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Abstract

In onion routing, a message travels through the network via a series of intermediaries,
wrapped in layers of encryption to make it difficult to trace. Onion routing is an attractive
approach to realizing anonymous channels because it is simple and fault tolerant. Onion rout-
ing protocols provably achieving anonymity in realistic adversary models are known for the
synchronous model of communication so far.

In this paper, we give the first onion routing protocol that achieves anonymity in the asyn-
chronous model of communication. The key tool that our protocol relies on is the novel crypto-
graphic object that we call bruisable onion encryption. The idea of bruisable onion encryption
is that even though neither the onion’s path nor its message content can be altered in transit, an
intermediate router on the onion’s path that observes that the onion is delayed can nevertheless
slightly damage, or bruise it. An onion that is chronically delayed will have been bruised by
many intermediaries on its path and become undeliverable. This prevents timing attacks and,
as we show, yields a provably secure onion routing protocol in the asynchronous setting.
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1 Introduction

The ability to communicate anonymously is an increasingly vital component of digital life and
citizenship. From Iranian protesters wishing to safely to inform the world what is happening in the
streets of Tehran, to Russian citizens trying to communicate with outside media, anonymity gives
people all over the world a chance to exercise their fundamental rights without fear of repercussions.
Practical tools such as Tor [DMS04] (i.e., “The onion router,” inspired by Chaum’s onion routing
idea [Cha81] described below) or VPNs have a lot of room for improvement. Both are easily
blocked, and neither guarantees privacy even from the network adversary (e.g., a standard model
for a resourceful ISP- or AS-level adversary) [MD05,SEV+15,WSJ+18,Rop21].

A communications protocol is anonymous [ALU21] if for any pair of input vectors (σ0, σ1) that
differ only on the inputs and outputs1 of honest parties (e.g., Alice sends to Bob in σ0 and to
Charlie in σ1), the adversary (whose capabilities vary depending on the adversarial model) cannot
tell from interacting with the honest nodes in a protocol run whether the input was σ0 or σ1.

2

The goal of research on onion routing [Cha81,Cha88,CL05,vdHLZZ15,ALU18,KBS20,ALU21,
AL21, KHRS21, ACLM22] is to achieve this definition in the presence of a malicious adversary
corrupting a fraction of the participants, with a communication- and computation- efficient, fault-
tolerant and decentralized protocol. In an onion routing protocol, to send a message to Bob, Alice
first picks a sequence of intermediary parties I1, . . . , Iℓ−1 and then forms a layered cryptographic
object called an onion using the message and the routing path (I1, . . . , Iℓ−1,Bob). Alice then sends
the onion to the first intermediary I1 on the routing path who peels off just the outermost layer
of the onion (i.e., processes the onion) and sends the peeled onion O2 to the next party I2 on the
routing path, I2 peels O2 and sends the peeled onion O3 to I3, and so on. This procedure continues
until Bob receives the message from Alice.

In an onion routing protocol that uses standard cryptographic onions [CL05], even a powerful
adversary who can corrupt (and “look into” or even control) some of the parties cannot link an
honest party’s incoming onion to its outgoing onion. This lack of transparency allows for shuffling
onions when they are batch-processed at an honest party [RS93,BFT04, IKK05,ALU18].

1.1 Technical challenge: asynchronous onion routing

In recent years, several protocols were presented as provably secure yet practical solutions [CBM15,
vdHLZZ15,TGL+17,KCDF17,ALU18,ALU21]. However, all these protocols’ security analysis re-
quires synchronous communication. In the synchronous communications setting, time progresses in
rounds, and message transmissions are lossless and instantaneous. While modeling communications
in this way makes designing and analyzing anonymity protocols more tractable, it is somewhat of
a cheat. Currently deployed anonymity protocols, such as Tor [DMS04] and Loopix [PHE+17], are
known to be vulnerable to traffic analysis attacks [MD05,SEV+15,WSJ+18,AMWB23] that exploit
the asynchronous nature of communication in the real world.

Constructing a solution for the asynchronous setting is challenging because the adversary can
easily influence the traffic flow, for example, by mounting a BGP interception attack [SEV+15],
so that a targeted message arrives with an expected and observable delay. (See Section 1.2 for an
example of a timing attack on a preciously known solution.) The adversary can do this even if the
onions are batch-processed and even if we are willing to pay a cost by increasing the latency and/or

1Here, by “output” of a party P we mean a set of messages {m} such that some party P ′ receives (m,P ) as part
of its input. I.e. P ′ intends to send m to P .

2Alternative definitions of anonymity exist [BKM+13,KBS+19], but we will be referring to the standard crypto-
graphic definition here.
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volume of dummy traffic. As we explain below, this attack method breaks the anonymity of every
known protocol designed and proven secure for the synchronous setting; this is a problem that
is not trivially fixable by using sychronizers (which assume no failures) or clock synchronization
algorithms (which guarantees that most if not all of the honest parties are synchronized) [Lyn96]. In
this paper, we present the first provably anonymous onion routing protocol for the asynchronous
communications setting.

1.2 Towards a solution: a discussion

Starting point: solution for the synchronous setting. Let P = {P1, P2, . . . , PN} be partic-
ipants in an onion routing protocol. In the synchronous setting, it is possible to achieve anonymity
against the passive adversary (who observes all network traffic and passively observes at a constant
fraction of the parties) by thoroughly shuffling together the messages. Consider the simple protocol,
Πp. In this protocol, each participant P ∈ P receives a message-recipient pair (m,R) as input and
forms a single onion using m and the routing path (I1, . . . , Iℓ−1, R) where each Ij ∈ P is chosen
independently and uniformly at random from a set of servers (some subset of the participants).
Ando, Lysyanskaya, and Upfal showed that Πp is anonymous so long the expected server load (the
number of onions that each server processes in a round) and the round complexity are both at least
polylogarithmic in the security parameter [ALU18].

However, Πp is not anonymous against the active adversary (who controls the corrupted parties
and can make them deviate from the protocol). The active adversary can direct corrupted nodes
to drop onions and learn who is talking with whom by observing who receives fewer messages than
anticipated. For example, if the first intermediary on the routing path from Alice to her recipient
(Bob) is adversarial (which happens with constant probability), the adversary can drop Alice’s
onion in the first round and learn who Alice’s recipient is when Bob doesn’t receive a message
in the end. Additionally, the adversary can direct corrupted parties to replace onions formed by
honest senders with ones they generate. In such an attack, the adversary can trick the honest
parties into believing that onions (sufficiently) shuffle when they don’t since the adversary knows
what the onions they generate look like. We can circumvent this attack using checkpoint dummy
onions [ALU18,ALU21]. For cryptographic reasons explained in Preliminaries, the adversary cannot
forge checkpoint onions; thus, if the adversary drops too many onions, each party independently
realizes this when they observe correspondingly far fewer checkpoint onions.

A natural idea for an onion routing protocol is for each party Pi to form a random number
(polylogarithmic in the security parameter) of checkpoint onions (each for a randomly chosen
recipient), along with an onion bearing the actual payload for the Pi’s recipient. In such a scenario,
one of two things can happen. If the adversary drops many onions, then the protocol aborts
when the parties detect this from the missing checkpoint onions; otherwise, the checkpoint onions
provide sufficient cover for the message-bearing onions. That is, as shown by Ando, Lysyanskaya,
and Upfal, this protocol (dubbed Πa – “a” for “active adversary”) is differentially private from
the active adversary corrupting at most a constant fraction of the parties in the synchronous
model [ALU18]. Specifically, the adversarial views corresponding to any two neighboring input
vectors that differ only on honest parties’ inputs and outputs, are statistically similar as defined by
standard differential privacy; see Definition 1.

Defining local clocks for Πa. To adapt Πa for the asynchronous model, we must contend with
the fact that there are no global rounds. Each party may, however, keep a local clock. Our first
idea is that a participant Pi advances his clock based on some way of satisfying himself that most
of the onions that meant to arrive in the current epoch (according to the local clock) have already

2



arrived; say some τ fraction of them. We can use checkpoint onions to achieve this. Additionally,
Pi sends out (processed) onions in batches only when it advances its clock. This way, these onions
are guaranteed to shuffle since Pi processes onions only once a sufficient number of them have been
received.

Motivation for bruisable onions. Unfortunately, this approach does not quite work. As men-
tioned previously, in the asynchronous setting, the main challenge is preventing the adversary from
mounting a timing attack that compromises anonymity. For example, the adversary can delay one
of Alice’s onions but not delay or drop any other onion. Assuming that the protocol is running con-
tinuously, this will ensure that the adversary will observe a late onion delivery at Alice’s recipient
with (non-negligibly) higher probability than at any other recipient. So, what we want is a mech-
anism that drops onions that are (chronically) running behind. A first attempt at accomplishing
this might be to mark a layer in the middle of each onion. E.g., if the onion O consists of layers
O = (O1, . . . , Oℓ) for the parties on the routing path (I1, . . . , Iℓ−1, R), then peeling Oℓ/2 reveals
that it is layer ℓ/2. The processing party Iℓ/2 can use this information to determine whether Oℓ/2

is late relative to its local clock. The problem with this approach is that when Iℓ/2 is adversarial,
Iℓ/2 may not drop Oℓ/2.

Our solution is to use cryptographic means to allow a few different intermediaries (polyloga-
rithmic in the security parameter in number and randomly chosen) to each “bruise” an onion if
it arrives late. The idea is that an onion that is chronically running behind will be bruised many
times and will not reach its final destination (its recipient) because it will have accumulated too
many bruises for the innermost onion to be recoverable.

Note that the parties don’t immediately drop onions upon late arrivals. If they did, the protocol
– even under good network conditions – would not deliver any message. This is because τ fraction
of the onions arriving on time “in epoch j−1” doesn’t translate into each party eventually receiving
τ fraction of the expected jth layer checkpoint onions. More likely, some parties will not receive
enough checkpoint onions to progress, and the protocol will stall. So, what we want is for onions
to be “bruisable;” that is, a party can “bump” an onion so that the damage to it (the “bruise”)
shows up only later. Within the context of our protocol, a “bruised” onion can travel on, unnoticed
by others that it has been modified in any way until it reaches the last intermediary Iℓ−1 at which
point the damage is finally discovered. If the damage is great enough, Iℓ−1 is unable to extract the
identity of the recipient from the bruised onion.

Our contributions. Our list of contributions in this paper are as follows:
• A new cryptographic primitive: bruisable onion encryption. See Section 3 for the

formal definition including the correctness and security properties. Other than for the appli-
cation to onion routing in the asynchronous model, bruisable encryption is interesting because
it is an example of an encryption scheme that is both malleable in a way that’s useful in an
application (since an intermediary is explicitly allowed to bruise an onion) and yet provide se-
curity against an adversary who is allowed to adaptively query participants to process onions
of its choice.

• A construction of a bruisable onion encryption scheme: Tulip Onion Encryp-
tion Scheme (TOES). See Section 4 for the construction, and Section 4.2 for the proof
of security. Specifically, we show that TOES is bruisable-onion secure (Definition 2) assum-
ing the existence of CCA2-secure public encryption schemes with tags, block ciphers, and
collision-resistant hash functions (Theorem 1).

• The first provably anonymous onion routing protocol in the asynchronous setting:
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Πt (”t” for “tulip” or “threshold”). See Section 5 for the construction and Section 6 for
the analysis of our protocol. We show that for small constant corruption rate (e.g., 10%) and
drop rate (e.g., 10%), our protocol simultaneously guarantees: a positive constant message
delivery rate (Theorem 2) and (ϵ, negl(λ))-differential privacy from the active adversary for
any constant ϵ > 0 (Theorem 3 and Corollary 1). The anonymity guarantee holds for any
corruption rate strictly less than 50% (and any drop rate). The message delivery guarantee
holds even in the extreme case where the adversary chooses to bruise every onion layer it
receives. In the setting where the adversary is maliciously bruising onions only at 5% of the
parties and not dropping onions, the guaranteed message delivery rate is over 0.85.

2 Preliminaries

2.1 Notation

For a natural number n, [n] is the set {1, . . . , n}. For a set Set, we denote the cardinality of Set
by |Set|, and item←$ Set is an item from Set chosen uniformly at random. If Dist is a probability
distribution over Set, item← Dist is an item sampled from Set according to Dist. For an algorithm
Algo, output ← Algo(input) is the (possibly probabilistic) output from running Algo on input. A
function f(λ) of the security parameter λ is said to be negligible if it decays faster than any
inverse polynomial in λ. An event occurs with overwhelming probability (abbreviated w.o.p.) if
its complement occurs with negligible probability in the security parameter λ. Similar to the
convention that poly(λ) means polynomially bounded in λ, we introduce an analogous notation
polylog(λ), by which we means polylogarithmically bounded in λ. Throughout the paper, we use
the symbol ⊥ to indicate a dummy object (such as a dummy message or a dummy recipient).

2.2 Modeling the problem

System parameters. Let λ be the security parameter. We assume that every quantity of the
system, including the number N of participants, is bounded by a polynomial in λ.

Parties. Let Parties = {P1, . . . , PN} be the static set of participants. We assume a setting with
a public-key infrastructure (PKI); more precisely, we assume that every participant knows the set
Parties and the public key pk(P ) associated with each party P ∈ Parties.

Inputs. The input σi for each party Pi ∈ Parties is a set of message-recipient pairs, that is,
σi = {(mi,1, Ri,1), . . . , (mi,l, Ri,l)}, where the inclusion of a message-recipient pair (mi,j , Ri,j) means
that Pi is instructed to send the message mi,j to the recipient Ri,j . By the input vector, we mean
the vector σ = (σ1, . . . , σN ) containing everyone’s inputs.

Two input vectors σ0 and σ1 are neighboring if they are the same except that the honest
destinations for a pair of messages originating at honest parties are swapped. More precisely,
there exist (m,Pu) ∈ σ0,i and (m′, Pv) ∈ σ0,j such that σ1,i = (σ0,i ∪ {(m′, Pv)}) \ {(m,Pu)},
σ1,j = (σ0,j ∪ {(m,Pu)}) \ {(m′, Pv)}, and σ1,k = σ0,k for all k ∈ [N ] \ {i, j}.

Adversary model. The adversary is active, meaning that in addition to observing all network
traffic, the adversary can also corrupt and control up to a constant χ fraction of the parties. The
adversary chooses which parties to corrupt prior to the execution of the protocol. For our result on
guaranteed message delivery, we further assume that the adversary may drop (at corrupted parties)
up to a constant γ fraction of the honest parties’ message packets.
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Message schedule. The N parties form an asynchronous network, connected pairwise by au-
thenticated channels. Every message on the channels is guaranteed eventual delivery after an
arbitrarily long delay chosen by the adversary. This setting is in keeping with how the message
schedule is modeled in Byzantine consensus literature [Bra84,CR93]; here, the adversary maintains
a queue of messages that have yet to be delivered and decides which messages are delivered next.
Combined with the adversary’s power to control the corrupted parties to behave arbitrarily, this
has the net effect that the adversary fixes the message schedule and additionally can add/drop
messages at corrupted nodes.

Adversarial view. Given a communications protocol Π, adversary A, and input vector σ, let
ViewΠ,A(σ) denote the adversary’s view in a run of Π on input σ in the presence of the adversary A;
that is, ViewΠ,A(σ) is a random variable representing everything that the adversary can observe
including the network traffic and the states and computations of the corrupted parties.

2.3 Definition of anonymity

The notion of anonymity that we use in this paper is standard (computational) differential privacy:

Definition 1 ((ϵ, δ)-DP [DMNS06]). A communication protocol Π is (ϵ, δ)-differentially private if
for every adversary A and every pair of neighboring inputs σ0 and σ1 and every set V of adversarial
views,

Pr
[
ViewΠ,A(σ0) ∈ V

]
≤ eϵ Pr

[
ViewΠ,A(σ1) ∈ V

]
+ δ.

We say that Π is computationally (ϵ, δ)-differentially private [MPRV09] if the above bound holds
for all polynomially bounded adversaries.

2.4 Checkpoint onions

A technical challenge in realizing anonymity from the active adversary is preventing the adversary
from gleaning information by biasing the number of onions that arrive at the recipients. For
example, the adversary who suspects that Alice is sending a message to Bob can try to confirm
their suspicion by dropping the onion originating from Alice before it shuffles with other onions.

In prior work, Ando, Lysyanskaya, and Upfal introduced a cryptographic tool called checkpoint
onions [ALU18] (a.k.a. dummy onions). These onions do not carry a payload; instead, their purpose
is to provide cover traffic for “real” payload-carrying onions. They allow intermediary parties to
locally determine if the active adversary is disrupting network traffic and causing onions to get
dropped. This is accomplished as follows: Each pair of networked parties (the end-users as well as
the intermediaries) (Pi, Pj) is associated with a secret key si,j for a pseudorandom function Fsi,j .
This function mostly evaluates to something other than 0k, but if Fsi,j (x) = y ̸= 0k, then party
Pi expects to receive an onion containing the string y in round r. I.e. party Pj must form an
onion such that, at round r, this onion will reach party Pi and contain the string y. If party Pi is
expecting such an onion but does not receive it, it means that the active adversary has disrupted
the network.

3 Bruisable Onion Encryption

We introduce a new cryptographic primitive called bruisable onion encryption. Unlike in standard
onion encryption, in bruisable onion encryption, each mixer on the routing path has a choice to add
an extra bit of information to the onion: to ding (bruise) the onion or not. If the onion sustains
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too many bruises (i.e., a sufficient number of the mixers on the path bruise the onion), then the
identity of the recipient R and the innermost onion Oℓ for the recipient become unrecoverable.

Another difference between standard onion encryption and bruisable onion encryption is the
addition of a new type of intermediaries, called gatekeepers. A bruisable onion O travels along
its routing path (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) consisting of some ℓ1 mixers, followed by some ℓ2
gatekeepers and the recipient R. While the role of the mixers is to batch-process the onion (along
with other onions) or to bruise it, gatekeepers are responsible for routing the onion all the way to
the recipient only if the mixers didn’t bruise it too much.

3.1 I/O syntax

A bruisable onion encryption scheme consists of the following algorithms:
KeyGen takes the security parameter 1λ and the name of a party P as input, and outputs a public

key pair (pk(P ), sk(P )), i.e.,

(pk(P ), sk(P ))← KeyGen(1λ, P ).

FormOnion takes a (fixed length) message m, a routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R)
consisting of ℓ1 “mixers” and ℓ2 “gatekeepers,” the public keys of the parties in P⃗ , and a
sequence y⃗ = (y1, . . . , yℓ1+ℓ2) of metadata where the metadata string yi is intended for the
ith processing party on the routing path. (The metadata conveyed to each intermediary
is a useful component of an onion routing protocol: it allows the sender to communicate
something about the onion to the processing party. For example, in our protocol in Section 5,
the metadata is the pseudorandom nonces in the checkpoint onions.) FormOnion outputs a
list of lists of onions O⃗ = (O⃗1, . . . O⃗ℓ) where ℓ = ℓ1 + ℓ2 + 1. That is, letting pk(P⃗ ) denote the
public keys of the parties in P⃗ ,

O⃗ = (O⃗1, . . . O⃗ℓ)← FormOnion(m, P⃗ , pk(P⃗ ), y⃗).

In standard onion encryption as defined by Camenisch and Lysyanskaya [CL05], FormOnion
outputs a list of onions, O = (O1, . . . , Oℓ). This list is called the “evolution of the onion”
because it is how the onion should evolve as it travels along the routing path; each Oi is the
onion that the ith intermediary should receive and process.

In bruisable onion encryption, the evolution depends on if and when the onion gets
bruised. Accordingly, FormOnion outputs a list of lists of onions, (O⃗1, . . . O⃗ℓ), where each
list O⃗i contains all possible variations of the ith onion layer. The first list O⃗1 = (O1) con-
tains just the onion for the first mixer. For 2 ≤ i ≤ ℓ1, the list O⃗i contains i options,
O⃗i = (Oi,0, . . . , Oi,i−1); each Oi,j is what the ith onion layer should look like with j prior

bruises. For ℓ1 + 1 ≤ i ≤ ℓ1 + ℓ2, the list O⃗i contains ℓ1 + 1 options, depending on the total
bruising from the mixers. The last list O⃗ℓ = (Oℓ1+ℓ2+1) contains just the innermost onion for
the recipient.

Note that the routing path P⃗ may start and/or end with a sub-path consisting of dummy
parties, in which case FormOnion outputs onions for only the non-dummy routing parties. For
example, if the routing path is (⊥,⊥, P3, P4, P5,⊥, . . . ,⊥), FormOnion outputs (O⃗3, O⃗4, O⃗5).

PeelOnion takes the secret key sk(P ) of the processing party P and an onion O. Its output is
(i, y, O′, P ′) where i is the position of the party P on the onion’s routing path and y is the
metadata, while (O′, P ′) falls into one of four cases: if P is not the recipient, (O′, P ′) is either
(1) the peeled onion O′ and its next destination P ′ or (2) (⊥,⊥) if the onion is malformed or
too bruised; if P is the recipient, then P ′ = ⊥, while O is either (3) a message m or (4) ⊥.

(i, y, O′, P ′)← PeelOnion(sk(P ), O).
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BruiseOnion is an algorithm that allows an intermediary to damage the onion, or bruise it. This
option is only available to the mixers on the routing path, i.e., to the first ℓ1 intermediaries.
BruiseOnion takes as input the secret key sk(P ) of the party P and the onion O to be bruised
as input, and outputs a bruised onion O′ to send to its next destination,

O′ ← BruiseOnion(sk(P ), O).

3.2 Correctness definition

If a bruisable onion is processed only either by running the PeelOnion algorithm or the BruiseOnion
algorithm at every hop, we require that it should travel along the intended routing path specified
by the sender. Further, if the bruising isn’t too bad (i.e., it falls under some threshold θ), the
gatekeepers should be able to recover the innermost onion and the recipient; otherwise, routing
the onion through (G1, . . . , Gℓ2) should reveal the empty final destination ⊥. We formalize this
intuition below.

Let Σ = (KeyGen,FormOnion,PeelOnion,BruiseOnion) be a bruisable encryption scheme.
Let Parties be any set of participants.
For each Pi ∈ Parties, let (pk(Pi), sk(Pi)) be the key pair generated by running KeyGen on Pi.
Let m be any message from the message space; let P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) be any

list of parties in Parties; let y⃗ = (y1, . . . , yℓ1+ℓ2) be any sequence of metadata. Let ℓ = ℓ1 + ℓ2 + 1.
(O⃗1, . . . , O⃗ℓ) is the result of running FormOnion on m, P⃗ , the public keys pk(P⃗ ) of the parties in
P⃗ , and y⃗, i.e.,

O⃗ = (O⃗1, . . . O⃗ℓ)← FormOnion(m, P⃗ , pk(P⃗ ), y⃗).

We say that Σ is correct with respect to the threshold 0 < θ ≤ 1, the number ℓ1 of mixers, and
the number ℓ2 of gatekeepers if the following conditions are satisfied:

• Correct peeling and bruising. For 1 ≤ i < ℓ1 + ℓ2, 1 ≤ j ≤ |O⃗i|, let (i′, y, O, P ) be
the output of PeelOnion(sk(Pi), Oi,j). Then i′ = i, y = yi, O = Oi+1,j , and P = Pi+1. In
other words, when processing an onion, the mixer correctly recovers its position i in the list
of processing parties, its metadata yi, the onion Oi+1,j to send forth with the same amount

of bruising, and its destination Pi+1. Moreover, for 1 ≤ i ≤ ℓ1, 1 ≤ j ≤ |O⃗i|, let O′ be the
output of BruiseOnion(sk(Pi), Oi,j). Then O′ = Oi+1,j+1.

• Correct gatekeeping. For i = ℓ1 + ℓ2, 1 ≤ j ≤ ℓ1 + 1, let (i′, y, O, P ) be the output of
PeelOnion(sk(Pi), Oi,j). If j ≤ θℓ1, then i′ = i, y = yi, O = Oℓ, and P = R. In other words,
when processing an onion that is not too bruised, the last gatekeeper correctly recovers its
position i = ℓ1 + ℓ2 in the list of processing parties, its metadata yi, the onion Oℓ to send
forth, and the recipient R. However, if j > θℓ1, then i′ = i, y = yi, O = ⊥, and P = ⊥. In
other words, if the onion is too bruised, the honest gatekeeper still recovers its metadata but
not the onion to send forth or the next destination.

• Correct message. Peeling the innermost onion layer recovers the intended message, i.e.,
PeelOnion(skR, Oℓ) = (ℓ,⊥,m,⊥).

3.3 Security definition

We define security for bruisable onion encryption using the following game, BrOnSHH (which stands
for bruisable onion security with an honest mixer and an honest gatekeeper). BrOnSHH is param-
eterized by the security parameter 1λ, the adversary A, the bruisable onion encryption scheme
Σ = (KeyGen,FormOnion, PeelOnion,BruiseOnion), and the system parameters θ (which controls
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how much bruising can be tolerated) and ℓ1 and ℓ2 (which specify the numbers of mixers and
gatekeepers for an onion’s path).

The challenger controls an honest mixer, an honest gatekeeper, and an honest recipient. The
challenge onion might or might not be intended for the honest recipient, but it must be routed
through the honest mixer and gatekeeper. The adversary controls all intermediaries other than the
honest mixer, the honest gatekeeper, and the honest recipient. (As stated under in Adversary
model, the corruptions are modeled as non-adaptive.)

• Setup: The adversary A and the challenger C set up the parties’ keys.
1. The adversary A sends the names of the honest mixer Pm, the honest gatekeeper Pg,

the honest recipient Pr, and the adversarial parties Bad; and the public keys pk(Bad) of
the adversarial parties to the challenger C.

2. For each honest party P ∈ {Pm, Pg, Pr}, C generates a key pair (pk(P ), sk(P )) ←
KeyGen(1λ, P ) and sends pk(Pm), pk(Pg), pk(Pr) to A.

• First query phase:
3. A can direct an honest party to peel or bruise an onion by submitting queries to peel

(resp. bruise) an onion O on behalf of an honest party P ∈ {Pm, Pg, Pr}, in which case
C responds with the output of PeelOnion(sk(P ), O) (resp. BruiseOnion(sk(P ), O)).

• Challenge phase: A picks the parameters of the challenge onion, and C replies with the
challenge onion O1.

4. A sends to C: the message m; the routing path P⃗ where Pm = Mi1 in position i1 ≤ ℓ1
is one of the mixers (M1, . . . ,Mℓ1), Pg = Gi2−ℓ1 in position ℓ1 < i2 ≤ ℓ1 + ℓ2 is one
of the gatekeepers (G1, . . . , Gℓ2), and the recipient R may be Pr; and the sequence
y⃗ = (y1, . . . , yℓ1+ℓ2) of metadata.

5. C samples a bit b←$ {0, 1}.
– If b = 0, Q⃗ = P⃗ . z⃗ = y⃗.

– If b = 1, Q⃗ = (M1, . . . ,Mi1−1, Pm,

ℓ1+ℓ2+1−i1︷ ︸︸ ︷
⊥, . . . ,⊥ ). z⃗ = (y1, . . . , yi1 ,

ℓ1+ℓ2+1−i1︷ ︸︸ ︷
⊥, . . . ,⊥ ).

C returns the first onion O1 in the output from running FormOnion on m, Q⃗, the public
keys pk(Q⃗), and z⃗, i.e., ((O1), O⃗2, . . . , O⃗ℓ1+ℓ2+1)← FormOnion(m, Q⃗, pk(Q⃗), z⃗).

• Second query phase: A is again allowed to submit queries to have an onion peeled or
bruised by an honest party P .

6. If b = 0; or the request isn’t
– to peel or bruise an onion in O⃗i1 as the mixer Pm (query type 1),
– to peel an onion in O⃗i2 as an honest gatekeeper Pg (type 2), or
– to peel the onion Oℓ1+ℓ2+1 as the recipient Pr (type 3);

the challenger processes the request by running the scheme’s algorithm (as before).
7. If the query is type 1, 2, or 3 (defined above), and this is not the first request of this

type; the challenger responds with an error message.
8. Else (b = 1):

i. Query type 1: the query is to the mixer Pm to peel or bruise an onion Oi1,j ∈ O⃗i1 .
C runs FormOnion on the dummy message ⊥ and the path after Pm to Pg, i.e.,

Q⃗i1+1→i2 = (

i1︷ ︸︸ ︷
⊥, . . . ,⊥,Mi1+1, . . . ,Mℓ1 , G1, . . . , Gi2−ℓ1−1, Pg,

ℓ1+ℓ2+1−i2︷ ︸︸ ︷
⊥, . . . ,⊥ )

z⃗i1+1→i2 = (

i1︷ ︸︸ ︷
⊥, . . . ,⊥, yi1+1, . . . , yi2 ,

ℓ1+ℓ2+1−i2︷ ︸︸ ︷
⊥, . . . ,⊥ )

O⃗i1+1→i2 ← FormOnion(⊥, Q⃗i1+1→i2 , pk(Q⃗i1+1→i2), z⃗i1+1→i2).
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Suppose the query was to peel (resp. bruise); C sets bruisecount = j (resp. bruisecount =
j + 1) and returns (i1, yi1 , Oi1+1,0, Mi1+1) to A where Oi1+1,0 is the first onion

in the output O⃗i1+1→i2 = ((Oi1+1,0, . . . , Oi1+1,i1), O⃗i1+2, . . . , O⃗i2) of FormOnion.
(bruisecount is the number of bruises that the onion acquires before reaching Mi1 .
The challenger keeps track of this information to ensure that the innermost onion
is recoverable only if it should be.)

ii. Query type 2: the query is to the gatekeeper Pg to peel an onion Oi2,j ∈ O⃗i2 . Let
m′ = m if R = Pr or bruisecount + j ≤ θℓ1; otherwise, let m′ = ⊥. Let R′ = R if
bruisecount + j ≤ θℓ1; otherwise, let R′ = ⊥. C runs FormOnion on the message m′

and the routing path consisting of the gatekeepers after Pg and the recipient R′, i.e.,

Q⃗i2+1→ = (

i2︷ ︸︸ ︷
⊥, . . . ,⊥, Gi2−ℓ1+1, . . . , Gℓ2 , R

′)

z⃗i2+1→ = (

i2︷ ︸︸ ︷
⊥, . . . ,⊥, yi2+1, . . . , yℓ1+ℓ2)

O⃗i2+1→ ← FormOnion(m′, Q⃗i2+1→, pk(Q⃗i2+1→), z⃗i2+1→)

C returns (i2, yi2 , Oi2+1,0,Mi2+1) to A where Oi2+1,0 is the first onion in the output

O⃗i2+1→ = ((Oi2+1,0, . . . , Oi2+1,i1), O⃗i2+2, . . . O⃗ℓ1+ℓ2+1) of FormOnion.
iii. Query type 3: the query is to the recipient Pr to peel the onion Oℓ1+ℓ2+1. C

returns the message m.
• At the end, A outputs a guess b′ for the bit b and wins if b′ = b.
We define bruisable-onion security as follows.

Definition 2. A bruisable onion encryption scheme Σ is bruisable-onion secure for parameters
θ, ℓ1, ℓ2 if there exists a negligible function ν : N 7→ N such that every p.p.t. adversary A wins the
game BrOnSHH(1λ,A,Σ, θ, ℓ1, ℓ2) with advantage at most ν(λ), i.e.,∣∣∣∣Pr

[
A wins BrOnSHH(1λ,A,Σ, θ, ℓ1, ℓ2)

]
− 1

2

∣∣∣∣ ≤ ν(λ).

3.3.1 Intuition for the security definition

Our definition captures the idea that if the onion encryption scheme is secure, the adversary cannot
determine any meaningful information about an onion that is “hidden behind an honest party:”

• Layers for parties up to the honest mixer. The adversary cannot distinguish between
the scenario where the challenger forms O1 as specified by the adversary (case b = 0) from
the scenario where the challenger forms O1 without using the message m, the routing path
after Pm, or the metadata corresponding to the path after Pm (case b = 1). See step 5 of the
security game.

• Layers for parties after the honest mixer up to the honest gatekeeper. The adver-
sary cannot tell whether the peeled (resp. bruised) version O′ of the challenge onion Oi1,j for
Pm is obtained by peeling (resp. bruising) Oi1,j as specified by the adversary (case b = 0), or
if O′ is a fresh onion formed information-theoretically independently of the message m, the
path and metadata up to Pm, the path and metadata after Pg, or the amount of bruising
that the onion has incurred so far (case b = 1). See step 6 and step 8i of the security game.

• Layers for the parties after the honest gatekeeper. If the challenge onion incurs more
than (resp. at most) the threshold number (θℓ1) of bruises, then the innermost onion and the
recipient are unrecoverable (resp. remain recoverable). In this event, the adversary cannot tell
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whether the onion O′′ that the gatekeeper Pg produces as the peeled version of its challenge
onion Oi2,j was obtained by peeling Oi2,j (case b = 0), or if O′ is a fresh onion information-
theoretically independent of the bruising so far and, if R = Pr, the message m (resp. the
message m, the recipient R, and the bruising so far). See step 6 and step 8ii of the security
game.

• Replay attacks. Note that in both the real world and in our security game, the adversary can
send an onion for processing to the same honest party more than once. A feature of bruisable
onions is that the adversary can send different versions of the same onion, corresponding
to different amounts of bruising. We cannot guarantee security if more than one version is
processed according to the protocol since that would reveal how bruised an onion was when
it got to the adversary. Thus, in our security game, the challenger will not process the same
onion more than once, and this includes differently bruised versions of the same onion. An
honest participant in a protocol that uses bruisable onion encryption needs to keep state
information and do the same. It is important that a replayed onion be detectable even if it’s
a different version. In our construction in Section 5, different versions of the same layer of the
same onion share a symmetric key; storing this key would enable one to identify and reject
replayed onions.

Remark. Although we do not provide a UC functionality for bruisable onion encryption in this
paper, we note that our definition here should be sufficient to UC-realize any reasonable modeling
of such a functionality in the spirit of the ideal functionalities for (regular, non-bruisable) onion
encryption of prior work [CL05,AL21]. In this approach, an ideal functionality for bruisable onion
encryption would form onions on behalf of honest parties piece-wise. Given a routing path P ,
the “segments of P” are the subpaths of P that partition P in such a way that each subpath
forms a contiguous sequence of adversarial parties followed by a single honest party (or no honest
party if the segment is that last subpath containing an adversarial recipient). For example, letting
capitalized parties denote honest parties, for the path P = (P1, p2, p3, P4, P5, p6, P7), the segments
are (P1), (p2, p3, P4), (P5), and (p6, P7). The ideal functionality forms the onion layers for each
segment separately, without knowledge of the rest of the path, the message, or the bruise count so
far; this ensures that onion layers across different segments are information-theoretically unrelated
to each other. For each FormOnion query, the ideal functionality keeps track of which onion layers
are part of the onion via an internal table or dictionary, as well as the cumulative bruise count. Our
security definition would ensure that, whether the onion layers are formed correctly (as in the real
world) or piecemeal by the simulator, no adversary can distinguish; the proof that a bruisable onion
encryption scheme satisfying our definition would UC-realize such a functionality would follow the
outline of the proof of Ando and Lysyanskaya [AL21], adjusted for the addition of bruises and
gatekeepers. Seen in this way, the UC composition theorem allows us to analyze the anonymity of
our onion routing protocol separately from the security of the onions.

4 Tulip Onion Encryption Scheme

Our onion encryption scheme produces a type of onion that we call tulip bulbs. A tulip bulb
consists of three components: the header H containing the routing information, the content C
containing the payload, and the “sepal” S for peeling the penultimate onion layer. (The sepal is
the outermost part of a flower that protects the flower while it is still a bud. In our construction,
the sepal protects the rest of the content by “absorbing” the bruising.)

Below, we explain on a high level how a tulip bulb is formed and how it will be processed;
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this will be helpful for understanding our overall construction. Given a party P , let (pk(P ), sk(P ))
denote the public key and secret key of P ; and let Oi denote the tulip bulb (one of the |O⃗i| options)
for the ith party on the routing path (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) of length ℓ = ℓ1 + ℓ2 + 1.

The header Hi. In our construction, for each i, all variations in O⃗i have the same header Hi

and content Ci; the only differences are in the sepals. The header Hi = (Ei, Bi) consists of the
ciphertext Ei and the rest of the header Bi. Ei is an encryption under pk(Pi) of the tuple (i, yi, ki)
where i is the position, yi is the metadata, and ki is the layer key. For 1 ≤ i < ℓ − 1, Bi is an
encryption under ki of the identity of the next processor Pi+1 and header Hi+1 of the tulip bulb
Oi+1 that will be sent to Pi+1.

The header Hℓ−1 for the last gatekeeper Gℓ2 is somewhat different. The ciphertext Eℓ−1 decrypts
to the key kℓ−1; using kℓ−1, Gℓ2 can process the sepal. If the sepal is not too damaged and processing
it yields the bulb master key K, then the rest of the header Bℓ−1 can be decrypted under K, yielding
the identity of the recipient R and the header Hℓ for R.

The content Ci. The content Ci is an encryption under the layer key ki of the content Ci+1 of
Oi+1. If Pi is the recipient, then it is an encryption of the message.

The sepal Si. The sepal Si looks different depending on whether the processor Pi is a mixer Mi

or a gatekeeper Gj for j = i− ℓ1. Specifically:
• For 1 ≤ i ≤ ℓ1, the processor Pi is the mixer Mi. The sepal Si received by Mi consists of
ℓ1− i+ 2 blocks, (Si,1, . . . , Si,ℓ1−i+2). For example, if ℓ1 = 3, then the first mixer’s tulip bulb
has four sepal blocks, the second mixer has three, and the last mixer receives a bulb with
only two sepal blocks.

Suppose we want a bulb to be irrevocably lost after d bruises, but d − 1 bruises are
tolerated.3 For the first mixer M1, the first d sepal blocks are encryptions of the bulb master
key K, salted and wrapped in layers of symmetric encryption keyed by k1, . . . , kℓ−1. The
rest of the sepal blocks are salted encryptions of 0 (dummies), also salted and wrapped in
layers of symmetric encryption keyed by k1, . . . , kℓ−1. Let S1,1, . . . , Si,ℓ1+1 denote these sepal
blocks. I.e., letting “⟨K⟩” denote a sepal block that contains the bulb master key, and “⟨0⟩,”
a dummy block,

S1 = (S1,1, . . . , S1,ℓ1+1) = (

d times︷ ︸︸ ︷
⟨K⟩, . . . , ⟨K⟩,

ℓ1−d+1 times︷ ︸︸ ︷
⟨0⟩, . . . , ⟨0⟩)

To process the tulip bulb without bruising it, M1 peels a layer of encryption from all the
blocks in S1 and then “drops” the first block from the right. So the sepal S2 for the next
processing party retains the same number of blocks with the bulb master key, i.e.,

unbruised S
(1)
2 = (S2,1, . . . , S2,ℓ1) = (

d times︷ ︸︸ ︷
⟨K⟩, . . . , ⟨K⟩,

ℓ1−d times︷ ︸︸ ︷
⟨0⟩, . . . , ⟨0⟩)

To bruise the tulip bulb, M1 forms S2 by dropping the first block from the left instead, i.e,

bruised S
(2)
2 = (S2,1, . . . , S2,ℓ1) = (

d−1 times︷ ︸︸ ︷
⟨K⟩, . . . , ⟨K⟩,

ℓ1−d+1 times︷ ︸︸ ︷
⟨0⟩, . . . , ⟨0⟩)

3In our onion routing protocol in Section 5, d is set so that the innermost tulip bulb is recoverable when ≤ θ
fraction of the bruisable layers are bruised, i.e., d = θℓ1.
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In general, to peel the sepal Si = (Si,1, . . . , Si,ℓ1−i+2) without bruising it, the ith mixer Mi

drops the rightmost sepal block Si,ℓ1−i+2. To bruise the sepal, Mi drops the leftmost sepal
block Si,1. Carrying out this procedure ensures that the only remaining sepal block in Sℓ1+1

for the last gatekeeper G1 contains the bulb master key K if and only if the number of times
that the sepal was bruised is at most d−1. So, the i options for the sepal Si correspond to the
i distinct max(ℓ1 + 2 − i, 1) contiguous blocks (with the appropriate number of encryptions

peeled off) from

d times︷ ︸︸ ︷
⟨K⟩, . . . , ⟨K⟩,

ℓ1−d+1 times︷ ︸︸ ︷
⟨0⟩, . . . , ⟨0⟩.

Note that if the mixer is not honest, they can rearrange the blocks or modify the sepal
in an “illegal” way outside the prescribed procedures outlined above. Verification hashes are
stored in the header of the tulip bulb to allow honest parties to detect when this happens.
Care must be taken that these verification hashes not reveal anything about the possible
sepals other than their validity. See the remark below. Moreover, if the last few mixers on
the routing path are all adversarial, the adversary can attempt to “open” more than one
sepal block, which could potentially leak some information about prior bruisings. The honest
gatekeepers prevent this from happening since honest parties will process a tulip bulb only
once, and a tulip bulb with a repeating key ki will be treated as a different variant of the same
tulip bulb. See Section 4.1 for how the sepal blocks and the verification hashes are formed.

• For ℓ1 + 1 ≤ i < ℓ, the processor Pi is the gatekeeper Gi−ℓ1 . The sepal Si received by Gi−ℓ1 is
either the encryption of the bulb master key K under symmetric keys ki, . . . , kℓ (if the tulip
bulb wasn’t bruised too much), or the encryption of 0 (if it was). Pi processes the sepal by
peeling a layer of encryption: Si+1 is the decryption of Si under ki.

• The last gatekeeper Gℓ2 either recovers the master key K from Sℓ or discovers that it cannot
be recovered. If K is recovered, then Gℓ2 can process the rest of the header Hℓ.

Remark on how to incorporate verification hashes. Mixer Mi receives onion Oi = (Hi, Ci, Si),

where Si is one of i sepal candidates S
(1)
i , . . . , S

(i)
i , as described above. In order to ensure that the

sepal does not get corrupted in transit but in fact corresponds to the sepal prepared by the sender,

our construction includes (in lexicographic order) the values {h(S
(j)
i )}1≤j≤i for a collision-resistant

hash function h. Let us go over what can go wrong with if we include only these hashes and how
to fix it.

First, note that a collision-resistant hash function may still leak information about its pre-image.

In a contrived example, h(S
(j)
i ) may leak the position of the first occurrence of the binary string

“tulip fever” in its pre-image, if any, and still remain a collision-resistant hash function. Recall that

S
(j+1)
i is obtained by dropping the first λ bits of S

(j)
i and concatenating some additional random

bits to the end; in the event that S
(j)
i contains the string “tulip fever” in position p, S

(j+1)
i will

contain “tulip fever” in position p−λ. Thus, our contrived hash function would leak that S
(j+1)
i is

the sepal for the onion that has one additional bruising compared to one with sepal S
(j)
i .

Luckily, we show that this is not a problem if we also include additional dummy hashes of
strings that could never be proper sepals. The idea is to create one random, dummy sepal block
that is never included in any sepals, but that will be hashed with valid sepal blocks in a circular
manner. See Formal description below.
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4.1 Formal description

Our onion encryption scheme, Tulip Onion Encryption Scheme (TOES), builds on standard cryp-
tographic primitives: a CCA2-secure public key encryption scheme with tags (KeyGen,Enc,Dec),4

a block cipher, and a collision-resistant hash function h. In the description below, let “{·}k” denote
symmetric encryption under the key k, and let “} · {k” denote symmetric decryption under k. This
notation is consistent with prior work on onion encryption schemes, namely [CL05,AL21,ACLM22].

The onion encryption scheme’s key generation algorithm is just the public key encryption
scheme’s key generation algorithm KeyGen. We assume a public key infrastructure where the
keys (for at least the honest parties) are supplied by running KeyGen. For each party P , let
(pk(P ), sk(P )) denote the public-key and secret-key for party P .

Below, we describe how to form a tulip bulb containing the message m for the routing path
(M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R), and the sequence y⃗ = (y1, . . . , yℓ−1) of metadata.

Generating the tulip keys. To begin with, we pick layer keys k1, . . . , kℓ and master key K
independently and uniformly at random from the key space of our symmetric encryption scheme.
As explained earlier, each ki will be used to encrypt the onion layer for the ith processing party on
the routing path; the master key is needed to recover the eventual recipient.

Forming the first sepal S1. We describe how to compute the sepal portion of the tulip bulb O1

for the first mixer M1 on the routing path. The sepal S1 consists of d key-blocks (the ⟨K⟩-blocks)
S1,1, . . . , S1,d, as well as ℓ1 − d + 1 null-blocks (the ⟨0⟩-blocks) S1,d+1, . . . , S1,ℓ1+1.

Each key-block ⟨K⟩ is the bulb master key K, salted and encrypted under k1, . . . , kℓ−1; that is,

S1,j = {. . . {K, sj}kℓ−1
. . . }k1 ∀1 ≤ j ≤ d

where sj ←$ SaltSpace is a random value from an appropriately large salt space. The procedure for
forming a null-block ⟨0⟩ is essentially the same except that we wrap 0 instead of the value K in
layers of encryption, i.e.,

S1,j = {. . . {0, sj}kℓ1+1
. . . }k1 ∀d + 1 ≤ j ≤ ℓ1 + 1.

If the sepal Si was not processed correctly (i.e., not just peeled or bruised), then the processing
party Pi should be able to detect this. To that end, we store verification hashes (i.e., hashes of
all possible values that a correctly formed and processed Si can take on, plus a few dummy hash
values), denoted by A⃗i, in the header. These hash values are computed as follows: First, let Ti,j

denote the sepal block S1,j without the i − 1 outermost encryption layers, and let Ti,ℓ1+2 be a
dummy sepal block (i.e., a truly random string of length the number of bits in a sepal block,
wrapped in layers of encryptions keyed by ki, . . . , kℓ−1), which we will call the “clasp” for reasons
that will become evident in the next sentence. Each hash value Ai,j is the hash of one of the
l = max(1, ℓ1+2− i) contiguous blocks on the ring (really a “bracelet”) (Ti,1, . . . , Ti,ℓ1+2) where the

block after the clasp Ti,ℓ1+2 is Ti,1. Letting A′
i = {Ai,0, Ai,1, . . . , Ai,ℓ1+2}, A⃗i is the vector, sorted in

lexicographic order, of the hashes of the elements of A′
i, i.e., letting Tℓ−1,ℓ1+2 ←$ {0, 1}|S1,1|,

Ti,j =} . . . }S1,j{k1 . . . {ki−1
∀j ∈ [ℓ1 + 1]

Ti,ℓ+2 = {. . . {Ti,ℓ1+2}kℓ−1
. . . }ki

Ai,j = h
(
Ti,(j mod ℓ1+2), . . . , Ti,(j+l−1 mod ℓ1+2)

)
∀j ∈ [ℓ1 + 2]

A⃗i = Sort({Ai,0, Ai,1, . . . , Ai,min(i,ℓ1+1)})
4See [CS98] for the original formal description of encryption with tags.
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Note that computing the hashes can be accomplished efficiently as the number |A⃗i| of hashes in
each onion layer is ℓ1 + 2. See the next section for details on where the hashes are stored. The
hash values constitute all possible ranges on the bracelet; this prevents the adversarial intermediary
(a mixer or a gatekeeper prior to the last gatekeeper) from learning any information about how
bruised the onion is so far. The clasp (and resulting dummy values) are needed to enable detection
of any illegal rearrangement of the sepal blocks.

Forming the header and content for the last onion layer. After forming the sepal S1, we
obtain the header H1 and content C1 via a recursive process. First, we form the last onion layer
for the ℓth party (the recipient R). The content Cℓ is just the encryption of the message m under
the key kℓ, i.e., Cℓ = {m}kℓ . We form the tag tℓ by taking the hash of Cℓ, i.e., tℓ = h(Cℓ). The
tag ensures that R can peel the last layer only if they receive an onion with the correct header
and content. The header Hℓ is completed by taking the encryption under the key pk(R) of the role
“Recipient,” the hop-index ℓ + 1, and the key kℓ, i.e.,

Eℓ = Enc(pk(R), tℓ, (Recipient, ℓ, kℓ))

Hℓ = Eℓ

Forming the the header and content for penultimate onion layer. Next, we form the
penultimate layer Hℓ−1, Cℓ−1 for the last gatekeeper Gℓ2 . The content Cℓ−1 is the encryption of Cℓ

under the master key K, i.e.,

Cℓ−1 = {Cℓ}K = {{m}kℓ}K
Block Bℓ−1,1 is the encryption of Eℓ and the identity of the recipient R under the master key K,
i.e.,

Bℓ−1,1 = {R,Eℓ}K
The header Hℓ−1 consists of blocks Eℓ−1, Bℓ−1,1 where Eℓ−1 is the encryption under the public key
pk(Gℓ2) and the appropriate tag tℓ−1 of the role “LastGatekeeper,” the hop-index ℓ− 1, the nonce
yℓ−1, the verification hashes A⃗ℓ−1, and the sepal layer key kℓ−1, i.e.,

tℓ−1 = h(Bℓ−1,1, . . . , Bℓ−1,ℓ−1, Cℓ−1)

Eℓ−1 = Enc(pk(Gℓ2), tℓ−1, (LastGatekeeper, ℓ− 1, yℓ−1, A⃗ℓ−1, kℓ−1))

Hℓ−1 = (Eℓ−1, Bℓ−1,1, . . . , Bℓ−1,ℓ−1)

Forming the outer layers. For 1 ≤ i ≤ ℓ−2, the header and content Hi, Ci builds on the header
and content of the previous layer Hi+1, Ci+1, similar to how the penultimate layer builds on the last
layer. Here, Ei is the encryption of the processing party’s role (either “Mixer” or “Gatekeeper”),
the hop-index i, the nonce yi, the verification hashes A⃗i, and the key ki. See below:

Ci = {Ci+1}ki
Letting Ii+1 be the i + 1th party on the path,

Bi,1 = {Ii+1, Ei+1}ki
Bi,j = {Bi+1,j−1}ki ∀2 ≤ j ≤ ℓ− j + 1

ti = h(Bi,1, . . . , Bi,ℓ−1, Ci)

Ei = Enc(pk(Pi), ti, (Role, i, yi, A⃗i, ki))

Hi = (Ei, Bi,1, . . . , Bi,ℓ−1)

See Figure 1 below for a pictorial description of the tulip bulb O1.
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Figure 1: A pictorial description of how an onion is formed using TOES. The verification hashes A1 for M1 are the
hashes h(S1,1, S1,2, S1,3), h(S1,2, S1,3, T1,4), h(S1,3, T1,4, S1,1), and h(T1,4, S1,1, S1,2) in lexicographical order, where
T1,4 ←$ {0, 1}|S1,1|.

Forming an onion with an incomplete path. We form an onion for a path that begins and/or
ends with the empty path, e.g., (⊥,⊥, P3, P4, P5,⊥, . . . ,⊥), by setting the intermediary party for
the empty locations (the ⊥’s) to be the sender; and if the recipient is ⊥, the sepal blocks are all
dummy sepal blocks ⟨0⟩. In this case, the algorithm outputs only the onion vectors for the parties
corresponding to non-empty locations on the path.

Remark on the onion size. Recall that ℓ1 is the number of mixers on a routing path, and ℓ2 is
the number of gatekeepers. Each onion consists of a content block, a number of sepal blocks, and
a number of header blocks. The length of each message block is just the length of a message (let
us call this ℓm). Each onion layer consists of at most ℓ1 + 1 sepal blocks and ℓ1 + ℓ2 + 1 header
blocks, where the length of each sepal block is the length of each layer key (so, roughly λ), and
the length of each header block is dominated by the size of the verification hashes in a layer (so,
roughly O(λℓ1)). Thus, the overall size of a tulip bulb is O

(
λ(ℓ21 + ℓ2)

)
+ ℓm.

4.2 Proof of security

Here, we summarize our proof that our construction satisfies the definition of security provided in
Definition 2.

Theorem 1. Tulip Onion Encryption Scheme is bruisable-onion secure, assuming the existence of
CCA2-secure public key encryption schemes with tags, block ciphers, and collision-resistant hash
functions.

Proof idea. We first provide a hybrid argument for the case where the challenge onion is too bruised
to recover the innermost onion. Proofs for the other cases (when the onion is recoverable and/or
when the recipient is honest) are given after the proof of this first case.

Below, we describe a sequence of hybrid experiments Hybrid0, . . . ,Hybrid18 and provide a brief
explanation (in color) of why each pair of consecutive experiments consists of indistinguishable
scenarios. (More details on the proofs of indistinguishability can be founds in Appendix A.) Recall
that in the security game BrOnSHH, the honest mixer is Mi1 , sitting in position 1 ≤ i1 ≤ l1; and
the honest gatekeeper is Gj=i2−ℓ1 , sitting in position ℓ1 + 1 ≤ i2 ≤ ℓ2.

Hybrid0: the challenge onion O1 is formed correctly. (This is the same as the game when b = 0.)
↕ Indistinguishable from CCA2-secure public key encryption.
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Hybrid1: same as Hybrid0 except that the ciphertext Ei1 is an encryption under pk(Mi1) of the
dummy key 0. (The challenger still samples for the layer key ki1 and uses it to form the ith1 onion
layers O⃗i1 .)
↕ Indistinguishable from the collision resistance of the hash function

Hybrid2: same as Hybrid1 except that if, in the second query phase, the challenger receives an onion
O = ((E,B), C, S) ̸∈ O⃗i1 such that E = Ei1 , the challenger responds with ⊥ (rather than processing
O).
↕ Indistinguishable from PRP security.

Hybrid3: same as Hybrid2 except that the challenger forms the ith1 onion layers O⃗i1 using a truly
random permutation rather than a PRP keyed with ki1 .
↕ Identically distributed since O⃗i1−1, . . . , O⃗1 are wrapped around truly random blocks.

Hybrid4: same as Hybrid3 except that the challenger uses the dummy message content ⊥ and the
truncated path (M1, . . . ,Mi1 , ⊥⃗) and associated sequence (y1, . . . , yi1 , ⊥⃗) of metadata (instead of
the real message and full path and sequence of metadata) to form O1.
↕ Identically distributed since the inner layers O⃗ℓ, . . . , O⃗i1+1 are independent of the path up to

Mi1 .
Hybrid5: same as Hybrid4 except that the first query to peel or bruise an onion Oi1 = Oi1,k ∈ O⃗i1 on

behalf of Mi1 peels to a new onion formed using the message m, the routing path (⊥⃗,Mi1+1, . . . , R),
and the associated sequence of metadata (⊥⃗, yi1+1, . . . , yℓ−1). (The newly formed onion Oi1+1 has
the correct number k of bruises.)
↕ Indistinguishable from PRP security.

Hybrid6: same as Hybrid5 except that the challenger forms the ith1 onion layers O⃗i1 using the PRP
keyed with ki1 instead of a truly random permutation.
↕ Indistinguishable from CCA2-security.

Hybrid7: same as Hybrid6 except that the ciphertext Ei1 is an encryption of the real key ki1 rather
than the dummy key 0. (At this stage, the challenge onion O1 is same as that in the game when
b = 1, but the onions returned by Mi1 and Gj are not quite the same as when b = 1. The

challenger forms O1 using the message ⊥, the routing path (M1, . . . ,Mi1 , ⊥⃗), and the metadata
(y1, . . . , yi1 , ⊥⃗). The onion Oi1+1 returned by the challenger on behalf of the mixer Mi1 is a new
onion with the correct number of bruises, formed by running FormOnion on m, (⊥⃗,Mi1+1, . . . , R),
and the metadata (⊥⃗, yi1+1, . . . , yℓ−1). The challenger obtains the onion Oi2+1 returned by the on
behalf of the gatekeeper Gj by running PeelOnion on the query onion.)
↕ Indistinguishable from CCA2-secure public key encryption.

Hybrid8: same as Hybrid7 except that the ciphertext Ei2 is an encryption under pk(Gj) of the
dummy key 0. (The challenger still samples for the layer key ki2 and uses it to form the ith2 onion
layers O⃗i2 .)
↕ Indistinguishable from the collision resistance of the hash function

Hybrid9: same as Hybrid8 except that if, in the second query phase, the challenger receives an onion
O = ((E,B), C, S) ̸∈ O⃗i2 such that E = Ei2 , the challenger responds with ⊥ (rather than processing
O).
↕ Indistinguishable from PRP security.

Hybrid10: same as Hybrid9 except that the challenger forms the ith2 onion layers O⃗i2 using a truly
random permutation rather than a PRP keyed with ki2 .
↕ Identically distributed since O⃗i2−1, . . . , O⃗i1+1 are wrapped around truly random blocks.

Hybrid11: same as Hybrid10 except that the challenger uses the path (⊥⃗,Mi1+1, . . . , Gj , ⊥⃗) and asso-
ciated sequence of metadata (instead of the real message and full path and sequence of metadata)
to form Oi1+1.
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↕ Identically distributed since the inner layers O⃗ℓ, . . . , O⃗i2+1 are independent of the path up to
Gj .

Hybrid12: same as Hybrid11 except that the first query to peel or bruise an onion Oi2 = Oi2,k ∈ O⃗i2

on behalf of Gj peels to a new onion formed using the message m, the routing path (⊥⃗, Gj+1, . . . , R),
and the associated sequence of metadata. (The newly formed onion Oi2+1 has the correct number
k of bruises.)
↕ Indistinguishable from PRP security.

Hybrid13: same as Hybrid12 except that the challenger forms the ith2 onion layers O⃗i2 using the PRP
keyed with ki2 instead of a truly random permutation.
↕ Indistinguishable from CCA2-security.

Hybrid14: same as Hybrid13 except that the ciphertext Ei2 is an encryption of the real key ki2 rather
than the dummy key 0.
↕ Identically distributed since the sepals are truly random blocks wrapped in layers on encryp-

tion, and the verification hashes don’t reveal how bruised the sepals are.
Hybrid15: same as Hybrid14 except for how bruised the onion Oi1+1 is. The onion Oi1+1 that Mi1

returns will be completely unbruised. The challenger remembers how bruised Oi1 was, however,
and forms the the onion Oi2+1 accordingly; thus, Oi2+1 is formed identically as in Hybrid11. (At
this stage, the challenge onions O1 and Oi1+1 are the same as that in the game when b = 1, but
the onion returned by Gj is not quite the same as when b = 1.)
↕ Indistinguishable from PRP security.

Hybrid16: same as Hybrid15 except that the challenger forms the penultimate onion layers O⃗ℓ−1

using a truly random permutation rather than a PRP keyed with kℓ−1.
↕ Identically distributed because since O⃗ℓ−2, . . . , O⃗i2+1 are wrapped truly random blocks.

Hybrid17: same as Hybrid16 except that the challenger uses the message ⊥ and the recipient ⊥.
↕ Indistinguishable from PRP security.

Hybrid18: same as Hybrid17 except that the challenger forms the penultimate onion layers O⃗ℓ−1

using the PRP keyed with kℓ−1 instead of a truly random permutation. Note that Hybrid18 is
indistinguishable to the case when b = 1.

The hybrid argument for the case where the challenge onion is recoverable, and the recipient is
honest is the same as above, except that, in Hybrid17, only the message is ⊥ (the recipient remains
R). When the recipient is adversarial, the hybrid argument is just Hybrid0-Hybrid15 above (without
Hybrid16-Hybrid18).

5 Our Onion Routing Protocol, Πt

5.1 Choosing the onion parameters

We describe our anonymous onion routing protocol, Πt.
Let TOES = (KeyGen,FormOnion,PeelOnion,PeelOnionHelper,BruiseOnion) be the bruisable

onion encryption scheme in Section 4. Let ℓ1 be the number of mixers on the routing path, let ℓ2 be
the number of gatekeepers, and let ℓ3 be the (expected) number of onions at each intermediary per
hop. Let F1 and F2 be pseudorandom functions (PRFs) such that F1 outputs zero with frequency
(ℓ1+ℓ2)ℓ3/|Parties| = (ℓ1+ℓ2)ℓ3/N = Ω(polylog λ)/N , and the range of F2 is superpolynomial in the
security parameter λ. We assume a setup with a public key infrastructure (PKI); note that the PKI
enables each pair of parties (Pi, Pk) to set up a shared secret key ski,k,e.g., by using Diffie-Hellman
key exchange.
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For each sender Pi, let σi denote the input for Pi. For each (mi, Ri) ∈ σi, party Pi forms an
onion bearing the message mi to the recipient Ri. Additionally, Pi forms a polylog (in the security
parameter) number of checkpoint onions.

The algorithms for forming the onions are essentially those of Πa [ALU18], except we use tulip
bulbs instead of standard ones. Specifically, we use tulip bulbs with ℓ1 = Ω(polylog λ) mixers per
onion, ℓ2 = Ω(polylog λ) gatekeepers per onion, and d = θℓ1 key-blocks per sepal. For completeness,
we describe these algorithms in detail below.

Forming the message-bearing onions. To form the message-bearing onion for the message-
recipient pair (mi, Ri) ∈ σi, Pi first samples ℓ1 + ℓ2 parties M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 uniformly
at random and then runs the onion-forming algorithm FormOnion on the message mi, the routing
path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , Ri), the public keys associated with the parties in P⃗ (which

we will denote pk(P⃗ )), and the sequence ⊥⃗ = (

ℓ1+ℓ2 times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥) of metadata. Here, “⊥” denotes the

empty metadata. See Figure 2 below for the pseudocode.

1 : M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 ←$ Parties

2 : ⊥⃗ = (

ℓ1+ℓ2 times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥)

3 : O⃗ ← FormOnion(m, (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , Ri), pk(P⃗ ), ⊥⃗)

Figure 2: Pseudocode for forming the message-bearing onion

Forming the checkpoint onions. Next, Pi forms the checkpoint onions. Pi initializes the sets
of nonces, Y1, . . . ,Yℓ1 , to the empty set.

Then, for every pair (j, Pk) where j ∈ [ℓ1] is a hop-index and Pk ∈ Parties is a party, Pi

determines whether or not they should form an onion for party Pk to be verified in the jth hop.
This is done by computing the pseudorandom function F1 on the shared key ski,k and the hop-
index j. If the output equals zero, Pi sets the checkpoint nonce y to F2(ski,k, j); adds y to the
nonce-set Yj ; samples ℓ1 + ℓ2 + 1 parties M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R uniformly at random; and

forms a checkpoint onion by running FormOnion on the empty message “⊥,” the routing path P⃗ =
(M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R), the public keys pk(P⃗ ) associated with the parties on the path, and

the sequence y⃗ = (

j−1 times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥, y,

ℓ1+ℓ2−j times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥) of metadata. See Figure 3 below for the pseudocode.

5.2 Routing onions

After forming the onions, Pi releases them into the network. From this point on, Pi acts as an
intermediary or recipient. That is, Pi first sends each of its onions to the first party on the onion’s
routing path and then waits to receive onions. In contrast to the setup for Πa, here, the honest
parties must determine when to send out batch-processed onions without relying on a global clock;
accordingly, our protocol for processing and routing tulip bulbs (i.e., onions) differs from that of
Πa.

To begin with, Pi sets counters c1, . . . , cℓ1 , j to zero.
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1 : Y1, . . . ,Yℓ1 ← ∅
2 : for (j, Pk) ∈ [ℓ1]× Parties :

3 : if F1(ski,k, j) = 0 :

4 : y ← F2(ski,k, j)

5 : Yj ← Yj .append(y)

6 : y⃗ = (

j−1 times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥, y,

ℓ1+ℓ2−j times︷ ︸︸ ︷
⊥,⊥, . . . ,⊥)

7 : M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R←$ Parties

8 : O⃗ ← FormOnion(⊥, (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R), pk(P⃗ ), y⃗)

Figure 3: Pseudocode for forming checkpoint onions

Upon receiving an onion O, Pi processes it: That is, Pi first peels the onion. Pi drops the onion
if this produces a layer key that Pi has seen before; that is, the layer key also serves as a session id
for preventing replay attacks. What happens next depends on Pi’s role:

• (Role = Recipient) If the peeled onion O′ is a message for Pi, Pi outputs it.
• (Role = Gatekeeper) If Pi is a gatekeeper for O and peeling O produces a peeled onion O′ and

a destination P ′ for O′, Pi sends O′ to P ′ right away. (Note that if Pi is the last gatekeeper
on the routing path, Pi can recover the identity of the recipient R and the onion for R only if
a sufficiently small number of mixers bruised the onion en route. See Section 4 to recall how
the onion encryption construction works and its security properties.)

• (Role = Mixer) Otherwise if Pi is a mixer for O, Pi determines whether O was received “on
time” or not (relative to Pi’s internal clock). If O arrived late, Pi bruises the onion O and
immediately sends the bruised onion O′′ to its next destination. If Pi is the last mixer on the
routing path (i.e., Pi = Mℓ1), Pi sends the peeled onion O′ to the first gatekeeper G1.

Otherwise if O is either early or on time, Pi places the peeled onion O′ (along with its next
destination P ′) in its message outbox. If processing O reveals the non-empty nonce y ̸= ⊥,
then Pi first checks whether y belongs in a set Yk. (Recall from Section 5.1 that Yk is the set
of kth layer checkpoint nonces Pi expects to see from the onions it receives.) If it does, then
Pi increments ck by one, and updates Yk to exclude y.

Upon processing sufficiently many jth layer onions (i.e., if cj ≥ τ |Yj | where 0 < τ ≤ 1 is a
system parameter), Pi sends out these onions (but not the onions for future hops) in random
order, and advances its local clock (i.e., increments j by one). Note that onions are shuffled
at honest intermediaries when they are batch-processed and sent out in random order. See
Figure 4 for the pseudocode.

6 Provable Guarantees

Recall the system parameters set forth in the Preliminaries section: χ is the constant corruption
rate. That is, we assume that the adversary can corrupt up to a χ fraction of the parties. γ
is the constant drop rate. An onion is indistinguishable if it was formed by an honest party
and either bears a message or is a checkpoint onion for verification by an honest party; for our
result on guaranteed message delivery, we assume that the adversary can drop up to γ fraction of
indistinguishable onions. (Note that onions for verification by adversarial parties are distinguishable
from other onions when the adversary observes the checkpoint values.)
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1 : c1, . . . , cℓ1 , j ← 0

2 : upon receiving O

3 : (Role, k, y,O′, P ′)← PeelOnion(sk(Pi), O)

4 : if Role = Recipient

5 : return O′

6 : if k < j

7 : if Role = Gatekeeper

8 : send O′ to P ′

9 : else // Role = Mixer

10 : O′′ ← BruiseOnion(sk(Pi), O)

11 : send O′′ to P ′

12 : else // k ≥ j

13 : place (O′, P ′) in outbox

14 : if (y ̸= ⊥) ∧ (∃k s.t. y ∈ Yk)
15 : Yk ← Yk \ {y}
16 : ck ← ck + 1

17 : upon cj ≥ τ |Yj |
18 : j ← j + 1

19 : send peeled jth layer onions out in random order

Figure 4: Pseudocode for processing onions

Recall the onion encryption parameters, ℓ1, ℓ2, θ, and the onion routing parameter, ℓ3, τ , from
Sections 4-5: ℓ1 is the number of mixers on a routing path. ℓ2 is the number of gatekeepers on
a routing path. θ is the upper bound on the fraction of onion layers that can be bruised before
the innermost onion becomes unrecoverable. ℓ3 is the expected number of onions processed at an
intermediary and hop. τ is the fraction of checkpoints needed to progress the local clock to the
next hop. See Table 1 for a quick reference to the variables.

Description

χ Fraction of nodes that A can corrupt
γ Fraction of (indistinguishable) onions that A can drop
ℓ1 = Ω(polylog λ) Number of planned mixers on a routing path
ℓ2 = Ω(polylog λ) Number of planned gatekeepers on a routing path
θ > 1

2 + χ Fraction of layers in an onion that cannot be bruised
ℓ3 = Ω(polylog λ) Expected number of onions per intermediary per hop
τ < (1− γ)(1− χ) Fraction of checkpoints needed to progress

Table 1: Table of adversary and system parameters.

We present the provable guarantees for our protocol, Πt. We show that when we set the

parameters as in Table 1, Πt delivers at least (arbitrarily close to)
(
1/2+τ−2θ

1−θ

)(
1−O

(
1

polylog λ

))
−γ

fraction of the honest parties’ messages differentially privately. For small constants χ, γ (e.g., 10%
corruption rate and 10% drop rate), this translates to a constant fraction message delivery rate.
In a more reasonable setting where at most 5% of the parties are adversarial and maliciously
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bruising onions, and with 0% drop rate, Πt guarantees a much higher message delivery rate of
over 0.85; and as the corruption rate goes to 0, the message delivery rate tends to 1. One cannot
expect much better solutions since, even in the synchronous setting, the adversary can always
bring down the message delivery rate by dropping sufficiently many onions (from known lower
bounds [DMMK18], the round complexity of anonymous protocols is at least polylogarithmic in
the security parameter, which implies that every randomly chosen routing path includes a corrupted
party with overwhelming probability).

In the proofs, we make ample use of the following fact, which is a corollary of the Azuma-
Hoeffding inequality [MU05, Theorem 13.7]: Let B be a set of marbles. Let S be a random sample
with or without replacement of the marbles, and let X be the number of red marbles in the sample S.
If the expected number of red marbles in the sample, E[X], is at least polylog in the security param-
eter, then with probability 1− e−Ω(poly(λ)), X ∈ E[X](1±O

(
(polylog(λ))−1

)
. For brevity, we write

that a random variable X is w.o.p. arbitrarily close to a value V if Pr
[
X ̸∈ V (1±O

(
(polylog λ)−1)

)]
=

e−Ω(poly(λ)).

6.1 Proof of message delivery rate

We first prove that Πt guarantees a constant fraction message delivery rate in the regime where

(1 + 2τ − 4θ)
(

1−O
(

1
polylog λ

))
> 2γ(1− θ). Specifically,

Theorem 2. A run of protocol Πt with parameters ℓ1 = Ω(polylog λ), ℓ2 = Ω(polylog λ), ℓ3 =

Ω(polylog λ), θ > 1
2 + χ, τ < 1 − γ(1 − χ) − χ, and (1 + 2τ − 4θ)

(
1−O

(
1

polylog λ

))
> 2γ(1 − θ),

delivers at least (
1/2 + τ − 2θ

1− θ

)(
1−O

(
1

polylog λ

))
− γ > 0

fraction of the honest parties’ messages with overwhelming probability.

Proof. Let j ∈ [ℓ1] be a hop-index, and Pk a party. Let Cj,k be the set of checkpoint values that Pk

expects to observe during hop j. Since the number of parties is O(poly λ), ℓ1, ℓ2 ∈ Ω(polylog λ), and
intermediate parties on onions’ routes are chosen uniformly at random, w.o.p. for all j and k, the
actual number of checkpoint values with Pk at hop j is arbitrarily close to its expectation, E[|Cj,k|].
Thus, in the remainder of the proof, w.l.o.g., we can use the expectations of all these values.

We first need to show that under the conditions of the theorem, the protocol at each party
progresses through all the hops of the protocol. Indeed, for every hop-index j ∈ [ℓ1] and honest
party Pk, w.o.p., the adversary can drop up to approximately γ fraction of the indistinguish-
able checkpoints in Cj,k (Azuma-Hoeffding inequality), plus all of the other checkpoints (the non-
indistinguishable ones that the adversarial parties are supposed to send to Pk). Thus, w.o.p., Pk is
guaranteed to eventually receive sufficiently many onions in Cj,k to progress to the next hop (i.e.,
Pk receives at least slightly less than the expected 1− γ(1−χ)−χ = (1− γ)(1−χ) fraction of the
onions in Cj,k).

An onion doesn’t make it to its final destination for one of two reasons: either the onion was
dropped by the adversary (reason 1), or it was too bruised to be reconstructed at the penultimate
step (reason 2). The adversary can maximize the total number of onions that don’t make it by not
overlapping onions that don’t make it because of reason 1 and those that don’t because of reason 2.
That is, the adversary doesn’t waste a bruising on an onion that they will ultimately drop.

The fraction of onions dropped by the adversary is bounded by γ. Next we compute the fraction
of onion that arrived too bruised at the penultimate step. To bound this number we first bound
the total number of bruises of all onions in all iterations of the protocol.
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Let us first bound the fraction of the jth layers of indistinguishable onions that Pk bruises. If
Pk is honest, they will follow the protocol and only bruise (the jth layers of) onions they receive
after observing τ fraction of the values in Cj,k. The adversary can fix the schedule so that Pk

receives checkpoints in Cj,k from the adversarial parties first. Even so, w.o.p., the number of
checkpoint values in onions formed by adversarial parties, Aj,k, is arbitrarily close to the expected
number E[Aj,k] (Azuma-Hoeffding inequality). Likewise, w.o.p., the number of checkpoint values
in indistinguishable onions, Hj,k, is arbitrarily close to the expected number E[Hj,k] (Azuma-
Hoeffding inequality). It follows that w.o.p., Pk observes at least (arbitrarily close to) (τ−χ)|Cj,k| =
(τ −χ)(Aj,k +Hj,k) checkpoints values embedded in indistinguishable onions. This translates to Pk

observing at least (arbitrarily close to) τ−χ
1−χ of the checkpoints values embedded in indistinguishable

onions “on time.”
In contrast, an adversarial party can bruise every onion layer it processes.
Thus, the total fraction of layers of indistinguishable onions that will be bruised is bounded

above by the expression: (fraction bruised when in honest parties) × (fraction of honest parties)
+ (fraction bruised while in corrupted party) × (fraction corrupted parties) i.e., w.o.p., at most
(arbitrarily close to)(

1− τ − χ

1− χ

)
(1− χ) + 1 · χ =

(
1− χ− τ + χ

1− χ

)
(1− χ) + χ

= 1− τ + χ (1)

An onion is too bruised (i.e., the innermost layer of the onion cannot be recovered) if it is bruised
too many times (i.e., for > θ fraction of the bruisable layers). Thus, from (1), the adversary can
sufficiently bruise, w.o.p., at most arbitrarily close to (1 − τ + χ)/(1 − θ) ≤ (1/2 − τ + θ)/(1 − θ)
fraction of the indistinguishable onions.

This leaves at least arbitrarily close to 1−
(
1/2−τ+θ

1−θ + γ
)

=
(
1/2+τ−2θ

1−θ

)
−γ fraction of message-

bearing onions being both “originating from honest parties” and “ultimately delivered” (Azuma-
Hoeffding inequality).

Remark on censorship. An adversary can censor a party in our protocol by delaying just that
party’s onions and causing them to be too bruised and eventually undelivered. This is the only way
to achieve anonymity: if these delayed onions were ever delivered, they would be de-anonymized.
Thus, the lack of censorship resilience is inherent to the asynchronous model. Moreover, note that
in the asynchronous model where the adversary controls all the links, censorship is always within
the adversary’s power (even in a protocol that eventually delivers all messages) since the messages
that the adversary aims to censor can be delayed until other parts of the computation are done;
so even if they are eventually delivered, the adversary can make sure that by the time they arrive,
they are no longer useful for whatever protocol the honest participants need them for. Giving the
adversary in our protocol the ability to cause them to be dropped altogether does not provide the
adversary extra power.

Here, we prove that Πt is computationally differentially private.

Theorem 3. For any constant ϵ > 0, Πt with parameters ℓ1 = Ω(polylog λ), ℓ2 = Ω(polylog λ),
ℓ3 = Ω(polylog λ), and θ > 1

2 + χ is computationally (ϵ, negl(λ))-differentially private from the
adversary who corrupts up to χ < 1

2 fraction of the parties and drops any fraction 0 ≤ γ ≤ 1 of the
indistinguishable onions.

Proof. We prove below that Πt achieves (statistical) (ϵ, negl(λ))-differential privacy for any constant
ϵ > 0 when the PRFs F1 and F2 are truly random functions, and the underlying bruisable onion
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scheme is perfectly secure.5 From Canetti’s UC composition theorem [Can01], this implies that Πt

is computationally differentially private when we use PRFs and our onion encryption scheme from
Section 4 instead.

Let σ0, σ1 be any neighboring input vectors. That is, σ0 and σ1 are identical except on the
inputs of two honest senders Pi and Pj and the “outputs” of two receivers Pu and Pv. On input
vector σ0, Pi sends a message to Pu, and honest Pj sends a message to Pv; while in σ1, this is
swapped (Pi sends to Pv, while Pj sends to Pv). For b ∈ {0, 1}, let (Ii,1, . . . , Ii,ℓ1+ℓ2 , Rb,i) be the
routing path that Pi picks for their message-bearing onion, and let (Ij,1, . . . , Ij,ℓ1+ℓ2 , Rb,j) be the
routing path that Pj picks for their message-bearing onion.

We prove the theorem by cases.

Case 1: neither Pi’s message nor Pj’s message is delivered. The only difference between the
scenario when the input vector is σ0 and the scenario when it is σ1 is the receivers for Pi and Pj ’s
challenge messages. Everything else is identically distributed. Thus, in this case, the adversarial
views for the two settings are perfectly indistinguishable since the adversary never observes the
challenge onions’ layers for Pu and Pv, i.e., ViewΠt,A(σ0) = ViewΠt,A(σ1).

Case 2: both Pi’s message and Pj’s message is delivered. In this case, ViewΠt,A(σ0) and ViewΠt,A(σ1)
are statistically indistinguishable, i.e., the total variation distance between ViewΠt,A(σ0) and ViewΠt,A(σ1)
is negligible in the security parameter, from Lemma 1 below (proven in the next subsection):

Lemma 1. Let O = (O1, . . . , Oℓ1+ℓ2+1) and O′ = (O′
1, . . . , O

′
ℓ1+ℓ2+1) be any two message-bearing

onions that were formed by honest parties that make it to their final destinations. Let P be the
origin (the honest sender) of O, and let P ′ be the origin of O′. Let i1 < · · · < iw ≤ ℓ1 be the
hop-indices where O shuffles with other onions (i.e., arrives on time or early at an honest party),
and let i′1 < · · · < i′w′ ≤ ℓ1 be the moments when O shuffles with other onions. (1) W.o.p.,
there exists a positive constant c > 0 such that |I| = |{i1, . . . , iw} ∩ {i′1, . . . , i′w′}| ≥ cℓ1. (2) Let
r = max I = max{i1, . . . , iw} ∩ {i′1, . . . , i′w′} be the last time that both O and O′ shuffle. Given the
unordered set {Or, O

′
r}, the adversary can correctly match P to Or and P ′ to O′

r with probability
only negligibly greater than 1/2.

Case 3: Pi’s message or Pj’s message is delivered. In this case, ViewΠt,A(σ0) and ViewΠt,A(σ1) are
differentially private; in other words, Pr

[
ViewΠt,A(σ0) ∈ V

]
≤ eϵ Pr

[
ViewΠt,A(σ1) ∈ V

]
+negl(λ) for

every set V of views. W.l.o.g., we assume that Pi’s message makes it to its recipient Rb,i, but Rb,j

does not receive Pj ’s message. Let r be the final hop at which O shuffles with other onions. The
indistinguishable onions, including the message-bearing onion O from Pi to Rb,i, are sufficiently
shuffled together by hop r by Lemma 2 below:

Lemma 2. Let O = (O1, . . . , Oℓ1+ℓ2+1) be any indistinguishable onion. If O shuffles with other
onions a polylog (in the security parameter) number of times before some hop r, then given Or and
any rth layer indistinguishable onion O′

r in the adversarial view, the adversary can correctly guess
which is the evolved version of O1 with probability only negligibly greater than one-half.

Since the adversary cannot determine the origin of any indistinguishable onion at hop r (from
the above claim), the only information the adversary has to help determine the input setting
is the volumes of onions received by each recipient. W.o.p., the number n of indistinguishable

5That is, we assume that the adversary cannot determine any meaningful information “hidden behind an honest
party,” e.g., the adversary cannot determine the message or the rest of the routing path of an onion that goes into
an honest intermediary; see Section 3.3.1 for more details. Further, we assume that the gatekeepers always drop an
onion with too many bruises (> θℓ1) since w.o.p., at least one of the ℓ2 = Θ(polylog λ) gatekeepers in each onion is
honest.
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checkpoint onions for either Pu or Pv is arbitrarily close to the expected number E[n] since E[n]
is polylogarithmic in the security parameter (Azuma-Hoeffding inequality). Seen this way, the
number of indistinguishable checkpoint onions for Pu, which we denote by nu, and the number of
indistinguishable checkpoint onions for Pv, which we denote by nv, are Binomial random variables
with n trials and bias 1

2 , i.e., nu, nv ← Binomial(n, 12). Thus, the numbers of messages received
are obscured by a Binomial Mechanism which, for n = Ω(polylog λ), was shown [DKM+06] to
be (ϵ/2, negl(λ))-differentially private for any positive constant ϵ. It follows from the composition
theorem for differential privacy that Πt achieves (computational) (ϵ, negl(λ))-differential privacy for
any positive constant ϵ.

Recall neighboring input vectors: σ0 and σ1 are neighboring if they are the same except for
a pair of messages to be sent from honest senders and received by honest recipients. We note
that, from the composition theorem for differential privacy, Theorem 3 holds even if we loosen this
notion. Specifically,

Corollary 1. Let the swap-distance d(σ0, σ1) between σ0 and σ1 be the length (minus one) of
the shortest sequence of input vectors (σ0, σ0→1,1, . . . , σ0→1,d = σ1). Consider Πt with parameters
ℓ1 = Ω(polylog λ), ℓ2 = Ω(polylog λ), ℓ3 = Ω(polylog λ), and θ > 1

2 + χ. For any constant swap-
distance d ≥ 0, any small constant ϵ > 0, any (computationally-bounded) adversary A who corrupts
up to χ < 1

2 fraction of the parties, any pair of inputs σ0 and σ1 such that d(σ0, σ1) ≤ d, and any

set V of adversarial views, Pr
[
ViewΠt,A(σ0) ∈ V

]
≤ eϵ Pr

[
ViewΠt,A(σ1) ∈ V

]
+ negl(λ).

6.1.1 Proofs of lemmas.

We provide proofs for the lemmas supporting the proof of Theorem 3. As in the proof of Theorem 3,
we will assume that Πt uses the idealized counterparts of the cryptographic primitives used in the
protocol.

of Lemma 1. By construction, the intermediaries I1, . . . , Iℓ1 are randomly sampled from the set of
all participants. Thus if the recipient for O receives the message embedded in the onion, then this
implies that the message (in encrypted form) traversed the path, I⃗ = (I1, . . . , Iℓ1), that consists of
many honest parties. More precisely, with overwhelming probability, the fraction of honest parties
in I⃗ is a constant value arbitrarily close to 1 − χ where χ denotes the corruption rate (Azuma-
Hoeffding inequality).

From the threshold security property of the onion encryption scheme, the recipient can receive
Oℓ1+ℓ2+1 only if strictly more than 1

2 + χ fraction of the parties in I⃗ passed the onion on without

bruising it. Since at most (an arbitrarily close to) χ fraction of the parties in I⃗ are adversarial,
the fraction of the parties in I⃗ that are honest and sent O shuffled among other onions is strictly
greater than one-half. With overwhelming probability, each time the onion O mixes, it does so with
a number of onions that is arbitrarily close to the expected polylogarithmic value (Azuma-Hoeffding
inequality).

Following a similar argument, O′ also mixed with a polylog number of onions, some constant
fraction > 1

2 of the times (in I⃗ ′). Thus, by the pigeonhole principle, both O and O′ were mixed
together with a polylog number of onions a polylog number of times before the rth hop. From
Lemma 2 (above with proof below), it is possible to show that by the rth hop, the adversary “loses
track” of which onion is which: given the unordered set {Or, O

′
r}, the adversary can correctly match

P to Or and P ′ to O′
r with probability only negligibly greater than that of a random guess.
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of Lemma 2. This is a generalization of the proof of mixing in the synchronous setting without
any adversarial parties [ALU18, Theorem 10]. We prove that by the rth hop, the adversary “loses
track of where O is;” that is, given Or and any rth layer indistinguishable onion O′

r, the adversary
can correctly guess which is the evolved version of O1 with probability only negligibly greater than
one-half. We show this to be true even when the challenger reveals some of the times that O mixes
before the rth hop. Specifically, the challenger reveals all the times is,1 < ie,1 < is,2 < ie,2 < · · · <
is,L < isL ≤ r such that each “cycle” (is,j , . . . , ie,j) starts and ends with “good hops” (hops in
which O mix with other onions) and having some constant number of “bad hops” (hops in which
O doesn’t mix in between these hops).

For any cycle (is,j , . . . , ie,j), the challenger essentially tells the adversary that O is in the set
Os,j of onions that mix at hop is,j and then doesn’t mix again until hop ie,j . The adversary has
some idea of which onion in Os,j is O, represented by a probability distribution over the space Os,j .
(Note that some of these probabilities may be zero.) Let Os,j,1,Os,j,2,Os,j,3, |Os,j,1| = |Os,j,2| =
|Os,j,3| = 1

3 |Os,j | be a partition of the onions in Os,j such that Os,j,1 is the set of onions in Os,j that
are most likely to be O (according to the adversary’s belief), Os,j,3 is the set of onions in Os,j that
are the least likely to be O, and Os,j,2 is the set of all other onions in Os,j . For k ∈ [3], let Zs,j,k

and zs,j,k be, respectively, the probability of the most likely onion in Os,j,k and the probability of
the least likely onion in Os,j,k; so Zs,j,1 ≥ zs,j,1 ≥ Zs,j,2 ≥ zs,j,2 ≥ Zs,j,3 ≥ zs,j,3.

The adversary can corrupt fewer than a constant fraction of the parties, and we will assume
w.l.o.g. that the adversary corrupts as many parties that they can. Thus, it follows that each party
(at their own local) time ie,j receives arbitrarily close to the expected number of onions from each
of the sets Os,j,1,Os,j,2,Os,j,3 (Lemma 3; below). Thus, the probabilities Ze,j,1, ze,j,3 of the most
likely and least likely onions in Oe,j (coming out mixed at hop ie,j) is bounded as follows: for any
constant ϵ > 0, Ze,j,1 ≤ 1+ϵ

3

∑3
k=1 Zs,j,k and ze,j,1 ≥ 1−ϵ

3

∑3
k=1 zs,j,k. It follows that the “gap”

Ge,j = Ze,j,1 − ze,j,3 between these probabilities is at most half of the gap Gs,j = Zs,j,1 − zs,j,3
between the most likely and least likely probabilities for the prior cycle. From the pigeonhole
principle, the number of cycles, k, is polylog in the security parameter. This proves that the
difference in probabilities becomes negligible by hop ie,L ≤ r.

Lemma 3. (In the proof of Lemma 2) w.o.p., each honest party at hop ie,j receives arbitrarily close
to the expected number of onions from each of the sets Os,j,1, Os,j,2, and Os,j,3.

of Lemma 3. Let Oall be the set of all onions that mix at hop is,j . The onion O ∈ Oall mixes with
a polylog (in the security parameter) onions at one of the honest parties. From Azuma-Hoeffding
inequality, w.o.p., |Oall| = O(N polylog λ) where N denotes the the number of parties, and λ denotes
the security parameter.

Recall from the proof of Lemma 2 that Os,j is the set of onions in Oall that never mix between
hops is,j and ie,j , exclusively, because they always either route through corrupted parties or arrive
too late at honest ones. Since both the corruption rate and the number of hops between is,j and ie,j
are at most constant terms, it follows that |Os,j,1| = |Os,j,2| = |Os,j,3| = 1

3 |Os,j | = O(N polylog λ).
Let P be any honest party at hop ie,j . For each 1 ≤ k ≤ 3, each onion in Os,j,k routes to P

with fixed probability 1
N regardless of where the other onions go. Thus, the number Uk of onions

that route from Os,j,k to P can be expressed as a binomial random variable with expectation

E =
|Os,j |
3N = polylog λ. Again using the Azuma-Hoeffding inequality, it follows that Uk is arbitrarily

close to its expected value E w.o.p.
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7 Conclusion and Open Problems

We present the first provably anonymous communication protocol in an asynchronous environment.
Our protocol guarantees differential privacy of the sources and destinations information of the
messages under a strong adversity model. The adversary fully controls the schedule of delivery
of all messages, can corrupt a constant fraction of the parties, and drop a constant fraction of all
messages.

While our work proves the possibility of anonymity in a fully asynchronous network, many
further question were left open for further research. In particular we are interested in stronger
privacy models than just differential privacy, and in anonymous bidirectional communication in a
dynamic network with node churn.

Our work also raised interesting questions regarding the inherent vulnerability of asynchronized
communication to adversarial attacks and inherent gaps in security between synchronized and
asynchronized models.
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A Full proof of Theorem 1

A.1 Reductions for Hybrid0, . . . ,Hybrid7

Hybrid0, . . . ,Hybrid7 convert the “outermost layers” of the challenge onion in Experiment 0 to those
in Experiment 1.

Lemma 4. Hybrid0 and Hybrid1 are indistinguishable.

Proof. Assume that there exists a p.p.t. adversary A that can distinguish whether it is in Hybrid0
or Hybrid1 with non-negligible (in the security parameter) advantage. We construct the following
reduction B that breaks the CCA2 security of the underlying cryptosystem in that case. B plays
the challenger for A and the adversary in the CCA2 security game against its challenger C.

1. During setup, A sends the names of the honest parties Pm, Pg, and Pr, along with the public
keys of the adversarial parties pk(Bad) to B.

2. B generates key pairs for Pg and Pr; that is, B obtains (pk(Pg), sk(Pg)) by running KeyGen(Pg)
and (pk(Pr), sk(Pr)) by running KeyGen(Pr). C supplies the public key pk(Pm) of Pm, which
B forwards to A along with the public keys pk(Pg), pk(Pr).

3. During the first query phase, whenever A sends an onion O = ((E,B), C, S) to be peeled
(resp. bruised) on behalf of Pm, B sends the ciphertext portion E to C to be decrypted. Once
C replies with the layer key k, B completes the PeelOnion (resp. BruiseOnion) algorithm on O
and replies to A with the output. (For queries to peel or bruise on behalf of Pg and Pr, B
just runs PeelOnion or BruiseOnion.)
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4. During the challenge phase, A sends to B the onion parameters: the message m and the
routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) such that Pm = Mi1 and Pg = Gj=i2−ℓ1 .

5. B picks the layer keys k1, . . . , kℓ and sends the challenge messages m0 = ki1 and m1 = 0 to
C. Once B obtains the ciphertext cb ← Enc(pk(Mi1 ,mb)) from C, it forms the challenge onion
O1 by following the FormOnion procedure, except in forming the i1

th onion layer, B uses cb
in place of the ciphertext Ei1 . B sends O1 to A.

6. Once again, A is allowed to query onions. B deals with these queries in the same way as
before.

7. If A guesses Hybrid0, B guesses 0. Otherwise if A guesses Hybrid1, B guesses 1.
The reduction works because B’s advantage is the same as A’s, and the reduction runs in polynomial
time.

Lemma 5. Hybrid1 and Hybrid2 are indistinguishable.

Proof. Assume that there is a p.p.t. adversary A that can distinguish between being in Hybrid1 or
Hybrid2. We construct the following reduction B that can win the collision resistance game with
non-negligible advantage. B plays the challenger for A and the adversary in the collision resistance
game against its challenger C.

1. During setup, B interacts only with A; it does not interact with C. A sends the names of
the honest parties Pm, Pg, Pr and the public portions pk(Bad) of the keys belonging to the
adversarial parties to B.

2. B generates the keys for the honest parties and sends the public portions of the generated
keys to A.

3. During the first query phase, B still interacts only with A. Whenever A sends B a query to
peel (resp. bruise) an onion O on behalf of an honest party P , B responds with the output of
PeelOnion (resp. BruiseOnion) on O and P ’s secret key.

4. During the challenge phase, A sends to B the onion parameters: the message m and the
routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) such that Pm = Mi1 and Pg = Gj=i2−ℓ1 .

5. B picks k1, . . . , kℓ and obtains Ei1 by encrypting the dummy key 0 under pk(Mi1). B then
follows the FormOnion procedure to form O1, except B uses E′

i1
instead of an encryption of

ki1 in the i1
th onion layers O⃗i1 ; the same way as both Hybrid1 and Hybrid2 do. B sends O1 to

A.
6. Once again, A is allowed to query onion. If A ever produces an onion O = ((Ei1 , B), C, S) ̸∈

O⃗i1 that peels to an actual onion O′ ̸= ⊥, then A has found a collision in the hash function.
B forwards the collision to C (and wins in this case).

7. Finally, A outputs a guess (either Hybrid1 or Hybrid2).
The reduction works because A’s advantage is the probability of the event that A produces an an
onion O = ((Ei1 , B), C, S) ̸∈ O⃗i1 that peels to an actual onion O′ ̸= ⊥; this is also B’s advantage.
Moreover, the reduction runs in polynomial time.

Lemma 6. Hybrid2 and Hybrid3 are indistinguishable.

Proof. Assume that there exists a p.p.t. adversary A that can distinguish whether it is in Hybrid2
or Hybrid3 with non-negligible (in the security parameter) advantage. We construct the following
reduction B. B plays the role of the challenger for A and that of the adversary in the PRP security
game against the challenger C.

1. During setup, B interacts only with A; it does not interact with C. A sends the names of
the honest parties Pm, Pg, Pr and the public portions pk(Bad) of the keys belonging to the
adversarial parties to B.
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2. B generates the keys for the honest parties and sends the public portions of the generated
keys to A.

3. During the first query phase, B still interacts only with A. Whenever A sends B a query to
peel (resp. bruise) an onion O on behalf of an honest party P , B responds with the output of
PeelOnion (resp. BruiseOnion) on O and P ’s secret key.

4. During the challenge phase, A sends to B the onion parameters: the message m and the
routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) such that Pm = Mi1 and Pg = Gj=i2−ℓ1 .

5. B forms the inner onion layers O⃗ℓ, . . . , O⃗i1+1 by following the FormOnion algorithm but de-
viates from the algorithm at the i1

th layers O⃗i1 : First, B forms the ciphertext Ei1 by en-
crypting the dummy key 0 under the public key of Mi1 . Next, B sends to C: the blocks
((Mi1+1, Ei1+1), Bi1+1,1, . . . , Bi1+1,ℓ−i1), the content Ci1+1, and the i1 + 1st layer Ti1+1 of
the sepal for the first processor on the path. C replies with (Bi1,1, . . . , Bi1,ℓ−i1+1, Ci1 , Ti1),
which are obtained either by applying either a truly random permutation or the pseudo-
random one keyed by some key ki1 unknown to B. B sets each onion variant Oi1,k ∈ O⃗i1

to be ((Ei1 , Bi1,1, . . . , Bi1,ℓ−i1+1), Ci1 , (Ti1,k+1, . . . , Ti1,ℓ1−i1−k+1)). B forms the outer layers

O⃗i1−1, . . . , O⃗1 by following the FormOnion procedure, by building on (Hi1 , Ci1 , Si1). B sends
O1 to A.

6. Once again, A is allowed to query onions. The first time A asks to have an onion Oi1,k ∈ O⃗i1

peeled (or bruised), the challenger responds with its peeled version Oi1+1,k (resp. Oi1+1,k+1).

Whenever, A queries an onion O = ((Ei1 , B), C, S) ̸∈ O⃗i1 , B responds with ⊥. For all other
queries, B deals with them in the same way as before.

7. If A guesses Hybrid2, B guesses that the challenge blocks are pseudorandom. Otherwise if A
guesses Hybrid3, B guesses that the blocks are truly random.

The reduction works because B’s advantage is the same as A’s, and the reduction runs in polynomial
time.

Lemma 7. Hybrid5 and Hybrid6 are indistinguishable.

Proof. The reduction is essentially the same as the proof that Hybrid2 and Hybrid3 are indistin-
guishable. The reduction differs only in step 6.

Assume that there exists a p.p.t. adversary A that can distinguish whether it is in Hybrid2
or Hybrid3 with non-negligible (in the security parameter) advantage. We construct the following
reduction B. B plays the role of the challenger for A and that of the adversary in the PRP security
game against the challenger C.

1. During setup, B interacts only with A; it does not interact with C. A sends the names of
the honest parties Pm, Pg, Pr and the public portions pk(Bad) of the keys belonging to the
adversarial parties to B.

2. B generates the keys for the honest parties and sends the public portions of the generated
keys to A.

3. During the first query phase, B still interacts only with A. Whenever A sends B a query to
peel (resp. bruise) an onion O on behalf of an honest party P , B responds with the output of
PeelOnion (resp. BruiseOnion) on O and P ’s secret key.

4. During the challenge phase, A sends to B the onion parameters: the message m and the
routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) such that Pm = Mi1 and Pg = Gj=i2−ℓ1 .

5. B forms the inner onion layers O⃗ℓ, . . . , O⃗i1+1 by following the FormOnion algorithm (on in-
put: the dummy message content ⊥ and the truncated path (M1, . . . ,Mi1 , ⊥⃗) and associated
sequence (y1, . . . , yi1 , ⊥⃗) of metadata) but deviates from the algorithm at the i1

th layers O⃗i1 .
First, B forms the ciphertext Ei1 by encrypting the dummy key 0 under the public key of
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Mi1 . Next, B sends to C: the blocks ((Mi1+1, Ei1+1), Bi1+1,1, . . . , Bi1+1,ℓ−i1), the content
Ci1+1, and the i1 + 1st layer Ti1+1 of the sepal for the first processor on the path. C replies
with (Bi1,1, . . . , Bi1,ℓ−i1+1, Ci1 , Ti1), which are obtained either by applying either a truly ran-
dom permutation or the pseudorandom one keyed by some key ki1 unknown to B. B sets each
onion variant Oi1,k ∈ O⃗i1 to be ((Ei1 , Bi1,1, . . . , Bi1,ℓ−i1+1), Ci1 , (Ti1,k+1, . . . , Ti1,ℓ1−i1−k+1)).

B forms the outer layers O⃗i1−1, . . . , O⃗1 by following the FormOnion procedure, by building on
(Hi1 , Ci1 , Si1). B sends O1 to A.

6. Once again, A is allowed to query onions. B handles the first query to peel or bruise an onion
Oi1,k ∈ O⃗i1 by running FormOnion on the message m, the routing path (⊥⃗,Mi1+1, . . . , R), and

the associated sequence of metadata (⊥⃗, yi1+1, . . . , yℓ−1); B replies with the onion Oi1+1,k for
the i1 + 1st processor on the routing path with k bruises, see Hybrid5. Whenever, A queries
an onion O = ((Ei1 , B), C, S) ̸∈ O⃗i1 , B responds with ⊥. All other queries are handled in the
same manner as before.

7. If A guesses Hybrid5, B guesses that the challenge blocks are truly random. Otherwise if A
guesses Hybrid6, B guesses that the blocks are pseudorandom.

The reduction works because B’s advantage is the same as A’s, and the reduction runs in polynomial
time.

Lemma 8. Hybrid6 and Hybrid7 are indistinguishable.

Proof. The reduction is essentially the same as the proof that Hybrid0 and Hybrid1 are indistin-
guishable. The reduction differs only in steps 5 and 6.

Assume that there exists a p.p.t. adversary A that can distinguish whether it is in Hybrid6
or Hybrid7 with non-negligible (in the security parameter) advantage. We construct the following
reduction B. (B is the challenger for A, but the adversary in the CCA2 security game against a
challenger C.)

1. During setup, A sends the names of the honest parties Pm, Pg, and Pr, along with the public
keys of the adversarial parties pk(Bad) to B.

2. B generates key pairs for Pg and Pr; that is, B obtains (pk(Pg), sk(Pg)) by running KeyGen(Pg)
and (pk(Pr), sk(Pr)) by running KeyGen(Pr). C supplies the public key pk(Pm) of Pm, which
B forwards to A along with the public keys pk(Pg), pk(Pr).

3. During the first query phase, whenever A sends an onion O = ((E,B), C, S) to be peeled
(resp. bruised) on behalf of Pm, B sends the ciphertext portion E to C to be decrypted. Once
C replies with the layer key k, B completes the PeelOnion (resp. BruiseOnion) algorithm on O
and replies to A with the output. (For queries to peel or bruise on behalf of Pg and Pr, B
just runs PeelOnion or BruiseOnion.)

4. During the challenge phase, A sends to B the onion parameters: the message m and the
routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) such that Pm = Mi1 and Pg = Gj=i2−ℓ1 .

5. B picks the layer keys k1, . . . , kℓ and sends the challenge messages m0 = ki1 and m1 = 0 to
C. Once B obtains the ciphertext cb ← Enc(pk(Mi1 ,mb)) from C, it forms the challenge onion
O1 by running FormOnion (on input: the dummy message content ⊥ and the truncated path
(M1, . . . ,Mi1 , ⊥⃗) and associated sequence (y1, . . . , yi1 , ⊥⃗) of metadata), except in forming the
i1

th onion layer, B uses cb in place of the ciphertext Ei1 . B sends O1 to A.
6. Once again, A is allowed to query onions. B handles the first query to peel or bruise an onion

Oi1,k ∈ O⃗i1 by running FormOnion on the message m, the routing path (⊥⃗,Mi1+1, . . . , R), and

the associated sequence of metadata (⊥⃗, yi1+1, . . . , yℓ−1); B replies with the onion Oi1+1,k for
the i1 + 1st processor on the routing path with k bruises, see Hybrid5. All other queries are
handled in the same manner as before.
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7. If A guesses Hybrid6, B guesses 1. Otherwise if A guesses Hybrid7, B guesses 0.
The reduction works because B’s advantage is the same as A’s, and the reduction runs in polynomial
time.

A.2 Reductions for Hybrid8, . . . ,Hybrid15

Hybrid8, . . . ,Hybrid15 convert the “middle layers” of the challenge onion in Hybrid7 to those in
Experiment 1. Thus, the reductions for these hybrids are essentially the same arguments as the
reductions for Hybrid0, . . . ,Hybrid7.

A.3 Reductions for Hybrid16, . . . ,Hybrid18

Hybrid16, . . . ,Hybrid18 convert the “innermost layers” of the challenge onion in Hybrid15 to those in
Experiment 1.

Lemma 9. Hybrid15 and Hybrid16 are indistinguishable.

Proof. The reduction is similar to the proof that Hybrid6 and Hybrid7 are indistinguishable. The
main difference is that, here, the penultimate layer is pseudorandom or truly random as opposed
to the ith1 layer.

Assume that there exists a p.p.t. adversary A that can distinguish whether it is in Hybrid15
or Hybrid16 with non-negligible (in the security parameter) advantage. We construct the following
reduction B. B plays the role of the challenger for A and that of the adversary in the PRP security
game against the challenger C.

1. During setup, B interacts only with A; it does not interact with C. A sends the names of
the honest parties Pm, Pg, Pr and the public portions pk(Bad) of the keys belonging to the
adversarial parties to B.

2. B generates the keys for the honest parties and sends the public portions of the generated
keys to A.

3. During the first query phase, B still interacts only with A. Whenever A sends B a query to
peel (resp. bruise) an onion O on behalf of an honest party P , B responds with the output of
PeelOnion (resp. BruiseOnion) on O and P ’s secret key.

4. During the challenge phase, A sends to B the onion parameters: the message m and the
routing path P⃗ = (M1, . . . ,Mℓ1 , G1, . . . , Gℓ2 , R) such that Pm = Mi1 and Pg = Gj=i2−ℓ1 .

5. B forms the challenge onion O1 by running FormOnion on the dummy message content ⊥ and
the truncated path (M1, . . . ,Mi1 , ⊥⃗) and associated sequence (y1, . . . , yi1 , ⊥⃗) of metadata, see
Hybrid4. B sends O1 to A.

6. Once again, A is allowed to query onions. B handles the first query to peel or bruise the
challenge onion as follows:

• B forms the outer layers O⃗1, . . . , O⃗i1 by following the FormOnion procedure, using ⊥ as
the message, (M1, . . . ,Mi1 , ⊥⃗) as the routing path, and (y1, . . . , yi1 , ⊥⃗) as the sequence
of metadata.

• B forms the middle layers O⃗i1+1, . . . , O⃗i2 by following the FormOnion algorithm, using ⊥
as the message, (⊥⃗,Mi1+1, . . . , Gj , ⊥⃗) as the routing path, and (⊥⃗, yi1+1, . . . , yi2 , ⊥⃗) as
the sequence of metadata. To peel (resp. bruise) the ithi challenge onion, B returns the
unbruised (resp. once bruised) version of the i + 1th challenge onion. However, B keeps
track of the total number of bruises that have accumulated thus far.

• B deviates from the FormOnion algorithm in forming the inner layers O⃗i2+1, . . . , O⃗ℓ−1:
First, B forms the dummy sepal blocks (Tℓ,d+1, . . . , Tℓ,ℓ1+1), the content Cℓ, and the
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ciphertext Eℓ by following the algorithm and sends these blocks to C. C replies with
(Bℓ−1,1, Cℓ−1, (Tℓ−1,d+1, . . . , Tℓ−1,ℓ1+1)), which are obtained either by applying either a
truly random permutation or the pseudorandom one keyed by some key K unknown to
B. B forms the ciphertext Eℓ−1 by following the FormOnion procedure and sets each “too
bruised” onion variant Oℓ−1,k ∈ O⃗ℓ−1 to be ((Eℓ−1, Bℓ−1,1), Cℓ−1, (Tℓ−1,k+1)). B forms

the “too bruised” layers in O⃗ℓ−2, . . . , O⃗i2+1 by following the FormOnion procedure, by
building on the ℓ − 1st layers, and returns the onion layer with the correct number of
bruises.

• Whenever, A queries an onion O = ((Ei1 , B), C, S) ̸∈ O⃗i1 , B responds with ⊥.
Whenever, A queries an onion O = ((Ei2 , B), C, S) ̸∈ O⃗i2 , B responds with ⊥. All other
queries are handled in the same manner as before.

7. If A guesses Hybrid15, B guesses pseudorandom. Otherwise if A guesses Hybrid16, B guesses
truly random.

The reduction works because B’s advantage is the same as A’s, and the reduction runs in polynomial
time.

Finally, the proof that Hybrid17 and Hybrid18 are indistinguishable is the same argument as
above except that, in step 6, all of the sepal blocks are dummy blocks, and the onion returned by
B (on behalf of Gj) is unbruised.
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