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Abstract. The rapid development of advanced cryptographic applica-
tions like multi-party computation (MPC), fully homomorphic encryp-
tion (FHE), and zero-knowledge (ZK) proofs have motivated the designs
of the so-called arithmetic-oriented (AO) primitives. Efficient AO prim-
itives typically build over large fields and use large S-boxes. Such design
philosophy brings difficulties in the cryptanalysis of these primitives as
classical cryptanalysis methods do not apply well. The generally recog-
nized attacks against these primitives are algebraic attacks, especially
Gröbner basis attacks. Thus, the numbers of security rounds are usually
derived through the complexity of solving the system of algebraic equa-
tions using Gröbner bases. In this paper, we propose a novel framework
for algebraic attacks against AO primitives. Instead of using Gröbner
basis, we use resultants to solve a system of multivariate equations that
can better exploit the algebraic structures of AO primitives. We em-
ploy several techniques to reduce the dimensions of the resultants and
avoid rapid increases in degrees, including meet-in-the-middle modeling,
variable substitutions, and fast Lagrange interpolation. We apply our
attack to three mainstream AO cryptographic primitives: Rescue-Prime,
Anemoi, and Jarvis. For Rescue-Prime, we theoretically prove that the
final univariate equation has a degree of at most a specific power of
three and practically attack five rounds for the first time. We attack the
full-round of Anemoi with complexity 2110.10, which has been claimed to
provide 127 bits of security. We also give the first practical attack against
eight rounds of Anemoi over a 55-bit prime field. For Jarvis, we improve
the existing practical attack by a factor of 100. Therefore, we point out
that our analysis framework can be used as a new evaluation method for
AO designs.

Keywords: Resultant· arithmetic-oriented primitives · Rescue-Prime ·
Anemoi · Jarvis · new evaluation method.



1 Introduction

In recent years, with multi-party computation (MPC), fully homomorphic en-
cryption (FHE), zero-knowledge (ZK) proofs, and other privacy computing tech-
niques having been applied on the ground, many underlying privacy computing-
friendly symmetric cryptographic primitives have emerged. While traditional
symmetric ciphers like AES [24] and SHA-3 [17] are often designed and opti-
mized for efficient software or hardware implementations, these constructions,
usually referred to as arithmetic-oriented (AO), mainly focus on minimizing the
number of non-linear arithmetic operations [23]. This is because non-linear op-
erations pose the largest performance bottleneck in those advanced protocols,
while linear computations are much cheaper compared to the former.

Despite the high demand in efficient and secure AO primitives, only a few
candidates have been proposed. LowMC [3] and MiMC [1] can be regarded as
the first generation of AO primitives. LowMC uses partial S-box layers while
MiMC works over large fields to decrease the number of multiplications. In July
2018, the Ethereum Foundation gave StarkWare a 2-year milestone-based grant
to select a STARK-friendly hash (SFH) function [9]. STARK is one of the most
efficient and recognized ZK proof systems. Two families of primitives received
much attention in the evaluation, which are: MARVELlous – a family that
includes Jarvis [6], Vision (over the binary field), Pepper, and Rescue (over
prime fields) [4] [5]; and HadesMiMC – a family that includes Starkad (over
the binary field) and Poseidon (over prime fields) [22] [21].

After the evaluation of security and efficiency, Rescue122 was recommended
as the SFH candidate for standardization by the Ethereum Foundation. Sev-
eral other AO primitives have been proposed afterwards, e.g., Ciminion [16] and
Anemoi [11]. Most of these primitives are constructed over Fp (p is typically a
large prime number) to be consistent with many MPC/FHE/ZK-protocols that
natively support operations in Fp to improve implementation performance. To
reduce the computation overhead of nonlinear operations, many AO primitives
use low-degree round functions. This introduces the most significant difference
to classical symmetric ciphers that these AO primitives typically work with large
S-Boxes over the whole states instead of individual bytes or cells.

Cryptanalysis. Compared to the wide attention in the design of efficient AO
primitives, the security analysis methods of these primitives are not mature.
Classical cryptanalysis techniques, like linear and differential cryptanalysis, do
not apply well to these primitives due to the adoption of large prime fields and
S-boxes. To better understand the security of AO hash functions, in Novem-
ber 2021, Ethereum foundation initiated bounties3 rewarding the best practical
attacks against four round-reduced AO hash functions. These four hash func-
tions are all sponge-based, which are Reinforced Concrete [20], Feistel–MiMC
[1], Poseidon [22], and Rescue-Prime [27].

3 These bounties were published at https://www.zkhashbounties.info/
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The security of AO primitives typically relies on the hardness of solving the
constrained-input constrained-output (CICO) problem. Due to their native alge-
braic properties, algebraic attacks typically outperform other known cryptana-
lytic techniques against AO primitives. One example is the Gröbner basis attacks,
which model the underlying primitive as a system of multivariate equations and
solve it using off-the-shelf Gröbner basis algorithms. For instance, Gröbner ba-
sis attacks against Jarvis and Friday [6] were presented in [2], illustrating that
AO primitives for MPC/FHE/ZK applications may be particularly vulnerable
to algebraic attacks. The authors proposed a smart way of constructing equa-
tions that made the solving step much more efficient than initially thought and
further broke the security claim of Jarvis. Therefore, the number and quality
of constructed equations greatly influence the attack complexity. For some AO
primitives based on the Substitution-Permutation Network (SPN) structure, au-
thors in [8] proposed a technique that can remove all the equation modeling
of the first two layers of S-boxes. Such a technique is used to analyze the se-
curity of the four AO hash functions considered in the Ethereum Foundation
challenge. Recently, a new type of algebraic attack named FreeLunch approach
was proposed in [7], which chose the monomial ordering so that the natural
polynomial system encoding the CICO problem is already a Gröbner basis. The
authors claimed that FreeLunch approach challenges the security of full-round
instances of Anemoi [11], Arion [25], and Griffin [19]. Other ad-hoc algebraic
attacks include integral attacks against GMiMC and HadesMiMC [10], higher
order differential cryptanalysis of Ciminion [28], etc.

Contributions. Since the Gröbner basis algorithms are generalized solving meth-
ods that usually ignore some specific algebraic properties of a cryptographic
primitive, using them to evaluate the attack complexities may overestimate the
security of a certain primitive. In this paper, we propose a new analysis frame-
work for algebraic attacks against typical AO primitives, which makes full use
of the algebraic properties and employs the resultant tool to solve the system of
multivariate equations. Compared to Gröbner basis attacks, our attack is much
more efficient and accurate. Our main contributions are as below.

1. We develop a novel analysis framework for analyzing the security of AO
primitives. We note that typical AO primitives have special algebraic struc-
tures that are not considered in Gröbner basis attacks. We make full use
of such algebraic structures and propose to use the resultant to solve the
system of multivariate equations. To avoid rapid increase in the degrees of
variables when computing the resultants, we propose the substitution theory
to deal with the non-linear operations, and the dimensions of the resultants
are much reduced. Such substitutions also enable us to accurately estimate
the degrees of variables and equations, thus the estimation of the attack
complexity is much more accurate than Gröbner basis attacks. We also pro-
pose to use the Meet-in-the-middle (MITM) modeling technique to further
simplify the resultants and use fast Lagrange interpolation to parallelize the
computation. Therefore, our algebraic attack is a comprehensive analysis
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Table 1: Comparison of the algebraic attacks against Rescue-Prime, Anemoi, and
Jarvis

Primitives Attacked rounds Running time Theoretical Complexities References
Rescue-Prime 4 258500s - [8]

4 885.5s - Sect.7.1
5 - 255 [8]
5 ≈ one day - Sect.7.1
6 - 259.96 Sect.4

Anemoi 7 156348s - [7]
7 2968.55s - Sect.7.2
8 10575.61s∗ - [12]
8 38749.182s - Sect.7.2
21 - 2118 [7]
21 - 2110.10 Sect.5

Jarvis 6 99989s - [2]
6 368.96s - Sect.7.3

* The practical attack was performed over F216+1 in [12], while our attack is per-
formed over a 55-bit prime field.

framework that is much more efficient than existing ones. Besides, the path
of variable elimination is quite clear compared to that when using Gröbner
bases, which helps to better understand the security of an AO primitive. We
think the analysis framework can be used as an efficient evaluation method
for new AO designs.

2. We apply the new analysis framework and techniques to the AO primitive
Rescue-Prime. We propose the cubic substitution theory for Rescue-Prime
and theoretically prove that the final univariate equation has a degree of at
most a specific power of 3. With the cubic substitution theory, we can control
the degree of the equation at each step and give a more accurate security
assessment of Rescue-Prime. We find a 5-round collision which was originally
thought to be “hard” in the Ethereum Foundation challenge. We also achieve
a 100-fold increase in finding the 4-round collision of Rescue-Prime over the
results in [8].

3. We attack the full-round of an specific instantiation of Anemoi with com-
plexity 2110.10, while the version is claimed to provide 127 bits of security.
We also provide a practical attack against 7-round Anemoi which improves
the best-known practical attack by a factor of 5 [7]. Moreover, we propose a
practical attack against 8 rounds for the first time.

4. We further apply our attack to Jarvis and provide a 100-fold increase in
practically solving the equation system of the round-reduced version com-
pared to the results in [2].
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Organization. We start by introducing the necessary mathematical background
and security definitions in Sect.2. In Sect.3, we give an introduction to Rescue-
Prime and review the work in [8]. We propose our analysis framework and in-
stantiate it on Rescue-Prime in detail in Sect.4. After that, we apply our attack
to Anemoi and Jarvis in Sect.5 and Sect.6, respectively. The experimental re-
sults of the three primitives are all presented in Sec.7. We finally conclude the
paper in Sect.8 by discussing some shortcomings and potential improvements in
the current design of AO primitives.

2 Prelimnaries

Let Fq be the finite field with q elements and Fq[x1, x2, . . . , xt] the polynomial
ring over Fq with indeterminates x1, x2, . . . , xt, where q is a prime power and t
is a positive integer. Any polynomial f(x1, x2, . . . , xt) ∈ Fq[x1, x2, . . . , xt] can be
represented in the form

f(x1, x2, . . . , xt) =
∑

(k1,k2,...,kt)∈K

ck1,k2,...,ktx
k1
1 xk2

2 . . . xkt
t ,

where K is a set of finitely many t-tuples (k1, k2, . . . , kt) of nonnegative integers
and ck1,k2,...,kt ∈ Fq. If ck1,k2,...,kt ̸= 0, then xk1

1 xk2
2 · · ·x

kt
t is called a term of f

and its degree is k1 + k2 + · · ·+ kt. The set of all terms of f is denoted by T (f).
For f ̸= 0, the degree of f , denoted by deg (f), is the maximum of the degrees
of the terms of f , that is,

deg (f) = max


t∑

j=1

kj | xk1
1 xk2

2 · · ·x
kt
t ∈ T (f)

 .

2.1 CICO problem

The so-called CICO (Constrained Input/Constrained Output) problem is defined
as follows, which is frequently used to evaluate the security of AO algorithms.

Definition 1 (CICO problem). Let t > 1 be an integer and u be a given
positive integer smaller than t. Let F : Ft

q → Ft
q be a permutation. The CICO

problem of F is to find an element (x1, . . . , xt−u, y1, . . . , yt−u) ∈ F2(t−u)
q such

that

F

x1, . . . , xt−u, 0, . . . , 0︸ ︷︷ ︸
u

 =

y1, . . . , yt−u, 0, . . . , 0︸ ︷︷ ︸
u

 .

2.2 Resultant

The resultant is a powerful tool for solving systems of polynomial equations. As
it will be seen in Sect.4-6, the polynomial equations modeled in algebraic attacks
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against AO algorithms (such as Rescue-Prime, Anemoi, and Jarvis) are particu-
larly suitable to be solved through the resultant-based method. Compared with
Gröbner-based method, using resultants tends to give a more precise estimation
of the time complexity.

Definition 2 (Resultant). Let f(x, y), g(x, y) ∈ Fq[x, y] with x = (x1, . . . , xt).
The resultant of f(x, y) and g(x, y) with respect to the indeterminant y, denoted
by R(f, g, y), is defined as the determinant of the Sylvester matrix of f(x, y) and
g(x, y) when considered as polynomials in the single indeterminate y. That is,
if f(x, y) =

∑m
i=0 fiy

i and g(x, y) =
∑n

i=0 giy
i, where fi, gi ∈ Fq [x], then

R(f, g, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f0
fm fm−1 · · · f0

. . . . . . . . . . . .
. . . . . . . . . . . .

fm fm−1 · · · f0
gn gn−1 · · · · · · g0

gn gn−1 · · · · · · g0
. . . . . . . . . . . . . . .

gn gn−1 · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is well-known that the resultant is non-zero if and only if the two poly-
nomials are algebraically independent. In this case, the resultant yields a new
polynomial h(x), such that if (x0, y0) is a root of both f(x, y) and g(x, y), then
h(x0) = 0. In this way, we can remove one variable from two polynomials while
retaining information about the roots of the original polynomials. Given ℓ poly-
nomials in t variables, we can repeatedly compute resultants of the polynomials
until we get a univariate polynomial. Solving for the roots of that polynomial
and repeatedly substituting back, we can derive the root that the polynomials
have in common.

The computation of a resultant involves multiplications of multivariate poly-
nomials over Fq. Theorem 1 can be used to give an estimation of the running
time of the resultant-based method.

Theorem 1. Let f, g ∈ Fq[x1, x2, . . . , xs] with

f =
∑

0≤iu≤nu
u=1,2,...,s

ai1,i2,...,isx
i1
1 xi2

2 · · ·xis
s ,

g =
∑

0≤ju≤mu
u=1,2,...,s

bj1,j2,...,jsx
j1
1 xj2

2 · · ·xjs
s ,

where n1, n2, . . . , ns and m1,m2, . . . ,ms are positive integers. Then the multipli-
cation fg can be computed inO (d1d2) field operations, where d1 =

∏s
u=1(nu+1)

and d2 =
∏s

u=1(mu + 1).
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It can be easily seen that when using the resultant-based method to solve a
system of multivariate equations, each time we eliminate a variable by computing
a resultant, the degrees of other variables will increase. Repeatedly computing
resultants of the polynomials, we will finally get two polynomials, say f(x, y)
and g(x, y). The degrees of x and y in f(x, y) and g(x, y) will inevitably be
very high, especially when attacking a high-round AO algorithm. To get a uni-
variate polynomial, one can directly compute the resultant R(f, g, y) of f(x, y)
and g(x, y). However, the degree of x may become extremely high, which intro-
duces unaffordable memory consumption in practical attacks. To solve that, we
propose to use Lagrange interpolation to compute R(f, g, y), which also enables
parallelization. We note that an upper bound on the degree of x in R(f, g, y)
can be always estimated in advance.

2.3 Fast Lagrange interpolation

Using interpolation to compute polynomial resultants was suggested by Collins
[13]. We now give a brief introduction to fast Lagrange interpolation based on
fast multi-point evaluation. For more details, we refer to [18, Chapter 10].

Let R(x) be a given but unknown polynomial of degree less than n over Fq.
Let u0, u1, . . . , un−1 be n distinct elements over Fq and v0, v1, . . . , vn−1 ∈ Fq

satisfying that R(ui) = vi for i ∈ {0, 1, . . . , n− 1}. Then R(x) can be uniquely
determined by the Lagrange interpolation formula as below

R(x) =

n−1∑
i=0

vi ·
n−1∏

j=0,j ̸=i

x− uj

ui − uj
.

Furthermore, let si =
∏n−1

j=0,j ̸=i
1

ui−uj
for i ∈ {0, 1, . . . , n− 1}, then R(x) can be

rewritten as

R(x) =

n−1∑
i=0

visi ·
n−1∏

j=0,j ̸=i

(x− uj).

Let M(x) =
∏n−1

j=0 (x− uj), then it is clear that M ′(ui) = 1/si for i ∈
{0, 1, . . . , n− 1}, where M ′(x) is the derivative of M(x). Using a fast multi-point
evaluation algorithm (see [18, Section 10.1]), s0, s1, . . . , sn−1 can be computed in
O(n log n) operations over Fq, we call this step of the process precomputation.
Finally, with a divide-and-conquer strategy (see [18, Section 10.2]), R(x) can be
computed in O(n log n) operations over Fq.

Now we go back to see how we compute R(f, g, y) in Sect.2.2 using the
fast Lagrange interpolation. Let f(x, y), g(x, y) be as defined in Sect.2.2 and let
R(x) = R(f, g, y) ∈ Fq[x] where the degree of R(x) is less than n. We first
choose n distinct elements u0, u1, . . . , un−1 ∈ Fq and compute the polynomials
f(u0, y), f(u1, y), . . . , f(un−1, y) and g(u0, y), g(u1, y), . . . , g(un−1, y) in parallel.
Afterwards, we compute the values R(u0), R(u1), . . . , R(un−1) with the definition
of resultant. Finally, we compute R(x) using the fast Lagrange interpolation with
u0, u1, . . . , un−1 and R(u0), R(u1), . . . , R(un−1).
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2.4 Finding Roots of Univariate Polynomials over Fq

Finding roots of univariate polynomials over Fq plays a crucial role in solving
a system of multivariate polynomials over Fq with the resultant-based method.
The authors in [8] showed that the roots of a univariate polynomial R(x) ∈ Fq[x]
can be found in O(d log(d)(log(d)+log(q)) log(log(d))) field operations, provided
that the multiplication of two univariate polynomials of degree d over Fq can
be done in O(d log(d) log(log(d))) field operations using an FFT (Fast Fourier
Transform) algorithm. The process consists of three main steps.

1. Compute Q(x) = xq − x mod R(x). The complexity of this step mainly lies
in Computing xq mod R(x), which requires O(d log(d) log(q) log(log(d)))
field operations using a double-and-add algorithm.

2. Compute P (x) = gcd(R(x), Q(x)). This step requiresO(d log2(d) log(log(d)))
field operations.

3. Factor P (x). The complexity of this step is negligible since P (x) is of degree
one or two in general.

By using a fast gcd algorithm called half-gcd (see [18, Section 11.1]), the
complexity of the second step can be reduced to O(d log2(d)). Then the com-
plexity of finding roots of univariate polynomials over Fq can be reduced to
O(d log(d)(log(d) + log(q) log(log(d)))) field operations.

3 Review of Rescue-Prime and a recent algebraic attack

In this section, we give an introduction to Rescue-Prime and review the algebraic
attack in [8].

3.1 Description of Rescue-Prime

Rescue-Prime [27] is a family of AO hash functions of which the round func-
tion is shown in Fig.1, where x2i, y2i, . . . and x2i+2, y2i+2, . . . are the inputs and
outputs of the i-th round, respectively. Each round of Rescue-Prime consists of
two similar steps: the first step involves a low-degree S-box S, an MDS (Max-
imum Distance Separable) matrix M, and the addition of the round constants
AddC; the second step differs in replacing S by S−1 and using other round con-
stants. There is an additional AddC operation before the first round. Denote t
the number of S-boxes involved in each step. The challenges from the Ethereum
Foundation use t = 3 or t = 2 and S : x 7→ x3 (and so S−1 : x 7→ x1/3). Let
F : F3

q → F3
q be the permutation representing the r-round Rescue-Prime, the

challenge initiated by Ethereum Foundation for Rescue-Prime with t = 3 is to
find two pairs (X1, X2) , (Y1, Y2) ∈ F2

q satisfying

F (X1, X2, 0) = (Y1, Y2, 0).

In this paper, we mainly focus on t = 3.

8



AddCMDS MDS AddC

 

 

 

Fig. 1: The i-th round function of Rescue-Prime

3.2 The algebraic attack against Rescue-Prime in [8]

The authors of [8] introduce a smart technique to bypass the first two layers of
S-boxes (two steps) of Rescue-Prime with little or even no overhead. We now
give a brief review of this work.

Construction of equations. There are in total 2r steps for solving the CICO
problem of a r-round Rescue-Prime, which are referred to as the 0-th step, the 1-
th step, . . . , the (2r−1)-th step. Since the MDS matrix is the same in each step,
it can be uniformly denoted by M in all the steps. Let AddCs be the addition of
the round constants in the s-th step and let Ls = AddCs ◦M be the composition
of M and AddCs, where 0 ≤ s ≤ 2r − 1. Let Ls,j be the j-th output of Ls with
0 ≤ j ≤ t − 1. Since S−1 has a very high degree in the forward direction while
S has a very high degree in the backward direction, some intermediate variables
can be introduced to build low-degree equations. More concretely, let x2i, y2i, z2i
and x2i+2, y2i+2, z2i+2 be the input and output of the i-th round, respectively,
where 0 ≤ i ≤ r − 1, they can be connected through the equations below as
shown in Fig.2:

L2i,j(x
3
2i, y

3
2i, z

3
2i)− S ◦ L−1

2i+1,j(x2i+2, y2i+2, z2i+2) = 0, j ∈ {0, 1, 2}, (1)

where L−1
2i+1,j is the inverse of L2i+1,j . It is clear that each equation in Eq.(1) is

of degree three since both L2i,j and L−1
2i+1,j are of degree one. The variables z0

and z2r are both set to zero in the CICO problem, i.e. Z0 = Z2r = 0. Therefore,
a system of 3r equations in 3r + 1 variables is derived.

Bypassing the first two S-box layers. As having been observed in [8], the
first two nonlinear layers can be skipped when launching an algebraic attack
against Rescue-Prime. The main reason for this is the lack of a linear dif-
fusion layer before the S-box layer. More specifically, as shown in Fig.3, let
C−1,0, C−1,1, C−1,2 be the three constants of the additional AddC operation be-
fore the first round, and let C0,0, C0,1, C0,2 be the three constants of AddC0,
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Fig. 2: One round of Rescue-Prime with t = 3

and let X,Y, Z be the outputs of S-boxes in the 1-th step. To satisfy the CICO
problem, the output of the third S-box in the 0-th step is (C−1,2)

3, which yields

(C−1,2)
3 = α2,0(X

3 − C0,0) + α2,1(Y
3 − C0,1) + α2,2(Z

3 − C0,2), (2)

where M−1 = (αi,j)0≤i≤2,0≤j≤2. It is easy to see that there are many three
tuples (X,Y, Z) satisfying Eq.(2). For example, if one sets Z = c, where

c3 = α−1
2,2(α2,0C0,0 + α2,1C0,1 + α2,2C0,2 + (C−1,2)

3), (3)

then Eq.(2) is simplified as α2,0X
3 +α2,1Y

3 = 0, and so Y = (−α2,0

α2,1
)1/3X. The

analysis above implies that if one sets

(X,Y, Z) = (X, (−α2,0

α2,1
)1/3X, c), (4)

then the inputs of Rescue-Prime naturally have the form (∗, ∗, 0). As a result, if
there exists X ∈ Fq such that the image of (X, (−α2,0

α2,1
)1/3X, c) through (r − 1)-

round Rescue-Prime is equal to (∗, ∗, 0), then it is able to deduce an original
input (∗, ∗, 0) of r-round Rescue-Prime with an image of the form (∗, ∗, 0).

Remark 1. It is worth noting that such X does not always exist since the map-
ping from X to the third output of r-round Rescue-Prime is not necessarily
one-to-one. In this case, one may instead assign a value c to X (or Y ), and then
similarly deduce a linear relation for the other two variables, say Y = αZ (or
X = αZ). Finally, find Z ∈ Fq such that the image of (c, αZ,Z) (or (αZ, c, Z))
through (r− 1)-round Rescue-Prime is equal to (∗, ∗, 0). However, the existence
of such X or Z is closely related to the constants used in Rescue-Prime. More-
over, there do exist constants (constructable) such that desired X or Z are
nonexistent.

Solving a system of equations. With the technique of bypassing the first
round, Rescue-Prime can usually be attacked one more step (the first layer of
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Fig. 3: Main idea of [8] on how to bypass the first round of Rescue-Prime.

S-boxes can be skipped naturally) with little to no cost. For r-round Rescue-
Prime, the authors of [8] obtain a system of 3(r − 1) equations of degrees 3
in 3(r − 1) variables. Theoretically, the system can be solved using the F5 and
FGLM algorithms together, and the complexity of solving such a system can
be estimated. Moreover, practical attacks on 3-round and 4-round Rescue-Prime
are implemented with Magma in [8] (using F4 algorithm, not F5 algorithm, to
find the grevlex Gröbner basis), which take 9.18 seconds and 258500 seconds,
respectively. The time complexity for attacking 5-round Rescue-Prime is roughly
estimated as 257 while the memory complexity is unknown. We refer to [8, Section
3.2 and Table 3] for more details. The authors also found that the final univariate
polynomial has a degree of 33(r−1) but did not give a proof. We will fill in the
gap in the next section.

4 Optimized algebraic attacks against Rescue-Prime
based on resultant

In this section, we will give optimized algebraic attacks against Rescue-Prime
based on resultant. We note that previous algebraic attacks against Rescue-
Prime primarily relied on the Gröbner basis method. Compared with the Gröb-
ner basis method, the resultant-based method tends to give more precise es-
timation of the time complexity. As it will be seen, the system of equations
constructed in an algebraic attack has a very special structure, which clearly
indicates a path for eliminating the variables by computing corresponding resul-
tants. Based on this special structure, we propose the cubic substitution theory,
with which the degrees of all but two variables at most in a multivariate poly-
nomial derived by each resultant can be controlled less than 3. The benefits
of this are at least twofold: (1) most of the resultants can be computed with
determinants of 5 by 5 matrices; (2) a tight upper bound on the degree of a
multivariate polynomial obtained by each resultant can be clearly given, which
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together make the estimation of the time complexity more accurate. More impor-
tantly, when combining resultants with the cubic substitution theory and the fast
Lagrange interpolation, practical algebraic attacks on higher rounds of Rescue-
Prime become possible. For example, the existing best-known practical attack
was against 4-round Rescue-Prime (with t = 3), which took 258500 seconds [8].
However, with the resultant-based method, we can successfully attack 4-round
Rescue-Prime (with t = 3) in 885.5 seconds. Moreover, we can practically at-
tack 5-round Rescue-Prime in about one day, which was originally thought to be
“hard” in the Ethereum Foundation challenge. For details, see the comparison in
Table 5.

4.1 Algebraic attack with forward modeling

As done in Sect.3.2, the 2r steps of r-round Rescue-Prime are referred to as the
0-th step, the 1-th step, . . . , the (2r − 1)-th step.

 

 

 

 

 

 

Fig. 4: Forward modeling of Rescue-Prime

Construction of Equations. The construction of equations roughly follows
the way in [8], but with the variables set at different locations (see Fig. 2 and
Fig. 4 for a comparison). For 0 ≤ i ≤ r− 1, let x2i+1, y2i+1, z2i+1 be the outputs
of the three S-boxes (S−1) in the (2i+ 1)-th step. We denote by SSS the three
S-boxes arranged in parallel — that is,

SSS(x, y, z) = (S(x), S(y), S(z)) = (x3, y3, z3).

Then it can be seen from Fig. 4 thatx3
2i+3 = L2i+2,0 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1)

y32i+3 = L2i+2,1 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1)
z32i+3 = L2i+2,2 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1)

for i ∈ {0, 1, . . . , r − 2},

(5)
where “ ◦ ” denotes the composition of mappings and L2i+2,j is the j-th output
of L2i+2 with j ∈ {0, 1, 2}.
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Remark 2. There are
(
6
3

)
= 20 terms at most in the expansion of

L2i+2,j ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1).

Next, we use the technique of bypassing the first round of Rescue-Prime
reviewed in Sect.3.2 to construct two more equations. Specifically, as shown in
Eq.(4), to make the inputs of Rescue-Prime are of the form (∗, ∗, 0),

(x1, y1, z1) = (X, (−α2,0

α2,1
)1/3X, c),

where c is some fixed element in Fq and X is any element in Fq. Then, we get

y1 = (−α2,0

α2,1
)1/3x1 and z1 = c. (6)

Finally, the output of the r-round Rescue-Prime should be of the form (∗, ∗, 0)
in the CICO problem, so there is one more equation, which is

L2r−1,2 (x2r−1, y2r−1, z2r−1) = 0. (7)

Solving the system of equations with the resultant-based method. It
can be seen from Eqs.(5)-(7) that the system of equations has 3r − 2 equations
in 3r − 2 unknowns (here we omit z1 and y1 since z1 = c is known and y1 =
(−α2,0

α2,1
)1/3x1): 3r− 3 equations are of degree 3 and one equations is of degree 1.

Such a system of equations has a special structure: (1) it can be seen from Eq.(5)
that the variable x2i+3 (or y2i+3, or z2i+3) is only associated with three other
lower-subscript variables x2i+1, y2i+1, z2i+1; (2) the variable x2r−1 (or y2r−1, or
z2r−1) are involved only Eq.in (5) for the case i = r− 2 and Eq.(7). This special
structure makes the system of equations especially suitable for solving by the
resultant-based method, since it clearly indicates a path for elimination of the
variables. Specifically, let

fx2i+3 = x3
2i+3 − L2i+2,0 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1),

fy2i+3 = y32i+3 − L2i+2,1 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1),

fz2i+3 = z32i+3 − L2i+2,2 ◦ SSS ◦ L2i+1(x2i+1, y2i+1, z2i+1),

for i ∈ {0, 1, . . . , r − 2}, and let

fh = L2r−1,2 (x2r−1, y2r−1, z2r−1) .

Only fh and fz2r−1
contain the variable z2r−1, and it can be eliminated by com-

puting the resultant R(fh, fz2r−1 , z2r−1). Update fh with R(fh, fz2r−1 , z2r−1),
then only the updated fh and fy2r−1 contain the variable y2r−1. Then y2r−1 can
be eliminated in a same way. Generally, following Algorithm 1, we can eliminate
one variable in each computation of a resultant, and derive a univariate polyno-
mial in Fq[x1] in the end. Solving the roots of the derived univariate polynomial
and substituting back, the roots of the original system of equations will be found.
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Algorithm 1: Get the univariate polynomail for r-round Rescue-Prime
Input: fx2i+3

, fy2i+3
, fz2i+3

, fh with i ∈ {0, 1, . . . , r − 2}.
Output: a univariate polynomial in Fq[x1].

1 i← r − 2;
2 while i ≥ 1 do
3 fh ← R(fh, fz2i+3 , z2i+3);
4 apply the cubic substitution to fh;
5 fh ← R(fh, fy2i+3

, y2i+3);
6 apply the cubic substitution to fh;
7 fh ← R(fh, fx2i+3

, x2i+3);
8 apply the cubic substitution to fh;
9 i← i− 1;

10 end
11 fh ← R(fh, fz2i+3

, z3);
12 apply the cubic substitution to fh;
13 fh ← R(fh, fy2i+3 , y3);
14 apply the cubic substitution to fh;
15 fh ← R(fh, fy2i+3

, x3);
16 return fh.

Cubic substitution theory. We note that the degrees of variables in the mul-
tivariate polynomial obtained by each resultant in Algorithm 1 will increase.
However, by making use of the special structure in Eq.(5), the degrees of all
variables except x1 can be controlled less than 3. In fact, Eq.(5) has two proper-
ties: (1) the variables x2i+3, y2i+3, z2i+3 are separated in the sense that they are
not mixed with the lower-subscript variables x2i+1, y2i+1, z2i+1; (2) the degree of
x2i+3 (or y2i+3, or z2i+3) is exactly 3. For the first resultant R(fh, fz2r−1

, z2r−1)
in Algorithm 1, it is a multivariate polynomial in y2r−1, x2r−1, x2r−3, y2r−3, z2r−3

with the degree of each variable at most 3. By using the following substitutions
in order, i.e.,

y32r−1 = L2r−2,1 ◦ SSS ◦ L2r−3(x2r−3, y2r−3, z2r−3),

x3
2r−1 = L2r−2,0 ◦ SSS ◦ L2r−3(x2r−3, y2r−3, z2r−3),

z32r−3 = L2r−4,2 ◦ SSS ◦ L2r−5(x2r−5, y2r−5, z2r−5),

y32r−3 = L2r−4,1 ◦ SSS ◦ L2r−5(x2r−5, y2r−5, z2r−5),

x3
2r−3 = L2r−4,0 ◦ SSS ◦ L2r−5(x2r−5, y2r−5, z2r−5),

. . .

z33 = L2,2 ◦ SSS ◦ L1(x1, kx1, c),

y33 = L2,1 ◦ SSS ◦ L1(x1, kx1, c),

x3
3 = L2,0 ◦ SSS ◦ L1(x1, kx1, c),
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where c and k = (−α2,0

α2,1
)1/3 are two fixed elements in Fq as defined in Eq.(3)

and Eq.(4), respectively, R(fh, fz2r−1
, z2r−1) is transformed into a multivariate

polynomial in y2r−1, x2r−1, z2r−3, y2r−3, x2r−3, . . ., z3, y3, x3, x1 with the degree
of each variable except x1 less than 3. The substitutions above are called cubic
substitutions for convenience.

Remark 3. We note that if there is a variable, say x2i+1, of which the degree
is larger than 3, then we may need to repeatedly use the substitution x3

2i+1 =
L2i,0 ◦ SSS ◦ L2i−1(x2i−1, y2i−1, z2i−1) to reduce its degree until the degree is
less than 3.

Now we consider the second resultant R(fh, fy2r−1
, y2r−1) in Algorithm 1.

Since the degree of y2r−1 in fh is less than 3 after the cubic substitutions, the
resultant R(fh, fy2r−1 , y2r−1) can be computed with the determinant of a 5 by 5
matrix. By cubic substitutions, R(fh, fy2r−1

, y2r−1) is changed into a multivari-
ate polynomial in x2r−1, z2r−3, y2r−3, x2r−3, . . . , z3, y3, x3, x1 with the degree
of each variable less than 3 except x1. Similarly, when applying cubic substi-
tutions to all the other resultants, the resultants are changed into multivariate
polynomials with the degree of each variable less than 3 except x1.

The cubic substitution has the following basic properties, which are useful
for getting a tight upper bound on the degree of a polynomial obtained by each
resultant.

Theorem 2. With the notations defined above, let f ′
h be the polynomial ob-

tained by cubic substitutions of fh such that the degree of each variable in f ′
h is

less than 3 except x1, then we have deg(f ′
h) ≤ deg(fh).

Proof. From the cubic substitutions of the first resultant R(fh, fz2r−1
, z2r−1), it

can be seen that a term of degree 3 (say y32r−1) is substituted by a polynomial
(say L2r−2,1 ◦ SSS ◦ L2r−3(x2r−3, y2r−3, z2r−3)) of degree at most 3 in each
substitution, so deg(f ′

h) ≤ deg(fh).

Remark 4. We note that the base field of Rescue-Prime is a large finite field,
therefore, deg(f ′

h) = deg(fh) with a high probability. Moreover, we have also
experimentally verified that deg(f ′

h) = deg(fh) always holds for the parameters
used in Rescue-Prime.

Theorem 3. Let Rk be the multivariate polynomial computed from the k-th
resultant in Algorithm 1 with 1 ≤ k ≤ 3(r − 1), then deg(Rk) ≤ 3k.

Proof. Let ωk be the variable to be eliminated by the k-th resultant in Algorithm
1 for 1 ≤ k ≤ 3(r − 1), for example, ω1 = z2r−1, ω2 = y2r−1, ω4 = z2r−3, and
so on. Now we consider the k-th resultant R(fh, fωk

, ωk) in Algorithm 1. As the
degree of ωk in fh after cubic substitutions is less than 3, we can assume that

fh = u2ω
2
k + u1ωk + u0, fωk

= ω3
k − u3,
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where u0, u1, u2, u3 ∈ Fq[ωk+1, . . . , ω3r−3, x1] with

deg(u0) ≤ deg(fh),deg(u1) ≤ deg(fh)−1,deg(u2) ≤ deg(fh)−2, and deg(u3) ≤ 3.

Then, it is clear that

Rk = R (fh, fωk
, ωk) =

∣∣∣∣∣∣∣∣∣∣
u2 u1 u0 0 0
0 u2 u1 u0 0
0 0 u2 u1 u0

1 0 0 −u3 0
0 1 0 0 −u3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
u0 u2u3 u1u3

u1 u0 u2u3

u2 u1 u0

∣∣∣∣∣∣ , (8)

and so Rk = u3
2u

2
3 − 3u0u1u2u3 + u3

1u3 + u3
0. It is easy to check that

deg(Rk) ≤ 3 deg(fh). (9)

Together with Theorem 2, this implies that the degree of fh in Algorithm 1 after
each update is increased over the original fh by a factor of three. Since the input
polynomal fh of Algorithm 1 is L2r−1,2 (x2r−1, y2r−1, z2r−1), which is of degree
1, the desired result immediately follows from (9) and Theorem 2.

Remark 5. Since the base field of Rescue-Prime is a large finite field, it follows
that deg(Rk) = 3k with high probability. We have also experimentally verified
that deg(Rk) = 3k always holds for the parameters used in Rescue-Prime.

Combining Theorems 2 and 3, it is clear that the output of Algorithm 1 is a
univariate polynomial over Fq[x1] with a degree at most 33r−3. In our practical
attack against round-reduced Rescue-Prime, the maximum possible degree 33r−3

is always achievable. We note that a similar result has been found by experiments
(without proof) in [8, Page 87], which says “In our experiments, the system
behaves like a generic system and has d = 33(r−1) solutions in the algebraic
closure of the field.”

Complexity analysis. It can be seen from Algorithm 1 that the time com-
plexity of our attack consists of three parts: (1) the cubic substitutions; (2) the
computations of resultants; (3) finding roots of a univariate polynomial.

The cubic substitution. For r-round Rescue-Prime, Algorithm 1 involves a total
of 3r−3 computations of resultants and 3r−4 cubic substitutions (we note that
some cubic substitutions may involve more iterative substitutions as explained
in Remark 3. Let ωk be the variable to be eliminated by the k-th resultant Rk in
Algorithm 1 for 1 ≤ k ≤ 3(r−1). Recall that Rk ∈ Fq[ωk+1, ωk+2, . . . , ω3r−3, x1]
and the purpose of performing cubic substitutions for Rk is to reduce the de-
grees of ωk+1, ωk+2, . . . , ω3r−3 to less than 3. The time complexity of all cubic
substitutions in Algorithm 1 is given in Theorem 4.
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Theorem 4. The time complexity of performing all the cubic substitutions in
Algorithm 1 is

O

(
3r−4∑
k=1

10 ·
(
133 ·

(
dk+3r−k−4

3r−k−3

)
· (3k + 1) + 121745

)
· (3r − k − 3)

)
,

where dk = min(3k − 12, 18r − 6k − 24).

Proof. Let Rk = R(fh, fωk
, ωk) be the k-th resultant in Algorithm 1 for 1 ≤ k ≤

3(r − 1), where ωk is the variable to be eliminated by Rk and

fh = u2ω
2
k + u1ωk + u0, fωk

= ω3
k − u3.

Since the cubic substitution only care about the degree of ωk+1, . . . , ω3r−3, we
view u0, u1, u2, u3 as polynomials over Fq[x1], that is

u0, u1, u2, u3 ∈ Fq[x1][ωk+1, . . . , ω3r−3].

We note that degxj
(u0) ≤ 2, degxj

(u1) ≤ 2, degxj
(u2) ≤ 2, degxj

(u3) ≤ 3 for
k + 1 ≤ j ≤ 3r − 3, where degxj

(ui) denote the degree of xj in ui, and so it
follows from Eq. (8) that

deg(Rk) = deg(u3
2u

2
3 − 3u0u1u2u3 + u3

1u3 + u3
0) ≤ 6 · (3r − k − 2) (10)

and degωk+1
(Rk) ≤ 12 (the equality holds if and only if ω3

k+1 appears in u3).
Therefore, there are at most 10 substitutions for ωk+1.

Let Rk =
∑12

i=0 ηiω
i
k+1. Then it immediately follows from (10) and Theorem

3 that

deg(ηi) ≤ min(3k − 12, 6 · (3r − k − 2)− i) for 0 ≤ i ≤ 12.

We first consider the substitution of ω12
k+1, which consists of two parts. The first

part is to expand
((

ω3
k+1

)2)2, the complexity of the expansion is 43 ·43+73 ·73 =

121745 by Theorem 1. Since the degree of three variables in the expansion of
ω12
k+1 is no more than 12, there are at most 133 terms in the expansion of ω12

k+1.
The second part is to multiply the expansion of ω12

k+1 with η12. Since deg(η12) ≤
dk = min(3k − 12, 18r − 6k − 24), the number of terms in the expansion of η12
over Fq[x1] is

(
dk+3r−k−4

3r−k−3

)
at most. We note that each coefficient of η12 belongs

to Fq[x1] and the highest degree of x1 in each coefficient is no more than 3k,
and so the number of terms in the expansion of η12 over Fq (not over Fq[x1]) is
at most

(
dk+3r−k−4

3r−k−3

)
· (3k + 1). Therefore, by Theorem 1, the complexity of the

second part is 133 ·
(
dk+3r−k−4

3r−k−3

)
· (3k + 1).

The time complexities of substitutions for ω11
k+1, ω

10
k+1, · · · , ω3

k+1 are almost
equal to that of ω12

k+1, so we use

10 ·
(
133 ·

(
dk+3r−k−4

3r−k−3

)
· (3k + 1) + 121745

)
(11)
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as an estimation of the time complexity of the cubic substitution for ωk+1.
Finally, we come to estimate the time complexity of the cubic substitu-

tion for ωj , where k + 2 ≤ j ≤ 3r − 3. It can be seen from (11) that the
time complexity is mainly dominated by the combinatorial number, which im-
plies the cubic substitution for ωj is faster than the cubic substitution for
ωk+1. Therefore, the time complexity of the cubic substitution for Rk is 10 ·(
133 ·

(
d+3r−k−4
3r−k−3

)
· (3k + 1) + 121745

)
· (3r − 3− k). This completes the proof.

Computation of the resultant. We have the following Theorem 5 to estimate the
time complexities of all the computations of resultants in Algorithm 1.

Theorem 5. The time complexity of the computation of all the resultants in
Algorithm 1 is

O

(
3r−3∑
k=1

15 ·max
(
(3k + 1) · 73r−k, (2 · 3k−1 + 1)(3k−1 + 1) · 153r−3−k

))
.

Proof. By Eq.(8), we have Rk = u3
2u

2
3−3u0u1u2u3+u3

1u3+u3
0. There are 3 addi-

tions and 12 multiplications for computing Rk including ui ·ui, i ∈ {0, 1, 2, 3}, u2
j ·

uj , j ∈ {0, 1, 2}, u0 · u1, (u0u1) · u2, (u0u1u2) · u3, u
3
1 · u3, and u3

2 · u2
3. We use

Tmax to denote the maximum of the time complexities for computing a set
of operations. For example, Tmax{ui · ui, i = 0, 1, 2, 3} denotes the maximum
of the time complexities for computing u0 · u0, u1 · u1, u2 · u2, and u3 · u3.
Since deg(u3) ≤ 3 and there is at most three variables in u3, it is clear that
Tmax{ui · ui, i = 0, 1, 2, 3} ≤ Tmax{u2

j · uj , j = 0, 1, 2} and Tmax(u0 · u1) ≤
Tmax{(u0u1) ·u2, (u0u1u2) ·u3, u

3
1 ·u3} ≤ Tmax(u

3
2 ·u2

3)
4. Then the time complex-

ity of computing Rk is 15 · Tmax{u3
2 · u2

3, u
2
0 · u0}. Through cubic substitutions,

we have degωj
(u3

2) ≤ 6 for k + 1 ≤ j ≤ 3r − 3 and degx1
(u3

2) ≤ 3k. There
are three variables in u2

3 with degrees less than 6. Besides, degωj
(u2

0) ≤ 4 for
k + 1 ≤ j ≤ 3r − 3 and degx1

(u2
0) ≤ 2 · 3k−1. Let d1, d2, d3, and d4 be the num-

bers of terms of u3
2, u2

3, u2
0, and u0, respectively, then d1 = (3k + 1) · 73r−3−k,

d2 = 73, d3 = (2 · 3k−1 + 1) · 53r−3−k, and d4 = (3k−1 + 1) · 33r−3−k. Therefore,
the time complexity of computing Rk is 15 ·max (d1 · d2, d3 · d4). This completes
the proof.

Finding roots of a univariate polynomial. Since the output of Algorithm 1 is a
univariate polynomial over Fq[x1] with degree d ≤ 33r−3, all the roots of such
a univariate polynomial can be found in O(d log(d)(log(d)+ log(q)) log(log(d))).
Once a root of x1 is found, the corresponding CICO problem is solved.

4.2 Algebraic attack with MITM modeling

Meet-in-the-middle (MITM) technique is a generic cryptanalytic approach for
symmetric-key primitives, which was first introduced by Diffie and Hellman in
4 In Theorem 3 we have deg(u2) ≤ deg(u1) ≤ deg(u0), and we assume that they are

the same here.
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Table 2: Time complexities of our attack against Rescue-Prime with forward
modeling, where fh is the output of Algorithm 1.

r Complexity of Complexity of deg(fh) Complexity of Complexity of
resultants cubic substitutions roots solving forward modeling

4 238.45 240.09 39 226.12 240.49

5 250.17 252.77 312 231.45 252.99

6 261.90 265.47 315 236.65 265.58

7 273.62 276.51 318 241.76 276.69

8 285.34 288.10 321 246.82 288.30

1977 [15] for the cryptanalysis of DES. In this subsection, we use the MITM tech-
nique to build a system of equations for r-round (consists of 2r steps) Rescue-
Prime. Since the case of r = 1 is trivial, we always assume that r ≥ 2. It is
clear that the S-boxes involved in the i-th step are S−1 if i is odd and S if i
is even. Note that S−1 has a very high degree in the forward direction while S
has a very high degree in the backward direction. To build low-degree equations,
the main idea is to balance the number of S−1 layers in the forward direction
and the number of S layers in the backward direction. Therefore, the constructed
equations are categorized into two cases: ones for odd r and the others for even r.

Case 1: r is odd
As shown in Fig.5a, let xr, yr, zr be the outputs of the three S-boxes (S−1)

in the r-th step. Now we will construct equations from the backward direction
and the forward direction, respectively.

In the backward direction, for each even i with 0 < i ≤ r− 1, let xi, yi, zi be
the inputs of the three S-boxes (S) in the i-th step. Then it can be seen from
Fig.5b that


x3
i = L−1

i,0 ◦ SSS ◦ L
−1
i+1(xi+2, yi+2, zi+2)

y3i = L−1
i,1 ◦ SSS ◦ L

−1
i+1(xi+2, yi+2, zi+2)

z3i = L−1
i,2 ◦ SSS ◦ L

−1
i+1(xi+2, yi+2, zi+2)

for i ∈ {2, 4, . . . , r − 3}, (12)


x3
r−1 = L−1

r−1,0(x
3
r, y

3
r , z

3
r )

y3r−1 = L−1
r−1,1(x

3
r, y

3
r , z

3
r )

z3r−1 = L−1
r−1,2(x

3
r, y

3
r , z

3
r )

, (13)

where L−1
i is the inverse of the affine transformation Li, and L−1

i,j is the j-th
output of L−1

i with j ∈ {0, 1, 2}.
Similarly, in the forward direction, for each odd i with r < i ≤ 2r − 1, let

xi, yi, zi be the outputs of the three S-boxes (S−1) in the i-th step. Then it can
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be seen from Fig.5c thatx3
i = Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

y3i = Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
z3i = Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

for i ∈ {r + 2, r + 4, . . . , 2r − 1}.

(14)

 

 

 

 

 

 

backward modelling forward modelling

(a) Eq.(13) modeling

 

 

 

(b) Eq.(12) modeling

 

 

 

(c) Eq.(14) modeling

Fig. 5: MITM modeling for odd r

The inputs and outputs of r-round Rescue-Prime are of the form (∗, ∗, 0) in
the CICO problem, with the same notations defined above, then there are two
more equations,

(C−1,2)
3 = L−1

0,2 ◦ SSS ◦ L
−1
1 (x2, y2, z2), (15)

L2r−1,2 (x2r−1, y2r−1, z2r−1) = 0, (16)

where C−1,2 is the third constant of additional AddC operation before the first
round of Rescue-Prime.

20



Case 2: r is even
As shown in Fig.6, let xr, yr, zr be the inputs of the three S-boxes (S) in the

r-th step. For each even i with 0 < i < r − 1, let xi, yi, zi be the inputs of the
three S-boxes (S) in the i-th step; while for each odd i with r < i < 2r − 1,
let xi, yi, zi be the outputs of the three S-boxes (S−1) in the i-step. Then in a
similar argument to Case 1, we can obtain


x3
i = L−1

i,0 ◦ SSS ◦ L
−1
i+1(xi+2, yi+2, zi+2)

y3i = L−1
i,1 ◦ SSS ◦ L

−1
i+1(xi+2, yi+2, zi+2)

z3i = L−1
i,2 ◦ SSS ◦ L

−1
i+1(xi+2, yi+2, zi+2)

for i ∈ {2, 4, . . . , r − 2}, (17)

x3
r+1 = Lr,0(x

3
r, y

3
r , z

3
r )

y3r+1 = Lr,1(x
3
r, y

3
r , z

3
r )

z3r+1 = Lr,2(x
3
r, y

3
r , z

3
r )

, (18)

 

 

 

 

 

 

backward modelling forward modelling

(a) Eq.(18) modeling

 

 

 

(b) Eq.(17) modeling

 

 

 

(c) Eq.(19) modeling

Fig. 6: MITM modeling for even r
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x3
i = Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

y3i = Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
z3i = Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

for i ∈ {r + 3, r + 5, . . . , 2r − 1},

(19)
(C−1,2)

3 = L−1
0,2 ◦ SSS ◦ L

−1
1 (x2, y2, z2), (20)

L2r−1,2 (x2r−1, y2r−1, z2r−1) = 0. (21)

Solving the system of equations with the resultant-based method. in
total has 3r − 1 equations (3r − 2 equations are of degree 3 and one equation
is of degree 1) in 3r unknowns. Since the number of unknowns is one more
than that of equations, the system of equations always has solutions. We can
then randomly assign a value to one of the variables, say xr, and solve the
remaining variables to speed up the solving process in a practical attack. If
the system has no solutions for this assignment, we can repeatedly (usually
not too many times) assign another random value to xr until we can get a
solution. Similar to the case in Sect.4.1, such a system of equations also has a
special structure that clearly gives a path for the elimination of variables when
solved by resultants. As presented in Algorithm 2, we will get two bivariate
polynomials fl, fh ∈ Fq[yr, zr] and further use them to compute R(fl, fh, zr) to
eliminate zr. When the number of rounds is high, the two polynomials would
be quite complicated and directly computing the resultant R(fl, fh, zr) usually
suffers from memory overflow. Instead, we can assign a number of values to the
variable yr and get many interpolation pairs, which is equivalent to obtaining
many input-output pairs for the final univariate polynomial, and further use
the fast Lagrange interpolation introduced in Sect.2.3 to recover the univariate
polynomial. Another benefit of using the fast Lagrange interpolation is that it
can be computed in parallel, which can further reduce the attack time if there
are enough threads. Once a root of the final univariate polynomial is found, the
corresponding CICO problem can be solved by substituting back.

Complexity analysis. Similar to the case under forward modeling, the time
complexity of solving the CICO problem under MITM modeling consists of four
parts: (1) the cubic substitutions in Algorithm 2; (2) the computations of resul-
tants in Algorithm 2; (3) the computation of the final resultant R(fl, fh, zr); (4)
finding roots of the univariate polynomial.

It can be seen from Algorithm 2 that, for r-round Rescue-Prime, there are
at most 3 · ⌊r/2⌋ variables to be eliminated in the first (lines 2-10) or the second
(lines 12-20) loop. Similar to the case under forward modeling, the degree of
fl (resp. fh) in Algorithm 2 after each update is increased over the original fl
(resp. fh) by a factor of three, but such increases can be avoided through the
cubic substitutions.

The time complexities of the first two parts are given in Theorems 7 and 6.
As the deduction and proof are pretty similar to those for Theorems 4 and 5, we
omit the proof here.
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Algorithm 2: Get two bivariate polynomials for r-round Rescue-Prime
Input: fl, fh, fxi , fyi , fzi as defined in Table 8.
Output: two bivariate polynomials.

1 i← 2r − 1;
2 while i > r do
3 fh ← R(fh, fzi , zi);
4 apply the cubic substitution to fh;
5 fh ← R(fh, fyi , yi);
6 apply the cubic substitution to fh;
7 fh ← R(fh, fxi

, xi);
8 apply the cubic substitution to fh;
9 i← i− 2;

10 end
11 i← 2;
12 while i < r do
13 fl ← R(fl, fzi , zi);
14 apply the cubic substitution to fl;
15 fl ← R(fl, fyi , yi);
16 apply the cubic substitution to fl;
17 fl ← R(fl, fxi

, xi);
18 apply the cubic substitution to fl;
19 i← i+ 2;

20 end
21 return fh, fl.

Theorem 6. The time complexity of performing all the cubic substitutions in
Algorithm 2 is

O

(
λ∑

k=1

20 ·
(
133 ·

(
dk+λ−k−1

λ−k

)
· (3k + 1)2 + 121745

)
· (λ− k)

)
,

where λ = 3 · ⌊r/2⌋ and dk = min
(
3k − 12, 6 · (λ− k − 1)

)
.

Theorem 7. The time complexity of the computation of all the resultants in
Algorithm 2 is

O

(
λ∑

k=1

30 ·max
(
(3k + 1)2 · 7λ−k+3, (2 · 3k−1 + 1)2(3k−1 + 1)2 · 15λ−k

))
,

where λ = 3 · ⌊r/2⌋.

For the third part of computing the final resultant R(fl, fh, zr), the situation
is slightly different. Theorem 8 gives the time complexity of this part with a
proof.
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Theorem 8. Let fl and fh be the output polynomials of Algorithm 2 of which
the degrees are denoted as dl and dh, respectively. Then the time complexity of
computing the resultant R(fl, fh, zr) is

O (dldh · (T1 + T2) + T3) ,

where T1 =
(
d2l log(dl) + d2h log(dh)

)
, T2 = (dl+dh)

ω, T3 = (dldh log(dldh)), and
ω is the linear algebra exponent5.

Proof. The time complexity of computing the resultant R(fl, fh, zr) consists of
three steps: (1) assigning a value to yr; (2) computing R(fl, fh, zr); (3) using the
fast Lagrange interpolation to recover the final univariate polynomial.

- Assigning a value to yr. Let fl = udl
(yr)z

dl
r + · · ·+ u1(yr)zr + u0(yr), where

uj(yr) ∈ Fq[yr] with a degree no more than dl for 0 ≤ j ≤ dl. For each assign-
ment a to yr, we need to compute each uj(a) which requires at most dl log dl
field operations using the square-and-multiply technique. As there are d+ 1
such polynomials, the overall complexity is dl(dl+1) log dl. Similarly, dh(dh+
1) log dh field operations are required to assign a value for fh. Therefore, the
time complexity of this step is around T1 =

(
d2l · log(dl) + d2h · log(dh)

)
for

each assignment.
- Computing R(fl, fh, zr). The time complexity of computing R(fl, fh, zr) is

equal to that of computing a determinate of (dl + dh)-dimension Sylvester
matrix which takes (dl+dh)

ω filed operations. Therefore, the time complexity
of this step per interpolation point is T2 = (dl + dh)

ω.
- Fast Lagrange interpolation. The degree of the final univariate polynomial

is upper bound by dl · dh, and so the time complexity of this step is T3 =
(dl · dh · log(dl · dh)).

Therefore, the time complexity of the final resultant computation is

O (dl · dh · (T1 + T2) + T3) .

4.3 Summary of the resultant-based method

Now we give a summary about the proposed analysis framework of the alge-
braic attack against AO primitives, which consists of four ingredients with the
following four steps.

1. Construct a system of equations using forward modeling or MITM modeling.
2. Combine the resultant and the cubic substitution theory to eliminate vari-

ables in a specific order and finally get two bivariate polynomials.
5 A result of Coppersmith and Winograd [14] yields ω = 2.376, which is asymptotic

since it involves extremely large constant overheads. From a practical point-of-view,
the best currently achievalbe result for ω is giving by Strassen’s algorithm[26], which
implies that ω = 2.807.
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Table 3: Time complexities of algebraic attacks under MITM modeling against
Rescue-Prime and the degrees of fl, fh, and f .

r Complexity of Complexity of dl dh deg(f) Complexity of
resultants cubic substitution MITM attack

4 238.94 235.62 34 36 310 240.31

5 238.94 235.62 37 36 313 248.37

6 257.92 247.84 37 39 316 259.96

7 257.92 247.84 310 39 319 268.95

8 276.94 260.77 310 312 322 280.57

3. When the number of rounds is small, one can directly compute the resul-
tant of the last two bivariate polynomials to derive the ultimate univariate
polynomial. While when the number of rounds is high, the resultant of the
last two bivariate polynomials is usually hard to compute directly. Instead,
one can assign several values to one of the two variables and get many inter-
polation pairs. Then, the fast Lagrange interpolation is used to recover the
univariate polynomial.

4. Find all the roots of the derived univariate polynomial and then substitute
the root values back to the original system of equations to find the collision
of the algorithm.

5 Application to Anemoi

We now apply our methods to a new class of AO primitives Anemoi [11], and
provide better cryptanalysis results than existing ones.

5.1 Design Description of Anemoi

Anemoi is a new family of ZK-friendly permutations who works over F2l
q (l ≥ 1),

where q is either a prime number or q = 2n with n being an odd positive
integer. Different choices of parameters would affect how Anemoi works, and
we mainly focus on the version of l = 1 and q being a prime number p. The
original paper [11] gives two hash function instances based on Anemoi with l = 1:
AnemoiSponge-BN-254, with a 254-bit prime p, and AnemoiSponge-BLS12-381,
with a 381-bit prime p. Both instances are claimed to achieve 127 bits of security.

The round function of Anemoi has the structure of a classical substitution-
permutation network, which consists of three components: the constant addition
A, the linear layer M, and the nonlinear layer H. The linear layer includes
a diffusion layer and a pseudo-Hadamard transform, while for the version we
considered (l = 1), there is a unique column in the internal state, and the
diffusion layer can be removed. For given q, number of rounds r, and l = 1, the
Anemoi permutation over F2

q is described as

Anemoi =M◦Rr−1 ◦ · · · ◦R0,
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where Ri = H◦M◦Ai for 0 ≤ i ≤ r−1. The i-th round of Anemoi is illustrated
in Fig.7 and we below give more details about the three operations Ai,M, and
H.

Fig. 7: Illustration of the i-th round of Anemoi

1. Constant Additions Ai. The operation adds round constants (ci, di) to the
input vector (xi, yi) of the i-th round.

2. Linear Layer M: The Pseudo-Hadamard transform is applied to destroy
some undesirable involutive patterns in the nonlinear layer, which is defined
as M(x, y) = (2x+ y, x+ y).

3. Nonlinear Layer H. The schematic of H is illustrated in Fig.8. Let ui, vi ∈ Fq

and xi+1, yi+1 ∈ Fq be the inputs and outputs of H, respectively. Then the
nonlinear layer H can be expressed as

H(ui, vi) = (ui + gz2i − 2gvizi − g−1, vi − zi), (22)

where g is a generator of the multiplicative subgroup of the field Fq and zi
is an intermediate variable output of the operation x1/α (α usually takes
values 3, 5, 7, or 11 if q is an odd prime number).

The CICO problem of Anemoi, which is denoted by PCICO in [12], consisting
of finding (yin, yout) ∈ F2

q such that Anemoi(0, yin) = (0, yout).

5.2 MITM attack against Anemoi

We mainly focus on the Anemoi instance of α = 3 with r rounds. Let the notations
xi, yi, ci, di, ui, vi, zi, xi+1, yi+1 be as in Sect.5.1 for 0 ≤ i ≤ r−1. Then it is clear
that

(ui, vi) =M◦Ai(xi, yi) = (2xi + yi + 2ci + di, xi + yi + ci + di).
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Since (xi+1, yi+1) = (ui + gz2i − 2gvizi− g−1, vi− zi), a simple calculation yieldsxi+1 = 2xi + yi + gz2i − 2gzi · (xi + yi + ci + di) + δi
yi+1 = xi + yi − zi + ci + di
z3i = 2xi + yi − g · (xi + yi + ci + di)

2 + δi

, (23)

where δi = 2ci + di − g−1 is a constant. Since the functions Ai, M and H (the
schematic of H−1 is illustrated in Fig.9) in Anemoi are all invertible, with a
similar discussion as above, we can get thatxi = xi+1 + gz2i + 2gziyi+1 + g−1 − zi − yi+1 − ci

yi = 2zi + 2yi+1 − xi+1 − gz2i − 2gziyi+1 − g−1 − di
z3i = xi+1 − gy2i+1

. (24)

Fig. 8: The nonlinear layer H(q is
odd).

Fig. 9: The H−1 function of Anemoi
H(q is odd)

Construction of Equations. Inspired by the analysis of Rescue-Prime, we
still use MITM technique to construct the equations of the CICO problem of
Anemoi. Due to the x → x

1
3 operation in H, the cubic substitution method is

also applicable. For r-round Anemoi, we set intermediate variables x⌊r/2⌋ =
x, y⌊r/2⌋ = y as illustrated in Fig.10. If i > ⌊r/2⌋, then by repeatedly us-
ing (23), those variables xi, yi, zi can be repeatedly expressed by intermediate
variables of the lower rounds, and in the end can be expressed in variables
x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zr−1. On the other hand, if i < ⌊r/2⌋, then by repeat-
edly using (24), those variables xi, yi, zi can be repeatedly expressed by interme-
diate variables of the higher rounds, and in the end can be expressed in variables
x, y, z0, z1, . . . , z⌊r/2⌋−1.

To solve the CICO problem of Anemoi, we need to find (yin, yout) ∈ F2
q such

that Anemoi(0, yin) = (0, yout), which immediately follows that x0 = 0. Since

Anemoi(0, yin) =M(xr, yr) = (2xr + yr, xr + yr),
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Fig. 10: MITM modeling for Anemoi

it follows that 2xr+yr = 0. The above discussion implies that x0 and 2xr+yr can
be expressed in variables x, y, z0, z1, . . . , z⌊r/2⌋−1 and x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zr−1,
respectively. For convenience, let us denote

x0 ≜ fl(x, y, z0, z1, . . . , z⌊r/2⌋−1),

2xr + yr ≜ fh(x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zr−1).

Similarly, let us denote

z3i − xi+1 + gy2i+1 ≜ gi(x, y, zi, zi+1, . . . , z⌊r/2⌋−1)

for 0 ≤ i ≤ ⌊r/2⌋ − 1, and

z3i − (2xi + yi − g · (xi + yi + ci + di)
2 + δi) ≜ gi(x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zi)

for ⌊r/2⌋ < i ≤ r − 1.
Then the CICO problem of Anemoi can be modeled with the following system

of equations 

fl(x, y, z0, z1, . . . , z⌊r/2⌋−1) = 0
g0(x, y, z0, z1, . . . , z⌊r/2⌋−1) = 0
g1(x, y, z1, z2, . . . , z⌊r/2⌋−1) = 0
· · ·

g⌊r/2⌋−1(x, y, z⌊r/2⌋−1) = 0
g⌊r/2⌋(x, y, z⌊r/2⌋) = 0
· · ·

gr−2(x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zr−2) = 0
gr−1(x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zr−1) = 0
fh(x, y, z⌊r/2⌋, z⌊r/2⌋+1, . . . , zr−1) = 0

, (25)

which total has r + 2 equations with r + 2 unknowns.
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Solving the system of equations with resultant-based method. Equa-
tions in Eq. (25) indicate a path for eliminating the intermediate variables by
the resultant. Following Algorithm 3, we can get two bivariate polynomials fl
and fh only in variables x and y in the end. Then, we compute the roots of the
univariate polynomial R(fl, fh, y), and the CICO problem is solved.

Algorithm 3: Get two bivariate polynomials for r-round Anemoi
Input: fl, fh, g0, g1, . . . , gr−1.
Output: two bivariate polynomials.

1 i← 0;
2 while i < ⌊r/2⌋ do
3 fl ← R(fl, gi, zi);
4 applying the cubic substitution to fh;
5 i← i+ 1;
6 end
7 i← r − 1;
8 while i ≥ ⌊r/2⌋ do
9 fh ← R(fh, gi, zi);

10 applying the cubic substitution to fh;
11 i← i− 1;
12 end
13 return fl, fh.

Complexity analysis. As computing R(fl, fh, y) takes far more time than the
other resultants, we take its time complexity as the main time complexity (Com-
parison of time consumed by each step is shown in Fig. 13). In [12, Conjecture
2], a conjecture is proposed based on experimental results, saying that the upper
bound on the degree of PCICO of r-round Anemoi would be (α + 2)r. For the
case α = 3, we have a similar conjecture which implies that deg(fl) = 5⌊r/2⌋

and deg(fh) = 5⌈r/2⌉. Our experiments have also confirmed the conjecture. By
Theorem 8, the time complexities of our attacks are presented in Table 4.

6 Application to Jarvis

The block cipher Jarvis is one member of the MARVELlous family of crypto-
graphic primitives that are specifically designed for STARK efficiency [6]. The
design is inspired by the design of AES, but adapts each step to be more STARK-
friendly. The most significant change is that it works with large S-boxes over the
whole state instead of individual bytes.

The authors instantiate versions of Jarvis offering 128, 160, 192, and 256-bit
security. However, the security claims are broken by Gröbner basis attacks [2]
using a smart equation modeling technique. We also investigate the algebraic
properties of Jarvis and present a faster algebraic attack using the resultant.
We mention that we use the same equation modeling techniques in [2] and mainly
present better results for solving the nonlinear equations.
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Table 4: Time complexities of our attack against Anemoi using MITM modeling
and the degrees of fl, fh, and f .

Number Highest Highest Degree of
r of degree of degree of a single Time complexity

equations fl fh f

3 5 51 52 53 219.56

4 6 52 52 54 223.32

5 7 52 53 55 229.60

6 8 53 53 56 233.38

7 9 53 54 57 239.58

8 10 54 54 58 243.42

9 11 54 55 59 249.57

10 12 55 55 510 253.46

11 13 55 56 511 259.59

12 14 56 56 512 263.53

13 15 56 57 513 269.64

14 16 57 57 514 273.63

15 17 57 58 515 279.72

16 18 58 58 516 283.74

17 19 58 59 517 289.83

18 20 59 59 518 293.87

19 21 59 510 519 299.96

20 22 510 510 520 2104.01

21 23 510 511 521 2110.10

6.1 Design Description of Jarvis

Jarvis [6] works over the finite field F2n , where n can take 128, 160, 192, and
256. The round function of Jarvis is shown in Fig. 11, which consists of a non-
linear layer, a linear layer, and a key addition operation. The non-linear layer is
a large S-box defined as the generalized inverse function S : F2n → F2n with

S(x) =

{
x−1, if x ̸= 0;
0, if x = 0.

(26)

The authors mention that the function performs especially well over ZK-STARKs
as its transition constraint is x2S(x) + x = 0.

The linear layer is a composite function expressed as A = C ◦ B−1, where
the affine monic permutation polynomials have the following forms

B(X) = X4 + b2X
2 + b1X + b0,

C(X) = X4 + c2X
2 + c1X + c0,

with b2, b1, b0, c2, c1, c0 ∈ F2n . The linear layer is designed in such a way to be
STARK-friendly and also provide high efficiency.
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Fig. 11: The i-th round of the Jarvis block cipher.

A round key addition is followed after the linear layer. The key schedule of
Jarvis shares the similar structure with the round function, but without the
linear layer.

6.2 Construction of equations and attack against Jarvis.

For r-round Jarvis, set xi as one intermediate variable in the middle of each
round as shown in Fig. 11. Then two rounds of Jarvis can be connected with
high probability by

(C (xi) + ki) ·B (xi+1) = 1

for i ∈ {0, 1, . . . , r − 1}. The subkeys of two consecutive are linked by

(ki+1 + ci) · ki = 1. (27)

In [2], the authors constructed two monic affine polynomials D(x) and E(x)
with degrees of four which satisfy D (B) = E (C) .

We rewrite the forms of the equations in the i-th round as

B (xi) =
1

C (xi−1) + ki−1
, C (xi) =

1

B (xi+1)
+ ki.

Then these two equations can be reduced to one equation by

D

(
1

C (xi−1) + ki−1

)
= D (B (xi)) = E (C (xi)) = E

(
1

B (xi+1)
+ ki

)
. (28)

For i ∈ {2, 3, . . . , r − 1}, an equation of the form of Eq. (28) has a degree of
36. The plaintext p and ciphertext c are related to x2 and xr, respectively, with
equations

D

(
1

p+ k0

)
= E

(
1

B (x2)
+ k1

)
, (29)

C (xr) + kr = c. (30)

Two consecutive subkeys in Jarvis are connected by the relation below ac-
cording to Eq. (27)

ki+1 =
1

ki
+ ci.
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The probability of ki ̸= 0 is high over large fields. Therefore, each ki, i ∈
{1, 2, . . . , r}, can be related to k0 by

ki =
αi · k0 + βi

γi · k0 + δi
,

where the four coefficients αi, βi, γi, δi are given in [2]. Assuming that the number
of rounds r is even, then the equations would take the following forms:

- r
2 − 1 equations have degrees of 40 in Eq. (28);

- one equation has a degree of 24 in Eq. (29);
- one equation has a degree of 5 in Eq. (30).

We take 6-round Jarvis as an example. It contains four polynomials of which
the degrees are as below:

- deg(F0(k0, x2)) = 24 with degx2
(F0) = 16 and degk0

(F0) = 8;
- deg(F1(k0, x2, x4)) = 40 with degx2

(F1) = 16, degx4
(F1) = 16, and degk0

(F1) =
8;

- deg(F2(k0, x4, x6)) = 40 with degx4(F2) = 16, degx6(F2) = 16, and degk0(F2) =
8;

- deg(F3(k0, x6)) = 5 with degx6
(F3) = 4 and degk0

(F3) = 1.

We can get a univariate polynomial fk0 in k0 by computing the following
resultant:

R (R (F0, F1, x2) , R (F3, F2, x6) , x4) .

Solving fk0
and we will get the key k0. The practical consuming time and time

complexities for computing the resultants are presented in Table 7.

7 Experimental Results

In this section, we present the experimental results of our algebraic attacks
against the three considered AO primitives. The experiments were performed on
a workstation: the operating system is Windows 10, the CPU circuit is Intel(R)
Xeon(R) Gold 6248R CPU 3.00GHz with 48 cores, and the maximum memory is
256G. We use SageMath 9.2 to construct equations for the three AO primitives;
using Maple 2023 to solve the system of equations of Rescue-Prime and Anemoi;
using Magma V2.28-3 to solve the system of equations of Jarvis. Finally, we use
the “FpX_halfgcd” command of PARI/GP to find all the roots of a univariate
polynomial.

7.1 Experimental results for Rescue-Prime

We mainly compare our results to the benchmark results in [8], so we also use
the challenge parameters published by the Ethereum foundation with

p = 18446744073709551557 = 264 − 59.
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We succeed to solve the CICO problem of 4-round Rescue-Prime, in which two
models (forward modeling and MIMT modeling) are considered to construct
the equations. Practical attacks under MIMT modeling and forward modeling
take 2256.7s and 885.5s, respectively, introducing 100-fold improvement over the
results in [8]. We also find a 5-round collision of Rescue-Prime under MIMT
modeling which was originally thought as “hard” in the Ethereum Foundation
challenge. For 5-round Rescue-Prime, the system of equations constructed under
MITM modeling has 14 equations in total. The 14 polynomials involved in the
system are fl, fx2 , fy2 , fz2 ,fx4 , fy4 , fz4 , fx7 , fy7 , fz7 , fx9 , fy9 , fz9 , and fh. Using
Algorithm 2, we get two bivariate polynomials fl and fh, of which the degrees are
37 and 36, respectively. Since the memory cost of computing R(fl, fh, z5) is too
high, we use 16 threads to compute Lagrange interpolation points. Each thread
computes 100,000 points, which takes an average of 70,000 seconds. We use 32
threads and combine a fast multi-point evaluation algorithm to finish the pre-
computation, which takes 9385.285s. Recovering the univariate polynomial using
the fast Lagrange interpolation takes 2486.71s. It takes less than 10 seconds to
solve the final single-variable equation of degree 313. The time cost of each part
is shown in Fig.12, where “Final resultant”, “Other resultants”, “Cubic substi-
tutions” and “Total time” mean the time consumed for the final resultant, for
the rest of resultants, for cubic substitutions and the overall attack, respectively.
Experimental results are shown in Table 5.

Table 5: Attack complexities of Rescue-Prime
Designers’ Ethereum Best Time Time Best Practical Practical

r time Foundation’s theoretical complexity complexity practical time time of
complexity time complexity of forward time in of forward

complexity MITM modeling [8] MITM modeling

4 236 237.5 243 243.02 240.49 258500s 2256.7s 885.5s
5 248 245 257 252.93 252.99 —— ≈ one day ——

7.2 Experimental results for Anemoi

We use the same prime number p = 0x64ec6dd0392073 as that in [7]. For 8-
round Anemoi, the system of equations constructed under MITM modeling in
total has 10 equations in 10 unknowns. The 10 polynomials corresponding to
the system are fl, g0, . . . , g7, fh. Following Algorithm 3, fl do the resultants in
turn with g0, g1, g2, g3 and fh in turn with g7, g6, g5, g4. After the computations
of above resultants, deg(fl) = deg(fh) = 34, and then the univariate polynomial
obtained by the final resultant R(fl, fh, y) is of degree 58. We use four threads to
compute Lagrange interpolation points, each of which computes 100,000 points.
The running time of the four threads is 29642.521s, 27547.542s, 27853.072s, and
27785.910s, respectively. We use eight threads and combine a fast multi-point
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Fig. 12: Comparison of time consumed by each part for solving the CICO problem
of Rescue-Prime with MITM modeling

evaluation algorithm to finish the precomputation, which takes 9535.405s. Re-
covering the univariate polynomial using the fast Lagrange interpolation takes
1006.516s. The practical attack time is presented in Table 6, which greatly im-
proves the running time compared to that in [7]. Fig.13 compares the time con-
sumed for “Final resultant”, “Other resultants”, “Cubic substitutions” and “Total
time”.

Table 6: Comparison with [7] in practical attack time of Anemoi
r The attacks in [7] Our attacks

3 < 0.01s 0.423s
4 0.34s 0.973s
5 23.3s 7.113s
6 2127s 296.568s
7 156348s 2968.55s
8 − 38749.182s
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Fig. 13: Comparison of time consumed by each part for solving the CICO problem
of Anemoi

7.3 Experimental results for Jarvis

We use the same the finite field F2128 = F2[y]/(p(y)) of Jarvis-128 as defined
in [6], where p(y) = y128 + y7 + y2 + y + 1. We computed B(x), C(x), D(x),
and E(x) defined in Eq.(28) based on the method given in [6]. Since the final
resultant takes up most of the time, we use the time complexity of the final
resultant as an estimation of the time complexity. As it is not quite clear how
the degrees of variables change in the resultants for Jarvis, we only give the
practical time complexity for attacking 8-round Jarvis-128. We simply replace
the Gröbner basis method to the resultant-based method to solve the system of
equations and gain a 100-fold increase in practical running time compared to
that in [2]. Time comparison with that in [6] is presented in Table 7.

8 Conclusions and Discussions

This paper presents a novel analysis framework of algebraic attacks against AO
primitives that we think can serve as a new evaluation method. We make full
use of the algebraic properties of AO primitives and propose to use resultants to
solve systems of multivariate equations. We further use MITM modeling, vari-
able substitutions, and the fast Lagrange interpolation to simplify the derived
multivariate system and accelerate the solving procedure. We apply the analysis
framework to analyze the security of Rescue-Prime, Anemoi, and Jarvis, and
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Table 7: Comparison with [6] in practical attack time of Jarvis

r Time in [6] Time for other resultants Time for Time complexity
the final resultant

6 99989.0s 11.2s 357.76s 234.46

8 − 606.76s −1 244.03

1 For 8-round Jarvis-128, we successfully get two bivariate polynomials, but
fail to get the univariate polynomial with Magma when computing the final
resultant.

achieve much faster practical attacks than existing ones for all the three primi-
tives. Besides, the estimation of time complexity is more accurate than Gröbner
basis attacks as the degrees of variables can be estimated more accurately and
the elimination path for variables is definite.

Based on our analysis and experiments, we have the following discussions
that may deserve some attention.

8.1 Why MITM modeling is better than forward modeling

We take the 4-round Rescue-Prime as an example. In MITM modeling, the re-
sultant of the final two bivariate polynomials takes up most of the time (about
99.8%), but in forward modeling, the time spent for the cubic substitution is
the major cost (about 76.4%). In forward modeling, there are a total of 10 vari-
ables in the system of equations, and to get a univariate polynomial, 9 resultant
computations and 36 cubic substitutions are required. However, each operation
involves all the uneliminated variables that will increase memory and time con-
sumption. It is the memory overflow problem that hinders higher-round attacks
against Rescue-Prime under forward modeling even if it can bypass one round
with no cost. Under MITM modeling, it takes 3 resultant computations and
3 cubic substitutions to get fl, 6 resultant computations and 15 cubic substi-
tutions to get fh. Each operation involves fewer variables than that under the
forward modeling. For the most difficult part to compute R(fl, fh, z4), it can
be parallelized using the fast Lagrange interpolation. Therefore, memory and
time consumption are reduced, making practical higher-round attacks become
possible.

8.2 Why not combine MITM modeling with first-round bypassing

We now show how to do it if we want to combine MITM modeling with the idea
of bypassing the first round. We use the notations defined in Sect.3 and take
the MITM modeling for 4-round Rescue-Prime as an example, in which case we
have 12 variables xi, yi, zi, i ∈ [2, 4, 5, 7]. As shown in Fig.3 and Eq.4, to bypass
the first round, the output of the x1/3 operations, denoted as (X,Y, Z), should
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have the following form,

(X,Y, Z) = (X, (−α2,0

α2,1
)1/3X, c). (31)

The variables X,Y, Z also denote the input of the L1 operation, i.e., X =
L−1
1,0(x2, y2, z2), Y = L−1

1,1(x2, y2, z2), and Z = L−1
1,2(x2, y2, z2). Then we can get

two polynomials fl1 and fl2 defined as

fl1 = L−1
1,1(x2, y2, z2)/L

−1
1,0(x2, y2, z2)− (−α2,0

α2,1
)1/3,

fl2 = L−1
1,2(x2, y2, z2)− c.

To get the final univariate polynomial, we need to first get three polynomials
fh, fl1, fl2 in variables x4, y4, z4. For fh, we repeatedly use resultants to eliminate
z7, y7, x7, z5, y5, x5 in order and fh turns into a polynomial in the three variables.
Each resultant computation will eliminate one variable. While for fl1 and fl2,
we need to first compute R(fl1, fz2 , z2) and R(fl2, fz2 , z2) to eliminate z2 (one
can also eliminate y2 or x2 instead), which takes two resultant computations.
Therefore, the first disadvantage of combining the two methods is the increase
in resultant computations.

Now, we target to get the univariate polynomial based on fh, fl1, and fl2.
In the original MITM modeling, we have two bivariate polynomials and use
fast Lagrange interpolation to get the univariate polynomial. But here, we need
to perform one more resultant computation to eliminate one more variable of
x4, y4, z4 to get the bivariate polynomials. What is worse, the degrees of x4, y4, z4
are all high and the resultant computation involves high overhead, and this
gives the second reason for not combining the MIMT modeling with the idea of
bypassing the first round.

8.3 Discussion on design to prevent resultant attack

The secure rounds of Anemoi are not enough under our attack, and the efficiency
of practical attacks against Rescue-Prime is much improved. We present some
potential weaknesses of those representative primitives and give possible ways
to improve the design of AO algorithms.

1. Using toffoli-like nonlinear structures to substitute x → x1/α and x → xα

structures, which can prevent the α substitutions. For example, in [16], the
Toffoli-like nonlinear structure of Ciminion makes it hard to lower the degrees
of equations.

2. Variable isolation is also a weak point for some AO algorithms, which means
that an attacker can eliminate a variable just through one resultant compu-
tation.

3. The time complexities of different steps in MITM modeling are not bal-
anced. For example, in our resultant-based attack, the most difficult part
of attacking the algorithm is to compute the final resultant. However, the
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fast Lagrange interpolation can parallelize this step, and the practical result
can be better than the theoretical estimation if there are enough threads in
parallel.

4. The round constant add operation + can be replaced by ⊕, which will add
difficulties in establishing and solving equations.
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Appendices

Table 8: The polynomials in MIMT modeling
r is odd

fxi = x3
i − L−1

i,0 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fyi = y3
i − L−1

i,1 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fzi = z3i − L−1
i,2 ◦ SSS ◦ L−1

i+1(xi+2, yi+2, zi+2)
for i ∈ {2, 4, . . . , r − 3},

fxr−1 = x3
r−1 − L−1

r−1,0(x
3
r, y

3
r , z

3
r)

fyr−1 = y3
r−1 − L−1

r−1,1(x
3
r, y

3
r , z

3
r)

fzr−1 = z3r−1 − L−1
r−1,2(x

3
r, y

3
r , z

3
r)

,
fxi = x3

i − Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
fyi = y3

i − Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
fzi = z3i − Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

for i ∈ {r + 2, r + 4, . . . , 2r − 1},

fl = (C−1,2)
3 − L−1

0,2 ◦ SSS ◦ L−1
1 (x2, y2, z2),

fh = L2r−1,2 (x2r−1, y2r−1, z2r−1) .

r is even
fxi = x3

i − L−1
i,0 ◦ SSS ◦ L−1

i+1(xi+2, yi+2, zi+2)

fyi = y3
i − L−1

i,1 ◦ SSS ◦ L−1
i+1(xi+2, yi+2, zi+2)

fzi = z3i − L−1
i,2 ◦ SSS ◦ L−1

i+1(xi+2, yi+2, zi+2)
for i ∈ {2, 4, . . . , r − 2},

fxr+1 = x3
r+1 − Lr,0(x

3
r, y

3
r , z

3
r)

fyr+1 = y3
r+1 − Lr,1(x

3
r, y

3
r , z

3
r)

fzr+1 = z3r+1 − Lr,2(x
3
r, y

3
r , z

3
r)

,
fxi = x3

i − Li−1,0 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
fyi = y3

i − Li−1,1 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)
fzi = z3i − Li−1,2 ◦ SSS ◦ Li−2(xi−2, yi−2, zi−2)

for i ∈ {r + 3, r + 5, . . . , 2r − 1},

fl = (C−1,2)
3 − L−1

0,2 ◦ SSS ◦ L−1
1 (x2, y2, z2),

fh = L2r−1,2 (x2r−1, y2r−1, z2r−1) .
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