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Abstract. We prove an algebraic analogue of Pataki-Tural lemma (Pataki-
Tural, arXiv:0804.4014, 2008 ) – the main tool in analysing the so-called
overstretched regime of NTRU. Our result generalizes this lemma from
Euclidean lattices to modules over any number field enabling us to look
at NTRU as rank-2 module over cyclotomic number fields with a rank-1
dense submodule generated by the NTRU secret key.
For Euclidean lattices, this overstretched regime occurs for large mod-
uli q and enables to detect a dense sublattice in NTRU lattices lead-
ing to faster NTRU key recovery. We formulate an algebraic version of
this event, the so-called Dense Submodule Discovery (DSD) event, and
heuristically predict under which conditions this event happens. For that,
we formulate an algebraic version of the Geometric Series Assumption –
an heuristic tool that describes the behaviour of algebraic lattice reduc-
tion algorithms. We verify this assumption by implementing an algebraic
LLL – an analog of classical LLL lattice reduction that operates on the
module level. Our experiments verify the introduced heuristic, enabling
us to predict the algebraic DSD event.
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1 Introduction

Modern lattice based cryptographic constructions, including the recent stan-
dards [17,7,15], rely on hard problems on module lattices, i.e., lattices that are
modules over the rings of integers of number fields.

Let K be a number field and OK be its ring of integers. In this work we
focus on cyclotomic number fields of power-of-two conductor f , that is K =
Q[x]/(xd + 1), OK = Z[x]/(xd + 1) for d = f/2. For n ≥ 1, an OK-module
M ∈ Kn is a finitely generated set of vectors from Kn stable under addition
and multiplication by elements from OK . Any module admits a representation
M =

∑n−1
i=0 bi ·bi, where bi ∈ Kn areK-linearly independent and bi are non-zero

fractional ideals.
One of the cryptographically interesting example of a module arises from the

the NTRU key equation [18] h = gϕ−1 mod q, where q is some integer, ϕ, g are
elements from OK with small coefficients, and ϕ is invertible. When given h as a
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public key (with (ϕ, g) being a secret key), the secret key recovery of the NTRU
cryptosystem translates into the problem of finding a short vector (ϕ, g) in the

module MNTRU =

(
1
h

)
OK ⊕

(
0
q

)
OK . The recovery of (ϕ, g) from h is called

the NTRU Problem.

Any module M ⊂ Kn forms a lattice in Cnd under the canonical embedding.
Up until now the NTRU problem has been treated as a problem in Euclidean
lattice over C2d (in fact, over Z2d): indeed, the NTRU problem can be seen as a
problem of finding a short vector in an integral lattice LNTRU of dimension 2d [11],
without taking into account any module structure.

Dense sublattices in NTRU. Specific to NTRU is the property that the secret
(ϕ, g) forms what is called a dense d-dimensional sublattice Lϕ,g ⊂ LNTRU. This
is due to the fact that xiϕh = xig, 0 ≤ i < d, and hence the embeddings of
(xiϕ, xig) are also in LNTRU and they are all short and linearly independent.
Hence, the sublattice Lϕ,g generated by these rotations is dense.

It has been observed [1,21,14] that for sufficiently large modulus q, called
the overstretched NTRU regime, lattice basis reduction [29] finds a basis for
Lϕ,g significantly faster than predicted by the analysis for key recovery (ϕ, g).
The detection of a basis of Lϕ,g when reducing LNTRU is called Dense Submodule
Discovery (DSD). Ducas and van Woerden [14] showed that DSD happens for
q = Ω(d2.484).

In order to show the existence of the overstretched regime in NTRU, [21,14]
used the so-called Pataki-Tural result [28, Lemma 1]. Informally, it gives a lower
bound on the volume of sublattices relative to the shape of a basis of the full
lattice. Due to the presence of the dense Lϕ,g, its volume becomes smaller than
the “expected” smallest volume of a sublattice in LNTRU, causing a contradiction
to the Pataki-Tural result. Kirchner-Fouque [21] argue that lattice reduction
somehow detects this event, while Ducas-van Woerden [14] explain why and
under which conditions this overstretched regime happens.

Our contributions. In this work we ask whether all these results can be trans-
lated to the algebraic setting. Indeed, MNTRU contains a rank-1 dense submodule(
ϕ
g

)
OK . To study the hardness of finding this dense submodule in MNTRU, we

contribute with the following results.

1. We formulate a generalization of Pataki-Tural lemma in the algebraic setting.
We prove an analogous result that provides a lower bound on the volume of
submodules with respect to the geometry of the full module. The translation
of the result from ‘classical’ setting to the algebraic one is not straightfor-
ward: first, we are working with pseudobases (not bases), second, the norms
we are dealing with are not Euclidean but algebraic; and third, some of the
relevant tools like computation of the Hermite Normal Form in a form of a
matrix is not available for modules.
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2. We develop an algebraic analogue of the so-called Geometric Series Assump-
tion (GSA) – an heuristic that dictates the geometry of a reduced lattice
basis.

3. We combine the GSA with our algebraic version of Pataki-Tural lemma
which provides us with a tool to analyze the algebraic DSD event – the
Dense Submbodule Discovery. This enables us to analyse NTRU modules
from the algebraic perspective.

4. In order to validate our heuristics we need an algorithm for algebraic lattice
reduction. That is, a reduction that provides guarantees not on Euclidean
norms of basis vectors, but on their algebraic norms. Kirchner, Espitau, and
Fouque describe in [19,20] a version of an LLL algorithm for free modules
over cyclotomic fields. Lee et al. [24] give a complete generalization of LLL to
OK-modules for arbitrary fields K. However, this later result seems hard to
implement in practice as it requires costly precomputations on high dimen-
sional Euclidean lattices. Due to the lack of working algebraic lattice reduc-
tion3, we implemented a version of algebraic LLL. We provided some tricks
to speed up our implementation and with that we were able to verify our
algebraic GSA and our analysis for the Dense Submbodule Discovery event.
Our code is available at https://github.com/mooninjune/AlgebraicLLL.

Comparison to classical DSD. Our experiments show that so far algebraic tech-
niques are inferior to classical lattice reduction techniques in the tasks of de-
tecting DSD event in practice. Concretely, our implementation of algebraic LLL
requires larger moduli q to succeed in detecting DSD event rather than classical
BKZ [29] reduction. In order to be competitive with classical lattice reduction
tools, algebraic techniques require an algorithm that finds short lattice vectors
in the algebraic norm, which is so far not available. However, we believe that the
theoretical tools developed in this work are independent from the development
of practical algebraic reduction techniques.

2 Preliminaries

We use bold capital letters to denote matrices, bold letters for vectors, Gothic
letters for ideals. The transposition of a matrix B is denoted as BT , and for
matrices over C, we denote with † their transposition and conjugation. The j-th
element of i-th column of B is denoted as bi[j].

Lattices. A lattice is a free Z-module with its field of scalars being R or C. We
describe a lattice by its bases written as columns of a matrix B ∈ Cm×n, where
m is the dimension of the ambient space and n is the rank of the lattice. Each
lattice of rank more than 1 has an infinite amount of bases. If B and B′ are two
m× n matrices corresponding to the two bases of the same lattice then one can

3 The available LLL PARI-GP implementation from https://espitau.github.io/

fastlll.html described in [19] does not seem to terminate on a 31-bit modulus q,
d = 26, 27 within reasonable time frame

https://github.com/mooninjune/AlgebraicLLL
https://espitau.github.io/fastlll.html
https://espitau.github.io/fastlll.html
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write B′ = B · U for a unimodular matrix U ∈ Zn×n. The determinant of a
lattice with a basis B is det

(
B† ·B

)1/2
.

The ith successive minima of a lattice L is denoted by λi(L) and is the least
radius r such that the ball centered at the origin contains at least i linearly
independent vectors. The Euclidean norm of a shortest nonzero vector is λ1(L).

The problem of finding a nonzero lattice vector v ∈ L such that it is no longer
than γ ·λ1(L) for a given γ ⩾ 1 is considered to be hard in general. This problem
is called the approxSVP problem (approximate Shortest Vector). For γ = 1, the
problem is known as SVP. Let t ∈ Rm be a vector with u ∈ L being closest to
t. The approxCVP problem (approximate Closest Vector Problem) asks to find
v ∈ L given t ∈ SpanR(L) such that ∥t−v∥ ≤ γ ·∥t−u∥. For γ = 1, the problem
is called CVP.

Number fields. LetK be a number field of degree d andOK be its ring of integers.
The number field K has r1 real embeddings and 2r2 complex embeddings into
Cd with r1+2r2 = d. We denote them as σi for 0 ⩽ i < d. There are two ways to
embed elements from K. The canonical (Minkowski) embedding F of an element
k ∈ K into Cd is defined as the vector (σi(k))0⩽i<d. The coefficient embedding
of an element k =

∑
l<d cl ·ζl ∈ K into Rd is defined as the vector (c0, . . . , cd−1).

For k ∈ K, the field norm is defined as N (k) =
∏

σi
σi(k). For a fractional

ideal a ⊂ K its norm N (a) is defined as the cardinality of the factor-ring K/a.
The trace Tr(k) of k is defined as

∑
σi
σi(k). Both norm and trace of an element

k ∈ K are in Q. Let L be a subfield of a number field K. The relative norm
NK/L(k) for some k ∈ K is defined as the determinant (over L) of the linear
map: K → K : x 7→ k · x. The trace of this linear map (over L) is denoted as
TrK/L(k) and is called the relative trace. An OK element of algebraic norm ±1
is called a unit. The set of all OK units forms a multiplicative group called the
unit group.

For a given fractional principal ideal a the problem of finding a ∈ K such
that a ·OK = a is called the Principal ideal Problem (PIP). For cyclotomic fields
it can be solved classically in sub-exponential time [3] and in polynomial time
using quantum computers [5].

We define KR as the tensor product K ⊗Q R. We write K+
R as the subset of

KR with nonnegative coordinates under the canonical embedding. We can take
the square root of k ∈ K+

R by applying it coordinate-wise after the canonical
embedding. For k ∈ KR, its conjugation k̄ ∈ KR is well-defined since KR ⊂ Cd.

The ring of integers OK is a lattice of rank d under the canonical embedding.
The absolute value of the discriminant of K, denoted ∆K , is the squared volume
of OK , namely ∆K = |det(σi((bj))i,j |2 for any Z-basis {bj}j of OK .

For n ∈ N+, Kn is a vector space equipped with Hermitian inner prod-
uct ⟨u,v⟩KR =

∑
(u)i · (v)i, 0 ⩽ i < n where v denotes the conjugation over

KR applied to v component-wise. For an intermediate field L ⊂ K, we define
∥k∥K/L = (TrK/L(k · k̄))1/2 and ∥k∥ = ∥k∥K/Q. The Euclidean norm of vector

v over Q is defined as ∥v∥ = TrK/Q(⟨v,v⟩KR)
1/2. The algebraic norm v ∈ Kn

is defined as N (⟨v,v⟩KR)
1/2. By abuse of notations, we write ⟨a,b⟩ := ⟨a,b⟩KR
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when a,b ∈ Kn. The canonical embedding of v = (v0, . . . , vn−1) ∈ Kn if de-
fined as F(v) = (F(v0), . . . ,F(vn−1)) ∈ Cnd. A matrix U ∈ On×n

K is called
unimodular if N (detU) = ±1.

Vectors v0, . . . ,vn−1 are said to be KR-linearly independent if there is no
nontrivial linear combination with the coefficients ci ∈ KR such that

∑
ci·vi = 0.

Cyclotomic Number Fields. Let ζ ∈ C be an f -th root of unity for some f ∈ N.
The number field K = Q(ζ) is called the f -th cyclotomic field. Its ring of integers
OK coincides with Z[ζ] and admits the orthogonal integral basis {1, ζ, . . . , ζd−1}
under the coefficient embedding. Its degree is given by d = φ(f) for φ being
the Euler totient function. Cyclotomic fields of degree d that is a power of two
are called power-of-2 cyclotomic fields. In that case we have λ1(OK) is

√
d. For

a power-of-2 cyclotomic field K of degree d, as the direct consequence of [32,
Proposition 2.1], we have that log |∆K | = d · log(d).

To bound the algebraic norm of a cyclotomic number field element, we
need the following lemma which sometimes being referred to as the algebraic-
geometric inequality.

Lemma 1. Let K be a cyclotomic field. Then for all k ∈ K:

N (k) ⩽ d−d/2 · ∥k∥d

Algebraic Lattices. A projective OK module M of rank n is defined as M =
b0 · b0 ⊕ . . . ⊕ bn−1 · bn−1, where all bi’s are KR-linearly independent and bi’s
are fractional nonzero ideals. We will be focusing on the case bi = OK ,∀i.

A tuple of pairs ((b0, b0), . . . , (bn−1, bn−1)) is called a pseudobasis of M .
If an algebraic module admits a pseudobasis with all ideals equal to OK , the
module is said to be free. In that case we refer to bi’s as just a basis. We
can represent a (pseudo)basis as a matrix over K with bi’s being its columns,
and an ordered set of n fractional ideals. Let B be such a matrix. The ideal
detK M =

√
det(B† ·B) ·

∏
i bi is called the determinant of M . In the special

case of a free module, we have detK M =
√
det(B† ·B) · OK .

An algebraic module M endowed with the inner product ⟨v , u⟩ for every
v,u ∈ M is called an algebraic lattice L. The rank of an algebraic lattice is its
rank as a module. An algebraic lattice L of rank n forms a lattice over Cnd under
the canonical embedding, e.g., F(L) = {F(v) | v ∈ L} ⊂ Cnd is a lattice. The

determinant of L is detL = ∆
n/2
K · N (detK(M)). Any submodule of M with the

same inner product is called an algebraic sublattice.
An algebraic lattice can have infinitely many pseudobases so it is crucial to

determine a criteria which tells if two pseudobases represent the same module.
For this task we use the definition given in [10, Proposition 1.4.2].

Proposition 1. Two algebraic lattices given by ((a0, a0), . . . , (an−1, an−1)) and
((b0, b0), . . . , (bn−1, bn−1)) form the same lattice if and only if there exists an
invertible matrix U ∈ Kn×n such that B = AU, every ui[j] ∈ aj · b−1

i and
u′
i[j] ∈ a−1

i · bj for u′
i being columns of the inverse matrix U′ = U−1 for 0 ⩽

i < n. When the module is free, the determinant of such U is an OK unit.
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We shall make use of the following definition of a primitive vector from Kn.

Definition 1 (Primitive vector). Let B be a basis of an algebraic lattice. A
vector v of that lattice with coefficients (c0, . . . , cn−1) with respect to the basis B
is said to be primitive if

⊕
0⩽i<n ci · OK = OK .

This definition is correct in the sense that if a vector is primitive with respect
to a given basis of an algebraic lattice, then it is primitive for every other basis.

The algebraic minimum of an algebraic lattice L is defined as

λN
1 (L) = inf

v∈L\{0}
N (v).

The problem of finding a vector v ∈ L that is a γN approximation of λN
1 (L)

for γN ⩾ 1 is called the algebraic approxSVP problem. The algebraic minimum
can be bounded using the Euclidean minima both from below and above [24,
Lemma 2.2].

Lemma 2 ([24, Lemma 2.2]). Let K be a number field of degree d with OK

– its ring of integers. For a lattice L over OK , the following holds:

d−d/2λ1(L)d ·∆−1/2
K ⩽ λN

1 (L) ⩽ d−d/2λ1(L)d

Log-unit Lattice. An OK element of algebraic norm ±1 is called a unit. The set
of all OK units forms a multiplicative group called the unit group. In the case
of cyclotomic fields we consider its finite subgroup consisting of the cyclotomic
units. In number field of prime power conductor f , the cyclotomic group is

generated by the elements of the form: ζi−1
ζ−1 for all i coprime to d = φ(f) [32].

We define the log-embedding Log : K×
R → Rd for some k ∈ K as Log(k) =

(log |σ0(k)|, . . . , log |σd−1(k)|).
After the log-embedding all units of OK belong to the hyperplane H ⊂ Rd−1

that is orthogonal to the all-ones vector. It consists of vectors h ∈ Rd/2−1 such
that the sum of their coordinates

∑
i<d/2(h)i is equal to zero. Moreover, under

the log-embedding, units form a lattice called the log-unit lattice.

Gram-Schmidt orthogonalization. Let B ∈ Km×n be a basis of some lattice L.
The Gram matrix of B is defined as G = B† · B. It contains the information
about the Hermitian inner product between every basis vector.

The Gram Schmidt vectors {b∗
i }i for a basis B = {bi}i are defined as:

b∗
i = bi −

∑
k<i

⟨bi,b
∗
k⟩

⟨b∗
k,b

∗
k⟩
· b∗

k for 0 ⩽ i < n. (1)

Following the LLL algorithm described in [27], we set ri,i = ⟨b∗
i ,b

∗
i ⟩ ∈ KR ⊂

R+ for every i < n and µi,j =
⟨bi,b

∗
k⟩

⟨b∗
k,b

∗
k⟩

for i ⩾ j. Then, µi,j = ri,j/rj,j for i > j,

and

ri,j = ⟨bi,bj⟩ −
j−1∑
k=0

µj,k · ri,k, i > j. (2)
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As the cyclotomic fields are CM-fields, we have that Gram-Schmidt vectors are
over Kn and all µi,j , ri,j are in K. The projection of a vector v on a vector u

is defined as: πu(v) = ⟨v,u⟩
⟨u,u⟩ · u. We shall make use of basis vectors projected

orthogonally to the vector space spanned by {b∗
0, . . .b

∗
i−1}. We denote such

projection as πi(v) = v −
∑

j<i πb∗
j
(v).

Closely related to Gram-Schmidt orthogonalization is QR-decomposition: for
B ∈ Om×n

K , there exist matrices Q ∈ Om×m
K and R ∈ Om×n

K such that B = Q·R
and R is upper triangular and Q is orthonormal. The diagonal entries of the R-

factor are given by r
1/2
i,i , off-diagonal entries are

(
ri,j · r1/2j,j

)
for i > j .

We show in Algorithm 2.1, following [27, Fig. 4], how to compute the Gram-
Schmidt coefficients in a lazy manner using the Cholesky factorization algorithm.
On input, the algorithm receives the Gram matrix of a lattice basis and operates
on it in order to compute (or update) {µi,j}, {ri,j}. As proposed in [27], working
with a Gram matrix, rather than a basis, improves some of the precision issues
that arise in practice. As we are interested in making the computations practical,
our implementation follows this approach. The correctness of the algorithm relies
on Equation (2), we do not show it here but instead refer to [27, Section 3.2].
For our lazy implementation of LLL we update only the values relevant for a
certain step. This is why in Algorithm 2.1 we additionally provide on input the
positions for which we want {µi,j}, {ri,j} to be computed or updated.

Algorithm 2.1 compute GSO

Input: G ∈ Kn×n – Gram matrix of a lattice.
{µi,j}0⩽i,j<s, {ri,j}0⩽i<s,∀j – GSO coefficients

Output: {µi,j}0⩽i,j⩽e, {ri,j}0⩽i⩽e,∀j – Gram Schmidt coefficients up to position e ≥ s.

1: for i = s, . . . , e do
2: for j < i do
3: ri,j := Gi,j

4: Set ri,j := ri,j − µj,k · ri,k for k < j
5: µi,j := ri,j/rj,j

6: Set s
(i)
0 := Gi,i;

7: for 1 ⩽ j ⩽ i do
8: s

(i)
j := s

(i)
j−1 − µi,i−1 · ri,j−1

9: ri,i := s
(i)
i

10: return {µi,j}0⩽i,j⩽e, {ri,i}0⩽i⩽e

Classical LLL. We call non-algebraic LLL algorithms classical, and by classical
lattices we mean lattices defined over Rn with no underlying module structure.

A basis B ∈ Rm×n of a rank m lattice L ⊂ Rn is δ-LLL reduced if for all
0 ⩽ i < n, 0 ⩽ j < m and some 1/4 < δ < 1 the following conditions are met:

µi,j ⩽ 1/2 (Size reducedness),

δπi(bi) ⩽ πi(bi+1) (Lovász condition).
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Classical LLL reduction can be computed in time poly(n, logmaxi{∥bi∥}) [25].
As we focus on power-of-2 cyclotimic number fields, we know an orthogonal

Z-basis of OK . This basis allows us to solve CVP on OK efficiently and exactly.
Since ζi, 0 ⩽ i < d form a basis of OK and all F(ζi) have Euclidean norm

√
d,

it holds that λd(OK) =
√
d.

Lemma 3. Let K be cyclotomic field of degree d. Let L = F(OK) be lattice
obtained from OK using the coefficient embedding. For a given target vector
t ∈ SpanKR

(L) one can find vector v ∈ L such that ∥t− v∥ ⩽ d · 2d/2−1.

Proof. Notice that λi(L) ⩽
√
d ∀i. Suppose we are given a target vector t.

Babai nearest plane algorithm [2] can solve approxCVP with approximation
factor 2d/2. We can bound distance from t to L with the covering radius of L as√
d/2 ·

√
λd [26, Exercise 11]. Finally ∥t− v∥ ⩽ 2d/2 · d/2 ⩽ d · 2d/2−1. ⊓⊔

Let k be and element of OK . Let t = F(k). We define the rounding ⌊k⌉ over
OK as v ∈ K corresponding to a vector v obtained by applying Lemma 3 to
the vector t. In case of power-of-two cyclotomic fields, such rounding is a ‘usual’
coordinate-wise rounding over Z. The efficiency of this rounding is important for
the size-reduction process described in the next section.

BKZ reduction. In this work we rely on classical BKZ lattice reduction algo-
rithm [29,9,31]. We do not focus on the details of the algorithm, but use the
following facts about the quality of its output. BKZ algorithm has an important
integral parameter β ⩾ 2 called blocksize that controls the quality of the out-
put basis. BKZ algorithm outputs shorter vectors than the LLL algorithm, but
requires more time to terminate. The runtime of the BKZ algorithm is at least
exponential in β.

The quality of a reduced basis is usually studied using so-called log-profile
originally introduced by Schnorr in [30].

Definition 2. Let B ∈ Zm×n be a basis of some lattice L. The vector p =
(log(∥b∗

0∥), . . . , log(∥b∗
n−1∥)) is called the log-profile of B.

In this work we focus on a special case of lattices called q-ary. An n-dimensional
lattice L ⊂ Zn is called q-ary for some q ∈ N, q > 1 if q · Zn ⊂ L. In this work
we will consider the case of lattices that admit a basis with profile p given by

p = (

n/2︷ ︸︸ ︷
log q, . . . , log q,

n/2︷ ︸︸ ︷
0, . . . , 0).

The BKZ output quality relates the decay of pi = log(∥b⋆
i ∥) using the value

αβ ≈
(

dim(L)
2πe · det(L)

2
dim(L)

)1/(β−1)

. That is, αβ controls the slope of the log-

profile of the basis output by BKZ. The following heuristic, called Z-shape Geo-
metric Series Assumption (ZGSA), provides a fairly accurate prediction of this
log-profile for large enough β′s.
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Heuristic 1 ( [14, Heuristic 2.8]) Let B ∈ Zn×n be a basis of an n-dimensional
q-ary lattice (for n even) with its log-profile given by

p = (

n/2︷ ︸︸ ︷
log q, . . . , log q,

n/2︷ ︸︸ ︷
0, . . . , 0)

After BKZ-β reduction called on B the profile vector p′ of a resulting reduced
basis is given by

p′
i =


log q, i ⩽ n/2− n′

log q · (1− i−n/2+n′

2n′ ), n/2− n′ < i < n/2 + n′ − 1

0, i ⩾ n/2 + n′ − 1,

(3)

for n′ = (1 + ln q/ lnαβ)/2.

2.1 Algebraic Lattice Reduction

Below we give a definition of an algebraically LLL reduced basis following [24,
Definition 3.1].

Definition 3 (LLL reduced basis). A pseudobasis (B, {bi}i) of an algebraic
lattice is said to be α-LLL reduced for some real α > 1 if α · N (ri+1,i+1 · bi+1) ⩾
N (ri,i · bi).

In order to achieve the condition from Definition 3, algebraic LLL algorithm
looks at projective rank-2 submodules of B defined by the bases

Mi =

(
b∗
i

πi(bi+1)

)
, 0 ≤ i < n− 1. (4)

Recall that ri,i = ∥b∗
i ∥2KR

. The purpose of LLL is to bound the decay in the
norms of ri,i. As in the classical LLL, it is achieved by finding a short vector in
some rank-2 sublattice and replacing b∗

i with this short vector. The difference
to the classical case is that we are interested in the algebraic norm rather than
the Euclidean norm.

To study the behavior of the algebraic LLL algorithm we generalize the con-
cept of the log-profile which carries information about algebraic properties of
bases and is a measure of reducedness.

Definition 4. Let (B ∈ Km×n, {bi}i) be a pseudobasis of an algebraic lattice.

Let Q ·R be its QR-decomposition. Consider {r1/2i,i ∈ K+
R ⊂ R+}, the set of diag-

onal elements of R. The ordered set p((B, {bi}i)) = {log(|ri,i| · N (bi))/2}0⩽i<n

is called the log-profile of B.

In the case when K = Q this definition coincides with Definition 2. Notice that∑n−1
i=0 pi((B, {bi}i)) = log(N (detB) ·

∏n−1
i=0 N (bi)). Together with the condition

α · N (ri+1,i+1) ⩾ N (ri,i) this guarantees that the log-profile on an LLL reduced
basis cannot decrease too rapidly.
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2.2 NTRU Modules

The NTRU problem asks to find ϕ, g ∈ OK such that ϕ is invertible in Z[X]/(q,Xd+
1) and the coefficients of both ϕ, g are chosen uniformly at random4 from {−1, 0, 1}
under the coefficient embedding, when given

h = g · ϕ−1 mod q. (5)

Algebraic NTRU lattice. The NTRU problem can be viewed as finding a short
element in the rank-2 OK-module defined as

MNTRU =

(
1
h

)
OK ⊕

(
0
q

)
OK . (6)

In particular, we have (ϕ, g) ∈M since

(
1
h

)
ϕ+

(
0
q

)
kq =

(
ϕ
g

)
for some kq ∈ OK

that satisfies h = gϕ−1 + qkq. Furthermore, Mϕ,g =

(
ϕ
g

)
OK ⊂ MNTRU is a

so-called dense rank-1 submodule of MNTRU. It has been observed in [1] (and
further studied in [21,14]) that for sufficiently large q finding a basis for this
dense submodule is easier than the recovery of (ϕ, g). In that case for a large
enough blocksize β, the BKZ algorithm recovers a basis of the dense submodule.
When this happens, such event is called the DSD event. Precisely,

Definition 5. The dense submodule Discovery. Let B ∈ Zn×n be a Z-basis of an
NTRU module. We define the DSD as an event when BKZ-β called on B returns
a basis [M|B′] for B′,M ∈ Zn×(n/2) and a module spanned by M contains the
secret vector (f ,g) corresponding to the coefficient embedding of (ϕ, g).

The NTRUmodules viewed as a Z-lattices are q-ary. The larger q is, the easier
it is to recover Mϕ,g (for a fixed d). Note that once a basis for this dense rank-1
submodule is found, one can focus on finding (ϕ, g) in this smaller dimensional
rank-1 submodule. Experiments suggest [22] that indeed in practice the problem
of finding (ϕ, g) is not significantly harder than obtaining a basis for Mϕ,g in the
case of a sufficiently large q.

In [21] the authors combine Heuristic 1 with the Pataki-Tural lemma [28,
Lemma 1] to obtain a criteria to deduce which BKZ blocksize β is sufficient to
trigger the DSD event on NTRU lattices. A more precise statement following
the same arguments can be found in [14, Claim 2.12]:

Heuristic 2 ([14, Claim 2.12]) Let Lq be an NTRU lattice of dimension 2d
over Z with a dense submodule Lϕ,g. Under the ZGSA, BKZ-β triggers the DSD
event if:

detLϕ,g < q
n′−1

2 · α− 1
2 (n

′−1)2

β ,

where n′ = (1 + ln q/ lnαβ)/2.

4 Several versions of NTRU with varying Hamming weights of ϕ, g exist [8], our results
extend to these other versions too.
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The asymptotic analysis provided in [14] suggests that the DSD event (as per
definition above) precedes the recovery of the secret vector for log q ⩾ d2.783+o(1).
The NTRU modules with q satisfying this inequality are called overstretched.
For fixed values of detLϕ,g and d, Heuristic 2 suggests that the larger q is, the
smaller β is required to trigger the DSD event. The value of blocksize β sufficient
to trigger the DSD event is estimated as Θ̃(d/ log(q)2) where Θ̃(f(x)) means that
there exist some constant c ⩾ 0 such that f(x) = O(f(x) · | log f(x)|c).

3 Pataki-Tural Lemma for Modules

In this section we are generalising the concept of DSD events to the algebraic
setting. As in the classical case the DSD event should lead to a discovery of a
smaller rank sublattice that still contains the required short vector. This will
reduce the search problem to an easier one. We start our study of algebraic DSD
events with introducing the algebraic analogues of necessary lemmas. After that
we describe a technique that allows us to descend NTRU modules defined over
a number field K to a some proper subfield L ⊂ K in Section 3.1. In Section 3.2
we formulate an algebraic analogue of ZGSA and, after all necessary tools are
developed, generalize the definition of DSD events to the algebraic setting. All
these results combined yield an estimator for algebraic DSD.

Lemma 4. Let L be an algebraic lattice in Km given by a pseudobasis (B, {bi}i<n).
Let P be rank-k algebraic sublattice. Then there exists an ordered set {yi}i<k of
linearly independent vectors of P such that:

yk−1 ∈ Span{bi}0⩽i⩽n−1, . . . ,y0 ∈ Span{bi}0⩽i⩽n−k, and

yk−1 /∈ Span{bi}0⩽i⩽n−2, . . . ,y0 /∈ Span{bi}0⩽i⩽n−k−1.

Proof. Without loss of generality all bi ∈ Om
K and all bi ⊂ OK , otherwise we

can scale L accordingly.
Let X ∈ Km×k be a rank-k matrix with its columns xi ∈ P. Each xκ is a

OK-linear combination of bj for 0 ⩽ j < n. More precisely, for all κ < k, j < n
there exist uκ,j ∈ bj ⊂ OK such that we can write

xκ =
∑

0⩽j<n

uκ,j · bj , 0 ⩽ κ < k.

In matrix from the equation above can be written as X = B · U for X ∈
Km×k,U ∈ On×k

K ,B ∈ Km×n.
Every OK-linear combination of vectors x0, . . . ,xk−1 is also a vector from

P as it holds that ζixj ∈ P for ζ – a primitive root of K, any i ∈ Z and any
0 ≤ j ≤ k − 1. Hence L(X, {OK}k) is a free submodule of P.

Next we apply a transformation to U reminiscent to the column-echelon form
for Euclidean lattice bases. Notice that any transformation of the columns of U
given by uκ ← α · uκ + β · uℓ for some α, β ∈ OK , α ̸= 0, κ ̸= ℓ sends xκ to
α · xκ + β · xℓ accordingly. In addition, any such transformation preserves both
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the rank of X and the inclusion L(X, {OK}k) ⊂ P (since every B · uκ ∈ Om
K

remains to be a linear OK combination of vectors from P). Any permutation of
the columns preserves the module and, thus, the inclusion as well.

Now we mimic the column-echelon form computation algorithm for U in Al-
gorithm 3.1. On input U ∈ On×k

K , it returns T ∈ On×k
K such that the following

inclusions hold

L(BUT, {OK}k) ⊆ L(X, {OK}k) ⊆ P.

The routine is described in Algorithm 3.1. It takes U as an input and uses a
subroutine lne(u) = max{i | u[i] ̸= 0} that returns the index of the last nonzero
element of a vector u.

Algorithm 3.1 Echelon Form for Algebraic lattices

Input: U ∈ Km×k – a matrix for k ⩽ m of rank k.

Output: T ∈ Km×k – an upper-triangular matrix.

1: for ℓ = m− 1, . . . ,m− k do
2: Sort {u0, . . . ,uℓ−(m−k)} in non decreasing order of lne(ui).
3: if uℓ−(m−k)[ℓ] ̸= 0 then
4: for κ = ℓ− 1− (m− k), . . . , 0 do
5: Find α, β ∈ OK , α ̸= 0 such that αuκ[ℓ] + βuℓ−(m−k)[ℓ] = 0
6: uκ := α · uκ + β · uℓ−(m−k)

7: return T = (u0, . . . ,uk−1)

The algorithm iterates for ℓ = m− 1, . . . ,m− k (corresponding to rows) and
κ = ℓ−1−(m−k), . . . , 0 (corresponding to columns). At a fixed ℓ we sort the first
ℓ columns such that the indices of the last nonzero entry of consequent columns
do not decrease. Now it holds that either the new value of uℓ−(m−k)[ℓ] is nonzero,
or the entire ℓ-th row is zero. The latter situation can only occur if rankU < k
which contradicts the rank of X. By applying the transformation described in
Line 6 of Algorithm 3.1, we can ensure that for all 0 ⩽ κ < ℓ − (m − k) we
have uκ[ℓ] = 0 by solving the equation αuκ[ℓ] + βuℓ−(m−k)[ℓ] = 0 for arbitrary
α and β from OK with α ̸= 0. Once the outer loop over ℓ is finished, we obtain
an upper triangular T which can be expressed as U ·W for some W ∈ Ok×k

K

corresponding to k linear combinations of the vectors from X.

Consider the ordered set {yi = X ·Wi = B · Ti}0⩽i<k ⊂ P. Each yi =∑n−1
κ=0 ti[κ] · bκ. By construction of T last max(0, k − i − 1) coordinates of ti

are zero which implies yi =
∑n−k+i

κ=0 ti[κ] · bκ for some nonzero ti[n − k + i].
Such {yi}0⩽i<k satisfy the statement of the lemma since each yi is a OK-linear
combination of exactly n− k + i first vectors of B. ⊓⊔

Now we need a tool to transform k linearly independent vectors of a module L
into a pseudobasis that preserves the algebraic norms of Gram-Schmidt vectors.
We use the following lemma for this task.
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Lemma 5 ([16, Theorem 4]). Let L ⊂ Km be a rank-n algebraic lattice. Let
{si}i be a full rank set of vectors in L. Then there exists a pseudobasis (B, {bi})
of L such that for all i < n : bi ∈ L,bi ∈ Span{sj}j⩽i,b

∗
i = s∗i .

To prove the main theoretical result of this section we need the following
technical lemma.

Lemma 6 ([10, Theorem 1.2.35]). Let L ⊂ Km be an algebraic lattice
of rank n. Let P be its algebraic sublattice of rank k ⩽ n. Then there ex-
ist pseudobases (X, {xi}i<n) of L and ((xi), {dixi}i)n−k<i<n−1 of P for some
X ∈ Km×n, fractional ideals xi and integral ideals di such that:

L =
⊕

0⩽i<n

xi · xi and P =
⊕

n−k⩽j<n

dj · xj · xj . (7)

The Euclidean norm of a vector cannot increase after an orthogonal projec-
tion. Similarly, the algebraic norm cannot increase after the orthogonal projec-
tion over KR which is stated in the following claim.

Claim 1 For all vectors u,v ∈ Kn
R such that u ⊥ v we have N (u + v) ⩾

max{N (u),N (v)}. This also implies N (v) ⩾ N (πw(v)) for all w ∈ Kn
R .

Proof. Consider mutually orthogonal u,v ∈ Kn
R and construct the matrix B ∈

Kn×2
R with first column being u and the second one being v. Perform the QR-

factorization B = Q ·R. Now we have an upper triangular R ∈ K2×2
R . Since u ⊥

v we have that R is also diagonal. In addition N (u) = N (r0) and N (v) = N (r1)
implying N (u+v) = N (r0+r1). The latter is r0[0] ·r0[0]+r1[1] ·r1[1] ∈ K+

R – a
sum of two non-negative real numbers. Hence N (r0+ r1) ⩾ max{N (r0),N (r1)}
which gives the first part of the claim.

To prove the second part of the claim we rewrite v = πw(v) + p ·w for some
p ∈ KR. We have πw(v) ⊥ w which implies N (v) ⩾ max{N (πw(v)),N (p·w)} ⩾
N (πw(v)). ⊓⊔

For us to proceed we need to connect the Gram-Schmidt vectors of some pro-
jective lattice L(D) = πn−k(L(B)) with those of L(B). For this we prove Lemma 7.

Lemma 7. Let B ∈ Km×n and U′ ∈ Kk×k be a rank-n and rank-k matri-
ces respectively with D = πn−k([bn−k, . . . ,bn−1]) · U′. Let B∗,D∗ be a ma-
trix of Gram-Schmidt vectors for B and D respectively. Suppose also that dκ ∈
Span{b∗

j}n−k⩽j⩽n−k+κ and dκ /∈ Span{b∗
j}n−k⩽j⩽n−k+ℓ for ℓ < κ. Then d∗

κ =
u′
κ[κ] · b∗

n−k+κ.

Proof. Let {d∗
κ}0⩽κ<k be the Gram-Schmidt vectors of {dκ}0⩽κ<k. We have

Span{d∗
ι }ι<κ = Span{dι}ι<κ = Span{πn−k(bn−k+ι)}ι<κ = Span{b∗

n−k+ι}ι<κ

Since for κ < k we have d⋆
κ ∈ Span{b∗

n−k+ι}ι⩽κ is an orthogonal projection
away from Span{b∗

n−k+ι}ι<κ it lies in Span{b∗
n−k+ι}ι⩽κ ∩ Span{b∗

n−k+κ} =

Span{b∗
n−k+κ}. Then we can write d∗

κ = dκ −
∑κ−1

ι=0

(
⟨dκ,d

∗
ι ⟩

⟨d∗
ι ,d

∗
ι ⟩
· d∗

ι

)
as
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⟨dκ −
∑κ−1

ι=0

(
⟨dκ,d

∗
ι ⟩

⟨d∗
ι ,d

∗
ι ⟩
· d∗

ι

)
,b∗

n−k+κ⟩

⟨b∗
n−k+κ,b

∗
n−k+κ⟩

· b∗
n−k+κ =

⟨dκ,b
∗
n−k+κ⟩

⟨b∗
n−k+κ,b

∗
n−k+κ⟩

· b∗
n−k+κ = Since ⟨d∗

ι ,b
∗
n−k+κ⟩ = 0, 0 ≤ ι ≤ κ− 1

⟨
∑k

i=0 u
′
κ[i]πn−k(bn−k+i),b

∗
n−k+κ⟩

⟨b∗
n−k+κ,b

∗
n−k+κ⟩

· b∗
n−k+κ =

⟨
∑k

i=0

(
u′
κ[i]bn−k+i − u′

κ[i]
(∑n−k−1

j=0

⟨bn−k+i,b
∗
j ⟩

⟨b∗
j ,b

∗
j ⟩
· b∗

j

))
,b∗

n−k+κ⟩

⟨b∗
n−k+κ,b

∗
n−k+κ⟩

· b∗
n−k+κ =

⟨
∑k

i=0 u
′
κ[i]bn−k+i,b

∗
n−k+κ⟩

⟨b∗
n−k+κ,b

∗
n−k+κ⟩

· b∗
n−k+κ. Since ⟨d∗

ι ,b
∗
n−k+κ⟩ = 0, 0 ≤ ι ≤ κ− 1

Overall,

d∗
κ =
⟨
∑k

i=0 u
′
κ[i]bn−k+i,b

∗
n−k+κ⟩

⟨b∗
n−k+κ,b

∗
n−k+κ⟩

· b∗
n−k+κ. (8)

Since ⟨u′
κ[i]bn−k+i,b

∗
n−k+κ⟩ is non-zero only for i = κ, Equation (8) implies

d∗
κ = u′

κ[κ] · b∗
n−k+κ. ⊓⊔

The following result is an analogue of [28, Lemma 1] generalized to the setting
of algebraic lattices. In the classical setting it shows that the determinant of
any rank-k lattice P of a lattice L cannot exceed the product of k least norms
of Gram-Schmidt vectors of any basis of L. To prove the analogous result for
the case when P and L are algebraic, we first consider an arbitrary submodule
P ⊂ L and construct its overlattice L′ that is “primitive”, that is all ideals of the
pseudobasis of L′ satisfy dj = OK for n− k ⩽ j < n in the context of Lemma 6.
This is done to reduce an amount of the ideals considered during the proof to
simplify it. We then consider the projection πn−k(L′) with respect to a fixed
basis of L and deduce relations between the pseudobases of each member of the
chain L ⊇ L′ ⊇ P and πn−k(L′). These inclusions enable us to argue on the
lower bound on N (detP).

Theorem 1. Let (B, {bi}i) be a pseudobasis of an algebraic lattice L and B∗

its Gram-Schmidt vectors. Let P be a rank k algebraic sublattice of L. Then

N (detP) ⩾ min
J⊂{0,...,n−1}

|J|=k

∏
k∈J

N (b∗
j ) · N (bi).

Proof. For L and its submodule P, there exist pseudobases (X, {xi}i<n) of L
and ((xj)j , {dj · xj}j)n−k⩽j<n of P as in Lemma 6. Without loss of generality
we can assume that all xi are integral. Since all dj ⊂ OK , we have

P ⊂
⊕

n−k⩽j<n

xj · xi := L′.
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The latter is a sublattice of L and an overlattice for P, so proving the statement
for such L′ suffices.

Invoking Lemma 4 on L and its sublattice L′, we obtain a set {vκ}κ<k of
k linearly independent vectors of L′ such that vκ ∈ Span{bi}0⩽i⩽n−k+κ and
vκ /∈ Span{bi}0⩽i⩽n−k+κ−1 for all 0 ⩽ κ < k.

We then apply Lemma 5 to L′ and {vκ}κ<k to obtain a pseudobasis (C, (cκ))
of L′ such that

cκ ∈ Span{vj}j⩽κ ⊆ Span{bj}j⩽n−k+κ; cκ /∈ Span{vj}j<κ ⊆ Span{bj}j<n−k+κ

(9)

Since both X and B define the same module L, we have X = B ·W for
some W ∈ Kn×n. Decompose W = [WL |WR], where WR ∈ Kn×k consists of
the last k columns of W. The last k columns of X, denoted by XR can be now
expressed as XR = B ·WR, hence ((XR, xn−k+κ)κ<k) is a pseudobasis of L′.

Similarly, consider M ∈ Kk×k such that XR ·M = C. Since (C, {cκ}κ) and
(XR, (xn−k+κ)) are pseudobases of the same lattice L′, we have that M is a
transformation matrix and hence mi[ℓ] ∈ xℓ · c−1

i by Proposition 1. It holds that

B ·WR ·M = XR ·M = C. (10)

Consider the entries ui[j] of U := WR ·M ∈ Kn×k. We want to show that

ui[j] ∈ bjc
−1
i . Indeed, we have that ui[j] =

∑k−1
ℓ=0 wℓ[j] ·mi[ℓ]. For ℓ < n the fact

thatW is a transformation matrix implies that we have inclusionswℓ[j] ∈ bj ·x−1
ℓ

and mi[ℓ] ∈ xℓ · c−1
i , again by Proposition 1. From here, wℓ[j] ·mi[ℓ] ∈ bj · c−1

i

for 0 ⩽ i < k and 0 ⩽ j < n. Hence,

ui[j] ∈ bjc
−1
i for all 0 ⩽ i < κ, 0 ⩽ j < n. (11)

Thanks to Equation (10), we have that cκ =
∑n−1

j=0 uκ[j] · bj for the afore-

mentioned U ∈ Kn×κ. For j > κ the value of uκ[j] · bj is zero since otherwise
the corresponding cκ would not be in Span{vj}j⩽κ. Thus, we can rewrite

cκ =

n−k+κ∑
j=0

uκ[j] · bj for uκ[j] ∈ bj · c−1
κ and un−k+κ[j] ̸= 0,

where the last condition is due to cκ /∈ Span{vj}j<κ.

Now let us consider the projected lattice πn−k(L′), where πn−k projects or-
thogonally to Span{b∗

i }i⩽n−k−1. Then for 0 ⩽ κ < k the pseudobasis of πn−k(L′)
is given by (D, (cκ)) = ((πn−k(cκ))κ, (cκ)). Since the projections πn−k(bi) are
zero for i < n−k we can writeD as πn−k([bn−k, . . . ,bn−1])·U′ whereU′ ∈ Kk×k
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consists of last k rows of U. Hence (πn−k(cκ))κ can be explicitly written as:

d0 = u′
0[n− k] · πn−k(bn−k),

d1 = u′
1[n− k] · πn−k(bn−k) + u1[n− k + 1] · πn−k(bn−k+1),

...

dk−1 =

k−1∑
j=0

u′
k−1[n− k + j] · πn−k(bn−k+j)

for dκ being the columns of D From these last equations it follows that

d∗
κ ∈ Spanπn−k{b∗

i }n−k⩽i⩽n−k+κ = Span{b∗
n−k+ι}0⩽ι⩽κ (12)

d∗
κ /∈ Spanπn−k{b∗

i }n−k⩽i⩽n−k−1 = Span{b∗
n−k+ι}0⩽ι⩽κ−1 (13)

Thus, the rank of U′ is k. Hence, we can apply Lemma 7 to B ∈ Km×n,U′ ∈
Kk×k, and D, which yields

d∗
κ = u′

κ[κ] · b∗
n−k+κ. (14)

Next we want to prove that ∀κ < k : N (c∗κ) ⩾ N (d∗
κ) Notice that

c∗κ,d
∗
κ ∈ Span{b∗

j}0⩽j⩽n−k+κ ∀κ < k, (15)

where first inclusion is due to Equation (9) and the second is by Equation (12).
By definition, dκ = πn−k(cκ). Due to Equations (12) to (15)

u′
κ[κ] · b∗

n−k+κ = d∗
κ = πn−k+κ(dκ) = πn−k+κ(πn−k(cκ)) = πn−k+κ(cκ).

The latter is πn−k+κ(c
∗
κ) + πn−k+κ

(∑κ−1
ι=0

⟨cκ,c
∗
ι ⟩

⟨c∗
ι ,c

∗
ι ⟩
· c∗ι

)
where the second sum-

mand is zero by Equation (15). Thus, c∗κ = πn−k+κ(c
∗
κ) + w, where w ∈

Span{b∗
i }0⩽i<n−k+κ. Claim 1 applied to c∗κ = d∗

κ +w gives us N (c∗κ) ⩾ N (d∗
κ).

Combining the definition of L′ = L(D, {cκ}κ<k) and Equation (14) we get

detπn−k(L′) =

k−1∏
κ=0

N (d∗
κ · cκ) =

k−1∏
κ=0

N (b∗
n−k+κ · u′

κ[κ] · cκ).

Recall that all uκ[n− k + κ] ∈ bn−k+κ · c−1
κ as shown in Equation (11). Then

k−1∏
κ=0

N (b∗
n−k+κ · uκ[n− k + κ] · cκ) ⩾

k−1∏
κ=0

N (b∗
n−k+κ) · N (bn−k+κ · c−1

κ · cκ);

detπn−k(L′) ⩾
k−1∏
κ=0

N (b∗
n−k+κ) ·N (bn−k+κ) ⩾ min

J⊂{0,...,n−1}
|J|=k

∏
j∈J

N (b∗
j ) ·N (bj).
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This implies det(L′) =
∏k−1

κ=0N (c∗κ)·N (cκ) ⩾
∏k−1

κ=0N (d∗
κ)·N (cκ) = detπn−k(L′).

Hence detL′ ⩾ detπn−k(L′). Summing up, the following chain of inequalities
proves the result:

detP ⩾ detL′ ⩾ det(πn−k(L′)) ⩾ min
J⊂{0,...,n−1}

|J|=k

∏
k∈J

N (b∗
j ) · N (bi).

⊓⊔

3.1 Descending to Subfields

The problem of finding short vectors (in the algebraic norm) in a rank-2 module
over a number field K can be reduced to the problem of finding a short vector
in a rank-2d′ module defined over a subfield L ⊂ K with [K : L] = d′ and ζ ∈ L
such that K = L[ζ]. We would make use of this method while studying the
behaviour of our algebraic lattice reduction algorithm on the NTRU modules
defined in Section 2.2.

Let K and L ⊂ K be two number fields of a relative degree d′ = [K : L].
Concretely, we have:

OK = OL ⊕ ζOL ⊕ . . .⊕ ζd
′−1OL. (16)

As a consequence, the module M = b0 · OK + b1 · OK decomposes over OL as:(
b0 · OL ⊕ ζb0 · OL ⊕ . . .⊕ ζd

′−1b0 · OK

)
⊕(

b1 · OL ⊕ ζb1 · OL ⊕ . . .⊕ ζd
′−1b1 · OK

)
,

yielding a basis of M viewed as a free OL-module of rank 2d′. We refer to this
process as descending (into the subfield L).

In order to descend from fields and their subfields we define the descend
procedure. It represents a rank-n OK module given by matrix B ∈ Km×n as
a rank-(n · d′) module over subfield L with a relative degree [K : L]. It re-
turns the md′ × nd′ matrix over L representing the basis of the initial module
over the subfield L up to a certain permutation of the coordinates. To perform
the opposite operation, called ascend, we proceed as follows. We combine the
coefficients of a 2d′-dimensional vector v ∈ O2·d′

L into a 2-dimensional vector
(
∑

i<d′ ζi · (v)i, (
∑

i<d′ ζi · (v)d′+i)) ∈M ⊂ K2.
Formally, we define the following:

1. The Descendm(L,B) (where the subscript m stands for “matrix”) function
represents rank-n OK module given by matrix B ∈ Km×n as a rank n · d′
module over subfield L with a relative degree [K : L]. It returns the md′×nd′
matrix over L representing the basis of the initial module over the subfield
L up to a certain permutation of the coordinates.

2. The Ascendv(K,v) (where the subscript v stands for “vector”) function rep-
resents d′ · n dimensional vector v over field L as n-dimensional vector over
K for the small degree [K : L].
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3. The Ascendm(K,B) function receives the m′×nd′ matrix B over field L (or,
equivalently, a list of n′ ∈ N vectors of dimension md′ over L) and applies
Ascendv(K,v) for every vector in it.

Invoking, e.g., a BKZ reduction algorithm with the same blocksize on a lattice
of halved dimension is significantly faster.

However, descending into subfields has limitations. In particular, finding a
small norm element in a subfield, does not guarantee that its ascend will preserve

relative smallness. Concretely, let L be a subfield of K and v ∈ L
[K:L]

be short.
We ascend v to K obtaining an element v ∈ K. The relation between the alge-
braic norm (over K) of v and the algebraic norm (over L) of the corresponding
vector v is given by the inequality from Lemma 1. Thus, minimizing NL/Q(v)
does not necessarily entail minimizing NK/Q(v). Vectors v that are the shortest
possible in the algebraic norm, will correspond to somewhat short elements v,
but not necessarily the shortest possible.

3.2 Predicting DSD Events

All NTRU modules always admit a free basis. Let BNTRU ∈ K2×2 be an OK-
basis of an NTRU module defined over a power-of-two cyclotomic field L ⊂ K.
As discussed in Section 3.1 we can descend a basis of any free module to some
subfield of K. Let B be a basis of an NTRU module of rank n = 2 · [K : L]
over a number field L ⊂ K for which one has a small index n′ = [K : L].
We would like to deduce how the log-profile p := (log(N (ri,i) · N (bi)))i<n of
an LLL reduced basis of L(B) will look like. We heuristically assume that the
α-LLL reduced basis of L(B) admits a profile of a special form. There are two
horizontal regions at the beginning and the end of the profile and a central line
connecting those two flat regions. The slope of this line is controlled by α. We
introduce an algebraic analogue of Heuristic 1 as follows.

Heuristic 3 (AZGSA) Let L be a number field of degree d. Let B be an α-
LLL reduced OL basis of a rank-n NTRU module for some α > 0. Let p be a
log-profile of B. Then we have:

pi =


d log q, i ⩽ n/2− n′

d log q · (1− i−n/2+n′

2n′ ), n/2− n′ < i < n/2 + n′ − 1

0, i ⩾ n/2 + n′ − 1,

(17)

for n′ = 1/2 + d log d/ logα.

For fixed n, d, the larger log q is, the greater minJ⊂{0,...,n−1}:|J|=n/2

∑
j∈J pj

is. For sufficiently large log q the AZGSA would contradict Theorem 1. This
observation allows us to introduce the algebraic Dense Submodule Discovery
event as follows.

Definition 6 (Algebraic DSD event). Let B ∈ On×n
L be an OL-basis for

some NTRU module for an even n ∈ N. We define the DSD as an event
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when an algebraic lattice reduction algorithm called on B returns a pseudobasis

([M|B′], {mi}i<n/2 ∪ {b′i}n/2⩽i<n) for B′,M ∈ On×(n/2)
L and a module spanned

by (M, {mi}i<n/2)) contains the secret vector (f ,g).

As in the classical case we postulate that for reasonably large modulus q the
DSD event occurs meaning that we find a rank-(n/2) submodule that contains
(f ,g). For simplicity we introduce the heuristic predicting the conditions for the
algebraic LLL algorithm to trigger the DSD event assuming that the output of
the algorithm is a free basis meaning all mi = bj = OK .

Heuristic 4 (Condition for algebraic DSD event) Let B be an α-LLL re-
duced basis of a rank-n algebraic NTRU module over a power-of-2 cyclotomic
field L for some α > 0. Then B contains a basis of a dense rank-(n/2) sublattice
L′ containing (f ,g) as soon as:

logN (det(L′)) <

(
n′ − 1

2

)
log qdegL − (n′ − 1)2

2
logα (18)

for n′ = 1/2 + d log d/ logα.

In order to make an algebraic DSD event estimator, we rewrite Equation (18)

as log q > 2 logN (det(L))+(n′−1)2 logα
(n′−1) degL . This view enables us to say, for given NTRU

parameters d, n and a parameter α, for which log q the DSD event occurs.

4 Algebraic LLL

To confirm our theoretical result on the DSD event prediction we implement a
variant of an algebraic LLL from [24] restricted to the case of free bases (that is
all ideals of a pseudobasis are OK).

4.1 Size reduction

Following [24, Definition 3.5], we define a size reduced basis for the case of
power-of-2 cyclotomic fields.

Definition 7 (Size reduction). Let K be a power-of-2 cyclotomic field of
degree d. A free basis B = [bi]i<n ∈ Km×n is said to be size reduced if for all
i > 0 and j < i:

||ri,j/rj,j || ⩽ d/2, (19)

where ri,j are defined as in Equation (2).
The size reduction process given in Algorithm 4.1 is an adaptation of the

L2 reduction from [27] to the algebraic setting. At the i-th iteration, size re-
duction considers the i-th basis vector and subtracts ⌊µi,j⌉ · bj from it for all
j = i− 1, . . . , 0 for ⌊µi,j⌉ – the OK rounding of µi,j as defined in Section 2. The
rounding procedure is crucial because we can only subtract an OK-multiple of
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a basis vector from a given one in order to preserve the lattice. The routine is
implemented in Algorithm 4.1.

Following [27], Algorithm 4.1 does not operate on the basis vectors directly.
Instead, it updates a Gram matrix G = B† ·B, which can be computed exactly,
thus improving the accuracy of µ’s and r’s. The algorithm returns a transforma-
tion matrix U such that B ·U is size reduced. As in Algorithm 2.1, we might be
interested in size reducing not the whole basis but some if its vectors.

Algorithm 4.1 size reduce

Input: U ∈ Kn×n – an unimodular matrix
G ∈ Kn×n – Gram matrix
{µi,j}0⩽i,j<n, {ri,j}0⩽i<n,∀j – Gram Schmidt coefficients;
s, e – positions to start at and to end size reduction before.

Output: unimodular transformation U such that B ·U is size reduced;

G = B† ·B - corresponding Gram matrix;
{µi,j}0⩽i,j⩽e, {ri,j}0⩽i⩽e,∀j – Gram Schmidt coefficients of B ·U

1: for s ⩽ i < e do
2: for j := i− 1, . . . , 0 do
3: δ := ⌊µi,j⌉
4: µi,l := µi,l − δ for l ⩽ j
5: ri,l := ri,l − δ · rl,l for l ⩽ j
6: Gi,i := Gi,i − δGi,j − δ̄Gi,j + δδ̄Gj,j

7: Gi,ℓ := Gi,ℓ −Gj,ℓ · δ for ℓ < i; Gκ,i := Gκ,i −Gκ,j · δ for i < κ < n
8: ui := ui − δ · uj

9: return U,G, {µi,j}0⩽i,j⩽e, {ri,j}0⩽i⩽e,∀j

Theorem 2. On input G = B† · B and {µi,j}0⩽i,j<n, {ri,j}0⩽i<n,∀j, Algo-
rithm 4.1 returns a transformation matrix U such that B ·U is size reduced. It
also returns the Gram matrix of B·U, together with {µi,j}0⩽i,j<n, {ri,j}0⩽i<n,∀j
in time polynomial in the bitsize of B, rank n and log |∆K |.

Proof. Let C = B · U denote the basis after the execution of Algorithm 4.1.
The matrix U is unimodular by construction: it is upper triangular with 1-s on
the diagonal as its columns ui’s get updated only with uj for j < i during the
execution of the algorithm. Thus, C is a basis of the same module.

In our considered case of power-of-2 cyclotomic fields, we have that the Eu-
clidean norm of µi,j − ⌊µi,j⌉ under the coefficient embedding is no larger than√
d/2, and, hence, under the canonical embedding that scales every vector by a

factor of
√
d, it is no larger than d/2. This shows that the output values µi,j and

ri,j satisfy the size reduction condition.
In Line 6 we update ri,j := ri,j−⌊µi,j⌉ ·rj,j accordingly. Thus, each iteration

of the inner loop corresponds to the following transformation on the input basis:
bi := bi − δbj . What remains is to update the Gram matrix G. Recall that
Gi,j = ⟨bi,bj⟩ andGj,i = Gi,j . After the above transformation, ⟨bi,bi⟩ becomes
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⟨bi ,bi− δbj⟩− δ⟨bj ,bi− δbj⟩ = ⟨bi ,bj⟩− δ̄⟨bi ,bj⟩− δ⟨bj ,bi⟩− δδ̄⟨bj ,bj⟩ =
Gi,j − δ̄ · Gi,j − δ · Gi,j − δδ̄ · Gj,j . This validates Line 7 of Algorithm 4.1.
Similarly, the inner product ⟨bi ,bj⟩ becomes ⟨bi ,bj⟩−δ⟨bj ,bj⟩ = Gi,j− δ̄Gj,j

for i ̸= j. In particular, the change of the i-th basis vector modifies Gκ,i and
Gℓ,i for i < κ < n, 0 ≤ ℓ < i. These operations (Lines 7-8) as well as the update
of ui (Line 9) are performed in time polynomial in the bitsize of B, n, d. ⊓⊔

4.2 Unit reduction

In order to shorten projected basis vectors in their Euclidean norm, e.g., reduce
the diagonal elements ri,i, we can multiply ri,i’s by a unit. This step is specific
for the algebraic lattice reduction because in the classical case for lattices over
Q, the only units are ±1 and multiplying by any of them does not change the
Euclidean norm of a vector.

Definition 8 (Unit reduction). A free basis B = [bi]i<n ∈ Km×n is said to
be unit reduced if for all 0 ⩽ i < n:

||ri,i||1/2 ⩽ 2O(f log f)N (ri,i)
1/d, (20)

where f is conductor of K and d = φ(f) is the degree of K.

Algorithm 4.2 implements unit reduction. In particular, ri,i is replaced by

uri,i such that ||uri,i|| ⩽ ||ri,i||. This is done by mapping r
1/2
i,i to the Log-unit

lattice 5 and solving the CVP problem with respect to the obtained vector in
that lattice. The routine implemented in Algorithm 4.2 follows the paradigm of
updating the transformation matrix and the Gram matrix (instead of the basis).
It returns a unimodular transformation matrix U and the updated Gram matrix
G. We might be interested in reducing only some of the ri,i’s, hence we specify
their indices in the input to the algorithm.

To argue on the complexity of Algorithm 4.2, we need the following lemma,
which is an adaptation of [19, Theorem 1].

Lemma 8 (Adaptation of [19, Theorem 1]). Let K be a cyclotomic field
with conductor f and degree d. Let k be an KR element. We can find an OK-unit
u such that: ||u · k|| ⩽ 2O(f log f)N (k)1/d in time polynomial in log |∆K | and the
bitsize of k.

The approach proposed by Kirchner, Espitau and Fourque is similar to the
one described in [12]. Using the log-embedding we can map k to the log-unit hy-
perplane and solve CVP on the log-unit lattice. Dividing k by the found unit gives
the result. The next theorem that concludes on the runtime of Algorithm 4.2,
follows from Lemma 8.

Theorem 3. On input the Gram matrix G of a basis B, and {ri,j}0⩽i<n,∀j, Al-
gorithm 4.2 returns a transformation matrix U such that BU is unit reduced,
and a Gram matrix of this new basis. The algorithm terminates in time polyno-
mial in the bitsize of B, log |∆K |, and n.
5 Note that one can map ri,i to the Log-unit lattice’s span and then divide all coordi-
nates by 2, which is equivalent to taking the square root.
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Algorithm 4.2 unit reduce

Input: U ∈ Kn×n – an unimodular matrix
G ∈ Kn×n – Gram matrix
{µi,j}0⩽i,j⩽e, {ri,j}0⩽i<n – Gram Schmidt coefficients of a lattice;
s, e – start and end indices.

Output: unimodular transformation U such that B ·U is unit reduced;

G = B† ·B – Gram matrix of returned basis
{µi,j}0⩽i,j⩽e, {ri,j}0⩽i,j⩽e - GSO coefficients corresponding to B ·U

1: for s ⩽ i ⩽ e do
2: Find unit u that unit reduces r

1/2
i,i . ▷ CVP on the Log-unit lattice

3: ui := ui · u
4: Gi,ℓ := Gi,ℓ · u for ℓ ⩽ i; Gκ,i := Gκ,i · u for i ⩽ κ < n
5: for 0 ⩽ j < i do
6: ri,j := ri,j · u; µi,j := µi,j · u
7: ri,i := ri,i · u
8: return U,G, {µi,j}0⩽i,j⩽e, {ri,j}0⩽i,j⩽e

4.3 The main LLL routine

Inserting a vector in an algebraic lattice. LLL starts by considering pro-
jective lattices of the form πi([bi,bi+1]). It finds a short (in the algebraic norm)
vector s′ in such 2-dimensional lattice and inserts s into the initial lattice basis.
Such insertions take place until the basis is LLL reduced as per Definition 3.
Each of these insertions is equivalent to applying a transformation given by a
unimodular matrix W ∈ O2×2

K such that w0 · [bi,bi+1] = w0bi + w1 · bi+1 = s
where πi(s) ∈ L(πi([bi,bi+1])), to [bi,bi+1].

Given w0 and w1, the construction of a such W boils down to solving the
Bézout equation µw0 + νw1 = 1, i.e., finding µ, ν for given w0, w1. Given two
coprime ideals a = w0 ·OK and b = w1 ·OK , there exist two elements a ∈ a, b ∈ b
such that a+ b = 1 [10, Proposition 1.3.1] which gives a solution to the Bézout
equation.

Recall that we define the primitivity of v with coefficients (c0, . . . , cn−1)
w.r.t. a basis of L ⊂ Kn as (see Definition 1): v is primitive if and only if∑

i<n ci ·OK = OK . The rationale behind this definition follows from the Laplace
expansion formula which suggests that the determinant of any n×n unimodular
matrix with its first row equal to (c0, . . . , cn−1) lies in

∑
i<n ci · OK . If this sum

is not OK , it is impossible to obtain a unimodular matrix with (c0, . . . , cn−1)
being its first row. Since we need such unimodular matrix to update a basis,
this appears to be an issue. Later in Section 5 we explain how we can leverage
this primitivity condition, for this section we assume that we can always find a
primitive vector and, thus, to construct the corresponding Bézout equation as
explained later in this section.

In order to insert a short primitive vector we use the subroutine called
BezoutTransform introduced in [19] that solves Bézout equations over K.
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Assume, we found a short vector with coefficient vector w = (w0, w1)
T (we

will be inserting only in rank-2 modules, hence the dimension of w). The pur-
pose of BezTransform is to find ν, µ ∈ OK such that the following matrix is
unimodular:

W =

(
w0 ν
w1 µ

)
∈ O2×2

K . (21)

We make use of such W to insert a vector with a short projection onto πi(s) ∈
L(πi([bi,bi+1])) into the basis of the original lattice.

Given w0 and w1, the construction of W boils down to solving the Bézout
equation µwo+νw1 = 1. The difference between our approach described in Algo-
rithm 4.3 and the one from [19] consists in the fact that we use [10, Proposition
1.3.1] to solve the Bézout equation. The algorithm from [10, Proposition 1.3.1]
requires more time in practice than the one from [19], but it improves the quality
of the output. Moreover, in Section 5 we show how to also improve the efficiency
of this algorithm. The following lemma due to Cohen allows us to find µ, ν
efficiently and is the core of Algorithm 4.3.

Lemma 9 ([10, Proposition 1.3.1]). Given two coprime ideals a and b, one
can find in time polynomial in bitsize of a, b and in log |∆K | elements a ∈ a, b ∈ b
such that a+ b = 1.

Proof. Apply [10, Algorithm 1.3.2] to find such a and b in time polynomial in
log |∆K | and the bitsizes of a and b. To argue on the bitsizes of a and b, we can
shorten them using [10, Algorithm 1.4.13] and obtain the bound of 2d · λ1(ab)
on the Euclidean norm of a. Since b = 1− a, the norm of b is also bounded. The
runtime of [10, Algorithm 1.4.13] is polynomial in log |∆K | and the bitsize of a
and b as it computes a Z basis of an ideal and then LLL reduces it. ⊓⊔

Suppose we found a short vector v = M · (w0, w1)
T in a 2-dimensional lattice

with basis M and want to insert v into M . To do so we use Lemma 9 to complete
(w0, w1)

T into a unimodular matrix W and apply the resulting transformation
to M. It makes v to be the first vector in the basis. Moreover, it follows from
the proof of Lemma 9 that the norm of the second new basis vector will be
polynomially bounded in the bitsize of the original basis M .

Algorithm 4.3 BezoutTransform

Input: (w0, w1) over OK such that w0 · OK + w1 · OK = OK .
Output: unimodular matrix with first vector (w0, w1)

T

1: a, b := w0 · OK , w1OK

2: Using Lemma 9 obtain a ∈ a, b ∈ b such that a+ b = 1.

3: return

(
w0 −b/w1

w1 a/w0

)
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Guarantees on Bézout solutions The routine given in Algorithm 4.3 finds coeffi-
cients µ and ν that solve a Bézout equation Equation (21) but does not guarantee
that the obtained solution is (somewhat) short. As this solution represents the
coefficients of the second inserted vector in a rank-2 projective lattice, we are in-
terested in making this solution short. To do so we introduce two improvements
to Algorithm 4.3.

Let us first describe how we make a solution shorter. Let a = w0 · OK , b =
w1 · OK be two coprime ideals, and let a ∈ a and b ∈ b such that a + b = 1
and a = µ · w0, b = ν · w1 be the output of Algorithm 4.3. We then search
for t ∈ ab such that a − t is small w.r.t. the Euclidean norm. Since b = 1 − a,
we have that b + t will be small as well. Notice that a − t ∈ a, b + t ∈ b and
(a− t) + (b+ t) = 1. We set t = ⌊ a

w0w1
⌉ · w0w1 and therefore bounding ||a− t||

from above as d/2 · ||w0 · w1||∞ due to the triangular inequality.

While solving the Bézout equation can be done in time polynomial in the bit-
size of the equation’s coefficients, this algorithm ceases to perform in reasonable
time starting at the 512-th cyclotomic field on. The second enhancement reduces
the problem of solving a Bézout equation into a subfield, where the answer can
be found faster. Following [19], we descend the problem into a subfield, solve it
there, and reduce the answer as shown above.

For example, solving a Bézout equation over 256th cyclotomic field may re-
quire several minutes with Pari GP’s idealaddtoone, our approach solves it in
seconds. The runtime of our approach also scales better with the bitsize of the
coefficients of a Bézout equation.

Algorithm 4.4 Improved BezTransform

Input: (w0, w1) over OK such that w0 · OK + w1 · OK = OK

d′ – threshold dimension
Output: unimodular matrix with first vector (w0, w1)

1: a, b := w0 · OK , w1OK

2: if deg(K) > d′ then
3: Set L := Q[ζ2] ⊂ K = Q[ζ] – an index-2 subfield of K.
4: ν′, µ′ :=

(
Improved BezTransform(NK/L(w0),NK/L(w1))

)
1

▷ Use the first row
of the output

5: µ := w−1
0 NK/L(w0) · µ′; ν := w−1

1 NK/L(w1) · ν′

6: a := µ · w0; b := ν · w1

7: else
8: Using Lemma 9 obtain a ∈ a, b ∈ b such that a+ b = 1.

9: t := ⌊ a
w0·w1

⌉ · w0 · w1

10: a := a− t; b := b+ t

11: return

(
w0 −b/w1

w1 a/w0

)
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4.4 Algebraic LLL Algorithm

Let us now summarize the steps of the algebraic LLL given in Algorithm 4.5.
To keep the bitsizes of basis vectors polynomially bounded, we call size and unit
reduction (Algorithm 4.1 and Algorithm 4.2). This ensures that we can efficiently
compute the norms and check the condition from Definition 3. Next we consider
the i-th projective sublattice Mi for the least i that violates Definition 3, and
search for a short primitive vector in this sublattice. Once such vector is found,
we insert it using Algorithm 4.3. The process continues until the basis is LLL
reduced. We give more details on how to find a short vector in Mi later in this
section, for now we assume access to algebraic approxSVP oracle that returns
short primitive vectors.

Under this assumption, the complexity analysis of LLL from [24] carries over
to Algorithm 4.5. The only significant difference between our Algorithm 4.5
and [24, Algorithm 3.4] is in the way we perform the insertion. While we rely
on solving Bézout equation, Lee et al. [24, Lemma 2.8] follow a more general
approach of converting a short generating set of a module to its pseudobasis
preserving the shortness. As we chose to work with bases rather than pseu-
dobases, Algorithm 4.3 better fits out design choice.

Algorithm 4.5 BasicLLL

Input: B ∈ Km×n – basis matrix of a free module,
G – Gram matrix of B,

α ∈ R : α > γ2d
N 2d∆K – constant defining the quality of the reduction.

Output: unimodular transform U such that B ·U is LLL-reduced.

1: U := Idn

2: while index i exists in Line 5 do
3: U,G, {µi,j}, {ri,j} := size reduce(U,G, {µi,j}, {ri,j}, 0, n− 1)
4: U,G, {µi,j}, {ri,j} := unit reduce(U,G, {µi,j}, {ri,j}, 0, n− 1)
5: Find minimal i such that α · N (ri+1,i+1) ⩽ N (ri,i)
6: Compute Gram-Schmidt vectors {b∗

κ}κ⩽i

7: Find a short primitive vector v in Mi = [b∗
i , πi(bi+1)]

8: (w0, w1)
T := M−1 · v

9: W := BezTransform(w0, w1) ▷ Algorithm 4.3
10: Apply W to i-th and (i+ 1)-th columns of U and update G accordingly.

11: return U

Theorem 4 (Adapted from [24, Theorem 3.4]). Let A be an oracle that
solves algebraic approxSVP with approximation factor γN . Then, for a cyclo-
tomic power-of-2 field K of degree d, Algorithm 4.5 given on input a real α >
γ2d
N 2d∆K ,a basis B ∈ Km×n of a free OK module, its Gram matrix G = B† ·B,

and an access to A, returns a unimodular U such that BU is an LLL reduced
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basis of L(B). It requires

poly

(
n,m, log |∆k|,

1

logα · (γ2d
N 2d|∆K |)

)
· log maxiN (ri,i)

miniN (ri,i)

number of calls to A and terminates in

poly

(
log |∆k|,bitsize(B),

1

logα · (γ2d
N 2d|∆K |)

)
time.

Proof. The reduction process starts with the size reduction Algorithm 4.1 and
the unit reduction Algorithm 4.2. As proven in Theorem 2 and Theorem 3, they
preserve the module and terminate in time poly(n, log |∆k|,bitsize(B)).

Suppose that the algebraic approxSVP oracle A is invoked on the projective
lattice Mi starting at some index i < n− 1, and it returns a primitive vector v.
Then Algorithm 4.3, given the coordinates of this short vector w.r.t. the basis
M of the projective lattice, outputs a unimodular matrix W ∈ O2×2

K such that
the first vector in M ·W is v. Applying W to the i-th and (i + 1)-th vectors
of B we obtain the vector v′ ∈ L such that its projection orthogonally to the
span{bj}j<i is v. This operation preserves the module and Lemma 9 guarantees
that the new (i+ 1)-th basis vector is polynomially bounded in its bitsize.

What remains to show is an upper bound on the number of the while-loop
iterations in Algorithm 4.5. For this we refer the reader to the proof of [24,
Theorem 3.4] as it follows exactly the same arguments. ⊓⊔

Algebraic approxSVP. The final ingredient required to complete the alge-
braic LLL algorithm is the algebraic approxSVP oracle called in Line 7 of Algo-
rithm 4.5. To our knowledge, there is only one specialized algebraic approxSVP
oracle introduced in [24] (and improved in [13]). In the former work,the authors
propose an explicit algorithm to instantiate such an oracle. While being appli-
cable to any rank-2 module, it requires costly precomputations in lattices of
high dimensions and class group computations, which, given the state-of-the-art
implementations, are too prohibitive in practice.

As we aim for a more practical approxSVP oracle, we sacrifice on generality
in the sense that we do not have full control on algebraic norms of the returned
vectors. In our implementation, we instantiate our algebraic approxSVP oracle
with a classical BKZ reduction by mapping the bases of projective rank-2 mod-
ules Mi’s defined in Equation (4) to R2d. As this is not an authentic algebraic
approxSVP oracle, we cannot guarantee that it finds short algebraic norm vec-
tors in Mi’s. However, in practice small vectors in Euclidean norms tend to have
small algebraic norms as well. Furthermore, as BKZ returns many short vectors
(e.g., a basis of somewhat short vectors), we have many candidates for insertion.
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4.5 Output quality of algebraic LLL

Analogously to [24, Lemma 3.2], we can bound the algebraic norm of the first
vector of an LLL reduced basis. For that, we need the following lemma.

Lemma 10 ([24, Lemma 2.6] ). Let M be a rank-n algebraic module and let
L be the corresponding algebraic lattice. Consider GSO coefficients ri,i, i < n of
M . Then λN

1 (L) ⩾ mini<n(N (ri,i)).

The next lemma is an adaptation of the similar result from [24, Lemma 3.2]
to the case of the free modules over the power-of-2 cyclotomic fields.

Lemma 11 (Adapted from [24, Lemma 3.2]). Let B be an algebraic LLL
reduced free basis of L – a free OK module of rank n. Then

N (b0) ⩽ αn−1 · λN
1 (L).

In addition, if α = (1 + ε) γ2d
N 2d|∆K | for some ε > 0, and d –the degree of K,

we have that:
λ1(b0 · OK)

λ1(L)
⩽ α

n−1
d · |∆K |1/(2d).

Proof. Recall Lemma 10 which suggests that λN
1 (L) ⩾ miniN (ri,i). Combining

this fact with the definition of the LLL reducedness we have the first claim.
We can find a primitive vector s with approximation factor γN for every

projective module Mi obtained during the execution of Algorithm 4.5. Such
vectors can be inserted into the basis since they are primitive.

By Lemma 2 applied to the rank-1 module spanned by b0, we have that
λ1(b0 ·OK) ⩽

√
d · (λN

1 (b0 ·OK))1/d · |∆K |1/(2d). As b0 ·OK is a rank-1 module,
we have that λN

1 (b0 ·OK) = N (b0) and the following holds thanks to Lemma 2:
λ1(b0 · OK) ⩽

√
dN (b0)

1/d|∆K |1/(2d). Applying the same lemma to the whole
module gives the bound on its Euclidean minima λ1(L) ⩾

√
d · λN

1 (L)1/d. Since
N (b0)

1/d ≤ α(n−1)/d · λN
1 (L), we obtain the result:

λ1(b · OK)

λ1(L)
⩽

√
dα(n−1)/d · λN

1 (L)|∆K |1/(2d)√
d · λN

1 (L)1/d
= α(n−1)/d · |∆K |1/(2d).

⊓⊔

5 Implementation of Algebraic LLL

5.1 Fast arithmetic

In order to make our algebraic LLL efficient, we make use of the fact that the
canonical embedding is a linear map F : Kn → Cn·d. If we have two vec-
tors v,u ∈ Kn, then F(v + u) = F(u) + F(v). The canonical embedding
is essentially the Fourier transformation that can be efficiently computed in
O(d log d). That fact helps us to speed up the computations as follows. The
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equality F(⟨v , u⟩) = ⟨F(v) , F(u)⟩ also holds, which lowers the complexity of
scalar product computations from O(nd2) to O(nd log d).

Similarly, we can speed up norm computations. Let k ∈ K where K a power-
of-2 cyclotomic field K = Q(ζ). Then F(k) = (l0, l1, . . . , ld/2−1, l̄d/2−1, . . . , l̄1, l̄0)
for some li ∈ C, i < d and by keeping only d/2 first coefficients we can always re-
construct the whole vector. We denote (l0, l1, . . . , ld/2−1) as F ′(k). The algebraic
norm of k is then

∏
i<d/2 |(F ′(k))i|2 and it can be computed in d/2 + 1 com-

plex multiplications. Thus we store all the data: bases, GSO-coefficients, Gram
matrices, and transformation matrices in the canonical embedding.

5.2 Precomputations and PIP

Log-unit lattice. For unit reduction (Algorithm 4.2) we require a good basis of
the log-unit lattice. We precompute and classically LLL reduce log-unit lattices
for 32-nd, 64-, 128-, 256-, 512-th cyclotomic fields. This allows us to efficiently
solve approxCVP, i.e., for a given number field element, find a close unit that
potentially reduces its Euclidean norm, which is the core of Algorithm 4.2.

In order to find a close unit we first need to construct a basis of a log unit
lattice that allows us to solve approxCVP with good approximation factor. Fol-
lowing [32,12], we construct a basis of the log-unit lattice from the generators of

the cyclotomic unit group ζi−1
ζ−1 for all i coprime to d. We then classically LLL

reduce this basis and store it with the corresponding cyclotimic units. Denote
by Blog this LLL reduced basis consisting of vectors vi and the corresponding
units vi ∈ K.

Upon receiving a target k ∈ K, we map it ontoH and call the Babai’s Nearest
Planes algorithm [2] on Blog. Let (c0, . . . , cd/2−1) ∈ Zd/2−1 be the coefficients of
the returned solution w.r.t. Blog. A close to k unit u is obtained as

∏
i⩽d/2−2 v

ci
i .

The unit that unit reduces k is then u−1 =
∏

i⩽d/2−2 v
−ci
i . The routine is shown

in Algorithm 5.1. Essentially, it follows the approaches from [32,12].

Algorithm 5.1 LogCVP

Input: k ∈ K for a cyclotomic field K.
An LLL reduced basis Blog = {vi}0⩽i<d/2−1 of the log unit lattice
Cyclotomic units vi for 0 ⩽ i < d/2− 1.

Output: A cyclotomic unit u such that Log(u−1) is close to Log(k).

1: Compute t := Log(k) = π1(Log(k)) for 1 – the all-ones vector.
2: (c0, . . . , cd/2−2)← BabaiNearestPlanes(Blog, t) ▷ Use [2]

3: return
∏

i⩽d/2−1 v
−ci
i

5.3 Finding and inserting a short vector in M

In this section we present a complete LLL algorithm that includes all the en-
hancements described above.
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We search for a short vector in a projective rank-2 modules defined in Equa-
tion (4) using classical BKZ reduction implemented in [31]. Depending on the
degree d of the number field that M is defined over, we either directly map
(the appropriate scaling of) M to Z2d, or we perform the descend procedure
from Section 3.1.

The base case. When the number field K has a relatively small degree d, we
can launch BKZ reduction algorithm on a basis of the canonical embedding 6

of rank-2 projective submodules Mi for i ∈ {0, . . . , n − 2}. It shortens the 2 · d
vectors of a basis of Mi over Q in their Euclidean norm. The algebraic-geometric
inequality from Lemma 1 suggests that N (k) ⩽ ||k||d · d−d/2, and we hope that
small elements in the Euclidean norm also have small algebraic norms. Since our
algorithm works with transformation matrices, we focus on finding coefficients
w′ = (w′

0, . . . , w
′
2d−1)

T ∈ Z2d w.r.t. the input basis of Mi that give us a short

vector. Then we set w = (w0, w1)
T = Ascendv(K,w′).

In practice sometimes a short vector cannot be inserted into the basis because
it is not primitive. In order to lower the probability of such situation, we return
a list of short vectors. The whole subroutine is presented in Algorithm 5.2.

Algorithm 5.2 SVP

Input: B ∈ On×n
K - basis matrix of the lattice

Output: coefficients uk of short vectors of the lattice defined by B

1: M := Descendm(Q,B) = {mi}0⩽i<n·d
2: BKZ reduce M obtaining {m′

i}0⩽i<n·d
3: return U := {B−1 · Ascendv(K,m′

i) | 0 ⩽ i < n · d}

The recursive approach. Runtime of strong BKZ reduction becomes prohibitive
in practice for modules of high dimensions over Q. In this case we descend basis
vectors of M given in Equation (4) into a subfield L of index 2 obtaining a
basis for a rank-4 module over L.7 We treat this new module as a new input to
algebraic LLL reduction. Now in this new call to LLL, we shall be considering
modules Mi’s whose dimensions over Q are twice as small.

Complete algebraic LLL algorithm. The version of algebraic LLL with recursive
descend to subfields is given in Algorithm 5.3. The main differences from Algo-
rithm 4.5 are the following ones. First, rather than reducing rank-2 submodules
of K, we descend into a subfield L and call approxSVP on rank-2 modules over
L. Second, we control the lengths of the inserted basis vectors by solving Bézout

6 We can launch it on the coefficient embedding of Mi as well, but this approach did
not give us any practical advantage.

7 Other powers-of-two are also possible, but in practice we chose to descend to as large
subfields as possible.
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equations more efficiently with Algorithm 4.4. At last, we update the Gram
matrix coefficients of the input basis on-the-fly rather than recomputing them
from an updated basis. Concretely, let the basis transformation W obtained in
Line 24 of Algorithm 5.3 be of the form

W =

(
w0,0 w0,1

w1,0 w1,1

)
.

Let G be a non-updated Gram matrix and let G′ denote the updated one. It
will be easier to look at the three zones of the elements of G as in Figure 1. The
following are the results of straightforward computations. In region I, we have:

G′
κ,ℓ = wκ−i,0Gκ,ℓ + wκ−i,1Gκ+1,ℓ, for κ, ℓ ∈ {i, i+ 1}. (22)

Analogously, for region III we have:

G′
κ,ℓ = wℓ−j,0Gκ,ℓ−j + wℓ−j,1Gκ,ℓ+1, for κ, ℓ ∈ {i, i+ 1}. (23)

The explicit formulas for the three elements from zone II are:

G′
i,i = w0,0w0,0Gi,i + w0,0w0,1Gi+1,i + w0,1w0,0Gi+1,i + w0,1w0,1Gi+1,i+1

G′
i+1,i+1 = w1,0w1,0Gi,i + w1,0w1,1Gi+1,i + w1,1w1,0Gi+1,i + w1,1w1,1Gi+1,i+1

G′
i+1,i = u1,0w0,0Gi,i + w1,0w0,1Gi+1,i + w1,1w0,0Gi+1,i + w1,1w0,1Gi+1,i+1

(24)

I II

III

i

i+ 1

j j + 1

Fig. 1: Regions of the Gram matrix to be updated

6 Experiments

We implemented a version of algebraic LLL in SageMath 9.8. For the alge-
braic approxSVP oracle we call the FPYLLL [31] library. The implementation
accompanying our work and the experimential data can be found at https:

//github.com/mooninjune/AlgebraicLLL. In all our experiments we use an
AMD EPYC 7742 processor with 2 TB of RAM. Each EPYC is equipped with
128 physical cores that, with parallelization, give 256 threads. This number of
cores was used to run multiple parallel experiments.

https://github.com/mooninjune/AlgebraicLLL
https://github.com/mooninjune/AlgebraicLLL
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Algorithm 5.3 BasicLLLWithDescend

Input: B ∈ Om×n
K – basis of a module lattice defined over K = Q(ζd);

α > 1 ∈ R – constant defining the quality of the reduction;
d′ – threshold dimension.

Output: unimodular transform U such that B ·U is an LLL reduced

1: U := Idn; G := B† ·B
2: while ∃i : α2N (ri+1,i+1) > N (ri,i) do
3: W,G, {µi,ℓ}, {ri,ℓ} := unit reduce(G, µ, r, 0, n− 1), ℓ ⩽ n− 1
4: U := U ·W
5: B := B ·W
6: W,G, {µi,ℓ}, {rℓ,ℓ} := size reduce(G, µ, r, 0, n− 1), ℓ ⩽ n− 1
7: U := U ·W
8: B := B ·W
9: Compute {b∗

κ}κ⩽i using Equation (1)
10: πi(bi+1) = bi+1 −

∑i−1
κ=0 µi+1,κ · b∗

κ

11: B′ := [b∗
i , πi(bi+1)] ▷ 2×m matrix

12: if deg(K) > d′ then
13: Set L = Q[ζd/2] for ζd/2 – primitive (d/2)-th root of unity.
14: T := Ascendm(keflll(Descendm(L,B

′), α · |∆L/(2 ·∆K)|, d′))
15: else ▷ If degree of K makes SVP feasible
16: T := SVP(B′) ▷ Use SVP oracle on rank-2 submodule.

17: t := ∅
18: for t = (t0, t1) ∈ T do
19: if t0 · OK + t1 · OK = τ · OK then
20: t := t/τ
21: break
22: if t = ∅ then
23: continue
24: W := Improved BezTransform(t/τ, d′);
25: U := U ·W
26: B := B ·W
27: Update G according to Equations (22) to (24)

28: return U

6.1 ZGSA accuracy

One of the most prominent example of algebraic lattices in cryptography are
modules that come from the module-LWE problem [23]. Modern lattice-based
post-quantum signature and encryption standards [15,17,7] rely on the hardness
of this problem. Given m > k ≥ 0 and a modulus q > 1, sample k ·m elements
(a0,0, . . . , a0,k−1, . . . , am−1,0, . . . , am−1,k−1) uniformly at random fromOK/qOK .
Consider a rank-(m+ k) module with an OK-basis given by the columns of the
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following matrix B ∈ O(m+k)×(m+k)
K :

B =


q ... 0 a0,0 ... ak−1,0

...
. . .

...
...

. . .
...

0 ... q am−1,0 ... ak−1,m−1

0 ... 0 1 ... 0
...
. . .

...
...

. . .
...

0 ... 0 0 ... 1

. (25)

For B as above, the module-LWE problem can be formulated as the closest
vector problem on the module lattice generated by B with the guarantee that the
solution is unique. Hence, we are interested in the behaviour of lattice reduction
algorithms on such bases.

We run our algebraic LLL on modules defined by bases B (with k = m)
and monitor how the profile, that is the sequence {N (ri,i)}i as per Definition 4
with the ideals of the pseudobasis being OK , changes. We plot these profiles
in Figure 2 and compare the profiles to Heuristic 3. By the shape of B given
in Equation (25), the input profile consists of the first k q-ary vectors and the
last ri,i for k ≤ i < 2k are 1. As expected, after the LLL reduction, the pro-
files becomes ‘flatter’ and resembles the predicted profiles quite accurately. This
situation is analogous to the behaviour of the classical lattice profiles after the
execution of a classical LLL algorithm.

6.2 NTRU modules

Concrete estimations. To compare the predictions of Heuristic 4 with practice,
we consider NTRU modules M over a cyclotomic field K of a conductor f
as in Equation (6). We descend the bases of these modules twice obtaining
corresponding modules of rank 8 over a filed L ⊂ K for a degree degL =
(degK)/4. We launch our LLL algorithm on such bases and detect the recovery
the dense sublattice containing (f ,g).

Our estimator predicts that algebraic LLL recovers such dense sublattice at
log2 q = 12.8 for f = 32, log2 q = 16.1 for f = 64, and log2 q = 20.1 for the con-
ductor f = 128. The comparison between our predictions with the experimental
data is given in Table 1. Our experiments confirm the predictions: the success
rate for the predicted log q is close to 1 for cases f = 32, 64.

A minor but still visible discrepancy with the predictions appears in the
case of f = 128. This phenomenon occurs due to the following issue. For 128-th
cyclotomic field we are forced to launch an algebraicSVP oracle on submodules of
dimension 128 over Z. Using the BKZ algorithm with large block sizes becomes
rather expensive, so we use block size at most 50 which affected the quality of
the oracle, but made our extensive experiments feasible. A minor adjustment
γN to 0.55 gives a prediction log q = 21.2 which resembles the actual situation
more precisely.

In order to estimate for which q the DSD event occurs for the classical LLL
algorithm, we ran the DSD estimator from [14] for the block size set to 2. The
comparison of the least moduli sufficient to trigger the DSD events both in
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Fig. 2: Algebraic profiles for q-ary modules defined in Equation (25) for k = m =
4. We take cyclotomic fields of conductor f = 64 for the top figures, and f = 128
for the bottom figures. Profiles are averaged over 20 different modules. From left
to right: we choose q to be primes of 20-, 25-, 30-bits.

classical and the algebraic settings are presented in Table 2. The data illustrates
that the algebraic DSD events occur for larger moduli than in the classical case.

We used the FPyLLL implementation of BKZ-50 algorithm [31] for an alge-
braic approxSVP oracle inside the algebraic LLL. This block-size is significantly
greater than the block sizes required to detect dense sublattice using classical
lattice reduction.

For the NTRU modules over the 512-th cyclotomic field we ran classical
BKZ reduction and compared the average block sizes required to trigger the
DSD event. The results are presented in Table 3. It shows that, while we relied
on the BKZ with the block size 50 to reduce the algebraic modules, the reduction
could be performed by means of the classical algorithms with significantly smaller
blocksizes. In order to make algebraic LLL competitive with the classical lattice
reduction, a faster algebraic approxSVP oracle is needed. If such an oracle exists
and can be efficiently implemented in polynomial time, our proposed algorithm
can compete with the classical LLL at triggering the DSD events at least for
mentioned parameters. We leave the question of existence of such oracle open.
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f = 32

log2 q Success rate, %

12.5 80

13.0 100

13.5 100

14.0 100

14.5 100

f = 64

log2 q Success rate, %

16.0 90

16.5 100

17.0 100

17.5 100

18.0 100

f = 128

log2 q Success rate, %

20.0 0

20.5 30

21.0 75

21.5 95

22.0 100

Table 1: Percentage of DSD events on various algebraic LLL reduced NTRU
lattices. For f ∈ {32, 64} the BKZ block size is 25 and 50 for f = 128.

Field conductor f 32 64 128

log q for classic LLL 5.95 10.4 14.85

log q for algebraic LLL 12.8 16.1 20.1

Table 2: Predicted log q sufficient to trigger a DSD event on NTRU modules:
our LLL vs. classical one.

6.3 Insertion Failures

A short vector with coefficients (c0, c1) will be inserted into a dimension-2 lattice
basis if c0·OK+c1·OK = OK . Let us now discuss how restrictive this condition is.
In our implementation of the algebraic LLL algorithm we 1)call BKZ reduction
which returns many short vectors, and 2) try to leverage the condition using
a PIP solver. However, there exist rank-2 OK-modules with the property that
none of their free bases contains the shortest (again, in the Euclidean norm)
vector. We now explicitly describe such modules.

Let M be given by

M =

(
r0,0
0

)
· OK ⊕

(
r1,0
r1,1

)
· OK , (26)

for some r0,0, r1,0, r1,1 ∈ KR. Such modules arise, for example, when we look at
R-factors of algebraic rank-2 modules.

Suppose that a shortest vector in the module defined by Equation (26), is
v = (s, 0)T . As the second coordinate of v is zero, we have that the intersection

M ∩ (KR×{0}) is
(
r0,0
0

)
·OK . It may, however, happen that s ·OK ̸= r0,0 ·OK .

In this case (s, 0) cannot be inserted as a basis vector of M while keeping it a
basis (not pseudobasis).

This example relies on the fact that the principal ideals of number fields
might not have their shortest element in the Euclidean norm being a generator.
We perform some experiments to see how often this situation arises in practice.
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log2 q 20.0 20.5 21.0 21.5 22.0

βBKZ 2.5 2.3 2.2 2.0 2.0

Table 3: Average βBKZ that triggers a DSD event on NTRU modules over 512-th
cyclotomic field with parameter q.

For that we generate “random” principal ideals in cyclotomic fields of con-
ductors 32 and 64. The concept of “randomness” in the ideal class group is
given in [6], where the authors describe a random walk in the so-called Arakelov
class group. We do not give the details of this random walk here, but refer
the reader to [6] and to our implementation https://github.com/mooninjune/

AlgebraicLLL.

The result of a walk is an ideal I. We check if it is principal (this step
makes the experiments hard to extend to large fields). If the ideal turns out to
be principal, we run classical enumeration on its (scaled) basis in order to find
its shortest nonzero vector s. We then compute how often I ̸= sOK , where s
is such that its coefficient embedding is s. The results of the experiments are
given in Table 4. These results suggest that an Euclidean SVP oracle does not
guarantee a solution to SVP in the algebraic norm.

Field conductor % ideals not generated by their shortest element
32 69.4
64 70.2

Table 4: Percentage of principal ideals not generated by their shortest (in Eu-
clidean norm) element. We run 500 experiments per field.

Yet not all is lost when the candidate for insertion is not primitive. In case c0 ·
OK+c1 ·OK = τ ·OK for some τ ∈ OK , we can insert v/τ into the basis since now
v/τ is primitive. Finding τ is known as the Principal Ideal Problem (PIP) that
asks to find, for a given principal ideal (in an OK-basis), its generator. Known
algorithms for this problem are subexponential in ∆K assuming Generalized
Riemann Hypothesis [3,4]. However, for some number fields of not so large degree,
solving PIP is efficient in practice.

Of course, we do not know a priori that c0 ·OK+c1 ·OK is principal. However,
as we have precomputed the class group for fields of conductor up to 128, this
check is efficient in practice. On fields of conductor 256 and higher, the algorithm
from [4] fails on non-principal inputs, which can be detected.

https://github.com/mooninjune/AlgebraicLLL
https://github.com/mooninjune/AlgebraicLLL
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i,r

0,1280.00061638380

1,1280.00061638380

2,1280.00061638380

3,1280.00061638380

4,5.11865449962191e-76

5,4.10331419829541e-76

6,5.96997903949361e-76

7,5.65722969732489e-76




i,r

0,1280.00061638380

1,1280.00061638380

2,1280.00061638380

3,719.131702920157

4,594.826209581646

5,18.2988986276045

6,-18.4848165163645

7,-33.7713782292792




i,r

0,1280.00061638380

1,1280.00061638380

2,1062.98968026720

3,758.303046411390

4,606.412107157550

5,248.658799765721

6,-39.0704157853037

7,-77.2919850490229




i,r

0,1600.00009631020

1,1600.00009631020

2,1600.00009631020

3,1600.00009631020

4,-2.78348277272408e-73

5,-2.77352774604424e-73

6,-2.91633690224471e-73

7,-3.12834533025963e-73




i,r

0,1600.00009631020

1,1600.00009631020

2,1305.11550742984

3,927.321456935708

4,746.523134818756

5,316.820512043519

6,-0.863151952519971

7,-94.9172666548303




i,r

0,1920.00000025800

1,1920.00000025800

2,1920.00000025800

3,1920.00000025800

4,-3.91120962510984e-71

5,7.06431618418343e-71

6,-2.39678966653561e-71

7,2.37714175805856e-71




i,r

0,1920.00000025800

1,1920.00000025800

2,1546.02371773676

3,1076.71812346133

4,928.023899831045

5,405.142720749903

6,-21.0275388610040

7,-94.8809224020761




i,r

0,2560.00123276750

1,2560.00123276750

2,2560.00123276750

3,2560.00123276750

4,2.07262872870581e-75

5,2.14957012849333e-75

6,2.29454156726054e-75

7,2.22461828996614e-75




i,r

0,2560.00123276750

1,2560.00123276750

2,2376.01176999796

3,1640.76294908224

4,1122.80193689345

5,278.128190275758

6,-85.1057828495612

7,-212.596597864780




i,r

0,2560.00123276750

1,2560.00123276750

2,2560.00123276750

3,1632.24820853117

4,1139.54618536089

5,-15.0969777677745

6,-83.8680709001579

7,-112.828112456604




i,r

0,3200.00019262050

1,3200.00019262050

2,3200.00019262050

3,3200.00019262050

4,-1.59893427268516e-72

5,-1.47765239445391e-72

6,-1.35564787348496e-72

7,-1.27353572350908e-72




i,r

0,3200.00019262050

1,3200.00019262050

2,2713.68464816066

3,2026.35939489197

4,1452.48966396713

5,701.094568967119

6,-141.884721481020

7,-351.743169264904




i,r

0,3200.00019262050

1,3200.00019262050

2,2893.45423012298

3,2006.26554750523

4,1438.66837032273

5,396.736062723221

6,-108.174828853227

7,-226.948996580015




i,r

0,3840.00000051590

1,3840.00000051590

2,3840.00000051590

3,3840.00000051590

4,-1.46292712830632e-70

5,-1.28175810209106e-70

6,4.13792607552131e-71

7,-1.35491466521204e-70




i,r

0,3840.00000051590

1,3840.00000051590

2,3106.75873780342

3,2340.65351924867

4,1755.52769563752

5,891.138191049943

6,-122.700206778074

7,-291.377935929605




i,r

0,3840.00000051590

1,3840.00000051590

2,3364.92557073423

3,2334.67281254060

4,1763.97418098688

5,641.857506983290

6,-179.454586605105

7,-245.975483607993




i,r

0,1280.0006164

1,1280.0006164

2,960.00033388

3,746.66698342

4,533.33363296

5,320.00028251

6,0.00000000000

7,0.00000000000




i,r

0,1600.0000963

1,1600.0000963

2,1131.0345337

3,910.34487666

4,689.65521965

5,468.96556265

6,0.00000000000

7,0.00000000000




i,r

0,1920.0000003

1,1524.7058825

2,1298.8235295

3,1072.9411766

4,847.05882366

5,621.17647071

6,395.29411777

7,0.00000000000




i,r

0,2560.0012328

1,2560.0012328

2,2560.0012328

3,1536.0006410

4,1024.0005917

5,0.00000000000

6,0.00000000000

7,0.00000000000




i,r

0,3200.0001926

1,3200.0001926

2,2400.0001043

3,1866.6667657

4,1333.3334270

5,800.00008828

6,0.00000000000

7,0.00000000000




i,r

0,3520.0000017

1,3520.0000017

2,2572.3076932

3,2030.7692316

4,1489.2307701

5,947.69230848

6,0.00000000000

7,0.00000000000




i,r

0,3840.0000005

1,3840.0000005

2,2742.8571431

3,2194.2857146

4,1645.7142860

5,1097.1428574

6,0.00000000000

7,0.00000000000



