
On the Semidirect Discrete Logarithm Problem in Finite Groups

Christopher Battarbee1, Giacomo Borin2, Ryann Cartor3, Nadia Heninger4, David Jao5, Delaram
Kahrobaei6,7, Laura Maddison8, Edoardo Persichetti9, Angela Robinson10, Daniel Smith-Tone10,11, and

Rainer Steinwandt12

1 Sorbonne University, CNRS, LIP6, PolSys, Paris, France
2 IBM Research Europe & University of Zurich

3 Clemson University, U.S.
4 University of California, San Diego, U.S.
5 University of Waterloo, Ontario, Canada.

6 Departments of Computer Science and Mathematics, Queens College, City University of New York, U.S.
7 Department of Computer Science and Engineering, Tandon School of Engineering, New York University, U.S.

8 University of Ottawa, Ontario, Canada
9 Florida Atlantic University, U.S.

10 National Institute of Standards and Technology, U.S.
11 University of Louisville, U.S.

12 University of Alabama in Huntsville, U.S.

Abstract. We present an efficient quantum algorithm for solving the semidirect discrete logarithm
problem (SDLP) in any finite group. The believed hardness of the semidirect discrete logarithm problem
underlies more than a decade of works constructing candidate post-quantum cryptographic algorithms
from non-abelian groups. We use a series of reduction results to show that it suffices to consider
SDLP in finite simple groups. We then apply the celebrated Classification of Finite Simple Groups to
consider each family. The infinite families of finite simple groups admit, in a fairly general setting, linear
algebraic attacks providing a reduction to the classical discrete logarithm problem. For the sporadic
simple groups, we show that their inherent properties render them unsuitable for cryptographically
hard SDLP instances, which we illustrate via a Baby-Step Giant-Step style attack against SDLP in the
Monster Group.
Our quantum SDLP algorithm is fully constructive for all but three remaining cases that appear to
be gaps in the literature on constructive recognition of groups; for these cases SDLP is no harder
than finding a linear representation. We conclude that SDLP is not a suitable post-quantum hardness
assumption for any choice of finite group.
Keywords:Group-Based Cryptography, Semidirect Discrete Logarithm Problem, Post-Quantum Cryp-
tography

1 Introduction

There has been a significant amount of research on semidirect product cryptography within the post-quantum
community [Hab+13; KS16; RS22; RS21; GS19] since its introduction in 2013 by Habeeb et al. [Hab+13].
This approach aims to use the group-theoretic notion of the semidirect product to generalize the discrete
logarithm problem (DLP) in a manner that resists quantum attacks. The resulting problem is called the
Semidirect Discrete Logarithm Problem (SDLP), and is the subject of this paper.

The NIST Post-Quantum Standardization process [NIS17] has motivated work on a wide variety of
computational problems and candidate constructions for post-quantum cryptographic algorithms. While
lattice-based cryptography may currently be the most well-represented among post-quantum schemes, there
is a desire to have a diverse collection of candidates, computational hardness assumptions and algorithms.

The corresponding authors of this work, Christopher Batterbee and Giacomo Borin, can be reached at
christopher.battarbee@lip6.fr and giacomo.borin@ibm.com, respectively.



This would provide a hedge against cryptanalytic surprises (such as the late-breaking attacks against Rainbow
and SIKE) and allow for different performance tradeoffs, as well as advanced functionalities.

In this light, SDLP is an appealing generalization of DLP over cyclic groups that can be used to define
analogues of discrete logarithm-based cryptography over non-commutative (semi-)groups. SDLP offers an
unusual degree of flexibility; almost all of the cryptosystems are defined for any finite group, and several are
defined for finite semigroups. Battarbee et al. [Bat+23b; Bat+23a] showed that the machinery of SDLP gives
rise to a group action and suggests that this might allow efficiency improvements over other candidates for
group-action based cryptography, especially in the realm of digital signature schemes.

Historically, cryptanalysis of SDLP-based schemes has been specific to a particular choice of group. For
example, there have been several proposals of groups to be used with Semidirect Product Key Exchange
(SDPKE), which is the analogue of Diffie-Hellman Key Exchange (DHKE) for SDLP [Hab+13; KS16; RS22;
RS21; GS19]. Each of these proposals was later shown to be insecure due to some feature of the selected
platform group [MR15; Rom15; BKL22; MM20; Mon21]. However, analogously to the relationship between
DHKE and the Diffie-Hellman problems, a break of SDPKE for some group does not demonstrate that SDLP
is easy in that group. More recently, Imran and Ivanyos [II24] showed that SDLP in a solvable group admits
a reduction to standard quantum-vulnerable problems. While this work has eliminated some candidate
constructions, it leaves unresolved the question motivating our work: is there any choice of finite group G
such that SDLP in G is post-quantum secure?

This question has remained unanswered for over a decade of active research in the area. In this work, we
prove that the answer is negative. Our result makes use of the famous Classification of Finite Simple Groups
and develops a generalization of the “decomposition” methods of [II24]. In particular, we will repeatedly use
the “recursion tool” of [II24] to reduce an instance of SDLP in an arbitrary finite group to several instances
of SDLP in finite simple groups. Since there is a relatively short and known list of all possible finite simple
groups, we then devise quantum and classical algorithms for solving SDLP or reducing it to the problem
of finding a linear representation of the group, that we can solve (up to some technical detail concerning
constructive recognition of groups) in each family of finite simple groups.

Our contributions are highlighted below.

– We develop a more sophisticated method of decomposition into “smaller” instances of SDLP, based on
the ideas of [II24]. In particular we show that, for SDLP in an arbitrary finite group G, one can always
generate logarithmically-many instances of SDLP in simple groups; moreover, solving these instances of
SDLP suffices to solve SDLP in the group G.

– We solve SDLP in non-sporadic simple groups by studying their representations and, building on another
idea of [II24], give a reduction to the classical DLP after some linear algebra calculations of polylogarith-
mic complexity.

– We propose an adaptation of Shanks’ Baby-Step-Giant-Step algorithm which efficiently (and classically)
solves SDLP in sporadic groups, exploiting the relatively low orders of their elements. This completes
our claim that one can solve SDLP in a practical manner in an arbitrary finite group G.

While our work eliminates hope for quantum-secure SDLP-based cryptography over finite groups, the
corresponding problem for semigroups, which is featured in some previous proposals [Hab+13], remains an
interesting open problem. Indeed, evidence suggests that some group-theoretic problems may be harder to
solve on semigroups than on groups. For example, Childs and Ivanyos [CI14] prove an exponential lower
bound on the number of quantum queries required to solve the constructive semigroup membership problem
on a black-box semigroup, whereas the corresponding problem for black-box groups is known to be quantum
polynomial-time since it simply reduces to DLP. We remark also that our techniques are unlikely to translate
to the infinite case of SDLP.

1.1 Paper Organization and Contributions

We prove the following main results.
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Theorem 1.1. Let G be a finite black-box group. In order to solve SDLP in G, it suffices to solve SDLP in
at most log |G| many simple groups. We can compute the information defining these instances of SDLP in
simple groups in quantum polynomial time in log |G|.

Theorem 1.2. Let G be a finite black-box group and suppose there is an efficient linear (or projective)
representation of G of dimension n. One can solve SDLP in G in quantum polynomial time in n and log |G|.

Corollary 1.3. Let S be a finite simple black-box group, that is not one of the groups 2F4(2
2n+1) or 3D4(2

e).
One can solve SDLP in S in quantum polynomial time in log |S|.

We will explicitly discuss SDLP in the two groups omitted by Corollary 1.3. The rest of our paper
is organized as follows (which also gives a guide to the structure of our results). Section 2 gives some
background on group theory and some of the computational problems that arise in this work. This section
also summarizes the main results of [II24] that we generalize in this work. In Section 3, we go into more
detail on the main decomposition tool, and generalize it in several steps to finite simple groups. In Section 4,
we give a generic method to solve SDLP for any finite group using its linear representation. Combining the
results in these two sections gives an efficient reduction of SDLP in any group to SDLP in finite simple
groups, as well as an algorithm solving SDLP with running time dependent on the faithful dimension in
simple groups. In Section 5, we use the classification of finite simple groups to iterate through each of the
families of finite simple groups in turn. Given the previous computational reductions, the main question
for each of these families is to construct an efficient linear representation from a black-box group; this is
known to be in probabilistic quantum polynomial time for all but two minor special cases. Finally, the
sporadic groups can be easily dispensed with, either via a brute-force search or via an adapted baby-step
giant-step algorithm. We conclude in Section 6 that SDLP on finite groups is not a reliable candidate for
quantum-resistant cryptography.

2 Preliminaries

The semidirect discrete logarithm problem arises from the study of the semidirect product of a group G by
its own automorphism group. Let us briefly recall the definition:

Definition 2.1 (Holomorph). Let G be a group with automorphism group Aut(G). The semidirect prod-
uct of G by Aut(G), written G⋊ Aut(G), is the set of ordered pairs from G× Aut(G) equipped with multi-
plication defined by

(g, ϕ)(g′, ψ) := (gϕ(g′), ϕ ◦ ψ)
where ◦ denotes function composition. We call this structure the holomorph of G and denote it by Hol(G).

By induction, one can verify that for (g, ϕ) ∈ Hol(G) and x ∈ N, we have

(g, ϕ)x = (gϕ(g) . . . ϕx−1(g)︸ ︷︷ ︸
=:sg,ϕ(x)

, ϕx),

and we can think of this as a function sg,ϕ : Z → G, mapping the exponent x to the projection onto
the G-component of (g, ϕ)x. For finite groups G, the order of elements in Hol(G) is bounded above by |G|
(see [Bor15]), so we may, without loss of generality, choose to restrict the domain of sg,ϕ to a finite set.

Definition 2.2 (Semidirect Discrete Logarithm Problem). Let G be a group and fix (g, ϕ) ∈ Hol(G).
Given an image h := sg,ϕ(x), the Semidirect Discrete Logarithm Problem (SDLP) is to recover an x′ such
that sg,ϕ(x

′) = h. Given the group G and automorphism ϕ, we denote this problem by SDLP(G,ϕ).

Since sg,ϕ(x) is the projection of a holomorph element onto one of its coordinates, the SDLP setup does not
directly expose an element of G or Aut(G). The problem is therefore not trivially equivalent to a standard
DLP. Thinking of sg,ϕ in terms of a projection also tells us how to efficiently compute it: we can compute
exponentiation in the holomorph using standard square-and-multiply techniques, and then project the result
to obtain the desired value.
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2.1 Essential Group Theory Notions

Let G be a group. A subgroup N ≤ G is said to be normal if for all g ∈ G and n ∈ N , gng−1 ∈ N . We use
N ◁ G to denote that N is a normal subgroup of G. We can then define the quotient group G/N to be the
set of left cosets of N in G. In other words, G/N = {gN | g ∈ G}. The group operation on G/N is induced
by the group operation on G in the obvious way.

A group G is simple if it has no non-trivial proper normal subgroups, and we refer to a subgroup H of
a group G as characteristic if ϕ(H) = H for every automorphism ϕ ∈ Aut(G). The group G is said to be
characteristically simple if it has no non-trivial proper characteristic subgroups. The example Z/2Z× Z/2Z
illustrates that being characteristically simple is a strictly weaker property than being simple.

For technical reasons we require that any computational representation of a group G comes with an
attribute CSFLag, which is by default set to 0 (i.e., G.CSFlag = 0). One of our algorithms later on may
update this value if it detects that the group is characteristically simple.

A linear representation [Ser77] of a group G on a finite-dimensional vector space V is simply a group
homomorphism

ψ : G→ GL(V ).

Here, GL(V ) denotes the general linear group on V . We also consider projective linear representations, i.e.,
injective homomorphisms G → PGL(V ), where PGL(V ) contains the invertible linear maps acting on P(V ).
It is immediate to identify these maps as GL(V )/Z(V ), where Z(V ) is the (normal) subgroup of scalar
matrices in GL(V ), since scalar multiplication acts as the identity on P(V ). If A ∈ GL(V ) we write [A] for
the corresponding class in PGL(V ).

Black-Box Groups. The introduction of black-box groups can be traced back to Babai and Szemeredi [BS84]
as a useful abstraction of computations in groups.

Definition 2.3 (Black-Box Group). A black-box group G ⊂ {0, 1}n is a group whose elements are bit
strings of length n, endowed with an oracle that performs the group operations, multiplication and inversion,
and can check if one element is the identity or not (this is equivalent to checking if two elements are equal
or not).

The use of black-box oracles for groups is not new to cryptography. As an example, Shoup proved
lower bounds for generic algorithms solving DLP using black-box groups [Sho97]. This is a conservative
computational model for cryptanalysis of SDLP-based cryptography, since any construction instantiated on
a particular group will need to be able to perform operations on the base group G (and Aut(G)) and test
the equality of the resulting operations.

The Black-Box Group model is also of interest for computational group theorists as a tool to investigate
the complexity of several group related problems such as the Hidden-Subgroup Problem [IMS01], or in
relation to “The computational matrix group project” [Lee01; OBr11].

Of particular relevance is theConstructive Recognition Problem, proposed by Babai and Beals [BB99,
Section 9.2], in which one is asked to find a computationally efficient isomorphism between a simple black-box
group and an explicitly defined simple group. Observe that for the case of cyclic groups of prime order this
problem reduces exactly to DLP since, given ϕ : G

∼−→ Z/pZ, we can easily compute logarithms (divisions)
in Z/pZ.

Several works [Bro08; Bro03; BBS09; Jam+13; KM13; KM15; BB99] have investigated the constructive
recognition problem for other families of simple groups; this is commonly done by reducing it to the case
of PSL(2, q) using so-called number theory oracles, i.e., oracles for solving discrete logarithm and factoring,
to handle large finite-field computations [CL01; BBS09]. These algorithms thus run in quantum polynomial
time [Sho94].
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2.2 Related Work and Known Results

Broadly speaking, there are two main categories of literature on SDLP: cryptographic constructions based on
the Semidirect Product Key Exchange (SDPKE) and the associated cryptanalysis, and algorithmic analysis
of the underlying SDLP problem itself.

The first category of literature encompasses a decades-long cat-and-mouse game between papers suggest-
ing parameters and choices of groups to instantiate SDPKE [Hab+13; KS16; RS22; RS21; GS19], and works
cryptanalyzing the results [MR15; Rom15; BKL22; MM20; Mon21]. These papers occur as responses to each
other, in the sense that new proposals are patches to avoid the attacks of prior works. For a detailed review
of the chronology see [BKS23].

In the same way that the security of DHKE is not precisely equivalent to DLP, the security of SDPKE
is not precisely equivalent to SDLP. The works mentioned above do not address the complexity of solving
SDLP; the first result in this direction dates to 2022. This and subsequent such results form the second
category of literature mentioned above, which also includes the present paper. Battarbee et al. [Bat+23a]
pointed out a connection to group actions and later exploited it [Bat+23b] to give a subexponential quantum
algorithm for SDLP.

Mendelsohn et al. [MDL23] found faster methods for some small parameters. Most recently, Imran and
Ivanyos [II24] gave an efficient polynomial-time quantum algorithm to solve SDLP for solvable groups and
matrix groups with certain associated endomorphisms. Our work is a generalization of this paper to all finite
groups.

Imran and Ivanyos introduce two important notions, which we sketch here. The first is that, given a
group G and a normal subgroup N , in order to solve SDLP in G, it suffices to solve SDLP in N and G/N .
The second is that, if G is a matrix group, we can show that SDLP reduces to an instance of DLP after the
application of some linear algebraic methods.1 Suppose we can compute a composition series of an arbitrary
group G; then, provided the composition factors are suitable matrix groups (or elementary abelian groups,
in which SDLP is predictably easy), we can use the decomposition algorithm inductively to solve SDLP in the
composition factors and to recover a solution of SDLP in the group that we started in. This breaks, among
other things, all the finite solvable groups (which includes every group proposed for use with SDLP-based
cryptography).

Our work can be seen as a more sophisticated version of this method. By refining the method of computing
the appropriate subgroups we can compute simple groups such that solving appropriate instances of SDLP
in these simple groups suffices to derive a solution for the group we started in. In addition, we construct
a generalization of the reduction in a matrix group that turns out to be particularly effective for simple
groups. Indeed, because we know that only the simple groups listed by the classification of simple groups
can appear in this decomposition, and since we can show that each of these is vulnerable to some method of
solving SDLP, we can show that SDLP is easy for any finite group, resolving a loose conjecture of [II24].

For the purpose of describing our algorithms let us recall some of the known results relating to the
structure of SDLP.

Prior Results. One of the main ideas of [II24] is to reframe SDLP as an orbit problem. For each pair (g, ϕ)
in the holomorph of G consider the function ρ(g,ϕ) defined by ρ(g,ϕ)(h) = gϕ(h). It is not difficult to check
by induction that ρx(g,ϕ)(h) = gϕ(g) · · ·ϕx−1(g)ϕx(h). We therefore get the following equivalent definition of
SDLP.

Definition 2.4 (SDLP(G,ϕ)). For each g, h, determine an integer x for which

h = ρx(g,ϕ)(1G).

1 Interestingly, this method is somewhat similar to the “linear decomposition” attacks presented in the analysis of
SDPKE.
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We will use both variants interchangeably. Let us also recall some of the results on the set of solutions to
SDLP: the following is a synthesis of ideas found in [Bat+23a; Bat+23b]. In the following, the symbol 1
refers to the integer value 1, and 1G denotes the group identity; these are (clearly) not the same.

Theorem 2.5. Consider SDLP(G,ϕ) for g, h ∈ G. There exists an integer n0 (dependent on g and ϕ) such
that ρn0

g,ϕ(1G) = sg,ϕ(n0) = 1G, and the set

{1G, s(g,ϕ)(1), ..., s(g,ϕ)(n0 − 1)} = {1G, ρ(g,ϕ)(1G), ..., ρn0−1
(g,ϕ) (1G)}

has size n0, and is exactly the codomain of s(g,ϕ). We have that one can compute n0 in quantum polynomial
time with a Shor-like algorithm, and that the solutions of SDLP(G,ϕ) for g and h are of the form

{t0 + tn0 : t ∈ Z}

where 0 ≤ t0 < n0.

Finally, although some of the ideas of [II24] are given in detail in the main body of the present paper,
we will just quote the fact given as [II24, Theorem 6] that one can solve SDLP in an elementary abelian
group in time polynomial in the input size of the group. This will be necessary since several of the results on
simple groups will require that the simple group is non-abelian, and finite cyclic groups of prime order are
the only abelian simple groups. Note also that, although our more general ideas capture the result of [II24]
for solving SDLP in solvable groups, their specific methods may be slightly more efficient in practice for this
particular case.

3 The Main Reduction

Recall from the discussion in the previous section that Imran and Ivanyos [II24] provide a solution for
SDLP in solvable groups by descending a composition series (using Theorem 3 in their paper), at each
step encountering an easy variant of SDLP in an elementary abelian group. In this section, we significantly
generalize the results of [II24], by using their method to completely reduce an arbitrary instance of SDLP to
several instances of SDLP in a simple group. In particular, Theorem 3.6 demonstrates that, in order to solve
some instance of SDLP(G,ϕ), it suffices to solve at most log |G| instances of SDLP in a simple group. The
data describing each of these instances of SDLP can be obtained in time quantum polynomial in log |G|.

We will defer the proof of this result to the end of the section. We begin by developing more sophisticated
techniques for computing the subgroups required for [II24, Theorem 3], and devise a contingency for the case
in which no such subgroups exist.

3.1 Reduction to SDLP in Simple Groups

Let us review the central “recursion tool” of Imran-Ivanyos [II24, Theorem 3]. The main idea of the recursion
tool is to notice that if we can find a normal subgroup N of G that is invariant under our automorphism,
any solution of SDLP(G,ϕ) must also be a solution of SDLP(G/N, ϕ̄) for some automorphism ϕ̄. From this,
we can infer certain information about the form of the solutions of SDLP(G,ϕ). The remaining information
required to give a complete description of these solutions can be obtained by solving SDLP in the quotient.

We will state and prove the result in full, in order to review ideas from its proof that are important in
our reduction algorithms.

Theorem 3.1 (Recursion tool, [II24]). For a finite group G, consider an automorphism ϕ of G and
suppose we have a ϕ-invariant normal subgroup N of G. In order to solve SDLP(G,ϕ), it is sufficient to
solve SDLP(G/N, ϕ̄) and SDLP(N,ϕn0), for suitable choices of G/N , automorphism ϕ̄, and integer n0.
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Proof. Let ψ be the quotient map from G to G/N . By the first isomorphism theorem, we know Im(ψ) ∼=
G/N (and as such we may write these two groups interchangeably). Suppose we know a map ϕ̄ satisfying
ψ ◦ϕ = ϕ̄ ◦ψ. An easy induction shows that one must also have ψ ◦ϕi = ϕ̄i ◦ψ. It follows that every solution
of SDLP(G,ϕ) for g, h must also be a solution of SDLP(G/N, ϕ̄) for ψ(g), ψ(h), for if one has

gϕ(g) . . . ϕx−1(g) = h

for some integer x, then

ψ(h) = ψ(gϕ(g) . . . ϕt−1(g))

= ψ(g)ψ(ϕ(g)) . . . ψ(ϕt−1(g))

= ψ(g)ϕ̄(ψ(g)) . . . ϕ̄t−1(ψ(g)).

Now, we know that the solutions of SDLP(G/N, ϕ̄) for ψ(g), ψ(h) form the set {t0 + tn0 : t ∈ Z}, for some
0 ≤ t0 < n0, where

n0 = |{ρi(ψ(g),ϕ̄)(1G/N ) : i ∈ Z}|.

In other words, every solution of SDLP(G,ϕ) for g, h is of the form t0 + tn0 for some t ∈ Z. However, we
cannot conclude that every t ∈ Z gives rise to a solution of SDLP(G,ϕ) for g, h.

We claim that, in order to find the integers that do yield a solution of SDLP(G,ϕ) for g, h, it suffices to
solve SDLP(N,ϕn0) for suitably chosen values of g′, h′ ∈ N .

To prove this claim, let us first verify that ρn0

(g,ϕ)(N) ⊂ N ; that is, for every m ∈ N , ρn0

(g,ϕ)(m) ∈ N . Again

from Theorem 2.5, one has ρn0

(ψ(g),ϕ̄)
(1G/N ) = 1G/N , and so

ψ(g)ϕ̄(ψ(g))...ϕ̄n0−1(ψ(g)) = 1G/N .

Following a similar argument to the computation of ψ(h) above, it follows that ψ(gϕ(g) · · ·ϕn0−1(g)) = 1G/N .
By definition of the quotient map and ρ(g,ϕ) we must therefore have ρn0

(g,ϕ)(1G) ∈ N . Since for any m ∈ N

it holds that ρn0

(g,ϕ)(m) = ρn0

(g,ϕ)(1G)ϕ
n0(m), and because ϕ is N -invariant, we have that ρn0

(g,ϕ)(m) ∈ N ,

demonstrating the claim.

In fact, for any t ∈ Z we have ρtn0

(g,ϕ)(N) ⊂ N . Given our argument above, this follows by induction:

suppose ρ
(t−1)n0

(g,ϕ) (N) ⊂ N , then clearly

ρtn0

(g,ϕ)(N) = ρn0

(g,ϕ)(ρ
(t−1)n0

(g,ϕ) (N)) ⊂ N.

Consider now an integer t such that t0 + tn0 is a solution to SDLP(G,ϕ) for g, h. We have

h′ = ρ−t0(g,ϕ)(h)

= ρ−t0(g,ϕ)(ρ
t0+tn0

(g,ϕ) (1G)))

= ρtn0

(g,ϕ)(1G).

This equality demonstrates that h′ ∈ N . Moreover, it is not too hard to see that ρtn0

(g,ϕ)(1G) with respect to

the semidirect product G ⋊ϕ Z is the same2 as writing ρt(g′,1)(1N ) with respect to the semidirect product

N ⋊ϕn0 Z, where g′ = ρn0

(g,ϕ)(1G) (with respect to G ⋊ϕ Z). In other words, every t such that t0 + tn0 is a

solution of SDLP(N,ϕn0) for the described g′, h′. The claim of the theorem follows. □

2 Note that every subgroup contains the group identity, so 1N = 1G.
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We can now use this tool to provide a reduction of the general case of SDLP to the case of SDLP in
simple groups. Intuitively, since every finite group is “composed” of simple groups3, we can imagine taking
an instance of SDLP and producing two instances of SDLP in its composition factors. Iterating this process
will eventually output several instances of SDLP in a simple group such that solving these instances of SDLP
gives a solution to the input problem.

This strategy works provided we can compute the various objects used in the proof of Theorem 3.1. In
particular, given SDLP(G,ϕ) for g, h ∈ G we need to be able to compute: a ϕ-invariant normal subgroup
N of G; the quotient G/N , and the evaluation of the quotient map ψ; the induced map ϕ̄ on the quotient;
and the integer n0. We assume that, given the normal subgroup, computing the quotient and evaluating the
quotient map can be done efficiently. Moreover, [II24] describes a general method of evaluating the induced
map ϕ̄, so we consider this matter resolved as well. The computation of the integer n0 can be done with a
Shor-like algorithm, as discussed in Section 2.2.

The main remaining obstacle is the computation of the ϕ-invariant normal subgroup, which is the subject
of the next section.

3.2 Computing an Invariant Normal Subgroup.

The purpose of this section is to describe an algorithm that computes the invariant subgroups we need
for decomposition. First, we note that, if the group for which we wish to compute the ϕ-invariant normal
subgroup has no characteristic subgroups, then we will not be able to proceed with the decomposition.
However, these types of groups are well-understood: they are called “characteristically simple”, and it is
well-known (see [Wil09, Lemma 2.8]) that a group is characteristically simple if and only if it is isomorphic
to Sk, where S is a simple group. As we will see later, this classification allows us to proceed with a bespoke
algorithm in the case of characteristic simplicity; so, for the time being, let us set this case aside.

We may then proceed as follows. By [IMS01, Theorem 4], it is possible to compute a composition series of
an arbitrary black box group G in time quantum polynomial in log |G|. For our purposes, we will take it for
granted that it is possible to efficiently compute a maximal normal subgroup of G, as well as the composition
factors of G4. However, for an arbitrary automorphism ϕ there is no reason to believe that the subgroup
yielded by this method of computing a composition series will be ϕ-invariant. Indeed, we are not obviously
guaranteed that such a normal subgroup exists. Our method consists of showing that either we can compute
a ϕ-invariant normal subgroup, by using a maximal normal subgroup obtained by the method of [IMS01],
or G is characteristically simple.

Now, a method of computing ϕ-invariant normal subgroups from an arbitrary maximal normal subgroup
N is given in [II24], and works as follows. Take N1 = N , N2 = N ∩ ϕ(N), and for i ≥ 3 define Ni =
Ni−1 ∩ ϕi−1(N). This sequence must eventually stabilize, say for some integer j ∈ N: it is not difficult to
show that Nj is ϕ-invariant, and that, since each intersection is a subgroup, we arrive at this stabilization
within log |G| steps. For brevity we will refer to this method as the “intersection trick”.

Notice that we are not a priori guaranteed that the output of the intersection trick, say Nj , is non-trivial
(certainly the trivial subgroup is ϕ-invariant). The intersection trick, however, will not terminate with the
trivial subgroup if the the maximal normal subgroup we started with contains a G-characteristic subgroup,
since such a G-characteristic subgroup is also contained in the image of N under any automorphism by
definition. Since we can handle the case where there exist no non-trivial characteristic subgroups, it would
suffice to demonstrate that a single characteristic subgroup forces every maximal normal subgroup to contain
a non-trivial G-characteristic subgroup. In fact, we are able to provide this alternate classification of the
characteristically simple groups, as shown below.

3 The precise sense in which this is true is unimportant for our purposes, though the interested reader is advised to
recall the famous Jordan-Hölder theorem.

4 The full result requires knowledge of the set of primes dividing the order of the group, which we suppress since
this can already be achieved by a quantum computer [Eke21].
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Lemma 3.2. Let G be a finite group. G possesses a non-trivial G-characteristic subgroup if and only if every
maximal normal subgroup N of G contains a non-trivial G-characteristic subgroup.

Proof. The reverse direction is trivial. Assume then that G is not characteristically simple and contains a
maximal normal subgroup N . We show that N contains a nontrivial characteristic subgroup of G.

Consider the subgroup J (G) defined by the intersection of all maximal normal subgroups, known as the
Jacobson radical of G. By definition, J (G) is contained in N . It is easy to see that J (G) is characteristic;
therefore, if J (G) is non-trivial, the result follows. We are thus left with the case in which J (G) is trivial.

Baer established [Bae64, Remark 4.8] that J (G) is trivial if and only if G is isomorphic to a direct product
of finitely many simple groups and G contains finitely many maximal normal subgroups. We therefore can
express G as an internal direct product S × A, where S is itself the internal direct product of non-abelian
simple groups and A is abelian.

First let us eliminate the case where G is abelian; that is, S is trivial and G = A. G must be the direct
product of simple abelian factors; since G is assumed not to be characteristically simple, at least two of these
have distinct prime orders, say p and q. Every maximal subgroup is normal and so has prime index, so N
contains either the Sylow p-subgroup or the Sylow q-subgroup, both of which are characteristic.

Suppose, then, that S is non-trivial. We have two remaining cases, depending on whether or not A is
trivial.

Suppose that A is trivial so that G = S. By the classification of characteristically simple groups, we can
think of S as the direct product of characteristically simple factors Gi, where Gi does not share any direct
factors with Gj for i ̸= j. Certainly, these characteristically simple factors are normal subgroups of G; in fact,
they are characteristic in G. To demonstrate this fact, we may write G = Gi×Gci , where Gi has no common
direct factors with Gci . By [BCM06, Theorem 3.1], the structure of any automorphism ψ of G = Gi × Gci
is such that ψ(g, h) = (r(g)s(h), t(g)u(h)) with r ∈ Aut(Gi), s ∈ Hom(Gci , Z(Gi)), t ∈ Hom(Gi, Z(G

c
i )), u ∈

Aut(Gci ). Since both Gi and G
c
i have trivial centers, we see that every automorphism ψ leaves Gi invariant,

and thus Gi is a G-characteristic subgroup.

Since G by assumption is not characteristically simple, there are at least two distinct characteristically
simple direct factors, Gi and Gj with i ̸= j. We now show that N contains at least one of these two
characteristically simple direct factors, and thus contains a G-characteristic subgroup. Supposing that Gi is
not contained in N , we have that N ◁ GiN = G due to the maximality condition. Since Gj ≤ Gci , we have
that Gj ≤ N . Thus, in the case that A is trivial, the result holds.

Now, suppose A is not trivial; we further split our analysis into two sub-cases. If A ≤ N , the result holds
immediately. In fact, note that the center of a direct product is the direct product of its centers. Since the
center of each simple non-abelian component is trivial (the center is a normal subgroup), and the center
of each abelian component is the component itself, we have Z(G) = A. Any maximal normal subgroup
containing A therefore contains the center of G, which is characteristic in G.

In the second sub-case, A is non-trivial and N does not contain A. With this in mind, we note that
N ◁ NA = G by the maximality condition, and since G = S × A, we have that S ≤ N . Finally, note that
S = [G,G] since S is perfect and A is abelian. Therefore, S is G-characteristic due to the fact that the
commutator of G is characteristic. Thus N contains a non-trivial G-characteristic subgroup in the final case
as well. ⊓⊔

We can now describe our algorithm computing a ϕ-invariant normal subgroup. Indeed, the equivalence
of the conditions set out above gives us the additional ability to detect characteristic simplicity, whence we
can handle this case separately.

Theorem 3.3. Let G be a finite black-box group, and suppose ϕ is an automorphism of G. Algorithm 1
either computes a non-trivial ϕ-invariant subgroup of G, or detects that G is characteristically simple (and
outputs itself). In either case the algorithm finishes in time quantum polynomial in log |G|.
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Proof. Obtain a maximal normal subgroup N of G using the quantum algorithm of [IMS01, Theorem 4]. If
N contains a non-trivial characteristic subgroup of G then, since this characteristic subgroup will also be
contained in ϕi(N) for every i ∈ N, the intersection trick will not terminate with the identity.

If it does terminate with the identity, then the subgroup N we started with did not contain a characteristic
subgroup by the contrapositive. It is therefore not true that every maximal normal subgroup of G contains
a non-trivial characteristic subgroup, so by Lemma 3.2 G has no non-trivial characteristic subgroups. The
CSFlag is therefore set correctly. ⊓⊔

Algorithm 1 (Inv): Computing ϕ-invariant normal subgroups, or detecting characteristically simple groups.

Input: G,ϕ
Output: ϕ-invariant N ◁ G or G

1: N ← max normal subgroup obtained from [IMS01] algorithm
2: N1 ← N
3: N2 ← ϕ(N)
4: j ← 2
5: while Nj ̸= Nj−1 do
6: j ← j + 1
7: Nj+1 ← Nj ∩ ϕj−1(N)
8: end while
9: if Nj ̸= {1} then
10: return Nj

11: else
12: G.CSFlag← 1
13: return G
14: end if

Before moving on to the full reduction, let us see how to induce instances of SDLP in a simple group
when the input group is characteristically simple.

Lemma 3.4. Let G be a characteristically simple group. Then any instance of SDLP(G,ψ) can be solved
in polynomial time with polynomially many accesses to an oracle solving SDLP(S, ϕ) for some finite simple
group S.

Proof. The classification of characteristically simple groups is known, see [Wil09, Lemma 2.8]. Specifically,
G is characteristically simple if and only if G is the direct product of k isomorphic copies of a finite simple
group S.

If G is abelian then G = Zkp for some prime p, and we are done by [II24, Theorem 6]. We may therefore
henceforth assume that G is non-abelian (and therefore composed of non-abelian, simple factors).

Suppose that G ≈ Sk and let V denote a linear representation of S of minimal representation dimension n.
Then G has a linear representation V n ≈

⊕k
i=1 V of dimension nk. We also note that Aut(G) ≈ Aut(S) ≀Sk,

i.e. the wreath product of Aut(S) and the symmetric group Sk. Note that k is logarithmic in the size of G.

We may now define a reduction for SDLP on Sk to SDLP on S. First, we have a linear bound in k on
both cycle length and the number of disjoint cycles for any element of Sk.

Let ψ ∈ Aut(S) ≀ Sk and let σ ∈ Sk be the permutation on the coordinates of Sk such that σ ◦ ψ acts
coordinate-wise on Sk. Further, let σ have the disjoint cycle decomposition σ = α1 · · ·αt and let ri = |αi|
denote the cycle length of αi. Then ψ

ri acts coordinate-wise in at least ri coordinates.

We now outline a process by which we can recover ri and make progress toward solving the SDLP instance.
Note that since ri is bounded by k, we may merely try all of the small values of ri at each step i, introducing
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only a polynomial factor, specifically, no more than
(
ri+1
2

)
, in the total number of oracle calls required to

find ri and recover the step solution.

Let αi be one of the disjoint cycles in the decomposition of σ. We may consider the projection

(sg,ψ(ri), ψ
ri) 7→ (sg,ψ(ri)j , ψ

ri
j ),

where j is a symbol in αi, and this projection is onto the jth coordinate of Sk. Note that, given an instance
SDLPG(G,ψ) for g and h = sg,ψ(x), that one among the instances SDLP(G,ψ) for sg,ψ(ri) and sg,ψ(x),
for sg,ψ(ri) and sg,ψ(x − 1), . . ., or for sg,ψ(ri) and sg,ψ(x − ri + 1), has a solution. In particular, since
the jth coordinate is stable under ρri(g,ϕ), there is a solution xj to the instance SDLP(S, ψri) for sg,ψ(ri)j
and sg,ψ(x)j among the instances SDLP(S, ψri) for sg,ψ(ri)j and sg,ψ(x)j , sg,ψ(ri)j and sg,ψ(x − 1)j , . . .,
and sg,ψ(ri)j and sg,ψ(x− ri + 1)j . Suppose without loss of generality that the instance with solution xj is
SDLP(S, ψri) for sg,ψ(ri)j and sg,ψ(x − tj)j ; call this solution the step solution. Since we have an instance
of SDLP in one of the co-ordinates of Sk we have SDLP in the simple group S, so we may apply the oracle
to recover the step solution. Moreover, this step solution xj satisfies x = rixj + tj modulo the order of
(sg,ψ(ri)j , ψ

ri
j ) ∈ S ⋊ Aut(S). Here we use at most ri calls for the exponent ri, and thus a total of no more

than
(
ri+1
2

)
oracle calls to both recover ri and the step solution xj .

We may now consider another disjoint cycle αℓ of length rℓ containing the symbol k. We repeat the
initial process to solve an instance of SDLP(G, sg,ψ(ri)) with a strategy similar to the above step, and
related to the subgroup of S ⋊ Aut(S) generated by (sg,ψ(rirℓ)j , ψ

rirℓ
j ). Since

〈
(sg,ψ(rirℓ)j , ψ

rirℓ
j )

〉
is a

subgroup of
〈
(sg,ψ(ri)j , ψ

ri
j )

〉
, and we have previously discovered which coset of

〈
(sg,ψ(ri)j , ψ

ri
j )

〉
contains an

element whose first coordinate is sg,ψ(x)j , we need only consider the rℓ simultaneous SDLP(S, ψrirℓ) instances
sg,ψ(rirℓ)t and sg,ψ(x− tj)t, sg,ψ(rirℓ)t and sg,ψ(x−ri− tj)t, . . ., and sg,ψ(rirℓ)t and sg,ψ(x−(rℓ−1)ri− tj)t
for t a symbol in αi or αℓ to recover a step solution xℓ satisfying SDLP on all such coordinates modulo the
least common multiple of the orders of (sg,ψ(rirℓ)t, ψ

rirℓ
t ). This step requires at most rℓ calls to the oracle

at exponent rℓ, and thus at most
(
rℓ+1
2

)
iterations to recover rℓ and the step solution xℓ.

Since at each step we require a number of SDLP instances linear in the cycle length, and each cycle length
is bounded by k, the total number of oracle calls to recover a solution to SDLP(G,ψ) for g and h = sg,ψ(x)
is bounded by k3, and therefore the number of SDLP instances over the simple group S required to solve
the problem is polylogarithmic in |G|. Thus, given an oracle solving SDLP(S, ϕ), we may solve SDLP(Sk, ψ)
with polynomially many branches. □

We summarize the method outlined above as follows:

Definition 3.5. Let G be a characteristically simple group. The algorithm CharSimp assumes access to
an SDLP oracle for simple groups Θ, and takes as input G,ϕ, g, h. The algorithm outputs a solution of
SDLP(G,ϕ) for g and h after applying the procedure described in the proof of Lemma 3.4.

3.3 The Decomposition Algorithm

We are now ready to provide our reduction to simple groups.

Theorem 3.6. Consider SDLP(G,ϕ) for some finite group G, one of its automorphisms ϕ, and group ele-
ments g, h. Suppose we have an oracle Θ that, on input of the data S, ν, g, h for S a simple group, ν one of
its automorphisms, and g, h ∈ S, outputs the set of solutions of SDLP(S, ψ) for g, h. There is an algorithm
Solve() that has the following properties: the algorithm terminates in time polynomial in log |G|, having made
logarithmically many calls to Θ; and outputs a solution of SDLP(G,ϕ). The algorithm Solve() is defined as
in Algorithm 2, where ϕ, n0, g

′, h′, ϕ̄ and ψ have the same meaning as in the proof of Theorem 3.1.
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Algorithm 2 Solve(G,ϕ, g, h)

Input: (G,ϕ, g, h)
Output: Solutions of SDLP (G,ϕ) for g, h

1: Solutions ← {}
2: if G is simple then
3: Solutions ← Solutions ∪ Θ(G,ϕ, g, h)
4: else
5: N ← Inv(G,ϕ)
6: if N.CSFlag == 1 then
7: Solutions ← Solutions ∪ CharSimp(G,ϕ, g, h)
8: else
9: q solns ← Solve(G/N, ϕ̄, ψ(g), ψ(h))
10: n0 smallest positive element of q solns
11: s solns ← Solve(N,ϕn0 , g′, h′)
12: Solutions ← Solutions ∪ q solns ∪ s solns
13: end if
14: end if
15: X ← linear combinations of elements of Solutions
16: return X

Proof. We first verify that the algorithm terminates. Start with G: if it is not simple, there are two cases. If
the group is characteristically simple, this is detected by the algorithm Inv defined in Algorithm 1; when N
is computed its CSFlag attribute is set to 1 by Inv, and we will output N = G. In this case we are done by
applying the CharSimp algorithm of Definition 3.5. If not, we compute a ϕ-invariant subgroup N and run
Solve() on the two induced problems defined in N and G/N . For these groups, if they are not simple, repeat
the procedure for an appropriate subgroup, and so on.

This gives rise to a tree graph defined inductively. Define the original node to be the group G; if G is simple
or characteristically simple we stop, otherwise there is a ϕ-invariant normal subgroup N and G/N that are
defined as children ofG. We can repeat this process forN andG/N . If the algorithm does not terminate, there
is an infinite sequence of groups in which the algorithm checks for simplicity and characteristic simplicity
and, having failed this test, runs itself on another instance of SDLP in another group. In other words, the
algorithm failing to terminate implies the presence of at least one infinite path in the graph defined above
that never reaches a simple or characteristically simple group. The basic strategy of the proof is to consider
the graph above such that none of its nodes are simple or characteristically simple groups (so there are
infinitely many infinite paths). An infinite path corresponding to the algorithm failing to terminate would
be contained within this graph, so we can use its properties to extract a contradiction.

In this direction, let us recall the third isomorphism theorem, which we consider the source5 of the
following two facts: first, for a quotient group A/B, the proper normal subgroups of A/B are exactly the
subgroups of the form C/B, where C is a normal subgroup of A strictly containing B; and second, that for
these normal subgroups one has (A/B)/(C/B) ∼= A/C. In other words, if we encounter a quotient group
A/B on the graph, since it is not simple or characteristically simple we can compute a ϕ-invariant normal
subgroup. By the discussion above, there exists C ⊂ G such that B ⊊ C ⊊ A, and the children of A/B are
C/B and A/C.

We call “level” of a node the distance of a path from the node to G; note that this is unambiguously
defined, since clearly there is a unique path from each node to G. The set of nodes whose level is i for some
i ∈ N can be said to be “at level i”. At level 1 the process has generated the group N ⊊ G, and we have to
solve SDLP(G) and SDLP(G/N). Suppose at level i the process has generated 2i − 1 groups, say

N1 ⊊ N1 ⊊ . . . ⊊ N2i−1 ⊊ G

5 Some sources call the first part of this theorem the correspondence theorem.
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and the nodes are Nj/Nj−1 for j ∈ {0, . . . , 2i} (where G = N2i). At level i+1, then, there must be subgroups
N ′
i such that Ni ⊊ N ′i ⊊ Ni+1, and the nodes of the next level are N ′

i/Ni and Ni+1/N
′i. In other words we

have a chain of subsets of G
N1 ⊊ N ′

1 ⊊ N2 ⊊ . . . ⊊ N ′
2i−1 ⊊ G

It follows by induction that at level i we describe 2i−1 subgroups distinct from all the subgroups described
in the previous levels. Since an infinite path in the graph defined in the first paragraph would occur as a
subgraph of the graph containing no simple groups, and such a path would describe infinitely many distinct
subsets of G, we have a contradiction. The algorithm must therefore terminate.

We can refine this argument a little: supposing that no simple groups are encountered, reviewing the
argument above we must actually have that the 2i−1 subgroups described at level i of the graph are a chain
of subgroups; that is, one has N1 ◁ ... ◁ N2i−1 ◁ G. Since the order of the subgroup divides that of its parent
subgroup each Ni has size at most half of Ni+1, so we can describe at most log2 |G| subgroups in this way.
We therefore have to make at most log2 |G| calls to Ω. A similar argument shows that the level at which the
algorithm terminates does not exceed log2 |G|; since applications of Algorithm 1 and CharSimp run in time
quantum polynomial in log |G|, the complexity claim of theorem follows. Finally, it follows directly from the
proof of [II24, Theorem 3] (recorded in this paper as Theorem 3.1) that there is a linear combination of the
elements of the set Solutions that returns the solution of SDLP(G,ϕ). We eschew the details of the precise
form of such a linear combination. □

It now remains to develop methods for solving SDLP in simple groups. The rest of the paper will be
devoted to this effort.

4 Reduction to Matrix Power Problem

In this section, we present a rather generic method of solving SDLP—indeed, it is defined for any group.
We build on the ideas of [II24, Theorem 8], which provides a reduction of SDLP(G,ϕ) to the matrix power
problem in the case that the group G is a matrix group over a field. Our observation is that, by looking
at the linear representations of an arbitrary group, there is a sense in which every group is a matrix group
over a field. Moreover, in the case where ϕ is inner, we are able to compute a linear map that “mimics” the
effect of ρ(g,ϕ), thereby allowing us to apply the same techniques given by [II24, Theorem 8]. It turns out
that simple groups are well-suited to the application of this method, because the outer automorphism group
of a simple group in general remains quite small.

Let us first outline the intuition behind the method: first, by Cayley’s theorem, we know that every finite
group G admits a faithful linear representation6; that is, an injective group homomorphism G→ GLn(K) for
some field K. Now, GLn(K) lives in the ambient space Mn(K), the matrix algebra of all n×n matrices with
entries in the field K. We can think of this space as an n2-dimensional vector space equipped with the natural
addition and scalar multiplication, so we can imagine that we have a linear map T on this vector space.
Suppose that this map T is such that T ◦ ψ = ψ ◦ ρ(g,ϕ); we then immediately have that T i ◦ ψ = ψ ◦ ρi(g,ϕ).
It follows that, in order to solve SDLP(G,ϕ), it suffices to find an integer x such that T x · ψ(1G) = ψ(h),
where ψ(1G) is a vector in the n2-dimensional vector space, and · refers to the usual notion of multiplication
of a matrix by a vector. We have arrived at an instance of the so-called matrix power problem; when the
matrices are invertible we have the same reduction to the period-finding routine of Shor’s algorithm as one
has for the standard discrete logarithm problem, and so we have a solution in quantum polynomial time.

If instead we have a projective linear representation, i.e., an injective homomorphism G→ PGLn(K) we
show that the same reduction can be applied to projective matrices in PGLn2(K).

Before presenting this reduction and discussing its efficiency, let us see that it is indeed possible to compute
the crucial matrix T. In order to do this, we will have to re-introduce a small amount of technicality which

6 Note that the dimension of the representation implied by Cayley’s theorem is rather large. For the groups we are
interested in we will have to work harder than this to find lower-dimensional linear representations.
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was suppressed in the outline above: to be able to think of elements of Mn(K) as concrete n2-dimensional
column vectors, we have to choose a basis in which to represent them. We just pick the basis defined by
stacking the columns of an n×n matrix to obtain an n2-dimensional vector; in other words there is a function
vec :Mn(K) → Kn2

defined by vec(M)in+j =Mj,i. If we are dealing with projective matrices we use instead

Pvec : PGLn(K) → P
(
Kn2

)
which takes a representative of a projective class and associates the class of

the image through vec. Since both the classes are defined up to scalar multiplication of elements in K∗, the
function is well defined.

Lemma 4.1. Let G be a finite group, and ψ : G → (P)GLn(K) a (projective) linear representation. Given
an instance of SDLP(G,ϕ), where ϕ is an inner automorphism, i.e., ϕ(g) = mgm−1 for some m ∈ G.
Define T := ψ(gm)t ⊗ ψ(m−1) ∈ (P)GLn2(K), then for any h ∈ G

T ◦ ((P)vec ◦ ψ) = ((P)vec ◦ ψ) ◦ ρ(g,ϕ) . (1)

Proof. Since ψ is a homomorphism we have:

ψ(ρ(g,ϕ)(h)) = ψ(g ·mhm−1) = ψ(gm) · ψ(h) · ψ(m−1) ;

thus, by using a basic property of the Kronecker Product, we have:

vec
(
ψ(gm) · ψ(h) · ψ(m−1)

)
=

(
ψ(gm)t ⊗ ψ(m−1)

)
· vec (ψ(h)) .

By the property of Kronecker product rank(T) = rank(ψ(gm))rank(ψ(m−1)) = n · n, so T is also invertible.
To prove the projective case we just have to consider the representative in GLn(K) of the matrices during
the application of Pvec. □

We delay the discussion of the case in which the automorphism ϕ is outer. Armed with T, the reduction
to the matrix power problem works as follows.

Lemma 4.2. Given a finite group G together with an efficiently computable (projective) linear representation
ψ : G → (P)GLn(K), if ϕ is an inner automorphism, then we can render any SDLP(G,ϕ) instance to an
instance of the matrix power problem in time polynomial in n.

Proof. By Lemma 4.1 we can compute a (projective) linear map T such that T ◦ ((P)vec ◦ ψ) = ((P)vec ◦
ψ) ◦ ρ(g,ϕ). Note that this implies that for all i ∈ N we have

Ti ◦ (P)vec ◦ ψ = (P)vec ◦ ψ ◦ ρi(g,ϕ) .

We are tasked with finding x ∈ N such that ρx(g,ϕ)(1G) = h, for some h ∈ G. Applying ψ to each side of this
equation we have to find x ∈ N such that

(P)vec(ψ(h)) = Tx · (P)vec(ψ(1G))

Let us rename the vectors in play here: define a = (P)vec(ψ(1G)) and b = (P)vec(ψ(h)).7

The reduction to the matrix power follows the proof of Theorem 8 of [II24] (that is an adaptation to
finite fields of [KL86, Theorem 1]), to then be adapted to projective matrices.

In the non-projective case, consider the subspace W of the (vector space) Kn2

spanned by the vectors
{Tia | i ≥ 0}. First, check if {a,Ta} is linearly independent by means of Gaussian elimination. If not, check
if {a,Ta,T2a} is linearly independent - since the vector space is of dimension n2 eventually we arrive at
some k ≤ n2 such that {a, ...,Tk−1a} is linearly independent, but {a, ...,Tk−1x,Tkx} is not. In fact the
set {a, ...,Tk−1a} is a basis for W , which we can see by induction. Without loss of generality we may write

7 Note that ψ(1G) is the identity matrix, which gets sent to some sparsely populated vector of 1s and 0s. In other
words vec(ψ(1G)) does not act as an “identity” element.
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Tka =
∑k−1
i=0 λiT

ia with each λi ∈ K, so Tk+1 =
∑k−1
i=1 λiT

ia + Tka. However, since we have seen that
Tka has a suitable linear decomposition, it follows that Tk+1 does too - and the rest of the claim follows by
induction.

Consider now the k×k matrices C and D whose columns are a, ...,Tk−1a and b, ...,Tk−1b, respectively.
If k = n2, these matrices are n2 × n2; otherwise, since b = Txa, we have that b ∈ W , and indeed that
Tib ∈W for each i ∈ N. We may therefore write the vectors a, ...,Tk−1a and b, ...,Tk−1b as height-k column
vectors with respect to the basis of W we found (after computing the restriction of T to the subspace W ).
In other words, the matrices that we consider are all square. We have

TxC = Tx{a|Ta|...|Tk−1a}
= {(Txa)|T(Txa)|...|Tk−1(Txa)}
= {b|Tb|...|Tk−1b}
= D.

We have computed matrices T, C, and D such that, in order to find the x ∈ N such that h = ρx(g,ϕ)(1G),

it suffices to find the x ∈ N such that Tx = CD−1. The result follows by noting that the complexity of
this method is dominated by the Gaussian elimination required to compute the basis of the subspace W ,
requiring at least one computation of complexity O(n2k2). Since k is bounded above by n2, we are done.

In the projective case, we have projective vectors [a] and [b] such that a projective matrix [T] is such
that [Tx ·a] = [b]. We can therefore just pick representatives of the projective class; that is, there are vectors
a,b and a linear matrix T such that for some scalar λ in the underlying field we have

b = λTxa

This time, we just have to compute a basis of the subspace W spanned by {λTia : i ∈ N}, which we can
do just by picking arbitrary representatives of the appropriate projective classes (since the span is the same
under scalar multiplication). The k × k matrices C and D as defined above are such that λTxC = D, so
Tx = λ−1CD−1. Projecting back down we have [T]x = [Tx] = [CD−1], thereby inducing a matrix power
problem in the projective space. □

Recall also that we did not have a method of computing the crucial map T, should the automorphism
in question not be inner. However, by [II24, Proposition 2], we do have the option of taking the smallest
power of the automorphism that is inner, say y, and instead solving at most y instances of SDLP(G,ϕy). It
turns out, due to a result of Kohl [Koh03, Theorem 1] that for simple groups one can expect this power to
be small.

Theorem 4.3 (Kohl). If G is a non-abelian finite simple group, then

|Out(G)| < log2 |G|.

Since Out(G) ∼= Aut(G)/ Inn(G) it follows that for any outer automorphism ϕ of a non-abelian finite simple
group G there exists an integer x such that ϕx ∈ Inn(G); and crucially that this x is no larger than log2 |G|.
We conclude the following.

Corollary 4.4. Let G be a non-abelian finite simple group, and suppose we have an efficiently computable
non-trivial (projective) linear representation ψ : G → (P)GLn(K). Then we can solve SDLP(G,ϕ) for any
ϕ ∈ Aut(G) on a quantum computer in probabilistic polynomial time in log |G|.

Remark 4.5. Note that we did not have to insist in the above that the linear representation was faithful. In
fact, any non-trivial representation of a simple group is faithful, since if the map were not injective it would
have non-trivial kernel and therefore imply a proper normal subgroup of a simple group.
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5 SDLP in Simple Groups

Now that we have an efficient reduction of the general case of SDLP to SDLP in simple groups, and a method
of solving SDLP in simple groups whose complexity is a function of the faithful dimension in simple groups,
let us review the known results in this area.

The key advantage of the reduction to the simple groups from Theorem 3.6 is that we have access to
the famous classification of finite simple groups. For this result we take as reference the book The Finite
Simple Groups of Robert Wilson [Wil09], and further insight on the topic can be found in The Atlas of
Finite Groups [CW98]. Summarizing the pivotal results, we know that any finite simple group is isomorphic
to one of the following:

1. A cyclic group of prime order p;

2. A group of even permutations of a finite set of cardinality n ≥ 5, also called alternating group An;
3. A classical group of Lie Type:

Linear : PSLn(q), n ⩾ 2, except PSL2(2) and PSL2(3);
Unitary : PSUn(q), n ⩾ 3, except PSU3(2);
Symplectic: PSp2n(q), n ⩾ 2, except PSp4(2);
Orthogonal : P2n+1(q), n ⩾ 3, q odd;

PΩ+
2n(q), n ⩾ 4;

PΩ−
2n(q), n ⩾ 4

where q is a power pa of a prime p;

4. An exceptional group of Lie type:

G2(q), q ⩾ 3;F4(q);E6(q);
2E6(q);

3D4(q);E7(q);E8(q)

where q is a prime power, or

2B2

(
22n+1

)
, n ⩾ 1; 2G2

(
32n+1

)
, n ⩾ 1; 2F4

(
22n+1

)
, n ⩾ 1

or the Tits group 2F4(2)
′

5. One of 26 sporadic simple groups.

Since we have a complete (and quite short) list of what all the finite simple groups are, we can analyze
the hardness of solving SDLP separately for each of them.

For cyclic groups, SDLP is known to be equivalent to classical DLP, so we need to focus on the other
families of groups. Our main tool for the infinite families is to show the existence of a linear representation
to use Corollary 4.4, while for the sporadic groups (and the Tits group) we have a separate discussion in
Section 5.2.

5.1 Infinite Families

For each of the non-sporadic groups, we show that they have a known efficient linear representation. Thus, if
we have them in their “natural representation” (the explicit representation used in their textbook definitions),
by Corollary 4.4 there is a quantum polynomial-time algorithm to solve SDLP(G,ϕ).

However, it is possible that, even if we know the isomorphism class of a simple group, an isomorphism to
the natural representation of the simple group may still be unknown or hard to compute. A classical example
of this is elliptic curves of prime order, which are known to be cyclic groups but require difficult discrete
logarithm computations to actually map points to modular integers in a homomorphic way.

This is known in the group theory literature as the Constructive Recognition Problem [BB99,
Section 9.2]; hence, for each family, we will discuss how to go from a simple black-box group G to an efficient
linear representation. By efficient we mean that the complexity is polynomial in the string length of the
black-box group elements and in the logarithm of the target group cardinality.
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Alternating Groups. An alternating group is the group of even permutations of a finite set of cardinality
n. Since these are permutations, they act on any n-dimensional vector space by permuting the entries, and
thus can be represented in GLn(K).

Also, thanks to [Jam+13, Theorem 1], there is a probabilistic algorithm in time O(n log2(n)N) to compute
an isomorphism from any black-box group to the permutation representation of An, where N is the string
length of the black-box group. As a consequence of Corollary 4.4, we have the following result.

Lemma 5.1. If G is a simple black-box group isomorphic to any alternating group An we can solve SDLP
for G in probabilistic polynomial time in n log |G| on a quantum computer.

Classical Groups. The classical groups of Lie Type are the groups of linear, unitary, symplectic and
orthogonal projective matrices, so they are all naturally described as well-defined subgroups of PGLn(Fq),
i.e., we can use the inclusion as a projective linear representation. Again, this means that we can solve SDLP
such groups using a quantum computer as a consequence of Corollary 4.4. Observe that here it is important
to have a reduction that also works for projective representations.

Sadly, in contrast to the case of alternating groups, there is no plain polynomial-time algorithm to solve
the constructive recognition problem, even if extensive literature has been written on it. A series of works
of Brooksbank and Kantor have proven that for all the families of classical groups (linear [BK99], unitary
[Bro03], symplectic [Bro08] and orthogonal [BK06]), summarized in [DLO15], we can efficiently compute
isomorphisms to the natural representations of the groups under the availability of:

1. So called number theory oracles, computing discrete logarithms and factoring in polynomial time;
2. An oracle that, for any input black-box group G isomorphic either to SL(2, q) or PSL(2, q), produces in

time polynomial in log(q) an effective isomorphism SL(2, q) → G.

Since, thanks to Shor’s algorithm [Sho94], we know that quantum computers can implement efficient
number theory oracles, we can combine the previous results in the following lemma.

Lemma 5.2. On a quantum computer, if G is a simple black-box group isomorphic to any classical group
of Lie Type of characteristic q and dimension n, we can reduce SDLP for G in probabilistic polynomial time
in n and log(q) to the constructive recognition problem for the group SL(2, q).

We tackle this problem in a separate section after the discussion on exceptional groups.

Exceptional Groups. As for the classical groups, we start by showing that an efficient linear representation
is known, then we discuss the difficulty of computing an isomorphism starting from a black-box group. For
our cryptographic context, the Tits group is more reasonable to be treated with the sporadic ones.

We start immediately from the groups of untwisted type; thanks to the arguments in [Wil09, Section
4.12], we have the following relationship between the families

G2 < F4 < E6 < E7 < E8 .

It follows that, since E8(q) can be represented as automorphisms of a Lie algebra of dimension 248 (see again
[Wil09, Section 4.12]), we have an efficient representation for all of them.

The twisted group 3D4(q) is well known, thanks to its relation with the orthogonal family, to have a linear
representation in dimension 8, see [Wil09, Section 4.6]. Also, the twisted group of type 2E6(q) < E6(q

2)
[Wil09, Section 4.11] can be represented using the linear representation of E6(q

2).

For the more exceptional ones, with fields of characteristic 2 or 3, there are efficient representations known
in the literature:

– The Suzuki groups 2B2

(
22n+1

)
are defined in [Suz60] as subgroups of SL4(F22n+1) ≤ GL4(F22n+1);
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– The family of small Ree groups 2G2

(
32n+1

)
, are described in [Wil10b] as groups of 7× 7 matrices over

F32n+1 ;

– The family of large Ree groups 2F4

(
22n+1

)
is described in [Wil10a] as symmetries of a 26 dimensional

vector space over F22n+1 .

The Tits Group can also be represented via matrices, being a subgroup of 2F4

(
22n+1

)
, however, it being

a standalone group, we leave the discussion on its utility to Section 5.2.

With respect to the constructive recognition problem, in [KM13; KM15] the authors show how to compute,
in polynomial time, isomorphisms for groups of exceptional Lie type, with the exception of large Ree groups
2F4

(
22n+1

)
and even characteristic Steinberg triality groups of type 3D4(2

e), assuming the availability of
number theory oracles and SL(2, q) oracles, as for the classical groups of Lie type discussed above, so we have

Lemma 5.3. On a quantum computer, if G is a simple black-box group isomorphic to any exceptional group
of Lie Type defined on the finite field K, with the exception of 2F4

(
22n+1

)
and 3D4(2

e), we can reduce SDLP
for G in probabilistic polynomial time in log |K| to the constructive recognition problem for the group SL(2, q).

We can finally enter the discussion for constructive recognition problem of the group SL(2, q).

Constructive Recognition of SL(2, q) Given its relevance for the general formulation of the problem,
several works have studied SL(2, q). For instance, the authors in [CLO06] show how to compute an efficient
isomorphism when the black-box group is a subgroup of the general linear group GLd(q

i), given discrete
logarithm oracles.

In [BBS09, Lemma 2.10], the authors are able to generalize the result even further, for the much wider
class of black-box groups of quotients of matrix groups by recognizable normal subgroups, showing that
SL(2, q) can be constructively recognized in polynomial time having access to number theory oracles.

For general black-box groups, the problem has been solved in [KK15] for even characteristic and in [BY13]
for the case of small characteristic p ≡ 1 mod 4. For a general field, the research is partially open: actually,
in the preprint [BY20], the authors show how to compute an isomorphism in polynomial time between the
black-box group and SL2(), where K is black-box field isomorphic to Fq, this last isomorphism can be clearly
computed via the solution of discrete logarithms over K. Although these last results would suffice to solve
the problem, we await further review of these results among the community before drawing this conclusion
definitively.

5.2 Sporadic Groups

There are 26 finite simple groups that are not part of the infinite families discussed earlier, plus the Tits Group
2F4(2)

′. It is clear by the definition of semidirect product that instead of choosing x ∈ N in the definition of
the SDLP in G, we can restrict without loss of generality to x ≤ maxg∈G(ord(g)) ·maxϕ∈Aut(G)(ord(ϕ)).

The largest of the 26 sporadic groups is the Fischer-Griess monster group M, which has no outer automor-
phisms [Lyo11], i. e., Aut(M) ≃ M. Consequently, the value of x is upper-bounded by 1192 < 214 [BSW22,
Table 14], placing SDLP in M well in reach of an exhaustive search. With the exception of six pariahs, all
sporadic groups are part of the happy family, i. e., they are subquotients of M [Gri82]. Additionally, the Tits
group 2F4(2)

′ can be considered as part of this family since it is a maximal subgroup of the Fischer Group
Fi22 [Wil09, Section 5.7.2]. Moreover, for all sporadic groups G, the outer automorphism group has order at
most 2. Therefore, the order of an automorphism of a sporadic group in the happy family is upper-bounded
by 2 · 119, yielding an upper bound 2 · 1192 < 215 for x. Consequently, SDLP over members of the happy
family is firmly within reach of an exhaustive search.

Using, for example, the computer algebra system GAP [GAP24], one can verify that the maximal element
order in the six pariahs and in their automorphism groups is upper-bounded by 67. Thus, for SDLP in the
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pariahs, we can upper bound x with 672 < 213, which is within reach of an exhaustive search, too. We
summarize this as follows.

Lemma 5.4. For any sporadic finite simple group G and automorphism ϕ ∈ Aut(G), there is a brute force
algorithm to solve SDLP(G,ϕ) with at most 214 multiplications in the holomorph of G.

5.3 Adapting Shanks’ Baby-Step Giant-Step algorithm

Adjusting Shanks’ Baby-Step Giant-Step (BSGS) algorithm [Sha71] to our setting is a reasonably simple
task. Knowing a modest-size upper bound N for the possible values of x, this can be a practical way to find x.
Algorithm 3 shows the SDLP variant of the BSGS algorithm, and it is easy to verify that the algorithm stores
O(

√
N) elements in the holomorph G⋊Aut(G) and recovers the secret exponent x in O(

√
N) operations in

G⋊Aut(G).

Algorithm 3 Baby-step giant-step algorithm in G⋊Aut(G).

Input: (g, ϕ) ∈ G⋊Aut(G), h = (g, ϕ)x, N ∈ N with x ≤ N ;
Output: the solution of x of the input SDLP instance.

1: n←
⌈√

N
⌉

2: (s, t)← ((g, ϕ)n, (1, id))
3: T ← [(0, t)] ▷ Initialize table
4: for (j ← 1; j ≤ n; j ++)
5: t← t · s ▷ Giant step
6: Store (t, j) in T .
7: end for
8: (y, i)← (h, 0).
9: while (y, ) is not in T do
10: (y, i)← (y · (g, ϕ)−1, i+ 1) ▷ Baby step
11: end while
12: return jn− i where (y, j) is in T .

We illustrate the algorithm with SDLP over M.

Example 5.5. We implemented our BSGS algorithm in approximately 30 lines of Python using the mmgroup
Python library [Sey24], which offers an efficient implementation of M. In all of our experiments, the running
time did not exceed 5 seconds on a 2022 Macbook Air with 16 GB of RAM.

6 Conclusion

We conclude by giving a comprehensive overview of our results, and discussing the consequences for SDLP.
We have also summarized the flow of our argument visually in Figure 1; one can take this diagram as a map
of the paper.

Consider a finite, black-box group G. Then, in quantum polynomial time (in log |G|), we can reduce any
SDLP in G instance to at most log |G| instances of SDLP in a simple group by using Section 3.

As a corollary of the Classification of Finite Simple Groups, we can efficiently study each possible instance
separately, employing two main attack tools: for infinite families, the results from Section 4; and for sporadic
groups, an adapted version of the Baby-Step Giant-Step algorithm (Algorithm 3).

We see that, if the groups are given in their natural representations we can find linear representations
and apply Corollary 4.4 to produce a solution to SDLP in the corresponding simple group S in quantum
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polynomial time in log |S|, so SDLP on simple groups is no harder than the problem of computing an efficient
linear representation starting from a black-box group. Even if not conclusive, the extensive group theory
literature on the solution of the constructive recognition problem in probabilistic quantum polynomial time
is enough evidence to conclude that SDLP on finite groups is not a reliable candidate for the construction of
quantum resistant primitives.

We highlight that, from Figure 1, we could get also constructive quantum probabilistic polynomial-time
algorithms for solving SDLP in a finite, black-box group G if we solve these last open questions:

1. Provide constructive recognition algorithms for large Ree groups 2F4

(
22n+1

)
and even characteristic

Steinberg triality groups of type 3D4(2
e);

2. Have a clean peer-reviewed discussion of the Constructive Recognition problem for SL(2, q) on quantum
computers.

We close with some high-level remarks. It is perhaps not too surprising, given the existing rich theory
of finite group decomposition, that we could reduce an arbitrary instance of SDLP to SDLP in finite simple
groups. However, the fact that all of these finite simple groups admit efficient methods of solving SDLP—
in particular, the fact that all the infinite families of simple groups have low faithful dimension—is quite
unexpected. Recalling that the method of decomposition into finite simple groups could only fail when no
characteristic subgroups were present, it is also rather unfortunate that this scenario coincides with the group
being a direct product of simple groups, from which a different method of reduction is possible. The insecurity
of SDLP in finite groups, in other words, does not appear to result from some error in cryptographic design,
but instead from fundamental properties of the finite groups themselves.
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Is G solvable?

Use [II24] reduction. Use Algorithm 2.

What type of finite simple group is S (or Si)?

What type of non-sporadic group? See Lemma 5.4.

SDLP re-
duces to DLP.

See Lemma 5.1. See Lemma 5.2. See Lemma 5.3.

[BY20] with DLP

Yes No

If Algorithm 1 returns G, consider
S where G ∼= Sk. Else, consider
output S1, . . . , Sδ.

Non-Sporadic Sporadic

Cyclic Alternating Classical Exceptional

Fig. 1. Visual summary of a possible roadmap for a general SDLP instance over a finite group.
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[BB99] László Babai and Robert Beals. “A polynomial-time theory of black box groups I”. In: London
Mathematical Society Lecture Note Series (1999), pp. 30–64.
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