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Abstract. The significance of succinct zero-knowledge proofs has in-
creased considerably in recent times. However, one of the major chal-
lenges that hinder the prover’s efficiency is when dealing with Boolean
circuits. In particular, the conversion of each bit into a finite field element
incurs a blow-up of more than 100x in terms of both memory usage and
computation time.
This work focuses on data-parallel Boolean circuits that contain numer-
ous identical sub-circuits. These circuits are widely used in real-world ap-
plications, such as proving a large number of hash-preimages in zkEVM
and zkBridge [1, 30]. We develop a method for constructing succinct argu-
ments with 2−λ soundness error and O(ω(1) N

logN
log logN) RAM oper-

ations, or O( N
logN

log logN) finite field additions, along with a negligible
number of finite field multiplications.
Our approach is based on using the GKR protocol [12] to obtain the
succinct argument.

Keywords: Boolean circuits · zero-knowledge proofs · GKR

1 Introduction

Succinct arguments are proof systems that enable a prover to convince a verifier
that a computation is correct using a proof of sub-linear size. These proof systems
have recently garnered significant attention and some of them, such as Groth16
and Plonk [15, 10], are widely used and deployed.

These protocols also consider zero-knowledge property, zero-knowledge proofs
have a long and fascinating history in computer science and cryptography. The
concept was first introduced in a landmark paper by Goldwasser, Micali, and
Rackoff in 1985 [13], which described a way for a prover to convince a verifier of
the validity of a statement without revealing any additional information beyond
the statement’s truth. Later, Kilian and Micali [20, 22] developed the very first
zero-knowledge proofs protocol.

In recent years, numerous follow-up works have built upon this foundational
research, with a particular focus on improving the efficiency of the prover. A key
area of recent advancement has been the development of protocols that achieve



linear prover time for arithmetic circuits over a large field. Several recent works,
such as [31, 29, 34, 33, 3, 4, 14] have made significant strides in this area.

For Boolean circuits, recent work by [25, 18] has reduced the prover size to
almost linear, with the provers running on the Boolean circuit model. These
developments hold promise for the construction of zero-knowledge proof systems
that are not only highly secure but also highly efficient. However, a key limitation
of these protocols is that they rely on a linear time encodable linear code [27].
While this code can achieve a Boolean circuit size of O(N), it still requires O(N)
RAM operations when considering the RAM computation model.

Thus we raise the following question:

Can construct a succinct proof for N -sized Boolean circuit on RAM machine
using only O( N

logN ) RAM operations with 2−λ soundness?

1.1 Our Results

In this work we have the following contributions:

1. We defined a new form of layered R1CS to denote the computation of lay-
ered circuits. With this new form, we can also describe the computation of
Boolean circuits, of which each gate can be fixed in a single layer.

Definition 1 (informal). A layered R1CS is a arithmetic circuit where
each gate is defined similar to a R1CS constraint. For each gate, it can take
k inputs, let inputs be a vector x, the output of this gate will be

⟨ax⟩ ∗ ⟨bx⟩+ ⟨cx⟩

where a, b, c are coefficient vectors of size k that are pre-determined when
generating the circuit. Here k is a constant.

2. We purpose an interactive proof protocol for data-parallel Boolean circuits
represented by layered R1CS. The proving time of this protocol is almost
optimal to the computation of the Boolean circuit on RAM model.

Theorem 1 (informal). Assuming the layered R1CS circuit C is a data-
parallel circuit with total size N , which is composed by M = O(N0.1) copies
of identical copies. There exists a succinct argument with soundness error
2−λ that the prover runs in O(ω(1) N

logN log logN) RAM operations. We also
assumes the input size of the circuit is at most O( N

logN ) bits.

A key challenge in achieving efficient zero-knowledge proof systems is to
remove the logN factor that arises when producing proofs. One approach to
addressing this challenge is to make non-trivial use of the fact that a RAM
word can store up to O(logN) bits. In our paper, we are based on the GKR
protocol [12], and using techniques from [29].
However, this is not a trivial task, as the GKR protocol used in many succinct
proof systems will immediately turn any input (even Boolean input) into a

2



random field element, where each field element has more than λ bits. As a
result, applying any GKR protocol directly to a Boolean circuit would result
in O(N) field operations.
To remove the logN factor, a modified GKR protocol has been developed
based on the Libra protocol. This protocol uses a lookup table to compress
logN field operations into one, with an approach similar to the Pippenger
algorithm [24] or multi-scalar multiplication algorithms. These algorithms
use a lookup table to skip logN bits in each operation.

1.2 Related works

Despite the line of work on linear time succinct proofs, there are many other
works on zero-knowledge proofs. One line of work has focused on construct-
ing non-succinct proofs, this line of work is derived from MPC protocols [19],
and there are many recent developments [28, 9, 8, 32, 2], where these protocols
achieves O(N) on RAM machine which is highly practical.

Other line of work focusing on efficient verifier, these protocols are using a
trusted-setup[16, 11, 23] or holographic-setup[6, 7] to speed up the verifier. Most
trusted-setup protocols can construct a verifier with O(1) verification time. For
holographic-setup, the verifier will take at least O(logN) time.

2 Technical Overview

Our goal in this paper is to derive an interactive proof protocol for Boolean
circuits with efficient proving time in terms of circuit computation.

Data-Parallel Circuit and Layered R1CS Model The framework for our solution
is derived from the GKR protocol [12], which is an efficient instantiation of an
interactive proof, particularly for layered circuits. It proves circuit computation
by reducing the correctness from the current layer to the previous one. Formally,
GKR indexes the layers from the output to the input, where the i-th layer has
Ni gates. It describes the relationship between the (i + 1)-th and i-th layers as
follows:

Ṽi(z) =
∑

x,y∈{0,1}n
i+1

˜addi+1(z,x,y)
(
Ṽi+1(x) + Ṽi+1(y)

)
+ m̃uli+1(z,x,y)

(
Ṽi+1(x)Ṽi+1(y)

) (1)

where z ∈ {0, 1}ni , and Ṽi is the multilinear extension of the i-th layer. [29]
shows that proving this summation can be reduced to two random evaluations
on Ṽi+1(x) and Ṽi+1(y) through two stages of sumcheck protocols, which only
costs O(Ni+Ni+1) field operations. Compared with Spartan [26] and Plonk [10],
GKR only commits the values in the input layer but doesn’t require computing
the commitments of intermediate layers. Therefore, it has better performance
for circuits with small public input and witnesses.
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However, when dealing with Boolean circuits, linear complexity alone is not
efficient enough, as the length of the field elements needs to be taken into con-
sideration. To reduce the proving time, one intuition is to exploit the fact that
all circuit wires are Boolean values, and allow the prover to aggregate as many
identical terms as possible. In this paper, we therefore focus on the data-parallel
circuit, assuming that the layer can be divided into M = 2m identical sub-
circuits. The relationship equation then becomes:

Ṽi(z∥t) =
∑

s∈{0,1}m

β̃m(s, t)

 ∑
x,y∈{0,1}ni+1−m

˜addi+1(z,x,y)
(
Ṽi+1(x∥s) + Ṽi+1(y∥s)

)
+ m̃uli+1(z,x,y)

(
Ṽi+1(x∥s)Ṽi+1(y∥s)

))
=

∑
s∥x∈{0,1}ni+1

β̃m(t, s)
(
Ṽi+1(x∥s)f(x∥s) + g(x∥s)

)
where f(x∥s) =

∑
y∈{0,1}ni+1−m

˜addi+1(z,x,y) + m̃uli+1(z,x,y)Ṽi+1(y∥s), as
well as g(x∥s) =

∑
y∈{0,1}ni+1−m

˜addi+1(z,x,y)Ṽi+1(y∥s). As mentioned earlier,
we aim to exploit the special structure of the Boolean circuit to reduce computa-
tion. However, neither f(x|s) nor g(x|s) have any special structures. Therefore,
we propose a new way to represent the relationship between adjacent layers,
which is called Layered R1CS (LR1CS).

For each pair of adjacent layers, the equation is:

Ṽi(z)

=
∑

y∈{0,1}ni

β̃ni
(z,y) ·

 ∑
x∈{0,1}ni+1

C̃i+1(y,x)Ṽi+1(x)


+

 ∑
x∈{0,1}ni+1

Ãi+1(y,x)Ṽi+1(x)

 ∑
x∈{0,1}ni+1

B̃i+1(y,x)Ṽi+1(x)


(2)

Moreover, for the data-parallel circuit, we have the following equation:

Ṽi(z∥t)

=
∑

y∥s∈{0,1}ni

β̃m(t, s) · β̃ni−m(z,y)

 ∑
x∈{0,1}ni+1−m

C̃i+1(y,x)Ṽi+1(x∥s)

+

 ∑
x∈{0,1}ni+1−m

Ãi+1(y,x)Ṽi+1(x∥s)

 ∑
x∈{0,1}ni+1−m

B̃i+1(y,x)Ṽi+1(x∥s)


=

∑
y∥s∈{0,1}ni

β̃ni(z∥t,y∥s) (h(y∥s) + f(y∥s)g(y∥s))

Here h(y∥s) =
∑

x∈{0,1}ni+1−m C̃i+1(y,x)Ṽi+1(x∥s) and we define f, g sim-
ilarly. Since we are dealing with a Boolean circuit, the evaluation of h, f, g on
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Boolean hypercube will always be a Boolean value. Additionally, if it is a classi-
cal Boolean circuit with NAND gates only, then Ãi+1, B̃i+1, C̃i+1 will only have
1 non-zero entry for each row y, because the NAND gate only takes 2 inputs for
multiplication and 1 constant input for addition. So for simplicity, we will treat
evaluations of f, g, h as Boolean.

To prove this equation, we can divide the process into two stages of sumcheck
protocols, the first stage will do sumcheck on variable s, focusing on the following
summation:

∑
s∈{0,1}m

β̃m(t, s)

 ∑
y∈{0,1}ni−m

β̃ni−m(z,y) (h(y∥s) + f(y∥s)g(y∥s))


We observe that f(y|s) and g(y|s) have binary values on the hypercube

domain. Intuitively, we can use a Pippenger-style summation to compute the
sum of Boolean values by precomputing a small table and looking up a bit-vector
of size O(logN) in the table for each iteration. Since each iteration processes
O(logN) bits, there will be O( N

logN ) iterations. By setting the window size to
w = 0.1 logN , we can obtain an algorithm that performs 2ni

w field additions
for each sum-check query. After logw rounds of sumcheck, the domain size is
O( 2

ni

w ), which is sufficiently small for us to proceed using the linear-time GKR
algorithm to deal with the remaining rounds.

Now we take a detour to review the process of the Pippenger algorithm and
show a variant of Pippenger to deal with addition gates.

2.1 Pippenger’s algorithm

Consider the following problem: there is an field element vector e of length l,
where addition on two field elements takes Tadd time, and B is a m× l Boolean
vector. Compute the matrix multiplication Be. For simplicity, we assume that
the length of each vector l is a power of 2.

Naive computation of this sum will incur O(m× l) additions of field elements
in e. In Pippenger’s algorithm, a table is preprocessed, defined as follows:

1. Let w = 0.1 log l, be the length of window.
2. For each bit-vector i ∈ {0, 1}w and j ∈ [20.9 log l], compute the table T[j][i] :=
⟨i, e[j : j + w]⟩.

The initialization of this table takes O(wl). We can compute the matrix
multiplication as follows:

1. For each i ∈ [m], compute the i-th entry of the result using inner product
⟨B[i][:], e⟩.

2. To compute the inner product, we can use the table to speed up:
(a) For i ∈ [ l

w ]: add T[i][e[i∗w : i∗w+w]] into the inner-product summation.
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(b) Lookup table takes O(1) time on RAM machine, so the overall complex-
ity is O( l

wTadd).
3. Since there are m inner-products, so it will take O(ml

w Tadd) time.

In our protocol, the field element will be degree 1 polynomials where coeffi-
cients are field element, so Tadd = O(ω(1)).

2.2 Using Pippenger to deal with addition gates

If we ignore the multiplication part, the sumcheck equation becomes:

∑
s∈{0,1}m

β̃m(t, s)

 ∑
y∈{0,1}ni−m

β̃ni−m(z,y)h(y∥s)


For i-th round of the sumcheck, we are required to compute the following

polynomial: ∑
s∈{0,1}m−1

β̃m−i(t[0 : m− i], s[0 : m− i])β̃(t[m− i :], x|rs)×

 ∑
y∈{0,1}ni−m

β̃ni−m(z,y)β̃i−1(rs, s[m− i :])h(y∥s[0 : m− i]|x|s[m− i :])


Here rs is the randomness sent from verifier by the i-th round, so it has

length i− 1.
For each concrete value of s, the outer part β̃m−i(t[0 : m − i], s[0 : m −

i])β̃(t[m− i :], x|rs) is easy to compute so we skip this part. However the inner
part:

 ∑
y∈{0,1}ni−m

β̃ni−m(z,y)β̃i−1(rs, s[m− i :])h(y∥s[0 : m− i]|x|s[m− i :])


is not so straightforward. We first remove the summation, and try to extract

the Boolean vector and the field element vector:

β̃ni−m(z,y)β̃i−1(rs, s[m− i :])h(y∥s[0 : m− i]|x|s[m− i :])

Here β̃ni−m(z,y), β̃i−1(rs, s[m − i :]) are field elements that is easy to com-
pute. h(y∥s[0 : m− i]|x|s[m− i :]) is a degree 1 polynomial. We use h(y|x) as a
short-hand to h(y∥s[0 : m− i]|x|s[m− i :]).

For x = 0, the evaluation is equal to h(y∥0), and for x = 1, the evaluation is
equal to h(y∥1). So the polynomial h(y|x) = (h(y|1) − h(y|0))x + h(y|0). And
we incorporate β̃ functions into our polynomial, the polynomial becomes:
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h(y|x) = β̃ni−m(z,y)β̃i−1(rs, s[m− i :])((h(y|1)− h(y|0))x+ h(y|0))

To compute the summation over this polynomial, we can compute the coeffi-
cient individually as a inner-product between field elements and Boolean matrix
using Pippenger’s algorithm. The Boolean matrix has shape 2m−1× 2ni and the
field vector has length O(2ni), so the complexity will be O( 2

m+ni

w ) field additions.

2.3 Difficulties in using Pippenger’s algorithm and MSM

Unfortunately, Pippenger’s algorithm will stop working when we deal with a
multiplication gate. Consider the following multiplication gate:

∑
s∈{0,1}m

β̃m(t, s)

 ∑
y∈{0,1}ni−m

β̃ni−m(z,y)f(y∥s)g(y∥s)


In the i-th round of the sumcheck protocol, we need to compute the polyno-

mial of the following form:

∑
s[i:]∈{0,1}m−1

β̃m(t, s[: m− i]||x||rs)×
∑

y∈{0,1}ni−m

(
β̃ni−m(z,y)×

β̃i−1(s[m− i :], rs)f(y∥s[: m− i]||x||s[m− i :])×

β̃i−1(s[m− i :], rs)g(y∥s[: m− i]||x||s[m− i :])
)

Here, the inner-summation becomes a univariate quadratic polynomial with
two different Boolean vectors f, g. We solve this problem in Algorithm 4 by
computing a 2-D version of Pippenger’s algorithm where we couple the lookup
table for f and g. We extend the table from T[i, j] to T[i0, i1, j]. Adding one
more dimension to compute the inner-product between f and g.

2.4 The remaining part

Multi-scalar multiplication (MSM) for computing the inner product between fields
and bits. In order to transition from our Pippenger-style algorithm to the linear-
time GKR algorithm, we need to initialize the bookkeeping table used in [29].
The two parties run a sumcheck protocol for variable y on the following equation:

β̃m(trs)
∑

y∈{0,1}ni−m

β̃ni−m(z,y) (h(y∥rs) + f(y∥rs)g(y∥rs))

Although the problem size of the sumcheck protocol is only Ni+1

M , the initial-
ization, e.g., computing the book-keeping table as in [29], still requires O(Ni+1)
field additions. To deal with this problem, we observe that the most costly part
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is computing the inner product between several field vectors and bit vectors.
Since the inner product is in the same form as MSM, we can use the Pippenger
algorithm [24] to accelerate the computation. We present the algorithm in Al-
gorithm 1.

3 Preliminaries

3.1 Notation

In this paper, we use the following notations. For a d-variate polynomial f(x0, . . . ,
xd−1) : Fd → F, we use x = (x0, . . . , xd−1) to denote the vector of variables in the
domain. After assigning those variables as random elements, we denote them as
rx. Given a function f : {0, 1}d → {0, 1} with the domain d-dimentional Boolean
hypercube, we use f̃ : Fd → F as the unique multilinear extension (MLE) (see
Definition 4), satisfying f̃(x) = f(x) for all x ∈ {0, 1}d. There is a commonly-
used function β̃n(x,y) =

∏n−1
i=0 xiyi + (1− xi)(1− yi), which is the MLE of the

following function

βn(x,y) =

{
1 x = y

0 otherwise
(3)

We use the LR1CS to describe a circuit. In this form, the indices of layers
are numbered from the output to the input. Ṽi(·) is the MLE corresponding to
the values in the i-th layer. Ãi(·), B̃i(·) and C̃i(·) together form the computation
of the i-th layer. When it’s for data-parallel circuits, we use M to denote the
number of copies of the sub-circuits. In the notation of Ṽi(x∥s), the variable s is
to index the sub-circuit copy, and the variable x is to specify a specific wire in
the sub-circuit.

3.2 Finite field

Throughout the paper, we assume that all fields are prime fields Fp, where p is a
prime number satisfying p ≤ 2λ and λ = O(ω(1) logN). In practice, we use 128-
bit or 256-bit primes. Such prime fields must satisfy the following performance
requirements:

1. Storage: A field element can be stored using O(ω(1)) RAM words.
2. Addition: Addition can be done within O(ω(1)) RAM operations.
3. Multiplication: Multiplication can be done within O(ω2(1)) RAM operations.

These requirements ensure that field operations can be performed efficiently,
which is crucial for the overall performance of our protocols.
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3.3 Interactive Proofs and Zero-knowledge Arguments

Interactive proofs. An interactive proof allows a prover P to convince a verifier
V the validity of some statement. The interactive proof runs in several rounds,
allowing V to ask questions in each round based on P’s answers in previous
rounds. We phrase this in terms of P trying to convince V that f(x) = 1. The
proof system is interesting only when the running time of V is less than the
time of directly computing the function f . We formalize interactive proofs in the
following:

Definition 2. Let f be a Boolean function. A pair of interactive machines
⟨P,V⟩ is an interactive proof for f with soundness ϵ if the following holds:

– Completeness. For every x such that f(x) = 1 it holds that Pr[⟨P,V⟩(x) =
accept] = 1.

– ϵ-Soundness. For any x with f(x) ̸= 1 and any P∗ it holds that Pr[⟨P∗,V⟩ =
accept] ≤ ϵ

Zero-knowledge arguments. An argument system for an NP relationship R is a
protocol between a computationally-bounded prover P and a verifier V. At the
end of the protocol, V is convinced by P that there exists a witness w such that
(x;w) ∈ R for some input x. We focus on arguments of knowledge that have
the stronger property that if the prover convinces the verifier of the statement
validity, then the prover must know w. We use G to represent the generation
phase of the public key pk and the verification key vk. Formally, consider the
definition below, where we assume R is known to P and V.

Definition 3. Let R be an NP relation. A tuple of algorithm (G,P,V) is a
zero-knowledge argument for R if the following holds.

– Correctness. For every (pk, vk) output by G(1λ) and (x,w) ∈ R,

⟨P(pk, w),V(vk)⟩ (x) = accept

– Soundness. For any PPT prover P, there exists a PPT extractor ε such
that for every (pk, vk) output by G(1λ) and any x, it holds that

Pr[⟨P(pk),V(vk)⟩(x) = accept ∧ (x,w) /∈ R|w ← ε(pk, x)] ≤ negl(λ)

– Zero knowledge. There exists a PPT simulator S such that for any PPT
adversary A, auxiliary input z ∈ {0, 1}poly(λ), (x;w) ∈ R, it holds that
Pr

[
⟨P(pk, w),A⟩(x) = accept : (pk, vk)← G(1λ); (x,w)← A(z, pk, vk)

]
=

Pr
[
⟨S(trap, z, pk),A⟩(x) = accept : (pk, vk, trap)← S(1λ); (x,w)← A(z, pk, vk)

]
We say that (G,P,V) is a succinct argument system if the running time of V and
the total communication between P and V (proof size) are poly(λ, |x|, log |w|).
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Protocol 1 (Sumcheck) The protocol proceeds in ℓ rounds.

– In the first round, P sends a univariate polynomial

f1(xℓ−1)
def
=

∑
b0,...,bℓ−2∈{0,1}

f(b0, . . . , bℓ−2, xℓ−1) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge rℓ−1 ∈ F to P.
– In the i-th round, where 2 ≤ i ≤ l − 1, P sends a univariate polynomial

fi(xℓ−i)
def
=

∑
b0,...,bℓ−i−1∈{0,1}

f(b0, . . . , bℓ−i−1, xℓ−i, rℓ−i+1, . . . , rℓ−1) ,

V checks fi−1(ri−1) = fi(0)+ fi(1), and sends a random challenge rℓ−i ∈ F to P.
– In the ℓ-th round, P sends a univariate polynomial

fℓ(x0)
def
= f(x0, r1, . . . , rℓ−1) ,

V checks fℓ−1(r0) = fℓ(0) + fℓ(1). The verifier generates a random challenge
r0 ∈ F. Given oracle access to an evaluation f(r0, r1, . . . , rℓ−1) of f , V will accept
if and only if fℓ(r0) = f(r0, r1, . . . , rℓ−1). The instantiation of the oracle access
depends on the application of the sumcheck protocol.

3.4 GKR Protocol

In [12], Goldwasser et al. proposed an efficient interactive proof protocol for
layered arithmetic circuits, from which we follow the framework to design our
new protocol and is referred to as the GKR protocol. We present the detailed
protocol here.

Sumcheck Protocol. The sumcheck problem is a fundamental problem that
has various applications. The problem is to sum a polynomial f : Fℓ → F on the
binary hypercube ∑

b0,b1,...,bℓ−1∈{0,1}
f(b0, b1, ..., bℓ−1).

Directly computing the sum requires exponential time in ℓ, as there are 2ℓ combi-
nations of b0, . . . , bℓ−1. Lund et al. [21] proposed a sumcheck protocol that allows
a verifier V to delegate the computation to a computationally unbounded prover
P, who can convince V that H is the correct sum. We provide a description of
the sumcheck protocol in Protocol 1. The proof size of the sumcheck protocol is
O(dℓ), where d is the variable degree of f , as in each round, P sends a univariate
polynomial of one variable in f , which d + 1 points can uniquely define. The
verifying time of the protocol is O(dℓ). The proving time depends on the degree
and the sparsity of f . For example, if f is a multilinear polynomial, the proving
time is O

(
2ℓ
)
. The sumcheck protocol is complete and sound with ϵ = dℓ

|F| .
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Definition 4 (Multilinear Extension). Let V : {0, 1}ℓ → F be a function.
The multilinear extension of V is the unique polynomial Ṽ : Fℓ → F such that
Ṽ (b) = V (b) for all b ∈ {0, 1}ℓ.

Ṽ can be expressed as:

Ṽ (x) =
∑

b∈{0,1}ℓ

∏ℓ−1

i=0
[((1− xi)(1− bi) + xibi) · V (b)]

where x = (x0, . . . , xℓ−1) and b = (b0, . . . , bℓ−1).

Multilinear extensions of arrays. Inspired by the close form equation of the
multilinear extension given above, we can view an array A = (a0, a1, . . . , a2n−1)
as a function A : {0, 1}n → F such that ∀i ∈ [0, 2n − 1], A(i) = ai, where i is
the binary form of i. Therefore, in this paper, we abuse the use of multilinear
extension on an array as the multilinear extension Ã of A.

Using the sumcheck protocol as a building block, Goldwasser et al. [12]
showed an interactive proof protocol for layered arithmetic circuits, which is
commonly called GKR protocol.

Notation. Before describing the GKR protocol, we introduce some additional
notations. We denote the number of gates in the i-th layer as Si and let si =
logSi. (For simplicity, we assume Si is a power of 2, and we can pad the layer
with dummy gates otherwise.) We then define a function Vi : {0, 1}si → F that
takes a binary string b ∈ {0, 1}si and returns the output of the b-th gate in the
i-th layer, where b is called the gate label. With this definition, V0 corresponds
to the output of the circuit, and Vd corresponds to the input layer. Finally, for
1 ≤ i ≤ d, we define two additional functions addi,muli : {0, 1}si−1+2si → {0, 1},
referred as wiring predicates in the literature. addi (muli) takes one gate label
z ∈ {0, 1}si−1 in the (i − 1)-th layer with two gate labels x,y ∈ {0, 1}si in the
i-th layer, and outputs 1 if and only if Gate z is an addition (multiplication) gate
that takes the output of Gate x and Gate y as input. With these definitions, Vi

can be written as follows:

Vi(z) =
∑

x,y∈{0,1}si+1

(addi+1(z,x,y)(Vi+1(x) + Vi+1(y))

+muli+1(z,x,y)(Vi+1(x)Vi+1(y)))

(4)

for any z ∈ {0, 1}si . In the equation above, Vi is expressed as a summation,
so V can use the sumcheck protocol to check that it is computed correctly. As
the sumcheck protocol operates on polynomials defined on F, we rewrite the
equation with their multilinear extensions:

Ṽi(z) =
∑

x,y∈{0,1}si+1
fi+1(x,y)

=
∑

x,y∈{0,1}si+1
( ˜addi+1(z,x,y)(Ṽi+1(x) + Ṽi+1(y))

+ m̃uli+1(z,x,y)(Ṽi+1(x)Ṽi+1(y))) , (5)

where z is a vector of variables and can be assigned from the domain Fsi .
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Protocol. With Equation 5, the GKR protocol proceeds as following. The prover
P first sends the claimed output of the circuit to V. From the claimed output,
V defines polynomial Ṽ0 and computes Ṽ0(rz,0) for a random rz,0 ∈ Fs0 . V
and P then invoke a sumcheck protocol on Equation 5 with all 0 ≤ i < d.
As described in Section 3.4, at the end of the i-th sumcheck protocol, V needs
fi+1(rx,i+1, ry,i+1) with random rx,i+1, ry,i+1 ∈ Fsi+1 to complete the proof.
Hence, V computes ˜addi+1(rx,i+1, ry,i+1) and m̃uli+1(rx,i+1, ry,i+1) locally (they
only depend on the wiring pattern of the circuit, but not on the values), asks P
for Ṽi+1(rx,i+1) and Ṽi+1(ry,i+1) and computes fi+1(rx,i+1, ry,i+1). In this way,
V and P reduce a claim about the i-th layer to two claims about values in the
(i+ 1)-th layer.

Combining two claims: random linear combination. In [5], Chiesa et al.
proposed an approach using random linear combinations to deal with the two
claims. Upon receiving the two claims Ṽi(rx,i) and Ṽi(ry,i), V selects αi, βi ∈ F
randomly and computes αiṼi(rx,i)+βiṼi(ry,i). Based on Equation 5, this random
linear combination can be written as

αiṼi(rx,i) + βiṼi(ry,i)

= αi

∑
u∈{0,1}si+1

v∈{0,1}si+1

(
˜addi+1(rx,i,u,v)(Ṽi+1(u) + Ṽi+1(v))

+m̃uli+1(rx,i,u,v)(Ṽi+1(u)Ṽi+1(v))
)

+βi

∑
u∈{0,1}si+1

v∈{0,1}si+1

(
˜addi+1(ry,i,u,v)(Ṽi+1(u) + Ṽi+1(v))

+m̃uli+1(ry,i,u,v)(Ṽi+1(u)Ṽi+1(v))
)

=
∑

u∈{0,1}si+1

v∈{0,1}si+1

((αi
˜addi+1(rx,i,u,v) + βi

˜addi+1(ry,i,u,v))(Ṽi+1(u) + Ṽi+1(v))

+(αim̃uli+1(rx,i,u,v) + βim̃uli+1(ry,i,u,v))(Ṽi+1(u)Ṽi+1(v)))
(6)

V and P then execute the sumcheck protocol on Equation 6 instead of Equa-
tion 5. Then at the end of each sumcheck protocol, V still receives two claims
about Ṽi+1 and proceeds to a previous layer recursively until the input layer.

From the result of [29], we have the following theorem:

Theorem 2. Let C : Fn → Fk be a depth-d layered arithmetic circuit. There
is an interactive proof protocol for the function computed by C with soundness
O(d log |C|/|F|). It uses O(d log |C|) rounds of interaction and the running time
of the prover P is O(|C|). Let T be the time to evaluate all ˜addi and m̃uli at the
corresponding random points, the running time of V is O(n+ k + dlog|C|+ T ).
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3.5 Rank-1 Constraint Satisfiability

In this section, we define the Rank-1 Constraint Satisfiability (R1CS) instance
and problem.

Definition 5 (R1CS instance). An R1CS instance is a tuple (F, A,B,C, io,N,
Ng), where io denotes the public input and output of the instance, A,B,C ∈
FN×N , where N ≥ |io| + 1 and there are at most Ng non-zero entries in each
matrix.

In the definition above, we assume matrices A, B, and C are the square
matrix for simplicity and N = O(Ng).

Definition 6 (R1CS). An R1CS instance (F, A,B,C, io,N,Ng) is said to be
satisfiable if there exists a witness w ∈ FN−|io|−1 such that (A·z)◦(B ·z) = (C ·z),
where z = (io,w, 1), · is the matrix-vector product, and ◦ is the Hadamard (entry-
wise) product.

Definition 7. For an R1CS instance x = (F, A,B,C, io,N,Ng) and a purposed
witness w ∈ FN−|io|−1, we define:

SatR1CS(x,w) =

{
1 (A · (io,w, 1)) ◦ (B · (io, w, 1)) = (C · (io,w, 1))
0 otherwise

The set of satisfiable R1CS instances can be denoted as:

RR1CS = {⟨(F, A,B,C, io,N,Ng), w⟩ : SatR1CS((F, A,B,C, io,N,Ng),w) = 1}

Definition 8. For a given R1CS instance x = (F, A,B,C, io,N,Ng), the NP
statement that x is satisfiable (i.e., ⟨x, ·⟩ ∈ RR1CS) is of size O(Ng)

4 Interactive Proof Protocol for Layered R1CS (LR1CS)

In this section, we present a formal definition of LR1CS and state the main theo-
rem for realizing a new interactive proof protocol through this form. Specifically,
in Section 4.1, we provide definitions of LR1CS instance and LR1CS language
to help formalize the problem. In Section 4.2, we show that by using the form
of LR1CS, we can construct an interactive proof protocol with efficient proving
time.

4.1 Definition of LR1CS

Here we give the definitions of LR1CS instance and LR1CS language as follows:
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Definition 9 (LR1CS instance). An LR1CS instance is a tuple

(F, d,N0, Vd, V0, {Ai, Bi, Ci, Ni,Ki}1≤i≤d)

where Vd and V0 denote the public input and output of the instance with size
Nd and N0 separately, Ni is the number of wires in the i-th layer, Ai, Bi, Ci ∈
F(Ni−1+1)×(Ni+1) describing the computation for the i-th layer and there are at
most Ki non-zero entries in each matrix.

In this paper, we always assume Ki = O(Ni−1). With the definition above,
we define LR1CS language as follows:

Definition 10 (LR1CS). For an LR1CS instance

x = (F, d,N0, Vd, V0, {Ai, Bi, Ci, Ni,Ki}1≤i≤d)

if there exists witness w = (V1(x), . . . , Vd−1(x)), for all i, Vi(x) : {0, 1}logNi →
F, and for 0 ≤ i < d, z ∈ {0, 1}logNi it satisfies the following equations

Ṽi(z)

=
∑

y∈{0,1}ni

β̃ni
(z,y) ·

 ∑
x∈{0,1}ni+1

C̃i+1(y,x)Ṽi+1(x)


+

 ∑
x∈{0,1}ni+1

Ãi+1(y,x)Ṽi+1(x)

 ∑
x∈{0,1}ni+1

B̃i+1(y,x)Ṽi+1(x)


(7)

SatLR1CS(x, w) = 1, otherwise 0. The set of satisfiable LR1CS instances can be
denoted as:

RLR1CS =
{
x ∈

{
(F, d,N0, Vd, V0, {Ai, Bi, Ci, Ni,Ki}1≤i≤d)

}
: SatLR1CS(x,w) = 1

}

Use LR1CS to denote Boolean circuits. We can easily see the completeness of
LR1CS to cover arithmetic circuits consist of addition and multiplication gates.
As for Boolean circuits, Lemma 1.1 in [17] has shown that any n-ary boolean
operation can be represented as a multilinear polynomial with n variables. Since
one-layer LR1CS can describe any multilinear polynomial with two variables,
it can also represent a layer of Boolean gates. We provide several examples to
write Boolean gates in LR1CS form in Table 4.1. In our protocol, to keep small
proving complexity, we assume that the Boolean circuit only consists of AND
gates and NOT gates.
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Gate Arithmetic form LR1CS (in: x, y, out: z)

XOR(a, b) a+ b− 2ab
C(z, x) = C(z, y) = 1
A(z, x) = −2
B(z, y) = 1

OR(a, b) a+ b− ab
C(z, x) = C(z, y) = 1
A(z, x) = −1
B(z, y) = 1

AND(a, b) a · b A(z, x) = 1
B(z, y) = 1

NOT(a,_) 1− a
C(z,N) = 1 (constant entry)
C(z, x) = −1

NAND(a, b) 1− ab
C(z,N) = 1
A(z, x) = −1
B(z, x) = 1

Table 1. Examples of writing boolean gates in LR1CS form

4.2 Interactive proof Protocol

Now we are aiming to design an interactive proof protocol for LR1CS. based on
the Definition 9 and Definition 10. Given an LR1CS instance x, we have the
following theorem:

Theorem 3. Let x ∈ RR1CS, assume NΣ =
∑d

i=0 Ni, there is an interactive
proof protocol with soundness O(d logNΣ/|F|). It uses O(d logNΣ) rounds of
interaction and the running time of the prover P is O(NΣ). Let T be the time
to evaluate all Ãi, B̃i and C̃i at the corresponding random points, the running
time of V is O(N0 +Nd + dlogNΣ + T ).

Proof. Similar to the GKR protocol, we prove the correctness of LR1CS instance
x layer by layer. At the beginning of the protocol, the verifier V sends a random
element rz,0 to the prover P. Next, both P and V compute Ṽ0(rz,0). After that,
for 0 ≤ i < d, P and V prove the computation for the i-th layer through the
following multilinear equation:

Ṽi(rz,i)

=
∑

y∈{0,1}ni

β̃ni(rz,i,y) ·

 ∑
x∈{0,1}ni+1

C̃i+1(y,x)Ṽi+1(x)


+

 ∑
x∈{0,1}ni+1

Ãi+1(y,x)Ṽi+1(x)

 ∑
x∈{0,1}ni+1

B̃i+1(y,x)Ṽi+1(x)


(8)

where ni+1 = logNi+1. With a similar idea from the proof of Theorem 2, P and
V go through the following stages:
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1. P and V prove a rowcheck relation. In this stage, the prover and the
verifier run a sumcheck protocol on the following equation:

Ṽi(rz,i) =
∑

y∈{0,1}ni

f(y)g(y) + h(y) (9)

where f(y), g(y) and h(y) are computed from the following equations:

f(y) =
∑

x∈{0,1}ni+1

Ãi+1(y,x)Ṽi(x) (10)

g(y) =
∑

x∈{0,1}ni+1

B̃i+1(y,x)Ṽi(x) (11)

h(y) =
∑

x∈{0,1}ni+1

C̃i+1(y,x)Ṽi(x) (12)

Computing each bookkeeping table requires O(Ni) in the proving time since
each matrix has O(Ni) non-zero entries. After the sumcheck protocol of
O(Ni+1 proving time, V receives f(ry), g(ry) and h(ry) from P.

2. P and V prove a lincheck relation. In this stage, V first sends (γi+1, δi+1, ηi+1)
to P. Then the two parties launch a sumcheck protocol for the following
equation:

γi+1f(ry) + δi+1g(ry) + ηi+1h(ry)

= γi+1

∑
x∈{0,1}ni+1

Ãi+1(ry,x)Ṽi(x)

+ δi+1

∑
x∈{0,1}ni+1

B̃i+1(ry,x)Ṽi(x)

+ ηi+1

∑
x∈{0,1}ni+1

C̃i+1(ry,x)Ṽi(x)

=
∑

x∈{0,1}ni+1

(
γi+1Ãi+1(ry,x) + δi+1B̃i+1(ry,x) + C̃i+1(ry,x)

)
Ṽi(x)

(13)
Therefore, by computing the bookkeeping table of Ṽi+1(x) together with(
γi+1Ãi+1(ry,x) + δi+1B̃i+1(ry,x) + C̃i+1(ry,x)

)
with complexity O(Ni +

Ni+1), P and V can run a sumcheck protocol within O(Ni +Ni+1) proving
time. This reduces the correctness to a single evaluation of Ṽi+1(rx). Before
the next step, we set rz,i+1 = rx.

After the protocol for all d layers, the correctness is reduced on a single point of
the input Ṽd(rz,d), which V can compute directly (or access the value through
an oracle). Consequently, the total proving time is O(NΣ).

As for the verification complexity, V needs to verify the intermediate messages
received from P in all stages, which sum up to be O(d logN) verifying time. In
addition, V needs to compute Ṽ0(rz,0) at the beginning of the scheme in O(N0),
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Ãi+1(ry, rz,i+1), B̃i+1(ry, rz,i+1), and C̃i+1(ry, rz,i+1) for each layer in O(T ), and
computing Ṽd(rz,d) at the end in O(Nd). Hence the total verifying complexity is
O(N0 +Nd + dlogNΣ + T ).

The soundness error is derived from the soundness error of the sumcheck
protocol.

The full interactive proof protocol is in Protocol 2

5 Efficient Interactive Proof Protocol for Data-parallel
Boolean Circuit

In this section, we present an efficient interactive proof for a data-parallel Boolean
circuit in the form of an LR1CS instance. By data-parallel circuit, we mean a
circuit composed of identical sub-circuits that are applied independently to dif-
ferent pieces of data. Data-parallel Boolean circuits have many applications in
blockchain and other scenarios, such as computing hashes and digital signatures
in applications such as zkRollups, zkEVM, and zkBridge.

To construct our protocol, we first provide the building blocks to efficiently
compute the inner product in two different settings. These building blocks are
presented in Section 5.1 and 5.2. Then, in Section 5.3, we present the complete
interactive proof protocol for the data-parallel Boolean circuit.

5.1 Inner Product between A Field Vector And Bit Vectors

We observe that the inner product between a field vector and several bit vectors
is with the same form of multi-scalar multiplication, therefore, we exploit the
Pippenger algorithm and achieve a sublinear time algorithm in terms of the field
operations. Formally, suppose given a field vector f ∈ Fℓ and q bit vectors bi ∈
{0, 1}ℓ for 0 ≤ i < q, the goal is to compute T [i] = ⟨f ,bi⟩. With the Pippenger
algorithm, we can split the field vector into w-sized segments {sk}0≤k<ℓ/w and
compute a table of all inner product between each sk and bit strings from {0, 1}w.
Then, to compute the result of the inner product for each vbi, we can directly look
up the answer of each slice in the table, and add them together. The complete
algorithm is described in Algorithm 1. The total complexity of this algorithm is
O
(
2w ℓ

w + q ℓ
w

)
field additions.

5.2 2-D Inner product to Maintain Book-keeping Table

Suppose the prover P and the verifier V want to go through a sumcheck protocol
to prove the following inner product equation:

σ(rz) =
∑

y∈{0,1}n

β̃n(rz,y)f̃(y)g̃(y) (14)

where f̃(y) and g̃(y) are two MLEs two binary vectors f(y) and g(y). Therefore,
from Lemma 1 in [29], the proving time is O(N) where N = 2n. Intuitively, in
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Protocol 2 (LR1CS-GKR) The protocol proceeds for the d-layer circuit.

– In the first round, V sends rz,0 ← Fn0 to P. Both P and V computes Ṽ0(rz,0).
– In the i-th round, where 0 ≤ i ≤ d− 1, P and V reduce the correctness of Ṽi(rz,i)

to the previous layer in the following two stages.
In the first stage, P and V prove a rowcheck relation.
1. P initializes three bookkeeping tables Tf [y], Tg[y] and Th[y] for y ∈ ZM , cor-

responding to the functions:

f(y) =
∑

x∈{0,1}ni

Ãi+1(y,x)Ṽi+1(x)

g(y) =
∑

x∈{0,1}ni

B̃i+1(y,x)Ṽi+1(x)

h(y) =
∑

x∈{0,1}ni

C̃i+1(y,x)Ṽi+1(x)

Then P and V run a sumcheck protocol for the following equation:

Ṽi(rz,i) =
∑

y∈{0,1}ni

f(y)g(y) + h(y)

During the protocol, V sends the random challenges ry ← Fm to P. To prove
the last step of the sumcheck protocol, P sends f(ry), g(ry), and h(ry) to V.

In the second stage, P and V prove a lincheck relation.
1. V sends three random challenges γi+1, σi+1, ηi+1 ← F to P.
2. With the randomness received from V, P initializes two bookkeeping tables

TA,B,C [x] and TV [x] for x ∈ ZNi+1 , corresponding to the functions fA,B,C(x)

and Ṽi+1(x), where

fA,B,C(x) = γi+1Ãi+1(ry,x) + δi+1B̃i+1(ry,x) + ηi+1C̃i+1(ry,x)

Then P and V run a sumcheck protocol for the following equation:

γi+1f(ry) + δi+1g(ry) + ηi+1h(ry) =
∑

x∈{0,1}ni+1

fA,B,C(x) · Ṽi+1(x)

While running the protocol, V sends the random challenges rx ← Fni+1 to P.
3. V computes Ãi+1(ry, rx), B̃i+1(ry, rx) and C̃i+1(ry, rx). If i ≤ d−2, V receives

Ṽi+1(rx) from P. Otherwise in the (d− 1)-th round, V calculates it from the
public input. After that V verifies the last step of the sumcheck protocol.

4. Before proceeds on the next layer, set rz,i+1 = rx.

the i-th round (0 < ℓ < n), the prover uses dynamic programming to maintain
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Algorithm 1 {T0, . . . , Tq−1} ← BatchInnerProduct(ℓ,F, q, {B0, . . . ,Bq−1})
Input: Vector length ℓ, a field vector F and q bit vectors {Bi}0≤i<q and the window
size w;
Output: {T0, . . . , Tq−1}, where Ti = ⟨F,Bi⟩.

1: for i = 0, . . . , ℓ/w − 1 do ▷ initialize the lookup table for the field vector
2: TF [i, 0] = 0
3: TF [i, 1] = F [i ∗ w]
4: for j = 1, . . . , w − 1 do
5: for k = 0, . . . , 2j − 1 do
6: TF [i, k + 2j ] = TF [i, k] + F [i ∗ w + j]
7: end for
8: end for
9: end for

10: for i = 0, . . . , q − 1 do ▷ compute each inner product
11: Ti = 0
12: for j = 0, . . . , ℓ/w − 1 do
13: index = 0 ▷ compute the index of the lookup table
14: for k = w − 1, . . . , 0 do
15: index = index ∗ 2 +Bi[j ∗ w + k]
16: end for
17: T [i] = Ti + TF [j, index]
18: end for
19: end for

the three book-keeping tables with N
2i entries with

Tβ

[
y(ℓ)

]
= β̃n−i (rz,y[0 : n− ℓ]∥ry[n− ℓ : n])

Tf

[
y(ℓ)

]
= f̃ (y[0 : n− ℓ]∥ry[n− ℓ : n])

Tg

[
y(ℓ)

]
= g̃ (y[0 : n− ℓ]∥ry[n− ℓ : n])

where y[0 : n− ℓ] denotes the binary string (y0, . . . , yn−ℓ−1) with the octal form
y(ℓ), y(ℓ) =

∑n−ℓ−1
j=0 2jyj . With those tables, it’s easy to follow the sumcheck

protocol in O(N) field operations. Algorithm 2 and Algorithm 3 describe the
process of computing tables and sumcheck protocol correspondingly.

When f̃ and g̃ are MLEs for binary vectors, with corresponding book-keeping
table A(ℓ)

f and A
(ℓ)
g in ℓ-th round. From Algorithm 2 and Algorithm 3, we observe

the two facts:
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Algorithm 2 F ← FunctionEvaluations(f,A, r0, . . . , rn−1)

Input: Multilinear f on ℓ variables, initial bookkeeping table A, random r0, . . . , rn−1;
Output: All function evaluations f(b0, . . . , bn−ℓ−2, t, rn−ℓ, . . . , rn−1);
1: for ℓ = 0, . . . , n− 1 do
2: for b ∈ {0, 1}n−ℓ−1 do ▷ b is both a number and its binary representation.
3: for t = 0, 1, 2 do
4: Let f(b, t, rn−ℓ, . . . , rn−1) = A[b] · (1− t) + A[b+ 2n−ℓ−1] · t
5: end for
6: A[b] = A[b] · (1− ri) + A[b+ 2n−ℓ−1] · ri
7: end for
8: end for
9: Let F contain all function evaluations f(.) computed at Step 4

10: return F

Algorithm 3 {a0, . . . , an−1} ← SumCheckProduct(f,Af , g,Ag, r0, . . . , rn−1)

Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r0, . . . , rn;
Output: n messages for ai(x) =

∑
b∈{0,1}n−ℓ−1

f(b, x, rn−ℓ, . . . , rn−1)g(b, x, rn−ℓ, . . . , rn−1).

Each message ai consists of 3 elements (ai0, ai1, ai2);
1: F ← FunctionEvaluations(f,Af , r0, . . . , rn−1)
2: G ← FunctionEvaluations(g,Ag, r0, . . . , rn−1)
3: for ℓ = 0, . . . , n− 1 do
4: for t ∈ {0, 1, 2} do
5: ait =

∑
b∈{0,1}ℓ−i f(b, t, rn−ℓ, . . . , rn−1)g(b, t, rn−ℓ, . . . , rn−1) ▷ All

evaluations needed are in F and G.
6: end for
7: end for
8: return {a0, . . . , an−1};
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1. The computation process of the book-keeping table is organized as a binary
tree from the leaves to the root. Each leaf value corresponds to an entry in
the vector, and each intermediate node is a random combination of its two
sons. Therefore, A(ℓ)

fg is the value of nodes on the ℓ-th layer (leaves are on
the 0-th layer).

2. For each round of sumcheck protocol, for each evaluation t ∈ {0, 1, 2} as-
signed in the current variable, it essentially computes an “inner product”
between all tables.

From the two properties, we observe that for a vector f [0 : n] when fixing the
block size wa = 2logwa , for the first logwa stages, there are only wa essen-
tially different sub-tree defined by the value of (f(b∥0), . . . , f(b∥wa − 1)) and
w2

a different “inner product” defined by the value of (f(b∥0), . . . , f(b∥wa − 1))
and (g(b∥0), . . . , g(b∥wa − 1) for some b ∈ {0, 1}n−logwa . Therefore, we further
split this stage into two sub-stages. The first sub-stage contains the first logwa

rounds of the sumcheck protocol. Roughly speaking, we compute a table for all
a2 different cases of ”inner product“ slices and look up from the table through
the value of two vectors before each round. The second stage contains n− logw
rounds, where we fill the book-keeping table and then run a traditional sumcheck
protocol.

Sub-stage 1: For the first logwa rounds In the first sub-stage, we use
A

(ℓ)
fg [v, ⋆] to defined the ℓ-th layer of the subtree defined by vector v ∈ {0, 1}wa

and randomness ry[n−ℓ, n] = ry,n−ℓ, . . . , ry,n−1. At the beginning of ℓ-th round,
we compute all w2

a different results of T(ℓ)[vf ,vg, iwb
] where

T(ℓ)[vf ,vg, iwb
, x]

=
∑

i′∈{0,1}log wa−ℓ−1

 ∑
b∈{0,1}

∑
i∈{0,1}ℓ

vf (i
′∥i)β̃1(b, x)β̃ℓ(i, ry[n− ℓ, n])


·

 ∑
b∈{0,1}

∑
i∈{0,1}ℓ

vg(i
′∥i)β̃1(b, x)β̃ℓ(i, ry[n− ℓ, n])


·

 ∑
b∈{0,1}

∑
i∈{0,1}ℓ

β̃logwa(rz[ℓ− logwa : ℓ], i′∥i)β̃1(b, x)β̃ℓ(i, ry[n− ℓ, n])


· β̃logwb

(rz[n− logwa − logwb : n− logwa], iwb
)

=
∑

i′∈{0,1}n−ℓ−1

 ∑
b∈{0,1}

β̃1(b, x)Aβ [i
′∥b]


·

 ∑
b∈{0,1}

β̃1(b, x)A
(ℓ)
fg [vf , i

′∥b]

 ·
 ∑

b∈{0,1}

β̃1(b, x)A
(ℓ)
fg [vg, i

′∥b]


· β̃logwb

(rz[n− logwa − logwb : n− logwa], iwb
)
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Then, by enumerating each pair of length-wa slices in f and g. We can compute
the polynomial at the ℓ-th round. Here, the functionality of iwb

is to avoid too
many field multiplications. Then at the ℓ-th round, the polynomial evaluated at
x ∈ {0, 1, 2, 3} is computed as follows:

p(ℓ)(x) =

N
wawb∑
i=0

β̃n−logwa−logwb
(rz[n− logwa − logwb : n], i)·b−1∑

j=0

T(ℓ) [f [(iwb + j)a : (iwb + j + 1)wa], g[(iwb + j)a : (iwb + j + 1)wa], j, x]


Algorithm 4 describes the process to update book-keeping table and compute
T(ℓ)[·, ·, ·, ·]. Algorithm 5 describes the complete process of this sub-stage proto-
col.

The complexity of this sub-stage is O
(
4wawawb +

N
wa

logwa

)
field additions

and O
(

N
wawb

logwa

)
field multiplications.

Sub-stage 2: For the remained n− logwa rounds From the previous sub-
stage, we only have a table A

(logwa−1)
fg with N

wa
entries, which is the root of

all sub-trees. Before the remaining sub-stage, we need to refill the table for
f̃(rz[0 : logwa], ilogwa

, . . . , in−1) and g̃(rz[0 : logwa], ilogwa
, . . . , in−1) at each

index (ilogwa
, . . . , in−1). In addition, we compute the book-keeping table for

β̃n−logwa(rz[logwa, n], ilogwa , . . . , in−1). After that, we proceed with the sum-
check protocol with Algorithm 3.

The complexity of this sub-stage is O
(

N
wa

)
field additions and multiplica-

tions.

5.3 Interactive Proof Protocol

In this section, we present our approach to constructing an efficient proving
protocol for data-parallel Boolean circuits. Our strategy involves adjusting the
equation that represents the relationship between adjacent layers in a way that
yields smaller stages and requires running the sumcheck protocol with only a
sublinear number of terms for each layer. To initialize the book-keeping table for
the sumcheck protocols, we use Algorithm 1 and Algorithm 4 to accelerate the
computation.

Theorem 4. Let x = (F, d,N0, Vd, V0,
{
Āi, B̄i, C̄i, Ni,Ki

}
1≤i≤d

) ∈ RLR1CS for
a data-parallel circuit consisting of M = 2m identical sub-circuits. Assume NΣ =∑d

i=0 Ni, there is an interactive proof protocol with soundness O(d logNΣ/|F|).
It uses O(d logNΣ) rounds of interaction and the running time of the prover P
is O

(
dM + d4w logw + NΣ

w logw
)

field additions and O
(
dM + NΣ

w + d4w logw
)

field multiplications. Let T be the time to evaluate all Ãi, B̃i and C̃i at the
corresponding random points and Nd be the number of outputs, the running time
of V is O(Nd + d logNΣ + T ).
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Algorithm 4
{
T(ℓ)[vf ,vg, ib, x]

}
← ProductBlock

(
rz,A

(ℓ−1)
β ,A

(ℓ−1)
fg , ry,n−ℓ

)
Table dimensions: vf ,vg ∈ {0, 1}wa , iwb ∈ {0, 1}

logwb , x ∈ [4]

Input: The randomness rz, the table A
(ℓ)
fg [v] denoting when the block is v ∈

{0, 1}logwa , the value of the book-keeping table, the table A
(ℓ)
β the book-keeping table

for β̃logwa(rz[n− logwa : n], ⋆);
Output: {T[vf ,vg, ib, x]}vf ,vg∈{0,1}wa ,iwb

∈{0,1}log wb ,x∈[4], denoting the corresponding
table entry when proceeding index is ib, the block vector are vf and vg, evaluated on
x.
1: if ℓ ≥ 1 then
2: hsize← 2logwa−ℓ−1

3: for i = 0, . . . , hsize do
4: A

(ℓ)
β [i]← A

(ℓ−1)
β [i](1− ry,n−ℓ) +A

(ℓ−1)
β [i+ hsize]ry,n−ℓ;

5: end for
6: for v = 0, . . . , 2wa − 1 do
7: for i = 0, . . . , hsize do
8: A

(ℓ)
fg [v, i]← A

(ℓ−1)
fg [v, i](1− ry,n−ℓ) +A

(ℓ−1)
fg [v, i+ hsize]ry,n−ℓ;

9: end for
10: end for
11: else
12: Initialize A

(0)
β ,A

(0)
fg ;

13: end if
14: for ib ∈ {0, 1}logwb do
15: for vf = 0, . . . , 2wa − 1 do
16: for vg = 0, . . . , 2wa − 1 do
17: for (x ∈ {0, 1, 2, 3}) do
18: hsize = 2logwa−ℓ

19: for i = 0, . . . , hsize− 1 do
20: β ← A

(ℓ)
β [i](1− x) +A

(ℓ)
β [i+ hsize];

21: σf ← A
(ℓ)
fg [f , i](1− x) +A

(ℓ)
fg [f , i+ hsize];

22: σg ← A
(ℓ)
fg [g, i](1− x) +A

(ℓ)
fg [g, i+ hsize];

23: T[vf ,vg, ib, x]← T[vf ,vg, ib, x] + β · σf · σg

24: end for
25: T(ℓ)[vf ,vg, ib, x]← T(ℓ)[vf ,vg, ib, x] · β̃logwb(rz[n− logwa − logwb :

n− logwa], iwb);
26: end for
27: end for
28: end for
29: end for
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Algorithm 5
(
p(0)(x), . . . , p(logwa−1)(x)

)
← SumcheckBlockProduct(rz, ry, f, g)

Input: The existing randomness rz, the randomness from the verifier ry, n = logN ,
block size wa, two vectors f and g with length N ;
Output: p(0)(x), . . . , p(logwa−1)(x), which are the polynomial sent in the first logwa

rounds.
1: for ℓ = 0, . . . , logwa − 1 do
2: T(ℓ) ← ProductBlock(rz,A

(ℓ−1)
β ,A

(ℓ−1)
fg , ry,n−ℓ)

3: p(ℓ)(x)← 0 for x ∈ {0, 1, 2, 3};
4: for i = 0, . . . , N

wawb
do

5: p[i](x)← 0 for x ∈ {0, 1, 2, 3};
6: for j = 0, . . . , wb − 1 do
7: f = f [(iwb + j)wa : (iwb + j + 1)wa];
8: g = g[(iwb + j)wa : (iwb + j + 1)wa];
9: p[i](x)← p[i](x) + T(ℓ)[f ,g, j, x];

10: end for
11: p(ℓ)(x)← p[i](x) ∗ β̃n−log a−log b(rz[log(wawb) : n], i);
12: end for
13: end for

Algorithm 6 (Aβ ,Af ,Ag)← RefillTable(A(logwa−1)
β ,A

(logwa−1)
fg , f, g, rz[0 : n−

logwa], ry,n−logwa
)

Input: Afg is the book-keeping table for blocks from the last sub-stage, rz[0 :
n− logwa];
Output: Aβ ,Af ,Ag are book-keeping tables for β̃n−log a(rz, i), f̃(rz[0 : n −
logwa], i), g̃(rz[0 : n− logwa], i);
1: Initialize the binary tree from rz[0 : n− logwa], fill the table Aβz with the leaves;
2: for i = 0, . . . , N

wa
− 1 do

3: Aβ [i]← Aβ [0](1− ry,n−logwa) +Aβ [1]ry,n−logwa

4: Af [i] = Afg[f [iwa : (i + 1)wa], 0](1 − ry,n−logwa) + Afg[f [iwa : (i +
1)wa], 1]ry,n−logwa ;

5: Ag[i] = Afg[g[iwa : (i + 1)wa], 0](1 − ry,n−logwa) + Afg[g[iwa : (i +
1)wa], 1]ry,n−logwa ;

6: end for
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In the theorem above, by definition, Āi+1, B̄i+1, C̄i+1 ∈ FNi×Ni+1 to represent
the original circuit, while in the following proof, we use Ai+1, Bi+1 and Ci+1 ∈
FNi/M,Ni+1/M to denote the computation of the identical sub-circuit, with Ãi+1,
B̃i+1, C̃i+1 as MLE of each matrix. From the equality of the sub-circuits, the
number of non-zero entries in Ai+1, Bi+1 and Ci+1 are O

(
Ni

M

)
.

Proof. Instead of proving through the Equation 8, we rewrite the relation for-
mula as follows:

Ṽi(z∥t) =
∑

s∈{0,1}m

β̃(t, s)
∑

y∈{0,1}ni−m

β̃(z,y) ·

 ∑
x∈{0,1}ni+1−m

C̃i+1(y,x), Ṽi+1(x∥s)

+

 ∑
x∈{0,1}ni+1−m

Ãi+1(y,x)Ṽi+1(x∥s)

 ∑
x∈{0,1}ni+1−m

B̃i+1(y,x)Ṽi+1(x∥s)


(15)

Same as the previous section, at the beginning of the protocol, the verifier
V sends a random element rz,0 ← Fn0−m and rt,0 ← Fm to the prover P. Next,
both P and V compute Ṽ0(rz,0∥rt,0). After that, for 0 ≤ i < d the two parties
go through the following stages:

1. P and V prove the row-check relation in terms of (y∥s). For this
stage, the formula to be proved is

Ṽi(rz,i∥rt,i) =
∑

y∥s∈{0,1}ni

β̃m(rt,i, s)β̃ni−m(rz,i,y) · (f(y∥s)g(y∥s) + h(y∥s))

(16)
where

f(y∥s) =
∑

x∈{0,1}ni+1−m

Ãi+1(y,x)Ṽi+1(x∥s) (17)

g(y∥s) =
∑

x∈{0,1}ni+1−m

B̃i+1(y,x)Ṽi+1(x∥s) (18)

h(y∥s) =
∑

x∈{0,1}ni+1−m

C̃i+1(y,x)Ṽi+1(x∥s) (19)

In this stage, P and V first go through Sub-stage 1 by Algorithm 5. After that
P runs Algorithm 6 to initialize the book-keeping table needed in Sub-stage
2. Then P and V run Algorithm 3 to finish this stage.
From the previous conclusion, the first stage cost O

(
4wawawb +

Ni+1

wa
logwa

)
field additions and O

(
4wawawb +

Ni+1

wa

)
multiplications. Before the next

stage, P sends V three evaluations f(ry∥rs), g(ry∥rs) and h(ry∥rs), with
randomness (ry∥rs)← Fni from the verifier.

2. P and V prove a lincheck relation in terms of x. After the first stage,
the variable s and y has been assigned to rs and ry. Before the next phase,
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V also sends (γi+1, δi+1, ηi+1) to P. Then the two parties run a sumcheck
protocol through the following summation formula:

γi+1f(ry∥rs) + σi+1g(ry∥rs) + ηi+1h(ry∥rs)

= γi+1

∑
x∈{0,1}ni+1−m

Ãi+1(ry,x)Ṽi+1(x∥rs)

+ σi+1

∑
x∈{0,1}ni+1−m

B̃i+1(ry,x)Ṽi+1(x∥rs)

+ ηi+1

∑
x∈{0,1}ni+1−m

C̃i+1(ry,x)Ṽi+1(x∥rs)

=
∑

x∈{0,1}ni+1−m

(γi+1Ãi+1(ry,x) + σi+1B̃i+1(ry,x) + ηi+1C̃i+1(ry,x))

· Ṽi+1(x∥rs)
(20)

During the initialization, we first compute (Ãi+1(ry,x), B̃i+1(ry,x), and
C̃i+1(ry,x)) and then the table of (γi+1Ãi+1(ry,x)+ σi+1B̃i+1(ry,x)+ ηi+1

C̃i+1(ry,x)) can be computed from their combination. For the book-keeping
table of Ṽi+1(x∥rs). We claim that

Ṽi+1(x∥rs) =
∑

j∈{0,1}m

β̃m(rs, j)Ṽi+1(x∥j) (21)

which is also consistent with the input form of Algorithm 1. Thus we compute
Ṽ (x∥rs) for x ∈ {0, 1}ni+1−m in the following steps:
– For 0 ≤ j < M with the binary representation j, compute F [j] = β̃(rs, j),

which requires O(M) multiplications.
– For 0 ≤ x < Ni+1/M , set Bx[j] = Ṽi+1(x∥j)
– Use Algorithm 1 with the input (M,F,Ni+1/M, {Bx}0≤x<Ni+1/M ) to

compute Ṽi+1(x∥rs) for x ∈ {0, 1}ni+1−m The cost is O
(

M
w 2w + Ni+1

w

)
field additions.

Therefore, the complexity for the second stage is O
(
M + Ni+1

M

)
field mul-

tiplications and O
(

M
w 2w + Ni+1

w

)
field additions.

3. Overall, the complexity for a layer is O(4wawawb+
Ni+1

wa
logwa+

M
w 2w+Ni+1

w )

field additions and O(4wawawb +
Ni+1

wa
+M + Ni+1

M ) field multiplications.
4. By choosing wa, wb, w = 0.1 logNΣ ,M = N0.1, 4wawawb becomes Õ(N0.2)

and 2w M
w = Õ(N0.2) which can be absorbed by the larger term in big-O

notation. So the simplified complexity is O( NΣ

logNΣ
log logNΣ) field additions

and O( NΣ

logN ) field multiplications.

After going through the protocols for d layers, the complexity is O
(

NΣ

logNΣ

)
field multiplications and O

(
NΣ

logNΣ
log logNΣ

)
field additions. Since field ad-
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dition takes O(ω(1)) RAM operations and field multiplication takes O(ω2(1))

operations, the final complexity is O
(
ω(1) NΣ

logNΣ
log logNΣ

)
RAM operations.

5.4 Polynomial commitment for GKR

To convert the GKR protocol into a succinct argument, as described in [29, 34],
a polynomial commitment needs to be added on top of it. For this purpose, we
will use the polynomial commitment developed by Orion and Brakedown [31,
14]. We present their result as follows:

Theorem 5 (Polynomial commitment). There is a polynomial commitment
protocol that, given a multivariate polynomial f(·) with a size of O( N

logN ), achieves
O( N

logN ) field operations in the prover’s computation, with a succinct verifier.

5.5 Putting everything together

Combining the polynomial commitment with our GKR protocol, we obtain a
succinct argument protocol, which is formally described as follows:

Theorem 6. Let TPC(·) be the verification time of the polynomial commitment
scheme, and SPC(·) be the proof size of the polynomial commitment. There is a
succinct argument protocol for Boolean circuits that satisfies the following prop-
erties:

1. The Boolean circuit has size O(N) and is composed of O(
√
N) copies of

identical sub-circuits.
2. The input size of the Boolean circuit is O( N

logN ).
3. Prover’s computation: O(ω(1) N

logN log logN) RAM operations.
4. Verifier’s computation: polylog(N) + TPC(

N
logN ) field operations.

5. Proof size: O(d logN) + SPC(
N

logN ) field elements.
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Protocol 3 (P-LR1CS-GKR) The protocol proceeds for the d-layer circuit.

– In the first round, V sends rz,0 ← Fn0−m, rt,0 ← Fm to P. Both P and V computes
Ṽ0(rz,0∥rt,0).

– In the i-th round, where 0 ≤ i ≤ d − 1, P and V reduce the correctness of
Ṽi(rz,i∥rt,i) to the previous layer in the following two stages.
In the first stage, P and V prove a rowcheck relation. P and V need to prove the
following equation:

Ṽi(rz,i∥rt,i) =
∑

y∥s∈{0,1}ni

β̃m(rt,i, s)β̃ni−m(rz,i,y)f(y∥s)g(y∥s) + h(y∥s)

where

f(y∥s) =
∑

x∈{0,1}ni+1−m

Ãi+1(y,x)Ṽi+1(x∥s)

g(y∥s) =
∑

x∈{0,1}ni+1−m

B̃i+1(y,x)Ṽi+1(x∥s)

h(y∥s) =
∑

x∈{0,1}ni+1−m

C̃i+1(y,x)Ṽi+1(x∥s)

The protocol split this stage into the following two sub-stages:
1. For the first log a rounds, P and V run Algorithm 5.
2. P calls Algorithm 6 to initialize the book-keeping table for f(·), g(·) and h(·).

After that, P and V run a sumcheck protocol with respect to Algorithm 3.
3. After the final step of the sumcheck protocol, P sends V three evaluations

f(ry∥rs), g(ry∥rs) and h(ry∥rs), where (ry∥rs) ← Fni are randomness re-
ceived from V during the first stage.

In the second stage, P and V prove a lincheck relation.
1. V sends three random challenge γi+1, σi+1, ηi+1 ← F to P.
2. With the randomness received from V, P initializes two book-keeping tables

TA,B,C [x] for x ∈ ZNi+1/M , and uses Algorithm 1 again to initializes TV [x],
corresponding to the functions fA,B,C(x) and Ṽi+1(x∥rs) where

fA,B,C(x) = γi+1Ãi+1(ry,x) + σi+1B̃i+1(ry,x) + ηi+1C̃i+1(ry,x)

Then P and V run a sumcheck protocol for the following equation:

γi+1f(ry∥rs) + σi+1g(ry∥rs) + ηi+1h(ry∥rs)

=
∑

x∈{0,1}ni+1−m

fA,B,C(x) · Ṽi+1(x∥rs)

While running the protocol, V sends the random challenges rx ∈ Fni+1−m to
P.

3. V computes Ãi+1(ry, rx), B̃i+1(ry, rx) and C̃i+1(ry, rx). If i ≤ d−2, V receives
Ṽi+1(rx∥rs) from P. Otherwise in the (d − 1)-th round, V calculates it from
the public input. After that V verifies the last step of the sumcheck protocol.

4. Before the next step, set rz,i+1 = rx, and rt,i+1 = rs.
30


