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Abstract. In this paper, we present two early stopping Byzantine agree-
ment protocols in the authenticated setting against a corrupt minority
t < n/2, where t represents the maximum number of malicious parties.
Early stopping protocols ensure termination within a number of rounds
determined solely by the actual number of malicious nodes f present
during execution, irrespective of t.
Our first protocol is deterministic and ensures early stopping termination
in (d + 5) · (⌊f/d⌋ + 2) + 2 rounds, where d is a fixed constant. For
example, for all d ≥ 6, our protocol runs in at most (1 + ϵ) · f rounds
(where 0 < ϵ < 1), improving (for large f) upon the best previous early
stopping deterministic broadcast protocol by Perry and Toueg [1], which
terminates in min(2f+4, 2t+2) rounds. Additionally, our second protocol
is randomized, ensuring termination in an expected constant number of
rounds and achieving early stopping in (d + 9) · (⌊f/d⌋ + 1) + 2 rounds
in the worst case. This marks a significant improvement over a similar
result by Goldreich and Petrank. [2], which always requires an expected
constant number of rounds and O(t) rounds in the worst case, i.e., does
not have the early stopping property.

1 Introduction

Byzantine Agreement (BA) is a fundamental problem in distributed computing.
In the BA problem, n parties start with some value in {0, 1} and wish to jointly
agree on one value while tolerating up to t < n/2 Byzantine parties (Agree-
ment.) If all honest parties start with the same value, they must output that
value (Validity.) The foundations of this field were established by the pioneering
work of Lamport, Shostak, and Pease in the 1980s [3]. One of the main metrics
of efficiency for BA protocols is their round complexity, i.e., the number of syn-
chronous interactions required for the protocol to terminate. This is the focus of
our paper.

A seminal result by Dolev and Strong [4]3 demonstrates that any BA protocol
capable of tolerating t < n/2 malicious parties necessitates at least t+1 rounds
⋆ This holds for all d ≥ 6 and f > 2d2+8d

d−5
, where d is a predefined fixed constant. In

general, our protocol achieves a round complexity of (1 +O(1/d)) · f +O(d) , which
simplifies to (1 + ϵ) · f whenever d behaves as a constant in f .

3 [4] presents the result for Byzantine Broadcast, a variant of Byzantine Agreement
in which a designated sender sends an input value to other parties who must reach
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in some runs. However, this bound is considered loose for protocol executions
where the number of corruptions, f , is less than t. According to Dolev et al. [5],
the round complexity lower bound in this scenario is min{f + 2, t + 1}. Thus,
a series of works studies early stopping protocols that terminate based solely on
the actual number of corruptions f . For the information-theoretic setting and
t < n/3, this has culminated in the work of Abraham and Dolev [6] who gave
the first early stopping protocol with polynomial communication and optimal
round complexity of min{f + 2, t + 1}. By comparison, the authenticated set-
ting (where signatures can be used) with t < n/2 malicious corruptions is far
less explored. To the best of our knowledge, the only early stopping protocol in
this setting is due to Perry and Toueg [1] which has (sub-optimal) round com-
plexity min{2f + 4, 2t + 2}. This raises the following natural question: Is there
an early-stopping protocol for authenticated Byzantine agreement with t < n/2
corruptions which approaches the lower bound of min{f + 2, t+ 1}? We answer
this question affirmatively by showing the following results:

– We begin by proving a deterministic early-stopping Byzantine agreement
protocol that terminates in (d+5) · (⌊f/d⌋+2)+2 rounds, where d is a fixed
positive constant. In particular, for all d ≥ 6 and

f >
2d2 + 8d

d− 5

our protocol always outperforms Perry and Toueg’s protocol. In general, our
protocol achieves a round complexity of

(1 +O(1/d)) · f +O(d) ,

which simplifies to (1 + ϵ) · f whenever d behaves as a constant in f .
– We then show an early stopping randomized Byzantine agreement proto-

col with expected constant rounds, whose worst-case round complexity is
(d+9) ·(⌊f/d⌋+1)+2, where again, d is a predefined constant. Our protocol
compares favorably with protocols obtained via the generic compiler of Gol-
dreich and Petrank [2]. Like our work, their compiler gives an expected con-
stant round protocol, but its worst-case round complexity is O(t)—therefore
it does not yield an early stopping protocol.

At the heart of our construction, we devise a novel method of eliminating
faulty parties that keep the protocol from terminating. Our construction relies
on prior work of Fitzi and Nielsen [7] to improve the ratio of eliminated parties
to protocol rounds. On average, our protocol eliminates 1 party every 1 + 5/d
rounds, whereas the protocol of Perry and Toueg’s protocol eliminates 1 party
every 2 rounds. We now explain our techniques in more detail.

consensus on this value. There is a known reduction to Byzantine Agreement with
optimal resilience of t < n/2.
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1.1 Technical Overview

Correct-Or-Detect Broadcast. We begin by recalling the Correct-Or-Detect
Broadcast protocol of Fitzi and Nielsen which forms the basis of our construction.
Their protocol, henceforth denoted Πd-CoD [7], is parametrized by an arbitrary
positive integer d and a designated sender Ps and runs in d+4 rounds. Πd-CoD is
based on the seminal broadcast protocol of Dolev and Strong, which itself runs
in t + 1 rounds and is secure against any number of t < n corrupted parties.
However, Πd-CoD is a binary protocol, meaning the sender can have a value of
either 0 or 1. It is also 1-biased: the designated sender sends their value to all
parties if the value is 1, but refrains from sending anything otherwise. Rather
than achieving full broadcast, parties in Πd-CoD terminate the protocol in two
possible modes C (correct) and D (detect). In case an honest party terminates
in mode C, Πd-CoD achieves the properties of broadcast, i.e., all parties agree on
the sender’s value. Moreover, if the sender Ps is honest, all honest parties always
terminate in mode C. On the other hand, if some honest party terminates in
mode D, Πd-CoD may not achieve the properties of broadcast. Yet, in this case,
the protocol ensures that all parties identify a common set of d corrupted parties.
To this end, every party Pi among the set of honest parties H outputs a list Fi of
parties it knows to be corrupted, where the protocol ensures that |

⋂
Pi∈H Fi| ≥ d.

It is important to note that there is no agreement among parties on what mode
the protocol terminates in (otherwise, Πd-CoD would be a full-fledged broadcast
protocol). We extend the construction of Fitzi and Nielsen for binary messages
to messages of arbitrary length in the straight-forward way by broadcasting a
message bit by bit and determining the termination mode as C iff all of the
bit-wise sub-instances output C. Otherwise, we output D and take the union of
identified malicious sets output in any of these instances.

As we use Πd-CoD as a subroutine, it is crucial to ensure that the agreed-upon
d faulty parties cannot participate in future invocations of Πd-CoD. Therefore, at
the beginning of Πd-CoD, parties issue each other proofs of participation (PoP).
Specifically, party Pi sends a signature to party Pj if Pj is not in the Fi. Since
honest parties are never included in each other’s faulty lists, each honest party
receives a PoP, allowing them to continue participating in the protocol. On the
other hand, parties identified as corrupt do not receive a PoP and are thereby
excluded from the protocol. To enforce this, each party attaches its PoP to
every message it sends within the protocol. Additionally, parties will only accept
messages from party Pj if they are accompanied by Pj ’s PoP. This method
ensures that each new invocation of Πd-CoD successfully identifies and excludes
d new malicious parties.

Graded Consensus with Detection. We now explain our main technical
building block, which we refer to as graded consensus with detection. For sim-
plicity, we focus here on our basic version of this primitive in which all parties
input a binary value vi along with their current list Fi of faulty parties. We
additionally require that honest parties are never in each others list of identified
corrupted parties.
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The protocol outputs a value yi ∈ {0, 1} along with a grade gi ∈ {0, 1} and
an updated list F∗

i of faulty parties. As with existing constructions of graded
consensus in the literature, our protocol uses the grade gi to indicate a party’s
confidence in its output yi. Graded consistency says that on outputting grade
gi = 1, Pi knows that all parties agree on Pi’s output yi, but they might not know
that they agree (as they have output grade 0). On the other hand, we ensure
graded validity : if all honest parties input the same value v to the protocol, then
all honest parties output yi = v and grade gi = 1.

The distinguishing feature of our new construction is to ensure that if two
honest parties Pi and Pj disagree on their respective outputs yi ̸= yj , then they
identify a common set of at least d corrupted parties and extend their faulty
lists F∗

i accordingly. Importantly, we can ensure that the intersection
⋂

Pi∈H F∗
i

contains at least d corrupt parties that are not contained in the common set
of parties’ faulty input lists

⋂
Pi∈H Fi. Because the faulty lists of honest parties

can never contain honest parties, this automatically implies that parties agree on
their output (albeit possibly with grade 0) once there are fewer than d malicious
parties. This property will be crucially exploited in our overall construction of
Byzantine Agreement.

From CoD-Broadcast to Graded Consensus with Detection. Our con-
struction is remarkably simple and builds on the multivalued CoD-Broadcast
described earlier. Each party sends its input (i, vi) via Πd-CoD to all other par-
ties. Including the identifier i with vi is crucial because vi might be 0, and without
i, Pi would not send its value to any party according to Πd-CoD. Honest parties
would then be unable to distinguish between an honest party with a value of
0 and a malicious party that does not have a valid PoP and therefore cannot
send anything. By ensuring that each message includes a non-zero component,
we guarantee that all parties send a non-zero message, allowing honest parties to
thereby confirm the honesty of the sender. To determine the output, we let par-
ties take a majority over all the instances that were received with output s ̸=⊥,
which means those instances belong to parties with valid PoP from Πd-CoD. To
output yi = v with grade gi = 1, a party Pi waits to observe t+1 instances ter-
minate on value v in mode C (and with output s ̸=⊥, where s is the identifier of
the sender Ps). On the other hand, for grade gi = 0, Pi simply takes the majority
bit over all instances with s ̸=⊥ (regardless of what mode they terminate in).
From the properties of Πd-CoD, it immediately follows that the usual consistency
and validity properties of graded consensus. On the other hand, disagreement
can only happen if at least one of the Πd-CoD instances terminates in mode D.
In this case, all parties can update their lists F∗

i with a common set of at least
d newly identified malicious parties. Moreover, our protocol adds only 1 round
(for PoPs) to the running time of Πd-CoD, thus coming out to a total running
time of d+ 5 rounds.

From GC with Detection to Deterministic Byzantine Agreement. We
run the detecting graded consensus protocol described above in iterations. In
each iteration k, parties update their input vi,Fi to the output value yi and
faulty list F∗

i of iteration k−1. A party Pi terminates after observing the graded
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consensus protocol outputting grade gi = 1 in some iteration k and running for
one more subsequent iteration. By graded validity, this ensures that parties all
parties observe the same condition by iteration k + 1 and can terminate by
iteration k + 2 at the latest. The detection property of our graded consensus
module ensures that in every iteration where parties do not terminate, they all
add d common parties to their list of identified corrupted parties. If there are less
than d malicious parties left, honest parties still output the same value. Thus,
after at most ⌊f/d⌋ iterations, all remaining parties must output the same value.
By the above argument, this ensures that they terminate within at most three
more iterations; one iteration to output the same value and two more from the
above argument. Since each iteration takes d+5 rounds, our running time comes
out to (d+ 5) · (⌊f/d⌋+ 3) many rounds.

Randomized Early Stopping Agreement. We conclude by explaining how
to randomize the protocol sketched above. In this manner, we obtain an expected
constant round protocol which also has early stopping complexity (d+9)·(⌊f/d⌋+
2). To this end, we add a few rounds on top of our detecting graded consensus
protocol so as to obtain a stronger version of graded consensus with three possible
grades 0, 1, and 2. Here grade 2 indicates the highest confidence in a binary
output yi and indicates agreement for any party who observes it. Thus, a party Pi

sets terminates after observing the graded consensus protocol outputting grade
gi = 2 and running for one more subsequent iteration. On the other hand, grade
1 leaves open the possibility that another honest party has grade 0, in which case
its corresponding output is the default value ⊥. Our construction also extends
the properties of the detecting properties of the (0, 1) graded consensus protocol
described above in the natural way and ensures that once no corrupted parties
remain, parties always agree on their output.

Using this strengthened version of detecting graded consensus, we are able
to run a standard construction of randomized byzantine agreement from graded
consensus. As before, we iterate instances of graded consensus and input the
output from the current iteration to the next iteration. However, parties update
their input to the next iteration to a common random coin whenever it outputs
⊥ with grade 0 in some iteration of the protocol. If the coin agrees for all parties
with some constant probability p, this ensures that parties agree on what they
input to any iteration with probability at least p/2. Thus, parties terminate the
protocol in O(2/p) = O(1) expected iterations of constant round length. The
exact round complexity in expectation is ((2/p) + 2)(d+9), where d+9 are the
number of rounds in an iteration. On the other hand, we can argue along the
same lines as for the deterministic case that all parties terminate in the worst
case after ⌊f/d⌋+2 iterations, i.e., there are less than d dishonest parties left to
obstruct termination.

Optimization In our current Byzantine agreement protocols, each party runs an
additional iteration after setting its output to assist other parties in setting their
outputs and ensuring agreement. However, there are scenarios where all honest
parties may set their output in the same iteration, resulting in an unnecessary
extra iteration. To circumvent this inefficiency, we rely termination certificates.
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Once an honest party sets its output yi = v, it sends a termination certificate
⟨terminate, v⟩i to all parties. From the agreement property of the protocols, all
honest parties will send termination certificates for the same value. Thus, if a
party receives t+1 termination certificates for the same value v, it sets its output
value if it wasn’t set before, forwards the t+1 certificates in the next round,
and then terminates. As discussed, this could potentially save an unnecessary
iteration. Consequently, the round complexity improves to (d+5)·(⌊f/d⌋+2)+2
and (d+9) · (⌊f/d⌋+1)+ 2 for determinstic BA and randomized BA protocols,
respectively.

1.2 Related Work

Byzantine agreement has been extensively studied since the pioneering work of
Shostak, Pease, and Lamport [3]. Dolev and Strong [4] established a critical
result, showing that any broadcast protocol tolerating t < n malicious parties
requires at least t+1 rounds. However, this bound was later refined by Dolev et
al. [5], who demonstrated that when the number of corruptions, f , is much less
than t, the lower bound is min(f + 2, t+ 1). Since then, significant progress has
been made in developing early stopping protocols.

The first such protocol in the information-theoretic setting with optimal re-
silience t < n/3 was introduced by Berman et al.[8], though it suffered from
exponential communication complexity. Garay and Moses later addressed this
issue, presenting a Byzantine agreement protocol with polynomial-sized messages
but slightly suboptimal early stopping round complexity of min(f+5, t+1)[9,10].
More recently, Abraham and Dolev [6] achieved a breakthrough by developing
the first early stopping protocol with polynomial communication, optimal re-
silience, and optimal round complexity of min(f+2, t+1). While the information-
theoretic setting has seen extensive research, there has been limited work in the
authenticated setting with optimal resilience t < n/2. To the best of our knowl-
edge, Perry and Toueg [1] provide the only authenticated early stopping protocol
with polynomial communication and a round complexity of min(2f + 4, 2t+ 2).

As for randomized protocols, it has been established that they can achieve
an expected constant number of rounds in both the information-theoretic set-
ting [11] and the authenticated setting [12,13,14]. However, these protocols have
a negligible probability of very long runs due to their failure probability. Goldre-
ich et al. [2] presented a method to eliminate the failure probability, achieving an
expected constant round complexity and worst-case round complexity of O(t)
for up to t < n/2 corruptions—therefore it does not yield an early stopping
protocol. A follow-up work further improved this, achieving expected constant
round complexity and optimal worst-case complexity of t+1 rounds for a worse
resilience of t < n/8 [15]. Achieving expected constant round complexity, t + 1
rounds worst case, and optimal resilience t < n/3 remains unresolved. Impor-
tantly, this question remains open even without considering the early stopping
worst-case round complexity. We note that it is possible to terminate randomized
protocols in round complexity that is independent of the number of corrupted
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parties. However, in this case, the number of rounds always depends on the de-
sired error probability δ of the protocol. This makes such protocols difficult to
compare to early stopping protocols. In particular, early stopping protocols may
require much fewer rounds to terminate when the number f of corruptions is
low.

Other works [16,17,18] have explored early stopping protocols but in much
weaker adversary settings, such as omission and crash adversary models. A recent
of work of Loss and Nielsen [19] gives the first early stopping protocol for the
dishonest majority setting with t < n corruptions, albeit with significantly worse
round complexity O(min{f2, t}).

1.3 Paper Organization

Section 2 provides definitions for Byzantine Agreement, (0, 1)-Graded, and (0, 1, 2)-
Graded d-Detecting Byzantine Agreement, as well as for the cryptographic prim-
itives we use, such as signature schemes and common coin. In Section 3, we
discuss the intuition and construction of the deterministic Byzantine agreement
protocol, along with its correctness proof. In Section 4, we present the intuition
and construction of the randomized Byzantine agreement protocol. Finally, we
propose a way to further optimize the round complexity in Appendix A. Some
other supplementary protocols are also deferred to the Appendix.

2 Preliminaries

We begin by introducing the model as well as basic definitions.

Network and Setup Assumptions. We assume a a fully connected network
of pairwise, authenticated channels between n parties {P1, ..., Pn} = P. We con-
sider the synchronous network model where all parties have access to a synchro-
nized clock and there is a known upper bound ∆ on the message delays of honest
parties. This allows parties to run protocols in a round-by-round fashion where
rounds are of length ∆ and any message that is sent by an honest party at the
beginning of a round are delivered by the end of that round to all honest parties.
Parties are assumed to have established a public key infrastructure (PKI) of a
digital signature scheme that provides an efficient signing routine Sign and an
efficient verification routine Verify. Every party Pi is associated with a public key
pki that is known to all parties and where (only) Pi knows the corresponding
secret key ski. This allows a party Pi to create a signature ⟨m⟩i on message m
using its secret key ski via ⟨m⟩i := Sign(ski,m). ⟨m⟩i can then be efficiently
verified by running Verify(pki, ⟨m⟩i,m). We refer to a signature ⟨m⟩i as valid if
Verify(pki, ⟨m⟩i,m) = 1. For ease of notation, we use the abbreviated notation
⟨m⟩i to refer to tuples (m, sign(m, ski)) throughout the paper.

As discussed in the introduction, each protocol is designed to invoke other
subroutines. Therefore, we implicitly assume that every protocol is associated
with a session identifier ssid, which indicates the session in which the protocol is
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invoked. Consequently, if a proof certificate is created using messages exchanged
during a session ssid, it will not be valid or applicable for use in any other
session ssid′ ̸= ssid. To maintain clarity in our notation, we refrain from explicitly
including ssid in our protocols.

Adversary Model. We consider an adaptive Byzantine adversary that can
corrupt up to t < n/2 parties at any point of a protocol execution. We refer to
the actual number of corruptions during an execution of the protocol as f ≤ t.
A corrupt (or malicious) party Pi is under full control of the adversary and may
deviate arbitrarily from the protocol. In particular, the adversary learns Pi’s
signing key ski, which allows it to sign messages on Pi’s behalf. In addition, we
allow the adversary to delete (or replace with its own) any undelivered messages
of a newly corrupted party Pi that Pi sent while it was still honest. We denote
the set of uncorrupted (or honest) parties as H.

We assume that the adversary is computationally bounded and cannot forge
signatures of honest parties. In line with the literature in this area, we treat
signatures as idealized primitives with perfect security. When instantiating the
signature scheme with an existentially unforgeable one, we obtain protocols with
non-neglible probability of failure.

Common Coin. We assume an ideal coin-flip protocol CoinFlip that allows
parties to agree with constant probability p < 1 on a random coin in {0, 1}. This
protocol can be viewed as an ideal functionality [20] that upon receiving input
r from t + 1 parties generates a random coin ci and sends (c

(r)
i ) to each party

Pi ∈ P, where c
(r)
i = c

(r)
j with probability at least p. The value remains uniform

from the adversary’s view until the first honest party has queried CoinFlip. Such
a primitive can be achieved using verfiable random functions [21], threshold
signatures [22], or verifiable secret sharing [14].

Next, we present definitions of well-known primitives, such as Byzantine
agreement and graded consensus. Then, we introduce new definitions for our
proposed protocols: graded consensus with detection.

Definition 1 (Byzantine Agreement). Let Π be protocol executed among
parties P1, ..., Pn, where each party Pi holds an input vi ∈ {0, 1} and outputs a
value yi ∈ {0, 1} upon terminating. A protocol Π achieves Byzantine Agreement,
if the following properties hold whenever at most t parties are corrupted.

– Validity: If every honest party Pi inputs vi = v, then all honest parties output
yi = v;

– Consistency: All honest parties output the same value v.
– Termination: Every honest party terminates.

Definition 2 ((0, 1, 2)-Graded Agreement). Let Π be a protocol executed
by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and outputs a value
yi ∈ {0, 1,⊥} and a grade gi ∈ {0, 1, 2} upon terminating. A protocol Π achieves
(0, 1, 2)-Graded Agreement if the following properties hold whenever at most t
parties are corrupted.
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– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 2

– Graded Consistency: Let Pi and Pj denote honest parties that output yi, gi
and yj , gj, respectively. Then (1) |gi − gj | ≤ 1 and (2) gi, gj ≥ 1 implies that
yi = yj

– Termination: Every honest party terminates.

Next, we define the Correct or Detect Broadcast primitive. It is important
to note that our definition differs from the one in [7]. In our version, each honest
party Pi inputs a faulty list Fi along with its initial value vi. Essentially, mali-
cious parties included in the initial faulty list of all honest parties are excluded
from participating in the protocol. Additionally, malicious parties identified dur-
ing the protocol execution are added to the party’s initial faulty list Fi. The
parties then return the updated faulty list F⋆

i , with the notation F⋆
i used to

distinguish it from the initial input faulty list Fi.

Definition 3 (Correct or Detect Broadcast (d-CoD)). Let Π be pro-
tocol executed by parties P1, ..., Pn where a designated sender Ps holds input
v ∈ {0, 1}∗. In addition, each party inputs a list of faulty parties Fi ⊂ P, and out-
puts a value yi ∈ {0, 1}∗, an updated faulty list F⋆

i ⊂ P, and a flag deti ∈ {C,D}
upon terminating. Π achieves Correct or Detect Broadcast (CoD), if the follow-
ing properties hold whenever at most t parties are corrupted and for all honest
parties Pi, Fi contains only corrupted parties.

– F-soundness: If an honest party Pi outputs F⋆
i , then F⋆

i consists only of
corrupted parties. Furthermore, Fi ⊆ F⋆

i .
– Consistency: If deti = C for some honest party Pi, then every honest party

Pj outputs yj = yi. In this case, we say that the protocol has correctness.
– Validity: If Ps is honest and is not included in Fj for every other honest

party Pj and inputs v, then every honest party Pi outputs (yi = v,Fi =
∅, deti = C).

– d-Detection: If for some honest party Pi, deti = D, then an additional d
parties are added to the faulty lists of all honest parties; that is,∣∣∣(⋂Pj∈H F⋆

j

)
\
(⋂

Pj∈H Fj

)∣∣∣ ≥ d. In this case, we say that the protocol has
detection.

– Termination: Every honest party terminates.

Definition 4 ((0, 1)-Graded d-Detecting Agreement). Let Π be a protocol
executed by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and a list
of faulty parties Fi ⊂ P and outputs a value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and
an updated faulty list F⋆

i ⊂ P upon terminating. Π achieves (0, 1)-Graded d-
Detecting Agreement if the following properties hold whenever at most t parties
are corrupted and for all honest parties Pi, Fi contains only corrupted parties.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 1

– Graded Consistency: If two honest parties Pi and Pj output gi = gj = 1,
respectively, then yi = yj
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– d-Detection: If two honest parties Pi and Pj output yi = 1 and yj = 0,
respectively, then an additional d parties are added to the faulty lists of all
honest parties; that is,

∣∣∣(⋂Pj∈H F⋆
j

)
\
(⋂

Pj∈H Fj

)∣∣∣ ≥ d.
– Soundness: If an honest party Pi outputs F⋆

i , then F⋆
i consists only of cor-

rupted parties. Furthermore, Fi ⊆ F⋆
i

– Termination: Every honest party terminates.

Definition 5 ((0, 1, 2)-Graded d-Detecting Agreement). Let Π be a pro-
tocol executed by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and
a list of faulty parties Fi ⊂ P and outputs a value yi ∈ {0, 1,⊥}, a grade
gi ∈ {0, 1, 2}, and an updated faulty list F⋆

i ⊂ P upon terminating. A protocol
Π achieves (0, 1, 2)-Graded d-Detecting Agreement if the following properties
hold whenever at most t parties are corrupted and for all honest parties Pi, Fi

contains only corrupted parties.
– Graded Validity: If all honest parties Pi have the same input value vi = v

then all honest parties output yi = v and gi = 2
– Graded Consistency: Let Pi and Pj denote honest parties that output yi, gi

and yj , gj, respectively. Then (1) |gi − gj | ≤ 1 and (2) gi, gj ≥ 1 implies that
vi = vj

– d-Detection: If any honest party Pi outputs gi < 2, then an additional d
parties are added to the faulty lists of all honest parties; that is,∣∣∣(⋂Pj∈H F⋆

j

)
\
(⋂

Pj∈H Fj

)∣∣∣ ≥ d.
– Soundness: If an honest party Pi outputs F⋆

i , then F⋆
i consists only of cor-

rupted parties. Furthermore, Fi ⊆ F⋆
i .

– Termination: Every honest party terminates.

Definition 6 (Proof of Participation). A proof of participation PoPi for a
party Pi ∈ P is a collection of t + 1 signatures of the form ⟨Pi⟩jl from distinct
signers Pj1 , . . . , Pjt+1 ∈ P. We say that PoPi is valid if for all l ∈ [t+ 1], ⟨Pi⟩jl
is valid with respect to pkjl .

Definition 7 (Signature Chain). Let m ∈ {0, 1}∗, let k ∈ N, and let PoPk

be the proof of participation of party Pk as per Definition 6. We write ⟨m⟩σ to
denote the nested messages and signatures ⟨. . . ⟨⟨m,PoPj1⟩j1PoPj2⟩j2 . . .PoPjk⟩jk
and refer to σ as a signature chain of length k. The expression ⟨m⟩σ is said to
be valid if, for all k, the signature with respect to pkjk is valid and the proof of
participation PoPjk is valid.

3 Deterministic Early-Stopping Byzantine Agreement

As previously discussed, both of our early-stopping protocols are built upon the
(0, 1)-Graded d-Detecting Byzantine Agreement protocol, which is itself derived
from the Correct-or-Detect Broadcast protocol Πd-CoD[7]. This protocol also uti-
lizes the Proof of Participation protocol ΠPoP[7] as a subroutine. We adopt a
bottom-up approach, initially introducing the aforementioned subroutines and
subsequently demonstrating the construction of the (0, 1)-Graded d-Detecting
Agreement protocol and our early-stopping protocols.
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3.1 Proof of Participation (ΠPoP)

At a high level, the Proof of Participation protocol, ΠPoP, allows each party to
obtain a proof PoP of its honesty. A proof of participation, PoP, is considered
valid if it consists of t+1 valid signatures from distinct parties Pj ∈ P in the
form ⟨Pi⟩j . To generate such a proof, each party Pi executes ΠPoP with the
input Fi, which represents its current view of faulty parties. In the first round of
ΠPoP, each party sends a message to all parties not in its faulty list Fi, asserting
their honesty. If a party Pj receives at least t+1 such messages, it uses them to
construct its PoP proof.

Next, we define the two primary properties of Πk
PoP in Lemma 1 and Lemma 2.

Protocol ΠPoP

– Input and Initialization: Let Fi denote Pi’s input. Pi sets PoPi :=⊥
– Round 1:
• For each party Pj /∈ Fi , party Pi sends ⟨Pj⟩i to party Pj

– Output Determination: If Pi receives valid signatures ⟨Pi⟩j from
at least t + 1 distinct parties, Pi collects these messages into PoPi. Pi

outputs PoPi and terminates.

Fig. 1. Code of ΠPoP for party Pi.

Lemma 1. Assume no honest party Pj is in the faulty list Fi of any other
honest party Pi. Then, each honest party Pj outputs a valid PoPj.

Proof. There are at most t < n/2 malicious parties. Each honest party Pi sends
⟨Pj⟩i to every party Pj /∈ Fi. As per assumption, every honest party pi will
receive at least t+1 messages of ⟨pi⟩j . Consequently, every honest party sets its
output PoPi to the aggregation of those received messages. ⊓⊔

Lemma 2. Assume there exists some party Pj such that Pj ∈ Fi for all honest
parties Pi ∈ P. Then, Pj does not output a valid PoPj.

Proof. There are at most t < n/2 malicious parties. No honest party will send
⟨pj⟩i to Pj ∈ Fi. Thus, Pj can collect at most t < n/2 such messages, which are
not enough to form PoPj . ⊓⊔

3.2 Correct or Detect Broadcast Protocols (Πd-CoD and Πd-MCoD)

In essence, Πd-CoD (Fig.2) is a broadcast protocol that ensures either all par-
ties agree on the sender’s value, or all honest parties identify a common set of
d corrupted parties. The protocol Πd-CoD is 1-biased, meaning the designated
sender Ps sends his value to parties only if it is vs = 1; otherwise, he refrains
from sending anything. Essentially, Πd-CoD is a modified binary version of Dolev-
Strong[4] that is 1- biased and forced to terminate in d + 5 rounds. In the first
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round, all parties run protocol ΠPoP to obtain a valid PoP. Only parties with
valid PoP are allowed to participate in the protocol. Every party tags along its
PoP when sending a message and only accepts messages from parties if they tag
along their valid PoP. In every round r > 1, if a party Pi receives a valid chain
⟨1⟩σ with respect to Definition 7, including the sender’s signature for the first
time, it accepts the message, appends its own signature and PoP, and forwards it
to all parties in the next round. Let ri be the first round where party Pi receives
such a message. Pi sets yi ∈ {0, 1} and deti ∈ {C,D} based on the value of ri.
If ri ≤ d + 2 or d + 5, Pi outputs deti = C; otherwise, it outputs deti = D. If
ri ≤ d+ 3, it outputs yi = 1; otherwise, it outputs yi = 0. For completeness, we
show the Πd-CoD protocol in Fig. 2 and state the correctness lemma (Lemma 3)
for Πd-CoD. We provide the complete proof in the appendix.

Protocol Πd-CoD

– Input and Initialization: If Pi = Ps, let vi and Fi denote P ′
i s input.

Otherwise, let vi denote Pi’s input.
Pi sets F⋆

i := ∅, yi := 0, deti := C, ri := d+ 5.
– Round 1:
• Party Pi runs ΠPoP on input Fi. Let PoPi denote the output.

– Round 2 (Pi = Ps): If the sender’s initial value is vs = 1, it sends
⟨1,PoPs⟩s to all parties. (Otherwise, it does nothing.)

– Rounds r = 3 to d+ 5 (Pi ̸= Ps):
• If Pi received a valid signature chain ⟨1⟩σ of length r − 1 in the

previous round and ri = r−2, it appends to the chain its signature
and PoP, i.e., it computes m := ⟨⟨1⟩σPoPi⟩i and sends m to all
parties.

• If Pi receives a valid signature chain ⟨1⟩σ of length r and
ri = d + 5, it sets ri := r − 1. Furthermore, for ⟨1⟩σ =
⟨. . . ⟨⟨1,PoPs⟩s . . .PoPk⟩kPoPj⟩j , Pi adds every party in Ps, . . . , Pk

in the signature chain to F⋆
i .

– Output Determination: If Pi = Ps, Pi sets yi := vs, deti := C and
terminates. Else if ri ≤ d + 3, party Pi sets yi := 1. Else if d + 4 ≤
ri ≤ d+ 5, it sets deti := D. Pi sets F⋆

i = F⋆
i ∪ Fi Finally, Pi outputs

yi, deti,F⋆
i and terminates.

Fig. 2. Code of Πd-CoD for party Pi.

Lemma 3. Πd-CoD achieves d-CoD as per Definition. 3 in d+ 5 rounds.

Next, we construct a protocol, Πd-MCoD (see Fig. 3), that extends the binary
input range of Πd-CoD to a multivalued range. To achieve this, multiple Πd-CoD
protocols can be executed concurrently, allowing the sender to send each bit of
their message string. Due to the concurrent execution, the resultant protocol
still runs in d + 5 rounds; however, the communication complexity increases
proportionally with the input size.
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For a party pi to output deti = C, all concurrently invoked Πd-CoD instances
must terminate with deti = C. Otherwise, the party outputs deti = D. The
output value yi is obtained by concatenating all output bits from each Πd-CoD
instance. The output faulty list F⋆

i is the union of all faulty lists produced by
each invoked instance of Πd-CoD. ⊓⊔

Protocol Πd-MCoD

– Input and Initialization: If Pi = Ps, let vs and Fi denote Ps’s input
and Pi sets l := |vs|. Otherwise, let Fi denote Pi’s input. Pi sets F⋆

i :=
∅, yi :=⊥, deti := D, ri := d+ 5

– Rounds r = 1 to d+ 5:
• Party Ps invokes in parallel l instances of Πd-CoD, where the input

for the jth instance is bit vi[j], j ∈ [l]. Let (yj
CoD, detji ,F

j
i ) denote

the output of the jth instance for party Pi

– Output Determination: If detji = C for all j ∈ [l], Pi sets deti :=
C. It sets yi := y1

CoD ∥ · · · ∥ yl
CoD and F⋆

i =
⋃l

j=1 F
j
i . Pi outputs

(yi, deti,Fi) and terminates.

Fig. 3. Code of Πd-MCoD for party Pi.

In the following lemma, we prove the correctness of Πd-MCoD per Definition 3

Lemma 4. Πd-MCoD achieves d-CoD as per Definition 3 and terminates in
d+ 5 rounds.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
F-soundness: The output faulty list F⋆

i is the union of all faulty lists F j
i

produced by the l parallel invocations of Πd-CoD. Based on the F-soundness of
the Πd-CoD protocol, the resulting faulty list F⋆

i contains only malicious parties.
Consistency: If an honest party Pi outputs deti = C, then for each j ∈ [l],
detji = C. Thus, by consistency of Πd-CoD, each party Pj outputs the same bits
in each of the l parallel instances of Πd-CoD as party Pi. Since the output yi is
the concatenation of all output bits of the l instances of Πd-CoD, party Pj will
output yj = yi.
Validity: If Ps is honest, it follows the same logic as discussed earlier since the
output value yi is simply the concatenation of the output values of all invoked
Πd-CoD instances and deti = C holds if for each instance j among those instances,
detji = C. Thus, validity follows directly from validity of Πd-CoD.
d-Detection: For a party to output deti = D, at least one instance j ∈ [l]
among the l parallel instances of Πd-CoD output detji = D. Thus, the d-Detection
property of Πd-CoD implies that at least d malicious parties are added to every
honest party Pi’s faulty list F⋆

i via F j
i .

Termination: Πd-MCoD consists of concurrent instances of Πd-CoD. Based on the
assumption that Πd-CoD terminates, Πd-MCoD will also terminate.
Round Complexity. Πd-MCoD consists of concurrent execution of Πd-CoD, which
runs in d+ 5 rounds. ⊓⊔
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3.3 (0, 1)-Graded d-Detecting Agreement Construction (Π1-GDA)

In summary, Π1-GDA (see Fig.4) is a variant of Graded Consensus protocols [11].
However, in Π1-GDA, honest parties also output a list of detected malicious par-
ties. Π1-GDA ensures that either every honest party outputs the same value yi, or
every honest party identifies at least d malicious parties (achieving d-detection).

In Π1-GDA, each party has input vi ∈ {0, 1} and faulty list Fi. Each party
outputs a value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and an updated list of identified
malicious parties F⋆

i ⊂ P. In the first round, each party Pi invokes Πd-MCoD with
input (i, vi). The reason for sending i along with the initial variable is that the
initial variable could be 0. Due to Πd-MCoD’s construction, the designated sender
will not send anything if the initial variable is 0, meaning parties will not receive
anything from the sender to determine if the party was honest or not. Therefore,
a unified message is sent so that if a party sent i ̸=⊥, all honest parties will
consider it honest and take its value into consideration when calculating the
final output. It is considered honest due to only parties with valid PoP can send
messages according to the construction of Πd-MCoD. For simplicity, we denote
Πj

d-MCoD as the protocol instance where Pj is the sender. Each party stores the
output ((ii,j , yi,j), det

j
i ,F

j
i ) from all terminated instances of Πj

d-MCoD for each
Pj ∈ P. Consequently, party Pi maintains a list Hi of all parties Pj that sent
a valid i ̸=⊥ via Πj

d-MCoD. Each party Pi takes the union of all the faulty lists
output by all Πd-MCoD instances to form F⋆

i , in addition to the parties in its
initial faulty list Fi.

To determine the output value yi and grade gi, a party Pi only considers the
output of Πj

d-MCoD from parties Pj in Hi. If there is a bit v ∈ {0, 1} such that for
at least t+ 1 of the parties Pj ∈ Hi, y

j
mCoD = v and detji = C, party Pi sets its

output to yi = v and gi = 1. Otherwise, if no such t+1 parties exist, Pi outputs
the majority value over values yi,j among parties Pj in Hi. The protocol runs
for d+5 rounds due to Πd-MCoD. We proceed to prove the correctness of Π1-GDA.

Lemma 5. Π1-GDA achieves graded validity as per Definition 4.

Proof. Assume that for all honest parties Pi, vi = v. Further, assume that for
each honest party Pi, Pi /∈ Fj for any honest party Pj . In the first round, each
honest party Pi invokes as the sender, Πd-MCoD on input ((i, v),Fi). According
to the validity of Πd-MCoD (Definition 3), if Pi is honest, each honest party Pj

outputs detij = C, ij,i = i and yj,i = v. Thus, every honest Pi will add Pj to the
list Hi. Thus, since there are at most t < n/2 malicious parties, every honest
party Pi will output (v, C,F j

i ) from at least t+1 instances of Πd-MCoD for parties
Pj ∈ Hi. Consequently, each honest party sets yi = v and gi = 1. ⊓⊔

Lemma 6. Π1-GDA achieves graded consistency as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party
Pj . A party Pi outputs yi = v and gi = 1 if at least t + 1 instances Πj

d-MCoD

corresponding to parties Pj ∈ Hi terminate with detji = C, and have the same
output value yi,j = v. From consistency of Πd-MCoD, every other honest party Pj
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Protocol Π1-GDA

– Input and Initialization: Let vi and Fi denote Pi’s input. Pi sets
yi := vi, gi := 0, Hi,F⋆

i := ∅, and yi,j , ii,j := ⊥ for j ∈ [n]
– Rounds r = 1 to d+ 5:
• Party Pi invokes Πd-MCoD on input ((i, vi),Fi). Denote the instance

of Πd-MCoD in which Pj is the sender as Πj
d-MCoD.

• Party Pi stores the output of Πj
d-MCoD for Pj ∈ P;

((ii,j , yi,j), det
j
i ,F

j
i ) := Πj

d-MCoD

• For each party Pj , if ii,j is not ⊥, Pi adds Pj to Hi.
– Output Determination:
• Party Pi accumulates the faulty lists of all instances of Πj

d-MCoD

along with the input Fi as F⋆
i =

⋃
j∈[n] F

j
i ∪ Fi.

• If there exists v ∈ {0, 1} and at least t+ 1 instances of Πj
d-MCoD for

Pj ∈ Hi that terminate with detji = C and output yi,j = v, then
Pi sets the output value yi := v and the grade gi := 1.

• Otherwise, Pi sets yi := v, where v is the the majority bit among
values yi,j where Pj ∈ Hi.

• Party Pi outputs yi, gi,F⋆
i and terminates.

Fig. 4. Code of Π1-GDA for party Pi.

outputs ij,k = i and yj,k = v for the same instances and adds the corresponding
parties to those instances to Hj . Since t < n/2, the majority bit over all values
yj,k, k ∈ Hj is also equal to v for every honest party Pj . Consequently, each
honest party sets yi = v.

We proceed to prove the d-detection property.

Lemma 7. Π1-GDA achieves d-detection as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any other honest party
Pj . Suppose two honest parties, Pi and Pj , output different values yi ̸= yj along
with respective grades gi = gj = 0 and faulty lists F⋆

i and F⋆
j . Pi determines

yi as the majority bit over values yi,j output from Πj
d-MCoD where Pj ∈ Hi.

The majority of these values can only differ if an instance of Πk
d-MCoD outputs

different values yi,k ̸= yj,k for Pi and Pj . The d-detection property of Πd-MCoD

ensures that at least d malicious parties are added to the faulty list of every
honest party when they take the union of the faulty lists output in all instances
of Πk

d-MCoD.

Finally, we prove soundness and termination.

Lemma 8. Π1-GDA achieves soundness, and termination as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Soundness. An honest party Pi adds additional parties to its initial faulty list
Fi by including the parties from the union of all the faulty lists generated by the
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Πj
d-MCoD instances for each Pj ∈ P. According to the F-soundness of Πd-MCoD,

the resulting F⋆
i will only include malicious parties.

Termination. Π1-GDA is constructed from concurrent instances Πd-MCoD. Based
on the assumption that Πd-MCoD terminates, Π1-GDA will also terminate.
Round Complexity. Π1-GDA protocol runs for d + 5 rounds as Πd-MCoD runs
for d+ 5 rounds. ⊓⊔

We summarize the previous lemmata into the main following Lemma of this
section:

Lemma 9. Π1-GDA, (Fig. 4) achieves (0, 1)-Graded d-Detecting Agreement as
per Definition 5. Furthermore, Π1-GDA terminates in d+ 5 rounds.

3.4 Deterministic Early-Stopping Byzantine Agreement Protocol
(ΠBAd)

In this subsection, we demonstrate how to construct the deterministic early-
stopping Byzantine agreement protocol, ΠBAd , using Π1-GDA. In ΠBAd , each party
starts with an input value vi ∈ {0, 1} and outputs an output value yi ∈ {0, 1}.
ΠBAd runs in iterations. In each iteration k, parties run Π1-GDA with input
(vi,Fi). Consequently, each party Pi stores the output (yGDAi , gi,Fi) of Π1-GDA.

Based on the grade gi obtained from Π1-GDA, each party Pi determines
whether it is safe to terminate. If Pi outputs gi = 0, it indicates that it is not
safe to terminate, and more iterations are required. Pi updates its input value
for the next iteration based on the output value yGDAi ∈ {0, 1} of Π1-GDA, setting
vi = yGDAi . Conversely, if Pi outputs gi = 1, it is confident that all other honest
parties Pj output the same value yGDAi = yGDAj due to the graded consistency of
Π1-GDA. In this case, Pi runs for one more iteration to ensure that other honest
parties can also safely terminate on the same value, as proven in Lemma 13.
Note, a party can set its output value yi in iteration k, but terminates a few
iterations later. A party only terminates when halti = true.

Each iteration consists of d+ 5 rounds: d+ 5 rounds for Π1-GDA. Therefore,
the overall round complexity of ΠBAd depends on the number of iterations it
runs. We demonstrate in Lemma 14 that the number of iterations is a function
of f .

First, we establish that honest parties are never included in the faulty lists
of other honest parties in any iteration. From this point forward, we assume this
lemma holds indefinitely. Consequently, the assumption of Π1-GDA as stated in
Definition 4 is always valid, and we may omit it from proofs for simplicity.

Lemma 10. At the start of each iteration k of ΠBAd , the faulty list Fi of every
honest party Pi contains only corrupted parties.

Proof. In the first iteration k = 1, the faulty lists of all honest parties are empty,
so the lemma holds trivially. For subsequent iterations k > 1, each party updates
its Fi based on the output of Π1-GDA. According to the soundness property of
Π1-GDA, no honest party Pi is included in the Fj of any other honest party Pj

in any of these iterations. Thus the claim follows by a simple induction. ⊓⊔
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Protocol ΠBAd

– Input and Initialization: Let vi denote Pi’s input. Pi sets halti :=
false, yi, yGDAi :=⊥,waiti :=∞ Fi := ∅

– While halti = false do
• Rounds 1 to d+ 5:

∗ Pi runs protocol Π1-GDA with input (vi,Fi) and stores output
(yGDAi , gi,Fi) := Π1-GDA

∗ If waiti = 1, Pi sets halti := true. Otherwise, if gi = 1 and
waiti > 1, Pi sets waiti := 1 and yi := yGDAi

∗ Each party Pi updates the input of next iteration by setting
vi := yGDAi

– Output Determination: If halti = true, Pi outputs yi and terminates.

Fig. 5. Code of ΠBAd for party Pi.

Next, we prove that if all honest parties set yGDAi to the same value in iteration
k, all honest parties terminate by at most iteration k + 2.

Lemma 11. If all honest parties Pi set yGDAi to the same value in iteration k,
then all honest parties terminate by at most iteration k + 2.

Proof. Let all honest parties Pi set yGDAi to the same value v in iteration k, i.e.,
yGDAi := v. If a party has grade gi = 1, it sets waiti := 1 and yi := v. Otherwise,
it does nothing. Consequently, each party updates its input value vi for the
subsequent iteration based on this output value of Π1-GDA, such that vi := v. In
the next iteration (k + 1), all honest parties invoke Π1-GDA with the same input
value v. According to the validity of Π1-GDA, all honest parties set gi := 1. If
waiti = 1, Pi sets halti = true, outputs yi = v and terminates in iteration k + 1.
Otherwise, each other honest party sets waiti = 1 and yi := v. In iteration k+2,
as waiti = 1, each honest party sets halti := true, outputs yi = v and terminates.

⊓⊔

Next, we proceed with proving validity and consistency for ΠBAd .

Lemma 12. ΠBAd achieves validity per Definition 1

Proof. Assume all honest parties have the same initial value (vi = v). Every
party invokes Π1-GDA with input (v,Fi). From graded validity of Π1-GDA, every
honest party outputs yGDAi = v and gi = 1. Consequently, as gi = 1, every honest
party sets waiti := 1 and yi = v. In the next iteration, each honest party outputs
yi = v and terminates. ⊓⊔

Lemma 13. ΠBAd achieves consistency per Definition 1

Proof. Let Pi denote the first honest party to set waiti := 1 and yi := v in the
earliest iteration, say k > 0, indicating it will wait for one more iteration before
terminating. This occurs when pi sets its grade gi to 1, determined by the output
of Π1-GDA in iteration k. According to the graded consistency of Π1-GDA, every
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other honest party Pj outputs yGDAj = v in iteration k. According to Lemma 11,
every honest party terminate with output yi = v by the latest in iteration k+ 2

⊓⊔

Finally, we prove the round complexity of ΠBAd .

Lemma 14. ΠBAd terminates in (d+ 5) · (⌊f/d⌋+ 3) rounds.

Proof. In any iteration k, if honest parties Pi and Pj have the same output
value yGDAi = yGDAj based on the output of Π1-GDA, then all honest parties
will terminate by iteration k + 2, as proven in Lemma 11. If in some iteration,
Pi and Pj have different output values, i.e., yGDAi ̸= yGDAj from Π1-GDA, then
according to the d-detection property of Π1-GDA, at least d malicious parties
are added to the faulty list Fi of all honest parties Pi ∈ P. Thus, since there
are f faulty parties, there can be at most ⌊f/d⌋ many iterations where there
are distinct honest parties Pi and Pj that output different values yGDAi ̸= yGDAj

from Π1-GDA. Thus, after at most ⌊f/d⌋ + 1 many iterations, all honest parties
output the same value yGDAi . Hence, they all terminate by iteration ⌊f/d⌋ + 3
by Lemma 11. Since each iteration takes d + 5 rounds, the overall complexity
comes out to (d+ 5) · (⌊f/d⌋+ 3)). ⊓⊔

We sum up Lemmata 12, 13, and 14 into Theorem 1 as follows:

Theorem 1. Assume a PKI setup and t < n/2. ΠBAd (Fig. 5) achieves Byzan-
tine Agreement per Definition. 1. Furthermore, ΠBAd terminates in (d + 5) ·
(⌊f/d⌋ + 3) rounds, for any execution with f ≤ t corrupted parties and runs in
communication complexity O(f · n4).

Proof. Byzantine Agreement follows from the preceeding lemmata. For the com-
munication complexity, we note that the complexity of an instancce of Πd-CoD is
O(n2 · d) and during each iteration of ΠBAd , O(n2) such instances are called to
broadcast the PoPs of length O(n) bit by bit for O(n) senders. Since the protocol
has O(f/d) iterations, the overall complexity is O(n2 · n2 · d · f/d) = O(n4 · f).

4 Byzantine Agreement with Expected Constant and
Worst-Case Early-Stopping Round Complexity

In this section, we introduce our randomized Byzantine Agreement protocol,
ΠBAr , which achieves both expected constant time and worst-case early-stopping
round complexity. Similar to our deterministic protocol, ΠBAr is built using the
(0, 1, 2)-Graded d-Detecting Agreement protocol, Π2-GDA. Therefore, we begin
by introducing Π2-GDA and then present the complete construction of ΠBAr .

4.1 (0, 1, 2)-Graded d-Detecting Agreement (Π2-GDA)

Similar to Π1-GDA protocol, Π2-GDA is a variant of Graded Consensus protocols[11],
which allows honest parties to also output a list of detected malicious parties.
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In Π2-GDA, each party starts with vi ∈ {0, 1} and faulty list Fi. Each party out-
puts a value yi ∈ {0, 1,⊥}, a grade gi ∈ {0, 1}, and an updated list of identified
malicious parties F⋆

i ⊂ P. Π2-GDA is constructed from Π1-GDA and the black-box
(0, 1, 2)-Graded Agreement protocol from [23], Π2-GA, which we include in the
Appendix. In the first round, each party Pi invokes Π1-GDA with input (vi,Fi),
storing the resulting output (y⋆i , g⋆i ,F⋆

i ). To enhance the confidence on its output
value, the parties run Π2-GA with y⋆i as its input. Finally, party Pi terminates
and outputs (yi, gi,F⋆

i ), where they are the output of Π2-GA. Note that the out-
put F⋆

i is the faulty list output from Π1-GDA and does not get updated further.
The protocol runs for d+9 rounds: d+5 for Π1-GDA and 4 additional rounds for
Π2-GA.

Protocol Π2-GDA

– Input and Initialization: Let vi and Fi denote Pi’s input. Pi sets
yi, y

⋆
i :=⊥, gi, g⋆i := 0,F⋆

i := ∅
– Rounds r = 1 to d+ 5:
• Pi invokes Π1-GDA with input (vi,Fi). Let (y⋆

i , g
⋆
i ,F⋆

i ) denote the
output.

– Rounds r = d+ 6 to r = d+ 9 :
• Pi invokes Π2-GA with input y⋆

i and let (yi, gi) denote the output.
– Output Determination: Pi outputs (yi, gi,F⋆

i ) and terminates

Fig. 6. Code of Π2-GDA for party Pi.

Lemma 15. Assume Π2-GA achieves (0, 1, 2)-Graded Agreement per Definition 2.
Π2-GDA achieves (0, 1, 2)-Graded Faulty-Detecting Byzantine Agreement per Def-
inition 5.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Suppose that every honest party Pi inputs (vi,Fi) to Π2-GDA, where vi ∈ {0, 1}
and Fi ⊂ P.
Graded Validity. By assumption, every honest party starts with vi = v, and
invokes Π1-GDA with input (v,Fi). According to the graded validity of Π1-GDA
(Definition 4), all honest parties outputs (v, 1,F⋆

i ). Thus in round d + 6, every
honest party invokes Π2-GA with input v. From graded validity of Π2-GA, Pi

outputs yi = v and gi = 2.
Graded Consistency. A party pi sets its gi and yi based on the output of
Π2-GA. From graded consistency of Π2-GA, this holds.
d-Detection. Assume an honest party pi outputs a gi < 2. If an honest party
pi outputs a gi < 2, it follows from graded validity of Π2-GA that not all parties
input the same value to Π2-GA. Parties invoke Π2-GA with the output value they
obtained from Π1-GDA, so there must be two honest parties Pi and Pj that output
distinct values y∗i and y∗j from Π1-GDA. Thus, d-detection of Π2-GDA is directly
implied by d-detection of Π1-GDA.
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Soundness. The output faulty list, denoted as F⋆
i , is based on the output

faulty list from Π1-GDA. Due to the soundness property of Π1-GDA, F⋆
i contains

only malicious parties.
Termination: The protocol invokes Π1-GDA and Π2-GA, which terminates as per
definitions 4 and 2 respectively.

4.2 Byzantine Agreement with Expected Constant and Worst-Case
Early-Stopping Round Complexity

In this subsection, we present our randomized Byzantine agreement protocol
which has expected constant time and worst case early-stopping round complex-
ity. We demonstrate how to construct the randomized early-stopping Byzantine
agreement protocol, ΠBAr , using Π2-GDA. In ΠBAr , each party starts with an
input value vi ∈ {0, 1} and outputs an output value yi ∈ {0, 1}. ΠBAr runs in
iterations. In each iteration k, parties run Π2-GDA with input (vi,Fi). Conse-
quently, each party Pi stores the output (yGDAi , gi,Fi) of Π2-GDA. Based on the
grade gi obtained from Π2-GDA, each party Pi determines whether it is safe to
terminate. If Pi outputs gi < 2, it indicates that it is not safe to terminate, and
more iterations are run to reach agreement.

Conversely, if Pi outputs gi = 2, it is confident that all other honest parties
Pj output the same value yGDAi = yGDAj due to the graded consistency of Π2-GDA.
Party Pi then updates its input value for the next iteration based on the output
grade gi ∈ {0, 1, 2} of Π2-GDA. If gi > 0, it updates its input value to the next
iteration based on the output value yGDAi ∈ {0, 1} of Π2-GDA, setting vi = yGDAi .
Otherwise, if gi = 0, it sets its input value to the next iteration based on the
random coin it receives from the CoinFlip protocol. We show in lemma 20 that
ΠBAr has expected constant time.

Each iteration consists of d+9 rounds due to the Π2-GDA protocol. Therefore,
the overall round complexity of ΠBAr depends on the number of iterations it runs
in the worst case. We demonstrate in Lemma 14 that the number of iterations
in the worst case is a function of f .

Similar to Π1-GDA, we also establish that honest parties are never included
in the faulty lists of other honest parties in any iteration, which is a needed
assumption for Π2-GDA

Lemma 16. At the start of each iteration, the faulty list Fi of every honest
party Pi contains only corrupted parties.

Proof. The proof follows from Lemma 10 and from the fact that Fi in ΠBAr is
based on the faulty list produced by Π2-GDA. ⊓⊔

We proceed to prove both validity of ΠBAr .

Lemma 17. ΠBAr achieves validity per Definition 1

Proof. Assume all honest parties have the same initial value (vi = v). Every party
invokes Π2-GDA in the second round with input (vi,Fi). From graded validity of
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Protocol ΠBAr

– Input and Initialization: Let vi denote Pi’s input. Pi sets k := 0
halti := false, yi, yGDAi :=⊥,waiti :=∞ Fi := ∅

– While halti = false do
• k := k + 1
• Rounds 1 to d+ 9:

∗ Pi invokes protocol Π2-GDA with input (vi,Fi). Let
(yGDAi , gi,Fi) denote the output.

∗ Pi updates the input for next iteration vi := yGDAi

∗ If gi = 2 and waiti = 1, Pi sets halti := true. Otherwise, if
gi = 2 and waiti > 1, Pi sets waiti = 1 and yi = yGDAi

∗ If gi = 0, party Pi updates the next iteration’s input using the
common coin, c(k)i ← CoinFlip(k). It sets vi := c

(k)
i .

– Output Determination: If halti = true, Pi outputs yi and terminates.

Fig. 7. Code of ΠBAr for party Pi

Π2-GDA, every honest party outputs (yGDAi = v, gi = 2,Fi). Consequently, as
gi = 2, every honest party sets waiti := 1 and yi = v. In the next iteration, each
honest party outputs yi = v and terminates. ⊓⊔

We state the following lemma that will help us in proving consistency.

Lemma 18. If all honest parties set yGDAi to the same value in iteration k, then
all honest parties will terminate by at most iteration k + 2.

Proof. The proof follows similar logic to Lemma 11. ⊓⊔

Next, we prove consistency.

Lemma 19. ΠBAd achieves consistency per Definition 1

Proof. Let Pi be the first honest party to set waiti = 1 and yi := v in the
earliest iteration, say k > 0, indicating it will wait for one more iteration before
terminating. This happens when Pi sets waiti to 1, a condition met if its gi equals
2, determined by the output of Π2-GDA. By the graded consistency of Π2-GDA,
every other honest party Pj outputs yGDAj = v and gj ≥ 1. As a result, every
honest party updates its input variable for the next iteration to vi = v. According
to Lemma 18, every honest party terminate with output yi = v by the latest in
iteration k + 2. ⊓⊔

Finally, we prove that ΠBAr terminates in expected constant time and (d +
9) · (⌊f/d⌋+ 2) rounds in the worst case.

Lemma 20. ΠBAd has expected constant time and always terminating within
(d+ 9) · (⌊f/d⌋+ 2) rounds.
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Proof. The proof follows a similar approach to that used in Lemma 14. First, we
demonstrate the worst-case round complexity. A party Pi terminates in iteration
k + 1 after setting its gi to 2 in iteration k, which is based on the output of
Π2-GDA. According to the graded consistency of Π2-GDA, yGDAi = yGDAj for every
honest parties Pi and Pj in iteration k. Consequently, all other honest parties
terminate in iteration k + 2 from Lemma 18. The setting of gi by a party is
based on the result of Π2-GDA. If an honest party Pi sets gi < 2, then at least
d parties are added to the faulty list of all honest parties Pi according to the
d-detection property of Π2-GDA. Thus, since there are f faulty parties, there can
be at most ⌊f/d⌋ many iterations where all honest parties output gi < 2. Thus,
after at most ⌊f/d⌋+1 many iterations, all honest parties set gi = 2, followed by
one additional iteration for all honest parties to terminate. Therefore, the total
worst-case round complexity is (d + 9) · (⌊f/d⌋ + 2). Next, we prove expected
constant time. If an honest party Pi has gi = 2 by the end of iteration k, all
honest parties terminate by the end of iteration k + 2. So, let’s assume every
honest party has gi < 2 by iteration k. Then, with a probability of at least
1/2 · p, the common coin value c

(k)
j of all honest parties Pj ∈ P is equal to the

output yGDAi of honest parties Pi with gi = 1. Note, if gi, gj = 1 for honest
parties Pi and Pj , then yGDAi = yGDAj from graded consistency of Π2-GDA. Thus,
all honest parties start the next iteration with the same value. From Lemma 18,
all honest parties terminate by iteration k+2. Thus, the exact round complexity
in expectation is ((2/p) + 2)(d+ 9)

We summarize the preceding lemmata into the main theorem of this section:

Theorem 2. Assume a PKI setup, random common coin, and t < n/2. ΠBAr

(Fig. 7) achieves Byzantine Agreement per Definition. 1. Furthermore, ΠBAr

terminates in expected constant time and worst case (d+9) · (⌊f/d⌋+2) rounds,
for any execution with f ≤ t corrupted parties and runs in communication com-
plexity O(f · n4).

Proof. The theorem follows from the preceding lemmata. For the communication
complexity, we established that the deterministic protocol runs in communica-
tion complexity O(n4 · d). The protocol ΠBAr runs four additional rounds per
iteration compared to ΠBAd due to the construction of Π2-GDA. These extra
rounds run Π2-GA, which has a communication complexity of O(n3) [23]. Thus,
the overall complexity of ΠBAr stays O(n4 · f).
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Framework ΠOP (ΠBAd |ΠBAr )

Input and Initialization: Let vi denote Pi’s input. Pi sets yi :=⊥
While yi =⊥ do

– Pi runs ΠBAd or ΠBAr with input vi
– If Pi receives at least t+1 messages of the form ⟨terminate, v⟩j , Pi sets

yi = v

Share Output: If yi = v, Pi sends ⟨terminate, v⟩i to all party
Termination Rule: In any round r, if Pi receives t + 1 ⟨terminate, v⟩i, it
forwards them in round r + 1 and then terminates.

Fig. 8. Code of Optimized ΠOP for party Pi.

Theorem 3. Assume a PKI setup, ΠOP (ΠBAd) achieves Byzantine Agreement
per Definition. 1 in (d + 5) · (⌊f/d⌋ + 2) + 2 rounds. Assume a PKI setup,
random common coin, and t < n/2. ΠOP (ΠBAr ) achieves Byzantine Agreement
per Definition. 1, and terminates in expected constant time and worst case (d+
9) · (⌊f/d⌋+ 1) + 2 rounds.

Proof. For validity and agreement, these properties follow directly from the va-
lidity and agreement guarantees of ΠBAd and ΠBAr . Specifically, honest parties
will set their output to the same value yi (agreement) and will set it to the value
they all initially started with (validity). Given that there are at most t malicious
parties, the adversary cannot produce t+ 1 termination certificate messages for
a different value yj ̸= yi to convince honest parties to set their output to a differ-
ent value. Regarding round complexity, from the proofs of lemmata 14 and 20,
all honest parties determine set their output value by round (d+5) · (⌊f/d⌋+2)
for ΠBAd and (d+ 9) · (⌊f/d⌋+ 1) for ΠBAr , respectively. The exchange of out-
put and termination certificates requires an additional two rounds. Therefore,
the overall round complexity is (d + 5) · (⌊f/d⌋ + 2) + 2 for ΠOP (ΠBAd) and
(d+ 9) · (⌊f/d⌋+ 1) + 2 for ΠOP (ΠBAr ).

B Proof of Correctness for Πd-CoD

In this section, we provide the proof for Lemma 3

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Validity If Ps is honest and not listed in the faultylist of any other honest party,
it will obtain a valid PoPi by the end of the first round since there are t < n/2
malicious parties. In the second round, if Ps’s value is 1, it will send this value,
leading all honest parties to set yi = 1 and deti = C. If Ps’s value is not 1, it
will send nothing, and parties will output yi = 0 by round d+ 5. The adversary
cannot forge the honest party’s signature except with negligible probability.
Consistency A party Pi outputs deti = C if ri ≤ d+ 2 or d+ 5. In the former
case, Pi will forward the chain to all honest parties by at most round d + 4,
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causing every other honest party Pj to set rj ≤ d + 3. In the latter case, Pi

did not receive a chain in any round. Therefore, any other honest party that
receives a chain will do so in round d + 5. Otherwise, all honest parties would
have received a chain by round d+5. Thus, rj = d+4, and those parties Pj will
output 0.
F-soundness According to the protocol, if an honest party Pj receives a chain
for the first time in round r, it will forward it to all parties in round r + 1.
Therefore, if an honest party receives a chain Pl1 , . . . , Plr for the first time in
round r, it knows that parties Pl1 , . . . , Plr−1 must be malicious; otherwise, it
would have received the chain in an earlier round. Consequently, it adds those
malicious parties to its initial list. Additionally, these d malicious parties were
not initially included in all honest parties’ faulty lists, due to the reasons stated
at the beginning of this proof
d-Detection By construction, for every honest party Pi and Pj , rj ≥ ri − 1.
If Pi outputs deti = d, then ri is either d + 3 or d + 4. Thus, Pi adds at least
d+ 1 malicious parties to its Fi, as it receives the chain at the earliest in round
d+4. Consequently, every other honest party Pj adds at least d malicious parties
because rj ≥ ri − 1.
Termination The protocol runs for d+ 5 synchronous rounds.

C Supplementary Material

C.1 (0, 1, 2)-Graded Broadcast

We present the (0, 1, 2)-graded agreement protocol [23] that we use as a subrou-
tine in the (0, 1, 2)-Graded d-Detecting Agreement. We then construct graded
agreement from graded broadcast of [14], Π2-GB (Fig 10). We first show Π2-GB
in Fig. 9 and refer the reader to [14] for the full correctness proof.

C.2 (0, 1, 2)-Graded Agreement

Next, to achieve graded agreement from graded broadcast, each party invokes
a graded broadcast with its input vi. As a result, each party determines the
overall grade and output value based on the output values and grades from all
the invoked graded broadcast protocols. The construction is shown in Fig. 10
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Protocol Π2-GB

– Input and Initialization: If Pi = Ps, let vs denote Ps’s input. Pi sets
yi :=⊥, gi := 0,mi =⊥

– Round 1:
• If Pi = Ps, it sends ⟨vs⟩s to all parties.

– Round 2:
• If Pi received ⟨vs⟩s in the previous round, it sets mi := ⟨vs⟩S , and

forwards mi to all parties. Otherwise, does nothing.
– Round 3:
• Let mi,j be the message received by Pi from Pj in the previous

round. If ∃mi,j such that mi,j ̸= mi, Pi sets mi :=⊥. Otherwise, it
sends mi to all parties

– Round 4:
• Let m′

j.i be the message received by Pi from Pj in the previous
round. If ∃ at least distinct l > n/2 received messages m′

j,i for
j ∈ [n], where m′

j1,i = · · · = m′
jl,i

= ⟨v⟩s, Pi sets yi := v and
gi = 2. Furthermore, Pi sends the l messages to all parties.

– Output Determination: Assume Pi has not set its output; yi =⊥,
it proceeds as follows. If in the previous round Pi receives l > n/2
distinct messages m′

j,i for j ∈ [n], where m′
j1,i = · · · = m′

jl,i
= ⟨v⟩s, Pi

sets yi := v and gi := 1. Otherwise Pi sets gi := 0 and yi :=⊥.

Fig. 9. Code of Π2-GB for party Pi.

Protocol Π2-GA

– Input and Initialization: Let vi denote Pi’s input. Pi sets yi :=⊥,
gi := 0, and yi,j =⊥, gi,j := 0 for j ∈ [n]

– Round r = 1 to 4:
• Pi invokes Π2-GB with input vi.

– Output Determination: Let (yi,j , gi,j) denote the output for party
Pi of Πj

2-GB with party Pj as sender. If at least t + 1 instances output
yi,j = v and gi,j = 2, Pi sets yi = v and gi = 2. Else, if at least t + 1
instances output yi,j = v and gi,j ∈ {1, 2}, it sets yi = v and gi = 1.
Otherwise, it outputs gi = 0 and yi =⊥

Fig. 10. Code of Π2-GA for party Pi.
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