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Abstract. Differential-linear cryptanalysis was introduced by Langford
and Hellman in 1994 and has been extensively studied since then. In
2019, Bar-On et al. presented the Differential-Linear Connectivity Table
(DLCT), which connects the differential part and the linear part, thus
an attacked cipher is divided to 3 subciphers: the differential part, the
DLCT part, and the linear part.
In this paper, we firstly present an accurate mathematical formula which
establishes a relation between differential-linear and truncated differen-
tial cryptanalysis. Using the formula, the bias estimate of a differential-
linear distinguisher can be converted to the probability calculations of
a series of truncated differentials. Then, we propose a novel and natu-
ral concept, the TDT, which can be used to accelerate the calculation
of the probabilities of truncated differentials. Based on the formula and
the TDT, we propose two novel approaches for estimating the bias of
a differential-linear distinguisher. We demonstrate the accuracy and ef-
ficiency of our new approaches by applying them to 5 symmetric-key
primitives: Ascon, Serpent, KNOT, AES, and CLEFIA. For Ascon and
Serpent, we update the best known differential-linear distinguishers. For
KNOT AES, and CLEFIA, for the first time we give the theoretical
differential-linear biases for different rounds.

Keywords: Differential-linear cryptanalysis · Truncated cryptanalysis ·
SPN ciphers · TDT · Ascon · Serpent · KNOT · AES · CLEFIA.

1 Introduction

1.1 Background and Previous Work

Differential cryptanalysis and linear cryptanalysis are the two best-known crypt-
analysis techniques for symmetric-key primitives. The basic idea of differential
cryptanalysis, introduced by Biham and Shamir [1,2], is to study the develop-
ment of differences of the cipher between two plaintexts through the encryp-
tion process, such that high-probability differentials are obtained with as many
rounds as possible. Linear cryptanalysis proposed by Matsui [3] studies the de-
velopment of parities of plaintext bits through the encryption process, such that
we can obtain high-bias linear approximations for as many rounds as possible.
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Differential and linear cryptanalysis has been used to analyze numerous
symmetric-key primitives, and resistance to the two cryptanalysis techniques
has become a central criterion in the design of symmetric-key primitives. While
precluding long differentials and linear approximations are sufficient for making
a cipher immune to the two attacks, it turned out that in many cases, short
differential characteristics and/or linear approximations can be combined and
exploited to break the cipher. In 1994, Langford and Hellman [4] introduced a
new cryptanalyis technique called differential-linear cryptanalysis (in short: DL
cryptanalysis), a cipher E is decomposed as a cascade E = E1 ◦ E0, then a
high-probability differential for E0 and a high-bias linear approximation for E1

can be combined into an efficient distinguisher for the entire cipher E.

In 2002, Biham et al. [5] extended and improved DL cryptanalysis to obtain
wider scope of applications. In 2017, Blondeau et al. [7] presented a formal
treatment of the DL cryptanalysis, based on a general link between differential
and linear cryptanalysis introduced by Chabaud and Vaudenay [9] and developed
by Blondeau and Nyberg [8]. The formal treatment provides an exact expression
for the differential-linear bias under the sole assumption that the two parts of
the cipher are independent.

In EUROCRYPT 2019, Bar-On et al. [10] introduced a new tool: the differential-
linear connectivity table (DLCT), which takes into account the dependency be-
tween the differential part and the linear part. They decomposed a cipher E
into E = E1 ◦ Em ◦ E0, where E0 is covered by a differential, Em is covered
by a DLCT, E1 is covered by a linear approximation. They also demonstrated
that the DLCT can be constructed efficiently using the Fast Fourier Transform.
Then, they showed that the DLCT can be utilized to improve the differential-
linear cryptanalysis; taking Serpent, Ascon, and ICEPOLE for examples, they
found better distinguishers than previous known ones for Serpent and Ascon,
and improved the DL attacks for ICEPOLE.

Recently, in CRYPTO 2021, Liu et al. [24] studied differential-linear crypt-
analysis from an algebraic perspective by introducing a technique called Dif-
ferential Algebraic Transitional Form (DATF). Based on the DATF algorithm,
they developed a new theory of estimating of the differential-linear bias and
techniques for key recovery in differential-linear cryptanalysis. As a result, they
improved the DL attacks on reduced-round Grain v1, Ascon and Serpent.

In ASIACRYPT 2023, Hu et al. [34] revisit HD/HDL cryptanalysis from an
algebraic perspective and provide two novel tools for detecting possible HD/HDL
distinguishers, including: (a) Higher-order Algebraic Transitional Form (HATF)
for probabilistic HD/HDL attacks; (b) Differential Supporting Function (DSF)
for deterministic HD attacks. They found that HATF works well for DL (1st-
order HDL) attacks and some well-known DL biases of Ascon and XOODYAK.
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Table 1: The differential-linear bias

Cipher Rounds Experimental
value

Theoretical estimate
DLCT
[10]

DATF
[24]

HATF
[34]

Approach in
Sect.4.2

Approach in
Sect.4.3

Ascon
4/12 2−2[16] 2−5 2−2.365 2−2.09 2−2

5/12 2−10[16] 2−10.1

6/12‡ 2−22.43

Serpent

3/32† 2−1.415 2−1.415

4/32 2−13.75[14] 2−13.68 2−13.736 2−13.696

4/32† 2−5.30 2−5.415

5/32 2−17.75[14] 2−17.736 2−17.696

5/32† 2−11.44 2−11.415

6/32† 2−19.61

7/32† 2−29.45

8/32† 2−39.45

9/32 2−57.68 2−57.736 2−57.696

9/32† 2−52

9/32† 2−55.33

KNOT256

9/52 2−1.20 2−1.20

10/52 2−3.27 2−3.66

11/52 2−4.31 2−6.38

12/52 2−9.91 2−9.27

13/52 2−14.04 2−12.27

14/52 2−16.23

15/52 2−23.31

16/52 2−30.52

AES

2/10 2−1 2−1

3/10 2−8.66 2−8.66

4/10 2−27.85

5/10 2−51.85

CLEFIA

4/18 2−1 2−1

5/18 2−2.415 2−2.415

6/18 2−6.81 2−6.80

7/18 2−11.81 2−11.80

8/18 2−32.70

9/18 2−54.37

Entry with "‡" is a longer DL distinguisher of Ascon found in this paper.
Entries with "†" are better DL distinguishers of Serpent found in this paper.
In bold type are the results from our paper.
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Remark 1. All experimental value in this paper are obtained by encrypting 230

plaintext pairs with specific input differences, and checking the output values
with respect to whether the parity of the output subset is the same or not.

1.2 Our contributions

A formula, establishing a link between the bias of a differential-linear
distinguisher and the probabilities of a series of truncated differen-
tials.(see Formula (4) in Sect.3) The authors wrote in [7]: ‘The differential-
linear attack can be, in the theoretical sense, considered either as a multidi-
mensional linear or a truncated differential attack’ and equation (5) in [7] also
reflects this conversion, however, their idea stops proceeding and remained only
in theoretical sense. We emphasize that we find this link independently, and
more important, we will show in the following how to utilize this link to con-
struct effective/better differential-linear distinguishers for practical symmetric-
key primitives. Specifically, we select 5 symmetric-key primitives —- the LWC
winner Ascon, the AES finalist Serpent, the LWC candidate Knot, the AES
block cipher and the CLEFIA block cipher to demonstrate the power of our new
approaches.

The TDT. We propose a novel and natural concept, the Truncated Difference
Distribution Table (TDT for short), which fully characterizes truncated differ-
ences of an S-box or a truncated differential over multiple rounds, in the case of
only one input difference, see Sect.3.2 for details. It can be seen later in Sect.4
and Sect.5 that the TDT can be utilized to accelerate the calculation of truncated
differential probabilities greatly.

Two new approaches for estimating the differential-linear bias. Based
on the relation between differential-linear and truncated differential cryptanaly-
sis (i.e., Formula (4)) and the TDT, We propose two new approaches for evaluat-
ing the differential-linear bias. The first approach, introduced in Sect.4.2, can be
used to compute the differential-linear bias when Em can be covered by multiple
rounds. The second approach, introduced in Sect.4.3, can be used to compute
the differential-linear bias when Em consists of only one round.

To demonstrate the accuracy and efficiency of our new approaches, we apply
them to 5 symmetric-key ciphers, see details in Sect.5. In the following, we briefly
summarizes our results on the 5 primitives respectively, and Table.1 presents the
differential-linear biases for reduced-round versions of the 5 ciphers.

Applications to Ascon. In [16], the authors stated that, the overall bias
of a 4-round DL distinguisher is expected to be 2−20 by the theory, while the
experiments showed that the bias is significantly higher: 2−2. They also presented
a 5-round distinguisher with an experimental bias of 2−10.

In this paper, we revisit the 4-round and 5-round distinguishers in [16]. Using
our first approach in Sect.4.2, we obtain that the bias of the 4-round distinguisher
is 2−2, which is in accordance with the experimental result in [16] and better than
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the results in [10] and in [24] (2−5 in [10] and 2−2.365 in [24] and 2−2.09 in [34]).
Moreover, using our second approach in Sect.4.3, we estimate that the bias of
the 5-round distinguisher is 2−10.1, which is extremely close to the experimental
result in [16]. Although in [24], the authors presented a 5-round DL distinguisher
with a bias of 2−5.415, however, it needs to be imposed 9 conditions, while we
do not impose any condition on the DL distinguishers presented in this paper.
In [34], the authors gave the theoretical bias for a 5-round DL distinguisher: the
bias is estimated as 2−10 while the experimental value is 2−9.

Furthermore, we construct a 6-round DL distinguisher, by trying many of
possible combinations of truncated differentials and DLCTs using the approach
in Sect.4.3. As a result, we obtain a 6-round DL distinguisher with a bias
of 2−22.43, which is the highest number of rounds for Ascon with respect to
differential-linear distinguishers.

Applications to Serpent. In [13], the authors presented a 9-round DL distin-
guisher with a bias of 2−60 starting with round 2, and then in [14], the authors
concluded that the actual bias of the 9-round distinguisher is 2−57.75 instead of
2−60 by checking the first 4 rounds of the distinguisher in [13] experimentally,
where the bias of the first 4-round DL distinguisher is 2−13.75. In [10], the au-
thors revisited the 4-round variant in [13] by the DLCT and concluded that the
bias of the 4-round distinguisher examined in [13] is 2−13.68. In [24], the authors
revisited the 4-round DL distinguisher in [13] by the DATF and concluded that
the bias is 2−13.736, they also applied their methods to check the first 5 rounds
of the 9-round DL distinguisher in [13], and obtained a bias of 2−17.736.

In this paper, we firstly apply our approach introduced in Sect.4.2 to estimate
the bias of the first 4-round DL distinguisher in [13], we concluded that the
theoretical bias is 2−13.696, which is very close to the experimental result in [14].
Next, we estimate the bias of the first 5 rounds of the 9-round DL distinguisher
in [13], and obtained a bias of 2−17.696. Furthermore, we search for the DL
distinguishers up to 9 rounds. Ignoring the key recovery attack, we can get
DL distinguishers with a bias of 2−52. If we take the key recovery attack into
consideration, two better 9-round DL distinguishers are achieved by trying a lot
of combinations of different differentials and linear approximations, the biases of
our new distinguishers are both 2−55.33, compared to the previous bias 2−57.75,
which is a factor of 22.42 improvement.

Applications to KNOT. We focus on analysis for the initialization phase
of KNOT-AEAD(128,256,64) (in short: KNOT256). In [28], the authors pre-
sented key-recovery attacks for reduced-round KNOT256 based on conditional
differential-linear distinguishers. For 15-round KNOT256, it needs 248.8 time
complexity and 247.5 blocks to recover the full 128-bit key.

In our paper, we begin by carrying out experiments to validate the accuracy
of the bias estimate in Sect.5.3. Then, we investigate differential-linear distin-
guishers using the approach in Sect.4.2. Considering the properties of the initial-
ization phase, the input difference is limited on the nonce, and the output mask
is limited on the rate. As a result, we obtain differential-linear distinguishers for
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KNOT256 up to 16 rounds, where the bias of a 16-round DL distinguisher is
2−30.52. The 16-round DL distinguisher is the best distinguisher of KNOT256,
with respect to the number of rounds; moreover, it is possible to present better
DL attacks on KNOT256 with respect to the highest number of attacked rounds
[35], compared to that in [28].

Applications to AES. In this paper, we detect many highly biased DL dis-
tinguishers for round-reduced AES. We first exhaust all possible 3-round DL
distinguishers where the number of active S-boxes in the first round and the
third round is both 1, which helps us obtain a highly biased 3-round DL distin-
guisher.

For the 4-round and 5-round AES’s DL distinguisher, we search a 3-round
DL distinguisher where the number of active S-box in the first round is 1, and
the number of active S-box in the third round is 4. A 4-round DL distinguisher
is obtained by appending a 1-round linear approximation after the 3-round DL
distinguisher. After that, if we perform forward extension on the 4-round DL dis-
tinguisher by adding a one round differential trail, a 5-round DL distinguisher
is generated. The biases are 2−8.66/2−27.85/2−51.85 for 3/4/5-round DL distin-
guisher, respectively.

Applications to CLEFIA. For CLEFIA, when the number of rounds is less
than or equal to 4, the optimal DL distinguisher has the bias of 2−1. For the 5-
round CLEFIA’s DL distinguisher, we search for numerous combinations of the
input difference and the output mask and obtain many highly biased DL distin-
guisher. And then, we perform forward extension and backward extension based
on these 5-round DL distinguisher. As a result, we first give DL distinguishers
up to 9 rounds, where the 9-round DL distinguisher has the bias of 2−54.37.

Remark 2. Significantly, we cannot give any lower or upper bound for DL biases
in theory. And these results do not threaten the security of the target ciphers.

2 Preliminaries

2.1 Notations

In this paper, we focus on SPN symmetric-key primitives, and aim to estimate
the bias of differential-linear distinguishers. We assume that our target ciphers
are Markov ciphers [37], that means the cipher rounds are both differentially
and linear round independent. The following notations are used in this paper:

Notation Description

S, L the non-linear layer, the linear layer respectively in SPN
cipher

E = E1 ◦ Em ◦ E0 the encryption of a block cipher
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R0, Rm, R1 the number of rounds for E0, Em, E1 respectively
R the round function of E

n = s× ℓ
n is the size of state
the state is separated into ℓ S-boxes of s bits each

X[i]
the i-th S-box of a state X ,
e.g., a state X with ℓ S-boxes X = X[ℓ− 1] ∥ · · · ∥ X[0]

X{i} the i-th bit of a bit string X,
e.g., a n-bit string X = X{n−1} ∥ · · · ∥ X{0}

P [n][k]
the look-up table of the linear layer,
e.g., Y {i} = X{P [i][0]} ⊕ · · · ⊕X{P [i][k−1]}

∆X the difference of X and X ′

T a set of differences
|T | the size of the set T

ΛXi, ΛYi
the state before and after S layer in the i-th layer in the
forward propagation

∇Xi, ∇Yi
the state before and after S layer in the i-th layer in the
backward propagation

(T D0, · · · , T Dt−1) the truncated differential pattern
hw(X) the Hamming weight of X
X ∥ Y bit string concatenation of X and Y

2.2 The Differential-Linear Attack

The classical differential-linear attack [4] was proposed by Langford and Hellman
in 1994, which consists of two stages. The first stage is covered by differential
cryptanalysis and ensures the propagation of a useful differential property in the
middle of the cipher. The second stage is covered by linear cryptanalysis and
ensures the propagation of a useful linear property from the middle of the cipher
to the end.

Let E be a cipher which is decomposed into a cascade E = E1◦E0. Assuming
that we have a differential ∆I

p−→ ∆O, i.e., an input difference ∆I leads to
an output difference ∆O with probability p in E0, and a linear approximation
λI

q−→ λO with probability 1/2 + q (or with bias q), i.e., an input mask λI leads
to an output mask λO with bias q in E1. Under the assumptions that E0 and
E1 are independent, and that the cipher behaves randomly if the differential is
not satisfied, the probability Pr[C · λO = C ′ · λO|P ⊕ P ′ = ∆I ] that a plaintext
pair (P, P ′) with input difference ∆I satisfies C · λO = C ′ · λO, where (C,C ′) is
the ciphertext pair corresponding to the plaintext pair, is

Pr[C · λO = C′ · λO|P ⊕ P ′ = ∆I ] = p(1/2 + 2q2) + (1− p) · 1/2 = 1/2 + 2pq2 (1)

Hence, if p, q are sufficiently large, then the adversary can distinguish E from
a random permutation using O(p−2q−4) chosen plaintexts.
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Fig. 1: The differential-linear cryptanalysis

In 2017, Blondeau et al. [7] studied the differential-linear cryptanalysis more
accurately. They pointed out that the basic idea of differential-linear cryptanal-
ysis is to split the cipher under consideration into two parts. The split should be
such that, for the first part of the cipher there exists a strong truncated differen-
tial and for the second part there exists a strongly biased linear approximation,
which enlightens our approach in Sect.4.3.

In order to (partially) take the effects of dependency into account, in EURO-
CRYPT 2019, Bar-On et al. [10] introduced a new tool: the differential-linear
connectivity table (DLCT). The decomposition E = E1◦E0 used in the standard
DL attack was replaced by the decomposition E = E1 ◦ Em ◦ E0.

As illustrated in Fig.1, let P and P ′ denote a pair of plaintexts, C and
C ′ denote their ciphertexts, X and X ′ denote the intermediate values between
E0 and Em, Y and Y ′ denote the intermediate values between Em and E1,
respectively, where E0 is covered by a differential ∆I

p−→ ∆O with differential
probability Pr[X ⊕ X ′ = ∆O|P ⊕ P ′ = ∆I ] = p, E1 is covered by a linear
approximation λI

q−→ λO with Pr[C · λO = Y · λI ] =
1
2 + q, Em is covered by a

DLCT ∆O
r−→ λI with Pr[λI · Em(X) = λI · Em(X ′)|X ⊕ X ′ = ∆O] =

1
2 + r.

Under the assumption of independence between the subciphers, adapting the
naive analysis of the DL attack complexity presented above (i.e., Eq. (1)), they
[10] obtained

E∆I ,λO = 4p ·DLCTEm(∆,λ) · q2 = 4prq2 (2)

and the data complexity is O(p−2r−2q−4). In order to adapt the exact analysis
of [7], a bit more computation is needed. The exact bias of the DL distinguisher
is

E∆I ,λO =
∑
∆,λ

Pr[∆I
E′

0−−→ ∆] ·DLCTEm(∆,λ)(c
E′

1
λ,λO

)2 (3)

With the DLCT, the authors further improved the differential-linear attacks on
ICPOLE, Serpent, Ascon and 8-round DES.

In CRYPTO 2021, Liu et al. [24] studied the differential-linear cryptanalysis
from an algebraic perspective by introducing a technique called DATF. They
presented a new theory of bias estimate and techniques for key-recovery attacks.
The techniques were applied to Ascon, Serpent and Grain v1.

Based on the HD/HDL cryptanalysis, Hu et al. [34] provided novel methods
to study HD and HDL cryptanalysis, where one is the Higher-order Algebraic
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Transitional Form (HATF), which is used to detect probabilistic HDL approx-
imations. The other is the Differential Supporting Function (DSF), which is
useful to find deterministic HD distinguishers. And then, these two methods
were applied to Ascon and XOODYAK.

2.3 Definitions

Definition 1. Let f : {0, 1}n → {0, 1}n be a bijective vectorial boolean function.
The DDT is a 2n× 2n table whose rows correspond to input differences of f and
whose columns correspond to output differences of f . Formally, for ∆I ∈ {0, 1}n
and ∆O ∈ {0, 1}n, the DDT entry (∆I , ∆O) is

DDTf (∆I ,∆O) ≜ |{X|f(X)⊕ f(X ⊕∆I) = ∆O}|

The probability of the differential ∆I → ∆O is defined by

DDTf (∆I ,∆O) =
DDTf (∆I ,∆O)

2n

Typically, truncation refers to a shortening of an input, but for the purposes
of differential cryptanalysis truncation refers to a relaxation in the specifications
of a differential.

Definition 2. [29] Using the symbol ∗ denotes an unknown value and, for a
n-bit string U = U{n−1} ∥ · · · ∥ U{0}, define

V {n−1} ∥ · · · ∥ V {0} ∈ TRUNC(U{n−1} ∥ · · · ∥ U{0})

if, and only if, V {i} = U{i} or V {i} = ∗ for all 0 ≤ i < n. This notion extends
naturally to differences. If there is an t-round differential characteristic

∆0
R−→ ∆1

R−→ · · · R−→ ∆t

then
T0

R−→ T1
R−→ · · · R−→ Tt

is a truncated differential characteristic if Ti ∈ TRUNC(∆i) for 0 ≤ i ≤ t.

The probability of a truncated differential (T0
t rounds−−−−−−→ Tt) is defined by

Pr[T0
t rounds−−−−−−→ Tt] =

1

|T0|
∑

∆0∈T0

Pr[(f(X)⊕ f(X ⊕∆0)) ∈ Tt]

In [10], the authors present the definition of the Differential-Linear Connec-
tivity Table (DLCT) which takes into account the dependency between differ-
ential part and linear part.

Definition 3. [10] Let f : {0, 1}n → {0, 1}n be a bijective vectorial boolean func-
tion. The DLCT of f is a 2n × 2n table whose rows correspond to input differ-
ences to f and whose columns correspond to bit masks of output of f . Formally,
∆ ∈ {0, 1}n and λ ∈ {0, 1}n, the DLCT entry (∆,λ) is

DLCTf (∆,λ) ≜ |{X|λ · f(X) = λ · f(X ⊕∆)}| − 2n−1
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For DLCT, sometimes it will be more convenient to use the normalized DLCT
entry

DLCTf (∆,λ) =
DLCTf (∆,λ)

2n

The differential-linear probability (DLP) of a DL distinguisher is defined by

Pr[∆ → λ] =
|{X|λ · (f(X)⊕ f(X ⊕∆)) = 0}|

2n

In this paper, we use the bias ε to measure the unbalancedness. The differential-
linear bias is defined as ε = Pr[∆ → λ]− 1

2 .

3 The Truncated Difference Distribution Table and its
Relation with the DLP

In this section, we present an important observation on the DLP and then in-
troduce a novel concept: the Truncated Difference Distribution Table (TDT for
short), which can be utilized to calculate the probability of a truncated differ-
ential characteristic much more efficiently. Furthermore, we show that how to
calculate the differential-linear bias round by round using the TDT.

3.1 An Important Observation on DLP

In [7], there is a observation that any differential-linear relation can be regarded
as a truncated differential. However, their idea stops deriving a general and
remained in theoretical sense. In this paper, we thoroughly study that converts
a differential-linear relation by a series of truncated differentials, so that we can
calculate differential-linear bias using automated algorithm.

In the following, we will show that how to convert differential-linear proba-
bility (DLP) to the sum of multiple truncated differential probabilities. Suppose
that there are t rounds, the calculation of DLP is as follows,

Pr[∆ → λ] =
|{X|λ · (f(X)⊕ f(X ⊕∆)) = 0}|

2n

=

∑
∆i∈Fn2 ,λ·∆i=0 |{X|f(X)⊕ f(X ⊕∆) = ∆i}|

2n

=
∑

∆i∈Fn2 ,λ·∆i=0

DDTf (∆,∆i)

(4)

Note that the cases satisfying DDTf (∆,∆i) = 0 are not excluded in the
above formula, just for ease of simple expression. From Formula (4), we can see
that the estimate of DLP can be converted into probability calculations of a
series of differential probabilities DDTf (∆,∆i).

In Formula (4), it needs to judge whether λ ·∆i = 0 for each ∆i (0 ≤ i < 2n)

satisfying DDTf (∆,∆i) ̸= 0. Let us write λ ·∆i using their bits {λj} and {∆j
i},

i.e.,
λ ·∆i = λ{n−1}∆

{n−1}
i ⊕ λ{n−2}∆

{n−2}
i ⊕ · · ·λ{1}∆

{1}
i ⊕ λ{0}∆

{0}
i (5)
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then we have another crucial observation. In Eq.(5), if λ{j} = 0, then λ{j}∆
{j}
i =

0 always holds, which means that the value of this bit of ∆i does not affect the
value of λ ·∆i. Hence, if λ{j} = 0, the value of ∆{j}

i can be either 0 or 1; and if
λ{j} = 1, the value of ∆{j}

i must be determined to be 0 or 1.
Define the product of the symbol ∗ and the bit 0 to be 0, then we can extend

the inner product of two binary vectors to the inner product of one binary vector
and one truncated difference, which will be used in the following.

By Definition 2, the set of the 2n possible output differences {∆i}(∆i ∈ Fn
2 )

can be divided into 2hw(λ) subsets. The subsets Tt,0, . . . , Tt,2hw(λ)−1 are distinct
from each other. For each subset Tt,j , every element ∆k ∈ Tt,j has the same value
of λ&∆k. We can deduce that each subset corresponds to a truncated differential
T0 = ∆

t rounds−−−−−−→ Tt,j (0 ≤ j < 2hw(λ)). Thus, we have

Pr[∆ → λ] =
∑

∆i∈Fn2 ,λ·∆i=0

DDTf (∆,∆i) =
∑

0≤j<2hw(λ)

λ·Tt,j=0

Pr[∆
t rounds−−−−−−→ Tt,j ] (6)

Note that, among all the Tt,j(0 ≤ j < 2hw(λ)), there are a half (i.e. 2hw(λ)−1)
satisfying that λ · Tt,j = 0. Hence, we convert the estimate of DLP to the proba-
bility calculations of 2hw(λ)−1 truncated differentials. We will come back to this
problem in Sect.3.4 after we introduce a new concept, i.e., the TDT table.

3.2 The Truncated Difference Distribution Table

To efficiently compute the probability of a truncated differential, we introduce
a new concept: the Truncated Difference Distribution Table (TDT for short).

Since each bit in a truncated difference T has three possibilities: ∗, 0, and 1,
we need to firstly introduce a concept of Truncated Differential Mask (abbrevi-
ated as TD mask). For a given truncated difference T , define its TD mask M
as follows

M{i} =

{
0, if T {i} = ∗
1, if T {i} = 0 or 1

Similarly, define the & operation of the bit 0 and the symbol ∗ to be 0, then
we can extend the & operation of two binary vectors to the & operation of one
binary vector and one truncated difference. Notice that M&T and T have the
same values in the bit positions where T has the values of 0 or 1. Therefore, the
combination of M and M&T fully determines the truncated difference T .

Let Z = M&T , that is to say

T {i} =


∗, if M{i} = 0

0, if M{i} = 1 and Z{i} = 0

1, if M{i} = 1 and Z{i} = 1

Now we are ready to present the definition of TDT.
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Definition 4. Let f : {0, 1}n → {0, 1}n be a bijective vectorial boolean function.
the TDT of f is a three-dimensional table whose first parameter ∆I ∈ {0, 1}n
is an input difference of f , and whose second parameter M ∈ {0, 1}n is the
TD mask of a truncated output difference T ∈ {∗, 0, 1}n of f and whose third
parameter is Z ∈ {0, 1}n. Define the TDT entry (∆I ,M,Z) as

TDTf (∆I ,M,Z) = |{X|M&(f(X)⊕ f(X ⊕∆I)) = Z}|

where the TDT entry is equal to zero if Z has one-bits outside the coverage of
M.

Similarly, define the probability of the TDT entry (∆I ,M,Z) as

TDTf (∆I ,M,Z) =
TDTf (∆I ,M,Z)

2n
·

Proposition 1. The TDT is an extension of the DDT. There is a connection
between DDT and TDT:

TDTf (∆I ,M,Z) =
∑

∆:M&∆=Z

DDTf (∆I ,∆)

Obviously, TDTf (∆,M,Z) ≤ 2n. The TDTf (∆I ,M,Z) corresponds to the
probability of the truncated differential ∆I → T , where T is uniquely determined
by M and Z.

Proposition 2. Let f : {0, 1}n → {0, 1}n be a bijective vectorial boolean func-
tion, ∆ and λ denote an input difference and an output mask of f respectively.

DLCTf (∆,λ) = Pr[∆ → λ]− 1

2
=

∑
0≤j<2hw(λ)

λ·Zj=0

TDTf (∆,λ,Zj)−
1

2

The TDT table can help us eliminate numerous unnecessary computations.
For example, for a 4-bit S-box S, given the input difference ∆I = 0011, we
want to calculate the probability of the truncated differential 0011 S−→ 1 ∗ ∗∗.
Using the DDT, 8 queries must be performed, the probability is calculated as∑15

i=8 DDTS(0011, i); as a comparison, notice that the TD mask of 1 ∗ ∗∗ is
M = 1000, and M&(1 ∗ ∗∗) = 1000, hence, using the TDT, only one query is
needed, the probability is obtained by just checking TDTS(0011, 1000, 1000).

In Table 3, we present a part of the TDT for KNOT’s S-box S, with ∆I =
0001. Consider M = 0001, which means that the least significant bit of the trun-
cated output difference is 0 or 1, while the other 3 bits are all ∗. Thus, in row M =
0001 of Table 3, there are at most two non-zero entries, which lie in column 0000
and column 0001. From Table 3, we can see that TDTS(0001, 0001, 0000) = 8,
which means the probability of 0001 S−→ ∗∗∗0 is 1

2 ; and TDTS(0001, 0001, 0001) =

8, which means the probability of 0001 S−→ ∗ ∗ ∗1 is also 1
2 . Next, consider row

M = 0100, there is only one non-zero entry TDTS(0001, 0100, 0100) = 16, which
means that the probability of 0001 S−→ ∗1 ∗ ∗ is 1.

In Sect.4, we will present more details on how to compute the probability of
a truncated differential over multiple rounds using the TDT.
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Table 3: The TDT of KNOT’s S-box with ∆I = 0001

M
Z

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
0011 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0
0100 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0
0101 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0
0110 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0
0111 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0
1000 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0
1001 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0
1010 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0
1011 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0
1100 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0
1101 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0
1110 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0
1111 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

3.3 Properties of the TDT

In this subsection, we present 4 properties of the TDT.

Property 1. For any M ∈ {0, 1}n,

TDTf (0,M,Z) =

{
2n, if Z = 0

0, if Z ̸= 0

If ∆I = 0, then we have TDTf (0,M, 0) = 2n for any M. Indeed, if two inputs
to f are equal, then the corresponding two outputs are also equal. This means
that when computing the truncated differential probability for an S-box, if the
input difference ∆I = 0, then the truncated difference T = 0 with probability 1.

Property 2.

TDTf (∆I , 0,Z) =

{
2n, if Z = 0

0, if Z ̸= 0

If M = 0, then we have TDTf (∆I , 0, 0) = 2n for any ∆I . Indeed, if M = 0,
then all bits of the truncated output difference are ∗. This means that when
computing the truncated differential probability for an S-box, if the TD mask
M = 0, then all compatible output differences are allowed, and the truncated
differential probability is 1.

Property 3.
TDTf (∆I , 2

n − 1,Z) = DDTf (∆I ,Z)

This can be evidently inferred from Proposition 1. If M = 2n − 1, then the
corresponding entries in TDT are identical to those in the DDT.

Property 4. Given ∆I and M, there are at most 2hw(M) non-zero entries in the
TDT. M indicates which bits of the truncated output difference are marked as



14 Ting Peng, Wentao ZhangB, Jingsui Weng, and Tianyou Ding

∗ and which bits are marked as 0 or 1, indeed, there are hw(M) bits needed to
be determined to be 0 or 1. Thus, given ∆I and M, there are at most 2hw(M)

possible truncated output differences. For instance, in Table 3, if hw(M) = 2,
there are at most 4 non-zero entries. This could involve the case M = 0011,
which has 4 non-zero entries, or M = 1100, which has only two non-zero entries.

3.4 Estimation of the DLP based on TDT

Suppose that an t-round cipher E : Fn
2 → Fn

2 is represented as the following
composition,

E = Et−1 ◦ Et−2 ◦ · · · ◦ E0

Since we assume that E is a Markov cipher, that means the probability of a
truncated differential characteristic is often computed by multiplying the prob-
abilities round by round. Then we know

Pr[T0
R−→ T1

R−→ · · · R−→ Tt] =

t−1∏
i=0

Pr[Ti
R−→ Ti+1] (7)

Pr[T0
t rounds−−−−−−→ Tt] =

∑
T1,··· ,Tt−1

t−1∏
i=0

Pr[Ti
R−→ Ti+1] (8)

The truncated probability of the i-th round is

Pr[Ti
R−→ Ti+1] =

1

|Ti|
·
∑

∆i∈Ti

∑
∆i+1∈Ti+1

Pr[∆i
R−→ ∆i+1]

=
1

|Ti|
·
∑

∆i∈Ti

Pr[∆i
R−→ Ti+1]

=
1

|Ti|
·
∑

∆i∈Ti

Pr[∆i
S−→ T̂i

L−→ Ti+1]

where Ti+1 = L(T̂i) with 1 ≤ i < t. Since the linear layer do not affect the
calculation of probability, we have

Pr[Ti
R−→ Ti+1] =

1

|Ti|
·
∑

∆i∈Ti

Pr[∆i
S−→ T̂i]

=
1

|Ti|
·
∑

∆i∈Ti

ℓ−1∏
j=0

Pr[∆i[j]
S−→ T̂i[j]]

=

ℓ−1∏
j=0

Pr[Ti[j]
S−→ T̂i[j]]

(9)

This means

Pr[T0
R−→ T1

R−→ · · · R−→ Tt] =

t−1∏
i=0

ℓ−1∏
j=0

Pr[Ti[j]
S−→ T̂i[j]] (10)
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Pr[T0
t rounds−−−−−−→ Tt] =

∑
T1,··· ,Tt−1

t−1∏
i=0

ℓ−1∏
j=0

Pr[Ti[j]
S−→ T̂i[j]] (11)

Next, we will demonstrate the methodology behind utilizing TDT for com-
puting the probability of a truncated differential characteristic. Since the input
difference of the TDT is a determined input difference, in this paper, we limit
that every Ti[j] is either a determined difference (i.e. |Ti[j]| = 1) or a truncated
difference but all differential bits in T̂i[j] being ∗ (i.e. |Ti[j]| > 1 and |T̂i[j]| = 2s).
The two cases are listed as follows,

1. When |Ti[j]| = 1, Pr[Ti[j]
S−→ T̂i[j]] = TDT(Ti[j],Mi[j],Zi[j]), where T̂i[j] is

uniquely determined by Mi[j] and Zi[j],
2. When |Ti[j]| > 1 and |T̂i[j]| = 2s, Pr[Ti[j]

S−→ T̂i[j]] = 1.

Therefore, the probabilities of the truncated differential characteristic and the
the truncated differential can be calculated by

Pr[T0
R−→ T1

R−→ · · · R−→ Tt] =

t−1∏
i=0

∏
|Ti[j]|=1

TDT(Ti[j],Mi[j],Zi[j]) (12)

Pr[T0
t rounds−−−−−−→ Tt] =

∑
T1,··· ,Tt−1

t−1∏
i=0

∏
|Ti[j]|=1

TDT(Ti[j],Mi[j],Zi[j]) (13)

Consequently, we can calculate the truncated differential probability round by
round using the TDT. However, we face the difficulty that how to determine all
possible values of Ti. To overcome the problem, we precompute the TD mask
Mi according to some known information, specifically, the input difference and
the output mask, as described in this paper. Subsequently, we exhaust every
potential Zi to generate all possible Ti.

Furthermore, using the TDT, we can calculate the differential-linear proba-
bility. According to Formula (6), we have

Pr[∆ → λ] =
∑

0≤k<2hw(λ)

λ·Tt,k=0

Pr[∆
t rounds−−−−−−→ Tt,k]

=
∑

0≤k<2hw(λ)

λ·Tt,k=0

∑
T1,··· ,Tt−1

t−1∏
i=0

∏
|Ti[j]|=1

TDT(Ti[j],Mi[j],Zi[j])

(14)

where T0 = ∆.
Finally, the differential-linear bias is equal to Pr[∆ → λ]− 1

2 .

4 Computing the Differential-Linear Bias

In this section, we propose two new approaches to evaluate the bias of a differential-
linear distinguisher. The first approach concerns situations where Em contains
many rounds. The second approach is focused on scenarios where Em contains
only one round.
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4.1 Computing the Truncated Differential Pattern given an Input
Difference and an Output Mask

In this part, we introduce the concept of the truncated differential pattern (TD
pattern for short) (T D0, · · · , T Dt−1), which assists in ascertaining whether a
S-box in the output difference of the S layer between rounds is ignorable or not.
For each T Di, we have

T Di[j] =

{
0, if T̂i[j] = ∗ or T̂i[j] = 0
Mi[j], otherwise.

(15)

where Ti+1 = L(T̂i), ∗ is the s-bit vector with all elements being ∗. This means
we can eliminate some unnecessary S-box that satisfies T Di[j] = 0.

Given the number of rounds t, an input difference ∆, and an output mask
λ, we demonstrate how to generate the TD pattern (T D0, · · · , T Dt−1). For the
input difference, a forward propagation is performed. For the output mask, a
backward propagation is performed. A t-round TD pattern is then obtained by
combining these two propagations.

We use a 3-round variant of Serpent that starts at round 3 as an example.
Given the input difference ∆ and the output mask λ, the forward propagation
and the backward propagation are shown in Fig.2.

Forward propagation of the input difference. First, we focus on the forward prop-
agation of the given input difference ∆. For the S layer, if the input difference of
the S-box is 0, the output difference of the S-box must be 0. If the input differ-
ence of an S-box is not 0 or has any undetermined bit, we set all bit differences
of the output difference to be undetermined. For the L layer, if a bit difference
is active or undetermined, all the output bit differences associated with it are
set to be undetermined. The forward propagation of ∆ of the 3-round Serpent
is depicted in Fig.2(a).

Backward propagation of the output mask. Given the output mask λ, we study
the backward propagation along the decryption direction. For the L−1 layer, if
an output bit difference needs to be determined, all the input bit differences
associated with it also need to be determined. For the S−1 layer, there are
two cases for each S-box regarding the output difference: One case is that all
output bit differences are arbitrary, which means that all input bit differences
are arbitrary. The other case is that if there is any output bit difference that
must be determined or is a fixed bit, all input bit differences must be determined.
The backward propagation of λ of the 3-round Serpent is depicted in Fig.2(b).

Computing the mask pattern. In the estimate process of the differential-linear
bias, the complexity increases exponentially with the number of rounds, whether
it is the input difference’s forward propagation or the output mask’s backward
propagation. To improve this process, we examine the possibility of utilizing
both the forward and backward propagation concurrently. It is worth noting
that every bit difference has three scenarios:
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ΛX0 = ∆

ΛY0

ΛX1

ΛY1

ΛX2

ΛY2

ΛX3

(a) The forward propagation
of ∆: a blank cell indicates a
bit of which the bit difference
is always inactive; a gray cell
indicates an active bit differ-
ence; a blue cell indicates a bit
of which the bit difference is
undetermined

∇X3 = λ

∇Y2

∇X2

∇Y1

∇X1

∇Y0

∇X0

(b) The backward propaga-
tion of λ: a yellow cell indi-
cates a bit of which the bit dif-
ference need to be determined;
a red cell indicates a bit of
which the bit difference is ar-
bitrary

Fig. 2: The propagations of 3-round Serpent

1. If a bit difference is inactive in the forward propagation (the blank cell in
Fig.2(a)), e.g., ΛY {j}

i = 0, it will always be inactive, and we can ignore it.

2. If a bit difference is arbitrary in the backward propagation (the red cell in
Fig.2(b)), e.g., ∇Y

{j}
i = 0, there is no need to consider its value, so we can

also ignore it.

3. If a bit difference need to be determined in both forward and backward
propagation simultaneously (the blue cell in Fig.2(a) and the yellow cell
Fig.2(b)), e.g., ΛY {j}

i = 1 and ∇Y
{j}
i = 1, it means we must determine its

difference in that bit position.

As a result, we can ignore the first 2 cases and only focus on case 3.

T Di depends on ΛYi and ∇Yi. For each T Di, there is T D{j}
i = 0 when the

bit difference satisfies case 1 or case 2, which indicates its irrelevance in the
later program, alternatively there is T D{j}

i = 1 when the bit satisfies case 3,
leading us to traverse its bit differences. The TD pattern (T D0, T D1, T D2) of
the 3-round Serpent is shown in Fig.3.

The pseudocode of calculating the TD pattern is showed in Algorithm 1.
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Algorithm 1 Our Search Approach for Computing TD Pattern
(T D0, T D1, · · · , T Dt−1)

Input: input difference ∆, output mask λ, the number of rounds t
Output: TD pattern (T D0, T D1, · · · , T Dt−1)

1: function FPropagation
2: Let ΛX0 = ∆
3: for 0 ≤ i < t do
4: for 0 ≤ j < ℓ do
5: if ΛXi[j] ̸= 0 then
6: ΛYi[j] = 2s − 1
7: end if
8: end for
9: ΛXi+1=L-LAYER(∆Yi)

10: end for
11: return (ΛY0, · · · , ΛYt−1)
12: end function
13:
14: function BPropagation
15: Let ∇Xt = λ
16: for t ≥ i > 0 do
17: ∇Yi−1=L−1-LAYER(∇Xi)
18: for 0 ≤ j < ℓ do
19: if ∇Yi−1[j] ̸= 0 then
20: ∇Xi−1[j] = 2s − 1
21: end if
22: end for
23: end for
24: return (∇Y0, · · · ,∇Yt−1)
25: end function
26:
27: function TDPattern
28: for 0 ≤ i < t do

29: T Di = ΛYi&∇Yi

30: end for
31: return (T D0, T D1, · · · , T Dt−1)
32: end function
33:
34: function L-layer
35: Let ΛXi+1 = 0
36: for 0 ≤ j < n do
37: for 0 ≤ l < k do
38: if ΛY

{P [j][l]}
i = 1 then

39: ΛX
{j}
i+1 = 1

40: end if
41: end for
42: end for
43: return ΛXi+1

44: end function
45:
46: function L−1-layer
47: Let ∇Yi−1 = 0
48: for j = 0 to n− 1 do
49: if ∇X

{j}
i = 1 then

50: for 0 ≤ l < k do
51: ∇Y

{P [j][l]}
i−1 = 1

52: end for
53: end if
54: end for
55: return ∇Yi−1

56: end function
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T D0

T D1

T D2

Fig. 3: The TD pattern (T D0, T D1, T D2) of 3-round Serpent: an orange cell
indicates a bit of which the bit difference always be inactive or arbitrary, which
is of no concern; a green cell indicates a bit difference need to be determined

4.2 Estimate of the DL Bias when Em Consists of Multiple Rounds

According to Formula 15, the TD pattern T Di[j] servers as a TD mask Mi[j]
when T Di[j] ̸= 0. Suppose that ∆ and λ represent the input difference and
the output mask of Em, respectively. In the following, we take the breadth-
first search method to compute the DLP (Pr[∆ → λ]), then we will obtain the
differential-linear bias of Em. Then, forward backward extensions are preformed
to generate a longer DL distinguisher.

To compute the DLP (Pr[∆ → λ]), we need to maintain a few tables:

1. Ai: a table to store all possible truncated output differences after the S layer
in the i-th round. Ai = {T = ∆i&T Di|∆i ∈ Fn

2}, where ∆i denotes all
possible differences and Ai contains no duplicate elements. Let Ai,j denote
the j-th candidate in Ai, which is a truncated difference, and Ai,j [k] denote
the k-th S-box of Ai,j .

2. Bi: a table to store all possible truncated output differences in the i-th round,
where Bi,j denotes the j-th candidate, and Bi,j [k] denotes the k-th S-box of
Bi,j , and Bi,j = L(Ai,j).

3. TDPi: a table to store the truncated differential probability over i rounds,
where TDPi,j denotes that input difference ∆ leads to the truncated output
difference Ai,j over i rounds, i.e., TDPi,j = Pr[∆

i rounds−−−−−−→ Ai,j ].

In this paper, we offer a round-by-round approach to compute the truncated
differential probabilities. For the S layer in the 0-th round and for each 0 ≤ j <
|A0|, we compute

Pr[∆
1 round−−−−−→ A0,j ] =

∏
k:T D0[k] ̸=0

TDT(∆[k], T D0[k], A0,j [k])

and insert it into a table TDPi,j . Then the linear transformation is applied
to each A0,j and the results are stored in the table B0. We continue the same
way for the S layer in the i-th round (1 ≤ i < Rm), and for each 0 ≤ j < |Ai|,
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compute

Pr[∆
i rounds−−−−−−→ Ai,j ] =

|Bi−1|−1∑
t=0

TDPi−1,t · Pr[Bi−1,t
S−→ Ai,j ]

=

|Bi−1|−1∑
t=0

TDPi−1,t ·

( ∏
k:T Di[k] ̸=0

TDT(Bi−1,t[k], T Di[k], Ai,j [k])

)

and insert it into TDPi,j . Then we apply the linear transformation to each
Ai,j and the results are stored in the table Bi. Finally, to compute DLP, we
check each candidate in BRm−1, and we have

Pr[∆ → λ] =

|BRm−1|−1∑
j=0

TDPRm−1,j · π(λ ·BRm−1,j)

where π(x) = 1 if x = 0 and π(x) = 0 otherwise. Finally, the bias of Em is
Pr[∆ → λ]− 1

2 .
Regarding the complexity, in round i with 0 < i < Rm (i.e., all of the

rounds except the first), we need to traverse Bi−1 and Ai, there is |Bi−1| · |Ai|
multiplication and addition operations, which is equal to |Ai−1| · |Ai|. For the S
layer in the 0th round, because there is only an input difference, we need to do
multiplication and addition |A0| times. In the last step, there are |BRm−1| (i.e.,
|ARm−1|) multiplication and addition operations to compute DLP. We omit the
expense of the linear transformation. Therefore, the computational complexity
of this approach in multiplication and addition operations is about

|A0|+ |ARm−1|+
∑Rm−1

i=1 |Ai−1| · |Ai| = 2hw(T D0∥T DRm−1) +
∑Rm−1

i=1 2hw(T Di−1∥T Di)

In each round, we must keep four tables: two for the current round (to store
the truncated output differences and correlated probabilities) and two from the
previous round (to store the truncated input differences and correlated proba-
bilities). Therefore, the memory complexity is about

max1≤i<Rm
(|Ai−1|+ |Ai|+ |TDPi−1|+ |TDPi|) = max1≤i<Rm

(2× (2hw(T Di−1)∥T Di)))

In practical application, to construct longer differential-linear distinguisher,
we extend a differential with high-probability in the differential part E0 and a
linear approximation with high-bias in the linear part E1.

4.3 Estimate of the DL Bias When Em Consists of One Round

In this subsection, we try to use DLCT to connect a strong truncated differential
and a strongly biased linear approximation. In addition, we introduce a new
method to compute the truncated differential probability of E0 with TDT.

If for E0, we have the number of rounds R0, the input difference ∆, and the
truncated output difference T , then we can generate a output mask λ according
to T ,

λ{i} =

{
1, if T {i} = 0 or 1

0, if T {i} = ∗
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For a truncated differential that consist of insufficient truncated differential
characteristics, its precise probabilities can be computed. Otherwise, instead of
conducting an exhaustive search, we evaluate the truncated differential proba-
bility by finding as many high-probability truncated differential characteristics
as possible using the TDT.

For each S-box TDT with fixed ∆I and M, we should reorder Z in descending
order by the TDT(∆I ,M,Z), and then reorder Z in ascending order by the
Hamming weight if the entries have the same probability, so that we can search
the truncated differential characteristics with high-probability first.

Our program is based on depth-first search with branch-and-bound tech-
nique. Since traverse all possible truncated difference characteristics whose prob-
abilities are greater than a threshold, we require a “threshold”, which is repre-
sented as TS. Define the probability of the truncated differential as PTD.

The framework of our algorithm is now established by the following proce-
dures including essentially recursive calls:

Procedure Round-0
Begin the program.
Let PTD = 0.
For each candidate for Z0 with fixed T D0, do the following:

• Let p0 = TDT(∆X0, T D0,Z0).
• If p0 ≥ TS, then call Procedure Round-1.

Exit the program.

Procedure Round-i (1 ≤ i < R0 − 1)
For each candidate for Zi with fixed T Di, do the following:

• Let ∆X1 = L(Z0) and pi = TDT(∆Xi, T Di,Zi).
• If

∏i
k=0 pk ≥ TS, then call Procedure Round-(i+ 1).

Reture to the upper procedure.

Procedure Round-(R0 − 1)
For each candidate for ZR0−1 with fixed T DR0−1, do the following:

• Let ∆XR0−1 = L(ZR0−2).
• Let pR0−1 = TDT(∆XR0−1, T DR0−1,ZR0−1).
• If p =

∏R0−1
k=0 pk ≥ TS, then a linear transformation is performed,

i.e., ∆XR0
= L(ZR0−1).

• Let ZR0
= λ&T . If ∆XR0

= ZR0
, then PTD = PTD + p.

Reture to the upper procedure.

In the following, we show an explicit implementation of Procedure Round-1
that realizes a practical search using another recursive calls. Other procedures
can be also carried out in a similar way:

Procedure Round-1: (detailed)
Call Procedure Round-1-0.
Return to the upper procedure.
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Procedure Round-1-j (0 ≤ j < ℓ)
If ∆X1[j] = 0 or T D1[j] = 0, then Z1[j] = 0 and p1[j] = 1, call

Procedure Round-1-(j + 1)
If ∆X1[j] ̸= 0 and T D1[j] ̸= 0, for each candidate for Z1[j], do the

following:
• Let p1[j] = TDT(∆X1[j], T D1[j],Z1[j]) and p1 =

∏j
0 p1[j]

• If p0 × p1 ≥ TS and j ̸= ℓ− 1, then call Procedure Round-1-(j+1)
• Call Procedure Round-2

Reture to the upper procedure.

5 Experimental Results

5.1 Applications to Ascon

The previous results. The Ascon family [20] of cryptographic primitives were
selected for standardization in the Lightweight Cryptography Competition by
NIST. In [16], the authors started with the analysis of a 4-round initialization and
created a differential-linear characteristic for it. They placed the S-boxes in a way
that the linear active S-boxes in round 3 do not overlap with the 11 differential
active S-boxes they estimated. The bias of the generated DL distinguisher was
2pq2 = 2−20. And then, they checked the vast amount of possible combinations
of differential and linear characteristic experimentally. They found that in the
best case, they placed difference in bit 63 of x3 and x4, and got a bias of 2−2

in bit 9 of x0 on the output of the substitution layer of round 4. For a 5-round
initialization, they obtained a bias of 2−10 on x0[16] (last substitution layer)
for differences in x3[63] and x4[63]. In [10], the authors obtained a higher bias
of 2−5 by revisiting the analysis of the 4-round distinguisher in [16] using the
DLCT, which is still much lower than the experimentally obtained bias of 2−2.
In [24], the authors studied the DL cryptanalysis from an algebraic perspective
by introducing a technique called DATF. They obtained a bias of 2−2.365 of
the 4-round distinguisher in [16]. In [34], the authors estimated the bias of the
well-studied 4-round Ascon’s DL distinguisher as 2−2.09, which is better than
previous tools such as the DLCT [16] (2−5) or the ATF [24] (2−2.365); also, they
gave the theoretical bias for the 5-round Ascon’s DL distinguisher for the first
time: the bias is estimated as 2−10.

Table 4: The 4-round DL distin-
guisher
the input difference ∆ the output mask λ

0000000000000000
0000000000000000
0000000000000000
8000000000000000
8000000000000000

0000000000000200
0000000000000000
0000000000000000
0000000000000000
0000000000000000

Table 5: The value of ∆′
0

the input difference ∆′
0

0000000000000000
0000000000000000
0000000000000000
0000000000000000
8100000000400000
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Revisiting the 4-round distinguisher. We now apply our approach in Sect.4.2
to estimate the bias of the 4-round distinguisher in [16]. Let us decompose E
into E = E1 ◦ Em, where Em consists of rounds 1-4, and E1 = Id. The input
difference ∆ and the output mask λ are the same with those in [16], which are
showed in Table 4 (the arrangement is from right to left, from bottom to top).
Using Algorithm 1 and the approach in Sect.4.2, we obtain the bias of the 4-
round distinguisher in [16] is 2−2, which is the same as the experimental result
in [16].

Revisiting the 5-round distinguisher. Using the approach in Sect.4.3, we
revisit the 5-round DL distinguisher in [16], which has a experimental bias of
2−10. Let us decompose E into E = E1◦Em◦E0, where E0 consists of round 1-4,
Em consists of round 5, and E1 = Id. Note that since in the DL distinguisher
of [16], the output mask λ consists of the MSB in the output of S-box no.16,
we are only interested in the entries of the DLCT of that S-box. For E0, we
use a truncated differential of the form ∆0

p−−−−−−→
4 rounds

∆4, where ∆0 is the input

difference of the DL distinguisher of [16]. In our value of ∆4, four of the input
bits to S-box no.16 are known to be zero; specifically, the input is of the form
00 ∗ 00. The probability of the truncated differential p is approximately equal to
2−8.1. The relevant normalized entries of the DLCT of S satisfy:

DLCTS(0, 16) = 2−1, DLCTS(4, 16) = 0

Hence, assuming that each input difference of S occurs in ∆4 with the same
probability 2−1 and using Eq. (2), we obtain the estimate

E = 4 · 2−8.1 · 2−1(2−1 + 0) · (2−1)2 = 2−10.1

for the overall bias of the 5-round DL distinguisher of [16]. This value is ex-
tremely close to the experimentally obtained bias of 2−10. In [24], the authors
obtained a 5-round conditional DL distinguisher with a bias of 2−5.415. However,
in our paper, we do not inject any conditions on the 5-round DL distinguisher.

New 6-round distinguisher. Using the approach in Sect.4.3, we obtain a new
6-round distinguisher with a bias of 2−22.43, which is the best theoretical results
up to date. We first introduce a 5-round DL distinguisher of Ascon, and then
extend one round to construct the 6-round DL distinguisher. Let us decompose
a 5-round reduced variant E′ into E′ = E′

1 ◦E′
m ◦E′

0, where E′
0 consists of round

2-5, E′
m consists of round 6, and E′

1 = Id. For E′
0, we use a truncated differential

of form ∆′
0

p′

−−−−−−→
4 rounds

∆′
4. The value of ∆′

0 is shown in Table 5.

For the 4-round truncated differential ∆′
0

p′
1−−−−−−→

4 rounds
∆′

4, we are only interested

in the entries of the DLCT of S-box no.57. In our value of ∆′
4, one of the input

bits to S-box no.57 are known to be zero; specifically, the input is of the form
∗0 ∗ ∗∗. The probability of the 4-round truncated differential is p′1 = 2−17.43.

In this case, for E′
m, the output mask only consists of the MSB in the output

of S-box no.57, and the relevant normalized entries of the DLCT of S satisfy the
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Table 6. Assuming that each input difference of S occurs in ∆′
5 with the same

probability 2−4 and using Eq.(2) and Table 6, we obtain the estimate

E = 4 · 2−17.43 · 2−4(2−1 +2−1 +2−1 +2−1 +2−1 +2−1 +2−1 +2−1) · (2−1)2 = 2−19.43

for the overall bias of the 5-round DL distinguisher. And then, we append one
round with probability 2−3 before the 5-round DL distinguisher, and obtain a
6-round DL distinguisher with the bias of 2−22.43. This is the first theoretical
result of Ascon’s 6-round DL distinguisher.

Table 6: The relevant normalized entries of the DLCT in the S-box no.57
DLCTS(0, 16) = 2−1 DLCTS(1, 16) = 0 DLCTS(2, 16) = 2−1 DLCTS(3, 16) = 0

DLCTS(4, 16) = 0 DLCTS(5, 16) = 2−1 DLCTS(6, 16) = 0 DLCTS(7, 16) = 2−1

DLCTS(16, 16) = 0 DLCTS(17, 16) = 2−1 DLCTS(18, 16) = 0 DLCTS(19, 16) = 2−1

DLCTS(20, 16) = 2−1 DLCTS(21, 16) = 0 DLCTS(22, 16) = 2−1 DLCTS(23, 16) = 0

5.2 Applications to Serpent

The differential-linear distinguishers of Serpent The DL attack on the
AES finalist Serpent [12] presented in [13] is based on a 9-round DL distinguisher
with a bias of 2−60, whihc starts with round 2. In [14], Dunkelman et al. per-
formed experiments with reduced round variants of Serpent, and concluded that
the actual bias of the 9-round DL distinguisher is 2−57.75 instead of 2−60. In
[10], Bar-On et al. recomputed the bias of the distinguisher using the DLCT and
obtained an estimate of 2−57.68. In [24], Liu et al. recomputed the bias of the
distinguisher using DATF and obtained an estimate of 2−57.736.

In this part, we revisit the analysis of the bias of the 9-round DL distinguisher
using the approach in Sect.4.2, and show an estimate of 2−57.696, which is very
close to the experimental result in [14].

We adopt the notations of [10,13]. The exact difference and mask values are
obtained from [13]. The 9-round reduced variant of Serpent that starts with
round 2 in [13] is denoted by E and decomposed as E = E1 ◦ E0, where E0

consists of rounds 2-4 and E1 consists of 5-10. For E0, the distinguisher uses a
differential characteristic of the form

∆0
p0=2−5

−−−−−→
L◦S2

∆1
p1=2−1

−−−−−→
L◦S3

∆2
p2=1−−−→
L◦S4

∆3,

where ∆2, ∆3 are truncated differences. For E1, the distinguisher uses a linear
approximation of the form

λ0
q0=2−5

−−−−−→
L◦S5

λ1
q1=2−3

−−−−−→
L◦S6

λ2
q2=2−21

−−−−−−→
4 rounds

λ6,

where all nonzero bits of the mask λ0 are included in the bits that are known to
be zero in ∆3. By experiments the authors of [13] found out that there are other
differentials which also predict the difference in the bits of λ0. Summing all these
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differentials, they obtained that the probability that λ0 ·∆3 = 0 is 1
2 + 2−7 and

hence used it in their analysis. Using the complexity analysis of the classical DL
framework, the authors of [13] concluded that the overall bias of the 9-round DL
distinguisher is 2× 2−7 × (2−27)2 = 2−60.

The authors of [14] checked experimentally the first 4-round DL distinguisher
in [13] (i.e., a 4-round distinguisher which starts with the difference ∆0 and ends
with the mask λ1) and found that its bias is 2−13.75, instead of the estimate
2× 2−7 × (2−5)2 = 2−16. Therefore, they concluded that the bias of the 9-round
distinguisher is 2−57.75 instead of 2−60.

The authors of [10] considered a 3-round variant of Serpent that starts at
round 3, denoted it by E′, and computed the entry DLCTE′(∆1, λ1). They
found that its bias is 2−8.68. Hence they concluded that the bias of the first
4-round DL distinguisher in [13] is 2−5 × 2−8.68 = 2−13.68.

The authors of [24] revisited the 3-round variant of Serpent E′ starting at
round 3, and obtained a bias ε = 2−8.736. They concluded that the bias of the
first 4-round DL distinguisher in [13] is 2−5 × 2−8.736 = 2−13.736. Furthermore,
they concluded that the bias of the first 5-round DL distinguisher in [13] (i.e.,
a 5-round distinguisher which starts with the difference ∆0 and ends with the
mask λ2) is 2−5 × 2−12.736 = 2−17.736.

Revisiting the 4-round and 5-round DL distinguishers We apply the
approach presented in Sect.4.2 to the 3-round variant of Serpent E′ considered
in [10] and obtain a bias 2−8.696. Therefore we conclude that the bias of the first
4-round DL distinguisher in [13] is 2−5 × 2−8.696 = 2−13.696, which is very close
to the experimental value.

We further revisit the first 5-round DL distinguisher in [13]. We denote the
5-round variant of Serpent that starts at round 2 by E′ and decompose it as
E′ = E′

1◦Em◦E′
0, where E′

0 consists of round 2, Em consists of rounds 3-5 and E′
1

consists round 6. For E′
0, the distinguisher uses a differential characteristic of the

form ∆0
p0=2−5

−−−−−→
LT◦S2

∆1. For E′
1, the distinguisher uses a linear approximation of the

form λ1
q1=2−3

−−−−−→
LT◦S6

λ2. Since we can obtain that the bias of Em is 2−8.696, we can get

the bias of the 5-round distinguisher in [24] is 4×2−5×2−8.696×(2−3)2 = 2−17.696.
Therefore, we can obtain the bias of the 9-round DL distinguisher in [13] is
4× 2−5 × 2−8.696 × (2−23)2 = 2−57.696.

New and Better DL distinguishers In this part, we show that the distin-
guishers can be improved by using another combination of a differential char-
acteristic and a linear approximation, which leads to a higher bias. Table 7
summarizes our results for Serpent up to 9 rounds. The column labeled ‘start
round’ indicates the round at which the DL distinguisher begins. Note that for
9-round distinguishers, we consider two cases: the first case, the theoretial bias
is as high as possible (i.e., the row of 91 in Table 7), and the second case, the
number of active S-boxes of the input difference and the output mask is as low as
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possible (i.e., the row of 92 in Table 7), which are both better than the 9-round
DL distinguisher in [13]. Note that for the 4-round and 5-round DL distinguish-
ers, the biases we obtain are much better than those reported in [13]. The details
of each DL distinguisher are summarized in Table 12.

Table 7: The differential-linear bias of Serpent
RN start round R0 Rm R1 theoretical bias experimental result
3 5 0 3 0 2−1.415 2−1.415

4 7 1 3 0 2−5.415 2−5.30

5 5 1 3 1 2−11.415 2−11.44

6 4 1 3 2 2−19.61

7 1 1 3 3 2−29.45

8 1 1 3 4 2−39.45

91 1 2 2 5 2−52

92 2 1 3 5 2−55.43

5.3 Applications to KNOT

In 2019, KNOT was selected by NIST as one of the 32 candidates in the second
round of lightweight cryptography (LWC) standardization process. The KNOT
AEAD family has 4 members. In this paper, we consider the primary AEAD
member–KNOT-AEAD(128,256,64) (short as KNOT256), which has a state size
of 256.

An experimental validation Firstly, we perform some statistical tests to
verify our approach in Sect.4.2. Given the input difference ∆ and the output
mask λ (shown in Table 8(a)), we evaluate the biases which consists of different
number of rounds, the experimental results are shown in Table 8(b). As we can
see, there is no gap between our theoretical values and the experimental results.
Note that in the hexadecimal presentation of states, the top row denotes a0, the
bottom row denotes a3, and the arrangement of S-boxes is from right to left.

The DL distinguishers In this paper, we focus on the analysis of the round-
reduced initialization phase, so the input differences are limited to the nonce, and
the output masks are limited to the rate part. Using the approach in Sect.4.2,
we find that the biases of the optimal DL distinguishers are all 2−1 when the
number of rounds of Em is from 2 to 8, so we construct distinguishers starting
from 9 rounds.

We first compute the bias of Em covered over multiple rounds while con-
straining the number of active S-boxes in the input differences and the output
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Table 8: The experimental validation
(a) The input difference ∆ and
output mask λ in statistical
tests

input
difference

∆

0000000000000000
0000000000000000
0000000000000001
0000000000000000

output
mask
λ

0000000000000000
0000000000000000
0000000000010000
0000000000000000

(b) The verification results

RN Theoretical results Experimental results

3 2−3 2−3

4 2−2.415 2−2.415

5 2−1.83 2−1.83

6 2−1.476 2−1.476

7 2−1.272 2−1.272

8 2−1.154 2−1.154

9 2−1.24 2−1.24

linear masks of Em to be 1. We then try all possibilities and then extend them
with differential and linear trails to evaluate the overall bias of the DL distin-
guishers. Using this approach, we can construct the DL distinguishers for up to
13 rounds.

To construct longer DL distinguishers, we initially search for differential and
linear characteristics, where the differential characteristics have one active S-
box in the input difference, while minimizing the number of active S-boxes in
the output difference. Additionally, for the linear approximations, we look for
one active S-box in the output mask, and minimize the number of active S-boxes
in the input mask. We utilize DL distinguishers that consist of number of rounds
as high as possible to connect the differential characteristics and the linear ap-
proximations. Because of rotation invariance, we obtain numerous combinations
for each combination of differential and linear trails. Consequently, we employ
our approaches to assess the overall bias of all feasible combinations and select
the best one. Table 13 summarizes the selected DL distinguishers.

5.4 Applications to AES

The Advanced Encryption Standard (AES) [36] is the most widely adopted block
cipher in the world today. The AES is a Substitution-Permutation network that
supports key size of 128, 192 and 256 bits. The number of rounds are 10/12/14
for AES-128/192/256, respectively. An AES round applies four operations to
the state matrix, which can be seen as R = AK ◦ MC ◦ SR ◦ SB, where the
non-linear layer is S = SB, the linear layer is L = AK ◦MC ◦ SR.

We first exhaust all possible 3-round DL distinguishers where the number of
active S-boxes in the first round and the third round is both 1. The bias of the
best 3-round DL distinguisher we obtained is 2−8.66.
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Table 9: The differential-linear bias of KNOT256
RN R0 Rm R1 theoretical bias experimental result
9 0 9 0 2−1.20 2−1.20

10 1 9 0 2−3.66 2−3.27

11 1 9 1 2−6.38 2−4.31

12 2 9 1 2−9.27 2−9.91

13 3 9 1 2−12.27 2−14.04

14 4 9 1 2−16.23

15 4 8 3 2−23.31

16 4 8 4 2−30.52

For the 4-round and 5-round DL distinguisher, we firstly construct a 3-round
DL distinguisher where the number of active S-box in the first round is 1, and the
number of active S-box in the third round is 4, which has the bias of 2−21.85. A 4-
round DL distinguisher is obtained by appending a 1-round linear approximation
after the 3-round DL distinguisher. The 4-round DL distinguisher has a bias
of 2−27.85, where the bias of the 1-round linear approximation is 2−4, and the
number of active S-box in the fourth round is 1. After that, if we perform forward
extension on the 4-round DL distinguisher by adding a one round differential trail
with probability 2−24, a 5-round DL distinguisher is constructed. The overall
bias of the 5-round distinguisher is 2−51.85. The composition for different DL
distinguishers is shown in Table 10, and the details are presented in Table 14 in
the Appendix.

Table 10: The differential-linear bias of AES
RN R0 Rm R1 theoretical bias experimental result
2 0 2 0 2−1 2−1

3 0 3 0 2−8.66 2−8.66

4 1 3 0 2−27.85

5 1 3 1 2−51.85

5.5 Applications to CLEFIA

CLEFIA is a 128-bit block cipher with variable key lengths of 128, 192 and
256, which takes a 4-branch generalized Feistel network [35]. The number of
rounds are 18/22/26 for CLEFIA-128/192/256, respectively. The procedure of
encryption is described in [35].

In this paper, we construct the DL distinguishers up to 9 rounds. Since the
biases of the optimal DL distinguishers are all 2−1 when the number of rounds
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of Em is less than 5, we construct DL distinguishers starting from 5 rounds.
We first search two 5-round DL distinguishers with the same biases, and then
perform forward and backward extension to construct long DL distinguishers.

When searching 5-round DL distinguishers, for the input difference, we limit
that the number of active S-box is only one. For the output mask, there are
two cases. In the first case, we limit that the output mask has one active S-box.
In the second case, to make the number of active S-box in the linear trails as
low as possible. After that, we search the differential characteristics with high-
probabilities and linear approximations with high-biases. This paper presents the
best combinations of a differential characteristic and linear approximation. The
compositions for different rounds of DL distinguishers and the bias are shown in
Table 11. The details are presented in Table 15 in the Appendix.

Table 11: The differential-linear bias of CLEFIA
RN R0 Rm R1 theoretical bias experimental result
4 0 4 0 2−1 2−1

5 0 5 0 2−2.415 2−2.415

6 0 5 1 2−6.80 2−6.81

7 1 5 1 2−11.80 2−11.81

8 1 5 2 2−32.70

9 2 5 2 2−54.37

6 Conclusion

Based on the TDT and a relation between differential-linear and truncated dif-
ferential cryptanalysis, we propose two new approaches to estimate the bias of
a differential-linear distinguisher. In practical applications, the choice of which
approach to use is worth discussing. Here are our suggestions. For ciphers where
the L layer is weak and the bias of Em consisting of multiple rounds is easy to
estimate, the approach in Sect.4.2 is generally a better option; for ciphers where
the L layer is strong, and the bias estimate of Em consisting of multiple rounds
is computationally too demanding by using the approach in Sect.4.2, then the
approach in Sect.4.3 is preferred.

We demonstrate the accuracy and efficiency of our new approaches by ap-
plying to 5 symmetric-key primitives: the LWC winner Ascon, the AES finalist
Serpent, and the LWC candidate KNOT, AES, and CLEFIA:

- For Ascon, we revisit the previous 4-round and 5-round DL distinguishers,
our results closely match the experimental results. Then, we improve the
number of DL distinguisher’s rounds from 5 to 6.



30 Ting Peng, Wentao ZhangB, Jingsui Weng, and Tianyou Ding

- For Serpent, we revisit the bias estimate of a known 9-round DL distin-
guisher. We show that our estimate of the bias is very close to the exper-
imental result for the 4-round distinguisher. The bias of the 5-round DL
distinguisher is also revisited. Furthermore, two completely new 9-round dis-
tinguishers with higher biases are presented.

- For KNOT, we search DL distinguishers up to 16 rounds. Our 16-round
DL distinguisher has a bias of 2−30.52, which is the best distinguisher of
KNOT256 with respect to the number of rounds, and possibly used to mount
better DL attacks on reduced-round KNOT256.

- For AES, we search DL distinguishers up to 5 rounds. Our 5-round DL
distinguisher has a bias of 2−51.85, which is the best distinguisher of AES
with respect to the number of rounds.

- For CLEFIA, we search DL distinguishers up to 9 rounds. Our 9-round DL
distinguisher has a bias of 2−54.37, which is one of the best distinguishers of
CLEFIA.
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A The Differential-Linear Distinguishers of Serpent

In Table 12, we summarizes our results that DL distinguishers for 3 to 9 rounds
of Serpent.

Table 12: The DL distinguishers of Serpent

#R the differential-linear distinguisher bias

3
start round: 5, r(∆O

Rm=3−−−−→ λI) = 2−1.415

2−1.415

∆O = 0x00000003000000000000000000000000 λI = 0x08010812a00a200400000010000a0000

4

start round: 7, p(∆I
R0=1−−−−→ ∆O) = 2−2, r(∆O

Rm=3−−−−→ λI) = 2−3.415

∆I = 0x00600000000000000000000000000000 ∆O = 0x02000000000000000000000000001000
λI = 0x000000000000000008010812a00a2004

2−5.415
∆I = 0x06000000000000000000000000000000 ∆O = 0x20000000000000000000000000010000

λI = 0x00000000000000008010812a00a20040
∆I = 0x09000000000000000000000000000000 ∆O = 0x20000000000000000000000000010000

λI = 0x0000010000a000008010812a00a20040
∆I = 0x00900000000000000000000000000000 ∆O = 0x02000000000000000000000000001000

λI = 0x00000010000a000008010812a00a2004

5

start round: 5, p(∆I
R0=1−−−−→ ∆O) = 2−5, r(∆O

Rm=3−−−−→ λI) = 2−2.415, q(λI
R1=1−−−−→ λO) = 2−3

∆I = 0xc0000000000000000000000000000100 ∆O = 0x00000004000000000000000000000000
λI = 0x000000000000000000000010000a0000 λO = 0x400014000b0000a00100023000220200

2−11.415

∆I = 0x0000000000000000000000000000100c ∆O = 0x00000040000000000000000000000000
λI = 0x00000000000000000000010000a00000 λO = 0xc3a0b16000000000000000000004d002
∆I = 0x000000000000000000000000000100c0 ∆O = 0x00000400000000000000000000000000
λI = 0x0000000000000000000010000a000000 λO = 0x3a0b16000000000000000000004d002c
∆I = 0x00000000000000000000000000100c00 ∆O = 0x00004000000000000000000000000000
λI = 0x000000000000000000010000a0000000 λO = 0xa0b16000000000000000000004d002c3
∆I = 0x0000000000000000000000000100c000 ∆O = 0x00040000000000000000000000000000
λI = 0x00000000000000000010000a00000000 λO = 0x0b16000000000000000000004d002c3a
∆I = 0x000000000000000000000000100c0000 ∆O = 0x00400000000000000000000000000000
λI = 0x0000000000000000010000a000000000 λO = 0xb16000000000000000000004d002c3a0
∆I = 0x00000000000000000000000100c00000 ∆O = 0x04000000000000000000000000000000
λI = 0x000000000000000010000a0000000000 λO = 0x16000000000000000000004d002c3a0b

6
start round: 4, p(∆I

R0=1−−−−→ ∆O) = 2−4, r(∆O
Rm=3−−−−→ λI) = 2−3.61, q(λI

R1=2−−−−→ λO) = 2−7

∆I = 0x009000000000000b0000000000000000 ∆O = 0x00000000000000000000000000000100
λI = 0x00000000000000010000a00000000000 λO = 0x92002b8810800a00104000a2002acbb0

2−19.61

∆I = 0x09000000000000b00000000000000000 ∆O = 0x00000000000000000000000000001000
λI = 0x0000000000000010000a000000000000 λO = 0x2b0130820a01b000400b02100060a200

7

start round: 1, p(∆I
R0=1−−−−→ ∆O) = 2−5, r(∆O

Rm=3−−−−→ λI) = 2−8.45, q(λI
R1=3−−−−→ λO) = 2−9

∆I = 0x00000100a00000000000000000000000 ∆O = 0x00000000000000040000000000000000
λI = 0x00000000000000000000000800000000 λO = 0x108023000020600402014000b0000a00

2−29.45
∆I = 0x00000100a00000000000000000000000 ∆O = 0x00000000000000040000000000000000
λI = 0x00000000000000000000000800000000 λO = 0x00810900a020600402014000b0000a80
∆I = 0x0000100a000000000000000000000000 ∆O = 0x00000000000000400000000000000000
λI = 0x00000000000000000000008000000000 λO = 0x08023000020600402014000b0000a001
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∆I = 0x0000100a000000000000000000000000 ∆O = 0x00000000000000400000000000000000
λI = 0x00000000000000000000008000000000 λO = 0x0810900a020600402014000b0000a800

8

start round: 1, p(∆I
R0=1−−−−→ ∆O) = 2−5, r(∆O

Rm=3−−−−→ λI) = 2−8.45, q(λI
R1=4−−−−→ λO) = 2−14

∆I = 0x00000100a00000000000000000000000 ∆O = 0x00000000000000040000000000000000
λI = 0x00000000000000000000000800000000 λO = 0x010000a000008010012a082010000a04

2−39.45
∆I = 0x00000100a00000000000000000000000 ∆O = 0x00000000000000040000000000000000
λI = 0x00000000000000000000000800000000 λO = 0x0000000000008010812a082210400a04
∆I = 0x0000100a000000000000000000000000 ∆O = 0x00000000000000400000000000000000
λI = 0x00000000000000000000008000000000 λO = 0x10000a000018010a12a08a0000020040
∆I = 0x0000100a000000000000000000000000 ∆O = 0x00000000000000400000000000000000
λI = 0x00000000000000000000008000000000 λO = 0x10000b0000b8010a92b00b2a00a00000

9
start round: 1, p(∆I

R0=2−−−−→ ∆O) = 2−7, r(∆O
Rm=2−−−−→ λI) = 2−7, q(λI

R1=5−−−−→ λO) = 2−20

2−52

∆O = 0x0000000000000000200a000000000000 ∆O = 0x00000000000000010000810000200440
λI = 0x04000000000000000000000000000020 λO = 0x2a00308043090ab2e02a24040080108a

9
start round: 2, p(∆I

R0=1−−−−→ ∆O) = 2−4, r(∆O
Rm=3−−−−→ λI) = 2−7.33, q(λI

R1=5−−−−→ λO) = 2−23

∆I = 0x00000000004007000000000000000000 ∆O = 0x00000000000000000000400000000000
λI = 0x00000000000000000000000080000000 λO = 0x000b0000b000030000b0200e00000010

2−55.33

∆I = 0x00000000040070000000000000000000 ∆O = 0x00000000000000000004000000000000
λI = 0x00000000000000000000000800000000 λO = 0x00b0000b000030000b0200e000000100

B The Differential-Linear Distinguishers of KNOT256

In Table 13, for each bias in Table 9, we provide their exact differences and
masks. Note that in the hexadecimal presentation of states, the top row denotes
a0, the bottom row denotes a3, and the arrangement of S-boxes is from right to
left.

Table 13: The differential-linear distinguishers of KNOT256

RN the differential-linear distinguisher biases

9
r(∆O

Rm=9−−−−→ λI) = 2−1.20

2−1.20

∆O =

0000000000000000
0000000000000000
0000000000000001
0000000000000001

λI =

0000000000000100
0000000000000000
0000000000000000
0000000000000000

10
p(∆I

R0=1−−−−→ ∆O) = 2−2, r(∆O
Rm=9−−−−→ λI) = 2−1.66

2−3.66

∆I =

0000000000000000
0000000000000000
0000000000000001
0000000000000001

∆O =

0000000000000000
0000000000000000
0000000000000000
0000000000000001

λI =

0100000000000000
0000000000000000
0000000000000000
0000000000000000

11
p(∆I

R0=1−−−−→ ∆O) = 2−2, r(∆O
Rm=9−−−−→ λI) = 2−2.38, q(λI

R1=1−−−−→ λO) = 2−2

2−6.38
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∆I =

0000000000000000
0000000000000000
0000000000000001
0000000000000001

∆O =

0000000000000001
0000000000000000
0000000000000000
0000000000000000

λI =

0000000000000000
0000000000020000
0000000000000000
0000000000020000

λO =

0000000000020000
0000000000000000
0000000000000000
0000000000000000

12
p(∆I

R0=2−−−−→ ∆O) = 2−5, r(∆O
Rm=9−−−−→ λI) = 2−2.27, q(λI

R1=1−−−−→ λO) = 2−2

2−9.27

∆I =

0000000000000000
0000000000000000
0100000000000000
0100000000000000

∆O =

0000000000000000
0000000000000000
0000000000000001
0000000000000000

λI =

0000000000000000
0000000200000000
0000000000000000
0000000200000000

λO =

0000000200000000
0000000000000000
0000000000000000
0000000000000000

13
p(∆I

R0=3−−−−→ ∆O) = 2−8, r(∆O
Rm=9−−−−→ λI) = 2−2.27, q(λI

R1=1−−−−→ λO) = 2−2

2−12.27

∆I =

0000000000000000
0000000000000000
0080000000000000
0080000000000000

∆O =

0000000000000000
0000000000000000
0000000000000001
0000000000000000

λI =

0000000000000000
0000000200000000
0000000000000000
0000000200000000

λO =

0000000200000000
0000000000000000
0000000000000000
0000000000000000

14
p(∆I

R0=4−−−−→ ∆O) = 2−10, r(∆O
Rm=9−−−−→ λI) = 2−2.23, q(λI

R1=1−−−−→ λO) = 2−3

2−16.23

∆I =

0000000000000000
0000000000000000
0040000000000000
0040000000000000

∆O =

0000000000000000
0000000000000001
0000000000000000
0000000001000000

λI =

0000000000000000
0000000000000000
0000010000000000
0000000000000000

λO =

0000010000000000
0000000000000000
0000000000000000
0000000000000000

15
p(∆I

R0=4−−−−→ ∆O) = 2−10, r(∆O
Rm=8−−−−→ λI) = 2−3.31, q(λI

R1=3−−−−→ λO) = 2−6

2−23.31

∆I =

0000000000000000
0000000000000000
0040000000000000
0040000000000000

∆O =

0000000000000000
0000000000000001
0000000000000000
0000000001000000

λI =

0000000000000000
0000000000020000
0100000000000000
0100000000020000

λO =

0000000002000000
0000000000000000
0000000000000000
0000000000000000

16
p(∆I

R0=4−−−−→ ∆O) = 2−10, r(∆O
Rm=8−−−−→ λI) = 2−2.52, q(λI

R1=4−−−−→ λO) = 2−10

2−30.52

∆I =

0000000000000000
0000000000000000
0040000000000000
0040000000000000

∆O =

0000000000000000
0000000000000001
0000000000000000
0000000001000000

λI =

0000000000000000
0000000000020000
0100000000000000
0100000000020000

λO =

0000000000010000
0000000000000000
0000000000000000
0000000000000000

C The Differential-Linear Distinguishers of AES

In Table 14, for each bias in Table 10, we provide a few DL distinguishers, where
the arrangement follows the design document of AES.

Table 14: The DL distinguishers of AES

#R the differential-linear distinguisher bias

3 rounds

r(∆O
Rm=2.5−−−−−→ λI) = 2−8.66, q(λI

R1=0.5−−−−−→ λO) = 2−1

∆O =


7b 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


35 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λO =


d1 0 0 0

69 0 0 0

fe 0 0 0

73 0 0 0



2−8.66
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∆O =


83 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


0 e6 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λO =


0 f6 0 0

0 e9 0 0

0 e3 0 0

0 1a 0 0



∆O =


a6 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


0 96 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λO =


0 3c 0 0

0 f 0 0

0 e1 0 0

0 44 0 0



∆O =


b4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


0 0 67 0

0 0 0 0

0 0 0 0

0 0 0 0

 λO =


0 0 66 0

0 0 98 0

0 0 32 0

0 0 ab 0



∆O =


b4 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


0 0 0 d4

0 0 0 0

0 0 0 0

0 0 0 0

 λO =


0 0 0 a5

0 0 0 4

0 0 0 9b

0 0 0 ee


4 rounds

r(∆O
Rm=2.5−−−−−→ λI) = 2−21.85, q(λI

R1=1.5−−−−−→ λO) = 2−4

∆O =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


80 0 0 0

0 81 0 0

0 0 1 0

0 0 0 1

 λO =


96 0 0 0

12 0 0 0

6e 0 0 0

ba 0 0 0

 2−27.85

5 rounds
p(∆I

R0=1−−−−→ ∆O) = 2−24, r(∆O
Rm=2.5−−−−−→ λI) = 2−21.85, q(λI

R1=1.5−−−−−→ λO) = 2−4

∆I =


b3 0 0 0

0 58 0 0

0 0 45 0

0 0 0 0f

 ∆O =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 λI =


80 0 0 0

0 81 0 0

0 0 1 0

0 0 0 1

 λO =


96 0 0 0

12 0 0 0

6e 0 0 0

ba 0 0 0

2−51.85

D The Differential-Linear Distinguishers of CLEFIA

In Table 15, for each bias in Table 11, we provide a few DL distinguishers, where
the first column presents the input differences, and the second column presents
the output masks. In the hexadecimal presentation of states, the arrangement is
from left to right. Every two nibbles represent an S-box.

Table 15: The differential-linear distinguishers of CLEFIA

#R the differential-linear distinguisher bias

5
r(∆O

Rm=5−−−−→ λI) = 2−2.415

2−2.415

∆O = 0x00000000009000000000000000000000 λI = 0x000000007a3d1e230000000000000000
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∆O = 0x00000000000000900000000000000000 λI = 0x000000001e237a3d0000000000000000

6
r(∆O

Rm=5−−−−→ λI) = 2−2.415, q(λI
R1=1−−−−→ λO) = 2−3.19

∆O = 0x00000000009000000000000000000000 λI = 0x000000007a3d1e230000000000000000
λO = 0x7a3d1e2300000000000000005c000000

2−6.80

∆O = 0x00000000000000900000000000000000 λI = 0x000000001e237a3d0000000000000000
λO = 0x1e237a3d000000000000000000005c00

7
p(∆I

R0=1−−−−→ ∆O) = 2−5, r(∆O
Rm=5−−−−→ λI) = 2−2.415, q(λI

R1=1−−−−→ λO) = 2−3.19

∆I = 0x00000000000000000090000099bef861 ∆O = 0x00000000009000000000000000000000
λI = 0x000000007a3d1e230000000000000000 λO = 0x7a3d1e2300000000000000005c000000

2−11.80

∆I = 0x000000000000000000000090f86199be ∆O = 0x00000000000000900000000000000000
λI = 0x000000001e237a3d0000000000000000 λO = 0x1e237a3d000000000000000000005c00

8
p(∆I

R0=1−−−−→ ∆O) = 2−5, r(∆O
Rm=5−−−−→ λI) = 2−2.54, q(λI

R1=2−−−−→ λO) = 2−13.58

∆I = 0x9c0000002b56acfa0000000000000000 ∆O = 0x0000000000000000000000009c000000
λI = 0x000000000000000000000000052c1316 λO = 0x00dd0000052c131600000000e62781c9

2−32.70

∆I = 0x00009c00acfa2b560000000000000000 ∆O = 0x00000000000000000000000000009c00
λI = 0x0000000000000000000000001316052c λO = 0x000000dd1316052c0000000081c9e627

9
p(∆I

R0=2−−−−→ ∆O) = 2−26.678, r(∆O
Rm=5−−−−→ λI) = 2−2.54, q(λI

R1=2−−−−→ λO) = 2−13.578

∆I = 0x000000009c0000002b56acfa6172683c ∆O = 0x0000000000000000000000009c000000
λI = 0x000000000000000000000000052c1316 λO = 0x00dd0000052c131600000000e62781c9

2−54.37
∆I = 0x0000000000009c00acfa2b56683c6172 ∆O = 0x00000000000000000000000000009c00
λI = 0x0000000000000000000000001316052c λO = 0x000000dd1316052c0000000081c9e627
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