
Warning! Timeout 𝑇 Cannot Protect You From Losing Coins
pipeSwap: Forcing the Early Release of a Secret for Atomic Swaps Across All Blockchains

Peifang Ni, Anqi Tian, Jing Xu

ABSTRACT

Atomic cross-chain swap, which allows users to exchange coin-
s securely, is critical functionality to facilitate inter-currency
exchange and trading. Although most classic atomic swap
protocols based on Hash Timelock Contracts have been ap-
plied and deployed in practice, they are substantially far from
universality due to the inherent dependence of rich script-
ing language supported by the underlying blockchains. The
recently proposed Universal Atomic Swaps protocol [IEEE
S&P’22] takes a novel path to scriptless cross-chain swap, and
it ingeniously delegates scripting functionality to cryptograph-
ic lock mechanisms, particularly the adaptor signature and
timed commitment schemes designed to guarantee atomicity.
However, in this work, we discover a new form of attack called
double-claiming attack, such that the honest user would lose
coins with overwhelming probability and atomicity is directly
broken. Moreover, this attack is easy to carry out and can be
naturally generalized to other cross-chain swap protocols as
well as the payment channel networks, highlighting a general
difficulty in designing universal atomic swap.

We present pipeSwap, a cross-chain swap protocol that
satisfies both security and practical universality. To avoid
transactions of the same frozen coins being double-claimed to
violate the atomicity property, pipeSwap proposes a novelly
designed paradigm of pipelined coins flow by using two-
hop swap and two-hop refund techniques. pipeSwap achieves
universality by not relying on any specific script language,
aside from the basic ability to verify signatures. Furthermore,
we analyze why existing ideal functionality falls short in
capturing the atomicity property of Universal Atomic Swaps,
and define for the first time ideal functionality to guarantee
atomicity. In addition to a detailed security analysis in the
Universal Composability framework, we develop a proof-of-
concept implementation of pipeSwap with Schnorr/ECDSA
signatures, and conduct extensive experiments to evaluate the
overhead. The experimental results show that pipeSwap can
be performed in less than 1.7 seconds and requires less than
7 kb of communication overhead on commodity machines,
which demonstrates its high efficiency.

KEYWORDS

Atomic Swaps, Strong Atomicity, Universality, Pipelined
Coins Flow, Two-Hop Swap/Refund.

1 INTRODUCTION

With numerous and diverse blockchain systems coexisting to-
day, it is impossible to envision each one evolving in isolation,
especially given the explosive development of cryptocurren-
cies such as Bitcoin [29], Ethereum[46], and Ripple[39]. This
proposes an extremely urgent demand of deploying robust

currency payments across any blockchain based cryptocur-
rency. The atomic cross-chain swap protocol [32] is built on
top of the underlying blockchains and introduced for securely
exchanging coins between two distrusting users, who respec-
tively hold coins in two distinct blockchains. The fundamental
security property atomicity guarantees that the honest user
cannot lose coins. Conventionally, the timeout parameter 𝑇 ,
which is predefined specifically for each user, serves as the
crux of describing atomicity. In slightly more detail, either
the honest user obtains its desired coins before its timeout
𝑇 , or its frozen coins are refunded after timeout 𝑇 .

A Desideratum for Achieving Atomic Cross-Chain
Swap in the Absence of Custom Scripts. Most clas-
sic efforts focus on studying the Hash Timelock Contracts
(HTLC)-style solutions [10, 11, 19], which use the rich script-
ing languages supported by underlying blockchains to de-
scribe when and how the user can claim the counterparty’s
locked coins or refund its own locked coins. Unsurprisingly,
this design form is incompatible with most existing cryp-
tocurrencies (e.g., Bitcoin [29], Monero [25], Mimblewimble
[34], Ripple [39] and Zcash [38]) and far from the universal
solution. In addition, it raises a privacy concern due to the
using of timelock functionality, which makes the transactions
easier to be distinguished from the general ones [1], especially
for blockchains having already achieved privacy [38]. Indeed,
when introducing a new cryptocurrency or even among the
existing ones, relying on specific scripting functionality would
lead to fatal obstacles for communications.

Therefore, it is not only of practically relevant, but also
theoretically interesting to investigate what are the minimum
scripting functionalities necessary to design secure cross-chain
swaps. Noticeably, instead of relying on traditional on-chain
scripting to denote locked coins and their corresponding un-
lock conditions, Universal Atomic Swaps [42] make the best
use of adaptor signature scheme [3] and verifiable timed dis-
crete logarithm (VTD) [43] to become the closest solution for
a universal proposal. Specifically, the witness extractability
of adaptor signatures facilitates a successful swap, where
once the user holding witness 𝑦 posts a valid swap transac-
tion, the witness 𝑦 is subsequently released to the other user
to complete its swap operation. Additionally, VTD ensures
that in the event of a failed swap, the locked coins are re-
funded to their original owner after a predefined timeout 𝑇 .
Universal Atomic Swaps take a novel path to scriptless cross-
chain swap and thus become arguably the best candidate for
implementing cryptocurrency exchange.

Is Timeout 𝑇 Really Secure for Honest User? Nev-
ertheless, the timeout 𝑇 can potentially violate the atom-
icity property. Herein we present a new attack termed the
double-claiming attack. It is noteworthy that in the context
of Universal Atomic Swaps [42], the predefined timeout 𝑇1



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

is intentionally designed for user 𝑃1 to securely refund its
frozen coins (i.e., user 𝑃1 obtains the full secret key of its
frozen address at timeout 𝑇1), but timeout 𝑇1 cannot deprive
the right of user 𝑃0 to post its swap transaction (i.e., the wit-
ness 𝑦 is still valid). As a result, the timeout 𝑇1 will become
a flashpoint for security issues. For instance, when user 𝑃1

posts a refund transaction after timeout 𝑇1, the malicious
𝑃0 can still release its swap transaction to make 𝑃1’s frozen
coins double-claiming. Unfortunately, if user 𝑃0’s swap trans-
action is accepted and finally confirmed by the underlying
blockchain, honest user 𝑃1 will neither successfully enter into
Swap Complete Phase nor prevail in its Swap Timeout Phase,
ultimately resulting in the loss of coins. Even worse, the
double-claiming attack is extremely easy to carry out in all
the network models (cf. Section 3 for detailed discussions).

The above issues bring the fundamental challenge in design-
ing atomic cross-chain swaps: the HTLC-style proposals put
severe obstacles to achieving universality, whereas Universal
Atomic Swaps protocol is susceptible to the double-claiming
attack mentioned above. This naturally raises a question:

“Can we design a cross-chain swap protocol to achieve the
best of both security and universality?”

1.1 Our Contributions

In this work, we contribute to the rigorous understanding
of atomic cross-chain swaps and answer the aforementioned
question affirmatively by presenting a new protocol called
pipeSwap. The contributions are outlined below:

Figure 1: The pipelined life-cycle of swapped coins

∙ Double-claiming attack. We analyze the security of Univer-
sal Atomic Swaps [42], and discover a new form of attack
called double-claiming attack, which can directly break
atomicity with overwhelming probability, i.e., the proto-
col will end with the adversarial user both obtaining its
counterparty’s frozen coins and refunding its own frozen
coins. We argue that this attack is easy to carry out and
naturally generalizes to other cross-chain swap protocols
as well as the payment channel networks [4, 20, 26, 44],
since the attack exploits the fact that the frozen coin can
be claimed by both its original owner and the intended
receiver after its timeout 𝑇 .
∙ The stronger atomicity. We analyze why the existing secu-
rity model falls short in capturing the security of Universal
Atomic Swaps, and observe that the ideal functionality
ℱB

𝑠𝑤𝑎𝑝 (Fig.3 in [42]) cannot cope with the condition that
both users simultaneously initiate their respective 𝑏𝑢𝑦 and
𝑎𝑏𝑜𝑟𝑡 requirements. This motivates the definition of ideal

functionality to guarantee stronger atomicity. Informally,
such an ideal functionality states that each frozen coin can
only be claimed by a swap transaction if the valid swap
transaction can be generated before the timeout; otherwise,
it can only be refunded.
∙ pipeSwap. Inspired by a novel paradigm of pipelined coins
flow, we present a new atomic cross-chain swap protocol
called pipeSwap. As depicted in Fig.1, each frozen coin
is viewed as a drop of water and flows along the one-way
arrows. Informally, for each frozen coin, it can only flow
to its intended receiver via the green pipe if the swap
completes successfully, otherwise, once the procedure en-
ters into Timeout Phase, it definitely flows to its original
owner via the red pipe. By this way, if the frozen coin
has been claimed by a valid swap transaction, it will no
longer continue to flow forward. Instead, after timeout 𝑇 ,
the frozen coin will never rewind to its intended receiver.
Thus pipeSwap satisfies the definition of stronger atomicity.
Moreover, pipeSwap is universal, that is, the protocol does
not require any specific script language, apart from the ba-
sic capability to verify signatures. Additionally, pipeSwap
preserves fungibility, which means that an observer cannot
distinguish a swap transaction from a standard one, own-
ing to the fact that the on-chain transactions in pipeSwap
are identical to standard one-to-one transactions. As a
byproduct of our approach, the core idea of pipelined coins
flow can be leveraged to design secure multi-hop swaps
(including the multi-hop payments). The comparisons with
prior approaches are shown in TABLE 1.
∙ Implementation. We develop a proof-of-concept implemen-
tation of pipeSwap for Schnorr and ECDSA, and conduct
extensive experiments to evaluate the overhead. The results
demonstrate the high efficiency and the best suitability of
our design. In particular, pipeSwap has the running time of
less than 1.7 seconds and the communication costs of less
than 7 kb. Remarkably, even though pipeSwap provides
stronger security protection against double-claiming attack,
compared to Universal Atomic Swaps [42], it only takes
a few more milliseconds for completing the second hop of
swap/refund operation.

Table 1: The comparisons with prior approaches

Protocol Universality Fungibility DoC† attack resilience
HTLC ✗ ✗ ✓

UAS⋆
✓ ✓ ✗

pipeSwap ✓ ✓ ✓

⋆Universal Atomic Swaps [42], †double-claiming.

1.2 Technique Overview

Recall that in a classic 𝛼-to-𝛽 swaps protocol [42], the user
𝑃0 is given priority to post its swap transaction of coins 𝛽
before timeout 𝑇1, simultaneously releases a witness 𝑦 w.r.t.
hard relation ℛ to 𝑃1 for completing its swap operation of
coins 𝛼. To avoid double-claiming of the same frozen coins



Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

to violate the atomicity, we resort to different techniques of
forcing the earlier release of witness 𝑦, i.e., releasing witness
𝑦 is viewed as a prerequisite for posting swap transaction of
coins 𝛽. We elaborate on technical contributions as detailed
below.
A new freezing structure better prepared for atomicity. To in-
stantiate the pipelined coins flow, our critical step is to cor-
rectly foresee the flow direction of the frozen coin before its
timeout. Different from Universal Atomic Swaps, we propose
a new freezing structure in which the frozen coins 𝛽 are s-
tored in two distinct frozen addresses and the smaller part
with value 𝜀→ 0 is used to compete for the final flow direc-
tion. Notably, a pre-transaction (i.e., pre-swap or pre-refund
transaction) is designed for spending frozen coins 𝜀, and the
real spending transaction (i.e., swap or refund transaction)
of coins 𝛽 takes the corresponding pre-transaction as one of
its inputs. Such a method forces the users to actively post a
pre-transaction instead of waiting until the timeout.
two-hop swap. More importantly, the new freezing structure
inspires us to novelly design a two-hop swap method of claim-
ing frozen coins 𝛽, while frozen coins 𝛼 can be directly un-
locked with witness 𝑦. Informally, the puzzle 𝑌 ((𝑌, 𝑦) ∈ ℛ)
is inserted in the signature of pre-swap transaction of coin-
s 𝜀 instead of the final swap transaction of frozen coins 𝛽.
two-hop swap can prevent user 𝑃1 from losing coins 𝛼 even if
the adversary 𝑃0 posts its swap transaction after timeout 𝑇1,
because the witness 𝑦 has been released before timeout 𝑇1.
two-hop refund. Obviously, it is not enough to guarantee the
pipelined coins flow solely with the two-hop swap design, if the
frozen coins 𝛽 can be directly refunded by user 𝑃1 after time-
out 𝑇1. We further propose the corresponding two-hop refund
of frozen coins 𝛽, where frozen coins 𝜀 are firstly refunded by a
pre-refund transaction after time 𝑇 1 (𝑇1−𝑇 1 > 𝜙, where 𝜙 is
the confirmation latency of underlying blockchain) and then
frozen coins 𝛽 − 𝜀 are spent by the final refund transaction
after timeout 𝑇1. Notice that the design of two-hop refund
can effectively force user 𝑃0 to post its pre-swap transaction
before time 𝑇 1, otherwise the malicious delay would lead to
frozen coins 𝜀 being claimed by a pre-refund transaction and
finally coins 𝛽 being refunded by user 𝑃1 after timeout 𝑇1.

2 BLOCKCHAIN AND CROSS-CHAIN
ATOMIC SWAP

We first recall the formal definition of Unspent Transaction
Output (UTXO) model [3], which is adopted by the majority
of current blockchains (e.g., Bitcoin [29]), and then take a
brief overview of Universal Atomic Swaps [42].

2.1 The UTXO-based Blockchain

Transactions. Under the UTXO model, a transaction is a
tuple of the form (𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑉,Ω), which transfers coins
from 𝑚 ≥ 1 inputs 𝑖𝑛𝑝𝑢𝑡 := {𝑖𝑛1, . . . , 𝑖𝑛𝑚} to 𝑙 ≥ 1 outputs
𝑜𝑢𝑡𝑝𝑢𝑡 := {𝑜𝑝1, . . . , 𝑜𝑝𝑙}. In particular, 𝑉 := {𝑣1, · · · , 𝑣𝑚}
denotes the value of each 𝑖𝑛𝑝𝑢𝑡 and Ω := {𝜎1, · · · , 𝜎𝑚} is
the witness of spending each 𝑖𝑛𝑝𝑢𝑡. Usually, we use public
key 𝑝𝑘 to denote the input/output address, for example,

𝑡𝑥 := (𝑝𝑘1, 𝑝𝑘2, 𝑣, 𝜎) means transferring coins 𝑣 in address
𝑝𝑘1 to address 𝑝𝑘2, and 𝜎 is the signature of 𝑡𝑥 that verifies
w.r.t. 𝑝𝑘1 and the coins in address 𝑝𝑘2 can only be further
spent with signature under 𝑝𝑘2. Additionally, the conditions
of spending coins can be some scripts supported by scripting
language of the underlying blockchain (i.e., 𝑇 𝑖𝑚𝑒𝐿𝑜𝑐𝑘 and
HTLC), but in this paper we focus on the scriptless ones.

We use transaction chart to visualize the coins flow between
addresses. As depicted in Fig.2(a), the rounded rectangle
represents transaction 𝑡𝑥 with the incoming arrow as 𝑖𝑛𝑝𝑢𝑡
and the blue box with value 𝑣 represents the amount of coins,
whose spending condition is written above the outgoing arrow.

Blockchain. A blockchain can be used as an append-only
bulletin board 𝒯 to record the posted transactions and also
be viewed as a trusted ledger ℒ to store all the unspent coins
associated with each address 𝑝𝑘. In essence, a blockchain
is built and maintained by the parties who compete to be
elected as the next leader to propose a candidate block, which
contains a sequence of transactions. It is extremely important
to notice that, in a secure real-world blockchain execution,
the leaders prioritize packaging the transactions received first
into blocks and, for two conflicting transactions (i.e., spending
the same coins) received simultaneously, they randomly select
one of the two transactions as a valid transaction. What’s
more, we strictly separate the parties who are responsible
for the secure execution of the underlying blockchain from
the users who only participate in the cross-chain swap pro-
tocol supported by the underlying blockchains. Therefore,
the (honest) leaders do not care about the story behind each
transaction and, in their views, all the valid transactions are
treated equally. Unsurprisingly, it is reasonable that, the valid
transaction 𝑡𝑥′ in a pair of conflicting transactions {𝑡𝑥, 𝑡𝑥′}
is finally confirmed even if it is maliciously generated.

(a) Transaction 𝑡𝑥 signed w.r.t.
𝑝𝑘1 transfers coins of value 𝑣
from address 𝑝𝑘1 to 𝑝𝑘2, and
𝑡𝑥 can be further spent by a
transaction signed w.r.t. 𝑝𝑘2

(b) Transaction 𝑡𝑥1 is finally con-
firmed by the underlying blockchain
and further spent by a valid transac-
tion 𝑡𝑥2, which has been recorded in
𝒯 and not confirmed yet.

Figure 2: The transaction flow.

Valid transaction vs Confirmed transaction. The transac-
tion confirmation latency 𝜙 > 0 of underlying blockchain
(e.g., it is about one hour in Bitcoin) determines that we must
clearly distinguish between the notions of valid transaction
and confirmed transaction. Traditionally, bulletin board 𝒯
records the set of valid transactions that could be finally
confirmed but they are not yet (i.e., the input addresses have
enough balance and they are signed correctly), while the
ledger ℒ stores all the finally confirmed transactions which
can be further spent by a new transaction. Without loss of
generality, we let bulletin board 𝒯 sequentially record all the



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

valid transactions, especially for the conflicting transactions,
it only accepts the one that arrives at earlier or randomly
selects one in the case of simultaneous arrival. Obviously,
a valid transaction 𝑡𝑥 ∈ 𝒯 can be confirmed finally (i.e.,
𝑡𝑥 ∈ ℒ) if it has been in 𝒯 for time 𝜙.

Figure 3: The green transaction 𝑡𝑥2 is honestly
signed w.r.t. 𝑝𝑘1 and received by 𝒯 at time 𝑡2, while
the red transaction 𝑡𝑥1, which tries to double-claim
transaction 𝑡𝑥, is maliciously signed w.r.t. 𝑝𝑘1 and
received by 𝒯 at time 𝑡1.

For presentation simplicity, we use doubled blue edge rec-
tangle and single edge rectangle to present the confirmed
transaction and valid transaction respectively (see Fig.2(b)).
After a clear understanding of transaction processing mech-
anism of the underlying blockchain, we have to pay more
attention to the following simple but practical scenario (see
Fig.3). Since the one who holds secret key 𝑠𝑘1 w.r.t. public
key 𝑝𝑘1 can sign any transactions at its will, thus we can-
not prevent the adversarial payer 𝑈1 from generating two
valid transactions 𝑡𝑥1, 𝑡𝑥2, where 𝑡𝑥2 pays for the intended
receiver 𝑈2 and 𝑡𝑥1 pays back to itself (i.e., users 𝑈1 and 𝑈2

own addresses 𝑝𝑘1, 𝑝𝑘
′
1 and 𝑝𝑘2, respectively). Fortunately, if

𝑡2 < 𝑡1 then 𝑡𝑥2 defeating 𝑡𝑥1 can be accepted by 𝒯 and as a
result the receiver 𝑈2 obtains its deserved coins after time 𝜙.
However, if 𝑡1 = 𝑡2 then, with probability 50%, the receiver
𝑈2 will lose coins as 𝑡𝑥1 being accepted by 𝒯 . Even worse,
when the network delay is under adversarial control (e.g., the
∆-synchronous communication network [22]), the malicious
transaction 𝑡𝑥1 would compete against 𝑡𝑥2 with a landslide.

Leveraging the above observation, we should be wary of
some time points that can cause the same coins to be doubly
claimed by different users. Especially for realizing atomic
coins transfer/swap in a decentralized manner, only relying
on a valid transaction rather than a confirmed one would
lead to fatal vulnerabilities (see Section 3).

2.2 Cross-Chain Atomic Swap

Generally, a cross-chain swap protocol enables two distrust-
ing users 𝑃0 and 𝑃1, who respectively own coins 𝛼 and 𝛽
in two distinct blockchains B0 and B1, to exchange coins
securely. The fundamental security property of cross-chain
swap protocol is atomicity : the honest users cannot lose coins.
Specifically, honest user 𝑃0 definitely gets coins 𝛽 in B1 if
swap succeeds. Otherwise, 𝑃0 enters into its Timeout Phase
and successfully unlocks frozen coins 𝛼.

Now we recall the design of Universal Atomic Swaps [42]
(see Fig.4). We use hereunder notations: (1) item with super-
script {(𝑖 1− 𝑖)|𝑖 ∈ {0, 1}} is involved in the payment from

Figure 4: Universal Atomic Swaps: the execution
flow of users 𝑃0 and 𝑃1 in an 𝛼-to-𝛽 swap. The or-
ange rectangle stores the messages received by each
user in the phase.

user 𝑃𝑖 to 𝑃1−𝑖; (2) item with subscript ∈ {𝑓𝑟𝑧, 𝑠𝑤𝑝, 𝑟𝑓𝑑}
respectively refers to the freeze, swap and refund operation.
It consists of four phases described as follows:
Swap Setup Phase-Freezing coins: Users 𝑃0 and 𝑃1 jointly

generate the frozen addresses 𝑝𝑘(01) and 𝑝𝑘(10), where the cor-

responding secret keys 𝑠𝑘(01) := 𝑠𝑘
(01)
0 ⊕ 𝑠𝑘

(01)
1 and 𝑠𝑘(10) :=

𝑠𝑘
(10)
0 ⊕𝑠𝑘(10)

1 are shared between them, and respectively com-

pute the timed commitments (Def.4) 𝑉 𝑇𝐷𝑇1 := (𝐶(1), 𝜋(1))

and 𝑉 𝑇𝐷𝑇0 := (𝐶(0), 𝜋(0)) of shares 𝑠𝑘
(10)
0 and 𝑠𝑘

(01)
1 (Note

that, after timeout 𝑇𝑖, user 𝑃𝑖 can get secret key 𝑠𝑘(𝑖1−𝑖)).
After the above is successful, user 𝑃𝑖 transfers coins from

address 𝑝𝑘(𝑖) to 𝑝𝑘(𝑖1−𝑖) via frozen transaction 𝑡𝑥
(𝑖)
𝑓𝑟𝑧;

Swap Lock Phase: Using adaptor signature w.r.t. hard rela-

tion (𝑌, 𝑦) ∈ ℛ (Def.1) selected by user 𝑃0, users 𝑃0 and

𝑃1 jointly generate pre-signatures 𝜎̃
(1)
𝑠𝑤𝑝 of swap transaction

𝑡𝑥
(1)
𝑠𝑤𝑝 and 𝜎̃

(0)
𝑠𝑤𝑝 of swap transaction 𝑡𝑥

(0)
𝑠𝑤𝑝 in sequence. Notice

that, from now on, user 𝑃0 with witness 𝑦 can generate valid

swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 at any time;

Swap Complete Phase: If user 𝑃0 actively posts swap trans-

action 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1, 𝑃1 can extract 𝑦 (i.e., the

purple dotted arrow) to generate signature 𝜎
(1)
𝑠𝑤𝑝 of swap

transaction 𝑡𝑥
(1)
𝑠𝑤𝑝. Thus the users successfully swap coins;

Swap Timeout Phase: If Swap Complete Phase fails, user 𝑃1

enters into its Swap Timeout Phase after timeout 𝑇1 and

posts refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 with secret key 𝑠𝑘(10). Corre-

spondingly, after timeout 𝑇0, user 𝑃0 posts refund transaction

𝑡𝑥
(0)
𝑟𝑓𝑑. Therefore, the frozen coins are respectively refunded

to their original owners.
Security Analysis. We summarize security analysis of Uni-

versal Atomic Swaps and defer detailed proofs to [42]:
∙ Successful Swap: If user 𝑃0 honestly posts swap transaction

𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1, user 𝑃1 can extract 𝑦 to generate

its swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 successfully;

∙ Failed Swap: If user 𝑃0 fails to post swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝

before timeout 𝑇1, user 𝑃1 fails in Swap Complete Phase and
enters into Swap Timeout Phase to refund its frozen coins

via posting transaction 𝑡𝑥
(1)
𝑟𝑓𝑑. Similarly, user 𝑃0 can refund

its frozen coins after timeout 𝑇0.



Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

3 THE DOUBLE-CLAIMING ATTACK

What Double-Claiming Attack Is. In a cross-chain swap
protocol, the malicious user (it is user 𝑃0 or 𝑃1) can deviate
arbitrarily from the swap protocol. In addition, the underlying
blockchain network may be under the adversarial control to
delay or reorder messages, and it prioritizes transactions
that arrive first (cf. Fig.7). The double-claiming attack refers
to a situation where a malicious user attempts to create
a double-claimed state for the frozen coins (i.e., the frozen
coins are spent simultaneously by their original owner and the
intended receiver), thereby obtaining the offered coins from
its counterparty while refusing to transfer its own coins. This
directly violates the atomicity property of the cross-chain
swap protocol.

Why There Exists This Attack. Essentially, the core
reasons that lead to double-claiming attack are:
Reason 1: The balance security of transaction. Independent
from the inner workings in cross-chain swap protocols, total
balances of all the addresses in underlying blockchain are un-
changed. Specifically, no new coins are generated causelessly
and any coins can only be equivalently transferred to some
new addresses. Furthermore, the scriptless nature of cross-
chain swap determines that the verification of a transaction
relies only on the balance and signature. Thus, in the view
of underlying blockchain, the conflicting transactions (e.g.,
the swap and refund transactions of the same frozen coins)
are separately valid and the balance security determines that
only one of these two transactions can be finally confirmed.
Reason 2: After timeout 𝑇 , the frozen coins can be spent by
both its original owner and intended receiver. We recall that
the frozen coins can only be refunded after the predefined
timeout 𝑇 , while the intended receiver is able to claim these
coins both before and after timeout 𝑇 . At first glance, this
seems reasonable that the timeout 𝑇 provides enough time
for the intended receiver to swap and guarantees the coin-
s can be refunded in the case of failure. However, there is
no mechanism to cancel the intended receiver’s ability to
claim frozen coins after timeout 𝑇 (i.e., signing its swap
transaction), which is the source of double-claiming attack.

How Easy It Is to Conduct This Attack. Note that
the double-claiming attack is completely different from the
double-spending attack [21], where the former enables the
malicious user to prevent an honest transaction from being
confirmed, while the latter enables the malicious miner who
is involved in the maintenance of underlying blockchain to
confirm the both spending transactions of one coin. Addi-
tionally, the double-spending attack requires the attacker
(i.e., the malicious miner) to hold and consume enough re-
sources (e.g., computational power [29] or stakes [6]), while
the double-claiming attack is crazy-cheap and only requires
the attacker (i.e., the malicious user) to have the ability of
signing transactions (i.e., holding the signing secret key). In
particular, the double-claiming attack can work in all the net-
work models of the underlying blockchains (e.g., the strong
synchrony [17],∆-synchrony [33], partial synchrony [15] and

asynchrony [2]). Even worse, with the weakening of the un-
derlying blockchain network (i.e., from strong synchrony to
asynchrony), the double-claiming attack can succeed with a
higher probability, which can be detailed as follows.

As depicted in Fig.5, double-claiming attack can work in U-
niversal Atomic Swaps [42], where the underlying blockchain
network is strong synchrony (i.e., there is no message propa-
gation delay and ∆ = 0), in two manners.
User 𝑃0 is malicious (Fig.5(a)). First, users 𝑃0 and 𝑃1 initi-

ate an 𝛼-to-𝛽 swap via successfully freezing their respective
coins, and then the adversary 𝑃0 gets off-line until time-
out 𝑇1. In the Swap Timeout Phase, user 𝑃1 posts refund

transaction 𝑡𝑥
(1)
𝑟𝑓𝑑, and simultaneously the adversary 𝑃0 goes

re-online and posts swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝. At timeout 𝑇0,

the adversary 𝑃0 enters into Swap Timeout Phase to post

refund transaction 𝑡𝑥
(0)
𝑟𝑓𝑑. Due to the fact that only one of

transactions 𝑡𝑥
(0)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑟𝑓𝑑 can be finally confirmed by

the corresponding underlying blockchain. Accordingly, with

probability close to 1/2, the malicious transactions 𝑡𝑥
(0)
𝑠𝑤𝑝

and 𝑡𝑥
(0)
𝑟𝑓𝑑 are both confirmed. As a result, the adversary 𝑃0

harvests double assets and the atomicity property is broken.
User 𝑃1 is malicious (Fig.5(b)). Let us continue to recall

(a) When the malicious user 𝑃0 successfully initiates double-claiming
attack, user 𝑃1 fails to enter into its Swap Complete Phase. And the

finally confirmed transactions are 𝑡𝑥
(0)
𝑟𝑓𝑑 and 𝑡𝑥(0)

𝑠𝑤𝑝.

(b) When the malicious user 𝑃1 successfully initiates double-claiming
attack, user 𝑃0 fails to enter into its Swap Timeout Phase. And the

finally confirmed transactions are 𝑡𝑥
(1)
𝑟𝑓𝑑 and 𝑡𝑥(1)

𝑠𝑤𝑝.

Figure 5: The double-claiming attack works in Uni-
versal Atomic Swaps [42].

some details of Universal Atomic Swaps. If user 𝑃0 honestly

posts swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1, this swap

protocol should be successful such that swap transaction-

s 𝑡𝑥
(0)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑠𝑤𝑝 are finally confirmed by the underlying



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

blockchain. However, if user 𝑃0 honestly posts swap trans-

action 𝑡𝑥
(0)
𝑠𝑤𝑝 almost near timeout 𝑇1, the adversary 𝑃1 can

issue its swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 immediately and try to enter

into its Swap Timeout Phase by posting refund transaction

𝑡𝑥
(1)
𝑟𝑓𝑑. Similarly, due to the fact that only one of transactions

𝑡𝑥
(0)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑟𝑓𝑑 can be finally confirmed by the corresponding

underlying blockchain. Accordingly, with probability close

to 1/2, the malicious transactions 𝑡𝑥
(1)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑟𝑓𝑑 are both

confirmed. As a result, the malicious user 𝑃1 harvests double
assets and the atomicity property is broken.

Furthermore, the strong network synchrony assumption
is impractical for a large-scale distributed system such as
Bitcoin [37]. When considering the ∆-synchronous blockchain
network [33] that the network delay is under adversarial con-
trol and message is delivered within a known delay ∆, we note
that the double-claiming attack can work easier. Generally,
the attack strategies are the same as above. For malicious
user 𝑃0 (Fig.5(a)), as long as it releases swap transaction

𝑡𝑥
(0)
𝑠𝑤𝑝 within time ∆ after refund transaction 𝑡𝑥

(1)
𝑟𝑓𝑑 being

posted, then transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 can defeat 𝑡𝑥

(1)
𝑟𝑓𝑑 and user 𝑃0

harvests double assets (i.e., by confirming transactions 𝑡𝑥
(0)
𝑠𝑤𝑝

and 𝑡𝑥
(0)
𝑟𝑓𝑑) with an absolute advantage. Correspondingly, for

malicious user 𝑃1 (Fig.5(b)), once user 𝑃0 honestly posts

swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 between time 𝑇1 − ∆ and 𝑇1, the

adversary 𝑃1 can post its swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 immediately

and then posts a competitive refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 after

timeout 𝑇1 via delaying the transaction 𝑡𝑥
(0)
𝑠𝑤𝑝. As a result,

the malicious user 𝑃1 harvests double assets (i.e., by confirm-

ing transactions 𝑡𝑥
(1)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑟𝑓𝑑) with an absolute advantage

and the atomicity property is broken. Therefore, the weaker
but realistic blockchain network can be exploited to improve
the successful probability of double-claiming attack.

The Generality of This Attack. It should be empha-
sized that double-claiming attack is not specifically tailored
to Universal Atomic Swaps, but generally applies to the
scriptless (or timelock scripts only) cross-chain swaps and
multi-hop payments [4, 20, 26, 44] that predefine a limited
lifespan 𝑇 to realize the payment expire. In these schemes, the
main vulnerability leading to double-claiming attack is that,
after the timeout 𝑇 , the two competing users simultaneously
hold the ability to spend the same frozen coins.

4 OUR SOLUTION IN A NUTSHELL

Recall the core root of double-claiming attack is that the
frozen coins 𝛽 can be claimed by both users after time-
out 𝑇1. Therefore, our straightforward solution is to realize
the pipelined coins flow for frozen coins 𝛽, that is, the cor-

responding swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 and refund transaction

𝑡𝑥
(1)
𝑟𝑓𝑑 cannot be both valid. As depicted in Fig.6, the key idea

is how to force the early release of witness 𝑦, such that a valid

transaction (i.e., either 𝑡𝑥
(0)
𝑠𝑤𝑝 or 𝑡𝑥

(1)
𝑟𝑓𝑑) can be pre-determined

at timeout 𝑇1. Specifically, we introduce a “two-hop com-
pletion” method, called two-hop swap and two-hop refund,

Figure 6: pipeSwap: the execution flow of users 𝑃0

and 𝑃1 in an 𝛼-to-𝛽 swap. The orange rectangle stores
messages received by each user in this phase and
the pre-transaction items are denoted with overline.
Time parameters are set such that: 𝑇1 ≥ 𝑇 1 + 𝜙, 𝑇0 >
𝑇1 (the parameter 𝜙 is confirmation delay of the un-

derlying blockchain). The gap 𝜙 between time 𝑇 1 and

𝑇1 ensures that one transaction in {𝑡𝑥(0)
𝑠𝑤𝑝, 𝑡𝑥

(0)
𝑟𝑓𝑑} will

be finally confirmed before timeout 𝑇1 and thus de-
termines the final flow of coins 𝛽.

where two-hop swap forces user 𝑃0 to post the pre-swap trans-

action 𝑡𝑥
(0)
𝑠𝑤𝑝 𝜙 time before posting a valid swap transaction

𝑡𝑥
(0)
𝑠𝑤𝑝, and the corresponding two-hop refund forces user 𝑃1

to post the pre-refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 (it is locked until

time 𝑇 1 ≤ 𝑇1 − 𝜙) before refunding its frozen coins by trans-

action 𝑡𝑥
(1)
𝑟𝑓𝑑, which further forces user 𝑃0 actively posting

𝑡𝑥
(0)
𝑠𝑤𝑝 before time 𝑇 1, otherwise it cannot generate a valid

swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1. As a result, if pre-

swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 is finally confirmed before timeout

𝑇1, coins 𝛽 can only be swapped by user 𝑃0; otherwise, coins
𝛽 can only be refunded by user 𝑃1 after timeout 𝑇1. Now we
walk through how we realize the “two-hop completion”.
First ingredient: splitting frozen coins 𝛽 into two parts. To en-
sure the flow direction of frozen coins 𝛽 and prevent potential
risk of malicious user 𝑃0 or 𝑃1, the frozen coins 𝛽 are stored
in two distinct outputs with values 𝜀 (𝜀 > 0 is arbitrarily
small, i.e., 𝜀→ 0) and 𝛽− 𝜀 respectively. Specifically, coins 𝜀,
𝛽 − 𝜀 can only be further spent with respective secret keys

𝑠𝑘
(10)

and 𝑠𝑘(10), which are shared between users 𝑃0 and 𝑃1.
Second ingredient: two-hop swap. To prevent the adversary

𝑃0 from suddenly releasing its swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 n-

ear timeout 𝑇1, a new swap method called two-hop swap
is proposed. Specifically, user 𝑃0 can generate a valid swap

transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 only when its pre-swap transaction 𝑡𝑥

(0)
𝑠𝑤𝑝

has been finally confirmed by the underlying blockchain. In

particular, the transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 is jointly pre-signed by both

users with respective key shares (i.e., 𝑠𝑘
(10)
0 , 𝑠𝑘

(10)
1 ) and puz-

zle 𝑌 , while swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 takes 𝑡𝑥

(0)
𝑠𝑤𝑝 as one of

its inputs is jointly signed by both users with respective

key shares 𝑠𝑘
(10)
0 and 𝑠𝑘

(10)
1 , where statement-witness pair

(𝑌, 𝑦) ∈ ℛ is selected by user 𝑃0. That is, swap transaction

𝑡𝑥
(0)
𝑠𝑤𝑝 is valid implying that user 𝑃0 has posted the pre-swap



Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 at least 𝜙 time ago, where 𝜙 is the confir-

mation latency of underlying blockchain. Since the witness 𝑦

has been released by the posted pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝,

user 𝑃1 can generate its valid swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 at least

𝜙 time earlier than user 𝑃0.
Third ingredient: two-hop refund. To pre-determine the valid

transaction among swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 and refund trans-

action 𝑡𝑥
(1)
𝑟𝑓𝑑 at timeout 𝑇1, we require witness 𝑦 to be released

before time 𝑇 1 := 𝑇1 − 𝜙, that is, user 𝑃0 should post pre-

swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before time 𝑇 1. Accordingly, a new

refund method called two-hop refund is proposed, where user

𝑃1 can refund its frozen coins by transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 after time-

out 𝑇1 only when its pre-refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 has been

finally confirmed by the underlying blockchain, and the pre-

refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 is locked until time 𝑇 1. This means

if pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 is confirmed before timeout 𝑇1,

it is impossible to generate a valid refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑

even after timeout 𝑇1; otherwise, if pre-refund transaction

𝑡𝑥
(1)
𝑟𝑓𝑑 is confirmed before timeout 𝑇1, there is no valid swap

transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 at any time. Nevertheless, there is a sub-

tle issue remained. In particular, if user 𝑃0 posts pre-swap

transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 almost near time 𝑇 1, then the adversary

𝑃1 can initiate double-claiming attack via posting pre-refund

transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 immediately and making transactions 𝑡𝑥

(1)
𝑠𝑤𝑝

and 𝑡𝑥
(1)
𝑟𝑓𝑑 both valid, due to the fact that the adversary can

always delay the delivery of honest messages within time ∆.

To solve the issue, we just let the pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝

be posted at least ∆ time before time 𝑇 1.
Clearly, the final flow direction of frozen coins 𝛽 can be

determined at timeout 𝑇1. We now give an intuition that
pipeSwap satisfies atomicity :
∙ Successful Swap: If user 𝑃0 is honest, pre-swap transaction

𝑡𝑥
(0)
𝑠𝑤𝑝 posted before time 𝑇 1−∆ will be finally confirmed, and

then swap transactions 𝑡𝑥
(0)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑠𝑤𝑝 could be validated

before timeout 𝑇1. Additionally, no valid refund transaction

𝑡𝑥
(1)
𝑟𝑓𝑑 exists even after timeout 𝑇1. As a result, each user

obtains its desired exchanged coins;
∙ Failed Swap: If user 𝑃0 is malicious and user 𝑃1 enters
into its Swap Timeout Phase after timeout 𝑇1, i.e., user 𝑃1

cannot generate valid swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 before timeout

𝑇1, then refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 will be valid after timeout

𝑇1 and no valid swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 exists at any time.

As a result, user 𝑃1 can successfully refund its frozen coins.

5 FORMAL DEFINITION OF
PIPESWAP

Notations. We denote by 𝜆 the security parameter and by
𝐴(𝑥; 𝑟)→ 𝑧 or 𝑧 ← 𝐴(𝑥; 𝑟) the output 𝑧 of algorithm 𝐴 with
inputs 𝑥 and randomness 𝑟 ∈$ {0, 1}𝜆 (it is only mentioned
explicitly when required). We write the events that “send

message 𝑚 to 𝑃 at time 𝑡” as “𝑚
𝑡→˓ 𝑃” and “receive message

𝑚 from 𝑃 at time 𝑡” as “𝑚
𝑡←˒ 𝑃”, where 𝑃 could be a user

or ideal functionality.

5.1 Modeling the System and Threats

We model security of cross-chain swaps in the Universal Com-
posability (UC) model [12] and deploy the version with a
global setup (GUC) [13]. We define the cross-chain swap mod-
el over users 𝑃0 and 𝑃1, and take the underlying blockchains
B =: {B0,B1} as global ideal functionalities ℱB := {ℱB0 ,ℱB1}
with the confirmation delay time 𝜙 (Fig.7).
The User. There are two designated users 𝑃0 and 𝑃1 to

Ideal Functionality ℱB(Δ, 𝜙)

1. Initialization: upon receiving the address-balance pair
(𝑝𝑘, 𝑣) ←˒ 𝒵, set ℒ := {(𝑝𝑘1, 𝑣1), · · · , (𝑝𝑘ℓ, 𝑣ℓ)} ∈ R2ℓ

≥0, store

and send ℒ →˓ 𝒮.
2. Posting transaction: upon receiving Post(𝑡𝑥, 𝑡) ←˒ 𝒵, send
(𝑝𝑜𝑠𝑡, 𝑡𝑥, 𝑡) →˓ 𝒮 if Valid(𝑡𝑥) = 1.

∙ Upon receiving (𝑝𝑜𝑠𝑡, 𝑡𝑥, 𝑡′) ←˒ 𝒮, if 𝑡′ − 𝑡 ≤ Δ, then set 𝑡 :=
𝑡′; otherwise, set 𝑡 := 𝑡+Δ. Update list 𝑙𝑖𝑠𝑡 := 𝑙𝑖𝑠𝑡 ∪ (𝑡𝑥, 𝑡);
∙ For conflicting transactions (𝑡𝑥0, 𝑡0), (𝑡𝑥1, 𝑡1) ∈ 𝑙𝑖𝑠𝑡, if 𝑡0 <

𝑡1, then remove (𝑡𝑥1, 𝑡1) from 𝑙𝑖𝑠𝑡; else, if 𝑡0 = 𝑡1, then
randomly select 𝑏 ∈ {0, 1} and remove (𝑡𝑥𝑏, 𝑡𝑏) from 𝑙𝑖𝑠𝑡;
otherwise, remove (𝑡𝑥0, 𝑡0) from 𝑙𝑖𝑠𝑡;

∙ For (𝑡𝑥, 𝑡) ∈ 𝑙𝑖𝑠𝑡, update 𝒯 := 𝒯 ∪ (𝑡𝑥, 𝑡) at time 𝑡.

3. Confirming transaction: upon receiving Confirm(𝑡𝑥)
𝑡′′
←˒

𝒵, if ∃(𝑡𝑥, 𝑡) ∈ 𝒯 and 𝑡′′ − 𝑡 ≥ 𝜙, then update ℒ as
𝑡𝑥.𝑝𝑘𝑖𝑛.𝑏𝑎𝑙𝑎𝑛𝑐𝑒 := 𝑡𝑥.𝑝𝑘𝑖𝑛.𝑏𝑎𝑙𝑎𝑛𝑐𝑒− 𝑣 and 𝑡𝑥.𝑝𝑘𝑜𝑝.𝑏𝑎𝑙𝑎𝑛𝑐𝑒 :=

𝑡𝑥.𝑝𝑘𝑜𝑝.𝑏𝑎𝑙𝑎𝑛𝑐𝑒+ 𝑣; otherwise, abort.

Figure 7: The blockchain ideal functionality ℱB(∆, 𝜙)

participate in the swap protocol. The malicious user (it is
𝑃0 or 𝑃1) is determined before the protocol starts, who can
deviate arbitrarily from the swap protocol (e.g., delaying
the posting of its transaction). There is a secure message
transmission channel between users modeled by the ideal
functionality ℱ𝑠𝑚𝑡 [12].
∆-Synchronous Network. We assume the network of un-
derlying blockchains is ∆-synchronous [33], i.e., the network
delay is under adversarial control, up to a known delay upper
bound ∆. The adversary 𝒜 of the underlying blockchain can
see the posted honest message but cannot modify or drop it.
The Blockchain Ideal Functionality. We take the under-
lying blockchain B (B0 or B1) involved in the cross-chain swap
protocol as a global ideal functionality (just as in [3, 42])
with confirmation delay time 𝜙 that records the balance of
each address (i.e., ledger ℒ) and maintains a trusted append-
only bulletin board 𝒯 , denoted as ℱB(∆, 𝜙). More precisely,
functionality ℱB offers interface Valid(𝑡𝑥) to determine the
validity of a transaction 𝑡𝑥 (i.e., checking inputs ∈ ℒ have
enough balance and they are signed correctly), uses interface
Post(𝑡𝑥, 𝑡) to add valid transaction 𝑡𝑥 to bulletin board 𝒯 at
time 𝑡′ ≤ 𝑡+∆, where time 𝑡′ is determined by the simulator
𝒮. We emphasize that 𝒯 always prefers to accept the earli-
er arrived transaction, i.e., upon receiving Post(𝑡𝑥0, 𝑡0) and



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

Post(𝑡𝑥1, 𝑡1) for posting conflicting transactions 𝑡𝑥0, 𝑡𝑥1, 𝒯
will accept 𝑡𝑥0 if 𝑡′0 < 𝑡′1 or randomly select one of {𝑡𝑥0, 𝑡𝑥1}
if 𝑡′0 = 𝑡′1. Additionally, functionality ℱB confirms transaction
𝑡𝑥 via interface Confirm(𝑡𝑥) (e.g., if 𝑡𝑥 has been recorded
in 𝒯 for time 𝜙, it updates ℒ via removing coins from in-
put address 𝑝𝑘𝑖𝑛 to output address 𝑝𝑘𝑜𝑝). See Fig.7 for the
details.

5.2 Ideal Functionality ℱ of Cross-Chain
Swap

When taking a careful analysis of the ideal functionality
ℱB

𝑠𝑤𝑎𝑝 for fair swap of coins (Fig.3 in [42]), we have a fatal

observation that ℱB
𝑠𝑤𝑎𝑝 cannot cope with the condition of the

users 𝑈0 and 𝑈1 simultaneously initiating their respective 𝑏𝑢𝑦
and 𝑎𝑏𝑜𝑟𝑡 requirements, which further confirms the double-
claiming attack in Universal Atomic Swaps.

(A) Swap Setup Phase - Freezing Coins

1. Upon receiving (𝑓𝑟𝑧, 𝑖𝑑, 𝑝𝑘(0), 𝑠𝑘(0))
𝑡
←˒ 𝑃0, invoke sub-

routine Freeze(𝑖𝑑, 𝑝𝑘(0), 𝑠𝑘(0), 𝛼, 𝑝𝑘
(0)
ℱ , 𝑇0); upon receiving

(𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑, 𝑖𝑑, 𝑜𝑘)
𝑡1≤𝑡+Δ+𝜙
←˒ ℱB0

, send (𝑓𝑟𝑧, 𝑖𝑑, 𝑜𝑘)
𝑡1→˓ 𝑃0;

2. Upon receiving (𝑓𝑟𝑧, 𝑖𝑑, 𝑝𝑘(1), 𝑠𝑘(1))
𝑡
←˒ 𝑃1, invoke sub-

routine Freeze(𝑖𝑑, 𝑝𝑘(1), 𝑠𝑘(1), 𝛽, 𝑝𝑘
(1)
ℱ , 𝑇1); upon receiving

(𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑, 𝑖𝑑, 𝑜𝑘)
𝑡1≤𝑡+Δ+𝜙
←˒ ℱB1

, send (𝑓𝑟𝑧, 𝑖𝑑, 𝑜𝑘)
𝑡1→˓ 𝑃1;

3. After the above steps are successful, send (𝑆𝑒𝑡𝑢𝑝, 𝑖𝑑, 𝑜𝑘) →˓
𝑃𝑖 (𝑖 ∈ {0, 1}) and proceed to procedure (B); otherwise, proceed
to procedure (C).

(B) Swap Complete Phase

1. Upon receiving (𝑠𝑤𝑝, 𝑖𝑑, 𝑝𝑘
(0)
𝑠𝑤𝑝)

𝑡′
←˒ 𝑃0, do the following:

(1) if 𝑡′ < 𝑇1, set 𝑏(0) = 0 and invoke subrou-

tine Transfer(𝑖𝑑, 𝑝𝑘
(1)
ℱ , 𝑠𝑘

(1)
ℱ , 𝛽, 𝑝𝑘

(0)
𝑠𝑤𝑝, 𝑡

′); upon receiving

(𝑃𝑜𝑠𝑡, 𝑖𝑑, 𝑜𝑘)
𝑡′1≤𝑡′+Δ
←˒ ℱB1

, send (𝑠𝑤𝑝, 𝑖𝑑, 𝑜𝑘)
𝑡′1→˓ 𝑃0;

(2) if 𝑡′ = 𝑇1, set 𝑏(0) ∈$ {0, 1} and if 𝑏(0) = 0, invoke sub-

routine Transfer(𝑖𝑑, 𝑝𝑘
(1)
ℱ , 𝑠𝑘

(1)
ℱ , 𝛽, 𝑝𝑘

(0)
𝑠𝑤𝑝, 𝑡

′); upon receiving

(𝑃𝑜𝑠𝑡, 𝑖𝑑, 𝑜𝑘)
𝑡′1≤𝑡′+Δ
←˒ ℱB1

, send (𝑠𝑤𝑝, 𝑖𝑑, 𝑜𝑘)
𝑡′1→˓ 𝑃0;

(3) otherwise, abort.

2. Upon receiving (𝑠𝑤𝑝, 𝑖𝑑, 𝑝𝑘
(1)
𝑠𝑤𝑝)

𝑡′
←˒ 𝑃1, do the following:

(1) if 𝑏(0) ∈ {0, 1}, set 𝑏(1) = 1 and invoke subroutine Trans-

fer(𝑖𝑑, 𝑝𝑘
(0)
ℱ , 𝑠𝑘

(0)
ℱ , 𝛼, 𝑝𝑘

(1)
𝑠𝑤𝑝, 𝑡

′); upon (𝑃𝑜𝑠𝑡, 𝑖𝑑, 𝑜𝑘)
𝑡′1≤𝑡′+Δ
←˒

ℱB0
, send (𝑠𝑤𝑝, 𝑖𝑑, 𝑜𝑘)

𝑡′1→˓ 𝑃0;

(2) otherwise, abort.

(C) Swap Timeout Phase

1. Upon receiving (𝑟𝑓𝑑, 𝑖𝑑, 𝑝𝑘
(𝑖)
𝑟𝑓𝑑)

𝑡′′
←˒ 𝑃𝑖 (𝑖 ∈ {0, 1}), do the

following:

(1) if (𝑡′′ ≥ 𝑇𝑖) ∧ (𝑏(1−𝑖) ̸= 1 − 𝑖), invoke subrou-

tine Unfreeze(𝑖𝑑, 𝑝𝑘
(𝑖)
ℱ , 𝑠𝑘

(𝑖)
ℱ , 𝛼/𝛽, 𝑝𝑘

(𝑖)
𝑟𝑓𝑑, 𝑡

′′); upon receiving

(𝑃𝑜𝑠𝑡, 𝑖𝑑, 𝑜𝑘)
𝑡′′1 ≤𝑡′′+Δ
←˒ ℱB𝑖

, send (𝑟𝑓𝑑, 𝑖𝑑, 𝑜𝑘)
𝑡′′1→˓ 𝑃𝑖;

(2) otherwise, abort.

Figure 8: The ideal functionality ℱ

To model security in our setting more comprehensively,
we require that the ideal functionality ℱ guarantees stronger
atomicity : either both users interested in the swap successfully
swap their coins, or the swap fails and honest user refunds its
coins and the malicious user may lose coins for its malicious
manners. Accordingly, we allow ideal functionality ℱ to take
actions according to the timeout 𝑇 of each participating user.

Formally, ideal functionality ℱ (see Fig.8 and Fig.9) com-
municates with users 𝑃0, 𝑃1, the environment 𝒵, the simula-
tor 𝒮, and the underlying blockchain functionalities ℱB0 and
ℱB1 . It consists of three procedures and each is triggered by
one message sent by user 𝑃𝑖 (𝑖 ∈ {0, 1}), including its request
and the session 𝑖𝑑.
(A) Swap Setup Phase-Freezing Coins: Users 𝑃0 and 𝑃1 ini-

tiate an 𝛼-to-𝛽 swap with their respective freeze messages
(𝑓𝑟𝑧, 𝑖𝑑, 𝑝𝑘(0), 𝑠𝑘(0)) and (𝑓𝑟𝑧, 𝑖𝑑, 𝑝𝑘(1), 𝑠𝑘(1)), which specifies

that the coins in addresses 𝑝𝑘(0) (owned by user 𝑃0 and can be

spent with secret key 𝑠𝑘(0)) and 𝑝𝑘(1) (owned by user 𝑃1 and

can be spent with secret key 𝑠𝑘(1)) are to be swapped. Ideal

functionality ℱ calls subroutine Freeze(𝑖𝑑, 𝑝𝑘(𝑖), 𝑠𝑘(𝑖), 𝑝𝑘
(𝑖)
ℱ , 𝑇𝑖)

to transfer coins in address 𝑝𝑘(𝑖) to a specific address 𝑝𝑘
(𝑖)
ℱ

controlled by ℱ until timeout 𝑇𝑖, where 𝑇0 > 𝑇1;
(B) Swap Complete Phase: User 𝑃0 sends its swap message

(𝑠𝑤𝑝, 𝑖𝑑, 𝑝𝑘
(0)
𝑠𝑤𝑝) at time 𝑡′. If 𝑡′ < 𝑇1, ℱ transfers coins

from address 𝑝𝑘
(1)
ℱ to 𝑝𝑘

(0)
𝑠𝑤𝑝 (controlled by user 𝑃0) and sets

𝑏(0) = 0 to indicate that user 𝑃0 has successfully finished swap
operation. If 𝑡′ = 𝑇1 (it implies that user 𝑃0 is trying to initi-
ate double-claiming attack), ℱ randomly determines whether

user 𝑃0 completing swap operation (i.e., 𝑏(0) ∈$ {0, 1}). Oth-

erwise, if 𝑡′ > 𝑇1, user 𝑃0 fails in swap phase (i.e., 𝑏(0) =⊥).
While user 𝑃1 can request swap only when user 𝑃0 has initi-
ated its swap operation (i.e., 𝑏(0) = 0/1);
(C) Swap Timeout Phase: The frozen coins are released to

the original owners after the respective timeout 𝑇1 and 𝑇0.

//Subroutine Freeze

Freeze(𝑖𝑑, 𝑝𝑘, 𝑠𝑘, 𝑣, 𝑝𝑘ℱ , 𝑇 ): set timeout 𝑇 and transfer coins
𝑣 from address 𝑝𝑘 to 𝑝𝑘ℱ (controlled by ℱ) via generating

frozen transaction 𝑡𝑥𝑓𝑟𝑧 := (𝑝𝑘, 𝑝𝑘ℱ , 𝑣, 𝜎) with secret key 𝑠𝑘 and

invoking interface Confirm(𝑡𝑥𝑓𝑟𝑧) of blockchain functionality
ℱB. If 𝑡𝑥𝑓𝑟𝑧 has been finally confirmed by ℱB (i.e., 𝑡𝑥𝑓𝑟𝑧 ∈ ℒ),
then respond (𝑓𝑟𝑧, 𝑖𝑑, 𝑜𝑘).

//Subroutine Transfer
Transfer(𝑖𝑑, 𝑝𝑘ℱ , 𝑠𝑘ℱ , 𝑣, 𝑝𝑘𝑠𝑤𝑝, 𝑡): transfer frozen coins 𝑣 from

address 𝑝𝑘ℱ to 𝑝𝑘𝑠𝑤𝑝 via generating swap transaction 𝑡𝑥𝑠𝑤𝑝 :=
(𝑝𝑘ℱ , 𝑝𝑘𝑠𝑤𝑝, 𝑣, 𝜎) with secret key 𝑠𝑘ℱ and invoking interface

Post(𝑡𝑥𝑠𝑤𝑝, 𝑡) of blockchain functionality ℱB. If 𝑡𝑥𝑠𝑤𝑝 has been
added to bulletin board 𝒯 (i.e., 𝑡𝑥𝑠𝑤𝑝 ∈ 𝒯 ), then respond
(𝑠𝑤𝑝, 𝑖𝑑, 𝑜𝑘).

//Subroutine Unfreeze

Unfreeze(𝑖𝑑, 𝑝𝑘ℱ , 𝑠𝑘ℱ , 𝑣, 𝑝𝑘𝑟𝑓𝑑, 𝑡): transfer frozen coins 𝑣 from
address 𝑝𝑘ℱ to 𝑝𝑘𝑟𝑓𝑑 via generating refund transaction 𝑡𝑥𝑟𝑓𝑑 :=

(𝑝𝑘ℱ , 𝑝𝑘𝑟𝑓𝑑, 𝑣, 𝜎) with secret key 𝑠𝑘ℱ . If 𝑡𝑥𝑟𝑓𝑑 has been added
to bulletin board 𝒯 (i.e., 𝑡𝑥𝑟𝑓𝑑 ∈ 𝒯 ), then respond (𝑟𝑓𝑑, 𝑖𝑑, 𝑜𝑘).

Figure 9: The subroutines



Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

Remark 1. Careful readers might notice that the func-
tionality ℱ finishes Swap Setup Phase only when the frozen
transactions have been finally confirmed by the underlying
blockchains, while, in Swap Complete Phase and Swap Time-
out Phase, ℱ responds with ok as long as the corresponding
swap transaction and refund transaction have been added in
the respective bulletin board. The correctness lies in the facts
that only the finally confirmed transaction can be further
spent by a new transaction (where the frozen transaction will
be spent by a swap or refund transaction) and, as defined in
blockchain functionality ℱB (Fig.7), transactions in bulletin
board can certainly be finally confirmed in time 𝜙.

Security Analysis. Now we analyze that the ideal function-
ality ℱ satisfies the stronger atomicity :
∙Successful Swap: If user 𝑃0 honestly initiates its swap op-
eration before timeout 𝑇1, then ℱ will enable both users 𝑃0

and 𝑃1 to complete the swap via respectively transferring the
frozen coins (controlled by ℱ) to their corresponding address-

es 𝑝𝑘
(0)
𝑠𝑤𝑝 and 𝑝𝑘

(1)
𝑠𝑤𝑝 (i.e., 𝑏(0) = 0 and 𝑏(1) = 1). Especially,

if the adversary 𝑃0 tries to delay its swap operation until
timeout 𝑇1, then ℱ will enable 𝑃0 to complete swap (i.e.,

𝑏(0) = 0) with probability 1
2
, instead, ℱ is certainly to trans-

fer user 𝑃0’s frozen coins to address 𝑝𝑘
(1)
𝑠𝑤𝑝 (i.e., 𝑏(1) = 1);

∙Failed Swap: If the adversary 𝑃0 fails to initiate its swap
operation until timeout 𝑇1, ℱ will enable user 𝑃1 to complete
both swap and refund operations for 𝑏(0) = 1, or just refund
its own frozen coins for 𝑏(0) =⊥.

Obviously, the ideal functionality ℱ is secure against the
double-claiming attack, ensuring that regardless of how the
malicious user behaves, the honest user never loses coins.

6 PIPESWAP: PROTOCOL
DESCRIPTION

6.1 Cryptographic Building Blocks

To guarantee universality, we insist on the fundamental build-
ing blocks from [42]: adaptor signature [3] and verifiable
timed discrete logarithm (VTD) [43].
Adaptor Signature. The adaptor signature (cf. Def.1 in
Appendix B) allows users to insert a puzzle 𝑌 (e.g., statement-
witness pair (𝑌, 𝑦) ∈ ℛ, cf. Def.3 in Appendix B) into the
generation of a signature on message 𝑚 ∈ {0, 1}𝜆. The user
with secret key first computes a pre-signature 𝜎̃ of message
𝑚 which by itself is not a valid signature, but can later be
adapted into a valid signature 𝜎 (i.e., 𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘,𝑚, 𝜎) = 1,
cf. Def.2 in Appendix B) with witness 𝑦. In addition, witness
𝑦 can be further extracted by 𝜎̃ and 𝜎.

Here, the digital signature scheme satisfies the standard no-
tion of unforgeability [5] and, to show the universality of our
construction, we assume 𝑆𝐼𝐺 ∈ {𝑆𝑐ℎ𝑛𝑜𝑟𝑟,𝐸𝐶𝐷𝑆𝐴} to cap-
ture most existing cryptocurrencies, e.g., Bitcoin, Ethereum
and Ripple. Adaptor signature is required to satisfy security
properties of unforgeability, witness extractability and pre-
signature adaptability (cf. [42] for the detailed definitions).
Verifiable Timed Dlog (VTD). The VTD enables the
committer to generate a timed commitment 𝐶 of value 𝑥

with timing hardness 𝑇 , which can be verified publicly and
forcibly opened in time 𝑇 (cf. Def.4 in Appendix B). VTD is
required to satisfy the security properties of soundness and
privacy (cf. [42] for the detailed definitions).

In this work, we use adaptor signature scheme and VTD in
a black-box manner and refer the readers to [3, 36, 42, 43] for
efficient constructions. In slightly more detail, as it is in [42],
we adopt the construction of adaptor signature in [3], where
the underlying signature scheme is Schnorr or ECDSA, and
the hard relation ℛ is the discrete log (dlog) relation (i.e.,
the language is defined as ℒℛ𝑑𝑙𝑜𝑔 := {𝑌 |∃𝑦 ∈ Z*

𝑞 , 𝑠.𝑡. 𝑌 =
𝑔𝑦 ∈ G} ). For the construction of VTD, the committer
embeds the dlog.value 𝑥 inside a time-lock puzzle 𝐻, uses a
non-interactive zero-knowledge proof (NIZK) to prove that
𝐻 can be solved in time 𝑇 and the value 𝑥 satisfies equation
𝐻 = 𝑔𝑥, where such an efficient construction of NIZK [43]
can be from the cut-and-choose techniques, Shamir secret
sharing [40] and homomorphic time-lock puzzles [27].

Additionally, since the frozen address 𝑝𝑘 is jointly con-
trolled by users 𝑃0 and 𝑃1 (i.e., the corresponding secret
key 𝑠𝑘 is shared between them), it is inevitable that we rely
on the interactive protocols (denoted as Γ𝑆𝐼𝐺

𝐴𝑑𝑝𝑆𝑖𝑔 and Γ𝑆𝐼𝐺
𝑆𝑖𝑔 )

to realize the jointly (pre-)signing of a message 𝑚 under
public key 𝑝𝑘, which can be efficiently instantiated w.r.t.
𝑆𝐼𝐺 ∈ {𝑆ℎ𝑛𝑜𝑟𝑟,𝐸𝐶𝐷𝑆𝐴} with the protocols in [26].

6.2 Procedures of pipeSwap

Recall that in the classic setting, users 𝑃0 (owns coins 𝛼 on
blockchain B0) and 𝑃1 (owns coins 𝛽 on blockchain B1) wish
to complete the 𝛼-to-𝛽 cross-chain swap. As we have briefly
mentioned before (cf. Section 4), the pipelined coins flow of
the frozen coins definitely guarantees atomicity. Forcing the
earlier release of witness 𝑦 is the crux of making pipeSwap
secure, and this is achieved by three critical ingredients, i.e.,
splitting frozen coins 𝛽 into (𝜀, 𝛽 − 𝜀), two-hop swap and
two-hop refund.
Protocol details. For ease of understanding, we illustrate
the coin flow of pipeSwap in Fig.10 and describe pipeSwap in
Fig.11, where the key point of each phase is presented below:
(A) Swap Setup Phase-Freezing Coins: This phase allows

Figure 10: The coins flow of pipeSwap

users 𝑃0 and 𝑃1 to transfer their swapped coins to the cor-
responding frozen addresses, which are jointly controlled by
both users. To be better prepared for two-hop swap and
two-hop refund, we let user 𝑃1 split frozen coins 𝛽 into two



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

addresses 𝑝𝑘
(10)

and 𝑝𝑘(10) with respective values 𝜀 and 𝛽−𝜀.
Importantly, to guarantee the frozen coins 𝛽 are refunded as

it is hoped, pre-refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 := (𝑝𝑘

(10)
,̂︁𝑝𝑘(1)

𝑟𝑓𝑑, 𝜀)

is locked until time 𝑇 1 := 𝑇1 − 𝜙 (i.e., user 𝑃0 makes

a timed commitment of secret key share 𝑠𝑘
(10)
0 with tim-

ing hardness 𝑇 1), while the refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 :=

((𝑝𝑘(10),̂︁𝑝𝑘(1)

𝑟𝑓𝑑), 𝑝𝑘
(1)
𝑟𝑓𝑑, 𝛽) is generated with secret keys 𝑠𝑘(10)

(jointly held by users 𝑃0 and 𝑃1) and ̂︁𝑠𝑘(1)

𝑟𝑓𝑑 (held by user 𝑃1),
and will be valid at timeout 𝑇1 (i.e., the time of confirming

𝑡𝑥
(1)
𝑟𝑓𝑑). Meanwhile, user 𝑃1 makes a timed commitment of

secret key share 𝑠𝑘
(01)
1 with timing hardness 𝑇0 > 𝑇1 for re-

funding frozen coins 𝛼 (i.e., user 𝑃0 can generate the refund

transaction 𝑡𝑥
(0)
𝑟𝑓𝑑 := (𝑝𝑘(01), 𝑝𝑘

(0)
𝑟𝑓𝑑, 𝛼) after timeout 𝑇0);

(B1) Swap Lock Phase: This phase prepares for atomic swap-

s. Both users jointly pre-sign swap transactions 𝑡𝑥
(1)
𝑠𝑤𝑝 :=

(𝑝𝑘(01), 𝑝𝑘
(1)
𝑠𝑤𝑝, 𝛼) and 𝑡𝑥

(0)
𝑠𝑤𝑝 := (𝑝𝑘

(10)
,̂︁𝑝𝑘(0)

𝑠𝑤𝑝, 𝜀) in sequence,
where statement-witness pair (𝑌, 𝑦) ∈ ℛ𝑑𝑙𝑜𝑔 is selected by us-
er 𝑃0. Similarly, to guarantee the coins 𝛽 are swapped as it is

hoped, the swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 := ((𝑝𝑘(10),̂︁𝑝𝑘(0)

𝑠𝑤𝑝), 𝑝𝑘
(0)
𝑠𝑤𝑝, 𝛽)

is well generated with secret keys 𝑠𝑘(10) (jointly held by users

𝑃0 and 𝑃1) and ̂︁𝑠𝑘(0)

𝑠𝑤𝑝 (held by user 𝑃0), and the final confir-

mation of transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 is an essential prerequisite for

the validity of 𝑡𝑥
(0)
𝑠𝑤𝑝. Thus, in order to generate a valid swap

transaction, user 𝑃0 is forced to release witness 𝑦 at least 𝜙

time earlier (i.e., posting pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝);

(B2) Swap Complete Phase: If user 𝑃0 can generate a valid

swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1 (i.e., it honestly

posts pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before time 𝑇 1), then both

swap transactions 𝑡𝑥
(0)
𝑠𝑤𝑝 and 𝑡𝑥

(1)
𝑠𝑤𝑝 must be finally confirmed

by the underlying blockchains;
(C) Swap Timeout Phase: If user 𝑃0 fails to generate a swap

transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1 (i.e., pre-swap transac-

tion 𝑡𝑥
(0)
𝑠𝑤𝑝 is not confirmed before timeout 𝑇1, and pre-refund

transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 is finally confirmed), then user 𝑃1 posts

refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 after timeout 𝑇1. Similarly, if user

𝑃1 fails to post swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 before timeout 𝑇0,

then user 𝑃0 posts refund transaction 𝑡𝑥
(0)
𝑟𝑓𝑑 after timeout 𝑇0.

Security intuitions. We brief security intuitions in the
following and defer detailed proofs to Appendix C.
Successful Swap. This directly stems from the security of un-
derlying blockchains and adaptor signature. If user 𝑃0 can

generate valid swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1 (i.e.,

its pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 has been finally confirmed),

then user 𝑃1 can post its swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 with wit-

ness 𝑦 extracted from the signature of 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout

𝑇1. Thus, swap transactions of both users must be finally
confirmed. Notice that the above analysis includes the case
that the adversary 𝑃0 successfully posts a swap transaction

𝑡𝑥
(0)
𝑠𝑤𝑝 at timeout 𝑇1 (i.e., it initiates a double-claiming at-

tack), but this cannot prevent user 𝑃1 from completing its

Swap Complete Phase before timeout 𝑇1.
Failed Swap. We consider the following possible cases.
∙ User 𝑃0 does not initiate its swap operation before timeout

𝑇1 (i.e., it does not post transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 before timeout 𝑇1),

then both users can successfully refund their frozen coins;

∙ User 𝑃0 fails to generate a valid swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝

before/at timeout 𝑇1 (i.e., pre-refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 is

finally confirmed before timeout 𝑇1), user 𝑃1 can successfully
refund its frozen coins. Moreover, since user 𝑃0 has posted

pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝, user 𝑃1 also can extract witness

𝑦 to complete Swap Complete Phase by posting swap trans-

action 𝑡𝑥
(1)
𝑠𝑤𝑝 before timeout 𝑇1;

∙ The adversary 𝑃0 can never generate a valid swap trans-

action 𝑡𝑥
(0)
𝑠𝑤𝑝 after timeout 𝑇1, thus user 𝑃1 can successfully

refund its frozen coins after timeout 𝑇1 and even swap 𝑃0’s
frozen coins.

Therefore, pipeSwap runs as expected, and satisfies atom-
icity in that the honest user never lose coins.

6.3 Evaluation and Comparison

Implementation Details. We develop a prototypical C im-
plementation to demonstrate the feasibility of our construc-
tion and evaluate its performance. We conduct experiments
on the PC with the following configuration: CPU(Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz with 4 cores), RAM(16.0
GB) and OS(x64-based Windows). Basically, the signatures
of Schnorr and ECDSA are instantiated over secp256k1 curve,
and the transaction size is set to 250 bytes approximating
the basic Bitcoin transaction. We implement the two-party
computation protocol for digital signature Γ𝑆𝐼𝐺

𝑆𝑖𝑔 , and use

the implementations of adaptor signatures Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔 and VTD

respectively in [41] and [43]. Our code used in evaluations is
available at https://github.com/Anqi333/pipeSwap.

Computation Time. We first measure the time of basic
operations required in pipeSwap, and the results are shown
in Table 2. Then we measure the computation time required
by both users together in Table 3. We observe that (1) each
instance of pipeSwap requires only 1.605 seconds for Schnorr
and 1.624 seconds for ECDSA; (2) the computation time
of Swap Setup-Freezing Phase accounts for more than 99%,
because both users jointly complete two VTD computations.

Table 3: The computation time (ms)

Setup Phase Lock Phase Complete Phase

Schnorr
pipeSwap 1593.752 9.508 1.353

UAS⋆ 1590.05 8.786 0.706

ECDSA
pipeSwap 1594.513 27.431 2.09

UAS⋆ 1590.384 26.05 1.044

⋆Universal Atomic Swaps [42].

Communication Overhead. We measure the commu-
nication overhead as the amount of messages that users
exchange during the execution of interactive algorithms in
the Swap Setup Phase and Swap Lock Phase (cf. Table 4).

https://github.com/Anqi333/pipeSwap


Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

Assume the swapped coins 𝛼 and 𝛽 are respectively stored in addresses 𝑝𝑘(0) and 𝑝𝑘(1) on the corresponding blockchains B0 and B1.
Global parameters are (G, 𝑞, 𝑔), Δ, 𝜙, 𝑇1 − 𝑇 1 ≥ 𝜙 and 𝑇0 > 𝑇1; ⊕ := + if 𝑆𝐼𝐺 = 𝑆𝑐ℎ𝑛𝑜𝑟𝑟 and ⊕ := * if 𝑆𝐼𝐺 = 𝐸𝐶𝐷𝑆𝐴.

(A) Swap Setup Phase - Freezing Coins

1. Users 𝑃0 and 𝑃1 respectively completes Setup:

1) User 𝑃0 runs Setup process (Fig.12) and sends (𝑝𝑘
(01)
0 , 𝑝𝑘

(10)
0 , 𝑝𝑘

(10)
0 , (𝐶(1), 𝜋(1))) →˓ 𝑃1;

2) User 𝑃1 runs Setup process (Fig.12) and sends (𝑝𝑘
(01)
1 , 𝑝𝑘

(10)
1 , 𝑝𝑘

(10)
1 , (𝐶(0), 𝜋(0))) →˓ 𝑃0.

2. Users 𝑃0 and 𝑃1 generate their frozen addresses:

1) User 𝑃0 does the following:

∙ It checks if 𝑉 𝑇𝐷.𝑉 𝑓(𝑝𝑘
(01)
1 , 𝐶(0), 𝜋(0)) = 1, and stops otherwise;

∙ It generates frozen address 𝑝𝑘(01) = 𝑝𝑘
(01)
0 ⊕ 𝑝𝑘

(01)
1 .

2) User 𝑃1 does the following:

∙ It checks if 𝑉 𝑇𝐷.𝑉 𝑓(𝑝𝑘
(10)
0 , 𝐶(1), 𝜋(1)) = 1, and stops otherwise;

∙ It generates frozen addresses 𝑝𝑘
(10)

= 𝑝𝑘
(10)
0 ⊕ 𝑝𝑘

(10)
1 and 𝑝𝑘(10) = 𝑝𝑘

(10)
0 ⊕ 𝑝𝑘

(10)
1 .

3. Users 𝑃0 and 𝑃1 transfer swapped coins to the corresponding frozen addresses.

1) User 𝑃0 does the following:

∙ It generates frozen transaction 𝑡𝑥
(0)
𝑓𝑟𝑧 := (𝑝𝑘(0), 𝑝𝑘(01), 𝛼) and signature 𝜎

(0)
𝑓𝑟𝑧 ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(𝑠𝑘(0), 𝑡𝑥

(0)
𝑓𝑟𝑧);

∙ It posts (𝑡𝑥
(0)
𝑓𝑟𝑧 , 𝜎

(0)
𝑓𝑟𝑧) on blockchain B0 and starts solving 𝑉 𝑇𝐷.𝐹𝑜𝑟𝑐𝑒𝑂𝑝(𝐶(0)).

2) Users 𝑃0 and 𝑃1 jointly do the following:

∙ 𝑃1 generates frozen transaction 𝑡𝑥
(1)
𝑟𝑓𝑧 := (𝑝𝑘(1), (𝑝𝑘

(10)
, 𝑝𝑘(10)), (𝜀, 𝛽 − 𝜀)), pre-refund transaction 𝑡𝑥

(1)
𝑟𝑓𝑑 := (𝑝𝑘

(10)
,̂︁𝑝𝑘(1)𝑟𝑓𝑑, 𝜀) and

refund transaction 𝑡𝑥
(1)
𝑟𝑓𝑑 := ((𝑝𝑘(10),̂︁𝑝𝑘(1)𝑟𝑓𝑑), 𝑝𝑘

(1)
𝑟𝑓𝑑, 𝛽). It sends (𝑡𝑥

(1)
𝑟𝑓𝑧 , 𝑡𝑥

(1)
𝑟𝑓𝑑, 𝑡𝑥

(1)
𝑟𝑓𝑑) →˓ 𝑃0;

∙ 𝑃0 checks that transactions (𝑡𝑥
(1)
𝑟𝑓𝑧 , 𝑡𝑥

(1)
𝑟𝑓𝑑, 𝑡𝑥

(1)
𝑟𝑓𝑑) are well formed (i.e., satisfy two-hop refund framework), and stops otherwise;

∙ 𝑃0 and 𝑃1 run a 2PC protocol Γ𝑆𝐼𝐺
𝑆𝑖𝑔 with input (𝑠𝑘

(10)
0 , 𝑠𝑘

(10)
1 , 𝑡𝑥

(1)
𝑟𝑓𝑑) (Fig.12) and obtain signature 𝜎̌

(1)
𝑟𝑓𝑑;

∙ 𝑃1 computes signature 𝜎
(1)
𝑓𝑟𝑧 ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(𝑠𝑘(1), 𝑡𝑥

(1)
𝑓𝑟𝑧);

∙ 𝑃1 posts (𝑡𝑥
(1)
𝑓𝑟𝑧 , 𝜎

(1)
𝑓𝑟𝑧) on blockchain B1 and starts solving 𝑉 𝑇𝐷.𝐹𝑜𝑟𝑐𝑒𝑂𝑝(𝐶(1)).

(B1) Swap Lock Phase

1. User 𝑃0 runs (𝑌, 𝑦)←ℛ𝐺𝑒𝑛(1𝜆) and sends 𝑌 →˓ 𝑃1.

2. Users 𝑃0 and 𝑃1 generates their swap transactions:
1) User 𝑃0 does the following:

∙ It generates pre-swap transaction 𝑡𝑥
(0)
𝑠𝑤𝑝 := (𝑝𝑘

(10)
,̂︁𝑝𝑘(0)𝑠𝑤𝑝, 𝜀) and swap transaction 𝑡𝑥

(0)
𝑠𝑤𝑝 := ((𝑝𝑘(10),̂︁𝑝𝑘(0)𝑠𝑤𝑝), 𝑝𝑘

(0)
𝑠𝑤𝑝, 𝛽);

∙ It sends (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝑡𝑥

(0)
𝑠𝑤𝑝) →˓ 𝑃1.

2) User 𝑃1 does the following:

∙ It checks that transactions (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝑡𝑥

(0)
𝑠𝑤𝑝) are well formed (i.e., satisfy two-hop swap framework), and stops otherwise;

∙ It generates swap transaction 𝑡𝑥
(1)
𝑠𝑤𝑝 := (𝑝𝑘(01), 𝑝𝑘

(1)
𝑠𝑤𝑝, 𝛼);

∙ It sends 𝑡𝑥
(1)
𝑠𝑤𝑝 →˓ 𝑃0.

3. Users 𝑃0 and 𝑃1 run a 2PC protocol Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔 with input (𝑠𝑘

(01)
0 , 𝑠𝑘

(01)
1 , 𝑌, 𝑡𝑥

(1)
𝑠𝑤𝑝) (Fig.12), and obtain pre-signature ̃︀𝜎(1)

𝑠𝑤𝑝;

4. After step 3 is successful, 𝑃0 and 𝑃1 run a 2PC protocol Γ𝑆𝐼𝐺
𝑆𝑖𝑔 with input (𝑠𝑘

(10)
0 , 𝑠𝑘

(10)
1 , 𝑡𝑥

(0)
𝑠𝑤𝑝) (Fig.12) and obtain signature 𝜎̌

(0)
𝑠𝑤𝑝,

and then run 2PC protocol Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔 with input (𝑠𝑘

(10)
0 , 𝑠𝑘

(10)
1 , 𝑌, 𝑡𝑥

(0)
𝑠𝑤𝑝) (Fig.12) and obtain pre-signature ̃︀𝜎(0)

𝑠𝑤𝑝.

(B2) Swap Complete Phase

5. User 𝑃0 does the following:

1) It computes 𝜎
(0)
𝑠𝑤𝑝 ← Σ𝑆𝐼𝐺

𝐴𝑆 .𝐴𝑑𝑎𝑝𝑡(̃︀𝜎(0)
𝑠𝑤𝑝, 𝑦) and posts (𝑡𝑥

(0)
𝑠𝑤𝑝, 𝜎

(0)
𝑠𝑤𝑝) on blockchain B1 before time 𝑇 1 −Δ;

2) It computes ̂︀𝜎(0)
𝑠𝑤𝑝 ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(̂︁𝑠𝑘(0)𝑠𝑤𝑝, 𝑡𝑥

(0)
𝑠𝑤𝑝) and posts (𝑡𝑥

(0)
𝑠𝑤𝑝, (𝜎̌

(0)
𝑠𝑤𝑝, ̂︀𝜎(0)

𝑠𝑤𝑝)) on blockchain B1 if 𝑡𝑥
(0)
𝑠𝑤𝑝 is finally confirmed.

6. Upon receiving (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

(0)
𝑠𝑤𝑝), user 𝑃1 dose the following:

1) It computes 𝑦 ← Σ𝑆𝐼𝐺
𝐴𝑆 .𝐸𝑥𝑡(𝜎

(0)
𝑠𝑤𝑝, ̃︀𝜎(0)

𝑠𝑤𝑝, 𝑌 ) and 𝜎
(1)
𝑠𝑤𝑝 ← Σ𝑆𝐼𝐺

𝐴𝑆 .𝐴𝑑𝑎𝑝(̃︀𝜎(1)
𝑠𝑤𝑝, 𝑦);

2) It posts (𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) on blockchain B0.

(C) Swap Refund Phase

1. If user 𝑃0 fails to post (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

(0)
𝑠𝑤𝑝) on blockchain B1 before time 𝑇 1, then user 𝑃1 does the following:

1) It finishes computing 𝑠𝑘
(10)
0 ← 𝑉 𝑇𝐷.𝐹𝑜𝑟𝑐𝑒𝑂𝑝(𝐶(1)) and computes 𝑠𝑘

(10)
:= 𝑠𝑘

(10)
0 ⊕ 𝑠𝑘

(10)
1 ;

2) It computes 𝜎
(1)
𝑟𝑓𝑑 ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(𝑠𝑘

(10)
, 𝑡𝑥

(1)
𝑟𝑓𝑑) and posts (𝑡𝑥

(1)
𝑟𝑓𝑑, 𝜎

(1)
𝑟𝑓𝑑) on blockchain B1;

3) If 𝑡𝑥
(1)
𝑟𝑓𝑑 is finally confirmed, it computes ̂︀𝜎(1)

𝑟𝑓𝑑 ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(̂︁𝑠𝑘(1)𝑟𝑓𝑑, 𝑡𝑥
(1)
𝑟𝑓𝑑) and posts (𝑡𝑥

(1)
𝑟𝑓𝑑, (𝜎̌

(1)
𝑟𝑓𝑑, ̂︀𝜎(1)

𝑟𝑓𝑑)) on blockchain B1.

2. Similarly, if user 𝑃1 fails to post (𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) on blockchain B0 before time 𝑇0, then user 𝑃0 does the following:

1) It finishes computing 𝑠𝑘
(01)
1 ← 𝑉 𝑇𝐷.𝐹𝑜𝑟𝑐𝑒𝑂𝑝(𝐶(0)) and computes 𝑠𝑘(01) := 𝑠𝑘

(01)
0 ⊕ 𝑠𝑘

(01)
1 ;

2) It computes 𝜎
(0)
𝑟𝑓𝑑 ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(𝑠𝑘(01), 𝑡𝑥

(0)
𝑟𝑓𝑑) and posts (𝑡𝑥

(0)
𝑟𝑓𝑑, 𝜎

(0)
𝑟𝑓𝑑) on blockchain B0.

Figure 11: pipeSwap: a secure cross-chain swap between users 𝑃0 and 𝑃1



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

//The Setup process

User 𝑃0 does the following:

(1) It runs Σ𝑆𝐼𝐺.𝐾𝐺𝑒𝑛(1𝜆)→ {(𝑠𝑘(01)0 , 𝑝𝑘
(01)
0 ), (𝑠𝑘

(10)
0 , 𝑝𝑘

(10)
0 ), (𝑠𝑘

(10)
0 , 𝑝𝑘

(10)
0 ), (𝑠𝑘

(0)
𝑟𝑓𝑑, 𝑝𝑘

(0)
𝑟𝑓𝑑), (

̂︁𝑠𝑘(0)𝑠𝑤𝑝,
̂︁𝑝𝑘(0)𝑠𝑤𝑝), (𝑠𝑘

(0)
𝑠𝑤𝑝, 𝑝𝑘

(0)
𝑠𝑤𝑝)};

(2) It computes commitment 𝑉 𝑇𝐷.𝐶𝑜𝑚𝑚𝑖𝑡(𝑠𝑘
(10)
0 , 𝑇 1)→ (𝐶(1), 𝜋(1)).

User 𝑃1 does the following:

(1) It runs Σ𝑆𝐼𝐺.𝐾𝐺𝑒𝑛(1𝜆)→ {(𝑠𝑘(01)1 , 𝑝𝑘
(01)
1 ), (𝑠𝑘

(10)
1 , 𝑝𝑘

(10)
1 ), (𝑠𝑘

(10)
1 , 𝑝𝑘

(10)
1 ), (̂︁𝑠𝑘(1)𝑟𝑓𝑑,

̂︁𝑝𝑘(1)𝑟𝑓𝑑), (𝑠𝑘
(1)
𝑟𝑓𝑑, 𝑝𝑘

(1)
𝑟𝑓𝑑), (𝑠𝑘

(1)
𝑠𝑤𝑝, 𝑝𝑘

(1)
𝑠𝑤𝑝)};

(2) It computes commitment 𝑉 𝑇𝐷.𝐶𝑜𝑚𝑚𝑖𝑡(𝑠𝑘
(01)
1 , 𝑇0)→ (𝐶(0), 𝜋(0)).

//The 2PC protocol Γ𝑆𝐼𝐺
𝑆𝑖𝑔

It takes private inputs 𝑠𝑘0 and 𝑠𝑘1 held by users 𝑃0 and 𝑃1 respectively, and public message 𝑚:

(1) It sets secret key as 𝑠𝑘 := 𝑠𝑘0 ⊕ 𝑠𝑘1;
(2) It computes 𝜎̌ ← Σ𝑆𝐼𝐺.𝑆𝑖𝑔(𝑠𝑘,𝑚) and sends 𝜎̌ to both users 𝑃0 and 𝑃1;

(3) Users 𝑃0 and 𝑃1 respectively check if Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘,𝑚, 𝜎) = 1, and stops otherwise.

//The 2PC protocol Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔

It takes private inputs 𝑠𝑘0 and 𝑠𝑘1 held by users 𝑃0 and 𝑃1 respectively, and public messages (𝑚,𝑌 ):
(1) It sets secret key as 𝑠𝑘 := 𝑠𝑘0 ⊕ 𝑠𝑘1;

(2) It computes ̃︀𝜎 ← Σ𝑆𝐼𝐺
𝐴𝑆 .𝑝𝑆𝑖𝑔(𝑠𝑘,𝑚, 𝑌 ) and sends ̃︀𝜎 to both users 𝑃0 and 𝑃1;

(3) Users 𝑃0 and 𝑃1 respectively check if Σ𝑆𝐼𝐺
𝐴𝑆 .𝑝𝑉 𝑓(𝑝𝑘,𝑚, 𝑌, ̃︀𝜎) = 1, and stops otherwise.

Figure 12: The subroutines

Table 2: The computation time of basic operations (ms)

Σ𝑆𝐼𝐺 Γ𝑆𝐼𝐺
𝑆𝑖𝑔 Γ𝑆𝐼𝐺

𝐴𝑑𝑝𝑆𝑖𝑔 VTD (n=64)
KGen Sig Vf Sig Vf pSig pVf Ext Adapt Commit Vf

Schnorr 0.745 0.647 1.142 0.722 1.332 4.393 2.837 0.7 0.003
413.057 378.341

ECDSA 0.687 1.046 1.461 1.381 1.479 13.025 7.156 0.936 0.054

In particular, pipeSwap requires 6.4 kb for Schnorr and 7
kb for ECDSA, which is dominated by that of respectively
exchanging the VTD.Commit-proof pair of secret key share.

Table 4: The communication overheads (bytes)

Setup Phase Lock Phase

Schnorr
pipeSwap 5060 1518

UAS⋆ 4240 1012

ECDSA
pipeSwap 5220 1998

UAS⋆ 4240 1332

⋆Universal Atomic Swaps [42].

Efficiency Comparison. To compare pipeSwap (Fig.6)
with Universal Atomic Swaps (its Fig.5 in [42]) w.r.t. the oper-
ations required of both users together, we evaluate pipeSwap
and Universal Atomic Swaps with the same setting and li-
braries and security parameters for all cryptographic imple-
mentations. Before delving into details, let us be clear first
that Universal Atomic Swaps repeat the same operations for
each swapped coin, thus here we only consider the one-to-one
atomic swap in [42]. Universal Atomic Swaps complete in
1.6 seconds for Schnorr and 1.617 seconds for ECDSA, and
requires 5.1 kb for Schnorr and 5.4 kb for ECDSA. Therefore,
pipeSwap is only ≤ 7 ms slower and incurs extra ≤ 1.6 kb
communication overhead, which is acceptable, even though
we need to prepare and sign two extra transactions (the pre-
swap and pre-refund transactions). Additionally, we stress

that pipeSwap sets the same timeout parameters 𝑇0 and 𝑇1

as Universal Atomic Swaps, while the actual hardness pa-
rameter for user 𝑃1 is 𝑇 1 < 𝑇1, which means that pipeSwap
takes less computational costs.

Therefore, pipeSwap not only achieves stronger atomicity
and universality, but also is efficient with low overhead.

7 CONCLUSIONS AND FUTURE
WORKS

In this paper, we identify a new form of attack, called double-
claiming attack, againsts Universal Atomic Swaps [IEEE
S&P’22]. This attack can lead to honest user losing coins
with overwhelming probability and atomicity property is
directly broken. We introduce a novel approach of utilizing
two-hop swap and two-hop refund techniques to secure coin
flows, and design pipeSwap, a universal atomic cross-chain
swap protocol.

Several interesting questions can be considered in future
work. pipeSwap is efficiently instantiated with standard sig-
nature schemes Schnorr and ECDSA, and direct building on
other signature schemes may need further care. It is interest-
ing to explore extensions to some more complex but practical
scenarios, e.g., multi-hop swaps 𝑃1 → 𝑃2 → · · · → 𝑃𝑛 → 𝑃1,
where each intermediate user only holds the desired coins
of its right neighbor. Also, we leave to further work how to
apply the pipelined coins flow paradigm to scriptless payment
channel networks protocols providing stronger security.



Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

REFERENCES
[1] 2023. https://thecharlatan.ch/Monero-Unlock-Time-Privacy.
[2] Hagit Attiya and Jennifer Welch. 2004. Distributed computing:

fundamentals, simulations, and advanced topics. Vol. 19. John
Wiley & Sons.

[3] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust,
Kristina Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and
Siavash Riahi. 2021. Generalized channels from limited blockchain
scripts and adaptor signatures. In Advances in Cryptology–
ASIACRYPT 2021. Springer, 635–664.

[4] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo
Maffei. 2021. Breaking and Fixing Virtual Channels: Domino
Attack and Donner. Cryptology ePrint Archive (2021).

[5] Michael Backes and Dennis Hofheinz. 2004. How to break and
repair a universally composable signature functionality. In Inter-
national Conference on Information Security. Springer, 61–72.

[6] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocur-
rencies without proof of work. In Financial Cryptography and
Data Security. Springer, 142–157.

[7] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip
Daian, and Ari Juels. 2019. Tesseract: Real-Time Cryptocurrency
Exchange Using Trusted Hardware. In the 2019 ACM SIGSAC
Conference.

[8] Michael Borkowski, Marten Sigwart, Philipp Frauenthaler, Taneli
Hukkinen, and Stefan Schulte. 2019. Dextt: Deterministic Cross-
Blockchain Token Transfers. IEEE Access 7 (2019), 111030–
111042. https://doi.org/10.1109/ACCESS.2019.2934707

[9] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri,
and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes. In the 2019 ACM
SIGSAC Conference.

[10] Sergiu Bursuc and Steve Kremer. 2019. Contingent payments on a
public ledger: models and reductions for automated verification. In
Computer Security–ESORICS 2019: 24th European Symposium
on Research in Computer Security, Luxembourg, September
23–27, 2019, Proceedings, Part I 24. Springer, 361–382.

[11] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca
Nizzardo. 2017. Zero-knowledge contingent payments revisited:
Attacks and payments for services. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security. 229–243.

[12] Ran Canetti. 2001. Universally composable security: A new par-
adigm for cryptographic protocols. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science. IEEE, 136–
145.

[13] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish.
2007. Universally composable security with global setup. In The-
ory of Cryptography: 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007.
Proceedings 4. Springer, 61–85.

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. 2019. Sgxpectre: Stealing intel secret-
s from sgx enclaves via speculative execution. In 2019 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P). IEEE,
142–157.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Con-
sensus in the presence of partial synchrony. Journal of the ACM
(JACM) 35, 2 (1988), 288–323.

[16] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková.
2018. General state channel networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security. 949–966.

[17] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The
bitcoin backbone protocol: Analysis and applications. In Annu-
al international conference on the theory and applications of
cryptographic techniques. Springer, 281–310.

[18] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2019. On the
optionality and fairness of atomic swaps. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies.
62–75.

[19] Maurice Herlihy. 2018. Atomic cross-chain swaps. In Proceed-
ings of the 2018 ACM symposium on principles of distributed
computing. 245–254.

[20] Philipp Hoenisch, Subhra Mazumdar, Pedro Moreno-Sanchez,
and Sushmita Ruj. 2022. LightSwap: An Atomic Swap Does
Not Require Timeouts at both Blockchains. In International
Workshop on Data Privacy Management. Springer, 219–235.

[21] Ghassan O Karame, Elli Androulaki, Marc Roeschlin, Arthur

Gervais, and Srdjan Čapkun. 2015. Misbehavior in bitcoin: A
study of double-spending and accountability. ACM Transactions
on Information and System Security (TISSEC) 18, 1 (2015),
1–32.

[22] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.
2013. Universally composable synchronous computation. In The-
ory of Cryptography: 10th Theory of Cryptography Confer-
ence, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings.
Springer, 477–498.

[23] Rami Khalil and Arthur Gervais. 2017. Revive: Rebalancing
Off-Blockchain Payment Networks. ACM (2017).

[24] Aggelos Kiayias and Dionysis Zindros. 2020. Proof-of-work
sidechains. In Financial Cryptography and Data Security: FC
2019 International Workshops, VOTING and WTSC, St. Kitts,
St. Kitts and Nevis, February 18–22, 2019, Revised Selected
Papers 23. Springer, 21–34.

[25] Russell WF Lai, Viktoria Ronge, Tim Ruffing, Dominique
Schröder, Sri Aravinda Krishnan Thyagarajan, and Jiafan Wang.
2019. Omniring: Scaling private payments without trusted set-
up. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 31–48.

[26] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind,
Aniket Kate, and Matteo Maffei. 2018. Anonymous multi-hop
locks for blockchain scalability and interoperability. Cryptology
ePrint Archive (2018).

[27] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. 2019.
Homomorphic time-lock puzzles and applications. In Annual In-
ternational Cryptology Conference. Springer, 620–649.

[28] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick
McCorry. 2017. Sprites: Payment channels that go faster than
lightning. CoRR, abs/1702.05812 (2017).

[29] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system. Decentralized Business Review (2008), 21260.

[30] Krishnasuri Narayanam, Venkatraman Ramakrishna, Dhinakaran
Vinayagamurthy, and Sandeep Nishad. 2022. Atomic cross-chain
exchanges of shared assets. arXiv:2202.12855 [cs.CR]

[31] Krishnasuri Narayanam, Venkatraman Ramakrishna, Dhinakaran
Vinayagamurthy, and Sandeep Nishad. 2022. Generalized HTLC
for cross-chain swapping of multiple assets with co-ownerships.
arXiv preprint arXiv:2202.12855 (2022).

[32] Tier Nolan. 2013. Alt chains and atomic transfers. Bitcoin Forum.
https://bitcointalk.org/index.php?topic=193281.0.

[33] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the
blockchain protocol in asynchronous networks. In Annual interna-
tional conference on the theory and applications of cryptographic
techniques. Springer, 643–673.

[34] Andrew Poelstra. 2016. Mimblewimble. (2016).
[35] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning

network: Scalable off-chain instant payments. (2016).
[36] Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-

lock puzzles and timed-release crypto. (1996).
[37] Muhammad Saad, Afsah Anwar, Srivatsan Ravi, and David Mo-

haisen. 2021. Revisiting nakamoto consensus in asynchronous
networks: A comprehensive analysis of bitcoin safety and chain-
quality. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 988–1005.

[38] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. 2014. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE
symposium on security and privacy. IEEE, 459–474.

[39] David Schwartz, Noah Youngs, Arthur Britto, et al. 2014. The
ripple protocol consensus algorithm. Ripple Labs Inc White
Paper 5, 8 (2014), 151.

[40] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11
(1979), 612–613.

[41] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. 2021.
A2L: Anonymous Atomic Locks for Scalability in Payment Chan-
nel Hubs. In 2021 IEEE Symposium on Security and Privacy
(SP). 1834–1851. https://doi.org/10.1109/SP40001.2021.00111

[42] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro
Moreno-Sanchez. 2022. Universal Atomic Swaps: Secure Exchange
of Coins Across All Blockchains. In 2022 IEEE Symposium on
Security and Privacy (SP). 1299–1316. https://doi.org/10.1109/
SP46214.2022.9833731

[43] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Mala-
volta, Nico Döttling, Aniket Kate, and Dominique Schröder. 2020.

https://thecharlatan.ch/Monero-Unlock-Time-Privacy
https://doi.org/10.1109/ACCESS.2019.2934707
https://arxiv.org/abs/2202.12855
https://bitcointalk.org/index.php?topic=193281.0
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1109/SP46214.2022.9833731
https://doi.org/10.1109/SP46214.2022.9833731


Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

Verifiable timed signatures made practical. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communica-
tions Security. 1733–1750.

[44] Sri Aravinda Krishnan Thyagarajan and Giulio Malavolta. 2021.
Lockable signatures for blockchains: Scriptless scripts for all signa-
tures. In 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 937–954.

[45] Gilbert Verdian, Paolo Tasca, Colin Paterson, and Gaetano Mon-
delli. 2018. Quant overledger whitepaper. Release V0 1 (2018),
31.

[46] Gavin Wood et al. 2014. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum project yellow paper 151,
2014 (2014), 1–32.

[47] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. 2019.
Atomic commitment across blockchains. arXiv preprint arX-
iv:1905.02847 (2019).

[48] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis
Panayiotou, Arthur Gervais, and William Knottenbelt. 2019. X-
claim: Trustless, interoperable, cryptocurrency-backed assets. In
2019 IEEE Symposium on Security and Privacy (SP). IEEE,
193–210.

A RELATED WORKS

Tier Nolan first introduced the conceptualisation of “atomic
swap” [32]. Its fundamental security atomicity states that
the swap either ends with success (i.e., the owners of involved
coins are exchanged) or failure (i.e., the involved coins are
refunded to their original owners) [18, 47].

Essentially, a secure cross-chain swap between users 𝑃0 and
𝑃1 should fulfill two fundamental functionalities to guarantee
the honest user 𝑃0 cannot lose coins (1) if user 𝑃1 has claimed
𝑃0’s frozen coins, 𝑃0 is able claim 𝑃1’s frozen coins before
𝑃1 can refund them; and (2) if user 𝑃1 is malicious, 𝑃0 can
refund its frozen coins. While atomicity is easily realized
by the trusted third party, the blockchain community has
made significant efforts to achieve (fully) decentralized cross-
chain swaps [30, 47, 48]. HTLC-based protocols use the rich
scripting languages supported by the underlying blockchains
to describe when and how the frozen coins can be unlocked
[8, 31]. Subsequently, HTLC-style solutions have been widely
applied and deployed in practice [10, 11, 19]. However, these
protocols are far from the universal solution and suffer from
the inherent drawbacks of HTLC, including high execution
costs and large transaction sizes. Additionally, since these
transactions are easier to distinguish from the standard one
that does not include any custom scripts, thus these protocols
are at odds with the blockchains that have already achieved
privacy [38].

Recently, LightSwap [20] studies the swap that enables the
user to run an instance of swap on a mobile phone and is
committed to proposing the first secure atomic swap protocol
that does not require the timeout functionality by one of the
two participating users. However, it still requires one of the
two involved blockchains supporting timelock functionality
and thus cannot achieve universality. Universal Atomic Swaps
[42] use cryptographic building blocks adaptor signature and
timed commitment to present the first fully universal solution.

Besides, some literatures [24, 45] use a third blockchain as
the coordinator, but it requires the involved users with the
capability of transferring to/from coins from this blockchain.
Also, the cross-chain swaps functionality is inserted into a

trusted hardware [7], which is not only unrealistic but also
exists serious vulnerabilities [9, 14].

The studies of payment channel networks (PCNs) enable
any two users to complete payments even if they do not have
a direct payment channel, and have become the most widely
deployed solution for realizing blockchain scalability (e.g.,
lightning network [35]). Similarly, most of the existing PCN
proposals are restricted to the Turing complete scripting lan-
guage [16, 23, 28] thus suffering from the inherent drawbacks
of HTLC. Anonymous Multi-Hop Locks [26], lockable signa-
tures [44] and A2L [41] are recently proposed to construct
scriptless PNC. However, these studies only defer successful
atomic payment to specific signature schemes but still rely
on on-chain time-lock functionality to ensure payment expiry,
and thus is not universal.

B DEFINITIONS OF
CRYPTOGRAPHIC BUILDING
BLOCKS

Definition 1. (Adaptor Signature)[3] An adaptor signa-
ture scheme Σ𝑆𝐼𝐺

𝐴𝑆 w.r.t. a hard relation ℛ and a digital
signature scheme Σ𝑆𝐼𝐺 := (𝐾𝐺𝑒𝑛, 𝑆𝑖𝑔, 𝑉 𝑓) consists of algo-
rithms {𝑝𝑆𝑖𝑔,𝐴𝑑𝑎𝑝𝑡, 𝑝𝑉 𝑓,𝐸𝑥𝑡} defined as:
1) 𝑝𝑆𝑖𝑔(𝑠𝑘,𝑚, 𝑌 )→ 𝜎̃: The pre-signing algorithm inputs se-

cret key 𝑠𝑘, message 𝑚 ∈ {0, 1}𝜆 and statement 𝑌 ∈ ℒℛ,
outputs pre-signature 𝜎̃;
2) 𝑝𝑉 𝑓(𝑝𝑘,𝑚, 𝑌, 𝜎̃)→ 𝑏: The pre-verification algorithm in-

puts public key 𝑝𝑘, message 𝑚 ∈ {0, 1}𝜆, statement 𝑌 ∈ ℒℛ
and pre-signature 𝜎̃, outputs a bit 𝑏 ∈ {0, 1};
3) 𝐴𝑑𝑎𝑝𝑡(𝜎̃, 𝑦)→ 𝜎: The adaptor algorithm inputs pre-signature

𝜎̃ and witness 𝑦, outputs signature 𝜎;
4) 𝐸𝑥𝑡(𝜎, 𝜎̃, 𝑌 )→ 𝑦: The extraction algorithm inputs signa-

ture 𝜎, pre-signature 𝜎̃ and statement 𝑌 ∈ ℒℛ, outputs wit-
ness 𝑦 such that (𝑌, 𝑦) ∈ ℛ.

Definition 2. (Digital Signature) A digital signature scheme
Σ𝑆𝐼𝐺 consists of algorithms (𝐾𝐺𝑒𝑛, 𝑆𝑖𝑔, 𝑉 𝑓) defined as:
1) 𝐾𝐺𝑒𝑛(1𝜆)→ (𝑝𝑘.𝑠𝑘): The key generation algorithm in-

puts security parameter 𝜆 and outputs a public-secret key pair
(𝑝𝑘, 𝑠𝑘);
2) 𝑆𝑖𝑔(𝑠𝑘,𝑚)→ 𝜎: The signing algorithm inputs secret key

𝑠𝑘 and a message 𝑚 ∈ {0, 1}𝜆, outputs a signature 𝜎;
3) 𝑉 𝑓(𝑝𝑘,𝑚, 𝜎)→ 𝑏: The verification algorithm inputs the

verification key 𝑝𝑘, message 𝑚 and signature 𝜎, outputs 𝑏 = 1
if 𝜎 is a valid signature of 𝑚 under public key 𝑝𝑘 and 𝑏 = 0
otherwise.

Definition 3. (Hard Relation) A hard relation ℛ is de-
scribed as ℒℛ := {𝑌 |∃𝑦, 𝑠.𝑡.(𝑌, 𝑦) ∈ ℛ} and satisfies:
1) ℛ𝐺𝑒𝑛(1𝜆)→ (𝑌, 𝑦): The sampling algorithm takes as in-

put security parameter 𝜆 and outputs statement-witness pair
(𝑌, 𝑦) ∈ ℛ;
2) The relation is poly-time decidable;

3) There is no adversary 𝒜 with statement 𝑌 can output

witness 𝑦 with non-negligible probability.



Warning! Timeout 𝑇 Cannot Protect You From Losing Coins Conference’24, October 2024, Salt Lake City, USA

Definition 4. (Verifiable Timed Dlog) A VTD w.r.t. a
group G with prime order 𝑞 and generator 𝑔 consists of four
algorithms (𝐶𝑜𝑚𝑚𝑖𝑡, 𝑉 𝑓,𝑂𝑝𝑒𝑛, 𝐹𝑜𝑟𝑐𝑒𝑂𝑝) defined as:
1) 𝐶𝑜𝑚𝑚𝑖𝑡(𝑥, 𝑟, 𝑇 )→ (𝐶, 𝜋): The commitment algorithm in-

puts discrete log 𝑥 ∈ Z*
𝑞 , randomness 𝑟 ∈$ {0, 1}𝜆 and timing

hardness 𝑇 , outputs commitment 𝐶 and proof 𝜋;
2) 𝑉 𝑓(𝐻,𝐶, 𝜋)→ 𝑏: The verification algorithm inputs group

element 𝐻 := 𝑔𝑥, 𝐶 and 𝜋, outputs 𝑏 = 1 if 𝐶 is a valid
commitment of 𝑥 with hardness 𝑇 and 𝑏 = 0 otherwise;
3) 𝑂𝑝𝑒𝑛(𝐶)→ (𝑥, 𝑟): The open algorithm inputs commitmen-

t 𝐶, outputs the committed value 𝑥 and randomness 𝑟;
4) 𝐹𝑜𝑟𝑐𝑒𝑂𝑝(𝐶)→ 𝑥: The force open algorithm inputs com-

mitment 𝐶 and outputs the committed value 𝑥.

C SECURITY ANALYSIS

Theorem 1. (Atomicity) Assume Σ𝑆𝐼𝐺
𝐴𝑆 is a secure adap-

tor signature scheme w.r.t. a secure digital signature scheme
Σ𝑆𝐼𝐺 and a hard dlog relation ℛ; protocols Γ𝑆𝐼𝐺

𝑆𝑖𝑔 and Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔

are UC-secure 2PC protocols for jointly computing Σ𝑆𝐼𝐺.𝑆𝑖𝑔
and Σ𝑆𝐼𝐺

𝐴𝑆 .𝑝𝑆𝑖𝑔; VTD is a secure timed commitment of dlog.
Then protocol pipeSwap running in the (ℱB,ℱ𝑠𝑚𝑡)-hybrid
world UC-realizes ideal functionality ℱ .

Proof. We now prove that protocol pipeSwap (Fig.6) UC-
realizes the cross-chain swap ideal functionality ℱ (Fig.8).

To show the indistinguishability between the ideal world
and the real world, we construct a simulator 𝒮 to simulate
the protocol pipeSwap in the real world while interacting
with the ideal functionality ℱ . At the beginning, 𝒮 corrupts
one user of {𝑃0, 𝑃1} as 𝒜 does. We begin with the real world
protocol execution, gradually change the simulation in these
hybrids and then we argue about the proximity of neighbour-
ing experiments.
Hybrid ℋ0: It is the same as the real world protocol execu-

tion (Fig.11);
Hybrid ℋ1: It is the same as the above execution except that

the 2PC protocol Γ𝑆𝐼𝐺
𝑆𝑖𝑔 in the Swap Setup Phase and Swap

Lock Phase to generate signatures is simulated using the 2PC
simulators 𝒮2𝑝𝑐,1 for the corrupted user (notice that such a
simulator exists for a secure 2PC protocol Γ𝑆𝐼𝐺

𝑆𝑖𝑔 );
Hybrid ℋ2: It is the same as the above execution except that

the 2PC protocol Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑔 in the Swap Lock Phase to generate

pre-signatures is simulated using the 2PC simulators 𝒮2𝑝𝑐,2
for the corrupted user;
Hybrid ℋ3: It is the same as the above execution except that
the adversary corrupts user 𝑃1 and outputs a valid swap

transaction (𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) before the simulator initiates swap

operation on behalf of 𝑃0, the simulator aborts;
Hybrid ℋ4: It is the same as the above execution except that
the adversary corrupts user 𝑃0 and outputs a valid swap trans-

action (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

(0)
𝑠𝑤𝑝) before timeout 𝑇1. The simulator out-

puts (𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) and if Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(01), 𝑡𝑥

(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) ̸= 1,

the simulator aborts;
Hybrid ℋ5: It is the same as the above execution except that
the adversary corrupts user 𝑃0 and outputs a valid swap

transaction (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

(0)
𝑠𝑤𝑝) at timeout 𝑇1. The simulator out-

puts (𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) and if Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(01), 𝑡𝑥

(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) ̸= 1,

the simulator aborts;
Hybrid ℋ6: It is the same as the above execution except
that the adversary corrupts user 𝑃0 and initiates the swap

operation (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

*(0)
𝑠𝑤𝑝 ) at timeout 𝑇1. The simulator outputs

(𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) and (𝑡𝑥

(1)
𝑟𝑓𝑑, (𝜎̌

(1)
𝑟𝑓𝑑, ̂︀𝜎(1)

𝑟𝑓𝑑)) if Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(01), 𝑡𝑥
(1)
𝑠𝑤𝑝,

𝜎
(1)
𝑠𝑤𝑝) ̸= 1 or Σ𝑆𝐼𝐺.𝑉 𝑓(̂︁𝑝𝑘(1)

𝑟𝑓𝑑, 𝑡𝑥
(1)
𝑟𝑓𝑑, ̂︀𝜎(1)

𝑟𝑓𝑑) ̸= 1 or Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(10),

𝑡𝑥
(1)
𝑟𝑓𝑑, 𝜎̌

(1)
𝑟𝑓𝑑) ̸= 1, the simulator aborts;

Hybrid ℋ7: It is the same as the above execution except
that the adversary corrupts user 𝑃0 and initiates the swap

operation (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

*(0)
𝑠𝑤𝑝 ) after timeout 𝑇1. The simulator out-

puts (𝑡𝑥
(1)
𝑟𝑓𝑑, (𝜎̌

(1)
𝑟𝑓𝑑, ̂︀𝜎(1)

𝑟𝑓𝑑)) if Σ𝑆𝐼𝐺.𝑉 𝑓(̂︁𝑝𝑘(1)

𝑟𝑓𝑑, 𝑡𝑥
(1)
𝑟𝑓𝑑, ̂︀𝜎(1)

𝑟𝑓𝑑) ̸= 1

or Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(10), 𝑡𝑥
(1)
𝑟𝑓𝑑, 𝜎̌

(1)
𝑟𝑓𝑑) ̸= 1, the simulator aborts;

Hybrid ℋ8: It is the same as the above execution except
that the adversarial 𝑃0 outputs a valid refund transaction

(𝑡𝑥
(0)
𝑟𝑓𝑑, 𝜎

(0)
𝑟𝑓𝑑) before timeout 𝑇0, the simulator aborts;

Hybrid ℋ9: It is the same as the above execution except
that the adversarial 𝑃1 outputs a valid refund transaction

(𝑡𝑥
(1)
𝑟𝑓𝑑, 𝜎

(1)
𝑟𝑓𝑑) before timeout 𝑇1, the simulator aborts;

Hybrid ℋ10: It is the same as the above execution except
that the adversary corrupts user 𝑃0 and the simulator obtains

(𝑡𝑥
(1)
𝑟𝑓𝑑, 𝜎

(1)
𝑟𝑓𝑑) after timeout 𝑇1, if Σ𝑆𝐼𝐺.𝑉 𝑓(̂︁𝑝𝑘(1)

𝑟𝑓𝑑, 𝑡𝑥
(1)
𝑟𝑓𝑑, ̂︀𝜎(1)

𝑟𝑓𝑑) ̸=
1 or Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(10), 𝑡𝑥

(1)
𝑟𝑓𝑑, 𝜎̌

(1)
𝑟𝑓𝑑) ̸= 1, the simulator aborts;

Hybrid ℋ11: It is the same as the above execution except
that the adversary corrupts user 𝑃1 and the simulator obtains

(𝑡𝑥
(0)
𝑟𝑓𝑑, 𝜎

(0)
𝑟𝑓𝑑) after timeout 𝑇0, if Σ𝑆𝐼𝐺.𝑉 𝑓(𝑝𝑘(01), 𝑡𝑥

(0)
𝑟𝑓𝑑, 𝜎

(0)
𝑟𝑓𝑑) ̸=

1, the simulator aborts;

Simulator 𝒮: The simulator 𝒮 is defined as the execution
in ℋ11 while interacting with the ideal functionality ℱ . It
simulates the view of the adversary and receives messages
from the ideal functionality ℱ .

Below we show the indistinguishability between ℋ0 and
ℋ11. In addition, we use ≈𝑐 to denote computational indis-
tinguishability for a PPT algorithm.
ℋ0 ≈𝑐 ℋ1: The indistinguishability directly follows from the

security of 2PC protocol Γ𝑆𝐼𝐺
𝑆𝑖𝑔 . The security of 2PC protocol

Γ𝑆𝐼𝐺
𝑆𝑖𝑔 for signature generation guarantees the existence of
𝒮2𝑝𝑐,1;
ℋ1 ≈𝑐 ℋ2: The indistinguishability directly follows from the

security of 2PC protocol Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔. The security of 2PC pro-

tocol Γ𝑆𝐼𝐺
𝐴𝑑𝑝𝑆𝑖𝑔 for pre-signature generation guarantees the

existence of 𝒮2𝑝𝑐,2;
ℋ2 ≈𝑐 ℋ3: The only difference between the hybrids is that
in ℋ3 the simulator aborts, if the adversary corrupts user

𝑃1 and outputs a valid swap transaction (𝑡𝑥
(1)
𝑠𝑤𝑝, 𝜎

(1)
𝑠𝑤𝑝) before

the simulator initiate a swap on behalf of user 𝑃0;
ℋ3 ≈𝑐 ℋ4: The only difference between the hybrids is that
in ℋ4 the simulator aborts, if the adversary corrupts user

𝑃0 and outputs a valid swap transaction (𝑡𝑥
(0)
𝑠𝑤𝑝, 𝜎

(0)
𝑠𝑤𝑝) before

timeout 𝑇1, while the simulator cannot obtains its valid swap
transaction. The probability of the event triggered in ℋ4 is
negligible;



Conference’24, October 2024, Salt Lake City, USA Peifang Ni, Anqi Tian, Jing Xu

ℋ4 ≈𝑐 ℋ5 ≈𝑐 ℋ6: The only difference between the hybrids
is that in ℋ5 and ℋ6 the simulator aborts, if the adversary
initiates a (valid) swap operation at timeout 𝑇1, the simulator
cannot post its valid swap transaction or and refund trans-
action. With the security of underlying blockchain, adaptor
signature and VTD, the probability of the events triggered
in ℋ5 and ℋ6 is negligible;
ℋ6 ≈𝑐 ℋ7: The only difference between the hybrids is that
in ℋ7 the simulator aborts, if the adversary initiates a swap
operation after timeout 𝑇1, the simulator cannot post its
valid refund transaction. With the security of underlying
blockchain and VTD, the probability of the event triggered
in ℋ7 is negligible;
ℋ7 ≈𝑐 ℋ8: The only difference between the hybrids is that in
ℋ8 the simulator aborts, if the adversary 𝑃0 outputs a valid
refund transaction before timeout 𝑇0. With the security of

VTD, the probability of the event triggered in ℋ8 is negligi-
ble;
ℋ8 ≈𝑐 ℋ9: The only difference between the hybrids is that in
ℋ9 the simulator aborts, if the adversary 𝑃1 outputs a valid
refund transaction before timeout 𝑇1. With the security of
underlying blockchain and VTD, the probability of the event
triggered in ℋ9 is negligible;
ℋ9 ≈𝑐 ℋ10: The only difference between the hybrids is that
in ℋ10 the simulator aborts, if it cannot post a valid refund
transaction after timeout 𝑇1. With the security of underlying
blockchain and VTD, the probability of the event triggered
in ℋ10 is negligible;
ℋ10 ≈𝑐 ℋ11: The only difference between the hybrids is that
in ℋ11 the simulator aborts, if it cannot post a valid refund
transaction after timeout 𝑇0. With the security of VTD, the
probability of the event triggered in ℋ11 is negligible.

�


	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technique Overview

	2 Blockchain and Cross-Chain Atomic Swap
	2.1 The UTXO-based Blockchain
	2.2 Cross-Chain Atomic Swap

	3 The Double-Claiming Attack
	4 Our Solution in a Nutshell
	5 Formal Definition of pipeSwap
	5.1 Modeling the System and Threats
	5.2 Ideal Functionality F of Cross-Chain Swap

	6 pipeSwap: Protocol Description
	6.1 Cryptographic Building Blocks
	6.2 Procedures of pipeSwap
	6.3 Evaluation and Comparison

	7 Conclusions and Future Works
	References
	A Related Works
	B Definitions of Cryptographic Building Blocks
	C Security Analysis

