
AGeneral Framework for Lattice-Based ABE
Using Evasive Inner-Product Functional Encryption

謝耀慶 (Yao-Ching Hsieh) Huijia Lin 罗辑 (Ji Luo)

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle

{ychsieh,rachel,luoji}@cs.washington.edu

26 May 2024

Abstract

We present a general framework for constructing attribute-based encryption
(ABE) schemes for arbitrary function class based on lattices from two
ingredients, i) a noisy linear secret sharing scheme for the class and ii) a
new type of inner-product functional encryption (IPFE) scheme, termed evasive
IPFE, which we introduce in this work. We propose lattice-based evasive
IPFE schemes and establish their security under simple conditions based on
variants of evasive learning with errors (LWE) assumption recently proposed by
Wee [EUROCRYPT ’22] and Tsabary [CRYPTO ’22].

Our general framework is modular and conceptually simple, reducing the
task of constructing ABE to that of constructing noisy linear secret sharing
schemes, a more lightweight primitive. The versatility of our framework is
demonstrated by three new ABE schemes based on variants of the evasive LWE
assumption.

• We obtain two ciphertext-policy ABE schemes for all polynomial-size
circuits with a predetermined depth bound. One of these schemes has
succinct ciphertexts and secret keys, of size polynomial in the depth bound,
rather than the circuit size. This eliminates the need for tensor LWE,
another new assumption, from the previous state-of-the-art construction
by Wee [EUROCRYPT ’22].

• We develop ciphertext-policy and key-policy ABE schemes for deterministic
finite automata (DFA) and logspace Turing machines (L). They are the
first lattice-based public-key ABE schemes supporting uniform models of
computation. Previous lattice-based schemes for uniform computation
were limited to the secret-key setting or offered only weaker security
against bounded collusion.

Lastly, the new primitive of evasive IPFE serves as the lattice-based counterpart
of pairing-based IPFE, enabling the application of techniques developed in
pairing-based ABE constructions to lattice-based constructions. We believe it
is of independent interest and may find other applications.

© IACR 2024. This is the full version of [HLL24], DOI 10.1007/978-3-031-58723-8_15,
published by Springer in the proceedings of Eurocrypt 2024.

i

https://orcid.org/0009-0008-5244-7222
https://orcid.org/0000-0003-1225-5310
https://doi.org/10.1007/978-3-031-58723-8_15

Contents

1 Introduction 1
1.1 Related Works . 6
1.2 Technical Overview . 7

2 Preliminaries 13
2.1 Attribute-Based Encryption . 15
2.2 Lattices . 16
2.3 Evasive LWE Assumption . 17

3 Evasive Inner-Product Functional Encryption 19
3.1 Basic Construction — Single-Identity, No Structured Noises 22
3.2 Security as an Assumption . 23
3.3 Security for Restricted Samplers from Evasive LWE 27
3.4 Identity-Based Scheme . 29
3.5 Scheme with Structured Noises . 35

4 Noisy Linear Garbling 37

5 Noisy Linear Garbling for Circuits 39
5.1 Correctness and Shortness . 42
5.2 Security with Gaussian Noise . 44

6 Ciphertext-Policy ABE from Short Noisy Linear Garbling 49
6.1 Correctness . 51
6.2 Security . 51
6.3 Unbounded Attribute and Summary . 54

7 ABE for DFA 55
7.1 Noisy Linear Garbling for DFA . 55
7.2 Construction of KP-ABE for DFA . 57
7.3 Security of KP-ABE for DFA . 60
7.4 CP-ABE for DFA and Summary . 62

8 CP-ABE with Succinct Ciphertexts 64
8.1 Succinct Noisy Linear Garbling for Circuits 64
8.2 CP-ABE from General Noisy Linear Garbling 65
8.3 Security and Summary . 68

References 72

Appendix
A Noisy Linear Garbling for Boolean Circuits 78

ii

1 Introduction

Attribute-based encryption (ABE) [SW05,GPSW06] enhances public-key encryption
with the capability of enforcing precise access control over encrypted data. ABE
primarily comes in two flavors, key-policy (KP-) and ciphertext-policy ABE (CP-ABE).
In the setting of CP-ABE, data owners encrypt their private message along with an
access policy that dictates who can access and decrypt the data. User keys, on the
other hand, contain attributes that describe their credentials. For a user to decrypt a
ciphertext and access the encrypted data, their attributes must align with the policy
embedded in the ciphertext. Conversely, KP-ABE inverts this structure by using
attributes to describe the encrypted data and incorporating access policies into user
keys.

Over the past decade, the area of ABE has witnessed substantial progress, thanks
to insights on leveraging the mathematical structures present in integer lattices and
the learning with errors (LWE) assumption. Notably, Gorbunov, Vaikuntanathan,
and Wee [GVW13] achieved a significant milestone by constructing the first KP-ABE
scheme for circuits of unbounded size, but with a priori bounded depth, relying on
the LWE assumption. Subsequent work by Boneh et al. [BGG+14] further enhanced
KP-ABE efficiency, delivering the first scheme with both short ciphertexts and short
secret keys, both scaling polynomially with the depth bound and independent of the
circuit size.

However, despite these remarkable advances, several challenges have persisted
for over a decade in the lattice-based ABE landscape. They include i) the search
for ABE schemes accommodating circuits of unbounded depth, ii) the construction
of CP-ABE schemes supporting all polynomial-size circuits, even confined to
predetermined depth bounds, and iii) extending ABE to uniform models of
computation, such as deterministic finite automata (DFA), logspace Turing machines,
and RAM, which have much more succinct descriptions than circuits and can process
arbitrarily long inputs. Until recently, the only lattice-based solution addressing
challenges i) and iii) were due to Goldwasser et al. [GKP+13], who presented a
KP-ABE scheme for RAM. However, it relies on the heavy tools of SNARKs and
extractable witness encryption, which can be instantiated using lattice, but require
strong knowledge-type assumptions. Beyond the scope of lattice-based constructions,
one could attain these objectives using indistinguishability obfuscation (𝑖O) [GGH+13,
JLL23].

Recently, the landscape has evolved with the introduction of a novel class
of assumptions known as evasive LWE [Wee22,Tsa22]. At a high level, evasive
LWE captures a “generic-model view” on lattices. When presented with LWE
samples sTB + eT

1, s
TA + eT

0 and a short (i.e., low-norm) “trapdoor” matrix K sampled
conditioning on BK = P, denoted as K = B−1(P), where all terms are relative to a
randomly sampled matrix B and jointly sampled matrices A and P, it postulates that
if the LWE samples sTP + eT

2, s
TB + eT

1, s
TA + eT

0 are pseudorandom when eT
2 is freshly

generated, then so are sTB + eT
1, s

TA + eT
0 given B−1(P). In simpler terms, adversaries

are limited to utilizing the trapdoor to acquire LWE samples (sTP + eT
2) and treating

them as LWE samples with fresh noises. The work by [Wee22] argued that if this type
of generic attacks fail, then all known cryptanalytic techniques, including the family
of zeroizing attacks (e.g., [CHL+15,CVW18,HJL21,JLLS23]), would also be ineffective.

The introduction of the evasive LWE assumption has catalyzed new progress on

1 / 79

multiple fronts, including i) and ii) mentioned above. Wee [Wee22] presented a
CP-ABE scheme for bounded-depth circuits under evasive LWE and another new
assumption called tensor LWE. More recently, Hsieh, Lin, and Luo [HLL23a] achieved
the first KP-ABE scheme for circuits of unbounded depth. Two other works [VWW22,
Tsa22] constructed witness encryption schemes, which can be viewed as CP-ABE
where the secret key for an attribute is the attribute itself. Furthermore, Water,
Wee, and Wu [WWW22] proposed a multi-authority ABE for subset policies without
resorting to random oracles.

These accomplishments underscore the potential of evasive LWE. However,
each work uses evasive LWE in a way tailored to each construction, relying on a
customized variant of evasive LWE following the generic-model principle. This often
requires intricate handling of algebraic details. In this work, we ask:

“Can we formulate a general framework for
constructing ABE schemes based on evasive LWE?”

Such a framework would provide several advantages, including i) deepening our
understanding, specifically by elucidating the role of evasive LWE, ii) facilitating
the development of new ABE constructions, by making them more modular and
conceptually simpler, and iii) streamlining security proofs, by encapsulating low-
level algebraic intricacies within the framework and providing natural and useful
tools.

Our Results. To this end, we propose a new notion called evasive inner-product
functional encryption (IPFE), and present a general framework for constructing CP-
and KP-ABE schemes for a class of functions from evasive IPFE and noisy linear
secret sharing for the same class. Our framework can be seen as the lattice-world
counterpart of the general framework for constructing ABE from pairing-based IPFE
and (noiseless) linear secret sharing, as described in the prior works of [LL20a,
LL20b]. Similar ideas have been employed in various previous pairing-based ABE
constructions, which have been realized through different methods, including dual
system encryption and hash proof systems.

Evasive Inner-Product Functional Encryption (IPFE). Let’s start by introducing
evasive IPFE. Similar to a standard IPFE [ABDP15], evasive IPFE allows encrypting
a vector u ∈ ℤ𝑍

𝑞 into a ciphertext ict(u), and generating secret keys {isk(v𝑗)}𝑗 tied
to vectors v𝑗 ∈ ℤ𝑍

𝑞 , except that decryption reveals noisy (as opposed to exact)
inner products {uTv𝑗 + 𝑒𝑗}𝑗. The more substantial difference lies in the security
requirements. Standard IPFE ensures that only the inner products are revealed
and no other information of the encrypted vector u is leaked (the key vectors v𝑗
are public). Evasive IPFE tries to capture a “generic-model view” similar to evasive
LWE, but at the higher abstraction level of IPFE. It postulates that if the noisy inner
products {uTv𝑗 + 𝑒𝑗}𝑗 with “idealized”, i.e., freshly generated (hence independent),
noises are pseudorandom, then the ciphertext is pseudorandom. More formally,

if {v𝑗 , uTv𝑗 + 𝑒𝑗}𝑗 ≈ {v𝑗 , $}𝑗 ,
then impk, ict(u), {v𝑗 , isk(v𝑗)}𝑗 ≈ impk, $, {v𝑗 , isk(v𝑗)}𝑗 ,

where 𝑒𝑗 ’s are independent Gaussian noises. Evasive IPFE is a convenient tool for
generating LWE samples. Consider a simple example where the encrypted vector

2 / 79

is an LWE secret u = s and the key vectors correspond to an LWE public matrix
A, which may or may not be random. Security ensures that as long as the noisy
outputs (sTA + eT) with fresh noises are pseudorandom, the ciphertext encrypting s is
pseudorandom.

Jumping ahead, in Section 3, we present candidate lattice-based evasive IPFE
schemes, and show their security for restricted distributions of plaintext vectors
(observed by all our ABE constructions) based on evasive LWE.

Noisy Linear Secret Sharing Scheme (LSSS). The other ingredient of our general
framework is noisy LSSS. A noisy LSSS over ℤ𝑞 for a function 𝑓 (say, of Boolean
input and output), denoted as LSSS𝑓 , consists of a non-zero vector wout and matrices
T, {Wℓ ,𝑏}ℓ ,𝑏. Given randomness s, the secret and the shares for an 𝐿-bit input x are
created from those matrices.

LSSS𝑓 : wout,T, {Wℓ ,𝑏}ℓ ∈[𝐿],𝑏∈{0,1};
Secret: sTwout + 𝑒out; Shares: sTT + eT

t, {sTWℓ ,x[ℓ] + eT
ℓ }ℓ ∈[𝐿] .

If 𝑓 (x) = 1, the secret (sTwout + 𝑒out) can be approximately recovered from the shares,
whereas if 𝑓 (x) = 0, the secret and the shares must be jointly pseudorandom. In
addition, we say that LSSS𝑓 is short if its wout,T, {Wℓ ,𝑏}ℓ ,𝑏 have small norms.

Noisy LSSS is a significantly weaker primitive than ABE in that it only considers
a single function 𝑓 and a single input x, and that the shares for x can depend on 𝑓 .
In contrast, ABE supports publishing secret keys and ciphertexts for many functions
and many inputs, and both must be generated independent of the data on the other
side. Interestingly, almost every known LWE-based ABE scheme implicitly defines an
LSSS scheme. In the literature, noiseless and information-theoretically secure LSSS
are known for low-depth functions [KW93,Ber84,BDHM92,Mul87]. Based on LWE,
prior works have constructed a similar primitive, called nearly linear secret sharing
scheme, for arbitrary circuits [QWW21,AY20,AWY20,LLL22]. See related works for a
comparison.

Our General Framework for Constructing ABE. Our general framework uses evasive
IPFE to generically “lift” noisy LSSS into full-fledged ABE schemes. For technical
reasons elaborated in Section 1.2, we need to start from a short noisy LSSS.

Main Result (Construction 5). Given a short noisy LSSS for any family of functions
over ℤ𝑞, KP- and CP-ABE schemes for the same family can be constructed from an evasive
IPFE scheme over ℤ𝑞.

When instantiated with our evasive IPFE scheme in Section 3.4, the KP-ABE scheme has

|mpk| = poly(log 𝑞), |sk𝑓 | = |LSSS𝑓 | poly(log 𝑞), |ctx | = |x| poly(log 𝑞),

and the CP-ABE scheme has

|mpk| = poly(log 𝑞), |skx | = |x| poly(log 𝑞), |ct𝑓 | = |LSSS𝑓 | poly(log 𝑞).

Here, |LSSS𝑓 | is the length of its defining vectors and matrices, and polynomial factors in
the security parameter 𝜆 are hidden.

Using our general framework, the task of building ABE for an arbitrary function class
reduces to the simpler task of constructing noisy LSSS for it. This has led to the
following new ABE constructions.

3 / 79

• In Section 5, we design new short noisy LSSS for all arithmetic circuits based
on LWE. The schemes are adapted from the arithmetic garbling proposed
by [AIK11]. Combining them with our evasive IPFE scheme yields a new CP-
ABE scheme for bounded-depth bounded-arithmetic circuits from evasive LWE.
Compared with Wee’s construction [Wee22], our scheme eliminates the tensor
LWE assumption, but does not have succinct ciphertext.

• For deterministic finite automata (DFA) and logspace Turing machines (L),
noiseless LSSS are known, which have been used in prior works to construct
pairing-based ABE for DFA and L [LL20a]. In lattice-based ABE landscape,
handling uniform models of computation has been a challenge. The state-
of-the-art ABE schemes for DFA only tolerate bounded collusion [AS17,Wee21],
are in the secret-key setting [AMY19] (this also supports NFA), or do not come
with a security proof [Wee21]. In Section 7, we apply our general framework to
those LSSS with simple tweaks for uniform computation, obtaining both KP-
and CP-ABE for DFA and L based on evasive LWE, the first provably secure
lattice-based public-key ABE schemes tolerating unbounded collusion for these
uniform models.

Corollaries 21 and 29 (CP-ABE for circuits and ABE for DFA). Assuming LWE and
evasive LWE, there exists a CP-ABE scheme for arithmetic circuits with

|mpk| = poly(𝑑, log𝑀), |skx | = |x| poly(𝑑, log𝑀), |ct𝐶 | = |𝐶 | poly(𝑑, log𝑀),

where |𝐶 | is the circuit size, 𝑑 is a bound on the depth of 𝐶, and 𝑀 is a bound on the
magnitude of intermediate computation values.

Under the same set of assumptions, there exist ABE schemes for DFA.

KP-ABE for DFA: |mpk| = O(1), |skx | = O(|x|), |ctΓ | = O(|Γ|);
CP-ABE for DFA: |mpk| = O(1), |skΓ | = O(|Γ|), |ctx | = O(|x|).

Here, |x| is the input length and |Γ| is the number of states of the DFA. Each O(·) hides a
polynomial factor in 𝜆.

Upgrading Our General Framework. An unsatisfactory aspect of the above general
framework is that it requires short noisy LSSS. On the other hand, there are noisy
LSSS that are not short. For instance, the noisy LSSS underlying the ABE scheme
of [BGG+14], as described below.

LSSS𝑓 : wout = A𝑓G−1(u), T = A0, {Wℓ ,𝑏 = Aℓ − 𝑏G}ℓ ∈[𝐿],𝑏∈{0,1};
Secret: sTA𝑓G−1(u); Shares: sTA0 + eT

0, {sT(Aℓ − x[ℓ]G) + eT
ℓ }ℓ ∈[𝐿] .

The vector u and matrices A0, Aℓ ’s are random, hence they have large entries. (So
are the entries of the gadget matrix G.) We would like to upgrade our general
framework to accommodate the BGG-based LSSS. Beyond the consideration of
generality, that LSSS is the only known LSSS for circuits of succinct size, in particular,
|LSSS𝑓 | = poly(𝑑) grows polynomially with the maximum depth of the computation,
instead of size. Once combined with our framework, we immediately obtain a CP-
ABE scheme supporting bounded-depth circuits with succinct ciphertexts.

4 / 79

We achieve this by introducing a stronger variant of evasive IPFE, where the noisy
inner products returned from decryption additionally contains structured noises in
the form of 𝑒′g, where g is the gadget vector. More precisely, in an evasive IPFE
scheme with structured noises, a ciphertext ict(u) still encrypts a vector u, but a
secret key isk(V) now encodes a matrix V whose number of columns is the dimension
of g. Decryption produces (uTV + 𝑒′gT + eT), where e is a small noise vector as before
and 𝑒′g is the structured noise. Security is enhanced correspondingly. If the noisy
outputs with idealized fresh noises 𝑒′, e are pseudorandom, so is the ciphertext, i.e.,

if {V𝑗 , uTV𝑗 + 𝑒′𝑗g
T + eT

𝑗 } ≈ {V𝑗 , $},
then impk, ict(u), {V𝑗 , isk(V𝑗)}𝑗 ≈ impk, $, {V𝑗 , isk(V𝑗)}𝑗 .

Using evasive IPFE with structured noises, we can now “lift” arbitrary noisy LSSS,
without any norm restriction, into full-fledged ABE schemes.

Construction 10 and Corollary 34. Given a (not necessarily short) noisy LSSS for
any family of functions over ℤ𝑞, KP- and CP-ABE schemes for the same family can be
constructed from evasive IPFE with structured noises over ℤ𝑞.

When instantiated with our evasive IPFE with structured noises in Section 3.5,
the resultant ABE schemes have the same asymptotic sizes as those in Main Result
(Construction 5) — compared with which, it is now possible to use LSSS with smaller sizes.
Assuming LWE and a variant of evasive LWE, there exists a CP-ABE scheme for arithmetic
circuits with

|mpk| = poly(𝑑, log𝑀), |skx | = |x| poly(𝑑, log𝑀), |ct𝑓 | = poly(𝑑, log𝑀).

Constructions of Evasive IPFE. We propose candidate lattice-based evasive IPFE
schemes, both with and without structured noises in Section 3, and extensively study
them. We show that when the input vectors u𝑖 have certain form, namely uT

𝑖
= sTA

𝑖

for arbitrary A𝑖’s sampled using public coins and independent and uniformly random
s (e.g., uT = sT = sTI), then we can base the security of evasive IPFE on variants of
evasive LWE. All ABE constructions in this work uses evasive IPFE to encrypt vectors
of this form. For evasive IPFE without structured noises, we rely on the usual type of
evasive LWE assumption, where all noises involved are small (Assumption 4). For the
version with structured noises, we rely on a variant of evasive LWE with structured
noises (Assumption 3).

In order to reduce to evasive LWE, the ABE constructions must use a single IPFE
instance, instead of many instances with independently sampled master public key.
However, we often want to impose some restriction on what inner products are
produced, e.g., only computing uT

1v1 and uT
2v2, without revealing uT

1v2 or uT
2v1. To

achieve this using a single instance of evasive IPFE, we extend the interface to be
identity-based (see Section 3.4), so that a pair of ciphertext ict id(u) and secret key
isk id′ (v) only reveals the noisy inner product if id = id′.

A nice addition is that the study of evasive IPFE already employs several pairing-
based techniques. Nevertheless, the constructions and security proofs are intricate
and require ironing out many details. We hope our evasive IPFE schemes serve as
useful tools in future works.

5 / 79

1.1 Related Works

Lattice-Based Linear Secret Sharing Schemes for Circuits. The works of [AY20,
AWY20] constructed CP-ABE with succinct ciphertext for NC1 relying on LWE and
the generic (pairing) group model (GGM). The work of [LLL22] constructed CP-ABE
for circuits with constant-size keys (i.e., of size poly(𝜆)) and succinct ciphertext (of
size |x| poly(𝜆), independent of depth). Both works combine a nearly linear secret
sharing scheme with a pairing-based IPFE.

Their nearly LSSS is very similar to our noisy LSSS. Both are noisy and if 𝑓 (x) = 1,
evaluation reveals a random secret 𝑠 perturbed by a small noise 𝑒. The major
differences are i) nearly LSSS requires linear reconstruction and the noise 𝑒 to be
small, which are not required by noisy LSSS, and ii) noisy LSSS shares must have the
specific form sTT + eT

t, s
TWℓ ,x[ℓ] + eT

ℓ
, where the noises are small. These requirements

are tailored for combination with pairing-based IPFE and evasive IPFE, respectively.
We compare their secret sharing scheme and techniques with ours.

Based on the laconic function evaluation (LFE) protocol of [QWW18], which in
turn is based on the circuit KP-ABE scheme of [BGG+14], the works of [AY20,AWY20]
proposed a nearly linear secret sharing scheme for NC1 and that of [LLL22] one for
circuits. They then “lift” their nearly LSSS schemes to ABE schemes using pairing-
based IPFE — their ABE schemes use pairing-based IPFE to compute rerandomized
nearly LSSS shares. As a result, the computed shares reside in the exponent of the
pairing group. By the fact that reconstruction is linear, the perturbed secret (𝑠 + 𝑒)
can be recovered in the exponent if 𝑓 (x) = 1. However, to recover the secret 𝑠 in
the clear, the schemes rely on exhaustive search of the noise 𝑒. Therefore, 𝑒 must
be polynomially bounded, which is particularly difficult to achieve when evaluating
high-depth circuits [LLL22]. The fact that 𝑒 must be small also makes the security
proof more challenging, as one cannot rely on noise smudging.

Differently, in our general framework and hence CP-ABE schemes, the secret
shares are computed in the clear and the evaluation noise 𝑒 just need to be sufficiently
small compared to the modulus, and evaluation can be non-linear. However, we
require randomization of the shares in the form of sTT + eT

t, {sTWℓ ,x[ℓ] + eT
ℓ
}
ℓ ∈[𝐿] with

small noises, in order to match the precondition of evasive LWE, where these small
noises are “idealized” to be fresh.

A technical relation is that their ABE schemes rely on GGM or knowledge-
type assumption (the Knowledge of OrthogonALity Assumption, or “KOALA”) on
the pairing group to argue that correlated instances of secret sharing for different
computation {(𝑓𝑖, x𝑗)}𝑖, 𝑗 where 𝑓𝑖 (x𝑗) = 0 for all 𝑖, 𝑗 (resulting from decrypting all pairs
of secret keys and ciphertexts) are jointly secure. In our ABE scheme, we rely on
evasive IPFE (and by reduction, evasive LWE) to assert the security of the many
correlated instances of secret sharing. In folklore, evasive LWE is regarded as a lattice
counterpart of GGM, although there has been no formal known connections between
them.

The works of [AY20,AWY20,LLL22] combine pairing techniques with lattice ones,
relying on pairing-based IPFE as well as LWE. We translate pairing techniques to
the lattice world, creating a lattice implementation of IPFE, suitable for ABE when
combined with LWE. Evasive IPFE is reminiscent to the very strong simulation
security of IPFE in GGM proven in [LLL22], which can be seen as a step towards
understanding the connection between GGM and evasive LWE.

6 / 79

Noisy IPFE. The work of [Agr19], followed by [AP20], proposed a primitive called
noisy IPFE, which evaluates noisy inner products, i.e., (uTv + 𝑒). It is defined
with strong security property. For any two plaintext vectors u,u′ and key vectors
v1, . . . , v𝐽 such that their inner products are approximately equal, i.e., (u − u′)Tv𝑗
is small for all 𝑗, the ciphertext encrypting u and that encrypting u′ must be
indistinguishable. The rationale is that the noises resulting from decryption is
sufficient to “smudge” the difference between the inner products. This primitive is
strong enough to imply indistinguishability obfuscation when combined with other
well-studied assumptions.

Our evasive IPFE has a different security requirement. It states that if the
inner products plus fresh noises are pseudorandom, i.e., {uT

𝑖
v
𝑗
+ 𝑒

𝑖 𝑗
} ≈ {$}, then the

ciphertexts encrypting u𝑖’s are pseudorandom given the keys. We achieve this under
evasive LWE for a general class of distributions of inputs.

ABE for DFA from Lattices. The work of [Wee21] proposed a candidate public-key
KP-ABE for DFA based on lattices. In terms of methods, it relies on the DFA garbling
implicit in [Wat12] (made explicit in [LL20a]), which we also use for our scheme.
While many known ABE for DFA [Wat12,GWW19,LL20a,GW20,Wee21] (and this work)
are roughly based on the idea of securely computing a pseudorandom garbling for
DFA, to our knowledge, only this work and [LL20a] explicitly use functional encryption
(concretely, IPFE) to do so. In terms of results, in [Wee21], there was no reductionist
proof of security but some preliminary cryptanalysis, in which an idea in the line
of evasive LWE is used (replacing a trapdoor preimage by the intended usage result,
with fresh noises). The development of evasive LWE is later to [Wee21]. While we do
not immediately see a proof from the version of evasive LWE in our work or [Wee22,
Tsa22], it is plausible that another variant of evasive LWE could be formulated to
prove its security (or a slightly modified variant thereof).

1.2 Technical Overview

We give an overview of our techniques. Our starting point is a well-established
method of constructing ABE using linear secret sharing schemes (LSSS) and pairing.

Recap of ABE from LSSS and Pairing-Based IPFE. A traditional LSSS is noiseless and
information-theoretic. An LSSS for an arithmetic function 𝑓 : ℤ𝐿 → {0, 1} is specified
by vector wout ≠ 0 and matrices T, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] over ℤ𝑞, each of which has 𝑛𝑓
rows. Given randomness s ∈ ℤ𝑛𝑓𝑞 , the secret is sTwout and the shares are

sTT and {sT(Wℓ ,0 + x[ℓ]Wℓ ,×)}ℓ ∈[𝐿] .

For correctness, if 𝑓 (x) = 1, the shares sTT, {sTWℓ ,x[ℓ]}ℓ ∈[𝐿] must determine the secret
sTwout, where Wℓ ,x[ℓ] = Wℓ ,0 + x[ℓ]Wℓ ,×. For security, if 𝑓 (x) = 0 and s is uniformly
random, the shares must be independent of sTwout.

To obtain (KP- or CP-) ABE from LSSS, pairing is used so that when decrypting a
ciphertext using a key, tied to 𝑓 , x, it will first compute the LSSS𝑓 shares of x encoded
in the exponent of the target group, which can then be used to recover the secret
(again, in the exponent) if 𝑓 (x) = 1. For the construction to be secure, the computed
shares should use good randomness, which must be kept hidden. The mechanism
of computing the shares vary across known constructions, and oftentimes it can be

7 / 79

regarded as inner-product functional encryption (IPFE) [ABDP15]. Since the shares
are computed in the exponent, pseudorandomness can often be obtained from DDH-
style rerandomization, e.g., in CP-ABE, keys contain random 𝑟, ciphertexts contain
sTT, {sTWℓ ,x[ℓ]}ℓ ∈[𝐿] with random s, and the computed shares are 𝑟sTT, {𝑟sTWℓ ,x[ℓ]}ℓ ∈[𝐿]
in the exponent of the target group. Intuitively, by the decisional Diffie–Hellman
assumption, the computed shares, using 𝑟s as its randomness, is indistinguishable
from being created with fresh randomness. This intuition has been implemented
in multiple ways, e.g., dual system encryption, hash proof systems, or using slotted
IPFE.

ABE from LSSS and Lattices. Pairing-based ABE only supports low-depth computa-
tions, because the expressive power of polynomial-size LSSS is limited in NC [KW93,
Ber84,BDHM92,Mul87]. To circumvent this lower bound, we must relax the notion of
LSSS to support richer classes of functions. We consider LSSS with noises, termed
noisy linear secret sharing in this work. Such a scheme for 𝑓 is again specified by
wout,T, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿], but the secret and the shares now contain noises.

Secret: sTwout + 𝑒out;
Shares: sTT + eT

t and {sT(Wℓ ,0 + x[ℓ]Wℓ ,×) + eT
ℓ }ℓ ∈[𝐿] .

We additionally allow the secret sharing to have a reusable part R (always given
and not randomized). If 𝑓 (x) = 1, correctness only guarantees recovering the
secret approximately. For security, if 𝑓 (x) = 0, the secret and the shares should
be jointly pseudorandom even given R,wout,T,W’s. Following the previous pairing-
based general framework, we now need an appropriate IPFE that can compute and
rerandomize the noisy secret shares.

Insufficiency of Existing IPFE. When using pairing-based IPFE, since the shares
are computed in the exponent, one can only reconstruct the secret plus noise in
the exponent. To be able to recover the secret in the clear, the noise must be
polynomially small to allow for exhaustive search. However, keeping the noise small
is difficult when evaluating arbitrary depth circuits.

To get around this limitation, we ask whether lattice-based IPFE schemes such
as [ABDP15,ALS16] can help. They yield decryption results in the clear, dispensing
the limitation on the magnitude of noise. However, it is unclear how to use these
scheme to generate the noises needed in each rerandomized secret shares. In fact,
Agrawal [Agr19] together with Pellet-Mary [AP20] showed that a noisy IPFE scheme
capable of computing inner products added with (computationally) good Gaussian
noises implies 𝑖O when combined with other standard assumption.

Evasive IPFE. We solve the aforementioned challenges with a new primitive called
evasive IPFE. For convenience, we directly define the identity-based variant. Each key
is for a vector v under some identity id′, and each ciphertext, u and id. Decryption
yields an approximation of uTv if and only if id = id′.

isk id′ (v)
ict id(uT)

]
Dec−−−−→

{
uTv + 𝑒, if id = id′;
⊥, if id ≠ id′.

We also denote batches of keys and ciphertexts as isk id(V) and ict id(UT) so that their
pairwise decryptions approximate UTV.

8 / 79

For security, given arbitrarily many keys, the ciphertexts hide u’s if all the inner
products that can be computed are jointly pseudorandom, when they are added with
fresh Gaussian noises. More precisely, given secret keys generated for v𝑗 under
identity id′

𝑗
and ciphertexts for u𝑖 under id𝑖, the security property stipulates that

if aux, {uT
𝑖v𝑗 + 𝑒𝑖, 𝑗} id𝑖=id′𝑗 ≈ aux, {$} id𝑖=id′𝑗 ,

then aux, {isk id′
𝑗
(v𝑗)}𝑗 , {ict id𝑖 (u𝑖)}𝑖 ≈ aux, {isk id′𝑗 (v𝑗)}𝑗 , {ict id𝑖 ($)}𝑖.

Here, 𝑒𝑖, 𝑗 ’s are fresh (Gaussian) noises, and aux is auxiliary information about v,u’s
— think of it as the public coins for sampling v’s.

ABE from Noisy Linear Secret Sharing and Evasive IPFE. Given evasive IPFE and
noisy LSSS, our general framework for constructing KP- and CP-ABE is modular and
simple. For example, to construct CP-ABE, each ciphertext for a function 𝑓 consists
of a series of IPFE ciphertexts encoding STW’s, where S is an LWE secret matrix,
and each key consists of IPFE keys encoding LWE public vector r and input x. Their
decryption produces rerandomized secret shares of the form (rTSTW + eT). Below is
an example.

skx : isk0(⌊𝑞/2⌉, r), {iskℓ (r, x[ℓ]r)}ℓ ∈[𝐿];
ct𝑓 : ict0(0, TTS), {ictℓ (WT

ℓ ,0S, WT
ℓ ,×S)}ℓ ∈[𝐿] ,

ict0(𝜇, wT
outS).

The decryption yields a noisy version of WTSr’s as desired.
The security proof of ABE involves invoking the security of evasive IPFE to argue

that all IPFE ciphertexts are hiding, which only applies if all noisy inner products are
pseudorandom. Recall that in the ABE security game, there are multiple keys, and
the inner products are

for x𝑗 : (Sr𝑗)TT + eT
t, 𝑗 , {(Sr𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ }ℓ ∈[𝐿] ,
(Sr𝑗)Twout + 𝑒out, 𝑗 + 𝜇 · ⌊𝑞/2⌉.

Those are exactly the shares and secrets generated using randomness Sr𝑗, but the
components as-is are not pseudorandom, because r𝑗 ’s are public, and the same
secret matrix S and matrices T, W’s are reused in all shares for different x𝑗 ’s.
Hopefully, if we could somehow change the randomness from Sr𝑗 to (Sr

𝑗
+ eT

r, 𝑗)
with independent Gaussian er, 𝑗 ’s, then by LWE (for secret S), the rerandomization
generates pseudorandomness, i.e., Sr

𝑗
+ eT

r, 𝑗 ≈ $, and then so are the shares. We show
that how to achieve this in two ways.

Short Secret Sharing. If we require that the secret sharing be short, i.e., the matrices
wout, T, Wℓ ,x[ℓ] ’s have sufficiently small norm, then thanks to flooding by et, 𝑗 ’s,

{(Sr𝑗)TT + eT
t, 𝑗}𝑗∈[𝐽] ≈s {(Sr𝑗 + e′t, 𝑗)

TT + eT
t, 𝑗}𝑗∈[𝐽] .

The same holds for all the shares and secrets, achieving rerandomization.

Evasive IPFE with Structured Noises. Alternatively, we can augment the notion of
evasive IPFE to include structured noises to work with arbitrary noisy LSSS. Instead
of having only small noises, the noisy inner products now look like (uTV + eTG + (e′)T),

9 / 79

where V is associated with the secret key. Correspondingly, security holds if the noisy
inner products with fresh noises e′ and e are pseudorandom.

To use such evasive IPFE with structured noises to rerandomize secret shares,
we need an additional trick. The problem is that the structured noises are of the
form eTG instead of eTWℓ ,x𝑗 [ℓ], and the e here is different for each decryption (e.g.,
for computing the shares corresponding to x𝑗 [1] and x𝑗 [2] for the same 𝑗). To get
consistent eT

𝑗
Wℓ ,x[ℓ] for each x𝑗 (key) independent of ℓ (input bit index), we perform

a noisy secret sharing

(rT𝑗S + eT
𝑗)Wℓ ,x𝑗 [ℓ]

:::::::::::::::

= rT𝑗SWℓ ,x𝑗 [ℓ] − (r′𝑗)
TQG−1(Wℓ ,x𝑗 [ℓ])

::::::::::::::::::::::::::::::

+ ((r′𝑗)
TQ + eT

𝑗G
:::::::::::

)G−1(Wℓ ,x𝑗 [ℓ]),

where the wavy underlines indicate small noises (without G structure) and each noisy
term on the right-hand side can be computed using evasive IPFE, without and with
structured noises respectively. Importantly, each ABE key only uses one structured
noise e𝑗, and the shares for the 𝐿 input bits use the same e𝑗 in eT

𝑗
Wℓ ,x𝑗 [ℓ].

Short Noisy Linear Secret Sharing for Polynomial-Size Circuits. Our construction
of short noisy linear secret sharing scheme for circuits is inspired by the arithmetic
garbling scheme of [AIK11] and deals with the circuit gate by gate. In this paragraph,
we will use “labels” for “shares” as it is customary for circuits (noisy linear secret
sharing is a partially hiding garbling).

To begin, each gate 𝑖 is associated with two random low-norm matrices W𝑖,0,W𝑖,×,
which we call the label function of gate 𝑖. The label (before randomization) encoding
some value 𝑥 is W𝑖,𝑥 = W𝑖,0 + 𝑥W𝑖,×, and its randomized version is (sTW𝑖,𝑥 + eT

𝑖,𝑥
).

Suppose gate 𝑖 has its input wires connected to gates 𝑖1, 𝑖2 and their output values
are 𝑥, 𝑥1, 𝑥2, we can sample a random low-norm matrix U𝑖 and rewrite

W𝑖,0 + (𝑥1 + 𝑥2)W𝑖,× = (U𝑖 + 𝑥1W𝑖,×) + (W𝑖,0 − U𝑖 + 𝑥2W𝑖,×),
W𝑖,0 + 𝑥1𝑥2W𝑖,× = 𝑥2(U𝑖 + 𝑥1W𝑖,×) + (W𝑖,0 − 𝑥2U𝑖),

depending on whether gate 𝑖 is an addition or multiplication gate. We denote the
decomposed terms that are affine in 𝑥1 as W̃𝑖1,𝑥1 , and those affine in 𝑥2 as W̃𝑖2,𝑥2 —
note that W̃𝑖,𝑥 is contributed by all the fan-outs of gate 𝑖. The randomized, noisy
sTW𝑖,𝑥 can be obtained from the noisy versions of sTW̃𝑖1,𝑥1 and sTW̃𝑖2,𝑥2 . We call W̃’s
and sTW̃’s the expanded labels, and consequently, W’s and sTW’s the shrunken labels.

For each gate 𝑖, we also sample and publish a low-norm matrix R𝑖, and publish
in sTT (the “garbled table entries” for gate 𝑖)

sT(W𝑖,0R𝑖 + W̃𝑖,0) + (e′𝑖,0)
T, sT(W𝑖,×R𝑖 + W̃𝑖,×) + (e′𝑖,×)

T.

The values of R𝑖’s and noisy sTT are given regardless of the input values. Note that
these values enable computing the expanded label sTW̃𝑖,𝑥 from the shrunken label
sTW𝑖,𝑥 for any value 𝑥 that gate 𝑖 happens to take. We also include sT(W|𝐶 |,0R|𝐶 | +wout)
to facilitate the recovery of secret when 𝐶(x) = 0. The shares consist of the input
labels as well as the garbled table entries for all gates.

Evaluation also proceeds gate by gate, starting from the input gates. For each
gate 𝑖 with value 𝑥, the evaluation procedure recovers the shrunken label, then use
R𝑖 and the garbled table to recover the expanded label, which is later used to recover
the shrunken labels for gates taking gate 𝑖 as input. Eventually, if the output is 0, we
approximately recover sTwout from sTW|𝐶 |,0 and sT(W|𝐶 |,0R|𝐶 | +wout) and R|𝐶 |.

10 / 79

We sketch the security proof. In the first step, we replace all the noisy sTW𝑖,0’s
and sTW𝑖,×’s by random 𝜹T

𝑖,0 and 𝜹T
𝑖,×, using the flipped LWE assumption. Then, for

a particular input x, we simulate 𝜹𝑖,0 and 𝜹𝑖,× using 𝜹𝑖,𝑥𝑖 (call this “active”) and 𝜹𝑖,×,
where 𝑥𝑖 is the value of gate 𝑖 when evaluated on input x. The key observation here is
that in such hybrids, the active expanded labels and garbled table entries no longer
depend on the “×” ones. To argue the input labels and the garbled table are jointly
pseudorandom, we deal with active labels/table and “×” ones in two passes. In the
first pass, we work on the “×” labels/table bottom-up (output gate to input gate). This
step is computational and involves flipped LWE for public matrix R — for each “×”
table (𝜹T

𝑖,×R𝑖 + 𝜹̃T
𝑖,×), the secret 𝜹

T
𝑖,× will be absent everywhere else when the proof

comes to this table, so flipped LWE ensures that the first term is pseudorandom,
hiding 𝜹̃𝑖,×, thus removing information about the “×” labels of its fan-outs. In the
second pass, we work on the active labels/table top-down. This step is statistical
using the information-theoretic garbling security (so technically security is already
in place when we finish the first pass), and the top-down order is just a pedagogy
device for understanding the proof.

Succinct CP-ABE for Circuits. A (non-short) noisy linear secret sharing scheme can
be distilled from the celebrated KP-ABE for circuits due to [BGG+14], as observed
by [AWY20]. The scheme is succinct — the sizes of R, T, W’s only depend on the
depth, not the size of the circuit. Combined with evasive IPFE with structured noises,
we immediately obtain succinct CP-ABE.

Secret Sharing and ABE for DFA. The existing linear secret sharing scheme for
DFA [Wat12,LL20a] can be cast as a noisy linear secret sharing and is short. The
definition of noisy linear secret sharing inherently considers fixed input length, while
in (say, CP-) ABE for uniform computation like DFA, we would like a ciphertext (tied to
DFA) to potentially authorize a key (tied to input) of arbitrary length, and conversely a
key to be accepted by a ciphertext of arbitrarily many states. In the previous scheme,
ct𝑓 determines the input length it accepts, so the same construction cannot be directly
used.

We follow the paradigm in [Wat12,LL20a] and exploit the locality of DFA
computation. Namely, each DFA step is simply reading an input bit from a fixed
location and transitioning the previous state to the next. At a very high level, the
most important shares (related to state transitions) are of the form (sT

ℓ
Γx[ℓ] − sT

ℓ−1),
where Γ0, Γ1 are determined by the DFA state transition function, and s0, . . . , s𝐿, each
of dimension 𝔔 (number of states of DFA), together constitutes the secret sharing
randomness s of length 𝐿𝔔. The locality of shares in s is inherited from the locality
of DFA computation, and the subtraction expresses the state transition. Evaluation is
a telescoping sum that chains the state transitions.

In (again, say CP-) ABE, we set s to be LWE samples jointly generated by the keys
(size dependent on 𝐿) and the ciphertexts (size dependent on 𝔔), sℓ = Srℓ

:::
for rℓ ’s in

each key and S in each ciphertext. Continuing with the high level form of the most
important shares, we set

skx : {isk((1 − x[ℓ])rℓ , x[ℓ]rℓ , rℓ−1)}ℓ ∈[𝐿] ,
ctDFA : ict(ΓT

0S, ΓT
1S, −S).

Upon decryption, they compute all the shares, which reveal the secret approximately
if the computation is accepting. For security, we first argue that Sr

::
’s are pseudoran-

11 / 79

dom, hence the shares are indistinguishable to created using fresh randomness, then
we invoke the (information-theoretic) security of DFA secret sharing, and conclude
ABE security from evasive IPFE security and pseudorandomness of the shares.

Instantiation of Evasive IPFE. Our candidate evasive IPFE schemes draw inspiration
heavily from known IPFE constructions, and we proceed in three steps.

Basic Scheme. The basic scheme without identities nor structured noises is
reminiscent to the schemes due to [ABDP15,ALS16]. The master public key consists
of two matrices B,A, the master secret key is a trapdoor of B, and

isk(v) = B−1(AG−1(v)), ict(u) = (dTB
:::

,dTA + uTG
:::::::::

) = (cT
1, c

T
2),

where B−1(p) is a low-norm vector k satisfying Bk = p, which can be sampled using
the master secret key. For correctness, observe that cT

2G−1(v) − cT
1k approximates

uTv. We study the security of this simple scheme extensively in Section 3. Most
importantly, its security can be reduced to a variant of evasive LWE if the plaintext
vectors u are uniformly random over a publicly known subspace.

Identity-Based Scheme. We borrow techniques from pairing to generically achieve
identity-based schemes. In pairing-based IPFE, identity binding can be achieved
using a single-identity scheme (denoted with primes) by adding a blinding factor
in the decryption result. Let 𝜑,𝜓 be random, then

isk id′ (v) : isk′(v, 𝜓, id′ · 𝜓),
ict id(u) : ict′(u, id · 𝜑, −𝜑).

The decryption outcome is (uTv + (id − id′)𝜑𝜓). When the identities match, the result
is the desired. When they do not match, the result is blinded by 𝜑𝜓, which is
pseudorandom in the exponent (e.g., by DDH). The similar idea can be applied to
evasive IPFE, except the blinding factor is 𝝋T𝝍

::::
, which is pseudorandom by LWE. To

see security, observe that non-matching identities, due to 𝝋T𝝍
::::

, yield pseudorandom
inner products concerned by the underlying scheme, whereas matching inner
products are already pseudorandom by premise.

Scheme with Structured Noises. The structured noise gT ⊗ eT is simply e multiplied by
powers of two. To obtain them, we change the format of dTB

:::
in ict into

dTB0 + 20eT + (e′0)T, . . . , dTB𝐾−1 + 2𝐾−1eT + (e′𝐾−1)
T,

where e, e′0, . . . , e
′
𝐾−1 are Gaussian noises. For uTV + gT ⊗ 𝑒′′

::::::::::::
, we would like to

transform the previous blocks into

dTAG−1(v0) + 20𝑒′′ + 𝑒′′′0 , . . . , dTAG−1(v𝐾−1) + 2𝐾−1𝑒′′ + 𝑒′′′𝐾−1,

so that they will cancel dTAG−1(V) from (dTA + uTG
:::::::::

)G−1(V) while attaching gT ⊗ 𝑒′′ to
it. This can be done by finding low-norm K such that B𝑘K = AG−1(v𝑘) for all 𝑘, or
equivalently B̃K = P̃ for

B̃ =
©­­«

B0
...

B𝐾−1

ª®®¬ , P̃ =
©­­«

AG−1(v1)
...

AG−1(v𝑘)

ª®®¬ .
12 / 79

We sample B̃ with trapdoor to be able to sample K. Some more care is required
to support decryption with either structured noises or not. Relying on a modified
version of evasive LWE, termed evasive learning with structured errors assumption,
our candidate is again secure for u random over public subspace, sufficient for our
application of succinct ABE.

2 Preliminaries

We denote the (computational) security parameter by 𝜆, omitted for brevity except in
definitions. Efficient algorithms are probabilistic polynomial-time Turing machines.
So are efficient adversaries, but in addition they might also be given poly(𝜆)-bit
advice dependent on 𝜆.1 The statistical security parameter is 𝜅 ∈ ω(log𝜆) ∩ 𝜆O(1).

We use boldfaced lower-case letters for vectors, and boldfaced upper-case letters
for matrices. They are always indexed using brackets and never using subscripts,
so v𝑖 is the 𝑖th vector among a series of related vectors, and U[𝑖, 𝑗] is the (𝑖, 𝑗)-
entry of U. The 𝑛 × 𝑛 identity matrix is I𝑛 (or simply I when the shape is not of
importance). When the dimension is clear from context, 𝜾𝑖 denotes the 𝑖th standard
basis vector, e.g., I = (𝜾1, . . .). We write 0𝑛×𝑚 for the 𝑛 × 𝑚 zero matrix and 0𝑛 = 0𝑛×1,
with dimensions possibly omitted. We consider the infinity norm and its operator
norm:

∥v∥ = max
𝑖
|v[𝑖] |, ∥U∥ = max

𝑖

∑︁
𝑗

|U[𝑖, 𝑗] |.

We strictly follow the convention of vectors being columns. If v ∈ ℤ𝑧 is a vector, ∥vT∥
is an operator norm and ∥vT∥ ≤ 𝑧∥v∥. For two matrices A,B of shapes 𝑛1 × 𝑚1 and
𝑛2 × 𝑚2, their Kronecker product is an 𝑛1𝑛2 × 𝑚1𝑚2 matrix,

A ⊗ B =
©­­«

A[1, 1]B · · · A[1, 𝑚1]B
...

. . .
...

A[𝑛1, 1]B · · · A[𝑛1, 𝑚1]B

ª®®¬ .
A useful property is (A ⊗ B) (C ⊗ D) = AC ⊗ BD whenever all multiplications are
compatible. The by-column flattening operator col(·) concatenates all the columns
of its input matrix. A convenient fact is col(ABC) = (CT ⊗ A)col(B) whenever ABC is
compatible. We write ★ for the Kleene star, extend its usage to rows and columns
of matrices, and overload it also for unnamed suitable value. For example, E ∈ ℤ2×★

could mean that E is a 2-row integer matrix of some suitable number of columns so
that its operations with other vectors and matrices are compatible, which should be
clear from the context.

For integers 𝐿, 𝐵, we write [𝐿, 𝐵] for { 𝑧 ∈ ℤ | 𝐿 ≤ 𝑧 ≤ 𝐵 }. For 𝑛 ≥ 0, we write [𝑛]
for [1, 𝑛]. For natural number 𝑞 ≥ 2, we denote by ℤ𝑞 the integers modulo 𝑞. Matrices
over ℤ are naturally mapped to those over ℤ𝑞, and this mapping is implicit so that
they can be freely mixed for various operations. When 𝑧 ∈ ℤ𝑞, saying 𝑧 ∈ [𝐿, 𝐵]
means that a representative of 𝑧 is in [𝐿, 𝐵].

Symbols. Table 1 explains select single-letter symbols used in this work.
1The reductions in this work do not “increase non-uniformity”. Samplers, considered in many

security definitions in this work, are a part of the adversary.

13 / 79

Table 1. Select single-letter symbols.

context symbol meaning

generic 𝜆, 𝜅 computational/statistical security parameter
𝛽, 𝛿, 𝜹,∆ challenge bit, random scalar/vector/matrix

ABE

𝑃, 𝑋,𝑌 predicate (family), key-tied set, ciphertext-tied set
𝑥, 𝑦, 𝜇 key-tied value, ciphertext-tied value, message
𝐽, 𝑗 key count, index
r, s rerandomizer, garbling randomness

lattices

𝑛, 𝑚, 𝑞, 𝜌 dimension, dimension, modulus, hardness exponent
g,G gadget vector/matrix
p,P,k,K image vector/matrix, preimage vector/matrix
A,B, 𝜏 matrix, matrix with trapdoor, trapdoor
D,𝜎 discrete Gaussian distribution, width
𝑒, e,E, 𝐵 noise scalar/vector/matrix, noise bound
d, 𝑟 (evasive) LWE secret, sampler randomness
𝐾, 𝑘 structured noise length/index

IPFE

I, 𝑞, 𝑍, 𝑧 identity space (family), modulus, dimension, index
𝐵,𝜎 error bound, noise width
v,uT key/plaintext vector
𝐽, 𝐼, 𝑗, 𝑖 key/ciphertext count, key/ciphertext index
𝝍,𝝋T key/ciphertext randomness for identity binding

garbling

𝐹, 𝑓 , x, 𝐿, ℓ function family, function, input, length, index
𝑞, 𝑛, s modulus, randomness dimension, garbling randomness
𝑤,w,w,W secret scalar/vector, label (function) vector/matrix
t,T garbled table vector/matrix
R reusable information
𝐵, e noise bound, garbling noise

circuits
𝐶, 𝑑 circuit, depth (bound)
𝑥, 𝑀 wire value, wire value bound
x, 𝐿, ℓ input, length, index

DFA
Γ,𝔔, 𝔮, Γ DFA, number of states, state, transition matrix
𝜾1, 𝝃, 𝐿 initial/rejection state vector, input length bound
x, 𝐿, ℓ input, length, index

14 / 79

2.1 Attribute-Based Encryption

We consider promise ABE with respect to partial predicates. Correctness holds when
the predicate outputs 1; security holds when it outputs 0; neither is guaranteed if
the output is ⊥. This feature is used to exclude arithmetic computations with out-of-
bound wire values, and it enables accurate specification of bounded ABE. Promise
variants of ABE are already considered in [JLL23].

Definition 1 (ABE [GPSW06]). Let 𝑃 = {𝑃𝜆,param}𝜆∈ℕ,param∈Params𝜆 be a predicate family,
where each 𝑃𝜆,param is a function 𝑋𝜆,param×𝑌𝜆,param→{0, 1,⊥} and Params={Params𝜆}𝜆∈ℕ
is a sequence of predicate description sets. An attribute-based encryption scheme for 𝑃
consists of four efficient algorithms.

• Setup(1𝜆, param) takes the predicate description param ∈ Params𝜆 as input, and
outputs a pair of master public/secret keys (mpk,msk).

• KeyGen(1𝜆,msk, 𝑥) takes as input msk and some 𝑥 ∈ 𝑋𝜆,param. It outputs a secret
key sk for 𝑥.

• Enc(1𝜆,mpk, 𝑦, 𝜇) takes as inputmpk, some 𝑦 ∈ 𝑌𝜆,param, and a single-bit message
𝜇 ∈ {0, 1}. It outputs a ciphertext ct of 𝜇 tied to 𝑦.

• Dec(1𝜆,mpk, 𝑥, sk, 𝑦, ct) takes as input mpk, 𝑥, sk, 𝑦, ct. It is supposed to output 𝜇
if 𝑃𝜆,param(𝑥, 𝑦) = 1.

The scheme must be correct, i.e., for all 𝜆 ∈ ℕ, param ∈ Params𝜆, 𝑥 ∈ 𝑋𝜆,param,
𝑦 ∈ 𝑌𝜆,param, 𝜇 ∈ {0, 1} such that 𝑃𝜆,param(𝑥, 𝑦) = 1, it holds that

Pr


(mpk,msk) $← Setup(1𝜆, param)

sk $← KeyGen(1𝜆,msk, 𝑥)

ct $← Enc(1𝜆,mpk, 𝑦, 𝜇)

: Dec(1𝜆,mpk, 𝑥, sk, 𝑦, ct) = 𝜇

 = 1.

Security. We consider very selective [AWY20] (also known as static [RW15]) security in
this work. Before the ABE is set up, the adversary chooses all the 𝑥’s and the 𝑦 for
which the secret keys and the challenge ciphertext are to be generated.

Definition 2 (ABE security [AWY20]). An ABE scheme (Definition 1) is very selectively
secure if Exp0

ABE ≈ Exp
1
ABE, where Exp

𝛽
ABE(1

𝜆,A) proceeds as follows.

• Challenge. Launch A(1𝜆) and receive from it

param ∈ Params𝜆, {𝑥𝑗}𝑗∈[𝐽] (𝑥𝑗 ∈ 𝑋𝜆,param for all 𝑗 ∈ [𝐽]), 𝑦∗ ∈ 𝑌𝜆,param.

• Setup. Run

(mpk,msk) $← Setup(1𝜆, param),

sk𝑗
$← KeyGen(1𝜆,msk, 𝑥𝑗) for all 𝑗 ∈ [𝐽],

ct∗ $← Enc(1𝜆,mpk, 𝑦∗,𝛽),

and send mpk, {sk𝑗}𝑗∈[𝐽] , ct∗ to A.

• Guess. The adversary A outputs 𝛽′ ∈ {0, 1}. The output of the experiment is 𝛽′
if 𝑃𝜆,param(𝑥𝑗 , 𝑦∗) = 0 for all 𝑗 ∈ [𝐽]. Otherwise, the output is set to 0.

15 / 79

2.2 Lattices

Let 𝑛, 𝑚 ≥ 1 and 𝑞 ≥ 2 be integers such that log2 𝑞 ≤ 𝑚/𝑛 ∈ ℤ. Let

g = (20, . . . , 2𝑚/𝑛−1)T and G = I𝑛 ⊗ gT

be the gadget vector and the gadget matrix. Given p ∈ ℤ𝑛𝑞, we denote by G−1(p) the
vector k ∈ {0, 1}𝑚, where k[(𝑖 − 1) · 𝑚/𝑛 + 1], . . . ,k[𝑖 · 𝑚/𝑛] are the bits of (the non-
negative representative less than 𝑞 of) p[𝑖], low to high. It holds that GG−1(p) = p.
Given 𝐾 ∈ ℕ, we let (note the different order in the Kronecker product)

g̃ = (20, . . . , 2𝐾−1)T and G̃ = g̃ T ⊗ I.

When 2𝐾 ≥ 𝑞, the vector G̃−1(p) is again the bit decomposition of p ∈ ℤ★
𝑞, arranged

so that G̃G̃−1(p) = p. The notations G−1(·), G̃−1(·) extend to matrices column-wise.
Given B ∈ ℤ𝑛×𝑚𝑞 and p ∈ ℤ𝑛𝑞 such that Bk = p has a solution k∗ ∈ ℤ𝑚, we write the

lattice coset

Λ⊥p (B) = { k ∈ ℤ𝑚 | Bk = p } = k∗ + Λ⊥0 (B).

Let Λ′ be any lattice coset and 𝜎 ≥ 0, we denote by DΛ′,𝜎 the discrete Gaussian
distribution [MP11] over Λ′ with width 𝜎. Since we insist on perfect correctness,
it is necessary to truncate unbounded noises in algorithms:

Definition 3 (truncated Dℤ,𝜎). Let 𝐵 ≥ 0, the distribution Dℤ,𝜎,≤𝐵 is sampled by first
sampling 𝑥 $← Dℤ,𝜎, then returning 𝑥 if |𝑥| ≤ 𝐵, and 0 otherwise.

Lemma 1 (truncation of Dℤ,𝜎). For all 𝜎 ≥ 1 and 𝜅 ≥ 2,

Pr
[
𝑥

$← Dℤ,𝜎 : |𝑥| > 𝜎
√
𝜅

]
≤ 2−𝜅,

so Dℤ,𝜎,≤𝜎
√
𝜅 is 2−𝜅-close to Dℤ,𝜎.

We will also need noise flooding with discrete Gaussian:

Lemma 2 (noise flooding using Dℤ,𝜎). For all 𝑦 ∈ ℤ and 𝜎 ≥ 2𝜅+6𝑦, it holds that
(𝑦 +Dℤ,𝜎) is 2−𝜅-close to Dℤ,𝜎.

Trapdoor Generation and Gaussian Sampling. We need the following lemma:

Lemma 3 ([MP12; Theorem 2]). There are efficient algorithms TrapGen and SampleD,
and functions 𝑚0 ∈ Θ(𝑛 log 𝑞) and 𝜎0 ∈ ω(

√︁
𝑚 log𝑚) ∩ O(𝑚) satisfying these conditions.

• TrapGen(1𝑛, 1𝑚, 𝑞) takes as input 𝑛 ≥ 1, 𝑞 ≥ 2, and 𝑚 ≥ 𝑚0(𝑛, 𝑞). It outputs (B, 𝜏)
such that B ∈ ℤ𝑛×𝑚𝑞 and B is negl(𝑛)-close to uniform over ℤ𝑛×𝑚𝑞 .

• SampleD(B, 𝜏,p,𝜎) takes as input B, 𝜏 from TrapGen, some p ∈ ℤ𝑛𝑞, and
𝜎 ≥ 𝜎0(𝑛, 𝑚). It outputs k ∈ ℤ𝑚 such that Bk = p, ∥k∥ ≤ 𝜎

√
𝑚, and k is negl(𝑛)-

close to DΛ⊥p (B),𝜎.

16 / 79

Batch Notation. It is convenient to extend SampleD to process multiple p’s in one
shot. Let P = (p1, . . . ,p𝑚′) be a matrix or a batch of vectors, then SampleD(B, 𝜏,P,𝜎)
is

K $←
(
SampleD(B, 𝜏,p1,𝜎), . . . , SampleD(B, 𝜏,p𝑚′,𝜎)

)
,

with fresh randomness for each call to SampleD on the right-hand side. We also write
B−1(P) for an output of SampleD(B, 𝜏,P,𝜎).

Learning with Errors Assumption. We rely on the LWE assumption.

Assumption 1 (LWE [Reg05]). Let 𝑛, 𝑚 ≤ poly(𝜆), 𝑞 = 𝑞(𝜆), 𝜎 = 𝜎(𝜆), and

A $← ℤ
𝑛(𝜆)×𝑚(𝜆)
𝑞(𝜆) , s $← ℤ

𝑛(𝜆)
𝑞(𝜆) , e $← ℤ

𝑚(𝜆)
𝑞(𝜆) , 𝜹

$← Dℤ,𝜎(𝜆) .

The LWE assumption LWE𝑛,𝑚,𝑞,𝜎 states that

{(1𝜆,A, sTA + eT)}𝜆∈ℕ ≈ {(1𝜆,A, 𝜹T)}𝜆∈ℕ.

Assumption 2 (flipped LWE). Let 𝑁, 𝑚 ≤ poly(𝜆), 𝑞 = 𝑞(𝜆), 𝜎 = 𝜎(𝜆), and

A $← {0, 1}𝑁 (𝜆)×𝑚(𝜆) , s $← ℤ
𝑁 (𝜆)
𝑞(𝜆) , e $← ℤ

𝑚(𝜆)
𝑞(𝜆) , 𝜹

$← Dℤ,𝜎(𝜆) .

The flipped LWE assumption FlipLWE𝑁,𝑚,𝑞,𝜎 states that

{(1𝜆,A, sTA + eT)}𝜆∈ℕ ≈ {(1𝜆,A, 𝜹T)}𝜆∈ℕ.

Lemma 4 (flipped LWE). Suppose LWE𝑛,𝑚,𝑞,𝜎 holds and 𝑁 ≤ poly(𝜆) satisfies

0 ≤ 𝑁/𝑛 − log2 𝑞 ∈ ω(log𝜆),

then FlipLWE𝑁,𝑚,𝑞,𝜎 holds.

Parameters. In this work, we rely on the LWE assumption with subexponential
modulus-to-noise ratio, i.e., 𝑛 = 𝜆Θ(1), 𝑚 ≤ poly(𝑛), 𝑞 ≤ 2poly(𝑛), 𝑞

𝜎
√
𝑛
= Θ(2𝑛𝜌), where

0 < 𝜌 < 1 is a constant. Strictly speaking, those parameters should be chosen by
the adversary subject to those constraints — most algorithms require a prime 𝑞,
it is currently unknown [TCH12] how to pick poly(𝜆)-bit primes in deterministic
polynomial time, and the adversary’s choice of scheme parameters affect the ranges
of LWE parameters.

2.3 Evasive LWE Assumption

Conceptually, we consider two knowledge assumptions — evasive learning with
errors (evasive LWE) and evasive learning with structured errors (not abbreviated).
The former is a special case of the latter, and we formulate the definitions as such.

Assumption 3 (evasive learning with structured errors). Let S (1𝜆; 𝑟) be an algorithm
that, given randomness 𝑟, outputs

1𝑛, 1𝑚, 1𝐾 , 𝑞, 1𝑛
′
, 1𝐽 , 1𝐼 , 1𝑚

′
, 𝜎−1, 𝜎post ≥ 𝜎pre ≥ 0,

P̃ ∈ ℤ𝑛(𝐾+1)×𝐽
𝑞 , {A1,𝑖,A0,𝑖}𝑖∈[𝐼] (A1,𝑖 ∈ ℤ𝑛×𝑚

′
𝑞 , A0,𝑖 ∈ ℤ𝑛

′×𝑚′
𝑞),

where 𝑚 ≥ 𝑚0(𝑛(𝐾 + 1), 𝑞) and 𝜎−1 ≥ 𝜎0(𝑛(𝐾 + 1), 𝑚) are constrained by Lemma 3.
Suppose

(B̃, 𝜏) $← TrapGen(1𝑛(𝐾+1) , 1𝑚, 𝑞), K $← SampleD(B̃, 𝜏, P̃,𝜎−1),

17 / 79

d0
$← ℤ𝑛

′
𝑞 ; epre,𝑖,0

$← D𝑚′

ℤ,𝜎pre
, epost,𝑖,0

$← D𝑚′

ℤ,𝜎post
, 𝜹𝑖,0

$← ℤ𝑚
′

𝑞 ,

d𝑖
$← ℤ𝑛𝑞, epre,𝑖,1

$← D𝑚(𝐾+1)
ℤ,𝜎pre

, epost,𝑖,1
$← D𝑚(𝐾+1)

ℤ,𝜎post
, 𝜹𝑖,1

$← ℤ
𝑚(𝐾+1)
𝑞 ,

epre,𝑖,2
$← D𝐽 (𝐾+1)

ℤ,𝜎pre
, epre,𝑖,4

$← D𝐽
ℤ,𝜎pre

, 𝜹𝑖,2
$← ℤ

𝐽 (𝐾+1)
𝑞 ,

epre,𝑖,3
$← D𝑚

ℤ,𝜎pre
, epost,𝑖,3

$← D𝑚
ℤ,𝜎post

, for all 𝑖 ∈ [𝐼].

Let g̃ T = (20, 21, . . . , 2𝐾−1)T and

B̃ = (BT
−1,B

T
0, . . . ,B

T
𝐾−1)

T, B = (B−1,B0, . . . ,B𝐾−1),
P̃ = (PT

−1,P
T
0, . . . ,P

T
𝐾−1)

T, P = (P−1,P0, . . . ,P𝐾−1),

where B𝑘 ∈ ℤ𝑛×𝑚𝑞 and P𝑘 ∈ ℤ𝑛×𝐽𝑞 . The precondition evLWsESpre is
©­­­«
1𝜆,
𝑟,

B,


dT
𝑖P + (01×𝐽 , g̃ T ⊗ eT

pre,𝑖,4) + eT
pre,𝑖,2,

dT
𝑖B + (01×𝑚, g̃ T ⊗ eT

pre,𝑖,3) + eT
pre,𝑖,1,

dT
𝑖A1,𝑖 + dT

0A0,𝑖 + eT
pre,𝑖,0

𝑖∈[𝐼]
ª®®®¬
𝜆∈ℕ

≈


©­­­«
1𝜆,
𝑟,

B,


𝜹T
𝑖,2,

𝜹T
𝑖,1,

𝜹T
𝑖,0

𝑖∈[𝐼]
ª®®®¬
𝜆∈ℕ

.

The postcondition evLWsESpost is{(
1𝜆, 𝑟,
B,K,

{
dT
𝑖B + (01×𝑚, g̃ T ⊗ eT

post,𝑖,3) + eT
post,𝑖,1,

dT
𝑖A1,𝑖 + dT

0A0,𝑖 + eT
post,𝑖,0

}
𝑖∈[𝐼]

)}
𝜆∈ℕ
≈

{(
1𝜆, 𝑟,
B,K,

{
𝜹T
𝑖,1,

𝜹T
𝑖,0

}
𝑖∈[𝐼]

)}
𝜆∈ℕ

.

The evasive learning with structured errors assumption states that evLWsESpre implies
evLWsESpost for all efficient S.

Assumption 4 (evasive LWE). A sampler S (Assumption 3) does not use structured
noises if Pr[𝐾 = 0] = 1, for which evLWESpre (resp. evLWESpost) is defined to be evLWsE

S
pre

(resp. evLWsESpost). The evasive LWE assumption states that evLWE
S
pre implies evLWESpost

for all efficient S not using structured noises.

Note that for evasive LWE, B̃ = B = B−1 and P̃ = P = P−1.

Remark 1 (public-coin samplers). As in [Wee22,WWW22], our evasive assumptions
are only for public-coin samplers, which we enforce by providing the sampler
randomness to the distinguisher. It is weaker than the versions [Tsa22,VWW22] used
for witness encryption, which considers private-coin samplers and the distinguisher,
instead of the sampler randomness, gets the auxiliary information, an additional
output produced by the sampler. The public-coin assumption avoids obfuscation-
based counterexamples, where P is sampled with a trapdoor and the auxiliary
information contains an obfuscated program with the trapdoor hardwired.

Remark 2 (comparison with [Wee22,WWW22]). As suggested in [Wee22], the noise
magnitude in the postcondition can be made larger than that in the precondition for
a more conservative assumption. We can implement it by requiring the assumptions
to hold only for samplers with a gap between 𝜎post and 𝜎pre. We additionally
allow a worse Gaussian preimage K. Other than the magnitudes of samples, our
version of evasive LWE is stronger than the version in [Wee22], and is similar to but
incomparable with that in [WWW22].

18 / 79

While appearing much more complex, our evasive learning with structured errors
assumption follows the same rationale as all existing versions of public-coin evasive
LWE. In evasive LWE (without structured noises), the basic idea is that given

K $← B−1(P), dTB + eT
1, dTA + eT

0,

the trapdoor preimages can only be meaningfully used to multiply the corresponding
LWE samples, i.e., (dTB + eT

1)K = dTP + eT
1K, and that moreover, the correlation

between e1 and eT
1K is not useful to the attacker if the samples have no apparent

relations when eT
1K is replaced by fresh eT

2. Therefore, the precondition requires that

dTP + eT
2, dTB + eT

1, dTA + eT
0

be pseudorandom, and evasive LWE asserts that (dTB + eT
1,d

TA + eT
0) is pseudorandom

in the presence of K.
For evasive learning with structured errors, suppose we are given

K, {dTB𝑘 + 2𝑘eT
3 + eT

1,𝑘}0≤𝑘≤𝐾−1, dTA + eT
0,

where B𝑘K = P𝑘 for all 𝑘. Again, the trapdoor preimages can only be meaningfully
used to multiply the corresponding LWE samples to obtain

(dTB𝑘 + 2𝑘eT
3 + eT

1,𝑘)K = dTP𝑘 + 2𝑘eT
3K + eT

1,𝑘K.

Following the same rationale of “correlation among noises not helpful if samples with
fresh noises are pseudorandom”, we replace {eT

1,𝑘K}
𝑘
, eT

3K by independent {eT
2,𝑘}𝑘, e

T
4.

This gives rise to the conditions in our assumption. It remains to figure out how to
sample K simultaneously satisfying B𝑘K = P𝑘 for all 𝑘. The equations can be rewritten
as

©­­«
B1
...

B𝑘

ª®®¬ K =
©­­«

P1
...

P𝑘

ª®®¬ ,
so it suffices to sample the vertically blocked B𝑘’s with trapdoor. We further incorpo-
rate a block (B−1 and P−1) without structured noises and arrive at Assumption 3.

3 Evasive Inner-Product Functional Encryption

We define identity-based IPFE with structured noises and its security. A scheme
might not support every combination of moduli, identities, and noise structures,
which can be signaled by the algorithms aborting.

Definition 4 ((IB-)evIPFE(-w/sn)). Let I = {I𝜆,𝑞,𝐾,𝑍}𝜆,𝑞,𝐾,𝑍∈ℕ be a family of sets. An
(identity-based) evasive IPFE (with structured noises) scheme for I consists of four
efficient algorithms.

• Setup(1𝜆, 𝑞, 1𝐾 , 1𝑍) takes as input the modulus 𝑞, the noise parameter 𝐾 , and
the dimension 𝑍. It outputs a pair (impk, imsk) of master public/secret keys.

19 / 79

• KeyGen(1𝜆, imsk, id, v𝔬,V𝔤) takes as input imsk, an identity id ∈ I𝜆,𝑞,𝐾,𝑍, a key
vector v𝔬 ∈ ℤ𝑍

𝑞 , and a key matrix V𝔤 ∈ ℤ𝑍×𝐾
𝑞 . It outputs a secret key isk for

(v𝔬,V𝔤) under identity id.

• Enc(1𝜆, impk, id, 𝔰,uT) takes as input impk, id, a noise structure 𝔰 ∈ {𝔬, 𝔤}, and
a plaintext vector u ∈ ℤ𝑍

𝑞 . It outputs a ciphertext ict of u under id for noise
structure 𝔰.

• Dec(1𝜆, impk, id, v𝔬,V𝔤, isk, 𝔰, ict) takes as input impk, id, v𝔬,V𝔤, isk, 𝔰, ict. If ict is
for noise structure 𝔰 and both isk and ict are under id, the decryption result is
in ℤ𝑞 and is supposed to approximate uTv𝔬 (when 𝔰 = 𝔬) or uTV𝔤 (when 𝔰 = 𝔤).

Let 𝐵 be a function mapping (𝜆, 𝑞, 𝐾, 𝑍) to natural numbers. The scheme is 𝐵-correct
for 𝔬 if for all 𝜆, 𝑞, 𝐾, 𝑍 ∈ ℕ, id ∈ I𝜆,𝑞,𝐾,𝑍, V𝔤 ∈ ℤ𝑍×𝐾

𝑞 , v𝔬,u ∈ ℤ𝑍
𝑞 , it holds that

Pr


(impk, imsk) $← Setup(1𝜆, 𝑞, 1𝐾 , 1𝑍)

isk $← KeyGen(1𝜆, imsk, id, v𝔬,V𝔤)

ict $← Enc(1𝜆, impk, id, 𝔬,uT)

:
Dec(1𝜆, impk, id, v𝔬,V𝔤, isk, 𝔤, ict)

= uTv𝔬 + 𝑒𝔬 for some
𝑒𝔬 ∈ [−𝐵(𝜆, 𝑞, 𝐾, 𝑍), 𝐵(𝜆, 𝑞, 𝐾, 𝑍)]

 = 1.

For 𝐵-correctness for 𝔤, the requirement is

Pr


— ′′— for impk, imsk, isk

ict $← Enc(1𝜆, impk, id, 𝔤,uT)
:
Dec(1𝜆, impk, id, v𝔬,V𝔤, isk, 𝔤, ict)

= uTV𝔤 + g̃ T ⊗ 𝑒𝔤𝔤 + eT
𝔤𝔬 for some

𝑒𝔤𝔤, e𝔤𝔬 ∈ [−𝐵(𝜆, 𝑞, 𝐾, 𝑍), 𝐵(𝜆, 𝑞, 𝐾, 𝑍)]★

 = 1.

The scheme is 𝐵-correct if both are satisfied.

The correctness property is trivial when I = ∅ or 𝐵 ≥ 𝑞/2. We are interested in
large enough I and reasonably small 𝐵, for useful choices of 𝑞, 𝑍. Jumping ahead,
Constructions 2 and 3 support exponentially large |I | and 𝑞/𝐵, which suffice for our
ABE schemes.

When referring to specific schemes, if |I | is small, we remove “identity-based”
(IB), and if they only support 𝐾 = 0, we remove “with structured noises” (w/sn).

Batch Notations. It is convenient to consider KeyGen, Enc,Dec in batches. Let

V𝔬 = (v1,𝔬, . . . , v𝐽,𝔬) ∈ ℤ𝑍×𝐽
𝑞 , V𝔤 = (V1,𝔤, . . . , v𝐽,𝔤) ∈ ℤ𝑍×𝐾𝐽

𝑞 , U = (u1, . . . ,u𝐼) ∈ ℤ𝑍×𝐼
𝑞

be matrices (batches of vectors/matrices) and id ∈ I, 𝔰 ∈ {𝔬, 𝔤}. We write

isk $← KeyGen(imsk, id,V𝔬,V𝔤) and ict $← Enc(impk, id, 𝔰,UT)

for isk← {isk𝑗}𝑗∈[𝐽] and ict← {ict𝑖}𝑖∈[𝐼], where

isk𝑗
$← KeyGen(imsk, id, v𝑗,𝔬,V𝑗,𝔤) for all 𝑗 ∈ [𝐽],

ict𝑖
$← Enc(impk, id, 𝔰,uT

𝑖) for all 𝑖 ∈ [𝐼],

and Dec(impk, id,V𝔬,V𝔤, isk, 𝔰, ict) means

©­­«
Dec(impk, id, v1,𝔬,V1,𝔤, isk1, 𝔰, ict1) · · · Dec(impk, id, v𝐽,𝔬,V𝐽,𝔤, isk𝐽 , 𝔰, ict1)

...
. . .

...

Dec(impk, id, v1,𝔬,V1,𝔤, isk1, 𝔰, ict𝐼) · · · Dec(impk, id, v𝐽,𝔬,V𝐽,𝔤, isk𝐽 , 𝔰, ict𝐼)

ª®®¬ ,
which is approximately UTV𝔰. The mnemonic is that the decryption result is the
plaintext matrix UT multiplied by the key matrix V𝔰.

20 / 79

Security. We consider very selective (also known as static) security with respect to a
sampler producing pseudorandom structurally noisy outputs.

Definition 5 (IB-evIPFE-w/sn security). Let S = (SV,SU) be two algorithms with the
following syntax.

• SV(1𝜆; 𝑟pub), given randomness 𝑟pub, outputs

𝑞, 1𝐾 , 1𝑍, ID ⊆ I𝜆,𝑞,𝐾,𝑍, {1𝐽id , 1𝐼id,𝔬 , 1𝐼id,𝔤} id∈ID, 𝜎pre ≥ 0,

{Vid,𝔬,Vid,𝔤} id∈ID (Vid,𝔬 ∈ ℤ
𝑍×𝐽id
𝑞 ,Vid,𝔤 ∈ ℤ

𝑍×𝐾𝐽id
𝑞).

• SU(1𝜆, 𝑟pub; 𝑟priv), given 𝑟pub and additional randomness 𝑟priv, outputs

{UT
id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} (Uid,𝔰 ∈ ℤ

𝑍×𝐼id,𝔰
𝑞),

where 𝑞, 𝑍, ID, {𝐼id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} agree with the output of SV(1𝜆; 𝑟pub).

Suppose (impk, imsk) $← Setup(1𝜆, 𝑞, 1𝐾 , 1𝑍) and for all id ∈ ID, 𝔰 ∈ {𝔬, 𝔤},

E id,𝔬
$← D𝐽id×𝐼id,𝔬

ℤ,𝜎pre
, E id,𝔤𝔤

$← D𝐽id×𝐼id,𝔤
ℤ,𝜎pre

, E id,𝔤𝔬
$← D𝐾𝐽id×𝐼id,𝔤

ℤ,𝜎pre
,

∆pre,id,𝔬
$← ℤ

𝐽id×𝐼id,𝔬
𝑞 , ∆pre,id,𝔤

$← ℤ
𝐾𝐽id×𝐼id,𝔤
𝑞 ,

isk id
$← KeyGen(1𝜆, imsk, id,Vid,𝔬,Vid,𝔤),

ict∗id,𝔰
$← Enc(1𝜆, impk, id, 𝔰,UT

id,𝔰),

U$,id,𝔰
$← ℤ

𝑍×𝐼id,𝔰
𝑞 , ict$id,𝔰

$← Enc(1𝜆, impk, id, 𝔰,UT
$,id,𝔰).

S has pseudorandom structurally noisy inner products, denoted IPFEsecSpre, if{(
1𝜆,

𝑟pub,

{
UT
id,𝔬Vid,𝔬 + ET

id,𝔬,

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ ET

id,𝔤𝔤 + ET
id,𝔤𝔬

}
id∈ID

)}
𝜆∈ℕ
≈

{(
1𝜆,

𝑟pub,

{
∆T
pre,id,𝔬,

∆T
pre,id,𝔤

}
id∈ID

)}
𝜆∈ℕ

.

The scheme is S-secure, denoted IPFEsecSpost, if
©­­­«

1𝜆,
𝑟pub,

impk,


ict∗id,𝔬,

ict∗id,𝔤,

isk id

id∈ID
ª®®®¬
𝜆∈ℕ ≈


©­­­«

1𝜆,
𝑟pub,

impk,


ict$id,𝔬,

ict$id,𝔤,

isk id

id∈ID
ª®®®¬
𝜆∈ℕ .

The scheme is 𝜎pre,0-secure if it is S-secure for all efficient S such that 𝜎pre ≤ 𝜎pre,0
and IPFEsecSpre holds.

Remark 3 (public and private coins). It is necessary to make the sampling of U private-
coin. Since IPFE does not protect V (the key vectors/matrices), the adversary is
assumed to have full knowledge of V. If U were sampled with public coins, the
distinguisher against the ciphertexts (in IPFEsecpost) would know both V and U, thus
UTV. In the first distribution (containing ciphertexts of U), decryption will yield the
correct output, whereas it is not the case for the second distribution (containing
ciphertexts of random vectors).

We formulate SV as public-coin and SU as fully private-coin, to avoid obvious
counterexamples (e.g., obfuscation-based).

21 / 79

3.1 Basic Construction — Single-Identity, No Structured Noises

We first present a simple candidate for one identity without structured noises. The
scheme is reminiscent to many existing IPFE constructions [ABDP15,ALS16,Wee17,
Agr19,AP20,LL20a,LL20b].

Ingredients of Construction 1. We rely on Lemma 3 for correctness. The security of
the scheme is elaborated in Sections 3.2 and 3.3.

Construction 1 (evIPFE). Our scheme works as follows.

• Setup(𝑞, 1𝐾 , 1𝑍) takes as input 𝑞, 𝐾, 𝑍. If 𝐾 ≠ 0, it sets I𝑞,𝐾,𝑍 = ∅ and terminates
(aborting case). Otherwise, the algorithm sets I𝑞,𝐾,𝑍 = {1}, and deterministically
picks 𝑛, 𝑚 and 𝜎−1 ≥ 𝜎0(𝑛, 𝑚) appropriate for Lemma 3, as well as 𝜎post, 𝜅. It
samples and sets

(B, 𝜏) $← TrapGen(1𝑛, 1𝑚, 𝑞), A $← ℤ
𝑛×𝑍⌈log2 𝑞⌉
𝑞 ,

impk = (1𝑛, 1𝑚, 𝑞, 1𝑍,𝜎−1,𝜎post, 1𝜅,A,B), imsk = (impk, 𝜏).

The algorithm outputs (impk, imsk).

• KeyGen(imsk, id, v𝔬,V𝔤) takes as input imsk, id = 1, v𝔬 ∈ ℤ𝑍
𝑞 , and V𝔤 = ⊥. It runs

k $← SampleD(B, 𝜏,AG−1(v𝔬),𝜎−1).

Here, G is of shape 𝑍 × 𝑍⌈log2 𝑞⌉. The algorithm outputs isk = k.

• Enc(impk, id, 𝔰,uT) takes as input impk, id = 1, 𝔰 ∈ {𝔬, 𝔤}, and u ∈ ℤ𝑍
𝑞 . If 𝔰 = 𝔤,

the algorithm outputs ⊥ and terminates (the scheme does not produce any key
capable of decrypting such a ciphertext). Otherwise, it samples

d $← ℤ𝑛𝑞, e1
$← D𝑚

ℤ,𝜎post,≤𝜎post
√
𝜅
, e0

$← D𝑍⌈log2 𝑞⌉
ℤ,𝜎post,≤𝜎post

√
𝜅
.

The algorithm outputs ict = (dTB + eT
1, dTA + eT

0 + uTG).

• Dec(impk, id, v𝔬,V𝔤, isk, 𝔰, ict) computes and outputs

ict ·
(
−isk

G−1(v𝔬)

)
.

Correctness. By Lemma 3, we have Bk = AG−1(v𝔬) and ∥k∥ ≤ 𝜎−1
√
𝑚, so

ict ·
(
−isk

G−1(v𝔬)

)
− uTv𝔬 =

(
dTB + eT

1, dTA + eT
0 + uTG

) (
−k

G−1(v𝔬)

)
− uTv𝔬

= −eT
1k + eT

0G−1(v𝔬),
|−eT

1k + eT
0G−1(v𝔬) | ≤ 𝑚 · ∥e1∥ · ∥k∥ + 𝑍⌈log2 𝑞⌉ · ∥e0∥ · ∥G−1(v𝔬)∥

≤ 𝜅1/2𝜎post(𝑚3/2𝜎−1 + 𝑍⌈log2 𝑞⌉).

Let 𝐵 be the right-hand side, then Construction 1 is 𝐵-correct.

22 / 79

3.2 Security as an Assumption

Inspired by the evasive LWE assumption, we propose a new assumption that is closely
related and translates to the security of Construction 1.

The precondition of evasive LWE rules out a combination of two attacking
strategies [Wee22], attacks against LWE and zeroizing attacks. Alternatively, the
evasive LWE assumption can be seen as a belief that i) the only meaningful way
of using B−1(P) is to multiply it to a noisy version of dTB, and that ii) the skewed
noise attached to dTP in (dTB + eT) · B−1(P) does not give adversaries more advantage
as long as there is no apparent relation among quantities related to d when the noises
are not skewed. The pseudorandomness in the precondition of evasive LWE exactly
captures the absence of apparent relation.

Similar to the belief captured by evasive LWE, we propose the following:

Assumption 5 (evasive IPFE). Let S = (SV,SU) be two algorithms with the following
syntax.

• SV(1𝜆; 𝑟pub), given randomness 𝑟pub, outputs

1𝑛, 1𝑚, 𝑞, 1𝑍, 1𝐽 , 1𝐼 , 𝜎−1, 𝜎post ≥ 𝜎pre ≥ 0, V ∈ ℤ𝑍×𝐽
𝑞 ,

where 𝑚 ≥ 𝑚0(𝑛, 𝑞) and 𝜎−1 ≥ 𝜎0(𝑛, 𝑚) are constrained by Lemma 3.

• SU(1𝜆, 𝑟pub; 𝑟priv), given 𝑟pub and additional randomness 𝑟priv, outputs UT, where
U ∈ ℤ𝑍×𝐼

𝑞 and 𝑞, 𝑍, 𝐼 agree with the output of SV(1𝜆; 𝑟pub).

Suppose

(B, 𝜏) $← TrapGen(1𝑛, 1𝑚, 𝑞), A $← ℤ
𝑛×𝑍⌈log2 𝑞⌉
𝑞 , D $← ℤ𝑛×𝐼𝑞 ,

∆0
$← ℤ

𝑍⌈log2 𝑞⌉×𝐼
𝑞 , ∆1

$← ℤ𝑚×𝐼𝑞 , ∆2
$← ℤ𝐽×𝐼𝑞 ,

Epre,0
$← D𝑍⌈log2 𝑞⌉×𝐼

ℤ,𝜎pre
, Epre,1

$← D𝑚×𝐼
ℤ,𝜎pre

, Epre,2
$← D𝐽×𝐼

ℤ,𝜎pre
,

Epost,0
$← D𝑍⌈log2 𝑞⌉×𝐼

ℤ,𝜎post
, Epost,1

$← D𝑚×𝐼
ℤ,𝜎post

,

K $← SampleD(B, 𝜏,AG−1(V),𝜎−1).

The inner-product precondition evIPFESipre is

{(1𝜆, 𝑟pub,UTV + ET
pre,2)}𝜆∈ℕ ≈ {(1𝜆, 𝑟pub,∆T

2)}𝜆∈ℕ.

The stricter precondition evIPFESspre is

{(1𝜆, 𝑟pub,A,B,DTAG−1(V) + ET
pre,2,D

TB + ET
pre,1,D

TA + ET
pre,0 + UTG)}𝜆∈ℕ

≈ {(1𝜆, 𝑟pub,A,B, ∆T
2 , ∆T

1 , ∆T
0)}𝜆∈ℕ.

The postcondition evIPFESpost is

{(1𝜆, 𝑟pub,A,B,K,DTB + ET
post,1,D

TA + ET
post,0 + UTG)}𝜆∈ℕ

≈ {(1𝜆, 𝑟pub,A,B,K, ∆T
1 , ∆T

0)}𝜆∈ℕ.

23 / 79

The (𝑛0,𝜎post,0)-evasive IPFE assumption states that evIPFESipre implies evIPFE
S
post for all

efficient S such that 𝑛 ≥ 𝑛0 and 𝜎post ≥ 𝜎post,0. The conservative evasive IPFE assumption
states that evIPFESspre implies evIPFESpost for all efficient S.2

The rationale of public and private coins in the above formulation is similar to that
(Remark 3) of evasive IPFE security definition.

Evasive IPFE Security from Evasive IPFE Assumption. There are only minor
syntactical differences between the samplers of evasive IPFE (Assumption 5) and
IPFEsec (Definition 5) instantiated for Construction 1. The evasive IPFE assumption
implies the security of our basic scheme:

Theorem 5 (¶). Construction 1 is 𝜎post-secure (Definition 5) under (𝑛,𝜎post)-evasive IPFE
(Assumption 5), where 𝑛,𝜎post are those picked by Setup.

Proof (Theorem 5). Let S = (SV,SU) be an efficient sampler (Definition 5) satisfying
𝜎pre ≤ 𝜎post and IPFEsecSpre. Consider the following S′ = (S′V,S′U) for Assumption 5.

• S′V(𝑟pub) runs

(𝑞, 10, 1𝑍, {1}, 1𝐽1 , 1𝐼1,𝔬 , 10,𝜎pre,V1,𝔬,⊥) ← SV(𝑟pub),

picks 𝑛, 𝑚,𝜎−1,𝜎post according to Construction 1, sets 𝐽, 𝐼,V to 𝐽1, 𝐼1,𝔬,V1,𝔬, and
outputs3

1𝑛, 1𝑚, 𝑞, 1𝑍, 1𝐽 , 1𝐼 , 𝜎−1, 𝜎post,𝜎pre, V.

• S′U(𝑟pub; 𝑟priv) runs (UT
1,𝔬,⊥) ← SU(𝑟pub; 𝑟priv) and outputs UT = UT

1,𝔬.

Clearly, evIPFES′ipre is simply IPFEsec
S
pre, which is assumed to hold. Therefore, by the

(𝑛,𝜎post)-evasive IPFE assumption, evIPFES
′

post holds, implying

(𝑟pub,A,B,K,DTB + ET
post,1,D

TA + ET
post,0 + UTG)

≈ (𝑟pub,A,B,K, ∆T
1 , ∆T

0)
≡ (𝑟pub,A,B,K, ∆T

1 , ∆T
0 + UT

$G)
≈ (𝑟pub,A,B,K,DTB + ET

post,1,D
TA + ET

post,0 + (U + U$)TG)
≡ (𝑟pub,A,B,K,DTB + ET

post,1,D
TA + ET

post,0 + UT
$G),

where U$ = U$,1,𝔬
$← ℤ𝑍×𝐼

𝑞 . Opening up IPFEsecSpost for Construction 1, we see that

𝑟pub︸︷︷︸
S

= 𝑟pub︸︷︷︸
S′

, impk = (

efficiently computable from 𝑟pub︷ ︸︸ ︷
1𝑛, 1𝑚, 𝑞, 1𝑍,𝜎−1,𝜎post, 1𝜅,A,B), isk1 = K,

ict∗1,𝔬 = (DTB + ET
post,1,D

TA + ET
post,0 + UTG),

ict$1,𝔬 = (D
TB + ET

post,1,D
TA + ET

post,0 + UT
$G),

2For the first part, explicitly requiring lower bounds on 𝑛,𝜎post is necessary, because evIPFEipre
could be unconditional when 𝐽 < 𝑍 yet evIPFEpost is always computational. For the second part,
evIPFEspre implies LWE, so the lower bounds on 𝑛,𝜎post are implicit.

3Without loss of generality, we may assume that SV always outputs ID = {1} and 𝐼1,𝔤 = 0. The
other cases can be converted to ID = {1} and 𝐼1,𝔬 = 𝐽1 = 0, with UT

1,𝔤 discarded, or both. The
quantities 𝑛, 𝑚,𝜎−1,𝜎post are determined by 𝑞, 𝑍, so S′V does not rely on the randomness of Setup
of Construction 1.

24 / 79

except for noise truncation only up to a negligible statistical error by Lemma 1.
Therefore, IPFEsecSpost follows from the previous indistinguishability. □

Full and Conservative Versions. The evasive IPFE assumption might appear custom-
made for the scheme, rendering the security proof almost tautological, and it looks
far-fetched from and bears little resemblance to the evasive LWE assumption. We
justify it below.

Intuitively, the only meaningful way of using B−1(AG−1(V)) is to compute

−DTB
:::
· B−1(AG−1(V)) + (DTA

:::
+ UTG)G−1(V) = UTV

:::
,

where wavy underlines indicate noises. In this computation, it appears that some
cancellation has happened so that UTV is approximately recovered, which is different
from evasive LWE, where no cancellation happens. But the precondition requires that
the inner products with noise be pseudorandom, i.e., the “cancellation” only leads to
pseudorandom results, morally equivalent to that there is no actual cancellation. It
excludes the obvious zeroizing attacks.

The conservative evasive IPFE assumption is more along the lines of the evasive
LWE assumption, for which the only addition is the ability to combine privately
sampled value U with LWE sample DTA. It appears to be a smaller leap of faith than
the full version, yet this is actually superfluous.

In fact, the full version does not demand more than the conservative version in
suitable parameter regimes. We show that evIPFESipre implies evIPFE

S
spre under the LWE

assumption with noise super-polynomially smaller than 𝜎pre:

Theorem 6 (¶). If S (Assumption 5) is efficient and LWE𝑛,𝑚+𝑍⌈log2 𝑞⌉,𝑞,𝜎help (Assumption 1)
holds for some 𝜎help ≤

𝜎pre
2𝜅+6√𝜅·𝑍⌈log2 𝑞⌉

, where 𝑞, 𝑍,𝜎pre are those picked by S, then evIPFESipre
implies evIPFESspre.

We obtain a conservative version of Theorem 5 as a corollary.

Corollary 7 (¶). Construction 1 is 𝜎post-secure (Definition 5) under conservative
evasive IPFE (Assumption 5) and LWE𝑛,𝑚+𝑍⌈log2 𝑞⌉,𝑞,𝜎help (Assumption 1) for some
𝜎help ≤

𝜎post
(2𝜅+6√𝜅)2𝑍⌈log2 𝑞⌉

, where 𝑞, 𝑍 are those picked by S and 𝑛, 𝑚,𝜎post, 𝜅 are those picked
by Setup.

The idea for the proof of Theorem 6 is(
DTAG−1(V)
::::::::::

,DTB
:::

,DTA
:::
+ UTG

)
(noise flooding) ≈s

(
(DTA

:::
+ UTG)G−1(V) − UTV

:::
,DTB

:::
,DTA

:::
+ UTG

)
(LWE) ≈

(
∆T

0G−1(V) − UTV
:::

, ∆T
1 , ∆T

0
)

(precondition) ≈
(

∆T
2 , ∆T

1 , ∆T
0

)
,

where wavy underlines indicate noises. The rewriting in the first step is essentially
IPFE simulation [Wee17,ACF+18,ALMT20,LL20b], i.e., DTAG−1(V)

::::::::::
contains exactly the

information of UTV
:::

, when given DTB
:::

and (DTA
:::
+ UTG).

Proof (Theorem 6). We consider the following hybrids.

25 / 79

• H0 is the first distribution in evIPFESspre, i.e.,

𝑟pub,A,B, DTAG−1(V) + ET
pre,2,

DTB + ET
pre,1, DTA + ET

pre,0 + UTG.

• In H1, the matrix B is sampled uniformly at random, without a known trapdoor.
By Lemma 3, we have H0 ≈s H1.

• In H2, helper noises are inserted and flooded by Epre’s, i.e.,

𝑟pub,A,B, DTAG−1(V) + (ET
pre,2 + ET

help,0G−1(V)),
DTB + (Epre,1 + Ehelp,1)T, DTA + UTG + (Epre,0 + Ehelp,0)T,

where the entries of Ehelp’s are sampled independently from Dℤ,𝜎help,≤𝜎help
√
𝜅.

Since ∥(G−1(V))T∥ ≤ 𝑍⌈log2 𝑞⌉, the entries of (Ehelp’s and) ET
help,0G−1(V) are

bounded by 𝜎help
√
𝜅 · 𝑍⌈log2 𝑞⌉. Together with 𝜎pre ≥ 2𝜅+6𝜎help

√
𝜅 · 𝑍⌈log2 𝑞⌉, it

follows from Lemma 2 that H1 ≈s H2.

• In H3, we change Epre,2 to −Epre,2, rearrange some terms, and derive the noisy
DTAG−1(V) from the IPFE decryption relation, i.e.,

𝑟pub,A,B, (DTA + ET
help,0 + UTG)G−1(V) − (UTV + ET

pre,2),
(DTB + ET

help,1) + ET
pre,1, (DTA + ET

help,0 + UTG) + ET
pre,0.

Since Epre,2 follows a symmetric distribution, H2 ≡ H3.

• In H4, the Ehelp’s are no longer truncated, i.e., their entries are sampled
independently from Dℤ,𝜎help . By Lemma 1, it holds that H3 ≈s H4.

• In H5, we invoke LWE𝑛,𝑚+𝑍⌈log2 𝑞⌉,𝑞,𝜎help for secrets
4 D and public matrix (B,A),

and the distribution becomes

𝑟pub,A,B, (∆T
0 + UTG)G−1(V) − (UTV + ET

pre,2),
∆T

1 + ET
pre,1, (∆T

0 + UTG) + ET
pre,0.

By the LWE assumption, H4 ≈ H5.5

• In H6, we make ∆’s absorb terms added to them, i.e.,

𝑟pub,A,B, (∆T
0 − ET

pre,0)G−1(V) − (UTV + ET
pre,2), ∆T

1, ∆T
0.

Clearly, H5 ≡ H6.

• In H7, we invoke evIPFESipre so the distribution becomes

𝑟pub,A,B, (∆T
0 − ET

pre,0)G−1(V) − ∆T
2, ∆T

1, ∆T
0.

By the assumption, H6 ≈ H7.
4Technically, there are a series of hybrids over the columns of D.
5This step requires that S (part of the reduction algorithm) be efficient.

26 / 79

• H8 is the second distribution in evIPFESspre, i.e.,

𝑟pub,A,B, ∆T
2, ∆T

1, ∆T
0.

Clearly, H7 ≡ H8.

By a hybrid argument, H0 ≈ H8, i.e., evIPFESspre holds. □

Proof (Corollary 7). Given an efficient S (Definition 5) satisfying 𝜎pre ≤ 𝜎post and
IPFEsecSpre, we do the following:

1. construct S′ (Assumption 5) similarly to the proof of Theorem 5 and show that
evIPFES′ipre holds,

2. apply Theorem 6 to S′ for proving evIPFES′spre,

3. derive evIPFES′post from the conservative evasive IPFE assumption, and

4. conclude IPFEsecSpost in the same way as the final parts of the proof of
Theorem 5.

Let 𝜎S
pre,𝜎

S′
pre be the 𝜎pre of S,S′. We set

𝜎S′
pre =

{
𝜎S
pre, if 𝜎S

pre ≥
𝜎post

2𝜅+6√𝜅 ;
𝜎post, otherwise.

In the first case, evIPFES′ipre is just IPFEsec
S
pre and Theorem 6 applies because

𝜎help ≤
𝜎post

(2𝜅+6√𝜅)2𝑍⌈log2 𝑞⌉
≤

𝜎S′
pre

2𝜅+6√𝜅 · 𝑍⌈log2 𝑞⌉
.

In the second case, we cannot set 𝜎S′
pre to 𝜎S

pre, which might not be large enough
compared to 𝜎help per the premise of Theorem 6. Instead, with our choice, evIPFES′ipre
follows from IPFEsecSpre by noise truncation and flooding (Lemmas 1 and 2), and
Theorem 6 again applies. □

We remark that for security against S with particular 𝜎pre’s (e.g., 𝜎pre = 𝜎post), the
bound on 𝜎help can be tuned accordingly (e.g., without the quadratic blow-up).

3.3 Security for Restricted Samplers from Evasive LWE

We prove that Construction 1 is S-secure for a restricted class of samplers under the
evasive LWE assumption. These samplers are efficient, satisfy IPFEsecSpre, and their
SU’s output a uniformly random vector in a publicly known subspace. This will suffice
for our ABE applications.

Definition 6 (restricted IB-evIPFE-w/sn security). A sampler S = (SV,SU) per Defini-
tion 5 is restricted if SU(1𝜆, 𝑟pub; 𝑟priv) works as follows.

27 / 79

1. It uses a fixed deterministic algorithm SA0 to compute

(1𝑛′, {A id,𝔰,0,𝑖} id∈ID,𝔰∈{𝔬,𝔤},𝑖∈[𝐼id,𝔰]) ← SA0(1𝜆, 𝑟pub),

where A id,𝔰,0,𝑖 ∈ ℤ𝑛
′×𝑍
𝑞 for all id ∈ ID, 𝔰 ∈ {𝔬, 𝔤}, 𝑖 ∈ [𝐼id,𝔰], and the values of 𝑞, 𝑍, ID,

{𝐼id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} agree with the output of SV(1𝜆; 𝑟pub).

2. It uses 𝑟priv to sample d0
$← ℤ𝑛

′
𝑞 . The algorithm outputs {UT

id,𝔰} id∈ID,𝔰∈{𝔬,𝔤}

for Uid,𝔰 = (u id,𝔰,1, . . . ,u id,𝔰,𝐼id,𝔰)
with uT

id,𝔰,𝑖 = dT
0A id,𝔰,0,𝑖 for all id ∈ ID, 𝔰 ∈ {𝔬, 𝔤}, 𝑖 ∈ [𝐼id,𝔰].

An IB-evIPFE-w/sn scheme (Definition 4) is restricted-𝜎pre,0-secure if it is S-secure
(Definition 5) for all efficient restricted S such that 𝜎pre ≤ 𝜎pre,0 and IPFEsecSpre holds.

Parallel to restricted security, we formulate the following:

Assumption 6 (restricted conservative evasive IPFE). A sampler S = (SV,SU) for
Assumption 5 is restricted if SU(1𝜆, 𝑟pub; 𝑟priv) works as follows.

1. It uses a fixed deterministic algorithm SA0 to compute

(1𝑛′, {A′0,𝑖}𝑖∈[𝐼]) ← SA0(1𝜆, 𝑟pub) with A′0,𝑖 ∈ ℤ
𝑛′×𝑍
𝑞 for all 𝑖 ∈ [𝐼],

where 𝑞, 𝑍, 𝐼 agree with the output of SV(1𝜆; 𝑟pub).

2. It uses 𝑟priv to sample d0
$← ℤ𝑛

′
𝑞 . The algorithm outputs UT for

U = (u1, . . . ,u𝐼) and uT
𝑖 = dT

0A′0,𝑖 for all 𝑖 ∈ [𝐼].

The restricted conservative evasive IPFE assumption states that evIPFESspre implies
evIPFESpost for all efficient restricted S.

Lemma 8. The sampler (Assumption 5) constructed in the proof of Corollary 7 is restricted
(Assumption 6) if so is the original sampler (Definitions 5 and 6).

Lemma 8 can be easily verified. The following implication holds:

Theorem 9 (¶). Evasive LWE (Assumption 4) implies restricted conservative evasive IPFE
(Assumption 6).

Combining Theorem 6, the proof of Corollary 7, Lemma 8, and Theorem 9:

Corollary 10. Construction 1 is restricted-𝜎post-secure (Definition 6) under evasive LWE
(Assumption 4) and LWE𝑛,𝑚+𝑍⌈log2 𝑞⌉,𝑞,𝜎help (Assumption 1) for some 𝜎help ≤

𝜎post
(2𝜅+6√𝜅)2𝑍⌈log2 𝑞⌉

,
where 𝑞, 𝑍 are those picked by S and 𝑛, 𝑚,𝜎post, 𝜅 are those picked by Setup.

Proof (Theorem 9). Let S = (SV,SU) be an efficient restricted sampler with SA0
(Assumptions 5 and 6) such that evIPFESspre holds. Construct the following S′(𝑟) for
Assumption 4. It parses 𝑟 = (𝑟pub, ′𝑟pub) and runs

(1𝑛, 1𝑚, 𝑞, 1𝑍, 1𝐽 , 1𝐼 ,𝜎−1,𝜎post,𝜎pre,V) ← SV(𝑟pub),
(1𝑛′, {A′0,𝑖}𝑖∈[𝐼]) ← SA0(𝑟pub).

28 / 79

The algorithm samples A uniformly random over ℤ𝑛×𝑍⌈log2 𝑞⌉
𝑞 using ′𝑟pub in the straight-

forward manner,6 and sets 𝐾 = 0 and 𝑚′ = 𝑍⌈log2 𝑞⌉. It outputs

1𝑛, 1𝑚, 1𝐾 , 𝑞, 1𝑛
′
, 1𝐽 , 1𝐼 , 1𝑚

′
, 𝜎−1, 𝜎post, 𝜎pre,

P̃ = AG−1(V), {A1,𝑖,A0,𝑖}𝑖∈[𝐼] (with A1,𝑖 = A and A0,𝑖 = A′0,𝑖G),

By setting

D = (d1, . . . ,d𝐼), ∆𝛼 = (𝜹1,𝛼, . . . , 𝜹𝐼,𝛼) for all 𝛼 ∈ {0, 1, 2},

E𝑝,𝛼 = (e𝑝,1,𝛼, . . . , e𝑝,𝐼,𝛼) for all (𝑝,𝛼) ∈
{
(pre, 2), (pre, 1), (pre, 0),

(post, 1), (post, 0)

}
,

the components in evIPFESspre/post, evLWE
S′
pre/post are perfectly lined up, except that A

corresponds to ′𝑟pub. It is readily verified that evLWES
′

pre follows from evIPFESspre. By
the evasive LWE assumption, evLWES′post holds, implying evIPFE

S
post.7 □

3.4 Identity-Based Scheme

Construction 1 only supports a single identity. We employ pairing-based techniques
to generically obtain an exponentially large identity space. The core idea is to
generate identity-based keys and ciphertexts using a single-identity IPFE (denoted
with primes), e.g., when not considering structured noises,

isk id′ (v) : isk′(v, 𝜓, id′ · 𝜓)
ict id (u) : ict′(u, id · 𝜑, −𝜑)

}
Dec′−−−→ uTv + (id − id′)𝜑𝜓

so that decryption yields uTv if id = id′ and the result is masked by a blinding
factor (id − id′)𝜑𝜓 if id ≠ id′. Intuitively, the masks are pseudorandom by the DDH
assumption (this idea can be materialized in various ways). In our adaptation, we use
the LWE assumption to create the pseudorandom blinding factors.

We note that the transformation of [GKW16] compressing exponentially many
copies of a single-identity scheme into an identity-based scheme is not as desirable
as the upcoming construction. Security of evIPFE(-w/sn) is knowledge-type. Since
Definition 5 requires fully private-coin sampling of plaintext vectors (see Remark 3),
it cannot be applied simultaneously for two copies unless the two copies only
encrypt independent plaintext vectors — but in our applications, plaintext vectors
under different identities are correlated. Moreover, even if we consider an
alternative definition with arbitrary (efficiently computable) auxiliary information
about the plaintext vectors, we would have to assume evasive LWE with very tight
pre/postcondition distinguishing gap for it to be applied super-constantly many times
(corresponding to the number of identities; used in CP-ABE for circuits).

6Precisely speaking, the distribution of ′𝑟pub conditioned on A should be efficiently sampleable
from A so that it does not contain a trapdoor of A or otherwise impedes security. If we insist that
′𝑟pub be a binary string, we can make ′𝑟pub at least max𝑟pub ((𝜅 + ⌈log2 𝑞⌉) · 𝑛𝑍⌈log2 𝑞⌉) bits long and set

A[𝑖, 𝑗] to be its ((𝑖 − 1) + (𝑗 − 1)𝑛 + 1)st chunk of (𝜅 + ⌈log2 𝑞⌉) bits interpreted as an integer in binary
then reduced modulo 𝑞, incurring a statistical error of 2−𝜅𝑛𝑍⌈log2 𝑞⌉.

7The reduction algorithms reshape components between vectors and matrices, and either reversely
sample ′𝑟pub from A or computes A from ′𝑟pub.

29 / 79

Ingredients of Construction 2. Let IPFE′ = (Setup′, KeyGen′, Enc′,Dec′) be an under-
lying evIPFE(-w/sn) such that 1 ∈ I′

𝑞,𝐾,𝑍
(e.g., Constructions 1 and 3).

Construction 2 (IB-evIPFE(-w/sn)). Our scheme works as follows.

• Setup(𝑞, 1𝐾 , 1𝑍) takes as input 𝑞, 𝐾, 𝑍. If 𝑞 is not a prime or 1 ∉ I′
𝑞,𝐾,𝑍

, the
algorithm sets I𝑞,𝐾,𝑍 = ∅ and terminates (aborting case). Otherwise, it sets
I𝑞,𝐾,𝑍 = [𝑞]8 and deterministically picks 𝑛.9 The algorithm runs

(impk′, imsk′) $← Setup′(𝑞, 1𝐾 , 1𝑍+2𝑛)

and outputs impk = (𝑞, 1𝐾 , 1𝑍, 1𝑛, impk′) and imsk = (𝑞, 1𝐾 , 1𝑍, 1𝑛, imsk′).

• KeyGen(imsk, id, v𝔬,V𝔤) takes as input imsk, id ∈ [𝑞], v𝔬 ∈ ℤ𝑍
𝑞 , and V𝔤 ∈ ℤ𝑍×𝐾

𝑞 . It
samples 𝝍𝔬

$← ℤ𝑛𝑞 and Ψ𝔤
$← ℤ𝑛×𝐾𝑞 , runs

isk′ $← KeyGen′ ©­«imsk′, 1, ©­«
v𝔬
𝝍𝔬

id ·𝝍𝔬

ª®¬ , ©­«
V𝔤

Ψ𝔤

id ·Ψ𝔤

ª®¬ª®¬ ,
and outputs isk = (𝝍𝔬,Ψ𝔤, isk′).

• Enc(impk, id, 𝔰,uT) takes as input imsk, id ∈ [𝑞], 𝔰 ∈ {𝔬, 𝔤}, and u ∈ ℤ𝑍
𝑞 . It samples

𝝋
$← ℤ𝑛𝑞, and runs and outputs

ict = ict′ $← Enc′(impk′, 1, 𝔰, (uT, id · 𝝋T,−𝝋T)).

• Dec(impk, id, v𝔬,V𝔤, isk, 𝔰, ict) runs and outputs

Dec′ ©­«impk′, 1, ©­«
v𝔬
𝝍𝔬

id ·𝝍𝔬

ª®¬ , ©­«
V𝔤

Ψ𝔤

id ·Ψ𝔤

ª®¬ , isk′, 𝔰, ict′ª®¬ .
Correctness. Suppose IPFE′ is 𝐵′(𝑞′, 𝐾 ′, 𝑍′)-correct, then for noise structure 𝔬,

Dec(impk, id, v𝔬,V𝔤, isk, 𝔬, ict) = uT · v𝔬 + (id · 𝝋T) ·𝝍𝔬 + (−𝝋T) · (id ·𝝍𝔬) + 𝑒𝔬
= uTv𝔬 + 𝑒𝔬

for some 𝑒𝔬 ∈ [−𝐵′(𝑞, 𝐾, 𝑍 + 2𝑛), 𝐵′(𝑞, 𝐾, 𝑍 + 2𝑛)], and similarly for the case of 𝔤. In
summary, Construction 2 is 𝐵-correct for 𝐵(𝑞, 𝐾, 𝑍) = 𝐵′(𝑞, 𝐾, 𝑍 + 2𝑛).

Security. We state and prove the security of Construction 2.

Theorem 11 (¶). Suppose IPFE′ is 𝜎pre,0-secure (Definition 5) and LWE𝑛,𝐽′1,𝑞,𝜎help (Assump-
tion 1) holds for some 𝜎help ≤

𝜎pre,0
(2𝜅+6√𝜅)2 ,

10 then Construction 2 is also 𝜎pre,0-secure, where 𝑞
and 𝐽′1 =

∑
id∈ID 𝐽id are picked by S and 𝑛 is picked by Setup.

Suppose instead IPFE′ is restricted-𝜎pre,0-secure (Definition 6) while keeping the other
conditions intact, then Construction 2 is is also restricted-𝜎pre,0-secure.

8Due to homomorphic noise growth and noise flooding, 𝑞 is super-polynomial in our work. When
𝑞 is polynomially large, the identity space can be enlarged using full-rank difference hash [ABB10].

9This construction is generic. The quantity 𝑛 here is unrelated to those in Construction 1 or 3,
although they can be set to the same value.
10Here, 𝜅 is unrelated to that in Construction 1, although they can be set to the same value.

30 / 79

The proof works by arguing that when the noisy inner products for the matching
identities are pseudorandom, so are the inner products concerned by IPFE′, e.g.,
for 𝔬,{

id ≠ id′ : UT
id,𝔬Vid′,𝔬 + (id − id

′)ΦT
id,𝔬Ψid′,𝔬 + (E

′
id,id′,𝔬)

T ≈
↑
LWE

UT
id,𝔬Vid′,𝔬 + $ ≡ $,

id = id′ : UT
id,𝔬Vid,𝔬 + (E

′
id,id,𝔬)T

IPFEsecSpre↓
≈ $.

When the noise widths of IPFEsecSpre and LWE do not match, we resolve the issue
similarly to the proof of Corollary 7.

Proof (Theorem 11). Let S = (SV,SU) be an efficient sampler (Definition 5) such that
𝜎pre ≤ 𝜎pre,0 and IPFEsecSpre holds against Construction 2. Consider the following
efficient S′ = (S′V,S′U).

• S′V(′′𝑟pub) parses ′′𝑟pub = (𝑟pub, ′𝑟pub) and runs

(𝑞, 1𝐾 , 1𝑍, ID, {1𝐽id , 1𝐼id,𝔬 , 1𝐼id,𝔤} id∈ID,𝜎pre, {Vid,𝔬,Vid,𝔤} id∈ID) ← SV(𝑟pub).

The algorithm aborts if 𝑞 is not a prime or 1 ∉ I′
𝑞,𝐾,𝑍

. Otherwise, it computes
𝑛 used by Setup of Construction 2, and samples {Ψid,𝔰} id∈ID,𝔰∈{𝔬,𝔤}, with Ψid,𝔬

(resp. Ψid,𝔤) uniformly random over ℤ
𝑛×𝐽id
𝑞 (resp. ℤ𝑛×𝐾𝐽id𝑞) for all id ∈ ID, using

′′𝑟pub in the straight-forward manner.11 The algorithm sets

𝑍′ = 𝑍 + 2𝑛, ID′ = {1}, 𝐽′1 =
∑︁
id∈ID

𝐽id, 𝐼′1,𝔰 =
∑︁
id∈ID

𝐼id,𝔰,

𝜎′pre =

{
𝜎pre, if 𝜎pre ≥

𝜎pre,0
2𝜅+6√𝜅 ;

𝜎pre,0, otherwise;
V′1,𝔰 =

©­«
· · · Vid,𝔰 · · ·
· · · Ψid,𝔰 · · ·
· · · id ·Ψid,𝔰 · · ·

ª®¬id∈ID ,
and outputs (𝑞, 1𝐾 , 1𝑍′, ID′, 1𝐽′1 , 1𝐼

′
1,𝔬 , 1𝐼

′
1,𝔤 ,𝜎′pre,V′1,𝔬,V

′
1,𝔤).

• S′U(′′𝑟pub; ′′𝑟priv) parses ′′𝑟pub = (𝑟pub, ′𝑟pub) and ′′𝑟priv = (𝑟priv, ′𝑟priv). It recomputes 𝑞,
ID, {𝐼id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} and 𝑛 as in S′V. The algorithm runs

{UT
id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} ← SU(𝑟pub; 𝑟priv),

and samples Φid,𝔰 uniformly random over ℤ
𝑛×𝐼id,𝔰
𝑞 for all id ∈ ID and 𝔰 ∈ {𝔬, 𝔤}

using ′𝑟priv. It sets

(U′1,𝔰)T =
©­­­«
...

...
...

UT
id,𝔰 id ·ΦT

id,𝔰 −ΦT
id,𝔰

...
...

...

ª®®®¬id∈ID
and outputs {(U′1,𝔰)T}𝔰∈{𝔬,𝔤}.

Claim 12 (¶). IPFEsecS′pre (Definition 5) holds.

11The distribution of ′′𝑟pub conditioned on {Ψid,𝔰} id∈ID,𝔰∈{𝔬,𝔤} must be efficiently sampleable from
{Ψid,𝔰} id∈ID,𝔰∈{𝔬,𝔤}. See Footnote 6.

31 / 79

From the 𝜎pre,0-security of IPFE′, it follows that(′′𝑟pub, impk′, isk′1, {Enc′(impk′, 1, 𝔰, (U′1,𝔰)T)}𝔰∈{𝔬,𝔤})
≈

(′′𝑟pub, impk′, isk′1, {Enc′(impk′, 1, 𝔰, ∆T
𝔰)}𝔰∈{𝔬,𝔤}

)
,

where ∆𝔰
$← ℤ

𝑍′×𝐼′1,𝔰
𝑞 . (This is the “initial part” of this proof.)

Now consider this efficient S$ = (S$,V,S$,U):
• S$,V is just SV.

• S$,U(𝑟pub; 𝑟$,priv) recomputes 𝑞, 𝑍, ID, {𝐼id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} as in S$,V, then uses 𝑟$,priv

to sample U$,id,𝔰
$← ℤ

𝑍×𝐼id,𝔰
𝑞 for all id ∈ ID and 𝔰 ∈ {𝔬, 𝔤}, and lastly outputs

{UT
$,id,𝔰} id∈ID,𝔰∈{𝔬,𝔤}.

It can be readily verified that IPFEsecS$pre follows from IPFEsecSpre:(
𝑟pub,

{
UT

$,id,𝔬Vid,𝔬 + ET
id,𝔬,

UT
$,id,𝔤Vid,𝔤 + g̃ T ⊗ ET

id,𝔤𝔤 + ET
id,𝔤𝔬

}
id∈ID

)
≡

(
𝑟pub,

{
(U$,id,𝔬 + Uid,𝔬)

TVid,𝔬 + ET
id,𝔬,

(U$,id,𝔤 + Uid,𝔤)
TVid,𝔤 + g̃ T ⊗ ET

id,𝔤𝔤 + ET
id,𝔤𝔬

}
id∈ID

)
≈

(
𝑟pub,

{
UT

$,id,𝔬Vid,𝔬 + ∆T
pre,id,𝔬,

UT
$,id,𝔤Vid,𝔤 + ∆T

pre,id,𝔤

}
id∈ID

)
≡

(
𝑟pub,

{
∆T
pre,id,𝔬,

∆T
pre,id,𝔤

}
id∈ID

)
.

Applying the initial part of the proof to S$, we obtain(′′𝑟pub, impk′, isk′1, {Enc′(impk′, 1, 𝔰, (U′$,1,𝔰)T)}𝔰∈{𝔬,𝔤})
≈

(′′𝑟pub, impk′, isk′1, {Enc′(impk′, 1, 𝔰, ∆T
𝔰)}

𝔰∈{𝔬,𝔤}
)
,

where U′$,1,𝔰 is to U$,id,𝔰’s as U′1,𝔰 is to Uid,𝔰’s for each 𝔰 ∈ {𝔬, 𝔤}. Therefore,(′′𝑟pub, impk′, isk′1, {Enc′(impk′, 1, 𝔰, (U′$,1,𝔰)T)}𝔰∈{𝔬,𝔤})
≈

(′′𝑟pub, impk′, isk′1, {Enc′(impk′, 1, 𝔰, (U′1,𝔰)T)}𝔰∈{𝔬,𝔤}) .
Opening up IPFEsecSpost, we see that

part of ′′𝑟pub︷︸︸︷
𝑟pub , impk = (

from 𝑟pub︷ ︸︸ ︷
𝑞, 1𝐾 , 1𝑍, 1𝑛, impk′),

{ict∗id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} = {Enc
′(impk′, 1, 𝔰, (U′1,𝔰)T)}𝔰∈{𝔬,𝔤},

{ict$id,𝔰} id∈ID,𝔰∈{𝔬,𝔤} = {Enc
′(impk′, 1, 𝔰, (U′$,1,𝔰)

T)}𝔰∈{𝔬,𝔤},
{isk id} id∈ID = ({Ψid,𝔬,Ψid,𝔤︸ ︷︷ ︸

from ′𝑟pub in ′′𝑟pub

} id∈ID, isk
′
1),

so it follows from the previous indistinguishability.
For the part regarding restricted security, it remains to verify that S′ is restricted

whenever S is restricted (below), and that S$ is always restricted (clear by inspection).
Let SA0 be the algorithm in Definition 6 for S. The S′A0(′′𝑟pub) for S′ parses ′′𝑟pub as
(𝑟pub, ′𝑟pub), recomputes ID, {𝐼id,𝔰} id∈ID,𝔰∈{𝔬,𝔤}, 𝐼′1,𝔬, 𝐼′1,𝔤, 𝑛 as in SV, runs and sets

(1𝑛′, {A id,𝔰,0,𝑖} id∈ID,𝔰∈{𝔬,𝔤},𝑖∈[𝐼id,𝔰]) ← SA0(𝑟pub), 𝑛′′ = 𝑛′ + 𝑛(𝐼′1,𝔬 + 𝐼′1,𝔤),

32 / 79

A′1,𝔬,0,𝑖′𝔬 =
©­­­«

A id,𝔬,0,𝑖
0𝑛(𝑖′𝔬−1)×𝑛
id · I𝑛 −I𝑛

0𝑛(𝐼′1,𝔬−𝑖′𝔬+𝐼′1,𝔤)×𝑛

ª®®®¬ , A′1,𝔤,0,𝑖′𝔤 =
©­­­­«

A id,𝔤,0,𝑖
0𝑛(𝐼′1,𝔬+𝑖′𝔤−1)×𝑛

id · I𝑛 −I𝑛
0𝑛(𝐼′1,𝔤−𝑖′𝔤)×𝑛

ª®®®®¬
,

with (id, 𝑖) being the (𝑖′𝔰)th item among all such that id ∈ ID and 𝑖 ∈ [𝐼id,𝔰]. It outputs
(1𝑛′′, {A′1,𝔰,0,𝑖′𝔰}𝔰∈{𝔬,𝔤},𝑖′𝔰∈[𝐼′1,𝔰]). Conceptually, let

(d′0)T = (dT
0, . . . ,𝝋

T
id,𝔬,𝑖, . . .︸ ︷︷ ︸

id∈ID, 𝑖∈[𝐼id,𝔬]

, . . . ,𝝋T
id,𝔤,𝑖, . . .︸ ︷︷ ︸

id∈ID, 𝑖∈[𝐼id,𝔤]

),

then

(u′1,𝔰,𝑖′𝔰)
T = (uT

id,𝔰,𝑖, id · 𝝋
T
id,𝔰,𝑖,−𝝋

T
id,𝔰,𝑖)

= (dT
0A id,𝔰,0,𝑖, id · 𝝋T

id,𝔰,𝑖,−𝝋
T
id,𝔰,𝑖) = (d

′
0)TA′1,𝔰,0,𝑖′𝔰 . □

Proof (Claim 12). Consider the following hybrids.

• H0 is the first distribution in IPFEsecS
′

pre, i.e.,

′′𝑟pub, (U′1,𝔬)TV′1,𝔬 + (E′1,𝔬)T, (U′1,𝔤)TV′1,𝔤 + g̃ T ⊗ (E′1,𝔤𝔤)T + (E′1,𝔤𝔬)T.

The components can be rearranged into

𝑟pub,
′𝑟pub,{

UT
id,𝔬Vid′,𝔬 + (id − id

′)ΦT
id,𝔬Ψid′,𝔬 + (E

′
id,id′,𝔬)

T
}id≠id′
id,id′∈ID,{

UT
id,𝔤Vid′,𝔤 + (id − id

′)ΦT
id,𝔤Ψid′,𝔤 + g̃ T ⊗ (E′id,id′,𝔤𝔤)

T + (E′id,id′,𝔤𝔬)
T
}id≠id′
id,id′∈ID,{

UT
id,𝔬Vid,𝔬 + (E

′
id,id,𝔬)

T
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ (E′id,id,𝔤𝔤)

T + (E′id,id,𝔤𝔬)
T
}
id∈ID,

where

E′1,𝔢 =
©­­«

E′∗,∗,𝔢 E′id,∗,𝔢 · · ·
E′∗,id′,𝔢 E′id,id′,𝔢 · · ·
...

...
. . .

ª®®¬id′,id∈ID for all 𝔢 ∈ {𝔬, 𝔤𝔤, 𝔤𝔬}

with E′id,id′,𝔬 ∈ ℤ
𝐽id′×𝐼id,𝔬 , E′id,id′,𝔤𝔤 ∈ ℤ

𝐽id′×𝐼id,𝔤 , E′id,id′,𝔤𝔬 ∈ ℤ
𝐾𝐽id′×𝐼id,𝔤 for all id, id′ ∈ ID.

• In H1, we insert noises Ehelp into the inner products for 𝔬 between non-matching
identities, i.e.,

𝑟pub,
′𝑟pub,{

UT
id,𝔬Vid′,𝔬 + (id − id

′)ΦT
id,𝔬Ψid′,𝔬 + (E

help
id,id′)

T + (E′id,id′,𝔬)
T
}id≠id′
id,id′∈ID,{

UT
id,𝔤Vid′,𝔤 + (id − id

′)ΦT
id,𝔤Ψid′,𝔤 + g̃ T ⊗ (E′id,id′,𝔤𝔤)

T + (E′id,id′,𝔤𝔬)
T
}id≠id′
id,id′∈ID,{

UT
id,𝔬Vid,𝔬 + (E

′
id,id,𝔬)

T
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ (E′id,id,𝔤𝔤)

T + (E′id,id,𝔤𝔬)
T
}
id∈ID,

where Ehelpid,id′
$← D𝐽id′×𝐼id,𝔬

ℤ,𝜎help,≤𝜎help
√
𝜅
, each of which is flooded by E′id,id′,𝔬.

By Lemma 2, we have H0 ≈s H1.

33 / 79

• In H2,𝛼 (with 0 ≤ 𝛼 ≤ |ID|), we no longer truncate Ehelp, and change the non-
matching inner products with the ciphertexts under the first 𝛼 identities for 𝔬
to random, i.e.,

𝑟pub,
′𝑟pub,{

UT
id,𝔬Vid′,𝔬 + (∆

′
id,id′,𝔬)

T + (E′id,id′,𝔬)
T
}id≠id′,id≤id𝛼
id,id′∈ID ,{

UT
id,𝔬Vid′,𝔬 + (id − id

′)ΦT
id,𝔬Ψid′,𝔬 + (E

help
id,id′)

T + (E′id,id′,𝔬)
T
}id≠id′,id>id𝛼
id,id′∈ID ,{

UT
id,𝔤Vid′,𝔤 + (id − id

′)ΦT
id,𝔤Ψid′,𝔤 + g̃ T ⊗ (E′id,id′,𝔤𝔤)

T + (E′id,id′,𝔤𝔬)
T
}id≠id′
id,id′∈ID,{

UT
id,𝔬Vid,𝔬 + (E

′
id,id,𝔬)

T
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ (E′id,id,𝔤𝔤)

T + (E′id,id,𝔤𝔬)
T
}
id∈ID,

where Ehelpid,id′
$← D𝐽id′×𝐼id,𝔬

ℤ,𝜎help
and ∆′id,id′,𝔬

$← ℤ
𝐽id′×𝐼id,𝔬
𝑞 for all id, id′ ∈ ID. Here, id𝛼 ∈ ID

is the 𝛼th-smallest among all id ∈ ID in some fixed efficiently comparable total
order for all 𝛼 ∈ [|ID|], and id0 is a sentinel value that compares less than all
id ∈ ID.
By Lemma 1, we have H1 ≈s H2,0. By a hybrid argument, from LWE𝑛,𝐽′1,𝑞,𝜎help it
follows that H2,𝛼 ≈ H2,𝛼+1 for all 0 ≤ 𝛼 < |ID|, with the LWE public matrix being(

. . . , (id𝛼+1 − id′)Ψid′,𝔬, . . .
) id′≠id𝛼+1
id′∈ID

and the LWE secret being each column of Φid,𝔬. Roughly speaking, the reduction
algorithm computes12 Ψid′,𝔬 for all id′ ∈ ID from the public matrices, and samples
the other components by itself.

• In H3, we change all non-matching inner products for 𝔬 to random, i.e.,

𝑟pub,
′𝑟pub,

{
(∆′id,id′,𝔬)

T
}id≠id′
id,id′∈ID,{

UT
id,𝔤Vid′,𝔤 + (id − id

′)ΦT
id,𝔤Ψid′,𝔤 + g̃ T ⊗ (E′id,id′,𝔤𝔤)

T + (E′id,id′,𝔤𝔬)
T
}id≠id′
id,id′∈ID,{

UT
id,𝔬Vid,𝔬 + (E

′
id,id,𝔬)

T
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ (E′id,id,𝔤𝔤)

T + (E′id,id,𝔤𝔬)
T
}
id∈ID.

Comparing H2,|ID| and H3, we see that (∆′)’s absorb the terms added to them
without changing the distribution, so H2,|ID| ≡ H3.

• In H4, we change all non-matching inner products for 𝔤 to random, i.e.,

𝑟pub,
′𝑟pub,

{
(∆′id,id′,𝔬)

T
}id≠id′
id,id′∈ID,

{
(∆′id,id′,𝔤)

T
}id≠id′
id,id′∈ID,{

UT
id,𝔬Vid,𝔬 + (E

′
id,id,𝔬)

T
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ (E′id,id,𝔤𝔤)

T + (E′id,id,𝔤𝔬)
T
}
id∈ID.

The transition from H3 to H4 is analogous to that from H0 to H3, and H3 ≈ H4.

• In H5, we alter the noises attached to the matching inner products into

𝑟pub,
′𝑟pub,

{
(∆′id,id′,𝔬)

T
}id≠id′
id,id′∈ID,

{
(∆′id,id′,𝔤)

T
}id≠id′
id,id′∈ID,

12This step relies on 𝑞 being a prime.

34 / 79

{
UT
id,𝔬Vid,𝔬 + ẼT

id,𝔬
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ ẼT

id,𝔤𝔤 + ẼT
id,𝔤𝔬

}
id∈ID,

where for all id ∈ ID and 𝔢 ∈ {𝔬, 𝔤𝔤, 𝔤𝔬},

Ẽ id,𝔢 =

{
E id,𝔢, if 𝜎pre ≥

𝜎pre,0
2𝜅+6√𝜅 so 𝜎′pre = 𝜎pre;

E id,𝔢 + E′id,id,𝔢, otherwise;

with E id,𝔬
$← D𝐽id×𝐼id,𝔬

ℤ,𝜎pre,≤𝜎pre
√
𝜅
, E id,𝔤𝔤

$← D𝐽id×𝐼id,𝔤
ℤ,𝜎pre,≤𝜎pre

√
𝜅
, E id,𝔤𝔬

$← D𝐾𝐽id×𝐼id,𝔤
ℤ,𝜎pre,≤𝜎pre

√
𝜅
.

In the first case, the two hybrids are statistically close by Lemma 1, and in the
second case, by Lemma 2, as 𝜎′pre = 𝜎pre,0 ≥ 2𝜅+6𝜎pre

√
𝜅. Therefore, H4 ≈s H5.

• In H6, we no longer truncate E id,𝔢’s, i.e.,

𝑟pub,
′𝑟pub,

{
(∆′id,id′,𝔬)

T
}id≠id′
id,id′∈ID,

{
(∆′id,id′,𝔤)

T
}id≠id′
id,id′∈ID,{

UT
id,𝔬Vid,𝔬 + ET

id,𝔬 + (E
′′
id,𝔬)

T
}
id∈ID,{

UT
id,𝔤Vid,𝔤 + g̃ T ⊗ ET

id,𝔤𝔤 + ET
id,𝔤𝔬 + (E

′′
id,𝔤)

T
}
id∈ID,

where E id,𝔬
$← D𝐽id×𝐼id,𝔬

ℤ,𝜎pre
, E id,𝔤𝔤

$← D𝐽id×𝐼id,𝔤
ℤ,𝜎pre

, E id,𝔤𝔬
$← D𝐾𝐽id×𝐼id,𝔤

ℤ,𝜎pre
, and E′′id,𝔬 (resp. E′′id,𝔤)

is either 0 or E′id,id,𝔬 (resp. g̃ ⊗ E′id,id,𝔤𝔤 + E′id,id,𝔤𝔬) for all id ∈ ID.
By Lemma 1, we have H5 ≈s H6.

• H7 is the second distribution in IPFEsecS
′

pre, i.e.,

𝑟pub,
′𝑟pub,

{
(∆′id,id′,𝔬)

T
}id≠id′
id,id′∈ID,

{
(∆′id,id′,𝔤)

T
}id≠id′
id,id′∈ID,{

(∆′id,id,𝔬)
T
}
id∈ID,

{
(∆′id,id,𝔤)

T
}
id∈ID,

where

∆′1,𝔰 =
©­­«

∆′∗,∗,𝔰 ∆′id,∗,𝔰 · · ·
∆′∗,id′,𝔰 ∆′id,id′,𝔰 · · ·
...

...
. . .

ª®®¬id′,id∈ID for all 𝔰 ∈ {𝔬, 𝔤}

with ∆′id,id′,𝔬
$← ℤ

𝐽id′×𝐼id,𝔬
𝑞 , ∆′id,id′,𝔤

$← ℤ
𝐾𝐽id′×𝐼id,𝔤
𝑞 for all id, id′ ∈ ID.

H6 ≈ H7 follows from IPFEsecSpre, with ∆′id,id,𝔰 being either ∆ id,𝔰 or (∆ id,𝔰 − E′′id,id,𝔰).

By hybrid argument, H0 ≈ H7, which is exactly IPFEsecS
′

pre. □

3.5 Scheme with Structured Noises

To support structured noises, we modify Construction 1, fitting it into the shape of
evasive learning with structured errors. We explain a subtlety in the adaptation. In
the basic scheme, a key k for 0 makes dTB

:::
k small (not pseudorandom). Therefore,

in the presence of such a key, no ciphertext can be provably secure from evasive
LWE. This is not a problem for Construction 1, because every (plaintext) vector has
non-pseudorandom noisy inner product with 0. Similar properties of keys are not
allowed in a scheme with structured noises, as security should hold for a ciphertext
of random vector for 𝔤, given a key for v𝔬 = 0 and random V𝔤. Preventing noise
structure mix-and-match is akin to having two identities, for which we employ a
mechanism similar to yet simpler than that of Construction 2.

35 / 79

Ingredients of Construction 3. We rely on Lemma 3 for correctness. For security, we
need LWE (Assumption 1) and evasive learning with structured errors (Assumption 3).

Construction 3 (evIPFE-w/sn). Our scheme works as follows.

• Setup(𝑞, 1𝐾 , 1𝑍) takes as input 𝑞, 𝐾, 𝑍. It sets I𝑞,𝐾,𝑍 = {1}, and deterministically
picks 𝑛 and 𝑚 ≥ 𝑚0(𝑛(𝐾 + 1), 𝑞) and 𝜎−1 ≥ 𝜎0(𝑛, 𝑚) appropriate for Lemma 3,
as well as 𝜎post, 𝜅. The algorithm samples and sets

(B̃, 𝜏) $← TrapGen(1𝑛(𝐾+1) , 1𝑚, 𝑞), A $← ℤ
𝑛×2(𝑍+𝑛) ⌈log2 𝑞⌉
𝑞 ,

impk = (1𝑛, 1𝑚, 𝑞, 1𝐾 , 1𝑍,𝜎−1,𝜎post, 1𝜅,A,B), imsk = (impk, 𝜏).

where B = (B−1, . . . ,B𝐾−1) for B̃ = (BT
−1, . . . ,B

T
𝐾−1)T. It outputs (impk, imsk).

• KeyGen(imsk, id, v𝔬,V𝔤) imsk, id = 1, v𝔬 ∈ ℤ𝑍
𝑞 , and V𝔤 ∈ ℤ𝑍×𝐾

𝑞 . It samples and runs

𝝍𝔬
$← ℤ𝑛𝑞, Ψ𝔤

$← ℤ𝑛×𝐾𝑞 ,

K $← SampleD (B̃, 𝜏, P̃,𝜎−1) ,

where P̃ = (PT
−1, . . . ,P

T
𝐾−1)T for

P = (P−1, . . . ,P𝐾−1) = AG−1
©­­­«

v𝔬
𝝍𝔬

V𝔤

Ψ𝔤

ª®®®¬ .
The algorithm outputs isk = (𝝍𝔬,Ψ𝔤,K).

• Enc(impk, id, 𝔰,uT) takes as input impk, id = 1, 𝔰 ∈ {𝔬, 𝔤}, and u ∈ ℤ𝑍
𝑞 . It samples

and sets

𝝋
$← ℤ𝑛𝑞, d $← ℤ𝑛𝑞, e0

$← D2(𝑍+𝑛) ⌈log2 𝑞⌉
ℤ,𝜎post,≤𝜎post

√
𝜅
,

e1
$← D𝑚(𝐾+1)

ℤ,𝜎post,≤𝜎post
√
𝜅
, e3

$← D𝑚

ℤ,𝜎post,≤𝜎post
√
𝜅
,

(u′)T ←
{
(uT, 01×𝑛, 01×𝑍,𝝋

T), if 𝔰 = 𝔬;
(01×𝑍,𝝋

TG,uTG, 01×𝑛), if 𝔰 = 𝔤.

The algorithm outputs ict = (dTB + (01×𝑚, g̃ T ⊗ eT
3) + eT

1, dTA + (u′)TG + eT
0).

• Dec(impk, id, v𝔬,V𝔤, isk, 𝔰, ict) computes and outputs

ict ·
©­­­­­«
−I𝐾+1 ⊗ K

G−1
©­­­«

v𝔬
𝝍𝔬

V𝔤

Ψ𝔤

ª®®®¬
ª®®®®®¬
·
{
(1, 01×𝐾)T, if 𝔰 = 𝔬;
(0𝐾×1, I𝐾)T, if 𝔰 = 𝔤.

36 / 79

Correctness. It is readily verified, similarly to Construction 1, that the scheme is
𝐵-correct for

𝐵 = 𝜅1/2𝜎post(𝑚3/2𝜎−1 + 2(𝑍 + 𝑛) ⌈log2 𝑞⌉).

Theorem 13. Construction 3 is restricted-𝜎post-secure (Definition 6) under evasive learning
with structured errors (Assumption 3) and LWE𝑛,𝑚(𝐾+1)+2(𝑍+𝑛) ⌈log2 𝑞⌉,𝑞,𝜎help (Assumption 1)
for some 𝜎help ≤

𝜎post
(2𝜅+6√𝜅)2·2(𝑍+𝑛) ⌈log2 𝑞⌉

, where 𝑞, 𝐾, 𝑍 are those picked by S and 𝑛, 𝑚,𝜎post, 𝜅
are those picked by Setup.

Proof Sketch. The proof done by combining the techniques demonstrated earlier in
this section. Roughly speaking, the desired can be cast as a postcondition of evLWsE.
In the precondition of evLWsE, first use IPFE simulation as in the proof of Theorem 6
so that we only consider the inner products, both for matching and non-matching
noise structures. Then, use the proof of Claim 12 to argue that non-matching inner
products, due to the presence of 𝝍T𝝋𝔬 or 𝝍TΦ𝔤, are pseudorandom. Lastly, use
the premise that the matching inner products are pseudorandom to conclude the
proof. □

Applying Construction 2 to Construction 3, we obtain the following:

Corollary 14. Under LWE𝑛,poly(𝜆),𝑞,𝜎help (Assumption 1) and evasive learning with structure
errors (Assumption 3), there exists an IB-evIPFE-w/sn (Definition 4) with identity space [𝑞]
and correctness bound

𝐵 = 𝜅1/2𝜎post(𝑚3/2𝜎−1 + 2(𝑍 + 3𝑛) ⌈log2 𝑞⌉)

that is restricted-𝜎post-secure (Definition 6), where 𝜎help ≤
𝜎post

(2𝜅+6√𝜅)2·2(𝑍+3𝑛) ⌈log2 𝑞⌉
.

4 Noisy Linear Garbling

We consider a notion of noisy linear garbling with authenticity (i.e., conditional
disclosure of secrets)13 reusable for multiple inputs. Our formulation characterizes a
promise primitive. Given a function 𝑓 : ℤ𝐿 → {0, 1,⊥}, the garbling consists of labels
decomposable and affine in the input x, a garbled table, a secret, and some auxiliary
information. For correctness, if 𝑓 (x) = 1, the secret can be approximately recovered
from the other information; for security, if 𝑓 (x) = 0, the secret remains hidden; when
𝑓 (x) = ⊥, we require neither correctness nor security. The promise feature of the
definition is used to exclude x leading to out-of-bound wire values in arithmetic
computations, and x ∉ {0, 1}★ in Boolean computations.

Definition 7 (noisy linear garbling). Let 𝐹 = {𝐹𝜆,param}𝜆∈ℕ,param∈Params𝜆 be a sequence
of function families, where Params = {Params𝜆}𝜆∈ℕ is a sequence of function family
description sets and each 𝑓 ∈ 𝐹𝜆,param is a function ℤ𝐿 → {0, 1,⊥} (with potentially
different 𝐿 for each 𝑓). A noisy linear garbling scheme for 𝐹 consists of three efficient
algorithms.

13The terminology is changed from “secret sharing” in introduction and technical overview, because
the policy function might not be monotone.

37 / 79

• Setup(1𝜆, param) takes the function family description param ∈ Params𝜆 as
input. It outputs some public parameter pp = (𝑞, . . .), where 𝑞 ∈ ℕ≥2 is the
modulus.14

• GenF(1𝜆, pp, 𝑓) takes as input pp and 𝑓 ∈ 𝐹𝜆,param : ℤ𝐿 → {0, 1,⊥}. It outputs a
deterministic dimension 1𝑛𝑓 of garbling randomness, a secret vector wout, label
functions {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿], a garbled table T, and some reusable information R.
Here, wout, W’s, and T are 𝑛𝑓 -row matrices over ℤ, and their shapes, including
𝑛𝑓 , are fully determined by pp, 𝑓 .

• Eval(1𝜆, pp, 𝑓 ,R, x, {wT
ℓ
}
ℓ ∈[𝐿] , t

T) takes as input pp, 𝑓 , R, input x (to 𝑓), one set
of randomized labels, and the randomized garbled table t. If 𝑓 (x) = 1, it is
supposed to output an approximation of the randomized secret 𝑤out. Here, 𝑤out,
{wℓ }ℓ ∈[𝐿] , t are over ℤ𝑞.

Let 𝐵in and 𝐵out be functions mapping (𝜆, param) to natural numbers. The scheme
is (𝐵in, 𝐵out)-correct if for all 𝜆 ∈ ℕ, param ∈ Params𝜆, 𝑓 ∈ 𝐹𝜆,param : ℤ𝐿 → {0, 1,⊥},
x ∈ ℤ𝐿, 𝑒out, e1, . . . , e𝐿, et ∈ [−𝐵in(𝜆, param), 𝐵in(𝜆, param)]★ (of suitable dimensions)15
such that 𝑓 (x) = 1, it holds that

Pr


pp $← Setup(1𝜆, param)(

1𝑛𝑓 ,wout,
{Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,

T,R

)
$← GenF(1𝜆, pp, 𝑓)

s $← ℤ
𝑛𝑓
𝑞

:
Eval ©­«

1𝜆, pp, 𝑓 ,R, x,
{sT (Wℓ ,0+x[ℓ]Wℓ ,×)+eT

ℓ
}
ℓ ∈[𝐿] ,

sTT+eTt

ª®¬
− (sTwout + 𝑒out)

∈ [−𝐵out(𝜆, param), 𝐵out(𝜆, param)]


= 1.

Definition 8 (shortness). A noisy linear garbling scheme (Definition 7) is 𝐵short-short
(for some function 𝐵short mapping (𝜆, param) to natural numbers) if for all 𝜆 ∈ ℕ,
param ∈ Params𝜆, 𝑓 ∈ 𝐹𝜆,param : ℤ𝐿 → {0, 1,⊥}, x ∈ ℤ𝐿 such that 𝑓 (x) = 0,

Pr


pp $← Setup(1𝜆, param)(

1𝑛𝑓 ,wout,
{Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,

T,R

)
$← GenF(1𝜆, pp, 𝑓)

:
∥wT

out∥, ∥TT∥ ≤ 𝐵short(𝜆, param),
∥WT

ℓ ,0 + x[ℓ]WT
ℓ ,×∥ ≤ 𝐵short(𝜆, param)

for all ℓ ∈ [𝐿]

 = 1.

Definition 9 (fixed randomness dimension). A noisy linear garbling scheme (Defini-
tion 7) has fixed randomness dimension if param is of the form (𝑞, 1𝑛, . . .) and 𝑛𝑓 = 𝑛
always holds.

Security. We require that the randomized (by noisy linear combination) secret,
labels, and garbled table be pseudorandom if 𝑓 (x) = 0.

Definition 10 (noisy linear garbling security). Let (Setup,GenF, Eval) be a noisy linear
garbling scheme for 𝐹 (Definition 7) and GenNoise an efficient algorithm with suitable
input/output formats. The scheme is GenNoise-secure if Exprealgarble ≈ Exp

random
garble , where

Exprealgarble(1
𝜆,A) and Exprandomgarble (1

𝜆,A) proceed as follows.
14In the conference version [HLL24], the definition requires 𝑞 be deterministic. While that version

still works (by smuggling 𝑞 into param and checking its suitability in Setup), it was an unintended
error — it is easier and more consistent (with the other definitions in this paper) to let Setup sample
𝑞 instead. This is currently necessary since we need prime 𝑞 and it is unknown [TCH12] how to
generate large primes in deterministic polynomial time.
15The dimensions could depend on the randomness of Setup. Formally, they can be quantified over

sufficiently large dimensions then truncated appropriately.

38 / 79

• Setup. Launch A(1𝜆) and receive param ∈ Params𝜆 from it. Sample 𝑟Setup, run

pp← Setup(1𝜆, param; 𝑟Setup),

and send 𝑟Setup to A.

• Challenge. A chooses 𝑓 ∈ 𝐹𝜆,param : ℤ𝐿 → {0, 1,⊥} and x ∈ ℤ𝐿. Sample 𝑟GenF and
run

(1𝑛𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R) ← GenF(1𝜆, pp, 𝑓 ; 𝑟GenF).

Sample s $← ℤ
𝑛𝑓
𝑞 , run

(𝑒out, e1, . . . , e𝐿, et) $← GenNoise(1𝜆, param, pp, 𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R, x),

and compute
𝑤out ← sTwout + 𝑒out, wT

ℓ ← sT(Wℓ ,0 + x[ℓ]Wℓ ,×) + eT
ℓ , tT ← sTT + eT

t, in Exprealgarble;

𝑤out
$← ℤ𝑞, wℓ

$← ℤ★
𝑞 (for all ℓ ∈ [𝐿]), t $← ℤ★

𝑞, in Exprandomgarble ;

where {wℓ }ℓ ∈[𝐿] and t in Exprandomgarble are of the same dimensions as their counter-
parts in Exprealgarble. Send (𝑟GenF, 𝑤out, {wℓ }ℓ ∈[𝐿] , t) to A.

• Guess. A outputs 𝛽′ ∈ {0, 1}. The output of the experiment is 𝛽′ if 𝑓 (x) = 0.
Otherwise, the output is set to 0.

5 Noisy Linear Garbling for Circuits

In this section, we construct a noisy linear garbling scheme for arithmetic circuits
of bounded wire values. It is a variant of [AIK11,IW14,LL20a]. The garbling scheme
serves as the central component in our CP-ABE for bounded-arithmetic circuits. (The
notations have undergone some major changes since the conference version [HLL24]
— see Remark 4.)

Construction 4 (noisy linear garbling for bounded-arithmetic circuits). The function
family of bounded-arithmetic circuits is

Params =
{
(𝑀, 1𝑑)

�� 𝑀 ∈ ℕ+ and 𝑑 ∈ ℕ }
,

𝐹𝑀,1𝑑 =
{
𝑓𝑀,𝐶

�� 𝐶 is an arithmetic circuit of depth no more than 𝑑
}
,

𝑓𝑀,𝐶 (x) =

⊥, if some wire value ∉ [−𝑀, 𝑀] when evaluating 𝐶(x);
1, if 𝐶(x) = 0 and all wire values ∈ [−𝑀, 𝑀];
0, if 𝐶(x) ≠ 0 and all wire values ∈ [−𝑀, 𝑀];

for 𝐶 : ℤ𝐿 → ℤ and x ∈ ℤ𝐿.

Since 𝑀 is known from param, the function 𝑓𝑀,𝐶 is simply represented by 𝐶. The
scheme works as follows.

• Setup(𝑀, 1𝑑) picks suitable 𝑞, 𝑁 and outputs pp = (𝑞, 𝑀, 1𝑑, 1𝑁). The constraints
of 𝑞, 𝑁 are specified in Theorems 15, 16, and 17.

39 / 79

• GenF(pp, 𝐶) generates the garbling for 𝐶 : ℤ𝐿 → ℤ in the following steps.

– It parses 𝐶 into 𝐿 input gates 1, . . . , 𝐿 and (|𝐶 | − 𝐿) arithmetic gates
𝐿 + 1, . . . , |𝐶 |. They are sorted in topological order so that gate |𝐶 | is the
output gate of 𝐶 and the inputs to every non-input gate 𝑖 are connected to
gates gin[𝑖, 1], gin[𝑖, 2] < 𝑖.

– For each gate 𝑖, the algorithm samples its shrunken label function

W𝑖,0
$← {0, 1}𝑁×𝑁 , W𝑖,×

$← {0, 1}𝑁×𝑁 .

We write W𝑖,𝑥 = W𝑖,0 + 𝑥W𝑖,×, where 𝑥 ∈ [−𝑀, 𝑀] is a potential output value
of gate 𝑖, for the corresponding shrunken label (before randomization).

– For each non-input gate 𝑖, the algorithm samples W̃(𝑖,1)
gin[𝑖,1],0, W̃

(𝑖,1)
gin[𝑖,1],×,

W̃(𝑖,2)
gin[𝑖,2],0, W̃

(𝑖,2)
gin[𝑖,2],×, which contribute to the expanded label function of

each input to gate 𝑖. Here, the superscript indicates the purpose of the
part (due to being an input to gate 𝑖), and the subscript indicates the matrix
containing that part, so

W̃𝑖′,0 =
(
. . . , W̃(𝑖,𝛾)

𝑖′,0 , . . .
)
gin[𝑖,𝛾]=𝑖′, W̃𝑖′,× =

(
. . . , W̃(𝑖,𝛾)

𝑖′,× , . . .
)
gin[𝑖,𝛾]=𝑖′ .

Similarly, we write W̃𝑖′,𝑥 = W̃𝑖′,0 + 𝑥W̃𝑖′,× for the expanded label (before ran-
domization) corresponding to a potential output 𝑥 ∈ [−𝑀, 𝑀] of gate 𝑖′.
Suppose the input values to gate 𝑖 are 𝑥1, 𝑥2, the goal is to compute the
shrunken label W𝑖,𝑥 from the expanded labels W̃gin[𝑖,1],𝑥1 , W̃gin[𝑖,2],𝑥2 . Follow-
ing [AIK11] (adapted for authenticity only), first sample U𝑖

$← {0, 1}𝑁×𝑁 .
* If gate 𝑖 is addition, set

W̃(𝑖,1)
gin[𝑖,1],0 ← U𝑖, W̃(𝑖,1)

gin[𝑖,1],× ←W𝑖,×,

W̃(𝑖,2)
gin[𝑖,2],0 ←W𝑖,0 − U𝑖, W̃(𝑖,2)

gin[𝑖,2],× ←W𝑖,×,

which are subject to W̃(𝑖,1)
gin[𝑖,1],𝑥1

+ W̃(𝑖,2)
gin[𝑖,2],𝑥2

= W
𝑖,𝑥1+𝑥2

.
* If gate 𝑖 is multiplication, set

W̃(𝑖,1)
gin[𝑖,1],0 ← U𝑖, W̃(𝑖,1)

gin[𝑖,1],× ←W𝑖,×,

W̃(𝑖,2)
gin[𝑖,2],0 ←W𝑖,0, W̃(𝑖,2)

gin[𝑖,2],× ← −U𝑖,

which are subject to 𝑥2W̃(𝑖,1)
gin[𝑖,1],𝑥1

+ W̃(𝑖,2)
gin[𝑖,2],𝑥2

= W
𝑖,𝑥1𝑥2

.

– For the output gate |𝐶 |, sample the expanded label function

W̃|𝐶 |,0
$← {0, 1}𝑁×1, W̃|𝐶 |,×

$← {0, 1}𝑁×1.

Here, W̃|𝐶 |,0, W̃|𝐶 |,× are vectors (single-column matrices; still in upper case
for consistency with the other components).

– The algorithm computes the garbled table, which enables conversion to
the expanded label W̃𝑖′,𝑥 from the shrunken label W𝑖′,𝑥 for each gate 𝑖′ with
output value 𝑥, akin to the key-shrinking gadget in [AIK11]. For each tuple

40 / 79

(𝑖′, 𝑖,𝛾) with gin[𝑖,𝛾] = 𝑖′ (i.e., gate 𝑖′ is the 𝛾th input to gate 𝑖), sample and
set

R(𝑖,𝛾)
𝑖′

$← {0, 1}𝑁×𝑁 ,

T(𝑖,𝛾)
𝑖′,0 ←W𝑖′,0R(𝑖,𝛾)

𝑖′ + W̃(𝑖,𝛾)
𝑖′,0 , T(𝑖,𝛾)

𝑖′,× ←W𝑖′,×R(𝑖,𝛾)
𝑖′ + W̃(𝑖,𝛾)

𝑖′,× .

Similarly define T(𝑖,𝛾)
𝑖′,𝑥 , then T(𝑖,𝛾)

𝑖′,𝑥 = W
𝑖′,𝑥R(𝑖,𝛾)

𝑖′ + W̃(𝑖,𝛾)
𝑖′,𝑥 . For the output gate,

sample R|𝐶 |
$← {0, 1}𝑁×1 and set

T|𝐶 |,0 ←W|𝐶 |,0R|𝐶 | + W̃|𝐶 |,0, T|𝐶 |,× ←W|𝐶 |,×R|𝐶 | + W̃|𝐶 |,×.

Here, R|𝐶 |,T|𝐶 |,0,T|𝐶 |,× are vectors (single-column matrices; still in upper
case for consistency with the other components).

All the samplings are done in a straight-forward way.16 The algorithm outputs

1𝑛𝐶 = 1𝑁 , wout = W̃|𝐶 |,0, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,

T =
(
. . . , T(𝑖,𝛾)

𝑖′,0 , T(𝑖,𝛾)
𝑖′,× , . . .

)
gin[𝑖,𝛾]=𝑖′, R =

(
. . . , R(𝑖,𝛾)

𝑖′ , . . .
)
gin[𝑖,𝛾]=𝑖′ .

• Eval(pp, 𝐶,R, x, {wT
ℓ
}
ℓ ∈[𝐿] , t

T) parses 𝐶,R as in GenF and

tT =
(
. . . , (t(𝑖,𝛾)

𝑖′,0)
T, (t(𝑖,𝛾)

𝑖′,×)
T, . . .

)
gin[𝑖,𝛾]=𝑖′ .

It evaluates 𝐶(x) for the wire values {𝑥𝑖}𝑖∈[|𝐶 |] of each gate 𝑖, namely,

𝑥𝑖 ←


x[ℓ], if gate 𝑖 is an input gate (𝑖 = ℓ ∈ [𝐿]);
𝑥gin[𝑖,1] + 𝑥gin[𝑖,2] , if gate 𝑖 is addition;
𝑥gin[𝑖,1]𝑥gin[𝑖,2] , if gate 𝑖 is multiplication.

The algorithm has the (shrunken) input labels {wT
ℓ
}
ℓ ∈[𝐿] as input. It computes

the label of each non-input gate in increasing order by its index 𝑖.

– The algorithm decrypts for the expanded label using

(w̃(𝑖,1)gin[𝑖,1])
T ← (t(𝑖,1)gin[𝑖,1],𝑥gin[𝑖,1]

)T −wT
gin[𝑖,1]R

(𝑖,1)
gin[𝑖,1] ,

(w̃(𝑖,2)gin[𝑖,2])
T ← (t(𝑖,2)gin[𝑖,2],𝑥gin[𝑖,2]

)T −wT
gin[𝑖,2]R

(𝑖,2)
gin[𝑖,2] ,

where t(𝑖,1)gin[𝑖,1],𝑥gin[𝑖,1]
= t(𝑖,1)gin[𝑖,1],0 + 𝑥gin[𝑖,1]t

(𝑖,1)
gin[𝑖,1],× (similarly for t(𝑖,2)gin[𝑖,2],𝑥gin[𝑖,2]

) can
be computed from t (input to Eval) and 𝑥’s.

– The algorithm recovers the shrunken label as

w𝑖 ←


w̃(𝑖,1)gin[𝑖,1] + w̃(𝑖,2)gin[𝑖,2] , if gate 𝑖 is addition;

𝑥gin[𝑖,2]w̃
(𝑖,1)
gin[𝑖,1] + w̃(𝑖,2)gin[𝑖,2] , if gate 𝑖 is multiplication.

16Precisely speaking, 𝑟GenF conditioned on the sampled matrices must be efficiently sampleable
given those matrices (with negligible statistical error), e.g., when the matrices are just the bits read
sequentially from 𝑟GenF. This ensures that no sampled matrix has a known trapdoor, and is important
because 𝑟GenF is incorporated into the sampler’s randomness in a security proof.

41 / 79

Lastly, the algorithm computes and outputs the secret

𝑤out ← tT|𝐶 |,𝑥|𝐶 | −wT
|𝐶 |R|𝐶 | .

Here, t|𝐶 |,𝑥|𝐶 | is a scalar (one-dimensional vector; still boldfaced for consistency
with the other components).

Remark 4 (changes since the conference version [HLL24]). We list major changes for
those who have read the conference version of Construction 4.

• In Params, the wire value bound 𝑀 is now encoded in binary (instead of unary)
for stronger functionality since it need not be poly(𝜆)-bounded.

• The dimension of secret is 𝑁 (instead of 𝑛, 𝑚) since it is for flipped LWE secret.
It is now encoded in unary in pp to emphasize poly(𝜆)-boundedness.

• Gates are named simply by their indices (instead of 𝑔 subscript index).

• The notations 𝑖, 𝑖′ are more consistent. When both appear in a context, gate 𝑖′
is always an input to gate 𝑖, and 𝑖′ never appears as component superscript. The
notations in the proof are also improved for consistency.

• The expanded label function of the output gate is now W̃ (instead of w̃) to
reduce ambiguity.

5.1 Correctness and Shortness

Theorem 15 (¶). Construction 4 is (𝐵in, 𝐵out)-correct (Definition 7) if

(6𝑁𝑀2)𝑑+1𝐵in(𝑀, 𝑑) ≤ 𝐵out(𝑀, 𝑑).

Proof (Theorem 15). Let 𝐶 : ℤ𝐿 → ℤ be an arithmetic circuit of depth at most 𝑑 and
x ∈ ℤ𝐿 an input with 𝐶(x) = 0 such that all wire values in 𝐶(x) are bounded by 𝑀.
Let s ∈ ℤ𝑁

𝑞 be a secret and 𝑒out, e1, . . . , e𝐿, et any 𝐵in-bounded errors. We extend the
notation of e’s by e𝑖 = w𝑖 − (sTW𝑖,𝑥𝑖)T for all 𝐿 < 𝑖 ≤ |𝐶 |, where 𝑥𝑖’s are the wire values.
The extension symbolically agrees with e1, . . . , e𝐿.

We show by induction that during evaluation, ∥e𝑖∥ ≤ (6𝑁𝑀2)𝑑𝑖𝐵in for every gate 𝑖,
where 𝑑𝑖 is the depth of gate 𝑖 (the input gates are of depth 0). The base case (for
e1, . . . , e𝐿) is by assumption. For the inductive case, let 𝐿 < 𝑖 ≤ |𝐶 |. Assuming the
induction hypothesis for all 𝑖′ < 𝑖, then it applies to 𝑖′ = gin[𝑖,𝛾] < 𝑖 for both 𝛾 ∈ {1, 2},
and together with 𝑑𝑖′ ≤ 𝑑𝑖 − 1, we have

∥e𝑖′ ∥ ≤ (6𝑁𝑀2)𝑑𝑖′𝐵in ≤ (6𝑁𝑀2)𝑑𝑖−1𝐵in.

By the definition of t and how Eval proceeds,(
w̃(𝑖,𝛾)
𝑖′

)T
=

(
sTT(𝑖,𝛾)

𝑖′,0 + (e
(𝑖,𝛾)
t,𝑖′,0)

T) + 𝑥𝑖′ (sTT(𝑖,𝛾)𝑖′,× + (e
(𝑖,𝛾)
t,𝑖′,×)

T) − (sTW𝑖′,𝑥𝑖′
+ eT

𝑖′)R
(𝑖,𝛾)
𝑖′

= sTW̃(𝑖,𝛾)
𝑖′,𝑥𝑖′
+

(
e(𝑖,𝛾)t,𝑖′,0 + 𝑥𝑖′e

(𝑖,𝛾)
t,𝑖′,×

)T − eT
𝑖′R
(𝑖,𝛾)
𝑖′ = sTW̃(𝑖,𝛾)

𝑖′,𝑥𝑖′
+

(̃
e (𝑖,𝛾)
𝑖′

)T
,

42 / 79

where superscripts/subscripts follow the usual meaning of taking the relevant parts.
It follows that the errors on the expanded labels are

̃e (𝑖,𝛾)

𝑖′

 ≤

e(𝑖,𝛾)t,𝑖′,0

 + |𝑥𝑖′ | ·

e(𝑖,𝛾)t,𝑖′,×

 +

(R(𝑖,𝛾)

𝑖′)
T

 · ∥e𝑖′ ∥

≤ 𝐵in + 𝑀 · 𝐵in + 𝑁 · (6𝑁𝑀2)𝑑𝑖−1𝐵in

≤ (𝑁 + 𝑀 + 1) (6𝑁𝑀2)𝑑𝑖−1𝐵in.

We proceed to a case analysis.

• If gate 𝑖 is addition,

eT
𝑖 =

w
𝑖
=w̃(𝑖,1)gin[𝑖,1]+w̃(𝑖,2)gin[𝑖,2]︷ ︸︸ ︷(

sTW̃(𝑖,1)
gin[𝑖,1],𝑥gin[𝑖,1]

+ (ẽ (𝑖,1)gin[𝑖,1])
T) + (

sTW̃(𝑖,2)
gin[𝑖,2],𝑥gin[𝑖,2]

+ (ẽ (𝑖,2)gin[𝑖,2])
T) − sTW𝑖,𝑥𝑖

=
(
e(𝑖,1)gin[𝑖,1] + e(𝑖,2)gin[𝑖,2]

)T
,

so ∥e𝑖∥ ≤ 2(𝑁 + 𝑀 + 1) (6𝑁𝑀2)𝑑𝑖−1𝐵in ≤ (6𝑁𝑀2)𝑑𝑖𝐵in.

• If gate 𝑖 is multiplication,

eT
𝑖 =

w
𝑖
=𝑥gin[𝑖,2]w̃

(𝑖,1)
gin[𝑖,1]+w̃(𝑖,2)gin[𝑖,2]︷ ︸︸ ︷

𝑥gin[𝑖,2]
(
sTW̃(𝑖,1)

gin[𝑖,1],𝑥gin[𝑖,1]
+ (ẽ (𝑖,1)gin[𝑖,1])

T) + (
sTW̃(𝑖,2)

gin[𝑖,2],𝑥gin[𝑖,2]
+ (ẽ (𝑖,2)gin[𝑖,2])

T) − sTW𝑖,𝑥𝑖

=
(
𝑥gin[𝑖,2]e

(𝑖,1)
gin[𝑖,1] + e(𝑖,2)gin[𝑖,2]

)T
,

so ∥e𝑖∥ ≤ (𝑀 + 1) (𝑁 + 𝑀 + 1) (6𝑁𝑀2)𝑑𝑖−1𝐵in ≤ (6𝑁𝑀2)𝑑𝑖𝐵in.

This completes the induction.
Applying the error bound to the output gate, we have

∥e|𝐶 | ∥ ≤ (6𝑁𝑀2)𝑑|𝐶 |𝐵in ≤ (6𝑁𝑀2)𝑑𝐵in.

Note that 𝑥|𝐶 | = 𝐶(x) = 0 by assumption, and we have

𝑤out − (sTwout + 𝑒out)
=

(
tT|𝐶 |,0 −wT

|𝐶 |R|𝐶 |
)
− (sTwout + 𝑒out)

=
(
sTT|𝐶 |,0 + eT

t,|𝐶 |,0
)
−

(
sTW|𝐶 |,0 + eT

|𝐶 |
)
R|𝐶 | − sTwout − 𝑒out

= eT
t,|𝐶 |,0 − eT

|𝐶 |R|𝐶 | − 𝑒out + sT
(
W|𝐶 |,0R|𝐶 | + W̃|𝐶 |,0 −W|𝐶 |,0R|𝐶 | − W̃|𝐶 |,0︸ ︷︷ ︸

0

)
.

Therefore, the output error is bounded by

∥et,|𝐶 |,0∥ +

RT
|𝐶 |

 · ∥e|𝐶 | ∥ + |𝑒out | ≤ 𝐵in + 𝑁 · (6𝑁𝑀2)𝑑𝐵in + 𝐵in
≤ (6𝑁𝑀2)𝑑+1𝐵in ≤ 𝐵out. □

Theorem 16 (¶). Construction 4 is 𝐵short-short (Definition 8) if

𝐵short(𝑀, 𝑑) ≥ (𝑁 + 𝑀 + 2)𝑁.

43 / 79

Proof (Theorem 16). By definition, wT
out ∈ {0, 1}1×𝑁 , so

∥wT
out∥ ≤ 𝑁 ≤ (𝑁 + 𝑀 + 2)𝑁 ≤ 𝐵short.

For all ℓ ∈ [𝐿], when |x[ℓ] | ≤ 𝑀,

∥WT
ℓ ,x[ℓ] ∥ ≤ ∥W

T
ℓ ,0∥ + 𝑀∥W

T
ℓ ,×∥ ≤ (𝑀 + 1)𝑁 ≤ (𝑁 + 𝑀 + 2)𝑁 ≤ 𝐵short,

because W’s are in {0, 1}𝑁×𝑁 . For T, observe that each W̃ is a signed sum of at most
two matrices in {0, 1}𝑁×𝑁 , so each W̃T has norm bound 2𝑁. Therefore,

∥TT∥ ≤

RT︷︸︸︷
𝑀 ·

WT︷︸︸︷
𝑁 +

W̃T︷︸︸︷
2𝑁 = (𝑀 + 2)𝑁 ≤ (𝑁 + 𝑀 + 2)𝑁 ≤ 𝐵short. □

5.2 Security with Gaussian Noise

Theorem 17 (¶). Suppose

GenGaussian(𝑀, 1𝑑, (𝑞, 𝑀, 1𝑑, 1𝑁), 𝐶,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R, x)

samples (truncated) Gaussian noises with appropriate width 𝜎 of suitable shape

(𝑒out, e1, . . . , e𝐿, et) $← D★

ℤ,𝜎,≤𝜎
√
𝜅
,

then Construction 4 is GenGaussian-secure (Definition 10) if 𝑞 is always a prime and
FlipLWE𝑁,poly(𝜆),𝑞,𝜎′ (Assumption 2) holds for some 𝜎′ ≤ 𝜎

2𝜅+6 (2𝑁+𝑀+2)
√
𝜅
.17

It is known [AIK11,IW14,LL20a] that the information-theoretic version of arithmetic
garbling satisfies the following simple simulation property — the labels are uniformly
random conditioned on evaluation correctness. Construction 4 is similar in this
regard. The garbling is a noisy linear randomization of the public matrices. Once
LWE is applied:

• the expanded labels of fan-ins are uniformly random conditioned on the correct
evaluation into the shrunken labels (of fan-outs),

• the garbled table is uniformly random conditioned on the correct recovery of
the expanded labels from the shrunken labels (of the same gate), and

• the expanded labels of the output gate are uniformly random conditioned on
the approximate recovery of sT(W̃|𝐶 |,0 + 𝐶(x) · W̃|𝐶 |,×).

Combining these points, the input labels and the garbled table are jointly random,
conditioned on the approximate recovery of sT(W̃|𝐶 |,0 + 𝐶(x) · W̃|𝐶 |,×). When this latter
value itself is random, the overall distribution of input labels and garbled table is
simply random. Recall that security is considered only when 𝐶(x) ≠ 0. Since 𝑞
is a prime, the evaluation result will be independent of the secret approximating
sTW̃|𝐶 |,0 once LWE is applied. Therefore, the revealed components (secret, input
labels, garbled table) are jointly pseudorandom. The proof below formalizes this
idea.
17The constant has been changed from the conference version [HLL24]. Both versions are correct.

The new version fits the proof better.

44 / 79

Proof (Theorem 17). We show Exprealgarble ≈ Exp
random
garble with the following hybrids.

• H0 is Exprealgarble. The adversary sees 𝑟Setup, 𝑟GenF and

𝑤out = sTW̃|𝐶 |,0 + 𝑒out, wT
ℓ = sT(Wℓ ,0 + x[ℓ]Wℓ ,×) + eT

ℓ ,

(t(𝑖,𝛾)
𝑖′,0)

T = sTT(𝑖,𝛾)
𝑖′,0 + (e

(𝑖,𝛾)
𝑖′,0)

T, (t(𝑖,𝛾)
𝑖′,×)

T = sTT(𝑖,𝛾)
𝑖′,× + (e

(𝑖,𝛾)
𝑖′,×)

T,

where the indices for t are constrained by gin[𝑖,𝛾] = 𝑖′ (henceforth same and
omitted).

• In H1, we rewrite the garbling using distributivity and associativity. Recall that
each block in T is a signed sum of W’s and U’s. Instead of computing T,
multiplying s, then adding the noise, we compute s multiplied by W’s and U’s,
sum them with appropriate signs, then add the noise. Namely, for all 𝑖 ∈ [|𝐶 |],
compute

wT
𝑖,0 = sTW𝑖,0, wT

𝑖,× = sTW𝑖,×, (if 𝑖 > 𝐿) uT
𝑖 = sTU𝑖,

and 𝑤out,0 = sTW̃|𝐶 |,0 and 𝑤out,× = sTW̃|𝐶 |,×. Those components are called “initial
w’s and u’s”, which are not given directly to the adversary. Next, compute
the randomized expanded label functions as follows (compare with GenF of
Construction 4).

– If gate 𝑖 is addition, set

w̃(𝑖,1)gin[𝑖,1],0 = u𝑖, w̃(𝑖,1)gin[𝑖,1],× = w𝑖,×,

w̃(𝑖,2)gin[𝑖,2],0 = w𝑖,0 − u𝑖, w̃(𝑖,2)gin[𝑖,2],× = w𝑖,×.

– If gate 𝑖 is multiplication, set

w̃(𝑖,1)gin[𝑖,1],0 = u𝑖, w̃(𝑖,1)gin[𝑖,1],× = w𝑖,×,

w̃(𝑖,2)gin[𝑖,2],0 = w𝑖,0, w̃(𝑖,2)gin[𝑖,2],× = −u𝑖.

Then, compute the s-linear parts (denoted by t̃) of t as

(̃t (𝑖,𝛾)
𝑖′,0)

T = wT
𝑖′,0R(𝑖,𝛾)

𝑖′ + (w̃(𝑖,𝛾)
𝑖′,0)

T, (̃t (𝑖,𝛾)
𝑖′,×)

T = wT
𝑖′,×R(𝑖,𝛾)

𝑖′ + (w̃(𝑖,𝛾)
𝑖′,×)

T.

The randomized secret, input labels, and garble table are

𝑤out = 𝑤out,0 + 𝑒out, wℓ = wℓ ,0 + x[ℓ]wℓ ,× + eℓ ,

t(𝑖,𝛾)
𝑖′,0 = t̃ (𝑖,𝛾)

𝑖′,0 + e(𝑖,𝛾)t,𝑖′,0, t(𝑖,𝛾)
𝑖′,× = t̃ (𝑖,𝛾)

𝑖′,× + e(𝑖,𝛾)t,𝑖′,×.

Clearly, H0 ≡ H1.

• In H2, additional small noises are attached to the initial w’s and u’s as follows.
Sample e𝑖,0, e𝑖,×, eU,𝑖’s of appropriate dimensions and 𝑒out,0, 𝑒out,×, each entry
from Dℤ,𝜎′,≤𝜎′

√
𝜅, and set

wT
𝑖,0 = sTW𝑖,0 + eT

𝑖,0, wT
𝑖,× = sTW𝑖,× + eT

𝑖,×, (𝑖 > 𝐿) uT
𝑖 = sTU𝑖 + eT

U,𝑖,

𝑤out,0 = sTW̃|𝐶 |,0 + 𝑒out,0, 𝑤out,× = sTW̃|𝐶 |,× + 𝑒out,×.

45 / 79

Recall that the initial w’s and u’s are not directly given to the adversary. In
the revealed components (secret, input labels, garbled table), the magnitude of
errors contributed by the additional small noises is bounded by

𝜎′
√
𝜅 ·max {𝑀 + 1, 𝑁 + 2} ≤ (𝑁 + 𝑀 + 2)𝜎′

√
𝜅 ≤ 2−𝜅−6𝜎.

Therefore, they are flooded (Lemma 2) by the randomizing noises (e’s and 𝑒’s,
without bars), i.e., H1 ≈s H2.

• In H3, the small noises e𝑖,0, e𝑖,×, eU,𝑖’s and 𝑒out,0, 𝑒out,× are no longer truncated,
i.e., the entries are from Dℤ,𝜎′. We have H2 ≈s H3 by Lemma 1.

• In H4, the initial w’s and u’s are replaced by random values, i.e.,

w𝑖,0
$← ℤ𝑁

𝑞 , w𝑖,×
$← ℤ𝑁

𝑞 , (𝑖 > 𝐿) u𝑖
$← ℤ𝑁

𝑞 , 𝑤out,0
$← ℤ𝑞, 𝑤out,×

$← ℤ𝑞.

H3 ≈ H4 follows from FlipLWE𝑁,𝑁 (𝐿+|𝐶 |)+2,𝑞,𝜎′.
For this step, we rely on the “straight-forwardness”, i.e., 𝑟GenF, which must be
produced by the reduction algorithm for the underlying adversary, is efficiently
sampleable conditioned on and given W𝑖,0,W𝑖,×,U𝑖’s and W̃|𝐶 |,0, W̃|𝐶 |,×, which
are LWE public matrices received by the reduction algorithm.

• In H5, instead of sampling w𝑖,0’s and u𝑖’s, we sample and set

w𝑖,𝑥𝑖
$← ℤ𝑁

𝑞 , w𝑖,0 = w𝑖,𝑥𝑖 − 𝑥𝑖w𝑖,×,

(𝑖 > 𝐿) u𝑖
$← ℤ𝑁

𝑞 , u𝑖 = u𝑖 − 𝑥gin[𝑖,1]w𝑖,×,

where 𝑥𝑖’s are the wire values in the evaluation of 𝐶(x). This is simply a change
of variable, so H4 ≡ H5.
Approximations of w𝑖,𝑥𝑖 ’s would be computed during an honest evaluation — we
call w𝑖,𝑥𝑖 ’s the “active” shrunken labels. Note that the input labels given to the
adversary are just the active ones, i.e., wℓ = w𝑖,0 + x[ℓ]w𝑖,× + eℓ = w𝑖,𝑥𝑖 + eℓ . For
the “active” expanded labels, we use a case analysis. If gate 𝑖 is addition,

w̃(𝑖,1)gin[𝑖,1],𝑥gin[𝑖,1]
= w̃(𝑖,1)gin[𝑖,1],0 + 𝑥gin[𝑖,1]w̃

(𝑖,1)
gin[𝑖,1],× = u𝑖 + 𝑥gin[𝑖,1]w𝑖,× = u𝑖,

w̃(𝑖,2)gin[𝑖,2],𝑥gin[𝑖,2]
= w̃(𝑖,2)gin[𝑖,2],0 + 𝑥gin[𝑖,2]w̃

(𝑖,2)
gin[𝑖,2],×

= (w𝑖,0 − u𝑖) + 𝑥gin[𝑖,2]w𝑖,×

= w𝑖,0 + (𝑥gin[𝑖,1] + 𝑥gin[𝑖,2])w𝑖,× − (u𝑖 + 𝑥gin[𝑖,1]w𝑖,×)
(𝑥𝑖 = 𝑥gin[𝑖,1] + 𝑥gin[𝑖,2]) = w𝑖,𝑥𝑖 − u𝑖.

If gate 𝑖 is multiplication,

w̃(𝑖,1)gin[𝑖,1],𝑥gin[𝑖,1]
= w̃(𝑖,1)gin[𝑖,1],0 + 𝑥gin[𝑖,1]w̃

(𝑖,1)
gin[𝑖,1],× = u𝑖 + 𝑥gin[𝑖,1]w𝑖,× = u𝑖,

w̃(𝑖,2)gin[𝑖,2],𝑥gin[𝑖,2]
= w̃(𝑖,2)gin[𝑖,2],0 + 𝑥gin[𝑖,2]w̃

(𝑖,2)
gin[𝑖,2],×

= w𝑖,0 − 𝑥gin[𝑖,2]u𝑖
= w𝑖,0 + 𝑥gin[𝑖,1]𝑥gin[𝑖,2]w𝑖,× − 𝑥gin[𝑖,2] (u𝑖 + 𝑥gin[𝑖,1]w𝑖,×)

(𝑥𝑖 = 𝑥gin[𝑖,1]𝑥gin[𝑖,2]) = w𝑖,𝑥𝑖 − 𝑥gin[𝑖,2]u𝑖.

46 / 79

The point is to see that the active expanded labels are random subject to correct
evaluation into active shrunken labels, and that they are independent of values
with subscript “×”. Moreover, t̃ components with subscript “0” now become

(̃t (𝑖,𝛾)
𝑖′,0)

T = wT
𝑖′,0R(𝑖,𝛾)

𝑖′ + (w̃(𝑖,𝛾)
𝑖′,0)

T

= (wT
𝑖′,𝑥𝑖′
− 𝑥𝑖′w

T
𝑖′,×)R

(𝑖,𝛾)
𝑖′ +

(
(w̃(𝑖,𝛾)

𝑖′,𝑥𝑖′
)T − 𝑥𝑖′ (w̃

(𝑖,𝛾)
𝑖′,×)

T)
= wT

𝑖′,𝑥𝑖′
R(𝑖,𝛾)
𝑖′ + (w̃(𝑖,𝛾)

𝑖′,𝑥𝑖′
)T − 𝑥𝑖′ (̃t

(𝑖,𝛾)
𝑖′,×)

T,

i.e., the active expanded label (w̃(𝑖,𝛾)
𝑖′,𝑥𝑖′

) padded by the active shrunken label (w𝑖′,𝑥𝑖′

stretched by R), shifted by some known amount (𝑥
𝑖′̃t
(𝑖,𝛾)
𝑖′,×).

• In H6, additional small noises are attached to t̃ components with subscript “×”
as follows. Sample w𝑖,𝑥𝑖 ,w𝑖,×,u𝑖’s at random, compute w̃(𝑖,𝛾)

𝑥′,𝑥𝑖′
’s as explained in H5,

and compute w̃(𝑖,𝛾)
𝑥′,× as usual. Sample e(𝑖,𝛾)t,𝑖′,×’s with entries independently from

Dℤ,𝜎′,≤𝜎′
√
𝜅 and set

(̃t (𝑖,𝛾)
𝑖′,×)

T = wT
𝑖′,×R(𝑖,𝛾)

𝑖′ + (w̃(𝑖,𝛾)
𝑖′,×)

T + (e(𝑖,𝛾)t,𝑖′,×)
T.

Compute t̃ (𝑖,𝛾)
𝑖′,0 ’s as explained in H5, and lastly the revealed components (secret,

input labels, garbled table). The magnitude of inserted noises in the revealed
components (in fact, just the randomized garbled table t) is bounded by

𝜎′
√
𝜅 ·max {|𝑥𝑖 |} ≤ (𝑁 + 𝑀 + 2)𝜎′

√
𝜅 ≤ 2−𝜅−6𝜎,

so H5 ≈s H6 by Lemma 2.

• In H0
7, the small noises in t̃ (𝑖,𝛾)

𝑖′,× ’s are no longer truncated, i.e., entries of e(𝑖,𝛾)t,𝑖′,×
follow Dℤ,𝜎′. We have H6 ≈s H0

7 by Lemma 1.

• In H𝔦′

7 (for 𝔦
′ from 1 up to |𝐶 |), the components t̃ (𝑖,𝛾)

𝑖′,× with 𝑖′ ≤ 𝔦′ are replaced by
random. Comparing H𝔦′−1

7 and H𝔦′

7 , the only change is

(̃t (𝑖,𝛾)
𝔦′,×)

T from wT
𝔦′,×R(𝑖,𝛾)

𝔦′ + (w̃(𝑖,𝛾)
𝔦′,×)

T + (e(𝑖,𝛾)t,𝔦′,×)
T in H𝔦′−1

7

to random in H𝔦′

7 , where gin[𝑖,𝛾] = 𝔦′.

The indistinguishability follows from flipped LWE with secret w𝔦′,× and public
matrix

(
. . . , R(𝑖,𝛾)

𝔦′ , . . .
)
gin[𝑖,𝛾]=𝔦′. To verify that the reduction works, we inspect

where w𝔦′,× might appear in the revealed components.

– The secret is 𝑤out = 𝑤out,0 + 𝑒out, independent of w𝔦′,×.
– The input labels are wℓ = wℓ ,𝑥ℓ + eℓ , independent of w𝔦′,×.
– The garbled table is t̃ plus randomizing noises (without bars, independent
of w𝔦′,×). The t̃ components with subscript “×” require a case analysis.

* For 𝑖′ < 𝔦′, the t̃ (𝑖,𝛾)
𝑖′,× ’s are already replaced by random, hence indepen-

dent of w𝔦′,×.

47 / 79

* For 𝑖′ ≥ 𝔦′, we have

(̃t (𝑖,𝛾)
𝑖′,×)

T = wT
𝑖′,×R(𝑖,𝛾)

𝑖′ + (w̃(𝑖,𝛾)
𝑖′,×)

T + (e(𝑖,𝛾)t,𝑖′,×)
T.

The first and third terms are either received together as input to the
reduction algorithm (for 𝑖′ = 𝔦′) or independent of w𝔦′,× (for 𝑖′ > 𝔦′). The
second term cannot contain w𝔦′,× since by construction (see H1 and
how u’s are set in H5), it is computed from w𝑖,×,u𝑖 with subscript
𝑖 > 𝑖′ ≥ 𝔦′ (topological sorting implies 𝑖 > 𝑖′) as well as the wiring of 𝐶
and the wire values of 𝐶(x).

The t̃ components with subscript “0”, as explained in H5, are computed
from w𝑖,𝑥𝑖 ’s and w̃(𝑖,𝛾)

𝑖′,𝑥𝑖′
’s (independent of w𝔦′,×) and t̃ components with

subscript “×” (analyzed above, either received or sampled by reduction).

Therefore, H𝔦′−1
7 ≈ H𝔦′

7 follows from FlipLWE𝑁,𝑚′,𝑞,𝜎′ (the minimum required 𝑚′

varies by how gate 𝔦′ is connected in 𝐶; bounded by some fixed poly(𝑁, |𝐶 |)).
This step also relies on the “straight-forwardness”.

• In H|𝐶 |+1
8 , we replace t̃|𝐶 |,0 (actually a scalar) by random. Comparing H|𝐶 |7 and

H|𝐶 |+1
8 , the only change is

t̃ T|𝐶 |,0 from wT
|𝐶 |,𝑥|𝐶 |R|𝐶 | + w̃T

|𝐶 |,𝑥|𝐶 | − 𝑥|𝐶 |̃t
T
|𝐶 |,× in H|𝐶 |7

to random in H|𝐶 |+1
8 .

Note that the active expanded label is w̃|𝐶 |,𝑥|𝐶 | = 𝑤|𝐶 |,0 + 𝑥|𝐶 |𝑤|𝐶 |,×. Since 𝑞 is a
prime, 𝑥|𝐶 | = 𝐶(x) ≠ 0 (constraint for security), and 𝑤|𝐶 |,× is not used elsewhere
in the revealed components (secret, input labels, garbled table except t|𝐶 |,0), it
follows that 𝑥|𝐶 |𝑤|𝐶 |,× is a one-time pad for t̃|𝐶 |,0, so H|𝐶 |7 ≡ H

|𝐶 |+1
8 .

• In H𝔦
8 (for 𝔦 from |𝐶 | down to (𝐿 + 1)), the components t̃ (𝑖,𝛾)

𝑖′,0 with 𝑖 ≥ 𝔦 (note that
the indices being compared are 𝑖, 𝔦, not 𝑖′, 𝔦′ as in H𝔦′

7 ’s) are replaced by random.
Comparing H𝔦+1

8 and H𝔦
8, the only change is

(̃t (𝔦,𝛾)gin[𝔦,𝛾],0)
T from wT

gin[𝔦,𝛾],𝑥gin[𝔦,𝛾]R
(𝔦,𝛾)
gin[𝔦,𝛾] + (w̃

(𝔦,𝛾)
gin[𝔦,𝛾],𝑥gin[𝔦,𝛾]

)T − 𝑥gin[𝔦,𝛾] (̃t (𝔦,𝛾)gin[𝔦,𝛾],×)
T

in H𝔦+1
8

to random in H𝔦
8, where 𝛾 ∈ {1, 2}.

Observe that

(w̃(𝔦,1)gin[𝔦,1],𝑥gin[𝔦,1]
, w̃(𝔦,2)gin[𝔦,2],𝑥gin[𝔦,2]

) =
{
(u 𝔦,w𝔦,𝑥𝔦 − u 𝔦), if gate 𝑖 is addition;
(u 𝔦,w𝔦,𝑥𝔦 − 𝑥gin[𝔦,2]u 𝔦), if gate 𝑖 is multiplication;

so u 𝔦,w𝔦,𝑥𝔦 can serve as one-time pads if they do not appear elsewhere in the
revealed components. We inspect their appearances.

– The secret is 𝑤out = 𝑤out,0 + 𝑒out, no appearance.
– The input labels are wℓ = wℓ ,𝑥ℓ + eℓ , no appearance (note 𝔦 > 𝐿 ≥ ℓ).

48 / 79

– The garbled table is t̃ plus randomizing noises (without bars, no u 𝔦,w𝔦,𝑥𝔦).
The t̃ components with subscript “×” are already replaced by random, so
no appearance. The t̃ (𝑖,𝛾)

𝑖′,0 components require a case analysis.
* For 𝑖 > 𝔦, they are already replaced by random, so no appearance.
* For 𝑖 ≤ 𝔦, we have

(̃t (𝑖,𝛾)
𝑖′,0)

T = wT
𝑖′,𝑥𝑖′

R(𝑖,𝛾)
𝑖′ + (w̃(𝑖,𝛾)

𝑖′,𝑥𝑖′
)T − 𝑥𝑖′ (̃t

(𝑖,𝛾)
𝑖′,×)

T.

The first term has no appearance of u 𝔦,w𝔦,𝑥𝔦 , since 𝑖′ = gin[𝑖,𝛾] < 𝑖 ≤ 𝔦

by topological sorting. Neither does the third term. The second term
either (if 𝑖 = 𝔦) is among the ones being one-time-padded, or (if 𝑖 < 𝔦)
cannot contain u 𝔦,w𝔦,𝑥𝔦 , because by construction (see H5), they are
computed from only u𝑖,w𝑖,𝑥𝑖 (note 𝑖 < 𝔦), the wiring of 𝐶, and the wire
values of 𝐶(x).

Therefore, H𝔦+1
8 ≡ H

𝔦
8.

• In H9, all the revealed components (secret, input labels, garbled table) are
replaced by random. We inspect them in H𝐿8 .

– The secret is 𝑤out = 𝑤out,0 + 𝑒out and 𝑤out,0 serves as a one-time pad.
– The input labels are wℓ = wℓ ,𝑥ℓ + eℓ and wℓ ,𝑥ℓ ’s serve as one-time pads.
– The garbled table is t̃ plus randomizing noises. The t̃ components with
subscript “×” are independent and random thanks to H𝔦′

7 ’s, and those with
subscript “0”, thanks to H𝔦

8’s — the output component is handled in H|𝐶 |+1
8

and the others must belong to some t̃ (𝑖,𝛾)
𝑖′,0 (for some 𝐿 < 𝑖 ≤ |𝐶 |) hence

indeed handled in H𝑖8.

Therefore, H𝐿8 ≡ H9.

Clearly, H9 is just Exprandomgarble . By hybrid argument, Exprealgarble ≡ H0 ≈ H9 ≡ Exprandomgarble . □

6 Ciphertext-Policy ABE from Short Noisy Linear Garbling

In this section, we show how to generically construct a CP-ABE scheme from a noisy
linear garbling scheme and an identity-based evasive IPFE scheme.

Ingredients of Construction 5. We rely on

• a noisy linear garbling scheme NLG supporting 𝐹 = {𝐹param′}param′∈Params′ that is
(𝐵in, 𝐵out)-correct, 𝐵short-short, and GenNoise-secure such that the output of
GenNoise is in [−𝐵NLG, 𝐵NLG]★ (Definitions 7, 8, and 10), and

• an identity-based evasive IPFE scheme IPFE for I ⊇ {0, 1, . . . , 𝐿} that is 𝐵IPFE-
correct and restricted-𝜎IPFE-secure (Definitions 4 and 6).

Construction 5 (CP-ABE). Define

Params =
{
param = (param′, 1𝐿)

�� param′ ∈ Params′, 𝐿 ∈ ℕ }
, 𝑋param′,1𝐿 = ℤ𝐿,

𝑌param′,1𝐿 =
{
𝑓 : ℤ𝐿 → {0, 1,⊥}

�� 𝑓 ∈ 𝐹param′ }, 𝑃param′,1𝐿 (x, 𝑓) = 𝑓 (x).

Our CP-ABE for 𝑃 works as follows.

49 / 79

• Setup(param′, 1𝐿) runs

pp = (𝑞, . . .) $← NLG.Setup(param′),

deterministically picks a suitable 𝑛r based on 𝑞, and sets 𝐾 = 0 and 𝑍 = 2𝑛r. It
then sets up the IPFE scheme by

(impk, imsk) $← IPFE.Setup(𝑞, 1𝐾 , 1𝑍).

The algorithm outputs mpk = (pp, 1𝑛r , 1𝐾 , 1𝑍, impk) and msk = (mpk, imsk).

• KeyGen(msk, x) samples r $← ℤ
𝑛r
𝑞 and sets

v0 ← ©­«
r
1

0𝑛r−1

ª®¬ , vℓ ← ©­«
r

x[ℓ]r
ª®¬ for all ℓ ∈ [𝐿].

It generates IPFE secret keys

isk0
$← IPFE.KeyGen(imsk,

id︷︸︸︷
0 , v0,

structured noises, unused︷︸︸︷
⊥),

iskℓ
$← IPFE.KeyGen(imsk, ℓ , vℓ , ⊥) for all ℓ ∈ [𝐿],

and outputs sk = (r, isk0, isk1, . . . , isk𝐿).

• Enc(mpk, 𝑓 , 𝜇) generates the noisy linear garbling of 𝑓 by

(1𝑛𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R) $← GenF(pp, 𝑓).

It samples a random secret matrix S $← ℤ
𝑛𝑓×𝑛r
𝑞 and a sufficiently large message

encoding scalar 𝑠msg
$← ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞]. The algorithm computes

uT
msg ← (wT

outS, 𝜇𝑠msg, 01×(𝑛r−1)), UT
t ← (TTS, 0★×𝑛r),

UT
ℓ ← (W

T
ℓ ,0S,WT

ℓ ,×S) for all ℓ ∈ [𝐿].

Lastly, it generates IPFE ciphertexts

ictmsg
$← IPFE.Enc(impk, 0, 𝔬,uT

msg), ictt
$← IPFE.Enc(impk, 0, 𝔬,UT

t),

ictℓ
$← IPFE.Enc(impk, ℓ , 𝔬,UT

ℓ) for all ℓ ∈ [𝐿],

and outputs ct = (R, ictmsg, ictt, ict1, . . . , ict𝐿).

• Dec(mpk, x, sk, 𝑓 , ct) outputs ⊥ if 𝑓 (x) ≠ 1. Otherwise, it parses sk, ct as in
KeyGen, Enc, and recomputes v0, v1, . . . , v𝐿 as in KeyGen. The algorithm decrypts
all the IPFE ciphertexts for the rerandomized garbling instance, i.e.,

𝑤msg ← IPFE.Dec(impk, 0, v0,⊥, isk0, 𝔬, ictmsg),
t← IPFE.Dec(impk, 0, v0,⊥, isk0, 𝔬, ictt),

wℓ ← IPFE.Dec(impk, ℓ , vℓ ,⊥, iskℓ , 𝔬, ictℓ) for all ℓ ∈ [𝐿].

It evaluates the garbling by

𝑤out ← NLG.Eval(pp, 𝑓 ,R, x, {wT
ℓ }ℓ ∈[𝐿] , t

T)

and outputs the decryption result

𝜇′←
{

0, if 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2−𝜅𝑞],
1, otherwise.

50 / 79

6.1 Correctness

Theorem 18 (¶). Construction 5 is correct (Definition 1) if

• the modulus 𝑞 output by NLG.Setup(param′) is always a prime and always satisfies
𝐵out(param′) ≤ 2−𝜅𝑞, and

• it holds that 𝐵IPFE(𝑞, 0, 2𝑛r) ≤ 𝐵in(param′).

Proof (Theorem 18). The correctness of Construction 5 follows directly from the
correctness of the underlying IPFE and garbling schemes. Since 𝑞 is a prime, by
the 𝐵IPFE-correctness of the evasive IPFE scheme,

𝑤msg = uT
msgv0 + 𝑒out = wT

outSr + 𝜇𝑠msg + 𝑒out = (Sr)Twout + 𝑒out + 𝜇𝑠msg,
tT = vT

0Ut + eT
t = (Sr)TT + eT

t,

wT
ℓ = vT

ℓUℓ + eT
ℓ = (Sr)T(Wℓ ,0 + x[ℓ]Wℓ ,×) + eT

ℓ ,

where Sr ∈ ℤ𝑛𝑓𝑞 randomizes the garbling and the errors (from IPFE decryption) are
bounded by 𝐵IPFE(𝑞, 0, 2𝑛r) ≤ 𝐵in(param′). By the (𝐵in, 𝐵out)-correctness of garbling,

𝑤out − ((Sr)Twout + 𝑒out) ∈ [−𝐵out(param′), 𝐵out(param′)] ⊆ [−2−𝜅𝑞, 2−𝜅𝑞].

If 𝜇 = 0, it always holds that 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2−𝜅𝑞], which never holds when
𝜇 = 1 by our choice of 𝑠msg. We conclude that Construction 5 is correct. □

6.2 Security

Theorem 19 (¶). Construction 5 is very selectively secure (Definition 2) if 18

• LWE𝑛r,poly(𝜆),𝑞,𝜎r (Assumption 1) holds for some 𝜎r ≤
2−𝜅−6𝜎IPFE√

𝜅·𝐵short (param′)
, and

• it holds that 2𝜅+6𝐵NLG(param′) ≤ 𝜎IPFE.

Proof (Theorem 19). LetA be an efficient adversary. We assume that it always chooses
challenges such that 𝑓 (x𝑗) = 0 for all 𝑗 ∈ [𝐽] — otherwise, we alter A so that when
the condition fails, it resets 𝐽 to zero and aborts when it receives back the ABE
components (incomplete per its expectation), as its output is irrelevant to Exp𝛽ABE in
that case. Consider the following evasive IPFE sampler S𝛽 = (SV,S

𝛽
U) per Definition 5.

• SV(𝑟pub) parses 𝑟pub = (𝑟A, 𝑟NLG.Setup, 𝑟r, 𝑟NLG.GenF). It runs A(𝑟A) to obtain

param = (param′, 1𝐿), {x𝑗}𝑗∈[𝐽] (x𝑗 ∈ ℤ𝐿), 𝑓 : ℤ𝐿 → {0, 1,⊥}.

The algorithm next sets up the noisy linear garbling by

pp = (𝑞, . . .) ← NLG.Setup(param′; 𝑟NLG.Setup),

18The constants have been changed from the conference version [HLL24]. Both versions are correct.
The new version fits the proof better.

51 / 79

and deterministically picks 𝑛r, 𝐾, 𝑍 as in Setup of Construction 5. It then uses
𝑟r to sample r1, . . . , r𝐽 ∈ ℤ𝑛r𝑞 uniformly at random in a straight-forward way.19
The algorithm sets for all 𝑗 ∈ [𝐽],

v𝑗,0 =
©­«

r𝑗
1

0𝑛r−1

ª®¬ , v𝑗,ℓ =
©­«

r𝑗

x𝑗 [ℓ]r𝑗
ª®¬ (for all ℓ ∈ [𝐿]).

It runs

(1𝑛𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R) ← NLG.GenF(pp, 𝑓 ; 𝑟NLG.GenF).

Suppose Wℓ ,0 ∈ ℤ
𝑛𝑓×𝑚ℓ
𝑞 and T ∈ ℤ𝑛𝑓×𝑚t

𝑞 , the algorithm outputs

𝑞, 1𝐾 , 1𝑍, ID = {0, 1, . . . , 𝐿}, 1𝐽id = 1𝐽 , 1𝐼0,𝔬 = 1𝑚t+1, 1𝐼ℓ ,𝔬 = 1𝑚ℓ ,
1𝐼id,𝔤 = 10, 𝜎pre = 𝜎IPFE, Vid,𝔬 = (v1,id, . . . , v𝐽,id), Vid,𝔤 = ⊥,

where the indices are id ∈ ID and ℓ ∈ [𝐿].

• S𝛽
U(𝑟pub; 𝑟priv) first runs the deterministic subprocedure S𝛽

A0(𝑟pub), which does
the following. It first reruns SV(𝑟pub) to obtain wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T. The
algorithm then rearranges them into matrices Amsg, {At,𝑖}𝑖∈[𝑚t] , {Aℓ ,𝑖}ℓ ∈[𝐿],𝑖∈[𝑚ℓ]
so that for all s̃1, . . . , s̃𝑛r ∈ ℤ

𝑛𝑓
𝑞 and 𝑠msg ∈ ℤ𝑞,

dT
0Amsg = uT

msg = (wT
outS,𝛽𝑠msg, 01×(𝑛r−1)),

(AT
t,1d0, . . . ,A

T
t,𝑚td0)T = UT

t = (TTS, 0𝑚t×𝑛r),
(AT
ℓ ,1d0, . . . ,A

T
ℓ ,𝑚ℓ

d0)T = UT
ℓ = (W

T
ℓ ,0S,WT

ℓ ,×S) (for all ℓ ∈ [𝐿]),

where dT
0 = (𝑠msg, s̃ T

1 , . . . , s̃
T
𝑛r) and S = (̃s1, . . . , s̃𝑛r). This is possible since every

entry on the right-hand side is linear in d0. The algorithm SA0 outputs

1𝑛
′
= 1𝑛𝑓 𝑛r+1, A0,𝔬,0,𝑖 = At,𝑖 (for all 𝑖 ∈ [𝑚t]),

A0,𝔬,0,𝑚t+1 = Amsg, Aℓ ,𝔬,0,𝑖 = Aℓ ,𝑖 (for all ℓ ∈ [𝐿], 𝑖 ∈ [𝑚ℓ]).

Completing SA0, the algorithm SU samples d0
$← ℤ𝑛

′
𝑞 using 𝑟priv and outputs

UT
id,𝔬 =

©­­«
dT

0A id,𝔬,0,1
...

dT
0A id,𝔬,0,𝐼id,𝔬

ª®®¬ for all id ∈ ID.

By definition, S𝛽 is a restricted sampler (Definition 6). We have the following:

Claim 20 (¶). S𝛽 has pseudorandom noisy inner products, i.e., IPFEsecS𝛽

pre (Definition 5)
holds for both 𝛽 ∈ {0, 1}.

The very selective security of Construction 5 follows from Claim 20. Consider the
following hybrids.
19Precisely speaking, 𝑟r must be efficiently sampleable conditioned on and given r1, . . . , r𝐽 .

52 / 79

• H𝛽
0 is Exp𝛽ABE for Construction 5. Note that 𝑠msg in the challenge ciphertext is

uniformly random over ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞].

• In H𝛽
1 , the scalar 𝑠msg is changed to be uniformly random over ℤ𝑞. Clearly,

H𝛽
0 ≈s H

𝛽
1 . Moreover, H

𝛽
1 corresponds to the left distribution of IPFEsec

S𝛽

post.

• In H𝛽
2 , the vectors inside IPFE ciphertexts (components of the ABE challenge

ciphertext) are replaced by random, which corresponds to the right distribution
of IPFEsecS𝛽

post. By Claim 20 and the restricted-𝜎IPFE-security of IPFE, we have
H𝛽

1 ≈ H
𝛽
2 .

Lastly, H0
2 ≡ H

1
2. By hybrid argument, we conclude Exp

0
ABE ≈ Exp

1
ABE, completing the

proof. □

Proof (Claim 20). Fix 𝛽 ∈ {0, 1} and consider the following hybrids.

• H0 is the left distribution of IPFEsecS𝛽

pre. Recall that the public randomness is
𝑟pub = (𝑟A, 𝑟NLG.Setup, 𝑟r, 𝑟NLG.GenF). Adopting the notations of the ABE decryption
algorithm, the noisy inner products are

𝑤msg, 𝑗 = uT
msgv𝑗,0 + 𝑒out, 𝑗 = (Sr𝑗)Twout + 𝛽𝑠msg + 𝑒out, 𝑗 ,

tT𝑗 = vT
𝑗,0Ut + eT

t, 𝑗 = (Sr𝑗)TT + eT
t, 𝑗 ,

wT
𝑗,ℓ = vT

𝑗,ℓUℓ + eT
𝑗,ℓ = (Sr𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ (for all ℓ ∈ [𝐿]),

where 𝑗 ∈ [𝐽] and the entries of e’s are independent Dℤ,𝜎IPFE .

• In H1, additional small noises are attached to {Sr𝑗}𝑗∈[𝐽]. For all 𝑗 ∈ [𝐽], sample
er, 𝑗

$← D𝑛𝑓

ℤ,𝜎r,≤𝜎r
√
𝜅
and set the inner products to

𝑤msg, 𝑗 = (Sr𝑗 + er, 𝑗)Twout + 𝛽𝑠msg + 𝑒out, 𝑗 , tT𝑗 = (Sr𝑗 + er, 𝑗)TT + eT
t, 𝑗 ,

wT
𝑗,ℓ = (Sr𝑗 + er, 𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ (for all ℓ ∈ [𝐿]).

The errors introduced into the inner products are bounded by

𝐵short(param′) · 𝜎r
√
𝜅 ≤ 2−𝜅−6𝜎IPFE,

so they are flooded (Lemma 2) by {𝑒out, 𝑗 , et, 𝑗 , {e𝑗,ℓ }ℓ ∈[𝐿]}𝑗∈[𝐽], and H0 ≈s H1.

• In H2, the er, 𝑗 ’s are no longer truncated, i.e., er, 𝑗
$← D𝑛𝑓

ℤ,𝜎r
. We have H1 ≈s H2 by

Lemma 1.

• In H3, the garblings use uniform randomness. For all 𝑗 ∈ [𝐽], sample s𝑗
$← ℤ

𝑛𝑓
𝑞

and set the inner products to

𝑤msg, 𝑗 = sT𝑗wout + 𝛽𝑠msg + 𝑒out, 𝑗 , tT𝑗 = sT𝑗T + eT
t, 𝑗 ,

wT
𝑗,ℓ = sT𝑗 (Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ (for all ℓ ∈ [𝐿]).

By 𝑛𝑓 hybrids of applying LWE𝑛r,𝐽,𝑞,𝜎r over the rows of S with public matrix
(r1, . . . , r𝐽), we have

S(r1, . . . , r𝐽) + (er,1, . . . , er,𝐽) ≈ (s1, . . . , s𝐽),

which implies H2 ≈ H3. In this step, we rely on the “straight-forwardness” of
sampling r𝑗 ’s from 𝑟r in S𝛽.

53 / 79

• In H4, additional noises generated by GenNoise are attached to the garblings.
For all 𝑗 ∈ [𝐽], run

(𝑒out, 𝑗 , {e𝑗,ℓ }ℓ ∈[𝐿] , et, 𝑗) $← GenNoise(param′, pp, 𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿]T,R, x𝑗),

and set the inner products to

𝑤msg, 𝑗 = sT𝑗wout + 𝑒out, 𝑗 + 𝛽𝑠msg + 𝑒out, 𝑗 , tT𝑗 = sT𝑗T + eT
t, 𝑗 + eT

t, 𝑗 ,

wT
𝑗,ℓ = sT𝑗 (Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ + eT
𝑗,ℓ (for all ℓ ∈ [𝐿]).

The 𝑒, e’s introduced into the inner products are bounded by 𝐵NLG ≤ 2−𝜅−6𝜎IPFE,
so they are flooded (Lemma 2) by 𝑒, e’s. We have H3 ≈s H4.

• In H5, all the inner products are replaced by random, i.e., the right distribution
of IPFEsecS𝛽

pre. Note that the inner products in H4 are well-randomized garblings
(by s, 𝑒, e’s) plus independent noises (𝑒, e’s). Therefore, by 𝐽 hybrids of applying
GenNoise-security of NLG, we conclude H4 ≈ H5.

By hybrid argument, H0 ≈ H5, i.e., IPFEsecS
𝛽

pre holds. □

6.3 Unbounded Attribute and Summary

Unbounded Attribute. Construction 5 can be modified for attributes of unbounded
length. Before presenting the scheme, we shall clarify the predicate family of such a
scheme, in particular, what 𝑃(x, 𝑓) is when x is shorter than an input to 𝑓 . There are
multiple approaches in the literature. The following is the discussion in [HLL23b;
Section 5.4]. For monotone functions, the missing attribute bits can be assumed
to be zero. For general functions: the specification is silent in many works, which
should be interpreted as 𝑃(x, 𝑓) = ⊥ (neither correct nor secure); it might require
exact length matching, or only reject x shorter than input to 𝑓 (prefix-matching), or
attach index sets to x, 𝑓 and require equal-match or subset-match.

The “silent” specification is straight-forward to achieve. We explain how to
achieve prefix-matching. For simplicity, we require that 𝑓 (x) ≠ ⊥ for all x ∈ {0, 1}𝐿.
The predicate family is

Params =
{
param = param′

�� param′ ∈ Params′, },
𝑋param′ = ℤ<2𝜆 , 𝑌param′ =

{
𝑓 : ℤ𝐿 → {0, 1,⊥}

�� 𝑓 ∈ 𝐹param′ },
𝑃param′ (x, 𝑓) =

{
𝑓 (x′), if the input length of 𝑓 is 𝐿 and x′ is the 𝐿-prefix of x;
0, otherwise.

Construction 5 with 𝐿 (textually) removed is already quite close to an unbounded
ABE — it becomes one with the following modifications similar to [HLL23b].

• The identity space satisfies I ⊇ {0, 1, . . . ,𝜆,𝜆 + 1, . . . ,𝜆 + 2𝜆 − 1}.

• When generating a key for x, instead generate a key for (𝐿x, x), where 𝐿x is the
𝜆-bit encoding of x.

54 / 79

• When generating a ciphertext for 𝑓 , instead generate a ciphertext for

𝑓 ′(𝐿x, x′) =
{

0, if 𝐿x is less than the input length of 𝑓 ;
𝑓 (x′), otherwise.

• The security reduces to that of Construction 5 by appropriately appending zeros
to every key attribute.

Summary. By instantiating our CP-ABE with the garbling scheme of Construction 4
and the IPFE scheme of Construction 2, we obtain CP-ABE for bounded-arithmetic
circuits.

Corollary 21. Under LWE (Assumption 1) and evasive LWE (Assumption 4), there exist
CP-ABE schemes (bounded/unbounded in attribute length) for bounded-arithmetic circuits
with |mpk| = poly(𝜆, log𝑀, 𝑑) and

|skx | = (|x| + 1) poly(𝜆, log𝑀, 𝑑), |ct𝐶 | = (|𝐶 | + 1) poly(𝜆, log𝑀, 𝑑),

where 𝑀 is the maximum wire value and 𝑑 is the maximum depth.

7 ABE for DFA

We define DFA in a minimal format convenient for garbling.

Definition 11 (DFA). A deterministic finite automaton Γ over the binary alphabet is
a tuple (1𝔔, Γ0, Γ1, 𝝃), where 𝔔 ∈ ℕ is its number of states, Γ0, Γ1 ∈ {0, 1}𝔔×𝔔 are its
transition matrices, 𝝃 ∈ {0, 1}𝔔 is its rejection state vector, and each column of Γ0, Γ1
contains exactly one 1. The DFA accepts an input x ∈ {0, 1}𝐿 if and only if

𝝃T ·
1∏

ℓ=𝐿

Γx[ℓ] · 𝜾1 = 0.

Implicitly, for Γ, the set of states is [𝔔], the initial state is 1, and the set of accept
states is { 𝔮 ∈ [𝔔] | 𝝃 [𝔮] = 0 }. After reading 𝑥 ∈ {0, 1}, the machine transitions from 𝔮

to 𝔮′ if and only if Γ𝑥 [𝔮′, 𝔮] = 1, which is equivalent to Γ𝑥𝜾𝔮 = 𝜾𝔮′ (recall that 𝜾𝔮 ∈ {0, 1}𝔔
is the 𝔮th standard basis vector). The following lemma, readily verified, will be handy:

Lemma 22. For all DFA (1𝔔, Γ0, Γ1, 𝝃) and input x ∈ {0, 1}𝐿, it holds that

 𝐿∏
ℓ=1

ΓT
x[ℓ]

 ≤ 1, 𝝃T ·
1∏

ℓ=𝐿

Γx[ℓ] · 𝜾1 ∈ {0, 1}.

7.1 Noisy Linear Garbling for DFA

DFA is defined for inputs of arbitrary length, yet our notion of garbling is only for
functions with fixed-length input. Following the paradigm in [LL20a], we consider
the garbling scheme for each possible input length. The existing [Wat12,LL20a] linear
secret sharing scheme for DFA can be cast into a noisy linear garbling (Definition 7).

55 / 79

Construction 6 (DFA garbling). Let20

Params =
{
(𝑞, 𝐿)

�� 𝑞, 𝐿 ∈ ℕ, 𝑞 ≥ 2
}
, 𝐹 = {𝐹param}param∈Params,

𝐹param =
{
𝑓Γ,𝐿 : ℤ𝐿 → {0, 1,⊥}

�� Γ is a DFA and 𝐿 ∈ [0, 𝐿]
}
,

𝑓Γ,𝐿 (x) =


1, if x ∈ {0, 1}𝐿 and Γ accepts x;
0, if x ∈ {0, 1}𝐿 and Γ rejects x;
⊥, if x ∉ {0, 1}𝐿.

The function 𝑓Γ,𝐿 is represented by (Γ, 1𝐿). The noisy linear garbling scheme for 𝐹
works as follows.

• Setup(param) outputs pp = param = (𝑞, 𝐿).

• GenF(pp, 𝑓Γ,𝐿) parses Γ = (1𝔔, Γ0, Γ1, 𝝃), sets
𝑛𝑓 = (𝐿 + 1)𝔔 + 1, wT

out = (−𝜾T1, 01×𝐿𝔔, 0), R = ⊥,

Wℓ ,0 =

©­­­­­«
0(ℓ−1)𝔔×𝔔
−I𝔔

Γ0
0(𝐿−ℓ)𝔔×𝔔
01×𝔔

ª®®®®®¬
, Wℓ ,× =

©­­­­­«
0(ℓ−1)𝔔×𝔔
0𝔔×𝔔
Γ1 − Γ0
0(𝐿−ℓ)𝔔×𝔔
01×𝔔

ª®®®®®¬
, T =

©­­­­­«
0𝐿𝔔×𝔔

−I𝔔
𝝃T

ª®®®®®¬
,

and outputs (1𝑛𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R). Here, 𝜾1 ∈ {0, 1}𝔔.

• Eval(pp, 𝑓Γ,𝐿,R, x, {wT
ℓ
}
ℓ ∈[𝐿] , t

T) computes and outputs

tT ·
1∏

ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1 +
1∑︁

ℓ=𝐿

(
wT
ℓ ·

1∏
ℓ ′=ℓ−1

Γx[ℓ ′] · 𝜾1

)
.

Theorem 23 (¶). Construction 6 is (𝐵in, 𝐵out)-correct (Definition 7) if 𝐵out ≥ (𝐿 + 2)𝐵in,
2-short (Definition 8), and GenNoise-secure for all GenNoise (Definition 10).
Proof (Theorem 23). The proof is basically that in [LL20a] plus handling the noise. It
suffices to consider x ∈ {0, 1}𝐿. Note that (the second by Lemma 22)

wT
out = (−𝜾T1, 0) =⇒ ∥wT

out∥ ≤ 1 ≤ 2,
WT
ℓ ,0 + x[ℓ]WT

ℓ ,× = (0,−I𝔔, ΓT
x[ℓ] , 0) =⇒ ∥WT

ℓ ,0 + x[ℓ]WT
ℓ ,×∥ ≤ 1 + 1 ≤ 2,

TT = (0,−I𝔔, 𝝃) =⇒ ∥TT∥ ≤ 1 + 1 ≤ 2,

so the scheme is 2-short.
Let the garbling randomness/noise be

s = (sT0, sT1, . . . , sT𝐿, 𝑠𝐿+1)
T, e = (𝑒0, e

T
1, . . . , e

T
𝐿, e

T
𝐿+1)

T,

where each sℓ , eℓ is 𝔔-dimensional, then

𝑤out = −sT0𝜾1 + 𝑒0, wT
ℓ = sTℓΓx[ℓ] − sTℓ−1 + eT

ℓ , tT = 𝑠𝐿+1𝝃
T − sT𝐿 + eT

𝐿+1.

Since evaluation is linear in w’s and t, we first consider the non-noisy part,

(t − e𝐿+1)T ·
1∏

ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1 +
1∑︁

ℓ=𝐿

(
(wℓ − eℓ)T ·

1∏
ℓ ′=ℓ−1

Γx[ℓ ′] · 𝜾1

)
20Here, the DFA input length upper bound 𝐿 is needed due to perfect correctness requirement

in the presence of noise accumulation. For our garbling and ABE constructions, we can simply set
𝐿 = 2𝜆 to support arbitrary polynomial-size computations.

56 / 79

= (𝑠𝐿+1𝝃
T − sT𝐿) ·

1∏
ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1 +
1∑︁

ℓ=𝐿

(
(sTℓΓx[ℓ] − sTℓ−1) ·

1∏
ℓ ′=ℓ−1

Γx[ℓ ′] · 𝜾1

)
= 𝑠𝐿+1𝝃

T ·
1∏

ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1 − sT𝐿 ·
1∏

ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1

(telescoping) +
1∑︁

ℓ=𝐿

(
sTℓ ·

1∏
ℓ ′=ℓ

Γx[ℓ ′] · 𝜾1 − sTℓ−1 ·
1∏

ℓ ′=ℓ−1
Γx[ℓ ′] · 𝜾1

)
= 𝑠𝐿+1𝝃

T ·
1∏

ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1 − sT0𝜾1 = (𝑤out − 𝑒0) +
{

0, if Γ accepts x;
𝑠𝐿+1, otherwise.

Writing

𝑒Eval = eT
𝐿+1 ·

1∏
ℓ ′=𝐿

Γx[ℓ ′] · 𝜾1 +
1∑︁

ℓ=𝐿

(
eT
ℓ ·

1∏
ℓ ′=ℓ−1

Γx[ℓ ′] · 𝜾1

)
− 𝑒0,

we have

Eval(pp, 𝑓Γ,𝐿,R, x, {wT
ℓ }ℓ ∈[𝐿] , t

T) = 𝑤out + 𝑒Eval +
{

0, if Γ accepts x;
𝑠𝐿+1, otherwise.

Transposing 𝑒Eval and applying Lemma 22, we find

|𝑒Eval | ≤ ∥𝜾T1∥ ·
𝐿∏

ℓ ′=1
∥ΓT

x[ℓ ′] ∥︸ ︷︷ ︸
≤1

· ∥e𝐿+1∥ +
1∑︁

ℓ=𝐿

(
∥𝜾T1∥ ·

ℓ−1∏
ℓ ′=1
∥ΓT

x[ℓ ′] ∥︸ ︷︷ ︸
≤1

· ∥eℓ ∥
)
+ |𝑒0 |

≤ (𝐿 + 2)𝐵in ≤ (𝐿 + 2)𝐵in ≤ 𝐵out.

This proves (𝐵in, 𝐵out)-correctness.
Perfect security without noise is proven in [LL20a], which implies security with

any noise. To recap, observe that with param, pp, 𝑓Γ,𝐿, output of GenF, and x ∈ {0, 1}𝐿
fixed, the values (w1, . . . ,w𝐿, 𝑠𝐿+1) are jointly uniformly random — thanks to the
subtraction of sℓ in each wℓ . When x is rejected by Γ,

𝑤out = Eval(pp, 𝑓Γ,𝐿,R, x, {wT
ℓ }ℓ ∈[𝐿] , t

T) − 𝑒Eval︸ ︷︷ ︸
independent of 𝑠𝐿+1

− 𝑠𝐿+1,

so (𝑤out,w1, . . . ,w𝐿) is again jointly uniformly random. □

7.2 Construction of KP-ABE for DFA

We present our KP-ABE for DFA, utilizing the telescoping-sum structure of the DFA
garbling. The idea is similar to [LL20a] — an ABE key contains roughly 𝔔 IPFE keys
and an ABE ciphertext, 𝐿 IPFE ciphertexts, so that decryption yields Θ(𝐿𝔔) inner
products corresponding to a garbling generated using pseudorandomness. The proof,
yet, is much simpler than that of [LL20a] (as well as those of all previous pairing-
based ABE for DFA), thanks to the easy-to-use security of evasive IPFE (Definition 5).

57 / 79

Ingredients of Construction 7. We rely on

• Construction 6, a specific noisy linear garbling NLG for DFA, and

• an identity-based evasive IPFE scheme IPFE for I ⊇ {0, 1, 2} that is 𝐵IPFE-correct
and restricted-𝜎IPFE-secure (Definitions 4 and 6).

Construction 7 (KP-ABE for DFA). Let

Params =
{
𝐿

�� 𝐿 ∈ ℕ }
, 𝑋𝐿 =

{
DFA Γ

}
, 𝑌𝐿 =

{
x ∈ {0, 1}𝐿

�� 𝐿 ≤ 𝐿 }
,

𝑃𝐿 (Γ, x) =
{

1, if Γ accepts x;
0, if Γ rejects x.

Our KP-ABE for DFA works as follows.

• Setup(𝐿) picks suitable 𝑞, 𝑛 in a straight-forward way.21 The algorithm sets
pp = (𝑞, 𝐿) and 𝐾 = 0, 𝑍 = 3𝑛. It runs (impk, imsk) $← IPFE.Setup(𝑞, 1𝐾 , 1𝑍) and
outputs

mpk = (pp, 1𝑛, 1𝐾 , 1𝑍, impk), msk = (mpk, imsk).

• KeyGen(msk,Γ) parses Γ = (1𝔔, Γ0, Γ1, 𝝃). It samples as sets

R $← ℤ𝑛×𝔔𝑞 , r $← ℤ𝑛𝑞,

vmsg =
©­­­«
−R𝜾1

0𝑛
1

0𝑛−1

ª®®®¬ , Vt =
©­­­«
−R
r𝝃T

0𝑛×𝔔

ª®®®¬ , Vin =

©­­­«
RΓ0
RΓ1

−R

ª®®®¬ ,
where 𝜾1 = (1, 0, . . . , 0)T ∈ {0, 1}𝔔 is the first standard basis vector. The algorithm
generates IPFE secret keys

iskmsg
$← IPFE.KeyGen(imsk, 0, vmsg,⊥),

iskt
$← IPFE.KeyGen(imsk, 1,Vt,⊥),

isk in
$← IPFE.KeyGen(imsk, 2,Vin,⊥).

It outputs sk = (R, r, iskmsg, iskt, isk in).

• Enc(mpk, x, 𝜇) samples

s̃0, s̃1, . . . , s̃𝐿, s̃𝐿+1
$← ℤ𝑛𝑞, 𝑠msg

$← ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞].

It sets

uT
msg = (s̃ T

0 , 01×𝑛, 𝜇𝑠msg, 01×(𝑛−1)),
uT
t = (s̃ T

𝐿
, s̃ T

𝐿+1, 01×𝑛),
uT
ℓ
= ((1 − x[ℓ])̃s T

ℓ
, x[ℓ]s̃ T

ℓ
, s̃ T

ℓ−1) for all ℓ ∈ [𝐿],
21Precisely speaking, the randomness used to sample 𝑞, 𝑛 must be separate from that to run

IPFE.Setup and efficiently sampleable conditioned on and given 𝑞, 𝑛.

58 / 79

generates IPFE ciphertexts

ictmsg
$← IPFE.Enc(impk, 0, 𝔬,uT

msg),

ictt
$← IPFE.Enc(impk, 1, 𝔬,uT

t),

ictℓ
$← IPFE.Enc(impk, 2, 𝔬,uT

ℓ) for all ℓ ∈ [𝐿],

and outputs ct = (ictmsg, ictt, ict1, . . . , ict𝐿).

• Dec(mpk,Γ, sk, x, ct) outputs ⊥ and terminates if Γ rejects x. Otherwise, it
parses sk, ct as in KeyGen, Enc. Suppose x ∈ {0, 1}𝐿, the algorithm recomputes
vmsg,Vt,Vin as in KeyGen and performs IPFE decryptions

𝑤msg ← IPFE.Dec(impk, 0, vmsg,⊥, iskmsg, 𝔬, ictmsg),
tT ← IPFE.Dec(impk, 1,Vt,⊥, iskt, 𝔬, ictt),

wT
ℓ ← IPFE.Dec(impk, 2,Vin,⊥, isk in, 𝔬, ictℓ) for all ℓ ∈ [𝐿].

It evaluates the DFA garbling

𝑤out ← NLG.Eval(pp, (Γ, 1𝐿),⊥, x, {wT
ℓ }ℓ ∈[𝐿] , t

T)

and outputs

𝜇′←
{

0, if 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2−𝜅𝑞];
1, otherwise.

Theorem 24 (¶). Construction 7 is correct (Definition 1) if (𝐿 + 2)𝐵IPFE(𝑞, 0, 3𝑛) ≤ 2−𝜅𝑞.

Proof (Theorem 24). The IPFE decryption results in Dec are

𝑤msg = −̃s T
0 R𝜾1 + 𝜇𝑠msg + 𝑒out = s̃ T

0 R · (−𝜾1) + 𝜇𝑠msg + 𝑒out,
tT = uT

tVt + eT
t = −̃s T

𝐿R + s̃ T
𝐿+1r · 𝝃T + eT

t,

wT
ℓ = uT

ℓVin + eT
ℓ = (1 − x[ℓ])̃s T

ℓ RΓ0 + x[ℓ]s̃ T
ℓ RΓ1 − s̃ T

ℓ−1R + eT
ℓ

= s̃ T
ℓ R · Γx[ℓ] − s̃ T

ℓ−1R + eT
ℓ for all ℓ ∈ [𝐿],

where the errors 𝑒out, et, {eℓ }ℓ ∈[𝐿] are 𝐵IPFE-bounded by the correctness of IPFE. They
form a DFA garbling with randomness

s = (̃s T
0 R, s̃ T

1 R, . . . , s̃ T
𝐿R, s̃ T

𝐿+1r)T.

Therefore, by the (𝐵IPFE, (𝐿 + 2)𝐵IPFE)-correctness of NLG (Theorem 23), we have

𝑤out − (̃s T
0 R · (−𝜾1) + 𝑒out) ∈ [−(𝐿 + 2)𝐵IPFE(𝑞, 0, 3𝑛), (𝐿 + 2)𝐵IPFE(𝑞, 0, 3𝑛)]

⊆ [−2−𝜅𝑞, 2𝜅𝑞].

If 𝜇 = 0, it always holds that 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2−𝜅𝑞], which never holds when
𝜇 = 1 by our choice of 𝑠msg. We conclude that Construction 7 is correct. □

59 / 79

7.3 Security of KP-ABE for DFA

Theorem 25 (¶). Construction 7 is very selectively secure (Definition 2) if LWE𝑛,poly(𝜆),𝑞,𝜎r
(Assumption 1) holds for some 𝜎r ≤ 2−𝜅−6𝜎IPFE

2
√
𝜅

.22

Proof (Theorem 25). The proof is similar to that of Theorem 19. Let A be an efficient
adversary and assume that it always chooses challenges such that Γ𝑗 rejects x for all
𝑗 ∈ [𝐽]. Consider the following evasive IPFE sampler S𝛽 = (SV,S

𝛽
U) per Definition 5.

• SV(𝑟pub) parses 𝑟pub = (𝑟A, 𝑟qn, 𝑟r). It runs A(𝑟A) to obtain

param = 𝐿, {Γ𝑗}𝑗∈[𝐽] (Γ𝑗 = (1𝔔𝑗 , Γ𝑗,0, Γ𝑗,1, 𝜉𝑗)), x ∈ {0, 1}<𝐿.

The algorithm uses 𝑟qn to sample 𝑞, 𝑛 as in Setup of Construction 7. It uses 𝑟r to
sample R𝑗 ∈ ℤ

𝑛×𝔔𝑗

𝑞 and r𝑗 ∈ ℤ𝑛𝑞 uniformly at random in a straight-forward way23
for all 𝑗 ∈ [𝐽]. It computes

vmsg, 𝑗 =
©­­­«
−R𝑗𝜾1

0𝑛
1

0𝑛−1

ª®®®¬ , Vt, 𝑗 =
©­­­«
−R𝑗

r
𝑗
𝝃T
𝑗

0𝑛×𝔔𝑗

ª®®®¬ , Vin, 𝑗 =
©­­­«

R𝑗Γ𝑗,0
R𝑗Γ𝑗,1

−R𝑗

ª®®®¬ ,
and sets

𝐾 = 0, 𝑍 = 3𝑛, ID = {0, 1, 2}, 𝐽0 = 𝐽, 𝐽1 = 𝐽2 =
∑︁
𝑗∈[𝐽]

𝔔𝑗 ,

𝐼0,𝔬 = 𝐼1,𝔬 = 1, 𝐼2,𝔬 = 𝐿, 𝐼0,𝔤 = 𝐼1,𝔤 = 𝐼2,𝔤 = 0, 𝜎pre = 𝜎IPFE,

V0,𝔬 = (vmsg,1, . . . , vmsg,𝐽), V1,𝔬 = (vt,1, . . . , vt,𝐽),
V2,𝔬 = (vin,1, . . . , vin,𝐽), V0,𝔤 = V1,𝔤 = V2,𝔤 = ⊥.

Lastly, the algorithm outputs the required components.

• S𝛽
U(𝑟pub; 𝑟priv) first runs the deterministic subprocedure S𝛽

A0(𝑟pub), which does
the following. It first reruns SV(𝑟pub) to obtain 𝑞, 𝑛, x, 𝐿. The algorithm finds
matrices Amsg,At, {Aℓ }ℓ ∈[𝐿] such that for all s̃0, . . . , s̃𝐿+1 ∈ ℤ𝑛𝑞 and 𝑠msg ∈ ℤ𝑞,

dT
0Amsg = uT

msg = (̃s T
0 , 01×𝑛,𝛽𝑠msg, 01×(𝑛−1)), dT

0At = uT
t = (̃s T

𝐿, s̃
T
𝐿+1, 01×𝑛),

dT
0Aℓ = uT

ℓ = ((1 − x[ℓ])̃s T
ℓ , x[ℓ]s̃

T
ℓ , s̃

T
ℓ−1) (for all ℓ ∈ [𝐿]),

where dT
0 = (𝑠msg, s̃ T

0 , . . . , s̃
T
𝐿+1). The algorithm SA0 outputs

1𝑛
′
= 1𝑛(𝐿+2)+1, A0,𝔬,0,1 = Amsg, A1,𝔬,0,1 = At, A2,𝔬,0,ℓ = Aℓ (for all ℓ ∈ [𝐿]).

Completing SA0, the algorithm SU samples d0
$← ℤ𝑛

′
𝑞 using 𝑟priv and outputs

UT
id,𝔬 =

©­­«
dT

0A id,𝔬,0,1
...

dT
0A id,𝔬,0,𝐼id,𝔬

ª®®¬ for all id ∈ ID.

22This condition is the same as in Theorem 19, instantiated with 𝐵short = 2 and 𝐵NLG = 0.
23Precisely speaking, 𝑟r must be efficiently sampleable conditioned on and given R1, r1, . . . ,R𝐽 , r𝐽 .

60 / 79

By definition, S𝛽 is a restricted sampler (Definition 6). We have the following:

Claim 26 (¶). S𝛽 has pseudorandom noisy inner products, i.e., IPFEsecS𝛽

pre (Definition 5)
holds for both 𝛽 ∈ {0, 1}.

The very selective security of Construction 7 follows from Claim 26. Consider the
following hybrids.

• H𝛽
0 is Exp𝛽ABE for Construction 7. Note that 𝑠msg in the challenge ciphertext is

uniformly random over ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞].

• In H𝛽
1 , the scalar 𝑠msg is changed to be uniformly random over ℤ𝑞. Clearly,

H𝛽
0 ≈s H

𝛽
1 . Moreover, H

𝛽
1 corresponds to the left distribution of IPFEsec

S𝛽

post.

• In H𝛽
2 , the vectors inside IPFE ciphertexts (components of the ABE challenge

ciphertext) are replaced by random, which corresponds to the right distribution
of IPFEsecS𝛽

post. By Claim 26 and the restricted-𝜎IPFE-security of IPFE, we have
H𝛽

1 ≈ H
𝛽
2 .

Lastly, H0
2 ≡ H

1
2. By hybrid argument, we conclude Exp

0
ABE ≈ Exp

1
ABE, completing the

proof. □

Proof (Claim 26). Fix 𝛽 ∈ {0, 1} and consider the following hybrids.

• H0 is the left distribution of IPFEsecS𝛽

pre. Recall that the public randomness is
𝑟pub = (𝑟A, 𝑟qn, 𝑟r). Adopting the notations of the ABE decryption algorithm, the
noisy inner products are

𝑤msg, 𝑗 = uT
msgvmsg, 𝑗 + 𝑒out, 𝑗 = s̃ T

0 R𝑗 · (−𝜾1) + 𝛽𝑠msg + 𝑒out, 𝑗 ,
tT𝑗 = uT

tVt, 𝑗 + eT
t, 𝑗 = −̃s T

𝐿R𝑗 + s̃ T
𝐿+1r𝑗 · 𝝃

T
𝑗 + eT

t, 𝑗 ,

wT
𝑗,ℓ = uT

ℓVℓ + eT
𝑗,ℓ = s̃ T

ℓ R𝑗 · Γx[ℓ] − s̃ T
ℓ−1R𝑗 + eT

𝑗,ℓ (for all ℓ ∈ [𝐿]),

where 𝑗 ∈ [𝐽] and the entries of 𝑒, e’s are independent Dℤ,𝜎IPFE .

• In H1, additional small noises are attached to s̃ TR, s̃ Tr’s. For all 𝑗 ∈ [𝐽], set the
inner products to

𝑤msg, 𝑗 = (̃s T
0 R𝑗 + eT

r, 𝑗,0) (−𝜾1) + 𝛽𝑠msg + 𝑒out, 𝑗 ,
tT𝑗 = −(̃s

T
𝐿R𝑗 + eT

r, 𝑗,𝐿) + (̃s
T
𝐿+1r𝑗 + 𝑒r, 𝑗,𝐿+1)𝝃

T
𝑗 + eT

t, 𝑗 ,

wT
𝑗,ℓ = (̃s

T
ℓ R𝑗 + eT

r, 𝑗,ℓ)Γx[ℓ] − (̃s T
ℓ−1R𝑗 + eT

r, 𝑗,ℓ−1) + eT
𝑗,ℓ (for all ℓ ∈ [𝐿]),

where er, 𝑗,ℓ
$← D𝔔𝑗

ℤ,𝜎r,≤𝜎r
√
𝜅
for all ℓ ∈ {0, . . . , 𝐿} and 𝑒r, 𝑗,𝐿+1

$← Dℤ,𝜎r,≤𝜎r
√
𝜅. The

errors introduced into the inner products are bounded by

2𝜎r
√
𝜅 ≤ 2−𝜅−6𝜎IPFE,

so they are flooded (Lemma 2) by {𝑒out, 𝑗 , et, 𝑗 , {e𝑗,ℓ }ℓ ∈[𝐿]}𝑗∈[𝐽], and H0 ≈s H1.

• In H2, the er’s are no longer truncated, i.e., for all 𝑗 ∈ [𝐽], sample er, 𝑗,ℓ
$← D𝔔𝑗

ℤ,𝜎r

for all ℓ ∈ {0, . . . , 𝐿} and 𝑒r, 𝑗,𝐿+1
$← Dℤ,𝜎r . We have H1 ≈s H2 by Lemma 1.

61 / 79

• In H3, the garblings use uniform randomness. For all 𝑗 ∈ [𝐽], sample s𝑗,ℓ
$← ℤ𝑛𝑞

for all ℓ ∈ {0, . . . , 𝐿} and 𝑠𝑗,𝐿+1
$← ℤ𝑞, and set the inner products to

𝑤msg, 𝑗 = sT𝑗,0 · (−𝜾1) + 𝛽𝑠msg + 𝑒out, 𝑗 ,
tT𝑗 = −sT𝑗,𝐿 + 𝑠𝑗,𝐿+1𝝃

T
𝑗 + eT

t, 𝑗 ,

wT
𝑗,ℓ = sT𝑗,ℓΓx[ℓ] − sT𝑗,ℓ−1 + eT

𝑗,ℓ (for all ℓ ∈ [𝐿]),

By (𝐿 + 1) hybrids of applying LWE𝑛,𝐽2,𝑞,𝜎r with public matrix (R1, . . . ,R𝐽) and
secrets s̃0, . . . , s̃𝐿, then LWE𝑛,𝐽,𝑞,𝜎r with public matrix (r1, . . . , r𝐽) and secret s̃𝐿+1,
we have{

{̃s T
ℓ R𝑗 + eT

r, 𝑗,ℓ }ℓ ∈{0,...,𝐿}, s̃
T
𝐿+1r𝑗 + 𝑒r, 𝑗,𝐿+1

}
𝑗∈[𝐽] ≈

{
{sT𝑗,ℓ }ℓ ∈{0,...,𝐿}, 𝑠𝑗,𝐿+1

}
𝑗∈[𝐽]

which implies H2 ≈ H3. In this step, we rely on the “straight-forwardness” of
sampling R, r’s from 𝑟r in S𝛽.

• In H4, all the inner products are replaced by random, i.e., the right distribution
of IPFEsecS𝛽

pre. Note that the inner products in H3 are well-randomized garblings
(by s’s) plus independent noises (𝑒, e’s). Therefore, by 𝐽 hybrids of applying the
security of NLG, we conclude H3 ≡ H4.

By hybrid argument, H0 ≈ H4, i.e., IPFEsecS
𝛽

pre holds. □

7.4 CP-ABE for DFA and Summary

Our CP-ABE for DFA is similar to KP-ABE for DFA and general CP-ABE and features a
mixture of how components are set in both schemes.

Ingredients of Construction 8. We rely on

• Construction 6, a specific noisy linear garbling NLG for DFA, and

• an identity-based evasive IPFE scheme IPFE for I ⊇ {0, 1, 2} that is 𝐵IPFE-correct
and restricted-𝜎IPFE-secure (Definitions 4 and 6).

Construction 8 (CP-ABE for DFA). Let

Params =
{
𝐿

�� 𝐿 ∈ ℕ }
, 𝑋𝐿 =

{
x ∈ {0, 1}𝐿

�� 𝐿 ≤ 𝐿 }
, 𝑌𝐿 =

{
DFA Γ

}
,

𝑃𝐿 (x,Γ) =
{

1, if Γ accepts x;
0, if Γ rejects x.

Our CP-ABE for DFA works as follows.

• Setup(𝐿) picks suitable 𝑞, 𝑛 in a straight-forward way. It sets pp = (𝑞, 𝐿), 𝐾 = 0,
𝑍 = 3𝑛. The algorithm runs (impk, imsk) $← IPFE.Setup(𝑞, 1𝐾 , 1𝑍) and outputs

mpk = (pp, 1𝑛, 1𝐾 , 1𝑍, impk), msk = (mpk, imsk).

• KeyGen(msk, x), given x ∈ {0, 1}𝐿, samples and sets

r0, . . . , r𝐿
$← ℤ𝑛𝑞, 𝑟𝐿+1

$← ℤ𝑞,

62 / 79

vmsg =
©­«

r0
1

02𝑛−1

ª®¬ , vt =
©­«

r𝐿
𝑟𝐿+1

02𝑛−1

ª®¬ , vℓ =
©­«
(1 − x[ℓ])rℓ

x[ℓ]rℓ
rℓ−1

ª®¬ for all ℓ ∈ [𝐿].

It generates IPFE secret keys

iskmsg
$← IPFE.KeyGen(imsk, 0, vmsg,⊥),

iskt
$← IPFE.KeyGen(imsk, 1, vt,⊥),

iskℓ
$← IPFE.KeyGen(imsk, 2, vℓ ,⊥) for all ℓ ∈ [𝐿].

The algorithm outputs sk = (r0, . . . , r𝐿, 𝑟𝐿+1, iskmsg, iskt, isk1, . . . , isk𝐿).

• Enc(mpk,Γ, 𝜇) parses Γ = (1𝔔, Γ0, Γ1, 𝝃). It samples

S $← ℤ𝔔×𝑛
𝑞 , 𝑠−1

$← ℤ𝑞, 𝑠msg
$← ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞],

and sets

uT
msg = (−𝜾T1S, 𝜇𝑠msg, 01×(2𝑛−1)), UT

t = (−S, 𝑠−1𝝃, 0𝔔×(2𝑛−1)), UT
in = (ΓT

0S, ΓT
1S,−S).

The algorithm generates IPFE ciphertexts

ictmsg
$← IPFE.Enc(impk, 0, 𝔬,uT

msg),

ictt
$← IPFE.Enc(impk, 1, 𝔬,UT

t),

ict in
$← IPFE.Enc(impk, 2, 𝔬,UT

in),

and outputs ct = (ictmsg, ictt, ict in).

• Dec(mpk, x, sk,Γ, ct) outputs ⊥ and terminates if Γ rejects x. Otherwise, it
parses sk, ct as in KeyGen, Enc. Suppose x ∈ {0, 1}𝐿, the algorithm recomputes
vmsg, vt, v1, . . . , v𝐿 as in KeyGen and performs IPFE decryptions

𝑤msg ← IPFE.Dec(impk, 0, vmsg,⊥, iskmsg, 𝔬, ictmsg),
t← IPFE.Dec(impk, 1, vt,⊥, iskt, 𝔬, ictt),

wℓ ← IPFE.Dec(impk, 2, vℓ ,⊥, iskℓ , 𝔬, ict in) for all ℓ ∈ [𝐿].

It evaluates the DFA garbling

𝑤out ← NLG.Eval(pp, (Γ, 1𝐿),⊥, x, {wT
ℓ }ℓ ∈[𝐿] , t

T)

and outputs

𝜇′←
{

0, if 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2−𝜅𝑞];
1, otherwise.

Theorem 27. Construction 8 is correct (Definition 1) if (𝐿 + 2)𝐵IPFE(𝑞, 0, 3𝑛) ≤ 2−𝜅𝑞.

Theorem 28. Construction 8 is very selectively secure (Definition 2) if LWE𝑛,poly(𝜆),𝑞,𝜎r
(Assumption 1) holds for some 𝜎r ≤ 2−𝜅−6𝜎IPFE

2
√
𝜅

.

63 / 79

Summary. By instantiating our ABE schemes with the IPFE scheme of Construc-
tion 2, we obtain KP- and CP-ABE for DFA.

Corollary 29. Under LWE (Assumption 1) and evasive LWE (Assumption 4), there exists
KP-ABE for DFA with

|mpk| = poly(𝜆), |skΓ | = (|Γ| + 1) poly(𝜆), |ctx | = (|x| + 1) poly(𝜆).

and CP-ABE for DFA with

|mpk| = poly(𝜆), |skx | = (|x| + 1) poly(𝜆), |ctΓ | = (|Γ| + 1) poly(𝜆).

We remark that, starting from the linear secret sharing scheme [LL20a] for L, we also
obtain ABE for L via the same construction. However, ABE for NFA or NL cannot be
obtained so. The schemes for DFA and L crucially rely on the fact that, when noises
are added to the LSSS shares, the output noise grows linearly with the computation
size. On the other hand, the secret sharing schemes for NFA and NL, once cast as
noisy linear garbling, incur exponential noise growth during reconstruction. The
latter fact makes the resultant ABE bounded.

8 CP-ABE with Succinct Ciphertexts

In this section, we show that with the help of evasive IPFE with structured noises,
we can construct CP-ABE from general noisy linear garbling scheme (not necessarily
short). When instantiated with the noisy linear garbling implicit in [BGG+14], this
yields a CP-ABE scheme with ciphertext size dependent only on circuit depth instead
of circuit size.

8.1 Succinct Noisy Linear Garbling for Circuits

The work of [BGG+14] presented a KP-ABE scheme with succinct keys for circuits
based on lattices. At the core of their construction are a pair of deterministic homo-
morphic evaluation algorithms EvalC, EvalCX, which, for circuit 𝐶 : {0, 1}𝐿 → {0, 1},
input 𝑥 ∈ {0, 1}𝐿, and public matrix A ∈ ℤ𝑛×𝑚(𝐿+1)

𝑞 , satisfies the relation

EvalC(A, 𝐶) = A𝐶 ∈ ℤ𝑛×𝑚𝑞 ,

EvalCX(sT(A − (1, xT) ⊗ G) + eT, 𝑓 , x) = sT(A𝐶 − 𝐶(x) · G) + eT
𝐶,

where ∥e𝐶∥, relative to ∥e∥, grows exponentially with the depth of 𝐶. (In [BGG+14], it
also works for bounded-arithmetic circuits, but we only present the Boolean version.)
It naturally yields a noisy linear garbling scheme.

Construction 9 (garbling adapted from [BGG+14]). Let

Params =
{

1𝑑
�� 𝑑 ∈ ℕ }

,

𝐹1𝑑 =
{
𝑓𝐶

�� 𝐶 is a Boolean circuit of depth no more than 𝑑
}
,

𝑓𝐶 (x) =
{
⊥, if x ∉ {0, 1}𝐿;
¬𝐶(x), if x ∈ {0, 1}𝐿;

for 𝐶 : {0, 1}𝐿 → {0, 1} and x ∈ ℤ𝐿.

The noisy linear garbling scheme works as follows.

64 / 79

• Setup(1𝑑) picks suitable 𝑞, 𝑛, 𝑚 (with 𝑚 ≥ 𝑛⌈log2 𝑞⌉) and outputs pp = (𝑞, 1𝑛, 1𝑚).

• GenF(pp, 𝐶) samples A0,A1, . . . ,A𝐿
$← ℤ

𝑛×𝑚(𝐿+1)
𝑞 and a $← ℤ𝑛𝑞. It computes

A𝐶 ← EvalC((A0,A1, . . . ,A𝐿), 𝐶). The algorithm outputs

1𝑛𝐶 = 1𝑛, wout = A𝐶G−1(a), Wℓ ,0 = Aℓ , Wℓ ,× = −G, (for all ℓ ∈ [𝐿])
T = A0 − G, R = a.

All the samplings are done in a straight-forward way.

• Eval(pp, 𝐶,R, x, {wT
ℓ
}
ℓ ∈[𝐿] , t

T) computes and outputs

EvalCX((tT,wT
1, . . . ,w

T
𝐿), 𝐶, x) · G

−1(a).

Lemma 30 ([BGG+14]). Construction 9 is correct (Definition 7) if

(𝑚 + 2)𝑑+1𝐵in(𝑑) ≤ 𝐵out(𝑑).

It has fixed randomness dimension (Definition 9). Suppose

GenGaussian′(1𝑑, (𝑞, 𝑛, 𝑚), 𝐶,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R, x)

samples (truncated) Gaussian noises with appropriate width 𝜎 of suitable shape

(𝑒out, e1, . . . , e𝐿, et) $← D1+(𝐿+1)𝑚
ℤ,𝜎,≤𝜎

√
𝜅
,

then Construction 9 is GenGaussian′-secure (Definition 10) if LWE𝑛,poly(𝜆),𝑞,𝜎′ (Assump-
tion 2) holds for some 𝜎′ ≤ 𝜎

2𝜅+6 (𝑚+2)𝑑+1√𝜅 .

8.2 CP-ABE from General Noisy Linear Garbling

We present a construction of CP-ABE from noisy linear garbling with fixed
randomness dimension that is not necessarily short. It has a lot in common with
Construction 5. Both compute rerandomized garbling using IPFE. In Construction 5,
security relies on flooding to introduce noises to argue that the garblings use good
pseudorandomness. Here, we use structured noises, together with some algebraic
tweaks (“noisy secret sharing”, see Section 1.2), to attach the same noise to the
garbling pseudorandomness.

Ingredients of Construction 10. We rely on

• a noisy linear garbling scheme NLG supporting 𝐹 = {𝐹param′}param′∈Params′ that is
(𝐵in, 𝐵out)-correct, has fixed randomness dimension, and is GenNoise-secure
such that the output of GenNoise is in [−𝐵NLG, 𝐵NLG]★ (Definitions 7, 9, and 10),
and

• an identity-based evasive IPFE with structured noises scheme IPFE for identity
space I ⊇ {−1, 0, 1, . . . , 𝐿} that is 𝐵IPFE-correct and restricted-𝜎IPFE-secure (Defi-
nitions 4 and 6).

65 / 79

Construction 10 (CP-ABE from general garbling). Define

Params =
{
param = (param′, 1𝐿)

�� param′ ∈ Params′, 𝐿 ∈ ℕ }
, 𝑋param′,1𝐿 = {0, 1}𝐿,

𝑌param′,1𝐿 =
{
𝑓 : ℤ𝐿 → {0, 1,⊥}

�� 𝑓 ∈ 𝐹param′ }, 𝑃param′,1𝐿 (x, 𝑓) = 𝑓 (x).

(Note that x is confined to Boolean.) Our CP-ABE scheme works as follows.

• Setup(param′, 1𝐿) runs

pp = (𝑞, 1𝑛, . . .) $← NLG.Setup(param′).

The algorithm sets 𝐾 = ⌈log2 𝑞⌉ to be the dimension of g̃ (for structured noises),
and 𝑍 = 2(𝑛 + 𝑛2𝐾). It runs (impk, imsk) $← IPFE.Setup(𝑞, 1𝐾 , 1𝑍) and outputs

mpk = (pp, 1𝐾 , 1𝑍, impk), msk = (mpk, imsk).

• KeyGen(msk, x) samples r $← ℤ𝑛𝑞 and Q $← ℤ𝑛×𝑛𝐾𝑞 . Recall that col(Q) is a column
of dimension 𝑛2𝐾 concatenating the columns of Q. The algorithm sets

VQ =

(
Q

0(𝑍−𝑛)×𝑛𝐾

)
, v0 =

©­­­«
r

col(Q)
1

0𝑛−1+𝑛2𝐾

ª®®®¬ , vℓ =

©­­­­­«
(1 − x[ℓ])r
(1 − x[ℓ])col(Q)

x[ℓ]r
x[ℓ]col(Q)

ª®®®®®¬
for all ℓ ∈ [𝐿].

It generates IPFE secret keys

isk−1
$← IPFE.KeyGen(imsk,−1, 0,VQ),

isk0
$← IPFE.KeyGen(imsk, 0, v0, 0),

iskℓ
$← IPFE.KeyGen(imsk, ℓ , vℓ , 0) for all ℓ ∈ [𝐿],

and outputs sk = (r,Q, isk−1, isk0, isk1, . . . , isk𝐿).

• Enc(mpk, 𝑓 , 𝜇) runs

(1𝑛,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R) $← GenF(pp, 𝑓).

It samples S $← ℤ𝑛×𝑛𝑞 , sQ
$← ℤ𝑛𝑞, 𝑠msg

$← ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞], and sets

uT
Q =

(
sTQ, 01×(𝑍−𝑛)

)
,

uT
msg =

(
wT
outS,−(G̃−1(wout) ⊗ sQ)T, 𝜇𝑠msg, 01×(𝑛−1+𝑛2𝐾)

)
,

UT
t =

(
TTS,−(G̃−1(T) ⊗ sQ)T, 0★×(𝑛+𝑛2𝐾)

)
,

UT
ℓ =

(
WT
ℓ ,0S,−(G̃−1(Wℓ ,0) ⊗ sQ)T, (WT

ℓ ,0 +WT
ℓ ,×)S,−(G̃

−1(Wℓ ,0 +Wℓ ,×) ⊗ sQ)T
)
,

where ℓ ∈ [𝐿]. The algorithm generates IPFE ciphertexts

ictQ
$← IPFE.Enc(impk,−1, 𝔤,uT

Q),

ictmsg
$← IPFE.Enc(impk, 0, 𝔬,uT

msg), ictt
$← IPFE.Enc(impk, 0, 𝔬,UT

t),

ictℓ
$← IPFE.Enc(impk, ℓ , 𝔬,UT

ℓ) for all ℓ ∈ [𝐿],

and outputs ct = (R, ictQ, ictmsg, ictt, ict1, . . . , ict𝐿).

66 / 79

• Dec(mpk, x, sk, 𝑓 , ct) outputs ⊥ and terminates if 𝑓 (x) ≠ 1. Otherwise, it
parses sk, ct as in KeyGen, Enc, recomputes VQ, v0, {vℓ }ℓ ∈[𝐿], and performs IPFE
decryptions for the shares

shTQ ← IPFE.Dec(impk,−1, 0,VQ, isk−1, 𝔤, ictQ),
shmsg ← IPFE.Dec(impk, 0, v0, 0, isk0, 𝔬, ictmsg),
sht ← IPFE.Dec(impk, 0, v0, 0, isk0, 𝔬, ictt),
shℓ ← IPFE.Dec(impk, ℓ , vℓ , 0, iskℓ , 𝔬, ictℓ) for all ℓ ∈ [𝐿].

The algorithm reconstructs the garbling from the shares as

𝑤msg ← shmsg + shTQG̃−1(wout), tT ← shTt + shTQG̃−1(T),
wT
ℓ ← shTℓ + sh

T
QG̃−1(Wℓ ,0 + x[ℓ]Wℓ ,×) for all ℓ ∈ [𝐿].

It evaluates the garbling by

𝑤out ← NLG.Eval(pp, 𝑓 ,R, x, {wT
ℓ }ℓ ∈[𝐿] , t

T)

and outputs

𝜇′←
{

0, if 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2𝜅𝑞];
1, otherwise.

Theorem 31 (¶). Construction 5 is correct (Definition 1) if

• the modulus 𝑞 output by NLG.Setup(param′) is always a prime and always satisfies
𝐵out(param′) ≤ 2−𝜅𝑞, and

• it holds that (𝑛𝐾 + 1)𝐵IPFE(𝑞, 𝐾, 2(𝑛 + 𝑛2𝐾)) ≤ 𝐵in(param′).

Proof (Theorem 31). By the correctness of IPFE and how we set the vectors, we have

shTQ = sTQQ + g̃ T ⊗ eT
sr + eT

Q = sTQQ + eT
srG̃ + eT

Q

for some 𝐵IPFE-bounded errors esr, eQ. For any matrix A ∈ ℤ𝑛×★𝑞 ,

shTQG̃−1(A) = (sTQQ + eT
srG̃ + eT

Q)G̃−1(A) = sTQQG̃−1(A)︸ ︷︷ ︸
one-time pad

+ eT
srA︸︷︷︸

“attached” error

+ eT
QG̃−1(A)︸ ︷︷ ︸
small error

.

For the table shares, we have

sht = UT
tv0 + et = TTSr − ((G̃−1(T))T ⊗ sTQ)col(Q) + et

= TTSr − col(sTQQG̃−1(T)) + et =
(
(Sr)TT + eT

t − sTQQG̃−1(T)
)T
,

where the third equality follows from col(ABC) = (CT ⊗ A)col(B) and the last equality
holds because sTQQG̃−1(T) is a row vector. The reconstructed garbled table is hence

tT = (Sr)TT + eT
t − sTQQG̃−1(T)︸ ︷︷ ︸
shTt

+ sTQQG̃−1(T) + eT
srT + eT

QG̃−1(T)︸ ︷︷ ︸
shTQG̃−1 (T)

= (Sr + esr)TT + ẽ T
t ,

67 / 79

where ẽt = et + (G̃−1(T))TeQ is (𝑛𝐾 + 1)𝐵IPFE-bounded. Similarly,

𝑤msg = (Sr + esr)Twout + 𝜇𝑠msg + 𝑒̃out,
wT
ℓ = (Sr + esr)T(Wℓ ,0 + x[ℓ]Wℓ ,×) + ẽ T

ℓ for all ℓ ∈ [𝐿],

with 𝑒̃out, ẽℓ ’s bounded by (𝑛𝐾 + 1)𝐵IPFE. The garbling uses secret Sr + esr ∈ ℤ𝑛𝑞 and
its noises (̃e’s) are bounded by (𝑛𝐾 + 1)𝐵IPFE(𝑞, 𝐾, 𝑍) ≤ 𝐵in(param′). Therefore, by the
correctness of NLG,

𝑤out − ((Sr + esr)Twout + 𝑒′out) ∈ [−𝐵out(param′), 𝐵out(param′)] ⊆ [−2−𝜅𝑞, 2−𝜅𝑞].

If 𝜇 = 0, it always holds that 𝑤msg − 𝑤out ∈ [−2−𝜅𝑞, 2−𝜅𝑞], which never holds when
𝜇 = 1 by our choice of 𝑠msg. We conclude that Construction 10 is correct. □

8.3 Security and Summary

Theorem 32 (¶). Construction 10 is very selectively secure (Definition 2) if

• LWE𝑛,poly(𝜆),𝑞,𝜎 (Assumption 1) holds for some 𝜎 ≤ 2−𝜅−6𝜎IPFE
𝑛𝐾
√
𝜅
, and

• it holds that 2𝜅+6𝐵NLG(param′) ≤ 𝜎IPFE.

Proof (Theorem 32). LetA be an efficient adversary and assume that it always chooses
challenges such that 𝑓 (x𝑗) = 0 for all 𝑗 ∈ [𝐽]. Consider the following evasive IPFE
sampler S𝛽 = (SV,S

𝛽
U) per Definition 5.

• SV(𝑟pub) parses 𝑟pub = (𝑟A, 𝑟NLG.Setup, 𝑟rq, 𝑟NLG.GenF). It runs A(𝑟A) to obtain

param = (param′, 1𝐿), {x𝑗}𝑗∈[𝐽] (x𝑗 ∈ {0, 1}𝐿), 𝑓 : ℤ𝐿 → {0, 1,⊥}.

The algorithm next sets up the noisy linear garbling by

pp = (𝑞, 1𝑛, . . .) ← NLG.Setup(param′; 𝑟NLG.Setup),

and computes 𝐾, 𝑍 as in Setup of Construction 10. It then uses 𝑟rq to sample
r1, . . . , r𝐽 ∈ ℤ𝑛𝑞, Q1, . . . ,Q𝐽 ∈ ℤ𝑛×𝑛𝐾𝑞 uniformly at random in a straight-forward
way.24 The algorithm sets for all 𝑗 ∈ [𝐽],

VQ, 𝑗 =

(
Q𝑗

0(𝑍−𝑛)×𝑛𝐾

)
, v𝑗,0 =

©­­­«
r𝑗

col(Q𝑗)
1

0𝑛−1+𝑛2𝐾

ª®®®¬ , v𝑗,ℓ =

©­­­­­«
(1 − x𝑗 [ℓ])r𝑗
(1 − x𝑗 [ℓ])col(Q𝑗)

x𝑗 [ℓ]r𝑗
x𝑗 [ℓ]col(Q𝑗)

ª®®®®®¬
for all ℓ ∈ [𝐿].

It runs

(1𝑛,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T,R) ← NLG.GenF(pp, 𝑓 ; 𝑟NLG.GenF).

Suppose Wℓ ,0 ∈ ℤ𝑛×𝑚ℓ𝑞 and T ∈ ℤ𝑛×𝑚t
𝑞 , the algorithm outputs

𝑞, 1𝐾 , 1𝑍, ID = {−1, 0, 1, . . . , 𝐿}, 1𝐽id = 1𝐽 ,
1𝐼−1,𝔬 = 10, 1𝐼0,𝔬 = 1𝑚t+1, 1𝐼ℓ ,𝔬 = 1𝑚ℓ ,
1𝐼−1,𝔤 = 11, 1𝐼0,𝔤 = 1𝐼ℓ ,𝔤 = 10, 𝜎pre = 𝜎IPFE,

24Precisely speaking, 𝑟rq must be efficiently sampleable conditioned on and given r1, . . . , r𝐽 and
Q1, . . . ,Q𝐽 .

68 / 79

v−1,𝔤 = (vQ,1, . . . , vQ,𝐽), v−1,𝔬 = 0,
V0,𝔬 = (v0,0, . . . , v𝐽,0), V0,𝔤 = 0,
Vℓ ,𝔬 = (v1,ℓ , . . . , v𝐽,ℓ), Vℓ ,𝔤 = 0,

where the indices are id ∈ ID and ℓ ∈ [𝐿].

• S𝛽
U(𝑟pub; 𝑟priv) first runs the deterministic subprocedure S𝛽

A0(𝑟pub), which does
the following. It first reruns SV(𝑟pub) to obtain wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿] ,T. The
algorithm then rearranges them into AQ,Amsg, {At,𝑖}𝑖∈[𝑚t] , {Aℓ ,𝑖}ℓ ∈[𝐿],𝑖∈[𝑚ℓ] such
that for all sQ, s̃1, . . . , s̃𝑛 ∈ ℤ𝑛𝑞 and 𝑠msg ∈ ℤ𝑞,

dT
0AQ = uT

Q =
(
sTQ, 01×(𝑍−𝑛)

)
,

dT
0Amsg = uT

msg =
(
wT
outS,−(G̃−1(wout) ⊗ sQ)T,𝛽𝑠msg, 01×(𝑛−1+𝑛2𝐾)

)
,

(AT
t,1d0, . . . ,A

T
t,𝑚td0)T = UT

t =
(
TTS,−(G̃−1(T) ⊗ sQ)T, 0𝑚t×(𝑛+𝑛2𝐾)

)
,

(AT
ℓ ,1d0, . . . ,A

T
ℓ ,𝑚ℓ

d0)T = UT
ℓ

=
(
WT
ℓ ,0S,−(G̃−1(Wℓ ,0) ⊗ sQ)T, (WT

ℓ ,0 +WT
ℓ ,×)S,−(G̃

−1(Wℓ ,0 +Wℓ ,×) ⊗ sQ)T
)
,

where ℓ ∈ [𝐿] and dT
0 = (𝑠msg, sTQ, s̃ T

1 , . . . , s̃
T
𝑛) and S = (̃s1, . . . , s̃𝑛). This is possible

since every entry on the right-hand side is linear in d0. The algorithm SA0
outputs

1𝑛
′
= 1𝑛(𝑛+1)+1, A−1,𝔤,0,1 = AQ,

A0,𝔬,0,𝑚t+1 = Amsg, A0,𝔬,0,𝑖 = At,𝑖 (for all 𝑖 ∈ [𝑚t]),
Aℓ ,𝔬,0,𝑖 = Aℓ ,𝑖 (for all ℓ ∈ [𝐿], 𝑖 ∈ [𝑚ℓ]).

Completing SA0, the algorithm SU samples d0
$← ℤ𝑛

′
𝑞 using 𝑟priv and outputs

UT
id,𝔰 =

©­­«
dT

0A id,𝔰,0,1
...

dT
0A id,𝔰,0,𝐼id,𝔰

ª®®¬ for all id ∈ ID, 𝔰 ∈ {𝔬, 𝔤}.

By definition, S𝛽 is a restricted sampler (Definition 6). We have the following:

Claim 33 (¶). S𝛽 has pseudorandom structurally noisy inner products, i.e., IPFEsecS𝛽

pre
(Definition 5) holds for both 𝛽 ∈ {0, 1}.

The very selective security of Construction 10 follows from Claim 33. Consider the
following hybrids.

• H𝛽
0 is Exp𝛽ABE for Construction 10. Note that 𝑠msg in the challenge ciphertext is

uniformly random over ℤ𝑞 \ [−2 · 2−𝜅𝑞, 2 · 2−𝜅𝑞].

• In H𝛽
1 , the scalar 𝑠msg is changed to be uniformly random over ℤ𝑞. Clearly,

H𝛽
0 ≈s H

𝛽
1 . Moreover, H

𝛽
1 corresponds to the left distribution of IPFEsec

S𝛽

post.

• In H𝛽
2 , the vectors inside IPFE ciphertexts (components of the ABE challenge

ciphertext) are replaced by random, which corresponds to the right distribution
of IPFEsecS𝛽

post. By Claim 33 and the restricted-𝜎IPFE-security of IPFE, we have
H𝛽

1 ≈ H
𝛽
2 .

69 / 79

Lastly, H0
2 ≡ H

1
2. By hybrid argument, we conclude Exp

0
ABE ≈ Exp

1
ABE, completing the

proof. □

Proof (Claim 33). Fix 𝛽 ∈ {0, 1} and consider the following hybrids.

• H0 is the left distribution of IPFEsecS𝛽

pre. Recall that the public randomness is
𝑟pub = (𝑟A, 𝑟NLG.Setup, 𝑟rq, 𝑟NLG.GenF). Adopting the notations of the ABE decryption
algorithm, the noisy inner products are

shTQ, 𝑗 = sTQQ𝑗 + eT
sr, 𝑗G̃ + eT

Q, 𝑗 ,

shmsg, 𝑗 = (Sr𝑗)Twout + 𝑒out, 𝑗 + 𝛽𝑠msg − sTQQ𝑗G̃
−1(wout),

shTt, 𝑗 = (Sr𝑗)TT + eT
t, 𝑗 − sTQQ𝑗G̃

−1(T),
shT𝑗,ℓ = (Sr𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ − sTQQ𝑗G̃
−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) (ℓ ∈ [𝐿]),

where 𝑗 ∈ [𝐽] and the entries of e’s are independent Dℤ,𝜎IPFE .

• In H1, additional small noises are attached. For all 𝑗 ∈ [𝐽], the inner products
become

shTQ, 𝑗 = sTQQ𝑗 + ẽ T
Q, 𝑗 + ẽ T

sr, 𝑗G̃ + eT
sr, 𝑗G̃ + eT

Q, 𝑗 ,

shmsg, 𝑗 = (Sr𝑗)Twout + 𝑒out, 𝑗 + 𝛽𝑠msg − (sTQQ𝑗 + ẽ T
Q, 𝑗)G̃

−1(wout),
shTt, 𝑗 = (Sr𝑗)TT + eT

t, 𝑗 − (s
T
QQ𝑗 + ẽ T

Q, 𝑗)G̃
−1(T),

shT𝑗,ℓ = (Sr𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT
𝑗,ℓ − (s

T
QQ𝑗 + ẽ T

Q, 𝑗)G̃
−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×),

where ℓ ∈ [𝐿] and the entries of ẽ are independent Dℤ,𝜎,≤𝜎
√
𝜅. In shQ, 𝑗 ’s, the

ẽQ, 𝑗 ’s and ẽsr, 𝑗 ’s are flooded by eQ, 𝑗 ’s and esr, 𝑗 ’s, respectively. In the other inner
products, each ẽ T

Q, 𝑗G̃
−1(· · ·) is flooded by the 𝑒 or e in that term. Since

(for shQ, 𝑗 ’s) 𝜎
√
𝜅 ≤ 2−𝜅−6𝜎IPFE

𝑛𝐾
≤ 2−𝜅−6𝜎IPFE,

(for the rest) 𝑛𝐾 · 𝜎
√
𝜅 ≤ 𝑛𝐾 · 2−𝜅−6𝜎IPFE

𝑛𝐾
= 2−𝜅−6𝜎IPFE,

Lemma 2 applies and H0 ≈s H1.

• In H2, the ẽ’s are no longer truncated, i.e., their entries follow Dℤ,𝜎. We have
H1 ≈s H2 by Lemma 1.

• In H3, the LWE samples (sTQQ
𝑗
+ ẽ T

Q, 𝑗) are replaced by random. For all 𝑗 ∈ [𝐽],
sample q

𝑗

$← ℤ𝑛𝑞 and the inner products are

shTQ, 𝑗 = qT
𝑗 + ẽ T

sr, 𝑗G̃ + eT
sr, 𝑗G̃ + eT

Q, 𝑗 ,

shmsg, 𝑗 = (Sr𝑗)Twout + 𝑒out, 𝑗 + 𝛽𝑠msg − qT
𝑗 G̃
−1(wout),

shTt, 𝑗 = (Sr𝑗)TT + eT
t, 𝑗 − qT

𝑗 G̃
−1(T),

shT𝑗,ℓ = (Sr𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT
𝑗,ℓ − qT

𝑗 G̃
−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) (ℓ ∈ [𝐿]).

By LWE𝑛,𝑛𝐽,𝑞,𝜎, we have H2 ≈ H3. In this step, we rely on Q’s sampling being
“straight-forward” (for reduction to sample 𝑟rq conditioned on and given Q’s).

70 / 79

• In H4, we perform a change of variable. For all 𝑗 ∈ [𝐽], sample q̃
𝑗

$← ℤ𝑛𝑞 and set
qT
𝑗
= q̃ T

𝑗
− ẽ T

Q, 𝑗G̃, then the inner products are

shTQ, 𝑗 = q̃ T
𝑗 + eT

sr, 𝑗G̃ + eT
Q, 𝑗 ,

shmsg, 𝑗 = (Sr𝑗)Twout + 𝑒out, 𝑗 + 𝛽𝑠msg − (q̃ T
𝑗 − ẽ T

Q, 𝑗G̃)G̃
−1(wout)

= (Sr𝑗 + ẽQ, 𝑗)Twout + 𝑒out, 𝑗 + 𝛽𝑠msg − q̃ T
𝑗 G̃−1(wout),

shTt, 𝑗 = (Sr𝑗)TT + eT
t, 𝑗 − (q̃

T
𝑗 − ẽ T

Q, 𝑗G̃)G̃
−1(T)

= (Sr𝑗 + ẽQ, 𝑗)TT + eT
t, 𝑗 − q̃ T

𝑗 G̃−1(T),
shT𝑗,ℓ = (Sr𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ − (q̃
T
𝑗 − ẽ T

Q, 𝑗G̃)G̃
−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×)

= (Sr𝑗 + ẽQ, 𝑗)T(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT
𝑗,ℓ − q̃ T

𝑗 G̃−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×),

where ℓ ∈ [𝐿]. Clearly, H3 ≡ H4.

• In H5, the LWE samples (Sr𝑗 + ẽQ, 𝑗) are replaced by random. For all 𝑗 ∈ [𝐽],
sample s𝑗

$← ℤ𝑛𝑞 and the inner products are

shTQ, 𝑗 = q̃ T
𝑗 + eT

sr, 𝑗G̃ + eT
Q, 𝑗 ,

shmsg, 𝑗 = sT𝑗wout + 𝑒out, 𝑗 + 𝛽𝑠msg − q̃ T
𝑗 G̃−1(wout),

shTt, 𝑗 = sT𝑗T + eT
t, 𝑗 − q̃ T

𝑗 G̃−1(T),
shT𝑗,ℓ = sT𝑗 (Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT

𝑗,ℓ − q̃ T
𝑗 G̃−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) (ℓ ∈ [𝐿]).

By 𝑛 hybrids of LWE𝑛,𝐽,𝑞,𝜎 over the rows of S with public matrix (r1, . . . , r𝐽), we
have H4 ≈ H5.

• In H6, additional noises generated by GenNoise are attached to the garblings.
For all 𝑗 ∈ [𝐽], run

(𝑒out, 𝑗 , {e𝑗,ℓ }ℓ ∈[𝐿] , et, 𝑗) $← GenNoise(param′, pp, 𝑓 ,wout, {Wℓ ,0,Wℓ ,×}ℓ ∈[𝐿]T,R, x𝑗),

and set the inner products to

shTQ, 𝑗 = q̃ T
𝑗 + eT

sr, 𝑗G̃ + eT
Q, 𝑗 ,

shmsg, 𝑗 = sT𝑗wout + 𝑒out, 𝑗 + 𝑒out, 𝑗 + 𝛽𝑠msg − q̃ T
𝑗 G̃−1(wout),

shTt, 𝑗 = sT𝑗T + eT
t, 𝑗 + eT

t, 𝑗 − q̃ T
𝑗 G̃−1(T),

shT𝑗,ℓ = sT𝑗 (Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) + eT
𝑗,ℓ + eT

𝑗,ℓ − q̃ T
𝑗 G̃−1(Wℓ ,0 + x𝑗 [ℓ]Wℓ ,×) (ℓ ∈ [𝐿]).

The 𝑒, e’s introduced into the inner products are bounded by 𝐵NLG ≤ 2−𝜅−6𝜎IPFE,
so they are flooded (Lemma 2) by 𝑒, e’s. We have H5 ≈s H6.

• In H7, all the inner products are replaced by random, i.e., the right distribution
of IPFEsecS𝛽

pre. Note that in H6, non-shQ, 𝑗 ’s are well-randomized garblings (by
s, 𝑒, e’s) plus independent noises and values derived from shQ, 𝑗. Therefore, by
𝐽 hybrids of applying GenNoise-security of NLG, the non-shQ, 𝑗 ’s can be replaced
by random, after which q̃

𝑗
’s ensure shQ, 𝑗 ’s are independent random. Therefore,

H6 ≈ H7.

By hybrid argument, H0 ≈ H7, i.e., IPFEsecS
𝛽

pre holds. □

71 / 79

Summary. Combining Corollary 14, Construction 9, and Construction 10, we obtain
a CP-ABE scheme for Boolean circuits with succinct ciphertexts.

Corollary 34. Under LWE (Assumption 1) and evasive learning with structured errors
(Assumption 3), there exists a CP-ABE scheme for Boolean circuits with

|mpk| = poly(𝜆, 𝑑), |skx | = (𝐿 + 1) poly(𝜆, 𝑑), |ct𝐶 | = (𝐿 + 1) poly(𝜆, 𝑑),

where 𝐿 = |x| is the attribute length and 𝑑 is the maximum depth.

Acknowledgments. The authors were supported by NSF grants CNS-1936825
(CAREER), CNS-2026774, a JP Morgan AI Research Award, a Cisco Research Award,
and a Simons Collaboration on the Theory of Algorithmic Fairness. The views
expressed are those of the authors and do not reflect the official policy or position of
the funding agencies. The authors thank the anonymous reviewers of Eurocrypt 2024
for their valuable comments.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in
the standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 553–572. Springer, Heidelberg, May / June 2010.

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval.
Simple functional encryption schemes for inner products. In Jonathan
Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer,
Heidelberg, March / April 2015.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan
Ursu. Multi-input functional encryption for inner products: Function-
hiding realizations and constructions without pairings. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 597–627. Springer, Heidelberg, August 2018.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear
maps: New methods for bootstrapping and instantiation. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 191–225. Springer, Heidelberg, May 2019.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble
arithmetic circuits. In Rafail Ostrovsky, editor, 52nd FOCS, pages 120–129.
IEEE Computer Society Press, October 2011.

[ALMT20] Shweta Agrawal, Benoît Libert, Monosij Maitra, and Radu Titiu. Adaptive
simulation security for inner product functional encryption. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part I, volume 12110 of LNCS, pages 34–64. Springer, Heidelberg,
May 2020.

72 / 79

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure
functional encryption for inner products, from standard assumptions.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016.

[AMY19] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based
encryption (and more) for nondeterministic finite automata from LWE.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 765–797. Springer, Heidelberg, August
2019.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation
without maps: Attacks and fixes for noisy linear FE. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS,
pages 110–140. Springer, Heidelberg, May 2020.

[AS17] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic
finite automata from learning with errors. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, ICALP 2017,
volume 80 of LIPIcs, pages 36:1–36:13. Schloss Dagstuhl, July 2017.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast
encryption from LWE and pairings in the standard model. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS,
pages 149–178. Springer, Heidelberg, November 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption
from pairings and LWE. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 13–43. Springer,
Heidelberg, May 2020.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph
Meinel. Structure and importance of logspace-MOD class. Mathematical
Systems Theory, 25(3):223–237, 1992.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel
time using a small number of processors. Information Processing Letters,
18(3):147–150, 1984.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer,
Heidelberg, May 2014.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and
Damien Stehlé. Cryptanalysis of the multilinear map over the integers.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 3–12. Springer, Heidelberg, April 2015.

73 / 79

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond
permutation branching programs: Proofs, attacks, and candidates. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II,
volume 10992 of LNCS, pages 577–607. Springer, Heidelberg, August 2018.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and
functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE
Computer Society Press, October 2013.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to run turing machines on en-
crypted data. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 536–553. Springer, Heidelberg, Au-
gust 2013.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security
and bundling functionalities made generic and easy. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
361–388. Springer, Heidelberg, October / November 2016.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-
based encryption for fine-grained access control of encrypted data. In
Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-
based encryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June
2013.

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure ABE for DFA
from 𝑘-Lin and more. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 278–308. Springer,
Heidelberg, May 2020.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from 𝑘-Lin.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 732–764. Springer, Heidelberg, August
2019.

[HJL21] Samuel B. Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to
new circular security assumptions underlying iO. In Tal Malkin and Chris
Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 673–
700, Virtual Event, August 2021. Springer, Heidelberg.

[HLL23a] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for
circuits of unbounded depth from lattices. In 64th FOCS, pages 415–434.
IEEE Computer Society Press, November 2023.

74 / 79

[HLL23b] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for
circuits of unbounded depth from lattices: Garbled circuits of optimal
size, laconic functional evaluation, and more. Cryptology ePrint Archive,
Report 2023/1716, 2023. https://eprint.iacr.org/2023/1716.

[HLL24] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. A general framework for lattice-
based ABE using evasive inner-product functional encryption. In Marc
Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II, volume 14652
of LNCS, pages 433–464. Springer, Cham, May 2024.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their
applications. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and
Elias Koutsoupias, editors, ICALP 2014, Part I, volume 8572 of LNCS, pages
650–662. Springer, Heidelberg, July 2014.

[JLL23] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and
efficiency of functional encryption and attribute-based encryption. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III,
volume 14006 of LNCS, pages 479–510. Springer, Heidelberg, April 2023.

[JLLS23] Aayush Jain, Huijia Lin, Paul Lou, and Amit Sahai. Polynomial-time
cryptanalysis of the subspace flooding assumption for post-quantum 𝑖O.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part I,
volume 14004 of LNCS, pages 205–235. Springer, Heidelberg, April 2023.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In SCT 1993,
pages 102–111. IEEE, May 1993.

[LL20a] Huijia Lin and Ji Luo. Compact adaptively secure ABE from 𝑘-Lin:
Beyond NC1 and towards NL. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 247–277. Springer,
Heidelberg, May 2020.

[LL20b] Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from
𝑘-lin. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 437–466. Springer, Heidelberg,
December 2020.

[LLL22] Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size
secret keys and adaptive security. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part I, volume 13747 of LNCS, pages 680–710. Springer,
Heidelberg, November 2022.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. Cryptology ePrint Archive, Report 2011/501, 2011.
https://eprint.iacr.org/2011/501.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, April 2012.

75 / 79

https://eprint.iacr.org/2023/1716
https://eprint.iacr.org/2011/501

[Mul87] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field. Combinatorica, 7(1):101–104, 1987.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function
evaluation and applications. In Mikkel Thorup, editor, 59th FOCS, pages
859–870. IEEE Computer Society Press, October 2018.

[QWW21] Willy Quach, Brent Waters, and Daniel Wichs. Targeted lossy functions
and applications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 424–453, Virtual Event, August 2021.
Springer, Heidelberg.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

[RW15] Yannis Rouselakis and Brent Waters. Efficient statically-secure large-
universe multi-authority attribute-based encryption. In Rainer Böhme
and Tatsuaki Okamoto, editors, FC 2015, volume 8975 of LNCS, pages 315–
332. Springer, Heidelberg, January 2015.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
457–473. Springer, Heidelberg, May 2005.

[TCH12] Terence Tao, Ernest Croot, and Harald Helfgott. Deterministic methods
to find primes. Mathematics of Computation, 81(278):1233–1246, 2012.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I,
volume 13507 of LNCS, pages 535–559. Springer, Heidelberg, August 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness
encryption and null-IO from evasive LWE. In Shweta Agrawal and
Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS,
pages 195–221. Springer, Heidelberg, December 2022.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 218–235. Springer, Heidelberg, August 2012.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups,
revisited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 206–233. Springer, Heidelberg, November
2017.

[Wee21] Hoeteck Wee. ABE for DFA from LWE against bounded collusions,
revisited. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II,
volume 13043 of LNCS, pages 288–309. Springer, Heidelberg, November
2021.

76 / 79

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive
lattice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer,
Heidelberg, May / June 2022.

[WWW22] Brent Waters, Hoeteck Wee, and David J. Wu. Multi-authority ABE from
lattices without random oracles. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part I, volume 13747 of LNCS, pages 651–679. Springer,
Heidelberg, November 2022.

77 / 79

A Noisy Linear Garbling for Boolean Circuits

In this section, we present an alternative construction of noisy linear garbling. It is
closer to the Yao’s garbling scheme and supports bounded depth boolean circuits.

Construction 11 (noisy linear garbling for Boolean circuits). Let

Params =
{

1𝑑
�� 𝑑 ∈ ℕ }

,

𝐹1𝑑 =
{
𝑓𝐶

�� 𝐶 is a circuit (using only NAND gates) of depth no more than 𝑑
}
,

𝑓𝐶 (x) =
{
⊥, if x ∉ {0, 1}𝐿;
¬𝐶(x), if x ∈ {0, 1}𝐿;

for 𝐶 : {0, 1}𝐿 → {0, 1} and x ∈ ℤ𝐿.

The scheme works as follows.

• Setup(1𝑑) picks and outputs suitable pp = (𝑞, 1𝑁).

• GenF(pp, 𝐶) first parses 𝐶 into 𝐿 input gates 1, . . . , 𝐿 and (|𝐶 | − 𝐿) NAND gates
𝐿 + 1, . . . , |𝐶 |, sorted topologically. Let gin[𝑖,𝛾] < 𝑖 be the index of the 𝛾th input
to gate 𝑖, where 𝛾 ∈ {1, 2} and 𝐿 < 𝑖 ≤ |𝐶 |. The algorithm samples the shrunken
labels and sets the label functions

W𝑖,0,W𝑖,1
$← {0, 1}𝑁×𝑁 for all 𝑖 ∈ [|𝐶 |], Wℓ ,× = Wℓ ,1 −Wℓ ,0 for all ℓ ∈ [𝐿].

For each NAND gate 𝑖 > 𝐿, it samples the expanded labels

W̃(𝑖,𝛾,𝑥′′)
gin[𝑖,𝛾],𝑥′

$← {0, 1}𝑁×𝑁 for all 𝛾 ∈ {1, 2}, 𝑥′, 𝑥′′ ∈ {0, 1},

and prepares four garbled table entries

T𝑖,𝑥1,𝑥2 = W𝑖,¬(𝑥1∧𝑥2) + W̃(𝑖,1,𝑥2)
gin[𝑖,1],𝑥1

+ W̃(𝑖,2,𝑥1)
gin[𝑖,2],𝑥2

for all 𝑥1, 𝑥2 ∈ {0, 1}.

The subscript of W̃ indicates the gate and its purported value. Its superscript
indicates why the block is added — because the gate is the 𝛾th input to gate 𝑖
and the other input to gate 𝑖 evaluates to a particular value. The table entry
T𝑖,𝑥1,𝑥2 enables conversion from the expanded labels of gates gin[𝑖, 1], gin[𝑖, 2] to
the shrunken label of gate 𝑖 if the two inputs to gate 𝑖 are 𝑥1, 𝑥2, respectively.
For the output gate, the algorithm samples the expanded labels and sets

W̃|𝐶 |,0, W̃|𝐶 |,1
$← {0, 1}𝑁 , wout = W̃|𝐶 |,0.

It prepares garbled table entries for converting shrunken labels to expanded
labels. For each tuple (𝑖′, 𝑖,𝛾) with gin[𝑖,𝛾] = 𝑖′, the algorithm samples and sets

R(𝑖,𝛾,𝑥
′′)

𝑖′,𝑥′
$← {0, 1}𝑁×𝑁 , T(𝑖,𝛾,𝑥

′′)
𝑖′,𝑥′ = W𝑖′,𝑥′R

(𝑖,𝛾,𝑥′′)
𝑖′,𝑥′ + W̃(𝑖,𝛾,𝑥′′)

𝑖′,𝑥′ for all 𝑥′, 𝑥′′ ∈ {0, 1}.

It samples and sets

R|𝐶 |,𝑥
$← {0, 1}𝑁 , T|𝐶 |,𝑥 = W|𝐶 |,𝑥R|𝐶 |,𝑥 + W̃|𝐶 |,𝑥 for all 𝑥 ∈ {0, 1}.

The algorithm collects T,R and outputs the components in the required format,
with 𝑛𝐶 = 𝑛.

78 / 79

• Eval(pp, 𝐶,R, x, {wT
ℓ
}
ℓ ∈[𝐿] , t

T) parses 𝐶 as in GenF and evaluates 𝐶(x) for the wire
values {𝑥𝑖}𝑖∈[|𝐶 |] by

𝑥𝑖 ←
{

x[ℓ], if gate 𝑖 is an input gate (𝑖 = ℓ ∈ [𝐿]);
¬(𝑥gin[𝑖,1] ∧ 𝑥gin[𝑖,2]), if gate 𝑖 is NAND.

It computes the label of each non-input gate in increasing order by its index 𝑖.

– The algorithm decrypts for the expanded labels using

(w̃(𝑖,1,𝑥gin[𝑖,2])gin[𝑖,1])T ← (t(𝑖,1,𝑥gin[𝑖,2])gin[𝑖,1],𝑥gin[𝑖,1]
)T −wT

gin[𝑖,1]R
(𝑖,1,𝑥gin[𝑖,2])
gin[𝑖,1],𝑥gin[𝑖,1]

.

and similarly for w̃(𝑖,2,𝑥gin[𝑖,1])gin[𝑖,2] .

– The algorithm recovers the shrunken label using

w𝑖 ← t𝑖,𝑥gin[𝑖,1] ,𝑥gin[𝑖,2] − w̃(𝑖,1,𝑥gin[𝑖,2])gin[𝑖,1] − w̃(𝑖,2,𝑥gin[𝑖,1])gin[𝑖,2] .

Lastly, the algorithm computes and outputs the secret

𝑤out ← tT|𝐶 |,𝑥|𝐶 | −wT
|𝐶 |R|𝐶 |,𝑥|𝐶 | .

79 / 79

	Introduction
	Related Works
	Technical Overview

	Preliminaries
	Attribute-Based Encryption
	Lattices
	Evasive LWE Assumption

	Evasive Inner-Product Functional Encryption
	Basic Construction — Single-Identity, No Structured Noises
	Security as an Assumption
	Security for Restricted Samplers from Evasive LWE
	Identity-Based Scheme
	Scheme with Structured Noises

	Noisy Linear Garbling
	Noisy Linear Garbling for Circuits
	Correctness and Shortness
	Security with Gaussian Noise

	Ciphertext-Policy ABE from Short Noisy Linear Garbling
	Correctness
	Security
	Unbounded Attribute and Summary

	ABE for DFA
	Noisy Linear Garbling for DFA
	Construction of KP-ABE for DFA
	Security of KP-ABE for DFA
	CP-ABE for DFA and Summary

	CP-ABE with Succinct Ciphertexts
	Succinct Noisy Linear Garbling for Circuits
	CP-ABE from General Noisy Linear Garbling
	Security and Summary

	References
	Noisy Linear Garbling for Boolean Circuits

