the reference implementation. This
highlights how mistakes at the specification level transform
into practically exploitable vulnerabilities in code.

After presenting the attacks, we propose countermeasures
for the issues which can be mitigated, and draw wider conclu-
sions from the remaining fundamental problems. We argue
that the proposed combination of MFA and PBKDF fails to
recognize the distinct threat models for authentication and
key derivation, and is therefore irrecoverably flawed.

In the authentication setting, we show that MFKDF is al-
ways weaker than corresponding traditional MFA choices.
Additionally, we believe that the statement that MFKDF can
be implemented with “no noticeable change to the user ex-
perience” may lead to careless handling of one-time codes,
which are much more security critical when used for MFKDF
than for traditional MFA. We hence caution against the use
of MFKDF in this setting.

In the key derivation setting, our attacks show that the
usage of MFKDF can annul the security of a strong password.
We propose mitigations to these issues, but show that even
after patching the vulnerabilities, MFKDF does not provide
a significant advantage over a naïve PBKDF construction
which derives the key from the concatenation of multiple
static secrets.

1.2 Related Work

MFA and Key Derivation. The state of the art in multi-
factor authentication includes WebAuthn [21], a part of the
FIDO2 Project [3]. WebAuthn enables completely pass-
wordless authentication, thus side-stepping the problem of
user passwords. WebAuthn credentials, also known as
Passkeys [13], leverage public-key cryptography for authenti-
cation, and can either be bound to a hardware authenticator
(such as a YubiKey [19]), or synchronized across user devices.

For local authentication and key derivation, modern ap-
proaches include relying on secure hardware to achieve higher
security guarantees. Examples include the use of Trusted
Platform Modules (TPMs) [22, 31] for disk encryption and
smartphones leveraging secure chips [22,49] to defend against
bruteforce attacks on PINs and passcodes.

In the online setting, Oblivious Pseudo-Random Functions
(OPRFs) [17, 24, 39] let a client derive a key as a function of
its password and a server secret, without the server learning
the password or the derived key. Combining the entropy of the
password with the server secret increases the cost of offline
dictionary attacks on the password for external adversaries,
making OPRFs a promising alternative to PBKDFs.

KeeChallenge and OtpKeyProv. KeePass [43] is a pass-
word manager that supports authentication factors, such as
HOTP and HMAC challenge-response authentication [51],
in addition to a password to encrypt the application
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database. This integration is implemented through two plu-
gins, KeeChallenge [45] and OtpKeyProv [44], which both
predate MFKDF [28]. While an in-depth analysis of the se-
curity of these plugins is outside of the scope of this paper,
we note that these plugins also suffer from some of the same
problems of MFKDF; namely, the lack of ephemerality of
one-time codes and the HOTP bias.

MF*. MFKDF also appears in other works by NS. The cus-
todial wallet design [35] and is based on MFKDF and inherits
its vulnerabilities, as does their follow-up implementation of
an MFKDF-based Ethereum wallet [47]. The MFCHF cre-
dential hashing function [36] is vulnerable to our attacks on
factor constructions.

Attacks. There is a flourishing variety of attacks on cryp-
tosystems in the wild. Key-overwriting attacks in the style of
our OOB attack began with Klima and Rosa [26], and have
seen a recent resurgence in modern cryptanalysis [1, 6, 12].
Lack of integrity in metadata has been exploited in practice in
recent attacks in messaging applications [2, 40], but its perils
have been long known by the community [41].

Non-uniform distributions were exploited in the contexts of
biased ECDSA nonces [11], randomness failures in RSA key
generation [20], and RC4 [29]. While RFC 4226 [32, A.4]
discusses why HOTP biases are negligible in the authentica-
tion setting, to the best of our knowledge we are the first to
construct and evaluate an attack that exploits the bias when
HOTPs are used for encryption.

PBKDF constructions have been analyzed before [4, 50],
but MFKDF aspires to be an entirely novel primitive, warrant-
ing its own analysis.

1.3 Ethical Considerations

We disclosed our findings to Nair and Song (NS) on
01/17/2024 and they acknowledged receiving them on
01/22/2024. While NS argue that the underspecification ex-
ploited by some of our attacks is intentional for “flexibility
and future-proofness” of MFKDF, they confirmed the vulner-
abilities in their implementation, as well as that Attack 3.1
is unavoidable. We discussed the mitigations from Section 4
with NS. They intend to modify the MFKDF specifications
to highlight the importance of protecting the integrity of the
MFKDF state and the use of secure encryption primitives.
They clarified that the MFKDF implementation is intended
as a proof of concept; they are unaware of any deployment of
their code, and they would implement any necessary changes
prior to use in production applications.

1.4 Paper Structure

We start by defining a formal syntax for the MFKDF construc-
tions and primitives in Section 2, adapting it slightly from

the syntax presented in [37] for the sake of clarity.1 Section 3
presents our attacks against the MFKDF construction and ref-
erence implementation. Section 4 follows with the possible
mitigations. Finally, Section 5 discusses the inherent flaws in
MFA-based key derivation functions, and the different threat
models of key derivation and multi-factor authentication. We
conclude and propose future directions in Section 6.

2 Background

Notation and Conventions. We denote assigning value x to
variable a by a← x, where x might be the output of an al-
gorithm. Similarly, a←$ X denotes sampling uniformly at
random from the set X and assigning the result to a. We
write [0,106) for the right-open interval of all integers from
0 (inclusive) to 106 (exclusive). The symbol ∥ denotes string
concatenation and⊕ denotes XOR. For an encryption scheme
(Enc,Dec), Enc(k,m) denotes the encryption of message m
under key k and Dec(k,c) the decryption of ciphertext c.

2.1 Authentication Factors

Following [37], we define a factor, F , to be a two-valued
probability distribution (σ,α) generated by an efficient prob-
abilistic algorithm, which we also refer to as F . The factor
material σ represents the secret part of the factor (for example,
a password, or a key for the HOTP algorithm) whereas the
factor parameters α represent the public knowledge about σ.

An authentication factor additionally specifies a protocol
between a prover and a verifier, consisting of a witness gen-
eration algorithm and a verification algorithm. The witness
generation algorithm, run by the prover, takes the factor ma-
terial σ and some optional additional input inp to produce a
witness W . Depending on the protocol, the optional input inp
may be generated by the verifier and sent to the prover (e.g.,
in challenge-response protocols), or be part of the state kept
by both parties (e.g., a counter). The verification algorithm
takes as input σ, inp (if present) and W , and checks if W is a
valid witness.

As an example, in the case of passwords the witness W is
often the password σ itself. For T/HOTP, W is a one-time
password, and inp the current timestamp or counter value
used to generate it. The secret factor material σ is assumed
to be shared (for example, during a setup phase) between the
prover and the verifier, such that at the time of authentication,
only the witness must be communicated. We say that an
authentication factor is dynamic if the witness changes with
every use of the factor, and learning W does not allow an
adversary to compute σ.

Below, we review the dynamic factors used in MFKDF.

1 Note that none of our attacks are affected by this change in syntax; we
deviate from the original MFKDF description only in the interest of clearness
and internal consistency.
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HOTP and TOTP. The HOTP algorithm, defined in
RFC4226 [32] and shown in Algorithm 1, takes as input
a static symmetric key kh (the secret factor material σ) and a
counter ctr (as the witness input inp). It first generates a 20-
byte digest hs by computing HMAC on the key and counter,
then truncates the digest to 31 bits using a dynamic truncation
algorithm that we call DynTrunc.2 Finally the truncated di-
gest is transformed to an integer using the function BitsToInt,
which on input a bitstring bnbn−1 . . .b0 returns the integer
sint = ∑

n
i=0 bi ·2i. The reduction of sint to d digits is the re-

sulting one-time password HOTP(kh,ctr), which constitutes
the witness W .

Algorithm 1 HMAC-based One-Time Password

1: procedure HOTP(kh,ctr) ▷ Witness generation
2: hs← HMAC-SHA-1(kh,ctr)
3: sbits← DynTrunc(hs) ▷ |sbits|= 31 bits
4: sint ← BitsToInt(sbits)
5: return sint mod 10d ▷ Witness W

The verification algorithm simply recomputes the one-time
password and checks that HOTP(kh,ctr) =W .

TOTP [33] is defined as TOTP := HOTP(kh,T )3 where
the counter ctr is replaced with T , a coarse-grained integer
representation of the current time. Note that for both HOTP
and TOTP, the PRF security of HMAC [7, 8] implies that
access to old one-time codes does not allow an attacker to pro-
duce new ones or recover kh, making these factors dynamic.

Out-Of-Band Codes. A popular non-cryptographic way to
implement a dynamic factor is to send one-time codes over
an “out of band” channel (e.g., SMS or email). In this case,
there is no shared secret material, i.e., σ is empty. Instead,
the server generates a random one-time code as the witness
input inp, and sends it to the user over the OOB channel. The
user then sends this value back to the server over the main
channel. Hence, the witness is directly the input inp. The
server verifies that inp =W , i.e., that the user sent back the
same code that the server generated. This kind of factor lacks
cryptographic guarantees, and assumes the OOB channel to
be confidential and exclusive to the user.

HMAC Hardware Tokens. Some hardware tokens such as
YubiKeys use HMAC-SHA-1 evaluation for authentication:
this is equivalent to HOTP, except that the input to the witness
generation algorithm is an arbitrary challenge rather than a
counter, and the output is the full-length HMAC tag.

2.2 MFKDF
The core idea of MFKDF is to combine MFA with PBKDF.
That is, the goal is to use some combination of authentica-

2 This algorithm is defined on page 7 of RFC4226 [32], but the details do
not matter for our purposes.

3 Additionally, TOTP may use a different hash function than HOTP.

MFKDF
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Dynamic Fhmac

[*******]
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κhmac
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Final Key K

HOTP
construction

HMAC
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Figure 1: MFKDF combining authentication factors (Fhotp
and Fhmac) with a password to derive a key. Dynamic factors
are colored green and striped, static ones yellow and dotted.

tion factors to derive a static symmetric key. The MFKDF
paradigm consists of two parts: (1) a factor construction part,
which takes the factor material from an authentication factor
and turns it into source key material, and (2) the KDF part, in
which the source key material from multiple authentication
factors is turned into a key. See Figure 1 for an illustration.

In the following, we briefly describe the syntax of a fac-
tor construction, and the constructions proposed by NS for
some dynamic factors. Next, in Section 2.2.2, we review the
syntax of a key derivation function and describe how factor
constructions are combined to build MFKDF.

2.2.1 Factor Constructions

A factor construction for a factor F consists of algorithms
Setup and Derive. Via (κF ,β0)← Setup(σ), the randomized
setup algorithm on input the factor material σ “constructs” the
static source key material κF and initial state β0.4 Then, the
randomized and stateful algorithm Derive, on input a witness
Wi for F and (public) state βi, enables continued evaluation by
reconstructing the key material κF and producing an updated
state βi+1. That is, (κF ,βi+1)← Derive(Wi,βi).

For dynamic factors, the witnesses change over time, mak-
ing it non-trivial to derive the same static κF from every
witness. NS solve this by storing the secret factor material σ

in β, thereby allowing future witnesses to be computed within
algorithm Derive and the changes offset by updates to the
state. To protect σ, it is encrypted under the MFKDF-derived
key K. This establishes a "feedback mechanism" where K is
first derived from all factors, and then used to encrypt the fac-
tor materials. In order for the feedback mechanism to work,
the setup and derive algorithms must be run in parallel for
all factors used in MFKDF, and intermediate outputs from

4 Note that in [37], NS refer to the source key material κF as “factor
material” and the public parameters β as “factor parameters” (and denote
them σ and α, respectively). However, not all factor constructions use the
factor material σ as the source key material κF , (for example, the HOTP
construction uses a fresh static secret as κF , not the HMAC key σ = kh).
Hence, we choose to separate the notation to avoid confusion.
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each factor construction influence the computations of others.
To model this, we deviate from the syntax presented in [37]
and split algorithms Setup and Derive into two stages each:
Setup1, Setup2, Derive1, and Derive2. Stage one reconstructs
κF , which is combined with other factors’ key material to de-
rive K. Stage two uses K and κF to create βi+1 for the next
iteration. We thus define a factor construction as follows.

Definition 1 (Factor Construction). A factor construction for
factor F with factor material σ is a tuple of algorithms

κF ← Setup1(σ),

β0← Setup2(K,σ,κF),

κF ← Derive1(Wi,βi), and
βi+1← Derive2(K,κF ,βi),

where K is the final key output by MFKDF (see Section 2.2.2).

For factors that do not employ the feedback mechanism,
we will simply refer to the combined algorithms (κF ,β0)←
Setup(σ) and (κF ,βi+1)← Derive(Wi,βi).

In the following paragraphs, we review the factor construc-
tions proposed by NS in [37] relevant to our attacks.

HOTP Factor Construction. Recall that for an HOTP fac-
tor Fhotp, the private factor material σ is the HMAC key kh,
and the witness is a one-time password Wi = HOTP(kh, i),
where i is a counter. In the factor construction for MFKDF,
shown in Algorithm 2, the source key material κhotp con-
sists of a d-digit integer (called the “target” in [37]), which
is sampled uniformly at random from [0,10d).5 The source
key material κhotp is encrypted in a stream-cipher fashion by
subtracting modulo 10d the next one-time password Wi+1,
generating a ciphertext cκ,i+1 which is stored in the factor
state βi+1. This allows κhotp to be (re-)derived by adding the
witness back to cκ,i+1.

To access the next witness Wi+1 used to encrypt κhotp, NS
use the feedback mechanism described above: the HMAC
key kh is stored encrypted in the state using the final MFKDF
key K. NS do not further specify the encryption scheme used
in their HOTP (and TOTP) factor construction. In particular,
they do not demand that the scheme should be randomized,
nor do they define the expected security properties. As we
will see later, this under-specification makes the HOTP (and
TOTP) factor construction of MFKDF vulnerable to attacks.

This feedback mechanism adds an element of circular se-
curity to the factor construction: the source key material κhotp
is encrypted with the witnesses derived from kh, and kh itself
is encrypted under the key K derived from the source key
material. This is true for all factor constructions proposed by
NS that make use of the feedback mechanism. A formal proof
of security of MFKDF would hence be limited to what can
be achieved in this setting of key-dependent messages [10].

5 In practice, d = 6 is commonly used for HOTP tokens.

Algorithm 2 HOTP Factor Construction for HOTP key kh

1: procedure Setup1(kh)
2: κhotp←$ [0,10d)
3: return κhotp

4: procedure Setup2(K,kh,κhotp)
5: W0← HOTP(kh,0)
6: cκ,0← (κhotp−W0) mod 10d

7: cσ← SK.Enc(K,kh)
8: return (0,cκ,0,cσ)

9: procedure Derive1(Wi,βi)
10: (i,cκ,i,cσ)← βi
11: κhotp← (cκ,i +Wi) mod 10d

12: return κhotp

13: procedure Derive2(K,κhotp,βi)
14: (i,cκ,i,cσ)← βi
15: kh← SK.Dec(K,cσ)
16: Wi+1← HOTP(kh, i+1)
17: cκ,i+1← (κhotp−Wi+1) mod 10d

18: return (i+1,cκ,i+1,cσ)

TOTP Factor Construction. The TOTP factor construc-
tion is analogous to the HOTP construction, except that the
ciphertext cκ,i is replaced by a vector cκ,i which contains the
encryption of κhotp under all OTP witnesses for a window
of future times, such that decryption is possible using any
witness generated during a time in the window. For details,
see [37, Appendix A].

HMAC Factor Construction. This is similar in spirit to the
HOTP construction, but this time the HMAC key kh is directly
used as the source key material κhmac. Challenges are random
160-bit values, and the witnesses Wi from the authenticator are
used as one-time pads to encrypt κhmac. Refer to Appendix A
for a full pseudocode description.

OOB Factor Construction. Recall that OOB authentica-
tion factors rely on a secure channel between the verifier and
the prover, such that the verifier can send a one-time pass-
word (OTP) to the prover when they want to authenticate. For
MFKDF, NS assume a particular instantiation of this channel,
based on S/MIME: the users owns a key pair (sk, pk) for an
associated public-key encryption scheme (PK.Enc,PK.Dec).
The key material κoob is sampled uniformly at random in
[0,106), and encrypted in a stream-cipher fashion (like in the
HOTP construction) with a random OTP ∈ [0,106) generated
by the user. Finally, the user encrypts the OTP to themselves
and sends it to the server for storage. At factor derivation
time, the user can fetch the OTP and decrypt it. Refer to
Appendix A for the pseudocode.
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2.2.2 Combining Factors

Here we review how MFKDF uses the source key material
from the factor constructions to derive a key. NS present two
variants of MFKDF: a plain one, where all the factors are
necessary to derive the final MFKDF key K, and a threshold
variant, where K can be derived using only t-out-of-n factors.
We focus here on the threshold construction in order to pro-
vide the necessary background for Attacks 3.2.2 and 3.3.4.
The details of the plain construction are given in Appendix B.

The threshold MFKDF presented in [37, App. A] is built
from a PBKDF and a Shamir secret sharing scheme [46]. We
review the syntax of both as used in MFKDF.

Definition 2 (Password-Based Key Derivation Function). A
key derivation function PBKDF(κ,salt, ℓ) 7→K takes as input
source key material κ, a salt salt ∈ {0,1}∗ and a length ℓ ∈N
to produce a key K ∈ {0,1}ℓ.
Definition 3 (Shamir Secret Sharing). A Shamir secret shar-
ing scheme consists of algorithms

(s1, . . . ,sn)← Share(κ, t,n),

κ← Comb((su1 , . . . ,sut ), t,n), and
s j← Rec(κ, t,n, j).

Share splits secret κ into n shares, out of which t suffice to
reconstruct the secret through algorithm Comb. We refer
to [46] for the correctness and security properties. Algorithm
Rec is introduced by Nair and Song, who do not describe its
properties explicitly. From its use, we deduce that given the
secret κ and the sharing parameters, it recovers the jth share.

Similarly to factor constructions, both the plain and thresh-
old MFKDF schemes define algorithms Setup and Derive.
Threshold MFKDF additionally defines an algorithm Recover,
which is used in case a factor is lost or needs to be replaced.

Definition 4 (Threshold MFKDF Construction). Let
F1,F2, . . . ,Fn be authentication factors and let σ =
(σF1 ,σF2 , . . . ,σFn) be a vector with the corresponding fac-
tor materials. The t-out-of-n threshold MFKDF construction
for factors F1,F2, . . . ,Fn consists of algorithms

(K,B0)← Setup(σ, t, ℓ),

(K,Bi+1)← Derive(W i,Bi), and

Bi+1← Recover(W i,Bi,x,σF ′x ).

Algorithm Setup takes as input σ, the threshold parameter t
and ℓ∈N. It returns the derived key K ∈ {0,1}ℓ and the initial
public state B0. Derive takes as input a vector of witnesses for
a subset of t factors W i = (Wi,u1 , . . . ,Wi,ut ) and the ith public
state Bi (containing the state of all n factors). It returns the key
K and the updated state. Algorithm Recover takes as input W i,
the public state Bi, the index x of the factor Fx to be replaced,
and the new factor material σF ′x of factor F ′x replacing it.

Appendix B contains the full specification of the algorithms.
Here, we recall a high-level overview from [37].

Setup((σF1 , . . . ,σFn), t, ℓ)
1. Sample κ and salt randomly from {0,1}ℓ.
2. Split κ into n shares using (s1, . . . ,sn)← Share(κ, t,n).
3. For each factor Fj, compute the key material κ j using

algorithm Fj.Setup associated to the factor construction.
4. Expand each κ j to pad j of length ℓ using HKDF-Expand.
5. Encrypt each share s j with the pad derived from the ex-

panded factor via cs j ← s j⊕ pad j.
6. Run K← PBKDF(κ,salt, ℓ) to derive K ∈ {0,1}ℓ.
7. Compute β0, j for each factor (using K for the factors that

use the feedback mechanism).
8. Let B0← (t, ℓ,salt,(cs1 , . . . ,csn),(β0,1, . . . ,β0,n)).
9. Return K and the public state B0.

Derive((Wi,u1 , . . . ,Wi,ut ),Bi)

1. For each of the t witnesses, derive the source key material
κu j from witness Wi,u j using algorithm Fu j .Derive.

2. Expand each κu j to padu j of length ℓ using
HKDF-Expand.

3. Decrypt share su j via su j ← csu j
⊕ padu j .

4. Combine the shares into κ using Comb((su1 , . . . ,sut ), t,n).
5. Use PBKDF on κ to produce K.
6. Compute βi+1,u j for each factor (using K for the factors

that use the feedback mechanism) and update Bi+1.
7. Return K and the updated public state Bi+1.

Recover(W i,Bi,x,σF ′x )

1. Compute κ as in steps 1–4 of Derive.
2. Set up the new factor F ′x , computing κ′x and pad′x as in

steps 3 and 4 of Setup.
3. Recover the share of the lost factor via sx← Rec(κ, t,n,x).
4. Update csx to c′sx ← sx⊕ pad′x.
5. Compute the inital state for F ′x and update the state of each

of the t factors used in the recovery.
6. Update Bi+1 with the new states and csx and return it.

3 Attacks

In this section, we present our attacks against the MFKDF
construction and its reference implementation (release
v1.4.7) [34]. Table 1 provides an overview of our attacks,
categorized by fundamental (Section 3.1), attacking unauthen-
ticated state (Section 3.2) and exploiting underspecifications
and bad assumptions (Section 3.3). It also shows prerequisites,
impact, and whether the attack can be mitigated.

Under impact, we highlight the security goals of MFKDF
contradicted by our attacks. In particular, all attacks break the
“Entropy” goal [37, §3]: “Attacking the derived key should
be as hard as attacking the weakest set of allowed factors.”
Some attacks additionally contradict “Safety”: “Providing an
invalid set of factors should be highly unlikely to derive the
correct key.” [37, §3]: Together, they invalidate the MFKDF
security theorem [38, App. B, Thm 4].
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Table 1: Summary of the attacks, listing the type of attack (fundamental, state integrity, implementation-related, or
caused by bad assumptions or insufficient detail the specification), and for each attack its prerequisites (read/write access
to the MFKDF state B; leak of a witness Wi or the factor material σ; user actions such as key derivation and replacing a
factor), and its impact (recover the final key K, the source key material κF , or violate security theorems) and whether it
can be mitigated (from ‘no mitigations possible’ , to ‘mitigations unclear’ , and ‘mitigations provided’ ).
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Dynamic Factor (3.1) fund ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓c

OOB Overwriting (3.2.1) int ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓c

Parameter Tampering (3.2.2) int ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗
Share Dilution (3.2.3) int, impl ✓ ✓ ✗ ✗ ✓ ✓a ✗ ✓ ✓ ✗

HOTP Compromise (3.3.1) spec, impl ✓ ✗ ✗ ✓ ✗ ✓ – ✗ ✓ ✓
HOTP Bias (3.3.2) spec ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓c

Share Recovery (3.3.3) spec ✓ ✗ ✓b ✗ ✓ ✗ ✓ ✓ ✓ ✓c

Share Format (3.3.4) spec ✓ ✗ ✗ ✗ ✗ ✓a ✓ ✗ ✓ ✓

Type Prerequisites Impact Mitigations
a Depending on the minimum entropy of the remaining factors in the target MFKDF construction.
b Witness of a replaced factor. No witness needed if the factor has low entropy.
c As a consequence of recovering the source key material for the target factor.

We also falsify the claim of “exponential security” by
showing attacks that recover the final key or the source key
material of factor constructions: “[A]ttackers cannot sepa-
rately guess individual MFKDF factors, and must simultane-
ously correctly guess all factors to derive a key. [...] There-
fore, given n available factors with a mean factor entropy
of 2−m bits, the crack time t will be t ∝ 2m for PBKDFs and
t ∝ 2mn for MFKDF. We thus claim that n-factor MFKDF pro-
vides an exponential security improvement over PBKDFs. [37,
§ 6]” Many of our attacks additionally lead to practically ex-
ploitable vulnerabilities in the reference implementation of
MFKDF.

3.1 Dynamic Factor Attack

The H/TOTP, HMAC and OOB factor constructions convert
dynamic authentication factors into static source key mate-
rial. We show that these constructions inherently degrade the
security compared to what is expected of a dynamic factor:
namely, that access to an old witness does not compromise
the security of the factor. When used for MFKDF, leakage
of a single witness to an adversary with access to the public
factor state instead compromises the factor permanently. As
we discuss in Section 5, this represents a fundamental issue
with MFKDF, that cannot be mitigated.

Setting. The attack assumes an adversary with access to an
authentication witness for the dynamic factor. The witness
does not have to be “fresh”, in the sense that it would be valid
if the factor was used for authentication. For example, an
already used or outdated H/TOTP or OOB code suffices.

This threat model matches the standard expectation that
“one-time” codes are ephemeral, in the sense that leakage of

an old code does not compromise the security of the factor.
It is also formally supported by the threat model for HOTP
described in RFC 4226 [32]. As a real-world example, an
adversary that captures a one-time code as it is being used
(e.g., by looking over the shoulder of the victim as they type it
in, or through a key-logger on a public computer) can mount
this attack, even after the code has been used or expired.

Additionally, the attack assumes read access to the MFKDF
state. Recall that the MFKDF state contains all factor con-
struction states (see Line 8 of the Setup algorithm of Defi-
nition 4). As described in [37], this state does not have to
be kept confidential, and could even “be stored on a public
blockchain” [37, p. 4]. This threat model is further supported
by the proposed deployments of MFKDF as an online pass-
word manager [37, §10.1] or a decentralized cryptocurrency
wallet [37, §10.2], where the state is outsourced by the client
and available to the adversary.

Attack Overview. Recall from Figure 1 that the source key
material κF associated to a factor construction F is derived
from the i-th witness Wi, and the public factor state βi via

κF ← Derive1(Wi,βi) .

This means that an adversary with access to the public state
βi can recover κF as soon as a witness is observed, thereby
reducing the entropy of the final MFKDF key by the amount
provided by factor F . Furthermore, since the adversary can
record all past public states β0, . . . ,βi, κF can be compromised
as soon as any previous witness is leaked. As stated above,
this removes the security guarantee of dynamic factors which
is normally provided by the ephemerality of the witnesses.

Impact. The consequence of this attack is that dynamic
factors are no more secure than static factors with the same
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entropy. For instance, a 6 digit HOTP code from a software
authenticator is no stronger than a six digit PIN which the
user could store in a password manager or memorize. More
troublesome, the gap between the expected security of one-
time codes (that is, that exposure of old codes is harmless)
likely leads to a false sense of security in users, who, unaware
of the implications for MFKDF, might not protect their old
one-time codes as they would a PIN or a password, thereby
inadvertently risking the security of the source key material.
In conclusion: in MFKDF, one-time codes are not one-time.

3.2 State Integrity Attacks
Beside the inherent issues with using dynamic authentication
factors, the public state B of MFKDF provides a large attack
surface. This state is accessed and updated in both the plain
and threshold constructions (see algorithm Derive in Defini-
tion 4 and 5). In [37], NS do not consider whether the state
needs to be authenticated or protected in any way. We show
that the lack of integrity of the state leads to practical attacks
against MFKDF. In Section 4, we argue that mitigations to
this problem are non-trivial, because of its circularity: the
integrity of the state should be verified prior to its usage, but
before using the state, an MFKDF user has no key that can
be used for this verification.

The attacks presented here assume an adversary with read
and write access to the MFKDF construction state. This is the
standard threat model for end-to-end encrypted systems where
users outsource the public state to the server. For instance,
if MFKDF is used in an online password manager with an
untrusted server, as proposed by NS, the service provider or an
adversary controlling the server could perform these attacks.

3.2.1 OOB Overwriting Attack

This attack exploits that users fetch their S/MIME public key
from the unauthenticated MFKDF state. Due to the lack of
integrity of the outsourced key, an attacker with access to
the public state can overwrite the user’s public key pk with
a malicious key, such that the user encrypts their next OOB
witness to the adversary. This allows the attacker to recover
the source key material κoob, since it is stored in the public
state “encrypted” under the OOB witness.

Attack Overview. Let βi = (pk,cκ,i,cW,i) be the (honest)
OOB factor state after the i-th use of the OOB factor, consist-
ing of the user’s public key pk, the encrypted key material
cκ,i and the encryption of the current one-time code cW,i.

The attacker overwrites the state with β∗i = (pk∗,cκ,i,cW,i),
where pk∗ is the public key of an S/MIME key pair for which
the adversary knows the corresponding private key sk∗. Upon
the next use of the OOB factor, the user fetches β∗i from the
state and runs:

Derive(Wi,β
∗
i )

(pk∗,cκ,i,cW,i)← β∗i
κoob← (cκ,i +Wi) mod 106

Wi+1←$ [0,106)
cκ,i+1← (κoob−Wi+1) mod 106

c∗W,i+1← PK.Enc(pk∗,Wi+1)

Return (κoob,(pk∗,cκ,i+1,c∗W,i+1))

In particular, the key pk∗ of the adversary is used to encrypt
the next OOB code Wi+1. Since the attacker has access to
the updated public state βi+1 = (pk∗,cκ,i+1,c∗W,i+1), it can
recover the code as Wi+1←PK.Dec(sk∗,c∗W,i+1). After this, it
is trivial to recover the source key material as κoob← (cκ,i+1+
Wi+1) mod 106.

Impact. A malicious server can use this attack to compro-
mise the OOB source key material as soon as the OOB fac-
tor is used, removing the entropy from this factor from the
MFKDF key. This compromise is invisible to the user: after
obtaining the source key material, the adversary can overwrite
β∗i+1, either with the previous honest state βi, or by replac-
ing c∗W,i+1 with cW,i+1←PK.Enc(pk,Wi+1), ensuring that the
user can successfully decrypt the witness ciphertext with their
S/MIME private key the next time the OOB factor is used.

3.2.2 Parameter Tampering Attacks

The public MFKDF state B includes information on the key
derivation function and its parameters, such as the number
of iterations for PBKDF and the length of the derived key.
Tampering with this information will, in most cases, result in
deriving a bogus key. Nonetheless, the resulting key could be
used to infer information about the factors, or can be easy to
guess. The attacks we present illustrate the danger of storing
this “KDF metadata” unauthenticated in the MFKDF state,
rather than having the MFKDF client use a fixed KDF.

For this attack, we additionally assume that the MFKDF
key is used to, for example, encrypt data with an AEAD,
or to authenticate to a service, and that the adversary can
see the resulting ciphertexts or authentication messages. If
MFKDF is used to derive a key for a password manager
or outsourced file storage, an attacker in the malicious or
compromised service provider threat model can perform this
attack. Similarly, if MFKDF is used for authentication with
the ISO/IEC 9798-2 Unilateral Authentication protocol, as
proposed by NS [38, §7], the verifier can perform this attack.

1: Short Key Attack. Consider MFKDF with key length
ℓ chosen by the user. (The default length is 32 bytes.) The
adversary can overwrite ℓ, picking a new arbitrary length:
let’s assume 4 bytes. If this key is used to encrypt user data or
to produce authentication messages, the adversary can easily
guess the 4-bytes key by brute-force.

This trivially violates the confidentiality of the encrypted
data, but also has further consequences. Note that some of the
PBKDFs proposed for use in MFKDF (such as PBKDF2) are
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actually Extendable Output Functions (XOFs), meaning that
the 4-bytes derived key will be a prefix of the original key K.
The adversary would thus learn the first four bytes of K. The
attack can then continue iteratively: the adversary sets the key
length to 8 bytes, and guesses the remaining unknown 4 bytes.
This process can be iterated until the full key is recovered.

2: Weak PBKDF Attack. The recommended choice of
PBKDF for MFKDF is Argon2, a memory-hard PBKDF. The
use of Argon2 slows down a brute-force attack on the MFKDF
factors, by limiting the effectiveness of parallelization [9, 42].

However, since the choice of PBKDF is stored in the pub-
lic state B, an adversary can overwrite B, replacing Argon2
with a weak KDF such as, e.g., PBKDF2 with a single itera-
tion of HMAC. When MFKDF is evaluated, a different key
K′ ̸= K will be derived from the same factors. If the adver-
sary observes cryptographic operations where K′ is used, like
encryption or authentication, it can mount a brute-force attack
to guess the source key material of the factors used to derive
K′, with a high degree of parallelism and fast computation for
each guess. A successful attack would expose the source key
material, enabling the adversary to recover the original key K.
Hence, the benefits of using a memory-hard PBKDF are void
against an attacker with write access to the state.

Impact. The attacks significantly reduce the computation
cost of brute-force attacks on MFKDF. For the weak PBKDF
attack, an analysis by Percival [42] estimates the cost of guess-
ing a password with 56 bits entropy to $10M for PBKDF2,
compared to $210B for a memory-hard KDF. For the short
key attack, a full key search for a 32 byte key requires 2256

guesses, compared to only 8 ·232 guesses when iterating the
attack to recover 4 bytes at a time.

3.2.3 Share Dilution Attack

The t-out-of-n threshold MFKDF construction (Section 2.2.2)
uses Shamir secret sharing to allow the MFKDF key to be
derived from any subset of at least t out of the n factors. Like
for the parameter tampering attacks, the threshold value t
is stored in the unauthenticated MFKDF state. This attack
effectively removes factors from MFKDF, exploiting the lack
of integrity of the state, together with the fact that the concrete
implementation of algorithm Recover [34] in the reference
implementation deviates from what NS describe in [37].

Attack Overview. Instead of recovering the share of the lost
factor with Rec, as specified in [37], the implementation of
algorithm Recover runs Share(κ, t,n) to generate fresh shares
for all factors, where t is fetched from the MFKDF state B.6

This is equivalent to running the share setup algorithm again
with the same secret. Since B is not integrity-protected, an
adversary can overwrite t with an arbitrary value t ′ < t. This
change has no effect until the user runs algorithm Recover

6 See src/classes/MFKDFDerivedKey/reconstitution.js, line 365

(e.g., to change their password). At that point, the adversary-
chosen threshold t ′ is used instead of t as input to Share,
with the result that t ′ of the new shares suffice to derive the
MFKDF key.

Impact. This attack impacts the security of the t-out-of-n
threshold MFKDF construction by reducing the threshold
needed to compute the final key, hence “diluting” the entropy
provided by multiple factors. As an example, a 3-out-of-4
construction with HOTP, HMAC, password and OOB as fac-
tors becomes trivially broken when t ′ is set to 2: an extensive
key search for the ~40 bits of entropy provided by the OOB
and HOTP factors would take seconds on a laptop.

Limitations. The MFKDF reference implementation is only
vulnerable to our attack if the attacker sets t ′ > 1, as Shamir
secret sharing is not used for thresholds of 1.

3.3 Specification Attacks

Underspecification in cryptographic systems can lead to at-
tacks, as showcased by for example JWT [48]. We now turn
to attacks on MFKDF which fall into this category. They
either stem from a lack of rigor in the specification of cryp-
tographic primitives, or from incorrect assumptions on the
security of these primitives. Most of these attacks are also
reflected in the reference implementation of MFKDF itself.
The attacks in this section all assume read-only access to the
public MFKDF state.

3.3.1 HOTP Compromise Attack

This attack allows an adversary who already compromised
the H/TOTP factor material (i.e. the HMAC key)7 to recover
the MFKDF key if H/TOTP factor constructions are used,
bypassing other factors entirely. For both HOTP and TOTP,
the HMAC key is stored in encrypted form in the public factor
state. This encryption is performed using a “symmetric en-
cryption scheme”, but no security requirements of the scheme
are specified. In their concrete implementation of the H/TOTP
factor constructions, Nair and Song use the one-time pad (i.e.
XOR) as the symmetric encryption scheme.

Attack Overview. In the reference implementation of
MFKDF, the feedback encryption mechanism using the final
MFKDF key K creates the factor material ciphertext on line 7
of Algorithm 2 as cσ← SK.Enc(K,kh), where

SK.Enc(K,kh) := K⊕ kh .

The ciphertext cσ is part of βi, contained in the public MFKDF
state. Hence, an attacker that compromises the factor material
kh of a single HOTP or TOTP factor can recover the final
MFKDF key as K← cσ⊕ kh.

7 This HMAC key can be commonly extracted from authenticator apps
for smartphones by using the backup functionality [5, 16, 18].
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Impact. This attack violates the MFKDF security guarantee
that the derived key can only be recovered after all factors
have been compromised. While the leakage of the HMAC
key is a strong prerequisite, the consequence is that this attack
completely voids the security of MFKDF in the presence of a
single compromised factor.

3.3.2 HOTP Bias Attack

This attack exploits a small bias in HOTP witnesses to recover
the source key material κhotp from sufficient observations of
the public state in the HOTP factor construction.

The reduction of the 31-bit integer sint modulo 10d on
Line 5 of HOTP in Algorithm 1 adds a small bias to the
output, favoring values closer to zero. While this bias is too
small to be an issue for authentication [32, A.4.1], it can be
exploited for MFKDF because NS use the HOTP witnesses
to protect the confidentiality of a static secret. This connects
different samples (despite independent witnesses) and allows
an adversary to exploit the small bias in each observation to
accumulate information about the hidden secret.

Attack Overview. The HOTP factor construction uses a
d-digits long witness to hide the static source key material
κhotp ∈ [0,10d): it predicts the next witness Wi+1 and en-
crypts κhotp via cκ,i+1 = κhotp −Wi+1 mod 10d (line 17 of
Algorithm 2). The resulting ciphertext cκ,i+1 is called the
“offset” in [37]. The adversary may observe many such off-
sets, since they are part of the public state.

Contrary to the assumption of NS, the HOTP values speci-
fied in RFC 4226 [32] are not uniformly random in [0,10d):
they have a slight bias towards smaller values. Algorithm 1
shows that HOTP produces the witness by generating 31 ran-
dom bits8 , interpreting them as an integer, and taking the
result modulo 10d to get a d-digit witness. This results in a
bias, since the largest number, 231−1, is not divisible by 10d .
Hence, for γ = (231−1) mod 10d , values in [0,γ] are slightly
more likely to be output than values in (γ,10d). While the
HOTP factor construction would be provably secure with truly
uniformly random witnesses (as alleged by NS in the security
theorem for the H/TOTP factor construction [37, §5.2.2]), the
actual, biased, witnesses can be exploited to recover κhotp.

As above, let γ denote the largest witness which occurs
more frequently than average. Figure 2 illustrates the bias
for a simplified example with 1-digit (d = 1) HOTP values.9

Since the offsets cκ,i = κhotp−Wi mod 10 are generated by
subtracting the biased factor witnesses Wi from the secret, off-
sets in the interval [κhotp− γ,κhotp] (modulo 10d) will appear
more frequently than the rest. Hence, κhotp can be recovered
by finding the upper endpoint of this interval.

8 The bits are selected from the HMAC digest. However, for our purpose
and due to the PRF security of HMAC, we can consider the bits to be random.

9 Our attack targets full-sized HOTP codes of at least 6 digits, as specified
in RFC 4226 [32]. Figure 2 is only an illustrative example.

Figure 2: Bias of 1-digit HOTP witnesses for n = 10 bins.

Figure 3: Bias of offsets, shifting the HOTP witness bias
depending on the hidden secret κhotp.

Figure 3 shows a possible distribution of the biased offset
for the static secret κhotp = 2. By Ih we denote the interval of
more frequent offsets, and Il the less frequent. In the previous
example, we have Il = [3,6] and Ih = [0,2]∪ [7,9].

Given m offsets cκ,i, the optimal attack strategy to locate
interval Ih uses the maximum likelihood estimator. Hence,
we identify the consecutive interval (with wraparound at 10d)
that has the maximal sum of offsets. We generalize the prob-
lem of finding the exact end point of Ih to finding a value that
is at most ε values away from the correct secret κhotp, as the
adversary may have external means to test multiple guesses
for κhotp. For instance, it may be feasible to try some num-
ber of HOTP values for every password guess, and perform
trial decryption with the resulting MFKDF key to verify the
correctness of the guess.

It is instructive to model MFKDF offsets as a “balls into
bins” problem with biased probabilities, where samples cor-
respond to balls and integers in [0,10d) to bins, to gain a
more rigorous understanding of our attack. As discussed in
Appendix C, we can express the number of balls in an in-
terval of bins as the sum of Bernoulli random variables and
use Chernoff bounds to estimate the worst case number of
samples needed to get within ε distance of κhotp.

Attack Cost. TOTP factor constructions of MFKDF, which
build on HOTP, require the user to precompute many offsets to
allow keys to be re-derived in the future. As TOTP witnesses
change every 30 seconds, NS suggest storing 86400 offsets,
such that users can be inactive for 30 days without losing
access to their key material. This is an unusually high number

10



101 103 105 107 109

#offsets

104

105

di
st

an
ce

 to
 s

ec
re

t

Figure 4: Simulated attack on HOTP factor constructions with
up to 109 samples, averaged over 100 random targets κhotp.

of HOTP codes that are available to the adversary “for free”
in the public MFKDF state. To understand the practicality of
our attack, we simulate it by generating samples of the bias
using 6-digit HOTP codes (conforming to RFC 4226 [32]) to
hide different targets κhotp.10 Figure 4 shows a log-log plot
of the attack success, averaged over 100 targets and up to
109 samples. We measure the attack success as the position
of target κhotp in the list of possible values i that is sorted in
decreasing order by the overall sum of offsets observed in the
interval [i− γ, i] (mod 10d).11 This distance decreases from
around 300,000 for 107 samples to 10700 for 109 samples.

Impact. This attack recovers the source key material κhotp
from the bias in HOTP witnesses, given enough observations
of the offsets stored in the MFKDF state. While our simula-
tion indicates that this HOTP bias attack is not practical12, it
directly invalidates the security theorem for the H/TOTP fac-
tor constructions in [37, §5.2.2]. In particular, the claims that
the offsets “reveal no further information” about the source
key material are clearly false.

Unfortunately, this attack also means MFKDF cannot use
T/HOTP codes and would require witnesses that are actually
uniformly random. This significanly weakens the contribution
of MFKDF, as one of its major advantages is the “compati-
bility with existing systems using PBKDFs; systems should
not need to be entirely rearchitected to use MFKDF, and the
user experience should not be impacted whatsoever. [37, § 4].”
However, T/HOTP codes are widely used for authentication,
and we are not aware of any authentication factors with uni-
form witnesses that are similarly popular.

10 Running the simulations took 14.5 hours on an Intel® Xeon® CPU
E5-2699A v4 @ 2.40GHz with 44 physical cores and 512 GB of memory.

11 We conservatively measure attack success and count values that have
the same overall sum as the target κhotp to the values in front of κhotp to get
the worst-case distance of the correct answer from the top of the sorted list.

12 However, it could be dangerous for an application to allow users to be
inactive for many years, which leads to it publishing many more samples in
the MFKDF state.

3.3.3 Share Recovery Attack

This attack impacts the security of the t-out-of-n threshold
MFKDF construction (Section 2.2.2).

Let Fx be a “lost” factor and let F ′x be the new factor that will
replace it. Before the recovery process, the public MFKDF
state contains csx = sx ⊕ padx, the encryption of sx under
a pad derived from the source key material of Fx. If the
algorithm Recover works as described by NS in the paper13,
then step 3 uses algorithm Rec to recover sx with help of
the other factors. The recovered share is then re-encrypted
with the pad corresponding to the new source key material
pad′x, and the ciphertext in the public state is updated to c′sx =
sx⊕ pad′x. However, the share itself is not updated.

Attack Overview. The share not being updated when
Recover is run has two consequences. First, an adversary
who compromises the source key material of the lost factor
can use it to decrypt c′sx and recover sx. Hence key material
of a lost factor is as critical for security as that of any still
valid factor. Second, the same share sx is encrypted twice
using different pads padx and pad′x, a “two-time pad”. This
is completely insecure when the pads have small entropy. If
the adversary observes the public state before and after the
update, it obtains csx and c′sx . It can therefore compute

csx ⊕ c′sx = padx⊕ pad′x
and start guessing values for padx and pad′x. For factors
of entropy m, pad can only take M = 2m possible values.
We can efficiently recover the values of the pads in O(M)
guesses: first we precompute all the M possible values of
padx⊕ csx ⊕ c′sx , storing them in a hashtable. Then we iterate
over the M possible values of pad′x, checking the hashtable for
matches. This attack succeeds with overwhelming probability
if 2m≪ 2ℓ, where ℓ is the bit length of the share. We analyse
this in more detail in Appendix D,

Impact. Our first observation means that the recovery al-
gorithm should not be used as a means of replacing a com-
promised factor (e.g., in the event of a password breach),
as witnesses for the lost factor can still be used to compute
the share, therefore bypassing the new factor. By our sec-
ond observation, the recovery process allows an adversary
to efficiently recover the share corresponding to low-entropy
factors when they are replaced, violating the security claim
that individual MFKDF factors cannot be guessed in isolation.

3.3.4 Share Format Attack

Recall that in threshold MFKDF, the public MFKDF state B
contains a one-time pad encrypted share cs and factor con-
struction state βi for each factor F . NS note that the one-time
pad can “be replaced by symmetric-key encryption as long
as no checksums or integrity mechanisms are included in the

13 The reference implementation diverges from this description, and is
therefore vulnerable to the share dilution attack described in Section 3.2.3.
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scheme” [37, A.4]. The following attack shows that this eso-
teric requirement is vital for the security of MFKDF, but that
even using the one-time pad, threshold MFKDF is vulnera-
ble to a theoretical guessing attack against individual factors,
leveraging the byte representation of Shamir shares.

Attack Overview. The attack assumes that the byte repre-
sentation of the shares produced by Shamir secret sharing is
non-uniform. Note that in Shamir’s original description [46],
shares are elements of a prime field; for an l-byte prime
p < 256l , each share is a value in [0, p), and hence cannot
be represented as an l-byte string uniform in [0,256l). Since
the distribution of shares is non-uniform, we can construct a
distinguisher algorithm D that, given as input either a share
or a random byte string of the same length, outputs 1 if the
input was a share and 0 otherwise. We refer to the success
probability of this algorithm as:

p = |Pr[D(s) = 1|s is a share]−Pr[D(s) = 1|s is random]|
An attacker can use this distinguisher to guess witnesses for

each factor independently of the other factors, as follows. The
adversary can check a witness guess W ∗i for F by computing:

κ∗F ← Derive1(W ∗i ,βi)
pad∗← HKDF.Exp(κ∗F ,ε, ℓ)

It can now use the distinguisher to check if guess was
correct by evaluating if D(cs ⊕ pad∗) = 1. This confirms a
correct guess with probability p.

Note that if the encryption scheme included any “integrity
mechanisms”, the distinguisher could be replaced by the de-
cryption algorithm. The attack would then succeed with over-
whelming probability even if the shares were uniform.

Impact. This attack undermines the claims of exponential
security of MFKDF, allowing an adversary to attack each
factor separately if shares have a biased representation. For
example, in case the distinguisher fails with probability 2−20,
i.e. p = 1−2−20, HOTP and TOTP factors are trivial to brute-
force since they individually provide only ~20 bits of entropy.

Limitations. In the reference implementation, the share
representation used is such that the bias is always contained
in the first byte of each share. Additionally, because of an
implementation bug, the first 16 bytes of shares are actually
not encrypted. Therefore, the reference implementation inad-
vertently avoids being vulnerable to this attack. However, the
attack would work if the shares were properly encrypted.

4 Mitigations

In this section, we discuss how some of the attacks from Sec-
tion 3 can be mitigated. Unfortunately, this does not apply to
Attack 3.1; due to the static nature of key derivation14 and the

14 For functionality, the key must be deterministically deriveable from the
factors.

mismatch between the threat models of authentication and
key derivation, this attack cannot be mitigated. The result is
that dynamic authentication factors such as H/TOTP, OOB
codes and HMAC hardware tokens—the most common MFA
methods in practice—are unsuitable for use with MFKDF.
This represents a significant drawback for MFKDF, as one of
its main goals is to “realize the full benefits of multi-factor au-
thentication within the key-derivation process” with “no no-
ticeable change to the user experience, and while supporting
all of the same 2FA factors that users have already grown
accustomed to” [37, §2]. Section 5 discusses this fundamen-
tal problem of MFKDF in more detail; in the rest of this
section, we focus on the problems that can be fixed.

State Integrity. It is clear at this point that MFKDF should
not be used if its state has no integrity protection: the OOB
Overwriting (3.2.1), Parameter Tampering (3.2.2) and Share
Dilution (3.2.3) attacks all result from this lack of integrity.

A partial solution could be to give up on some of the flex-
ibility and functionality of MFKDF, such as the support for
arbitrary threshold policies and user-specified key length,
and embed these parameters in the client software instead
of keeping them in the state. While fixing the threshold value,
key length, and PBKDF parameters prevents attacks 3.2.2
and 3.2.3, it is not possible to hard code public keys to protect
against attack 3.2.1. Moreover, other attacks that rely on the
lack of integrity of the remaining state may still be possible;
this mitigation only helps against some of the concrete vul-
nerabilities that we found, but does not fundamentally solve
the issue of state integrity.

Unfortunately, verifying the integrity of the state presents
a “chicken-and-egg” dilemma: the purpose of MFKDF is
to derive a key, so we cannot assume the existence of a key
which can be used to protect the state, but without a key, the
integrity of the state cannot be verified. The only option is
to use the MFKDF key, derived from the unprotected state,
to itself ensure the integrity of the state. But this circular
approach is vulnerable to attacks where the adversary exerts
control over the derived key (in the vein of Attack 3.2.2).

Therefore, as it stands, MFKDF itself cannot achieve state
integrity. The two plausible alternatives to instantiate MFKDF
in a secure way are to rely on a trusted third party to protect
the state, or to come up with a new, stateless construction.

In their response to our disclosure, NS suggest the first
option, saying that the state can be stored on a blockchain
or on IPFS. This impacts the practicality of MFKDF, and
leaves open the problem of updating the state: either the state
is immutable, or the user would need to authenticate in order
to modify it. An MFKDF construction without state might be
of interest for future work, but requires considerable change
to the current design.

Cryptographic Primitives. The HOTP Compromise
(3.3.1) and Share Format (3.3.4) attacks result from under-
specified requirements for the cryptographic primitives used
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in MFKDF. NS argued in their response that this underspeci-
fication is intentional, to ensure that MFKDF is “future proof”
and can be adapted and implemented as required by applica-
tions. We believe the specification should be more stringent
and clarify the security properties of the primitives on which
MFKDF relies. In this vein, NS convene with us that symmet-
ric encryption should at least be IND-CPA secure (hence in
particular excluding the usage of one-time pad).

Independently from our other proposed mitigations, we
advise to use AEAD encryption where appropriate to pro-
tect dynamic parts of the state from changing. A notable
exception is the encryption of shares, which instead requires
a non-authenticated scheme to avoid factor bruteforce attacks
through trial-decryption. Avoiding this class of attack re-
quires non-standard assumption on the encryption scheme: de-
cryptions under incorrect keys should yield plausible-looking
shares. This has been studied by Jules and Ristenpart in their
work on honey encryption (HE) [25]: we postulate that a HE
scheme could be used to encrypt the shares while withstand-
ing brute-force attacks on low-entropy keys.

HOTP. While the HOTP Bias Attack (3.3.2) can be avoided
by discontinuing the use of HOTP codes as an MFKDF factor,
the fundamental issue with dynamic factors (including HOTP)
remain; they should not be used for key derivation.

Share Recovery. As described in Section 3.3.3, the Share
Recovery Attack can be prevented by having Recover gener-
ate fresh shares when a factor is lost. If the share threshold t
were to be additionally authenticated or constant, this results
in a secure factor recovery mechanism (that does not instead
expose the user to the Share Dilution Attack 3.2.3).

5 Discussion

In our analysis of MFKDF, we found multiple issues with both
the proposed constructions and the implementation. However,
the most damaging finding is arguably the dynamic factor
attack, which points to a fundamental flaw in the concept of
MFKDF, and cannot be mitigated. This flaw stems from a gap
between the two threat models of password-based systems in
which MFKDF operates: key derivation and authentication.

In the following, we discuss this gap and why it arises. We
compare MFKDF to the state of the art in authentication and
key derivation, respectively. Our analysis shows that for au-
thentication, MFKDF is always weaker than traditional MFA,
and that for key derivation, MFKDF is no better than using
PBKDF on a longer password—and the latter is arguably the
safer option from a usability point-of-view.

Authentication. In the setting of (multi-factor) authentica-
tion, the goal is to prevent outsiders from impersonating the
prover towards the verifier. For instance, consider the case
of a server authenticating a user to an application such as
e-banking, unencrypted email or cloud storage. In its role

as a verifier, the server is trusted: it aims to prevent an ex-
ternal actor—which may partially compromise user secrets
and observe the communication between user and server—
from gaining access to the user’s resources. For MFKDF,
this threat model is relevant when the derived key is used
for authentication; NS propose this usage, arguing that the
final key implicitly verifies the authentication factors used to
derive it, and can hence replace traditional MFA.

Next, we compare the security achieved by using the
MFKDF key for authentication, to directly using traditional
authentication factors for MFA. Note, however, that the state-
of-the-art for authentication are protocols like WebAuthn [21],
which leverage public-key cryptography for completely pass-
wordless authentication. MFKDF does not try to compete
with these more modern alternatives; its goal is instead to
strengthen the security of password-based systems, making
MFA the appropriate baseline.

MFKDF vs. MFA. In traditional MFA, dynamic authen-
tication factors present a significant advantage over static
ones: access to a dynamic factor witness is only useful to
authenticate once (the witness is “one-time”), and sometimes
only during a short time interval (cf. TOTP). This is possible
thanks to the threat model, which allows the client to put some
trust in the server (concretely, in the form of a shared secret
such as an HMAC key, or a server-generated OOB code).

This is not the case in MFKDF. Because the final key has
to be static, dynamic factors need to be turned into static
ones. Consequently, the one-timeness/freshness properties
of dynamic factor witnesses are lost; as shown in Attack 3.1,
corrupting a single witness allows an adversary to recover the
source key material for the corresponding factor.

NS do not discuss the consequences of turning dynamic
factors into static ones in their paper, and—in response to
our disclosure—dismissed this limitation as inherent to the
properties of a key derivation function. However, dynamic
factors can make a difference in practice: consider a user
authenticating to their e-banking with a password and a TOTP
token, on a device infected with a keylogger. The adversary
learns the password and the token witness, allowing it to de-
rive the MFKDF key. This enables the attacker to repeatedly
authenticate as the user, also in the future. In contrast, if
traditional MFA was used, the attacker would be unable to
authenticate at all since it does not have access to the TOTP
token, and the captured witness has already been used.

Hence, authenticating with traditional MFA is stronger
than using MFKDF. Furthermore, the connotation that, for
example, TOTP codes are “one-time” (as alluded to in the
name) might convey a false sense of security to users, who
should not reasonably be expected to understand that their
previously dynamic authentication factors have now become
static, and that their “one-time passwords” need to be treated
with as much care as their normal passwords.
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Key Derivation. In the setting of password-based key
derivation, the goal is to extract entropy from a password
to produce a cryptographic key, while making brute force
and dictionary attacks hard. The resulting key can then be
used for cryptographic operations, without requiring the user
to memorize or store the key. Notable use-cases include en-
crypting files for end-to-end encrypted cloud storage (e.g.
MEGA [30]), or protecting passwords stored in an online
password manager (e.g. Bitwarden [23]): here, the service
provider hosting the encrypted data is not trusted. This threat
model differs from that of authentication in two ways.

First, if the key is used to protect outsourced data, the server
storing that data is considered malicious. As we outlined
under Authentication above, this deviates from the authenti-
cation setting, where the client may share secret key material
with the server for the purpose of authentication.

Second, the attacker “trivially” wins if it compromises the
device of the user where the key derivation is taking place,
since it then learns the key. In the case of MFKDF, this is true
even if the attacker has not compromised any of the factors
used for the key derivation. In the authentication setting, in
contrast, compromise of the device where authentication is
taking place is insufficient to impersonate a user thanks to the
dynamic factors; all factor material must be corrupted in order
for the attacker to win (see the keylogger example above).

One of the explicit goals of MFKDF is to bring the security
guarantees of MFA to key derivation, but this is unattainable,
as the two threat models are in conflict: trust in the server
cannot be leveraged in the key derivation setting, and MFKDF
cannot help against compromise of the user’s device (as MFA
does) if the server is also malicious.

MFKDF vs. PBKDF. In light of the above considerations,
we argue that MFKDF is no stronger than using PBKDF on a
longer password (or, equivalently, the combination of multi-
ple static secrets). First of all, Attack 3.1 shows that dynamic
factors are unsuitable for use with MFKDF; they have to be
turned into static source key material to satisfy the require-
ments for key derivation, and hence lose their advantage over
static factors. Since MFKDF internally applies PBKDF to the
concatenated source key material of all factors (see lines 5–6
of Algorithm 5), it is clear that this approach is no more se-
cure than applying PBKDF to a longer password of the same
entropy as that of the factors combined. More importantly,
users are faced with the non-obvious shift in threat model
which implies that one-time codes from their dynamic factors
need to be treated as secrets lest they permanently degrade
the security of their key.

The other claimed advantages of MFKDF, such as thresh-
old key derivation and factor recovery, have to be traded off
against their disadvantages. Indeed, our attacks show that the
substantial complexity added by MFKDF can easily make it
considerably less secure than just PBKDF. Among the reasons
for this are the vulnerabilities that arise from having security

critical values in unauthenticated state, as well as implementa-
tion pitfalls such as the use of biased Shamir shares combined
with encryption, a use case for which they were not designed.
Such features would require careful formal treatment.

6 Conclusions

MFKDF is promoted as a more secure alternative to PBKDF,
bringing the advantages of multi-factor authentication to
password-based key derivation. In our analysis, we showed
that the security claims made for MFKDF are void: the pro-
posed construction suffers from vulnerabilities that allow an
adversary to compromise or bypass the factors used for key
derivation, or directly recover the derived key without cor-
rupting all of the factors. Additionally, even with the mitiga-
ble vulnerabilities patched, MFKDF is not more secure than
PBKDF with longer passwords of equivalent entropy.

As a concept, MFKDF does propose a way of harvesting
the entropy from authentication factors that a user might al-
ready have, and use it for key derivation. Indeed, the authors
state that MFKDF provides “a paradigm shift toward direct
cryptographic protection of user data using all available au-
thentication factors, with no noticeable change to the user
experience” [37]. However, when proposing to use authen-
tication factors for key derivation, they fail to discuss the
disparate threat models of these objects. The result is that
the protection provided by dynamic factors against imperson-
ation attacks is lost when MFA is replaced by authentication
through MFKDF with the same factors. Additionally, dy-
namic factor witnesses such as HOTP codes are no longer
one-time when used for MFKDF; they lose their advantage
over static factors, and they instead represent a security risk
for users who do not understand this change.

Future Work. Constructing an alternative to PBKDF which
strengthens the security of derived keys by combining the
password with additional inputs is a highly relevant quest.
If we move away from the authentication threat model, we
can design dynamic factors specifically for key derivation
purposes which can achieve this goal, and provide security
for the KDF even under leakage of all the inputs and outputs
of the factor. Think, for instance, of placing an OPRF key
on a smartphone, and using the phone as a second factor to
interactively evaluate the OPRF on input a static secret such
as a password. With such a design, even with access to all
the messages of the OPRF flow, an adversary would need to
compromise both the password and the OPRF key in order to
derive the final key.
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A MFKDF Factor Constructions

Algorithm 3 shows the HMAC factor construction used
in MFKDF to enable support for hardware authenticators,
such as YubiKeys, via the HMAC-SHA-1 challenge-response
mechanism. In contrast to the usual authentication protocol
of an HMAC hardware token, where the authenticator is used
to compute the response to a freshly sampled challenge, here
the next challenge ci+1 is derived ahead of time and stored
in the public state βi+1. The state also contains the XOR
of the HMAC key kh with the next witness Wi+1 computed
as response to ci+1. When the client authenticates, it uses
the hardware authenticator to re-derive the witness Wi+1 in
response to the stored challenge and can hence recover κhmac.

Algorithm 4 shows the setup and derive procedures for the
OOB factor construction proposed by Nair and Song. Here,
the witness is the OTP from the OOB authentication factor,
but generated by the client rather than the server. Note that
the decryption of the OTP witness Wi from the outsourced
ciphertext cW,i is part of the normal authentication protocol for
the OOB authentication factor, and hence assumed to happen
outside of algorithm Derive.

Algorithm 3 HMAC Factor Construction for HMAC key kh

1: procedure Setup(kh)
2: κhmac← kh; c0←${0,1}160

3: W0← HMAC-SHA-1(κhmac,c0)
4: return (κhmac,(c0,κhmac⊕W0))

5: procedure Derive(Wi,βi)
6: (ci,cκ,i)← βi
7: κhmac← cκ,i⊕Wi
8: ci+1←${0,1}160

9: Wi+1← HMAC-SHA-1(κhmac,ci+1)
10: return (κhmac,(ci+1,κhmac⊕Wi+1))

Algorithm 4 OOB Factor Construction

Require: Let (PK.Enc,PK.Dec) be a public-key encryption
scheme with associated keys (pk,sk).

1: procedure Setup()
2: κoob←$ [0,106)
3: W0←$ [0,106)
4: cκ,0← (κoob−W0) mod 106

5: cW,0← PK.Enc(pk,W0)
6: return (κoob,(pk,cκ,0,cW,0))

7: procedure Derive(Wi,βi) ▷ The user has derived Wi
using their sk by Wi← PK.Dec(sk,cW,i).

8: (pk,cκ,i,cW,i)← βi
9: κoob← (cκ,i +Wi) mod 106

10: Wi+1←$ [0,106)
11: cκ,i+1← (κoob−Wi+1) mod 106

12: cW,i+1← PK.Enc(pk,Wi+1)
13: return (κoob,(pk,cκ,i+1,cW,i+1))

B MFKDF Constructions

Definition 5 (Plain MFKDF Construction). Let F1,F2, . . . ,Fn
be authentication factors and let σ = (σF1 ,σF2 , . . . ,σFn) be a
vector with the corresponding factor materials. The MFKDF
construction for factors F1,F2, . . . ,Fn consists of algorithms

(K,B0)← Setup(σ, ℓ), and

(K,Bi+1)← Derive(W i,Bi).

Here ℓ is the desired length of the derived key and W i =
(Wi,F1 , . . . ,Wi,Fn) is a vector consisting of the ith witness for
each factor in the construction. K is the final key output by
MFKDF and Bi is the ith public state.

For each factor Fj, let Fj.Setup and Fj.Derive be the setup
and derive algorithm, respectively, associated to Fj by the
factor construction. The “plain” (n-out-of-n) MFKDF con-
struction for factors F1,F2, . . . ,Fn is given in Algorithm 5.

The syntax defining the t-out-of-n threshold MFKDF con-
struction is given in Definition 4. We review the details of
algorithm Setup in Algorithm 6, and of algorithms Derive
and Recover in Algorithm 7. Algorithms (Share,Comb,Rec)
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Algorithm 5 Plain MFKDF Construction

Require: Let PBKDF be a memory-hard KDF.
1: procedure Setup((σF1 , . . . ,σFn), ℓ)
2: for j = 1 to n do
3: κFj ← Fj.Setup1(σFj) ▷ If Fj uses feedback
4: (κFj ,β0,Fj)← Fj.Setup(σFj) ▷ Else

5: κ← κF1∥κF2∥ . . .∥κFn ; salt←${0,1}ℓ
6: K← PBKDF(κ,salt, ℓ)
7: for j = 1 to n do ▷ If Fj uses feedback
8: β0,Fj ← Fj.Setup2(K,σFj ,κFj)

9: B0← (ℓ,salt,(β0,F1 , . . . ,β0,Fn))
10: return (K,B0)

11: procedure Derive(W i,Bi)
12: (Wi,F1 , . . . ,Wi,Fn)←W i
13: (ℓ,salt,(βi,F1 , . . . ,βi,Fn))← Bi
14: for j = 1 to n do
15: κFj ← Fj.Derive1(Wi,Fj ,βi,Fj) ▷ If feedback
16: (κFj ,βi+1,Fj)← Fj.Derive(Wi,Fj ,βi,Fj) ▷ Else

17: κ← κF1∥κF2∥ . . .∥κFn

18: K← PBKDF(κ,salt, ℓ)
19: for j = 1 to n do ▷ If Fj uses feedback
20: βi+1,Fj ← Fj.Derive2(K,κFj ,βi,Fj)

21: Bi+1← (ℓ,salt,(βi+1,F1 , . . . ,βi+1,Fn))
22: return (K,Bi+1)

are part of a Shamir secret sharing scheme (see Definition 3).

Algorithm 6 t-out-of-n Threshold MFKDF Construction

Require: Let PBKDF be a memory-hard PBKDF, and let
HKDF.Exp be HKDF-Expand per RFC 5869 [27].

1: procedure Setup((σF1 , . . . ,σFn), t, ℓ)
2: κ←${0,1}ℓ ; salt←${0,1}ℓ
3: K← PBKDF(κ,salt, ℓ)
4: (s1, . . . ,sn)← Share(κ, t,n)
5: for j = 1 to n do
6: κ j← Fj.Setup1(σFj) ▷ If Fj uses feedback
7: (β0, j,κ j)← Fj.Setup(σFj) ▷ Else
8: pad j← HKDF.Exp(κ j,ε, ℓ) ▷ Expand κ j to

length ℓ with empty context
9: cs j ← pad j⊕ s j

10: for j = 1 to n do
11: β0, j← Fj.Setup2(K,σFj ,κ j) ▷ If feedback

12: B0← (t, ℓ,salt,(cs1 , . . . ,csn),(β0,1, . . . ,β0,n))
13: return (K,B0)

Algorithm 7 Threshold MFKDF Construction Continued

14: procedure Derive(W i,Bi) ▷ Using t factors (Fu1 , . . . ,Fut )
of the n original factors

15: (Wi,u1 , . . . ,Wi,ut )←W i
16: (t, ℓ,salt,(cs1 , . . . ,csn),(βi,1, . . . ,βi,n))← Bi
17: for j = 1 to t do
18: κu j ← Fu j .Derive1(Wi,u j ,βi,u j) ▷ If feedback
19: (κu j ,βi+1,u j)← Fu j .Derive(Wi,u j ,βi,u j) ▷ Else
20: padu j ← HKDF.Exp(κu j ,ε, ℓ)
21: su j ← padu j ⊕ csu j

22: κ← Comb((su1 , . . . ,sut ), t,n)
23: K← PBKDF(κ,salt, ℓ)
24: for j = 1 to n do
25: if j ∈ {u1, . . . ,ut} then
26: βi+1, j← Fj.Derive2(K,κ j,βi, j) ▷ If Fj uses

feedback
27: else βi+1, j← βi, j

28: Bi+1← (t, ℓ,salt,(cs1 , . . . ,csn),(βi+1,1, . . . ,βi+1,n))
29: return (K,Bi+1)

30: procedure Recover(W i,Bi,x,σF ′x ) ▷ Recover share x
using t factors (Fu1 , . . . ,Fut ) of the n original factors
▷ Recover the secret and update existing factors:

31: (Wi,u1 , . . . ,Wi,ut )←W i
32: (t, ℓ,salt,(cs1 , . . . ,csn),(βi,1, . . . ,βi,n))← Bi
33: for j = 1 to t do
34: κu j ← Fu j .Derive1(Wi,u j ,βi,u j) ▷ If feedback
35: (κu j ,βi+1,u j)← Fu j .Derive(Wi,u j ,βi,u j) ▷ Else
36: padu j ← HKDF.Exp(κu j ,ε, ℓ)
37: su j ← padu j ⊕ csu j

38: κ← Comb((su1 , . . . ,sut ), t,n)
39: K← PBKDF(κ,salt, ℓ)
40: for j = 1 to n do
41: if j ∈ {u1, . . . ,ut} then
42: βi+1, j← Fj.Derive2(K,κ j,βi, j) ▷ If feedback
43: else βi+1, j← βi, j

▷ Replace the lost factor:
44: κ′x← F ′x .Setup1(σF ′x ) ▷ If F ′x uses feedback
45: βi+1,x← F ′x .Setup2(K,σF ′x ,κ

′
x)

46: (βi+1,x,κ
′
x)← F ′x .Setup(σF ′x ) ▷ Else

47: pad′x← HKDF.Exp(κ′x,ε, ℓ)
48: sx← Rec(κ, t,n,x)
49: csx ← pad′x⊕ sx
50: Bi+1← (t, ℓ,salt,(cs1 , . . . ,csn),(βi+1,1, . . . ,βi+1,n))
51: return Bi+1
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C Formal Analysis of the HOTP Bias Attack

To rigorously analyze the HOTP bias attack (Section 3.3.2),
we model the MFKDF offsets as a “balls into bins” problem
with biased probabilities. There are n = 10d bins (one for
every possible offset) and m balls (corresponding to cκ,i).
The interval Ih of more likely offsets has γ = 231 mod 10d

elements (e.g., in Figure 3, γ = 6), and |Il |= 10d−γ. We now
compute the required number of balls to recover κhotp with
good probability.

Let X j
i be a Bernoulli random variable that is 1 if ball i falls

into bin j and 0 otherwise. The biased probabilities ph for
likely bins, respectively pl for unlikely bins, are as follows:

ph := Pr[X j
i = 1| j ∈ Ih] =

⌊
231/10d

⌋
+1

231

pl := Pr[X j
i = 1| j ∈ Il ] =

⌊
231/10d

⌋
231

Let Bi = ∑
m
1 X j

i be the random variable counting the num-
ber of balls in bin j. Since |Ih| = γ, we define a random
variable for the sum of γ consecutive bins as follows, ending
with bin i:

Si =
γ−1

∑
j=0

Bi− j mod 10d

Our attack is perfectly successful if the interval Ih (which
ends with the bin κhotp) has the largest overall sum, i.e.,
Pr[Sκhotp > max j ̸=κhotp S j].

In the generalized version of the problem, we consider the
attack to be successful if any bin with distance at most ε from
κhotp has the maximal sum for i, j ∈ [0,10d):

Pr
[

max
|i−κhotp|≤ε

Si > max
| j−κhotp|>ε

S j

]
=

∨
|i−κhotp|≤ε

∧
| j−κhotp|>ε

Pr[Si > S j] (1)

We will now compute Pr[Si > S j] for some i, j satisfying
|i−κhotp| ≤ ε and | j−κhotp|> ε, by applying two Chernoff
bounds for independent Poisson trials for some 0 < δ1,δ2 < 1:

Pr[Si > (1−δ1)µi]≥ 1− e−δ2
1·µi/2

Pr[S j < (1+δ2)µ j]≥ 1− e−δ2
2·µ j/3

where µk denotes the expected value of Sk for k ∈ {i, j}, com-
puted explicitly below. If we carefully pick δ1,δ2 such that
(1−δ1)µi > (1+δ2)µ j, then we can combine the above prob-
abilities to estimate Pr[Si > S j]. Although Si and S j are clearly
not independent, we find that the empirically measured attack
success reasonably matches the values computed here.

Before we can pick δ1,δ2, we compute the mean µk for
some k ∈ [0,10d) with the straightforward computation:

µk = E[Sk] =
γ−1

∑
j=0

m

∑
i=1

E[X i
k− j mod 10d ] = m · ((γ−αk)ph +αk pl)

for αk = min(|k− κhotp|,min(n− γ,γ)), the number of un-
likely bins among the ones that Sk sums over (which can be
at most the total number of unlikely bins n− γ, and not more
than all bins of Sk).

We derive the following limits for δ1,δ2:

0 < δ1 < 1− (1+δ2)
µ j

µi

0 < δ2 <
µi

µ j
−1

For the optimal bounds, we would set the values δ1,δ2 such
that they maximize Pr[Si > (1−δ1)µi] ·Pr[S j < (1+δ2)µ j]

15.
For simplicity, we just pick the middle of the interval for δ2
(which is not significantly worse than the optimal choice):

δ2 =
µi−µ j

2µ j
,δ1 =

µi−µ j

2µi

We can estimate the worst case number of samples needed
to identify the secret (up to an error ε) by picking the desired
success probability t for Pr[Si > S j], for a reasonable choice
of i, j, and then solve for m. We approximate

t = Pr[Si > S j]≥ (Pr[Si > (1−δ1)µi])
2

since we pick δ1 and δ2 to roughly balance the two Chernoff
bounds. Then, we compute the number of samples m as

m≤ −2ln(1−
√

t)
δ2

1 · γ · ph
.

For example, at most m ≈ 1019 samples are required to
recover κhotp uniquely for 6-digit HOTP witnesses16.

D Formal Analysis of the Share Recovery At-
tack

Here, we formally study the success probability of At-
tack 3.3.3. Recall the setting: we have a lost factor F and are
replacing it with a new factor F ′. A secret share s is encrypted
with the one-time pad under two different pads, pad and pad′,
producing ciphertexts cs = s⊕ pad and c′s = s⊕ pad′, where

pad← HKDF-Expand(κ, l)
pad′← HKDF-Expand(κ′, l)

(2)

are the l-bit outputs of HKDF-Expand on (possibly low-
entropy) source key materials κ,κ′ associated to F and F ′,
respectively. Given cs and c′s , our goal is to recover s.

For a lost factor with entropy m (resp. a new factor of en-
tropy m′), we have at most M ≤ 2m (resp. M′ ≤ 2m′ ) possible
distinct values of pad (resp. pad′). Let P = {pi}i∈[0,M] be the

15 To maximize the product of these probabilities, we would need to balance
both terms, i.e., have δ2

1 ·µi/2≈ δ2
2 ·µ j/3. Hence, we would have to pick δ1,

δ2 such that δ1
δ2
≈
√

2µ j
3µi

.
16 Using t = 0.81, ε = 0 (the answer needs to match κhotp), i = κhotp

and j = κhotp + 1 mod 10d since distinguishing S j from Si is maximally
challenging because they only differ by one element. For these choices, we
have the expectations µi =m ·γ · ph and µ j =m ·((γ−ε−1) · ph+(ε+1) · pl).
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set of possible values of pad (resp. P′ = {p′j} j∈[0,M′] the set
of possible values of pad′). Observe that P,P′ ⊆ 2l , as each
pad is an l-bit output of HKDF-Expand. We can enumerate
P and P′ using the public state of the factors by iterating over
all possible witnesses, thereby recovering the source key ma-
terial as in Attack 3.1, and then using Equation 2 to compute
the corresponding pads.

In order to recover s, we need to recover the value of pad
or pad′. To this end, we first compute a table of values ti =
pi⊕ cs ⊕ c′s for each pi ∈ P. We then iterate over the values
of p′j ∈ P′, and check if there exists any ti such that ti = p′j. If
that is the case, we have found pads pi, p′j such that

pi⊕ cs ⊕ c′s = p′j . (3)

We claim that the above only holds when pi = pad, p′j =
pad′, or symmetrically (if pad, pad′ ∈ P∩P′), when pi =
pad′, p′j = pad. This relies on two assumptions.

1. The pad for the lost factor is different from the pad for
the new factor (i.e. pad ̸= pad′). Note that if pad =
pad′, the attack is not possible—the observed ciphertext
does not change, and we learn nothing from it. Let
p f ail1 denote the probability that pad = pad′, i.e., the
probability that this assumption fails.

The can happen for one of two reasons. Either there
is a collision in the HKDF-Expand outputs (i.e. pad =
pad′ ∧κ ̸= κ′), or the source key material for the lost
factor is the same as the source key material for the new
factor (i.e. κ = κ′).

For the first case, we can assume that HKDF-Expand
outputs are uniformly distributed in {0,1}l , relying on
random-oracle assumptions on the underlying HMAC.
The probability of a pad collision can then be determined
by the birthday bound: for factors with entropy m≈ m′

and 2m ≪ 2l , it is approximately 1− e−22m−l
. For all

practical purposes, this is negligible, so we assume that
p f ail1 = 0 in this case. For example, according to [37,
§6], m = 20 for T/HOTP and m = 40 for passwords, and
l = 256 by default in MFKDF.

For the second case, the probability of the two source
key materials colliding depends on the factor construc-
tions used. For instance, if a lost password is replaced
with a new, different password, the source key material
will change. Instead, if a T/HOTP factor is replaced with
another T/HOTP factor with the same number of digits,
then it is possible that the new source key material, which
is sampled uniformly at random, coincides with the pre-
vious one. For factors with source key material sampled
uniformly at random, we then have p f ail1 ≈ 2−m, since
the factors have entropy 2m. For example, when a 6-digit
TOTP is used as a factor, p f ail1 ≈ 2−20.

2. The values yi, j = pi⊕ p′j are all distinct, save for sym-
metries. If this were not the case, we would have two

colliding values yi1, j1 and yi2, j2 , where

pi1 ⊕ p′j1 = pi2 ⊕ p′j2 . (4)

In this case, we cannot differentiate between correct and
incorrect guesses for the pads, since they collide to the
same observable cs ⊕ c′s value.

Let’s analyse all the cases in which such a collision can
happen:

• If i1 = i2 ∧ j1 ̸= j2, then p′j1 = p′j2 . This is never
the case, since the values in P′ are all distinct.

• If i1 ̸= i2 ∧ j1 = j2, then pi1 = pi2 . This is never
the case, since the values of P are all distinct.

• If i1 ̸= i2∧ j1 ̸= j2, then we consider the cases:

– pi1 = pi2 ∧ p′j1 = p′j2 . As above, this is never
the case: the values of P and P′ are all distinct.

– pi1 = p′j1 ∧ pi2 = p′j2 or pi1 = p′j2 ∧ pi2 = p′j1 .
This can only happen if P∩P′ ̸= /0. For exam-
ple, when the new factor uses the same factor
construction as the old factor, P=P′. Observe
that the first case contradicts Assumption 1.
The second case is the symmetric case: Equa-
tion 3 holds for both pad = pi, pad′ = p′j and
pad = p′j, pad′ = pi. Hence we are still able
to recover the pad values, up to their ordering.

– pi1 , pi2 , p′j1 , p′j2 all distinct. If HKDF-Expand
outputs are uniformly distributed in {0,1}l , so
are the pis. From this, it follows the xor of two
uniformly distributed pi, p j is itself uniformly
distributed: the probability of yi, j taking any
particular value is then 2−l .

To recap: this assumption fails with probability p f ail2 =
2−l . Thus the probability p f ail2 is negligible when the
HKDF-Expand output space is large, as is the case in
MFKDF, where by default l = 256.

The probability of either assumption failing is p f ail ≤
p f ail1 + p f ail2 = 2−m + 2−l . We claimed that Equation 3 is
only satisfied for pi = pad, p′j = pad′ or pi = pad′, p′j = pad.
Consider the constant value cs ⊕ c′s . By the first assumption,
we know that it is non-zero, and results from a two-time pad.
By the second assumption, we know that this value corre-
sponds to a single pair of pi, p′j. Since we know that pad ∈ P
and pad′ ∈ P′, our claim holds: we can recover the pads and
hence the share.

We ran simulations of our attack, by encrypting the same
256-bit secret using two different pads, derived from a factor
with 24 bits of entropy. This is sufficient to capture HOTP
factors with 6 digits codes, which would only provide 20 bits
of entropy. The attack always recovers the target pads (up
to their ordering), and terminates in under 10 seconds on a
laptop (Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz with
4 physical cores and 16 GB of memory).
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