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Abstract

In the useful and well studied model of secret-sharing schemes [Bla79, Sha79, ISN89], there are
n parties and a dealer, which holds a secret. The dealer applies some randomized algorithm to the
secret, resulting in n strings, called shares; it gives the i’th share to the i’th party. There are two
requirements. (1) correctness: some predefined subsets of the parties can jointly reconstruct the
secret from their shares, and (2) security: any other set gets no information on the secret. The
collection of predefined qualified sets is called an access structure (AS).

This model assumes that the number of parties is known when preparing the shares and giving
the shares to the parties; furthermore, the sharing algorithm and the share size are determined
by the number of parties, e.g. in the best-known secret-sharing scheme for an arbitrary n-party
access structure the share size is 1.5n [AN21].

The assumption that the number of parties is known in advance is problematic in many sce-
narios. Of course, one can take some upper bound on the number of parties. On one hand, if
this bound is big, then the share size will be large even if only few parties actually participate in
the scheme. On the other hand, if this bound is small, then there is a risk that too many parties
will arrive and no further shares can be produced; this will require an expensive re-sharing of the
secret and updating all shares (which can be impossible if some parties are temporally off-line).
Thus, we need to consider models with an unbounded number of parties.

To address these concrens, Komargodski, Naor, and Yogev [KNY18] defined evolving secret-
sharing schemes with an unbounded number of parties. In a nutshell, evolving AS’s are defined
as a monotone collection of finite qualified sets, such that at any time t a set A ⊆ [t] is either
qualified of not, depending only on A itself, and not on t (a ‘global’ monotonicity).

Quantum secret sharing (QSS) in the standard n-party setting, where the secret is an arbitrary
quantum state (say, qbit), rather than classical data. In face of recent advancements in quantum
computing, this is a natural notion to consider, and has been studied before.

In this work, we explore the natural notion of quantum evolving secret sharing (QESS). While
this notion has been studied by [Samadder 20’], we make several new contributions. (1) The notion
of QESS was only implicit in the above work. We formalize this notion (as well as AS’s for which
it is applicable), and in particular argue that the variant implied by the above work did not require
‘global monotonicity’ of the AS, which was the standard in the evolving secret sharing literature,
and appears to be useful for QESS as well. (2) Discuss the applicability and limitations of the
notion in the quantum setting that follow from the no-cloning theorem, and make its usability
more limited. Yet, we argue that fundamental advantages of the evovling setting, such as keeping
parties’ shares independent of the total number of parties that arrive can be mantainted in the
quantum setting. (3) We characterize the AS’s ammenable to construction of QSSS - so called ‘no
cloning’ evolving AS’s, and point out that this class is not severly restricted relatively to the class
of all evolving AS’s. On the positive side, our construction combines the compiler of [Smith 00’]
with ideas of hybrid secret sharing of [Goyal et. al 23’], to obtain a construction with share size
comparable to the best classical linear share complexity of the scheme.
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1 Introduction

In the model of secret-sharing schemes [Bla79, Sha79, ISN89], there are
n parties and a dealer, which holds a secret. The dealer applies some
randomized algorithm to the secret, resulting in n strings, called shares;
it gives the i’th share to the i’th party. There are two requirements. (1)
correctness: some predefined subsets of the parties can jointly reconstruct
the secret from their shares, and (2) security: any other set gets no
information on the secret. The collection of predefined qualified sets is
called an access structure (AS). It follows from the above definition that
AS’s are monotone in the sense that all supersets of a qualified set are
also qualified.

These schemes are well-studied and have many applications. This
model assumes that the number of parties is known when preparing the
shares and giving the shares to the parties; furthermore, the sharing
algorithm and the share size are determined by the number of parties,
e.g. in the best-known secret-sharing scheme for an arbitrary n-party
access structure the share size is 1.5n [AN21].

The assumption that the number of parties is known in advance is
problematic in many scenarios. Of course, one can take some upper
bound on the number of parties. On one hand, if this bound is big, then
the share size will be large even if only a few parties actually participate in
the scheme. On the other hand, if this bound is small, then there is a risk
that too many parties will arrive and no further shares can be produced;
this will require an expensive re-sharing of the secret and updating all
shares (which can be impossible if some parties are temporally off-line).
Thus, we need to consider models with an unbounded number of parties.

To address these concerns, Komargodski, Naor, and Yogev [KNY18]
defined evolving secret-sharing schemes with an unbounded number of
parties. In a nutshell, evolving AS’s are defined as a sequence of AS’s
f 1, f 2, . . ., where the individual AS’s At = {A[t]|f t(A) = 1} are mono-
tone. Also, the authorization of a set A depends only on the set itself.
Namely, f t(A) = f t

′
(A) for all t, t′ for which A ⊆ [min(t, t′)]. We refer

to this property as consistency.
Quantum secret sharing (QSS) in the standard n-party setting, where

the secret is an arbitrary quantum state (say, qbit), rather than classical
data. In the face of recent advancements in quantum computing, this is
a natural notion to consider and has been studied before.
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In this work, we explore the natural notion of quantum evolving secret
sharing (QESS). We start with a definition of QESS, and discuss the
applicability and limitations of this notion in the quantum setting, as
follows from the no-cloning theorem. We characterize the evolving AS’s
for which a QESS exists and put forward a construction for all AS’s
amenable to a QESS construction. Next, we provide a short overview of
related work on QSS and evolving secret sharing, as well as an overview
of existing work on quantum evolving secret sharing.

1.1 Quantum Secret Sharing (QSS) Schemes

Quantum secret sharing (QSS) in the standard n-party setting, where
the secret is an arbitrary quantum state (say, qbit), rather than classi-
cal data, was first studied in [HBB99] for the threshold 2-out-of-2 case,
and generalized in [CGL99] to the general threshold t > n/2 setting.
In [Smi00] they explored QSS for general AS’s. They devised a com-
piler converting linear classical secret-sharing schemes to quantum ones,
for any structure for which no two disjoint sets can reconstruct the se-
cret. We refer to such AS’s as no-cloning, while [Smi00] refer to them
as Q2∗. They also prove that no-cloning is necessary for the existence of
a QSS, which was also proved, somewhat differently, by D. Gottesman
in [Got00]). In a nutshell, the limitations on the AS’s for which QSS
is possible is due to the non-cloning theorem. The share complexity,
in terms of a number of qdits (over a basis of size p) in every party’s
state, in [Smi00]’s work is the same as the number of field elements in
the underlying linear scheme over the field Fp. In a recent advancement
in terms of the share complexity of QSS, in [CGLZR23], the authors ini-
tiate a study of computational QSS, and similarly to the classical setting,
obtain polynomial-time schemes for a large class of AS’s under standard
assumptions. Most relevantly to our work, they obtain improved perfect
QSS for a rich class of so-called heavy AS’s, inheriting the complexity
of the best known classical schemes in for worst-case AS’s - 1.5n+o(n).
This is an improvement over current instantiations of [Smi00], as the
best-known classical linear schemes have worse complexity.

1.2 Evolving secret sharing schemes

Komargodski, Naor, and Yogev [KNY18] defined evolving secret-sharing
schemes with an unbounded number of parties. In this model, parties
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arrive one after the other and the number of parties that will arrive is
not known. At the beginning of the execution, the dealer holds a secret
(as in the standard model). When a party arrives, the dealer computes a
share and gives it to the party; this share cannot be updated in the future.
Thus, when preparing the t’th share, the dealer cannot assume any bound
on the number of parties that will eventually arrive; the size of the t’th
share should be measured as a function of t. We require correctness and
privacy with respect to an evolving access structure, where the parties
are pii∈N and the evolving access structure is a collection of finite subsets
of the parties that are authorized to reconstruct the secret.1

Komargodski et al. [KNY18] showed that every monotone evolving ac-
cess structure can be realized by an evolving secret-sharing scheme; in
this scheme the size of the t’th share is 2t−1. Recently, Mazor [Maz23]
proved that evolving secret-sharing schemes require exponentially long
shares – there is an evolving access structure such that in any evolving
secret-sharing scheme realizing it the size of the share of the party is 2t−o(t)
(for infinitely many t’s). This is unlike the state of the art in standard
secret sharing, where a seminal recent breakthrough [LV18] led to an
improvement over 2t−o(t) (long conjectured to be the best possible), with
1.5n being the best known result for general AS’s to date. On the posi-
tive side, Komargodski et al. and follow-up works [KPC17, BO18, BO20,
DDD21, FV23, OK20, PSAM21, XY24, YLH23, Pet23, ABD+24] con-
structed efficient evolving secret-sharing schemes for natural access struc-
tures. In particular, [KPC17] construct QESS with polynomial share
complexity Õ(t4) for a natural extension of threshold schemes, called dy-
namic threshold AS’s. Such a scheme is defined by a threshold monotone
threshold function k(t), defining an AS where the qualified sets in [t] are
those qualified in [t− 1] or those of size at least k(t). We also note that
Komargodski’s basic scheme, as well as many of the schemes in the above
list are implicitly linear. On a high level, this means that every share
consists of one or more linear combinations of a secret s and random el-
ements r1, r2, r3, . . ., all coming from a certain finite field Fp. We include
a formal definition of linear evolving schemes below (in taken from an
unpublished paper, soon to appear on eprint).

1We assume that the order that the parties arrive is known in advance, or, alternatively, the t’th party to arrive
assumes the role of the t’th party.
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1.3 QESS - prior work vs. our contribution

In [Cha20], the authors consider QSS in the evolving setting and devise a
QESS for dynamic threshold AS’s. In this work, our contribution beyond
this work is twofold.

1. We identify the set of evolving AS’s which are amenable to the con-
struction of QSS. Namely, it suffices that they are no-cloning. These
notions are not explicitly defined in [Cha20], but apparently, the
evolving AS notion used there does not require consistency. As dis-
cussed in Section 2.7, we view this property as essential for evolving
secret sharing in the quantum setting as well. In fact, we observe
that once consistency is required, the only dynamic threshold AS’s
that have QESS constructions are effectively finite (in the sense that
starting from some t0, adding parties cannot turn a set from unqual-
ified to qualified).

2. We put forward a QESS construction for all evolving AS’s satisfying
both consistency and no-cloning for every t for general evolving AS’s.

1.4 Our Techniques

As mentioned above, we first observe that evolving AS’s only have QESS
only if they are no-cloning. To this end, we use a precise definition of
the structure of inputs and outputs of a (standard, n-party) QSS, fol-
lowing [CGLZR23], extending to QESS. Then, we prove a construction
always exists for no-cloning evolving AS’s, generalizing [Smi00]’s con-
struction for finite no-cloning AS’s.

Their construction is two steps. In the first step, they provide a (pure)
QSS for self-dual 2.12 AS’s, and then provide a (mixed) scheme for no-
cloning AS’s by reduction to the former case. This reduction transforms
the AS into a self-dual one, by adding a single party p0 (whose shares
parties will never get), which is consistent with the original AS on sets
that do not contain p0. Then, they apply the construction from step 1,
and qualified sets of parties trace out p0’s share (along with other parties’
shares), to learn the secret.

To implement step 1 (for the finite case), a method to convert an MSP
to QSS for self-dual AS’s is presented. Specifically, for any no-cloning AS,
the resulting scheme is a QECC (Quantum erasure correcting code) for
A which are no-cloning, handling erasures occurring at sets B, for which
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f(B) = 0, f(B) = 1. When A is self-dual, the scheme is also a QSS (for
A). The authors note that this privacy property comes essentially ‘for
free’ from correctness, combined with a strong variant of the no-cloning
theorem, stating that one can not only clone a general state but also,
can not obtain an output Q(|s〉 ⊗ |0〉) = |s〉 ⊗ ψ, where ψ depends on
|s〉 is some way. The exact statement and proof of this theorem did not
appear in the original paper. Although not very difficult, and although
we will in fact not need it for our construction we include a statement of
the relevant theorem in Appendix ??.

Theorem 1.1 ( [Smi00]). Let (K,M, ρ) be a MSP for an n-party AS
A which is no-cloning. Then Construction 5.1 is a QECC correcting
erasures on all unqualified B /∈ A. In other words, it is a QSS, with the
privacy requirement removed. Furthermore, if A is self-dual, then the
construction is a full QSS for A.

We stress that [Smi00]’s compiler is defined already for non-cloning f ,
and relies on the fact that f is no-cloning to prove correctness for qualified
sets. In particular, although the above construction is well-defined for
arbitrary M , if a pair of qualified sets A, [n] \ A existed, it would not
be a correct QSS, please see the proof of Theorem 2 in [Smi00] for more
details. The extra self-duality property is needed only for privacy.

Unfortunately, this elegant approach does not work for the evolving
setting. Roughly, the reason is that self-dual evolving AS’s are very
limited (see Appendix B), and their particular type of reduction would
only work for this very limited class of AS’s. Namely, these AS’s are
essentially finite!

Fortunately, we are able to salvage this approach using an idea from [CGLZR23].
In more detail, we naturally extend the above step 1 construction to the
evolving setting for no-cloning AS’s (the best possible), and forgo the re-
duction used in [Smi00]. To add privacy to the construction, we use the
beautiful hybrid scheme as used in [CGLZR23] for a different purpose of
improving the share complexity of QSSS (in the standard setting).

1. Encrypt |s〉 under a classical key k, via quantum OTP, to obtain |s′〉.

2. Share k via a standard evolving scheme for f .

3. Share |s′〉 via [Smi00]’s scheme. Here, we no longer rely on the
schemes’ privacy, for which the full-blown self-duality for each t was
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required. The parties could have gotten |s′〉 in the clear.2

Roadmap. In section 2, we include the needed background on secret clas-
sical sharing, evolving secret sharing and quantum secret sharing. In
particular, it includes a yet unpublished formalization of linear evolv-
ing secret sharing schemes (from another paper). In section 3 we put
forward our notion of quantum evolving secret sharing, and discuss the
limitations of its applicability, and propose an alternative scenario for the
application of quantum evolving secret sharing. In Section 5 we describe
our main QESS construction for the so called no-cloning evolving access
structures. In Section 3 we observe that this is indeed the most general
class of evolving AS’s for which QESS exists. In Appendix B, we prove
that the full-fledged approach of [Smi00]. Finally, in Section A we state
and prove a variant of the no-cloning theorem on which Smith’s con-
struction bases its privacy on (implicitly, without a proof or an explicit
reference).

2 Preliminaries

2.1 Classical secret sharing

Let us first define an Access Structure and then proceed to define a
standard secret-sharing.
Definition 2.1. (Access Structures) Let P = {P1, . . . , Pn} be a set of
parties. A collection A ⊆ 2{P1,...,Pn} is monotone if q ∈ A and q ⊆ C

imply that C ∈ Γ. An access structure A ⊆ 2{P1,...,Pn} is a collection of
non-empty sets. Sets in A are called authorized, and sets not in A are
called unauthorized.

An alternative yet equivalent approach is to represent Access Structure
as a function f : {0, 1}n → {0, 1} from each set of parties to a predicate
whether the set P is authorized (f(P ) = 1) or unauthorized (f(P ) = 0).

Given anAS A It is sometimes convenient to denote it by (A,B), where
B is the set of unqualified subsets of [n]. Note that this representation is
redundant, as A or B alone specify (the same) the same f . Nevertheless,
this notation is convenient as Smith [Smi00] uses B for speficying f , and
refers to it as an adversary structure and some of the notions he uses,
that we dapot here, are stated in terms of B.

2The reason we need step 1 as a method to distribute |s′〉 while maintaining recoverability by qualified sets. For
instance, we couldn’t just send each party a copy of |s′〉, because of no cloning
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Definition 2.2. (minterm) A minimal authorized set in the access struc-
ture A is called minterm.

Definition 2.3. (redundant party)[Bei11a]
A party is redundant in an access structure A if the party do not belong

to a minterm in the access structure A.

A secret-sharing scheme realizes an access structure A if the unautho-
rized set of parties will learn nothing about the secret while the autho-
rized set of parties can reconstruct the secret. The formal definition is
given as follows.

Definition 2.4. (Secret-Sharing Schemes). A secret-sharing Σ = 〈µ,Π〉
over a set of parties P = {P1, . . . , Pn} with domain of secrets S is a
pair, where µ is a probability distribution on some finite set R called
the set of random strings and Π is a mapping from S × R to a set of
n-tuples S1 × S2 × . . . × Sn (the set Sj is called the domain of shares
of pj ). We will usually assume that µ is a uniform distribution over
R. A dealer distributes a secret s ∈ S according to Σ by first sampling
a random string r ∈ R according to µ, computing a vector of shares
Φ(s, r) = (sh1, ..., shn), and privately communicating each share shj to
party pj .

For a set q ⊆ {p1, . . . , pn}, we denote ΠA(s, r) as the restriction of
Π(s, r) to its q-entries (i.e., the shares of the parties in q). The size of
the secret is defined as log |S|, the size of the share of party pj is defined
as log|Sj|, and the size of the share of Σ as max log|Sj|. A secret-sharing
scheme 〈µ,Π〉 with domain of secrets S realizes an access structure A if
the following two requirements hold:

Correctness. Any authorized set of parties can reconstruct the secret s.
That is, for any set q = {pi1, . . . , pi|B|} ∈ A, there exists a reconstruction
function Reconq : Si1 × . . . × Si|Q| → S such that for every secret s ∈ S
and every random string r ∈ R, Reconq(ΠQ(s, r)) = s.

Security. Every unauthorized set cannot learn anything about the secret
from its shares. Formally, for any set T /∈ A, every two secrets s1, s2 ∈ S,
and every possible vector of shares 〈shj〉pj ∈ T ,

Pr[ΠT (s1, r) = 〈shj〉pj∈Ti
] = Pr[ΠT (s2, r) = 〈shj〉pj∈Ti

],
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where the probability is over the choice of r from R at random according
to µ.

2.1.1 Linear Secret Sharing Scheme As Monotone Span Program (MSP)

We bring an explanation about linear secret sharing and MSP from Amos
Beimel survey on secret sharing [Bei11a].

The construction of a secret sharing scheme is linear when the distribu-
tion scheme is linear mapping. More formally, in a linear secret-sharing
scheme over a finite field F, the secret is an element of the field, the ran-
domness is a vector over the field, such that each coordinate of this vector
is chosen independently with uniform distribution from the field. Every
party’s share is a vector over the field such that each coordinate of this
vector is some fixed linear combination of the secret and the coordinates
of the randomness.

To model a linear scheme, we use monotone span programs (MSP),
which is, basically, the matrix describing the linear mapping of the linear
scheme. The monotone span program also defines the access structure
that the secret-sharing scheme realizes.

Definition 2.5. (Monotone Span Program ([KW93a]) is a triple M =
(F,M, ρ), where F is a field, M is an a × b matrix over F, and ρ :
{1, ..., a} → {p1, ..., pn} labels each row of M by a party. The size of
M is the number of rows of M (i.e., a). For any set A ⊆ p1, ..., pn, let
MA denote the sub-matrix obtained by restricting M to the rows labeled
by parties in A. We say that M accepts B if the rows of MB span the
vector e1 = (1, 0, ..., 0). We say that M accepts an access structure A if
M accepts a set B iff B ∈ A.

A monotone span program implies a linear secret-sharing scheme for
access structure containing all the sets accepted by the program as stated
below. For more details see [KW93a].

2.2 Evolving Secret Sharing Scheme

Definition 2.6. (Evolving access structure)[HS16]
A (possibly infinite) sequence of access structures At for t ∈ N is called

evolving if the following conditions hold:
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1. (monotonicity) For every t ∈ N, it holds that At is an access structure
over t parties.

2. (consistency) For every t ∈ N, it holds that At|t−1 is equal to A(t−1).

When considering the alternative presentation of access structure as
a function f : {0, 1}n → {0, 1} from any set P to a predicate whether
the set is authorized or not, we look at evolving access structure as a
family of functions f(t) that when we decide on a specific time value t
give a function f t : {0, 1}t → {0, 1}. The functions f t in the family f(t)
preserve legacy over time in the sense that for any set P once there exist
t such that f t(P ) = 1 then for all t′ > t it must be that f t′(P ) = 1.

The notions of minterm and redundant party naturally extend to the
evolving setting.

One type of evolving AS that is useful to us is that of a Dynamic
threshold.

Definition 2.7 (Dynamic thresholds [KP17]:). A dynamic threshold ac-
cess structure has a sequence k1 ≤ k2 ≤ ... of positive integers. For any
t ∈ N, the set of qualified sets A with f t(A) = 1 contains all subsets of
[t] of cardinality at least kt (and those qualified according to f t−1).

Of particular interest is the sequence with kt = γ · t where γ ∈ (0, 1) is
a fixed constant, which also appears to be the hardest parameter setting
(for classical constructions).

Observation 2.1. [ [APC24]] Let f denote a dynamic AS specified by
k(t). Then wlog., one may assume kt ≤ kt−1 + 1, k1 ≤ 2 .

Definition 2.8. (Secret sharing for evolving access structures)[HS16]
Let A = {At}t∈N be an evolving access structure. Let S be a domain

of secrets, where |S| ≥ 2. A secret sharing scheme for A and S consists
of a pair of algorithms (SHARE,RECON). The sharing procedure
SHARE and the reconstruction procedure RECON satisfy the following
requirements:

1. SHARE(s,Π
(s)
1 , ...,Π

(s)
t−1) gets as input a secret s ∈ S and the secret

shares of parties 1, ..., t− 1. It outputs a share for the tth party. For
t ∈ N and secret shares Π

(s)
1 , ...,Π

(s)
t−1 generated for parties 1, ..., t− 1,

respectively, we let

Π
(s)
t ← SHARE(s,Π

(s)
1 , ...,Π

(s)
t−1)
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be the secret share of party t. We abuse notation and sometimes
denote by Π

(s)
t the random variable that corresponds to the secret

share of party t generated as above.

2. Correctness: For every secret s ∈ S and every t ∈ N, every qualified
subset in At can reconstruct the secret. That is, for s ∈ S, t ∈ N,
and B ∈ At, it holds that

Pr[RECON(Π
(s)
i i∈B, B) = s] = 1,

where the probability is over the randomness of the sharing and re-
construction procedures.

3. Secrecy: For every t ∈ N, every unqualified subset B /∈ At, and every
two secret s1, s2 ∈ S, the distribution of the secret shares of parties in
B generated with secret s1 and the distribution of the shares of parties
in B generated with secret s2 are identical. Namely, the distributions
(Π

(s1)
i i∈B) and (Π

(s2)
i i∈B) are identical. The share size of the tth party

in a scheme for an evolving access structure is max |Πt|, namely
the number of bits party t holds in the worst-case overall secrets and
previous assignments.

2.2.1 Linear Evolving Secret Sharing Scheme As Infinite MSP

Monotone span programs [KW93b] were used to construct linear secret-
sharing schemes in [Bei11b]. In this section, we include a natural ex-
tension of MSP’s to the evolving setting, capturing ‘implicitly linear’
constructions from the evolving secret sharing literature. This definition
is part of [APC24] (will be happy to send as complementary material, if
needed).

Notation. For IMSP’s, we will deal with a certain type of infinite matrices
over a finite field F. The product of an infinite matrix K ∈ F[n]×N+ by a
finite vector r ∈ F[m] is defined as K ′r, where K ′ is obtained by keeping
the first m columns of K. Such products for matrices are typically used
where all but the first m columns are 0. Generally, for a matrix M , we let
M [A,B] denote the submatrix of M restricted to row set A and column
set B. A = ∗ (B = ∗) stands for all rows (columns), and A = i (B = i)
for a single index i, is a shorthand for A = {i} (B = {i}).
Definition 2.9 (Infinite Monotone Span Program–IMSP). An IMSP is
a tripleM = (F,M, ρ), where F is a finite field, M ∈ FN×N is an infinite
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matrix over F, and ρ : N+ → N+ labels each row of M by a party. There
is a finite number of non-zero elements in each row in M , and ρ−1(x) is
finite for every x ∈ N+, that is, each party gets a finite number of rows
(shares). For any finite set A ⊆ [n] of party indices, let MA denote the
sub-matrix obtained by restricting M to the rows i, with ρ(i) ∈ A. We
say thatM accepts B if the rows of MB span the vector e1 = (1, 0, 0, . . .).
We say that M implements an evolving access structure Γ if M accepts
a set B if and only if B ∈ Γ.

For a finite set of parties A , denote by CA = {j|∃i, ρ−1(i) ∈ A,Mi,j 6=
0}, the set of non-zero entries it holds.
Remark 2.1. Note that in IMSP, it is only possible to use target vectors
that have a finite number of non-zero entries, rather than any non-zero
vector, as is the case in standard MSP. We make the simple choice of
setting the target vector ε = (1, 0, 0, . . .), and not make the target vector
part of our definition. In particular because we do not need it, the more
general definition is equivalent, though.

We also denote by Mt the submatrix M [{i|ρ−1(i) ∈ [t]}, ∗]. We let
Rows(M), Columns(M) denote the set of rows (columns) of a matrix M
(both finite or infinite).

MSP-based linear secret sharing schemes can be easily generalized to
the evolving setting, essentially giving each party the linear combinations
of a randomness vector (that also defines the secret s), as specified by the
IMSP. As in the finite case, every finite subset A ⊆ N+ either reconstructs
the secret, or learns nothing about it.
Theorem 2.2. [APC24] Let M = (F,M, ρ) be an IMSP accepting an
access structure Γ. Then, there exists an evolving secret sharing scheme
(based on M), that implements Γ for secret domain S = F. The share
of party t is comprised of |Rows(Mt)| − |Rows(Mt−1)| field elements.

The following theorem states the basic feasibility of linear evolving
secret sharing for all evolving AS’s.
Theorem 2.3. [KPC17] Let Γ denote an evolving access structure. Then
there exists an IMSP (F2,M, ρ) implementing it (for secret domain S =
F2). Share size of the resulting scheme is at most 2t−1.

We note that for rich classes of AS’s, the resulting share complexity is
much better. For instance, for rich classes of evolving AS’s, such as the in-
finite Branching Program (IBP) based constructions in [ABD+24], where
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the IBP width is relatively small, for which one could obtain much smaller
share size. Although they are not explicitly stated as linear schemes,
using linear schemes for the predicates at the edges of the resulting gen-
eralized tree (GIDT). A simple concrete example, capturing the most
general case we are aware of casting previous schemes as IMSP’s, we ob-
serve that in [KPC17]’s construction, each party pt gets a finite number
of independent Shamir sharings of secrets which are linear combinations
of s and random elements in F2, for some finite number nt of parties. To
make this work, F2` used is some extension field of F2 (with different `’s
used for different t’s). However, one can interpret the results of linear
combinations over the extension field as ` linear operations over the base
field, resulting in an IMSP as above. See [APC24] for a detailed example.

2.3 Quantum Secret Sharing Scheme (QSS)

Notation. The state of an m-qubit vector is represented by a unit vector
v ∈ C2m such that the state takes the value x with probability |vx|2 when
measured. A valid quantum operator is any function F : C2m → C2m

that is unitary, i.e., linear and norm-2 preserving.
That is, a quantum state[AB09] φ is in a Hilbert space overall 2m

tensor products of m ”qubits” (the quantum parlance to bits), where
each qubit is over the base {|0〉 , |1〉}, and each qbit is normalized to have
norm-2 that equals 1.3 We denote by φ =

∑
x∈{0,1}m αi |x〉 for αx ∈ C,

where |ab〉 is a shorthand for |a〉 ⊗ |b〉. We often use quantum states |s〉
and their density matrices |s〉 〈s| interchangeably (adapting the operators
accordingly).

We denote by trP̄ tracing out the subsystem computations correspond-
ing to the party P̄ . See 2.7 for an in-depth overview of quantum compu-
tation.

We adopt definition of the Quantum secret sharing definition from
[ÇGLR23] which is based on Quantum erasure-correcting codes(QECC)
[GBP97], which allows to encode a quantum state into another quantum
state of larger dimension, so that the original one can be retrieved per-
fectly even when there are erasures (arbitrary errors at known positions).

Definition 2.10. (Quantum erasure correcting code[ÇGLR23]).
A pair of trace-preserving quantum operations QC = (QC.Enc,QC.Dec)

is a quantum erasure correcting code (QECC) over the input space Hinp

3This generalizes to qdits, which are over a basis of size d ≥ 2,|0〉 , . . . , |d− 1〉.
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and output space Hout = ⊗i∈[n]Hi for P ⊆ [n] if for any quantum opera-
tion Λ on Hout that acts as the identity on Hi for all i ∈ P , it holds for
all states ρ on Hinp that

(QC.Dec ◦ Λ ◦QC.Enc)(ρ) = ρ⊗ σ

for some state σ, and suitable `.
If (QC.Enc,QC.DecP ) is a QECC for all sets P ⊆ [n] such that

f(P ) = 1 for a monotone function f : {0, 1}n → {0, 1}, then we say that
the family of functions (QC.Enc, (QC.DecP )P⊆[n]) is a QECC realizing
f . As a shorthand, we define QC.RecP (τ) = QC.Dec(τ ⊗ (|0〉 〈0|)⊗P ).
A quantum code that encodes k q-ary qdits into n q-ary qudits and can
correct any d− 1 erasures is said to be an [[n, k, d]]q code.

Definition 2.11. (No-cloning AS) We say a monotone function f :
{0, 1}n → {0, 1} is no-cloning if for all P ⊆ [n] f(P ) = 1 implies
f(P ) = 0.

We refer to such AS’s as no-cloning, while [Smi00] refer to them as
Q2∗, because this is the limitations on the AS’s for which QSS is possible
due to the non-cloning theorem.

Definition 2.12. (Self dual AS) We say a monotone function f : {0, 1}n →
{0, 1} is self-dual if for all P ⊆ [n] f(P ) = 1 iff. f(P ) = 0.

Definition 2.13. (Quantum secret sharing) Fix a number of parties
n ∈ Z+, a Hilbert space S = H0 for the secret, and Hilbert spaces
H1, . . . , Hn for the shares. Let f : {0, 1}n → {0, 1} be a no-cloning
monotone function. A quantum secret sharing (QSS) scheme with per-
fect privacy realizing f is a tuple of quantum operations

QSS = (Share, (RecP )P⊆[n])

that satisfy the following properties for all P ⊆ [n]:

• Correctness: If f(P ) = 1, then (Share,RecP ) is a QECC for P ,
with Hinp = H0 and Hout = H1 ⊗ . . .⊗ . . .⊗Hn.

• Perfect Privacy: If f(P ) = 0, then for any |Ψ1〉 , |Ψ2〉 ∈ S it holds
that

trP̄ (Share(|Ψ1〉 〈Ψ1|)) = trP̄ (Share(|Ψ2〉 〈Ψ2|)).

The share size of party pi, sc(i) is logdim(H0)(dim(Hi)).4
4For example, sc(i) = 3 if Hi = H0 ×H0 ×H0.
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Observation 2.4. An AS has QSS only if it is no-cloning. (def’ 2.11)
This was proved by [Smi00] and also by D. Gottesman in [Got00]).

On a high level, this is a direct consequence of the no-cloning theorem,
that roughly states that a general quantum state |s〉 can not be cloned.
That is, no quntum operator maps |s〉 ⊗ |0〉 to |s〉 ⊗ |s〉 ⊗ |ψ〉 for some
ψ. This implies the observation as otherwise, sharing of s, and then
reconstruction by each of the disjoint sets, would yield a circuit that
clones the secret.

3 Quantum Evolving Secret Sharing Scheme (QESS)

Definition 3.1. [No-cloning Evolving Access Structure] Let f = {f t}t≥1
denote an evolving AS. We say that f is no-cloning, if each f t is no-
cloning.
Definition 3.2. (Quantum secret sharing for evolving access structure
(QESS)) Let {f t}t>0 be a No-cloning Evolving Access Structure. Let
H0,H1,H2 . . . denote a sequence of (finite) Hilbert spaces, where H0 is
a Hilbert space for the secret and Hi is a Hilbert space for the share of
party i. Let t0 denote the smallest integer for which f t0 is not identically
0.

An evolving quantum secret sharing (QESS) scheme with perfect pri-
vacy and correctness realizing f is an infinite sequence of tuples of quan-
tum operations

{QESSt = (Sharet, (RectP )P⊆[t])}t≥t0
that satisfy the following properties for all P ⊆ [t] and any t ≥ t0:

• QESSt is a QESS with secret domain H0 and output domain H1 ⊗
H2 ⊗ . . .⊗Ht and party set [t].

• For any t, and any secret |s〉, we have

Sharet(|s〉 ⊗
∣∣0`〉) = tr{t+1}(Share

t+1(|s〉 ⊗
∣∣∣0`′〉),

where ` ≤ `′ are suitable dimensions (as specified by Sharet, Sharet+1).5

The share size of a party pi is its share size in Sharei (and is the same
for all subsequent t′’s, by consistency)
Observation 3.1. An evolving AS has QESS only if it is non-cloning.

5In the sequel, we often make the ancillas
∣∣0`〉 , ∣∣∣0`′〉 implicit.
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Application of an evolving QESS - inherently weaker than the classical setting! The
dealer works in two phases. During phase 1 the dealer applies the
above algorithms iteratively, computing the current time slot’s t + 1
Sharet+1(|s〉) from the outputs Sharet(|s〉) (combined with a few ad-
ditional ancilla bits). Namely, it computes (Sht)−1(sht1 ⊗ . . . ⊗ shtt) ⊗
I(
∣∣0`′−`〉) ⊗ ∣∣0`′−`〉) = |s〉 ⊗

∣∣0`′〉. Then it applies Sht+1 to the result,
obtaining sht+1 = sht+1

1 ⊗ . . . ⊗ sht+1
t ⊗ sht+1

t+1. At the start of phase
2, which may potentially start at each time slot t, when the Dealer is
notified whether a qualified set A ⊆ [t] that arrived so far. The Dealer
then sends the shares shti computed for each i ∈ [t] that arrived, and
keeps the shares in [n] \ S to itself. At some point in the future, the
parties in A may recover the secret, by applying RectA to their shares
(and suitable ancilla bits).6 7 The reason we work in this manner is that
to continue computing shares for larger and larger values of t, the dealer
needs the previous shares, and can not generally give them away or give a
copy (due to no cloning). Although parties can no longer asynchronously
obtain their secret, but rather get it all at the same time and keep it un-
changed until a later recovery time, consistency between the shares of
pi at different times is still important. We still maintain the advantage
that earlier parties obtain smaller shares. Had we not had consistency,
this could no longer hold. To remedy this, we could only require that
the size of a share of pi does not grow as the time t advances (aka, in
Sharet, Recr). Furthermore, note that in the quantum setting the shares
are always recomputed from |s〉 ⊗ |0〉 in any case, so there is no concept
of using “the same” randomness for pi’s share at all times, but rather the
value of this share is the same vector of qbits (tensored with the other
shares), which induces the same distributions on shi (when measured).
Nevertheless, we stick with this requirement to be consistent with the
more stringent classical notion of evolving secret sharing, which may be
useful in a future application.
Remark 3.1. Yet again, especially in the quantum setting, but also in the
classical setting, for applications where a communication pattern as above
is suitable, one could consider a relaxed evolving secret sharing notion,
where shares may be recomputed, but pi’s share needs to be bounded by a
small size s(i) at all times.

6In fact, the dealer could perform a single computation of Sht on |s,0〉 when the initiator of phase 2 arrives. However,
this could be useful if we want to have 0 latency at sending the shares at the correct time slot (which would be ready
from the start).

7Note that we define and use Sharet’s only for t for which ft is not the constant 0. Otherwise, information on |s〉 is
lost. This way, the first t0 parties necessarily obtain their share upon the arrival of Pt, for some t ≥ t0.
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3.1 Inherent limitation of No-Cloning for evolving access structures

Intuitively, any quantum secret sharing for evolving access structure(QESS),
by definition of the no-cloning evolving access structure is restricted by
both the no-cloning theorem which is required for quantum operations,
and also by the need to preserve legacy over time which is required for
the correctness of an evolving protocol (that is, f t(A) = f t+1(A) for all
A[t]) . However, the no-cloning requirement means that for any pair of
qualified sets Pi, Pj, Pi ∩ Pj 6= φ. This is the case, since otherwise for t
where Pi ∪ Pj ⊆ [t], [t] \ Pj would be qualified, breaking the non-cloning
property of the finite AS f t. We observe that in spite of these restric-
tions, a great richness of eligible AS’s remains. Namely, we note that
for any (unrestricted) evolving AS f , adding a single party to the set
of parties, and letting defining f ′ over party set {0} ∪ N+, and add the
party 0 to every minterm.

Observation 3.2. Let A be an evolving AS over party set N+. Then A′
whose set of minterms is of the form {M ′ =M∪{0}|M is a minterm of f},
defined over party set N is a Non-cloning evolving AS.

As mentioned above, although the set of AS’s the above observation
yields is very rich, one could add several parties, so that no single party
is part of every minterm.

4 A note on [Cha20] QESS for Dynamic Thresholds

In [Cha20] Shion Samadder Chaudhury initiate the study of quantum
evolving schemes to share a quantum secret and present a construction
of an evolving quantum secret sharing scheme (QESS) which shares and
protects a secret quantum state. Although their construction seems to
be of value, their definition of the general QESS is apparently different,
and does not take into account both requirements of every f t being non-
cloning, and consistency in the sense that At = A∩ [t]. Namely, they do
account for the first requirement, and correctly observe that by the no-
cloning theorem, each f t must by no-cloning, which in this case implies
that kt > t/2 for all t. However, if consistency is also required, we observe
that in that case k(t) must be so large, that the AS becomes essentially
finite.

Theorem 4.1. Let f be a dynamic threshold evolving AS specified by
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k(t). Then it is no-cloning only if
k(t1) > nt1 − t0

for all t1 ≥ 2t0, where t0 is the smallest integer, for which f t0 6= 0.
8 In particular, threshold AS’s f which are non-cloning are effectively
finite, in the sense that all parties t′ > Nf for a certain constant Nf are
redundant.
Proof. Assume k(t) > nt − t0 does not hold for some t1 ≥ 2t0. we show
there exist two disjoint qualified sets A,B, which contradicts no-cloning
for f t for all t’s where A,B ⊆ [t]. Specifically, we set A to be a minterm
in [t0], and B = {t0 +1 ≤ i ≤ t1}. Since k(t1) ≤ nt1 − t0, or equivalently,
nt1−k(t1) ≥ t0, f t1(B) = 1. By consistency, and the fact that f t0(A) = 1,
1 = f t1(A). Also, by construction, A ∩ B = φ, contradicting the fact
that f t1 (and thus f) is no-cloning. For the ”in particular” part, by
the first part we have k(t1) > nt1 − t0 for all t1 ≥ 2t0. For a set A, if
A ∩ [2t0] ≤ t0, it is not qualified according to f 2t0, and is not qualified
for any t′ > 2t0, since even if all the following parties in [t′] are in A, the
difference maxt′∈At′ − |A| ≥ t0. Otherwise, if A ∩ [2t0] > t0, then it is
qualified according to f 2t0, and the remains qualified for all t > 2t0 by
consistency. Thus, all parties in the AS but the first 2t0 are redundant
(as f(A) = f t(A ∩ [2t0]) for all t ≥ 2t0).

5 Quantum Evolving Secret Sharing Scheme (QESS) Based on
MSP

5.1 Quantum Secret Sharing (QSS) based on MSP [Smi00]

In [Smi00], a characterization of (finite) AS’s which have a QSS is put
forward. Namely, these are exactly the AS’s that are no-cloning. Their
construction is two-step. In the first step, they provide a (pure) QSS for
self-dual 2.12 AS’s, and then provide a (mixed) scheme for no-cloning
AS’s by reduction to the former scheme. This reduction transforms the
AS into a self-dual one, by adding a single party p0 (whose shares parties
will never get), which is consistent with the original AS on sets that
do not contain p0. Then, they apply the construction from step 1, and
qualified sets of parties trace out p0’s share (along with other parties’
shares), to learn the secret.

8In fact, by Observation 2.1, we have t0 = k(t0) - that is, t0 is the earliest instance when t ≥ k(t).
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To implement step 1 (for the finite case), a method to convert an MSP
to QSS for self-dual AS’s is presented. Specifically, for any no-cloning AS,
the resulting scheme is a QECC (Quantum erasure correcting code) for
A which are no-cloning, handling erasures occurring at sets B, for which
f(B) = 0, f(B) = 1. When A is self-dual, the scheme is also a QSS (for
A). The authors note that this privacy property comes essentially ‘for
free’ from correctness, combined with a strong variant of the no-cloning
theorem, stating that one can not only clone a general state, but also,
we can not obtain an output Q(|s〉⊗ |0〉) = |s〉⊗ψ, where ψ depends on
|s〉 is some way. The exact statement and proof of this theorem did not
appear in the original paper. Although not very difficult, and although
we will in fact not need it for our construction we include a statement of
the relevant theorem in Appendix A.

Let us spell [Smi00]’s construction for completeness, pointing out cer-
tain implementation and proof details that were omitted in the original
paper.

Construction 5.1. • Consider an MPS (K,M, ρ) specifying a no-
cloning access structure f : P ([n])→ {0, 1}, which is not identically
0.

• Extend M to an invertible d×d matrix M ′. Notice that this is possible
because wlog all e ≤ d columns 9 of M are linearly independent. Note
also that the column vector corresponding to the secret’s column, sc,
is non-zero, and is included in every basis of the columns, as there
exists v ∈ Ker(cols(M)), such that < v, sc >= 1 (e.g pick v as
guaranteed to satisfy vTM = (1, 0, . . . , 0), which exists as [n] must be
qualified).

• An input secret |s〉 is encoded as |s〉 ⊗
∣∣0d−1〉

• Construct a quantum operator M̃ implementing multiplication by M ′

and encode10 a basis state |s〉, for s ∈ K as follows

M̃

(
|s〉 ⊗

∑
a∈Ke−1

|a1 . . . ae−1〉 ⊗ |0 . . . 0〉

)
=
∑

a∈Ke−1

∣∣∣∣M (
s

a

)〉
(1)

This is a valid unitary operator, as mapping each basis state |s〉 ⊗
|a1 . . . ae−1〉⊗|0 . . . 0〉 is mapped to

∣∣M(sa)T ⊗
∣∣0d−e〉〉, which defines

9In the original paper there was a typo: stating the rows are independent wlog.
10The code word for the quantum secret |s〉 in this QECC is computed in equation 1.
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a partial permutation over basis vectors of the dim-Kd vector space,
where the mapping of other vectors is complemented arbitrarily.

• This scheme can be extended by linearity to arbitrary states |φ〉 =∑
s∈K αs |s〉 (and density matrices). As usual, to obtain |s〉⊗

∑
a∈Ke−1 |a1 . . . ae−1〉⊗

|0 . . . 0〉 from the encoded input, we apply I⊗H⊗H⊗ . . .⊗H⊗I . . . I
to it, where H is a Hadamard-like gate, mapping |0〉 to

∑
i∈K |i〉.

Theorem 5.2 ( [Smi00]). Let (K,M,ψ) be a MSP for an n-party AS
A which is no-cloning. Then Construction 5.1 is a QECC correcting
erasures on all unqualified B /∈ A. In other words, it is a QSS, with the
privacy requirement removed. Furthermore, if A is self-dual, then the
construction is a full QSS for A.

As explained in the introduction, step 2 of [Smi00] does not work for
the evolving setting. Instead, to add privacy to the construction, we use
the beautiful hybrid scheme as used in [CGLZR23] for a different purpose
of improving share complexity of QSSS (in the standard setting).

1. Encrypt |s〉 under a classical key k, via quantum OTP, to obtain |s′〉.
2. Share k via a standard evolving scheme for f .
3. Share |s′〉 via [Smi00]’s scheme. Here, we no longer rely on the

schemes’ privacy, for which the full-blown self-duality for each t was
required. The parties could have gotten |s′〉 in the clear.11

5.2 Our construction

For convenience, we state our construction for K = F2. We use the
following theorem on the existence of a quantum varianto of the OTP
encryption, where an arbitrary quantum value is encrypted via a random
classical key.
Theorem 5.3. [QOT [?]] Let |s〉 denote an arbitrary qbit. Let OTPEnc(|s〉 , k) =
Xk1Zk2 |s〉 〈s| (X∗)k1(Z∗)k2 , where X and Z are Pauli gates.12 Then∑

k∈{0,1}2
OTPEnc(|s′〉 , k) =

∑
k∈{0,1}2

OTPEnc(|s〉 , k)

for all |s〉 , |s′〉 (privacy). Also, for every k, |s〉 we have that for all density
matrices s, v = OTPEnc(s, k), OTPDec(v, k) = (Z∗)k2(X∗)k1vZk1Xk2 =
|s〉 〈s| = s.

11The reason we need step 1 as a method to distribute |s′〉 while maintaining recoverability by qualified sets. For
instance, we couldn’t just send each party a copy of |s′〉, because of no cloning

12OTPEnc naturally extends to density matrices s over qbits.
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Extending Smith’s construction to the evolving setting, we proceed as
follows.
Construction 5.4. • Input: a qbit |s〉.

• An evolving no-cloning AS f , where t0 is the smallest integer for
which f t0 6= 0 implemented by an evolving linear MSP (M,K,ψ)
over F2.

• Initialization: Sample a pair of random classical bits (k1, k2). Let
ρ = OTPEnc(|s〉 , k).

• Share k according to a standard evolving linear scheme for f (these
shares are a classical part of every Sharet’s output).

• Sharet : (|s〉 , |0〉`) (` to be stated below), for t ≥ t0. Let Mt denote
the (finite) submatrix of M corresponding to parties [t]. Recall zero-
columns are removed, leaving us with a finite number ct of columns.
Let et denote the size of a set Ct of columns that constitute a basis for
the column set of the dt × ct matrix Mt (recall that the column cor-
responding to s is necessarily among them). Apply Construction 5.1
to |s〉 and Mt.

• To reconstruct the secret from Sharet’s output (which also includes
OTPEnc’s shares), reconstruct ρ, and k independently, and then
apply OTPDec to recover |s〉.

Theorem 5.5. Let f denote a no-cloning evolving AS, such that t0 is
the minimal integer for which f t0 6= 0. Construction 5.4 is a QESS for
f , with share complexity of |Rows(Mt)| − |Rows(Mt−1)|, where (M,F, ρ)
is the IMSP used by this construction.

Proof sketch. Correctness follows directly from correctness of Construc-
tion 5.1 for each t > t0. Privacy follows from the fact that for an unqal-
ified set’s point of view, k1, k2 remain random, and thus ρ (even if fully
reconstructed) appears to it as a quantum state which is independent of
|s〉. Finally, by structure of M , Sht(|s〉), derived from Sht+1(|s〉) is the
same as Sht+1(|s〉) (with its added input qbits). To see that, recall that
by structure of M , Mt is a submatrix of Mt+1 covering the subset of dt
first rows. Thus, we have

M̃t+1

|s〉 ⊗ ∑
a∈Ket+1−1

∣∣a1 . . . aet+1−1
〉
⊗ |0 . . . 0〉

 = (2)
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∑
a∈Ke−1

∣∣∣∣∣∣M ′
t+1[[dt], ∗]

 s

a
0dt+1−et+1

〉 =

∣∣∣∣Mt+1[[dt], ∗]
(
s

a

)〉
(3)

The latter equation yields a uniform distribution over the vectors in
colSpan(Mt), as is the case for the output of Sharet+1.

A Strong form of the no-cloning theorem

Definition A.1. (information-theoretic privacy on QSS-based MSP) Given
a quantum secret sharing-based MSP if the view of the unauthorized par-
ties that consist of their shares of the secret s is constant and identical
to their shares in the case of the secret s′ where s′ 6= s then the scheme
has information-theoretic privacy.
Theorem A.1. (Generalized form of the no-cloning theorem )

For every quantum operator D s.t. for every |s〉 = α |0〉+β |1〉 D(|s〉⊗∣∣0l〉) is of the form |s〉 ⊗ |B(s)〉, it holds that for every |s〉 = α |0〉 +
β |1〉 , |s′〉 = α′ |0〉 + β′ |1〉 |B(s)〉 = |B(s′)〉. 13 Furthermore, only no-
cloning f ’s admit a QESS.
Proof. Suppose, for contradiction, that there is quantum operator D s.t.
given any quantum state

|s〉 = α |0〉+ β |1〉

,
D(|s〉 ⊗

∣∣0l〉) = (|s〉 ⊗B(s) =

(α |0〉+ β |1〉)⊗ (b0(s)
∣∣0l〉+ b1(s)

∣∣0l−11〉+ . . .+ b2
l−1 ∣∣1l−10〉+ b2

l−1
(s)

∣∣1l〉)
where |B(s)〉 = b0(s)

∣∣0l〉 + b1(s)
∣∣0l−11〉 + . . . + b2

l−1 ∣∣1l−10〉 + b2
l−1
(s)

∣∣1l〉 is a
quantum state that its values and probabilities depend on |s〉.

On one hand, by the definition of D we get ,

D(|s〉 ⊗
∣∣0l〉) = (α |0〉+ β |1〉)⊗ (b0(s)

∣∣0l〉+ . . .+ b2
l−1
(s)

∣∣1l〉) =
αb0(s)

∣∣00l〉+ . . .+ αb2
l−1
(s)

∣∣01l〉+ βb0(s)
∣∣10l〉+ . . .+ βb2

l−1
(s)

∣∣11l〉
I.e.

D(|s〉⊗|0〉) = αb0(s)
∣∣00l〉+ . . .+αb2l−1(s)

∣∣01l〉+βb0(s) ∣∣10l〉+ . . .+βb2l−1(s)

∣∣11l〉
(4)

13The theorem can be easily generalized to any finite Hilbert space for s, using a similar proof.
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On the other hand, |s〉 ⊗
∣∣0l〉 = (α |0〉+ β |1〉)

∣∣0l〉 = α
∣∣00l〉+ β

∣∣10l〉
by this equality we know that

D(|s〉 ⊗
∣∣0l〉) = D(α

∣∣00l〉+ β
∣∣10l〉)

By the linearity of any quantum operator, we get :

D(α
∣∣00l〉+ β

∣∣10l〉) = α ·D(
∣∣00l〉) + β ·D(

∣∣10l〉) =
α |0〉 (b0(0)

∣∣0l〉+ . . .+ b2
l−1
(0)

∣∣1l〉) + β |1〉 (b0(1)
∣∣0l〉+ . . .+ b2

l−1
(1)

∣∣1l〉) =
αb0(0)

∣∣00l〉+ . . .+ αb2
l−1

(0)

∣∣01l〉) + βb0(1)
∣∣10l〉+ . . .+ βb2

l−1
(1)

∣∣11l〉
I.e.

D(α
∣∣00l〉+β ∣∣10l〉) = αb0(0)

∣∣00l〉+. . .+αb2l−1(0)

∣∣01l〉)+βb0(1) ∣∣10l〉+. . .+βb2l−1(1)

∣∣11l〉
(5)

The operator D must have at least one input s s.t. both α 6= 0 ,β 6= 0.
Therefore we get: ∀i : bi|s〉 = bi|0〉 along with: ∀i : bi|s〉 = bi|1〉
Then, from the transitivity of an equation, we get:

∀i : bi|s〉 = bi|0〉 = bi|1〉 = bi

Therefore from observing D operation on an s s.t. that both α 6= 0
,β 6= 0 we get that ∀i : bi are constants and so |B(s)〉 does not depend
on |s〉.

Now let’s show how it implies it for any input s not only when both
α 6= 0,β 6= 0.

First, because any quantum state belongs to a Hilbert space there will
not be a quantum state where both α = β = 0 because any quantum
space is normalized to equal 1.

So, we can have an |s〉 s.t. 0 6= β or 0 6= α.
In the case β 6= 0 we learn form equations 4,5 that

∀i : bi(s) = bi(1)

However, we already learn from the operation of D on a s s.t. both
α 6= 0 ,β 6= 0 that ∀i : bi(1) are constants independent of |s〉 which
is enough to complete the proof for this case (because we proved that
∀i : bi(s) are constants independent of |s〉).

At last, in the case α 6= 0 we learn from equation 4,5 that

∀i : bi(s) = bi(0)

22



Which is, again, enough to complete the proof in this case, i.e. to show
that in this case ∀i : bi(s) are constants independent of |s〉, because we
learn from the operation of D on a s s.t. both α 6= 0,β 6= 0 that ∀i : bi(0)
are constants independent of |s〉.

Furthermore,

B Self-dual evolving AS’s are very limited

We state that a quantum secret sharing with a self-dual adversary struc-
ture 14 is determined fully by the first authorized set in the structure.
We say an evolving AS A is self-dual, if An = A ∩ [n] is self-dual for
every n ≥ n0 for some integer n0 > 0.

It turns out that self-dual evolving AS’s are effectively finite. That is,

Theorem B.1. Every evolving self-dual evolving access structure satisfies
∃n s.t all parties in N \ [n] are redundant.

Proof. Fix an evolving A with An self dual for all n > n0. There are
two cases. Let n > n0 be the smallest integer such that An contains a
minterm A (possibly more). If none exists, this implies that all minterms
are contained in [n0], and we are done. We prove that all minterms are
contained in [n]. Suppose for contradiction that An+i for i > 0 a new
minterm is added - let us call it Q. This term must contain at least one
participant from [n]. Otherwise, Q could be complemented into [n+i]\A,
obtaining a pair of sets contradicting self-duality of An+i.

Now, Q∩ [n] must not be authorized in [n] because Q is a minterm of
A and i > 0. However, because the Access structure An is self-dual and
Q ∩ [n] is unauthorized we get that B = (Q ∩ [n])c = [n] \ (Q ∩ [n]) =
[n] − Q is authorized in An. Since A is monotone, B is also authorized
in An+i which is self-dual, therefore we get that compliment set of it
Bc = [n+ i]− ([n]−Q) is unauthorized. This contradicts the assumption
that Q is an authorized minterm because Q ⊆ [n+ i]− ([n]−Q), which
we just concluded to be unauthorised.

14Which means also a self-dual access structure.

23



Figure 1: An illustration for the proof
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