
DVA: Dangerous Variations of ALTEQ

Arnaud Sipasseuth[0000−0003−1048−4822]

KDDI Research Inc, Japan
xan-shipasata@kddi.com

Abstract. In this paper, we present three types of variations of the AL-
TEQ cryptosystem, a recent submission to the NIST’s additional call for
signatures. We name these Dangerous Variations of ALTEQ (DVA), as
there is always a certain danger in stepping out of usual constructions,
although we attempt to maintain heuristic security. First, we present
DVA-GG (Graph Generalization), that can be seen as a more abstract
point-of-view on the operations done in ALTEQ and encourages more
research on the algebraic variants. In particular, we show this approach
can lead to a patch counter to Beullens’ recent seed collision attack on
ALTEQ that only depends on the primitive, and showcase some fancy
usages of the primitive for experimental protocols. Second, we present
DVA-PC (Precomputations) which is “likely” as secure as ALTEQ in the
random oracle model, and allow to drastically reduce the intermediate
memory requirements within both the signature and verification process
through an easily parallelizable extra operation. In particular, this fa-
cilitates precomputation variants with online phases that only depends
on the complexity of basic matrix operations. We can then choose be-
tween either a tiny offline memory per signature, or get one of the fastest
online signing speed for post-quantum cryptography. Third, we present
DVA-DM (Distinct Matrices), some cryptanalytic targets that deviates
from ALTEQ’s original algebraic structure. Those structures can serve as
plain computational acceleration or just compress data sizes, and provide
good options to motivate the study of specialized cryptanalysis for AL-
TEQ: if those are safe, then ALTEQ gain safe variants, and otherwise, we
gain further understanding of the problems. In particular, the ideas can
be applied beyond ALTEQ and beyond, and hopefully extend to MEDS,
LESS, and group-action-based cryptography.

Keywords: Post-Quantum Cryptography · Signature scheme · Alter-
nate Trilinear Forms

1 Introduction

Many cryptographers believe that we need to prepare against a powerful tool
that would shake the foundations of our world: quantum computers. Indeed,
most tools that we use today to certify the validity of our communications and
to protect our privacy, from a state level to an individual level, would be broken
if such a machine come to life. The reason is simple: the underlying mathemati-
cal problems we use to ensure the difficulty of breaking our codes are simple to

2 Arnaud Sipasseuth

solve in a quantum world. The most famous example is how RSA-based algo-
rithms [39] would be broken by Shor’s algorithm [42].

Thus, the NIST launched a standardization project [33] to spread post-
quantum cryptography, in which they asked the academic community to submit
cryptosystems that would be resilient against quantum computers. After several
years of debates and some studies, a few candidates were chosen by the NIST
to be standardized [34], but it does seem that those selected were not enough.
An additional call for signatures [36] was made, attracting new primitives as
submissions for post-quantum cryptography. This call is looking to expand over
the already selected signature schemes, and while we have no clue what are the
exact criteria used by the NIST, it is at least written in black and white on their
webpage that they aim to diversify their portfolio and at least consistently said
that they may be interested in schemes with short signature and fast verifica-
tion. The statement about lattices [34] make us believe that novel primitives were
also of interest1. Although academic research should not be limited to following
NIST requests, the efforts pushed by the NIST have the merit to welcome re-
search directions that have not been seriously considered before in the academic
community, such as implementation-focused directions, anything that lack a “se-
curity proof”, or have but judged practically inefficient, etc2. The [pqc-forum]
now allows to have healthier feedback loops between attacks, patches, testing
of practical parameters, and so on3. Implementations and practical parameters,
considerations, have seemingly gained value as contributions due to the NIST’s
efforts.

This work on ALTEQ is in somewhat in the same vein, focused on practical
considerations and theoretical variations that could bring practical advantages.
ALTEQ is a fork of a new post-quantum cryptosystem that saw the light at EU-
ROCRYPT2022 [45], based on the Alternate Trilinear Form Equivalence (ATFE)
problem which is believed to be post-quantum. The scheme was cryptanalysed
in CRYPTO2023 [10], but the attack was still of an exponential magnitude,
thus asymptotically the primitive is clearly still valid. Thus, ALTEQ [13] was
submitted to the NIST, as a signature scheme relying on the (ATFE) prob-
lem, constructed via a Fiat-Shamir (FS) transform [21] over a Goldreich-Micali-
Wigderson (GMW) framework [23] and submitted to the aforementioned addi-
tional call for signatures. Less than two days after the submission, a forgery at-
tack found by Saarinen [40] was published followed shortly after with a quick fix
suggested by Beullens [8] (who also provided further analysis, affecting somehow
similar schemes such as [6] and [17]). The fix was implemented, and an updated

1 Since we never directly interacted with the NIST, take any assumption or supposition
we make with a grain of salt: the only sources available to are is their website, random
rumours and second-hand information.

2 New drawback however: non-NIST related works may be prematurely shot down.
3 In particular, we believe we may not have produced this work without Saarinen and

Beullens’ comments on the [pqc-forum].

DVA: Dangerous Variations of ALTEQ 3

attack was discovered soon after [38], which may push ALTEQ to update their
parameters, which will be done regardless of the attack since their initial pa-
rameters were initially miscalculated: some potential updated parameters were
presented in [14] during the NIST 5th Standardization Conference, although the
end parameters are still a discussion topic. In particular, [14] mentions that the
ALTEQ team is working on using d-tensors with d > 3 to reduce the signature
size, which may lead to drastically smaller signature sizes given similar security
parameters λ. At the moment the paper is being written, all of this happened
in barely a year: everything here is very recent. Despite those attacks, the confi-
dence in the ATFE problem remains as strong as ever: it is TI-complete (Tensor
Isormorphism) and this class of problem has been deemed difficult by different
cross-disciplinary research fields for several decades. Furthermore, every ATFE
instance can be used in ALTEQ: thus, barring implementation technicalities (ran-
dom number generation, sampling and so on) or protocol security (GMW-FS),
the ATFE instances and the ALTEQ instances map one-to-one. This contrasts
with cryptosystems where the theoretically hard problems do not match the
cryptographic instances.

The work here is more practical. We do not revolutionize the world of the-
oretical cryptography, but we open the door to more advanced algebraic primi-
tives to be studied and provide more practical adaptations of the base ALTEQ
cryptosystem to reduce the gap between the theoretical cryptosystem and their
hypothetical real-life deployments. We focus on ALTEQ simply because we are
more familiar with it, but the core reasoning of our work can extend to LESS [6]
and MEDS [17], or any group action-based cryptography. As “security proofs”
tend to be outside our domain of expertise4, we tend to rely on heuristic analysis
instead and thus we name our work Dangerous Variations of ALTEQ (DVA)5,
which provide trade-offs in computational speed and data sizes, and could then
be potentially better suited than ALTEQ for exploratory research whether on
the protocol or on the mathematical primitive.

Our work has two objectives:

– To clearly encourage cryptanalysis, to be able to see a clearer picture in
a somehow new area of studies: thus we take “risks”, and titled the paper
“DVA” and not “Secure Variation of ALTEQ”. Many mathematicians from
several fields outside of cryptography study the ATFE problem itself, and yet
it still feels like a lot is left to discover [16], and ATFE applied to cryptography
has its own specific problems. If no new cryptanalysis (sadly?) come forward,
then maybe we just made ALTEQ much more competitive, which is somehow
still a gain. The same can probably be said about the GMW-FS construction,
although we are much less familiar with it. The paper is not exhaustive on
everything that can be done as it focuses solely on presenting and justifying
three types of variations (which may or may not mix), but aims to help

4 But always willing to learn!
5 And follow the trend in giving very distinct names to very similar cryptosystems.

4 Arnaud Sipasseuth

kickstart as many as possible diverse research directions while keeping the
contribution as simple as possible.

– To provide potential frameworks for ALTEQ to be sidegraded: ALTEQ deal
with 3-dimensional tensors, but signature size can decrease drastically when
considering d-dimensional tensors (d > 3): the matrix dimension n will lower
to adapt to heuristic security analysis, and likely the size of the field q will
lower as well while d has no impact on the signature size. This idea has
already been mentioned in a recent poster [14] and within the ALTEQ team
before the initial NIST submission, but practical deployment have been a
concern and accurate security measure is complicated6. One practical de-
ployment problem is that both computational complexity and data sizes
to manage outside the signature (i.e, keys, internal computations) can be
counted as polynomials of degree d: those increase drastically, even though
the alternating structure slightly limits the explosion of the size. Some of
the ideas we propose side-step the expensive costs or introduce structure to
reduce the cost. In particular, the more qualities we can obtain in their prac-
tical deployment, the more attention we can attract to ALTEQ and similar
schemes.

Contributions We propose essentially three research directions on ALTEQ, po-
tentially interconnected, which for some already yields results, although we have
to admit, of varying degrees of quality.

– DVA-GG (Generalized Graph) is more or less a fine-grained observation to
group actions, where instead of considering one group action or the product,
we observe the decomposition into smaller group actions just like the column
decomposition in ALTEQ and construct less trivial uses to consecutive group
actions. In particular, we show that we can leverage an extra group action
in ALTEQ to protect against the seed collision attack of [9], discarding the
need to use slower expanders to manage larger seeds in most parameters: as
a direct consequence, this may allow ALTEQ to maintain the use of AES-NI
for expansions and maybe gain efficiency by doing so. We can also leverage
the structure of the group actions to construct fancy scenarios and exhibit
some examples where the security of those constructions reduce to the ATFE
problem or ALTEQ. Those constructions however, mostly serve as inspiration
for exploratory research.

– DVA-PC (Precomputation) is a work on modifying the GMW-FS protocol
used in ALTEQ, by using simple transformations to improve the practical
application of the protocol. In particular, we heavily reduce the intermediate
memory necessary to use the scheme: we could save more than 70 times the
memory in the lowest parameters, or more than 400 times in the largest
parameter. This also enables interesting trade-offs when cutting the scheme
into two: an offline phase and an online phase. In particular, we have several
choices of trade-offs combinations possibles. For example, the simplest option
moves the d-tensor computation to the offline phase and leaves an online

6 No official records, but a better analysis than “it is harder” may be required.

DVA: Dangerous Variations of ALTEQ 5

phase with a complexity completely independent of d and r, leading to an
online complexity of K matrices multiplications/inversions excluding hashes
and expansions. One extra option compress the offline storage to 3λ-bits of
data per signature. Another option yields potentially large offline data per
signature, but provide one of the fastest online signing speed in the history of
post-quantum cryptography in theory. In any case, we also give the option
to completely remove from ALTEQ the chance of having a failure due to
column decompositions in the online phase, and also provide an option to
partly solve the signing efficiency problem of [43]. Every option of DVA-PC
maintain an equivalent online security to ALTEQ under the random oracle
model, but we stress that there are security risks we are currently unable to
properly quantify.

– DVA-DM (Dangerous Matrices) take a look at the matrices used through
the whole ALTEQ scheme. ALTEQ uses the generic ATFE problem in their
construction, as aside from a few technicalities (0 in the diagonal position
of a column decomposition), every batch of ATFE instances is a valid AL-
TEQ instance. We take a step back from such a conservative approach and
explore special structures, inspired by the historical development of lattice-
based cryptography culminating to the standardized candidates [22,18] and
beyond [19]7 and attempt to push some research on ALTEQ towards a similar
direction. In particular, we provide several cryptanalytic targets, which were
constructed as performance improving attempts ranging from an implemen-
tation view to more abstract ones on the arithmetic and algebraic operations.
The goal is to encourage creativity and to help understand the different an-
gle of attacks that could arise, as we believe an overly conservative approach
could be good for standardization but not necessarily in setting incremental
research targets.

While this paper focuses on ALTEQ for convenience as we are more familiar
with it8, most of the reasoning in this paper might not be primitive specific: it
is possible that this work extend to further schemes.

Organization of the paper In section 2, we describe the ATFE problem and its
variants, especially the ones that are relevant to us, briefly reintroduce the AL-
TEQ cryptosystem and the associated structures, which is in short the ATFE
primitive used for a GMW-FS construction. In section 3, we present the point-
of-view into multiple group actions that was somehow used in a “semi-hidden”
way in ALTEQ, and introduce some potential constructs born from this point-
of-view. In particular we explain a potential alternative countermeasure to [9]’s
attack. In section 4, we first present our suggestion on reducing the intermediate
memory of ALTEQ during certain steps of the sign/verify phase. Furthermore,
we explain some direct applications, in particular the offline/online separation
with precomputations, leading to the variants we mentioned earlier. In section

7 [20] is an interesting outlier, which got rid of the structure.
8 Yes, we definitely should study more schemes.

6 Arnaud Sipasseuth

5, we present the different rationale that led us to the suggestions of our crypt-
analytic targets, and how those, if secure, could improve ALTEQ’s efficiency. In
section 6, we finally list open questions that arise from this paper and encourage
future research on ALTEQ and beyond.

Note on the paper history Initially a justified reject from PQC2024, and cur-
rently modified as an attempt to answer the reviewers’ concerns as much as we
could. We were advised to submit this work as a pre-print, hence here it is. An-
other reason to submit a pre-print rather than waiting until some hypothetical
publication, is to contribute to research discussions before the round 2 selection
process which could happen anytime now. In particular, some content here may
help or inspire other schemes and not just ALTEQ.

2 Background

Here we give some reminders and notations about the essential information about
ALTEQ that is necessary to understand this paper. Referring to [13] is recom-
mended, but not necessary.

2.1 Basic notations

Mathematical notations

1. q, n ∈ N∗: field orders and dimensions respectively. q is a prime power.
2. Fq: the finite field of order q.
3. Fn

q : vector space of n× 1 vectors over Fq.
4. GL(n, q): group of invertibles n× n matrices over Fq.
5. For u ∈ Fn

q and A ∈ M(n, q), ut and At denote their transposes.
6. For a, b ∈ N∗,

(
a
b

)
is the binomial coefficient.

7. For a < b ∈ N, Ja, bK = [a, b] ∩ Z
8. For m ∈ N∗, let [m] = J1,mK.
9. Given S finite, a ∈R S means a is a uniformly random sample from S.

Cryptographic scheme parameters ALTEQ system parameters are fixed in the
following order:

1. λ the desired security level.
2. (n, q) the algebraic structure parameters, n, q as defined above.
3. (r,K,C) the GMW-FS framework parameters.

Gross notation abuse To save space and to reduce repetitive clutter we denote

– any collection {Xi}i∈S by {Xi}S , it should be clear that i serves as an index
of items X and is an element of S.

– App(S, s) appends an element s to the end of an ordered list S.
– for S an ordered set of cardinal n, ||S represents a concatenation with all

its elements i.e ||s1||...||sn. This is mostly used in hash function parameters
where ordering is important, as a permutation change the hash output.

DVA: Dangerous Variations of ALTEQ 7

2.2 Trilinear forms and a natural group action on them

A trilinear form (TF) on Fn
q is a map ϕ : Fn

q ×Fn
q ×Fn

q → Fq that is Fq-linear in
each argument. It is alternating (ATF) if and only if
∀u, v ∈ Fn

q , ϕ(u, u, v) = ϕ(u, v, u) = ϕ(v, u, u) = 0.
ATF(n, q) denotes the linear space of all ATFs on Fn

q .

GL(n, q) naturally acts on ATF(n, q): for all u, v, w ∈ Fn
q , A ∈ GL(n, q),

A sends ϕ to ϕ ◦A, defined as (ϕ ◦A)(u, v, w) := ϕ(At(u), At(v), At(w))
This action defines an equivalence relation ∼= on ATF(n, q), namely
ϕ ∼= ψ means ∃A ∈ GL(n, q) s.t ϕ = ψ ◦A.

This is the main operation in ALTEQ, and the ATFE problems are built on
this. Many variations of the ATFE problems have been defined [45], in particular
the search version and the identification version:

– Search version: given ϕ ∼= ψ, find A ∈ GL(n, q) s.t ϕ = ψ ◦A
– Identification version: given ϕ, ψ ∈ ATF(n, q), is ϕ ∼= ψ true?

For a less abstract representation, machine-wise we represent an ATF ϕ as

(ci,j,k : 1 ≤ i < j < k ≤ n), ci,j,k ∈ Fq,

which requires
(
n
3

)
entries (a compressed form), unlike generic TF that requires

n3 entries (a decompressed form).9

Higher dimensional tensors The principle generalize beyond dimension 3: in
particular, the problem can be defined over d-dimensional objects, where the
number of field elements of an alternating d-linear form (ALFd or just ALF)
is then

(
n
d

)
. The problem is in fact believed to be heuristically harder for fixed

(n, q). We will continue to denote ALF3 as ATF and ALFd or ALF otherwise
whenever d is considered to be possibly higher than 3. For the rest of this paper
we will note ALF3 for the ATFs used in ALTEQ, and ALFd for d > 3.

2.3 Invertible column matrices

One of the key part of the current ALTEQ instantiation is the extensive usage of
column matrices instead of generic matrices.

9 A TF form is easier to use than an ATF for calculations due to array indexing:
ALTEQ describes in their submission the detailed process, but here we assume the
de/compression is done within functions and simply use a high level description.

8 Arnaud Sipasseuth

Definition 1. A matrix Ci ∈ Fn×n
q is a column matrix, if it can only differ from

the identity matrix by at most one column of index i i.e

Ci =



1 . . . 0 c1 0 . . . 0
...

. . .
...

...
...

...
0 . . . 1 ci−1 0 . . . 0
0 . . . 0 ci 0 . . . 0
0 . . . 0 ci+1 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 cn 0 . . . 1


Obviously, the identity matrix is also column matrix for any index i, and for any
column matrix Ci we have ci ̸= 0⇔ Ci ∈ GL(n, q).

Corollary 1. ∀A ∈ GL(n, q), ∃P ∈ Sn a permutation matrix such that AP is a
product

∏n
i=1 Ci.

In particular, if P is enforced to be the identity matrix, the decomposition
A =

∏n
i=1 Ci might not always exist, but if it does then it is unique. Its probabil-

ity of existence is the same as having a LU decomposition with no permutation,
thus for fields that are not too small the probability is overwhelmingly large.

In the above case, we denote Acol the set {Ci}J1,nK s.t A =
∏n

i=1 Ci. Clearly,
Acol takes as much memory as A (n2 field elements) since we can discard the
trivial columns. By abuse of notation, we then represent Acol by a single matrix,
where its i-th column is in fact the i-th column of Ci (its only non-trivial column).
We denote such a column Acol

i , i.e A =
∏n

i=1A
col
i .

2.4 ALF3s and group actions in algorithms

Here, we list the subroutines used to describe ALTEQ below. Note that for the
understanding of this paper, it is not necessary to know exactly how the opera-
tions are done in practice, i.e how to compute ϕ◦A given (A, ϕ). Everything can
be summarized as long series of modular multiply-and-add by elements of A with
elements of ϕ. We just need to know here that their computational complexities
are asymptotically easy, i.e polynomial time and memory, but keep in mind that
the group action cost the most, followed by the column decomposition, then by
the matrix multiplication. The expanders have a non-zero cost, but as hardware
acceleration exists (such as AES-NI), we do not have a correct comparison with
the rest of the scheme (usually negligible except SHAKE).

Algebraic operations. Let S be a collection of indexes. Then we denote
– {ϕi ◦Ai}S ← ActATF({ϕi, Acol

i }S)
– {ϕi ◦A−1i }S ← InvAct({ϕi, Acol

i }S)
– {Acol

i }S ← ColDec({Ai}S)
If Acol does not exist for a given A, a flag is raised to indicate failure.

– {Ci}S ← ColMul({Acol
i , Bcol

i }S)
Note that given A,B in column form, this return C = A×B and not Ccol.

DVA: Dangerous Variations of ALTEQ 9

Randomness generation. Hashing is done using the Keccak (SHA-3) family of
functions. Expanders are either based on AES or SHAKE. All functions use some
bit-string as an input. Names are self-explicit:

– H is a hash function that takes an input of arbitrary length and output a
binary string from {0, 1}2λ

– expCha is used for generating “unbalanced" challenges. (r,K,C) being fixed,
it will output r indexes {bi}[r] ∈ J0, CKr such that exactly r − K indexes
have bi = 0 (and thus exactly K indexes have bi ∈ [C])10.

– expATF outputs a random ϕ ∈ ALF3(n, q).
– expCols outputs a column decomposition Acol of some random A ∈ GL(n, q),

such that A admits such a decomposition. This is done by directly sampling
random columns and rejecting 0 values in diagonal positions.

– expSeeds outputs some specified number of seeds of any requested size,

2.5 The ALTEQ cryptosystem

We briefly present the generic pseudocodes of ALTEQ’s setup, signature and
verification processes in figure 1. Their description here is slightly modified com-
pared to the original document [13], to make it simpler to understand and lighter
to write without affecting the essential features of the scheme.

Difficulty of attacking the GMW-FS construction Aside from the ATFE primitive,
line 9 of Vf is clearly what makes forging a signature hard, as it makes some
form of “self-feeding” loop: Cha gives the positions of the ALF3s, but Cha is given
by the hash of the ALF3s at said positions. A solution to the ATFE challenge
must fit into the right position within the hashing parameters, and modifying
the order changes the positions requested. Thus every position must feed into a
specific order, and it does seem like the only way to forge a signature is to be
able to solve the ATFE problem instances, assuming the encasing hash is secure.
This naturally leads to force the number of combinations

(
r
K

)
CK to be above 2λ

to guarantee a λ-bit security.

The ATFE structure in ALTEQ The public key is in fact several ALF3s where
every each of them is within the same orbit: you can navigate from one ALF3

to the other by using a group action by an invertible (column) matrix. Most
of the attacks on ALTEQ would then focus on finding such a matrix. The sig-
nature provides matrices MC←B s.t ϕC = ϕB ◦MC←B , knowing that MC←A

was first computed to generate the challenge. MC←A is never given in the sig-
nature: doing so automatically breaks the system. As explained by Qiao [40],
given two forms ϕA ∼= ϕB , ALTEQ’s security assumption relies on the difficulty
of finding MA←B ∈ GL(n, q) s.t ϕA = ϕB ◦MA←B . Saarinen’s attack used some
MA←B /∈ GL(n, q) (the zero matrix). This was patched using (half of) line 10 and

10 In the original ALTEQ specification [13] (and in the code), the role of index C and
0 are swapped. We just inverted in this paper for conveniency.

10 Arnaud Sipasseuth

ColDec11 where MA←B /∈ GL(n, q) are discarded by counting zeroes in {Dcol
k }.

KGen

1 : sk←R {0, 1}λ

2 : {δi}J0,CK ← expSeeds(sk, C + 1)

3 : ϕ0 ← expATF(δ0)

4 : {∆col
i }[C] ← expCols({δi}[C])

5 : {ϕi}[C] ← InvAct({ϕ0,∆
col
i }[C])

6 : pk← ({ϕi}[C], δ0)

7 : return (pk, sk)

Vf(pk,M, Sig)

1 : ϕ0 ← expATF(δ0), a← 0, b← 0

2 : {ci}[r] ← expCha(Ch)

3 : for i ∈ [r] do

4 : if ci = 0 then a← a+ 1

5 : D′col
i ← expCols(sa||salt||i)

6 : else b← b+ 1

7 : D′col
i ← Dcol

b

8 : {ψ′
i}[r] ← ActATF({ϕci , D

′col
i }[r])

9 : Ch′ ← H(H(M)||{ψ′
i}[r])

10 : F← (Ch ̸= Ch′) or (bad {Dcol
i })

11 : if F then return No

12 : return Y es

Sign(sk,M)

1 : {δi}J0,CK ← expSeeds(sk, C + 1)

2 : ϕ0 ← expATF(δ0)

3 : β ←R {0, 1}λ, salt←R {0, 1}2λ

4 : {si}[r] ← expSeeds(β, r)

5 : {Bcol
i }[r] ← expCols({si||salt||i}[r])

6 : {ψi}[r] ← ActATF({ϕ0, B
col
i }[r])

7 : Ch← H(H(M)||{ψi}[r])
8 : {ci}[r] ← expCha(Ch)

9 : S← {}, I∆ ← {}
10 : for i ∈ [r] do

11 : if ci = 0 then App(S, si)

12 : else App(I∆, i)

13 : {∆col
ci }I∆ ← expCols({δci}I∆)

14 : {Di}[K] ← ColMul({∆col
ci , B

col
i }I∆)

15 : {Dcol
i }[K] ← ColDec({Di}[K])

16 : if ColDec failed then go to line 3

17 : Sig = (Ch, salt, S, {Dcol
i }[K])

18 : return Sig

Fig. 1: The ALTEQ cryptosystem

Currently, there are two worries about ALTEQ’s instantiations: that ϕ is
probabilistically a weak key [10], or that matrices M are easy to find regardless
of the key. The current parameters are set according to [10], and the latest poster
parameters [14] takes into account [38]’s results. While those parameters might
change depending on new attacks, this will not affect the work proposed here,
but mostly the scale of its impact. In fact, if ALTEQ ever had to increase the

11 [40]’s attack was published when ALTEQ’s team did not publish ColDec yet. Without
ColDec, [40] could have been devastating for performance reasons.

DVA: Dangerous Variations of ALTEQ 11

size of its parameters, then some of our proposed side grades are likely to be
even more efficient.

Performance bottlenecks From our experimentations, it seems like the perfor-
mance bottlenecks in ALTEQ comes from four points:

1. Computing group actions, from ActATF and InvAct.
2. Computing Ch from H, since the entry H(M)||ψ1|| . . . ||ψr is very large.
3. Computing matrix products, from ColMul.
4. Computing column decompositions, from ColDec. Worse than ColMul, mostly

due to modular inversion (currently use an adaptation of [44]).

We believe that tackling those 4 points while ensuring minimal loss of security
would be a priority among those aiming to improve ALTEQ’s performance. In
this paper, we attempt to reduce or circumvent the cost of those operations.

Current data sizes of ALTEQ Following the description, we have

pksize : C ·
(
n

3

)
· ⌈log2(q)⌉+ λ

sksize : λ

Sigsize : (r −K + 2) · λ+K · n2 · ⌈log2(q)⌉+ 2λ

Note that the signature size has increased by 2λ to introduce a salt to patch [9].

3 DVA-GG: General Graph navigation, algebraic variants
and patches to collision attacks

3.1 Rationale

For a visual representation of the navigation done in equivalence classes, we tend
to jump directly from one point to the other without looking at the details. In
fact, ALTEQ’s use of the column decomposition divides the group action by an
invertible matrix into a group action by n smaller invertible column matrices,
which results in a faster overall group action operation, as visually shown in
figure 2. While the decomposition (as implemented currently, i.e without per-
mutations) does not always exist and the computation of the decomposition also
takes non-negligible time, ALTEQ showed that in most cases we can just generate
the decomposition from scratch, and enforce the associated composed matrix to
be invertible.

We discuss in this section how this approach can lead to further research
directions, sometimes beyond the simple computational acceleration. The vari-
ations we propose here, using this view, will be grouped as DVA-GG (Graph
Generalization). Since a single of ALTEQ’s group action computations is in real-
ity n smaller group actions corresponding to a column decomposition, the idea
here is to explore what would happen if we add even more parts, or observe more
creative ways on how to use those parts: some parts could be public, some parts
could involve third parties considerations. etc... For example, we can

12 Arnaud Sipasseuth

ϕ ψ

τ1 τ2 τn−2 τn−1

ϕ ◦M
ϕ ◦ C1

τ1 ◦ C2 τn−2 ◦ Cn−1
τn−1 ◦ Cn

Fig. 2: ALTEQ’s group actions using M =
∏
Ci: the above “route” is faster.

– Attempt to craft an ALF3-based counter to Beullens’ recent seed collision
attack [9], which we present as DVA-OTP.

– We can also consider a multi-user setting and leverage the algebraic prop-
erties of the primitives rather than a purely generic construction, which we
present later as DVA-GM.

3.2 DVA-GG to DVA-OTP (One Transfert Point): Patching
Beullens’ attack with smaller seeds

Beullens’ seed collision attack The modification we propose here from DVA-
GG, that we define as DVA-OTP, is an algebraic patch to Beullens’ seed collision
attack that provide an alternative to expanding larger seeds. We first re-explain
the seed collision attack of Beullens [9] to give an illustration of our technique.
Beullens’ attack work with the following steps:

1. Wait for a valid signatory to sign X signatures. Each signature uses r seeds,
i.e r group actions (the round parameter) of the form ϕ0 ◦ B where B is a
matrix expanded from a seed of λ-bits.

2. The attacker computes random group actions from chosen seeds and finds a
collision between his computed group actions and the ones in the signatures
with an effort of 2λ/(r ×X) group actions.

Note that, unlike what is written in [9], we believe that not all collisions them-
selves are a problem. In particular, the r group actions contain r − K group
actions computed from ϕ0 by the verifier itself and did not cause any problem
before. The danger lies in colliding with the seeds used by the K chosen chal-
lenges, as revealing the seed, hence the matrix, reveals the secret matrices. A
maybe tighter version of Beullens’ attack works in the following way:

1. Wait for a valid signatory to sign X signatures. Each signature uses K ma-
trices Dk for k ∈ [K], i.e K group actions (the round parameter) of the form
ϕ0 ◦ B = ϕi ◦ (Dk = ∆iB) = ψi where B is a matrix expanded from a seed
of λ-bits for some i ∈ [C].

2. The attacker computes random group actions ϕ0 ◦B from chosen seeds and
finds a collision with any ϕi ◦Dk with an effort of 2λ/(K×X) group actions
as DkB

−1 = ∆i reveals the key (or at least part of it).
3. Note that X × (r −K) group actions are computed from ϕ0 as part of the

signature/verification process, thus it is possible that the signatory helps to
break his own key. This “internal collision” as mentioned by the MEDS/LESS
teams can also be considered part of the attack.

DVA: Dangerous Variations of ALTEQ 13

This slight observation (r to K, internal collision) barely affects the efficiency
of the attack (maybe by less than a single bit), so it is likely that for simplicity
this detail was known but omitted12.

The main takeaway is that the seed collision attack of Beullens is first and
foremost an ALF3 collision attack by colliding ϕ0 ◦B and a ψi from a signature.
The current patch used by ALTEQ, MEDS and LESS is the following: instead of
expanding the matrix B by a seed s, the matrix B is expanded by a larger seed

snew = (sold|salt|rid)

where sold is the original λ-bits seed, salt is a bit string given in the signa-
ture, and rid corresponds to the position in the r group actions in the signature.
Assuming that each signature gives a different salt (so accumulating signatures
does not work), then the effort of an attacker is pushed back to 2λ as rid theoret-
ically forces each pool of matrices per position to be unique assuming GL(n, q)
is large enough.

Another way to patch this attack is to increase the seed size: intuitively,
we believe that for a seed size l, 2l/(K × X) > 2λ should be enough to ward
off the attacks. If we follow the NIST recommendations and just admit a limit
of X = 264 of signatures, then l > (λ + 64 + log2(K)) should be enough to
ward-off the attack if we ignore the internal collision probability. This solution
however increases the signature size more than a salt, namely (r − K)l-extra
bits compared to a salt of 2λ or a flat number13. l can also be reduced with
rid, which does not increase signature size: it basically eliminates log2(K) from
consideration. Matrices usually take most of the signature size so either solution
seem to be roughly equivalent. However, there are implications in appending
a salt (conveniently noted salt) and a position tag rid: permuting samples.
Following the same logic, we could use salt but remove rid: either the seeds
and/or salt would have to be increased in size to compensate the loss of rid.
This has more implications later in the paper, namely in section 4 concerning
data management, but we skip this detail for now.

Expanding from ϕ1,...,C when GL(n, q) or the orbit is small enough Beullens’
attack can slightly change in behaviour if we expand directly from ϕ1,...,C instead
of ϕ0. It is very unlikely that this will lead to an ALF3 collision, but the advantage
of that approach is that colliding with any of the r −K parts of the signature
could reveal a secret, and the K parts would still be relevant: in particular,
learning the link ϕi = ϕj ◦M where i, j > 0 strongly simplifies forgery attacks

12 Thus seeds can be re-used as long as they are never linked with any of the K matrices
given per signature. However, if we go towards a sample-and-retry approach to avoid
collision with the K positions, we might as well use the sample-and-retry approach
of [43] to reduce both signature size and group action costs.

13 While we are not very familiar with MEDS and LESS, both other submissions seemed
to have opted for different salt sizes.

14 Arnaud Sipasseuth

by effectively reducing the security parameterK toK−1, even without the secret
key. So how likely is an ALF3 collision? Well this can occur when GL(n, q) is
small enough such that seed can expand into M1 which would equal a product of
∆kM2, or more interestingly, if there existsM1 ̸=M2 such that ϕi◦M1 = ϕi◦M2.
In the latter case even when i = 0, we found a part of the automorphism group
which may lead to very interesting attacks on ALTEQ and is clearly outside this
paper’s scope. Thus, any work that studies the automorphism group of the ATFE
problem with GL(n, q) could be vital for the security of ALTEQ (and important
for group action cryptography): in practice, it is not GL(n, q) that needs to be
large, but the orbit. We briefly mention the above to encourage the academic
community to dig into it, but we do not do it here.

Patching the attack using DVA-GG In ALTEQ, patching the attack with
meant they had to give up on the AES-NI hardware instructions set and rely
on SHAKE for expansion: this decreased their verification speed by 5% to 20%
depending on the parameter set as expansion can be costly. Thus we use DVA-
GG to present an alternative to the larger seed/single expansion approach by
modelizing the group actions, or point-to-point translations in the graph, with
more intermediate steps. The salt being unique per signature means that the set
of ALF3s to collide with is unique per signature, and the approach presented
previously was made by changing B and not ϕ0 in the ALF3s of the signature.
We propose to instead change the starting point ϕ0 per signature, using a second
translation to ϕ′0, a a transfer point, i.e

– For each signature, we take a matrix A and generate ψ0 = ϕ0 ◦A.
– Then every round has ψi = ψ0 ◦B = ϕ0 ◦AB instead of ψi = ϕ0 ◦B.
– The amount of possible ψi to collide with is thus extended by the possible
A, just like the possible salt used by an extended seed snew.

Note that, just like the previous approach, if n, q are too low due to adapting
to ALFd for a given security λ, there might not be enough distinct matrices to
either expand or multiply to (i.e GL(n, q) is too small) but this is a consideration
that does not apply currently for most parameters for 3-tensors (i.e ALTEQ). In
a way we generalize the set of challenges within the equivalence class by offering
an additional translation and give a representation in figure 3 for the transfer of
one single point for all ALF3s.

In this example of DVA-OTP, we consider to only replace the salt to give the
following extended seed

sDVA-GG = (sold|rid)
and as long as sDVA−GG is less than 256-bits then we can use AES-NI instruc-
tions to expand the seeds. Note that this will not apply for security category 5
parameters when λ = 256 as long as rid is appended, but we could argue that
a smaller input size also makes SHAKE slightly more efficient. The trade-off is
then the following:

– For the signatory, K more special matrix multiplications, one special group
action, but r lighter and faster expansions.

DVA: Dangerous Variations of ALTEQ 15

One Transfer Point

ψi

ϕ0 ϕk

∆−1
k

Bi ∆kBi
ψ0

ψi

ϕ0 ϕk

∆−1
k

A0Bi ∆kA0Bi

A0

Bi

∆kA0

Used in Vf or Sign

Used in Sign only
Never communicated

Secret

Fig. 3: ALTEQ to DVA-GG OTP

– For the verifier, one special group action, but r lighter and faster expansions.

We say special, as neither the complexity of the multiplication nor the com-
plexity of the group action by A needs to be as hard as the random case: the
sole purpose is to avoid collision. For this purpose only A does not need to be
sampled uniformly in GL(n, q): if we denote A as the set containing the chosen
matrices A, that we will call the salt matrices, we could choose A as monomial
matrices (known as scaled permutation matrices).

Note that since A is publicly given by signature, it is enough that A is a
diagonal matrix as long as the size of A is larger than the size of salt that we
attempt to replace. In particular, for ALTEQ we observe that n and q are large
enough such that distributing the salt bits as additive elements to the diagonal
coefficients of the identity matrix is enough: we do not need to call any expander
to sample from A, and we can even limit the cost of arithmetic operations due to
the low-size integers at particular positions. This gives raise in algorithm 4, that
transforms a salt into a salt matrix. Note that algorithm 4 is not the only way
to transform a salt into a salt matrix: we could also stack the first coefficients to
have maximal size and leave the rest to ones. If the lack of mixing seems scary,
we could always expand the coefficients with AES256-CTR and add permutations
into the mix: typically any salt with less than 256-bits would enable a “fast”
expansion through AES256-CTR whenever AES-NI is available.

While the group of diagonal matrices are likely an easy-to-break group [16],
this is not a problem here: the main concern is whether this modification gives
less security than adding a public salt to the seed expander, and when is this
modification more efficient than adding a salt to the expanders.

First, whatever the algebraic structure given by the salt matrix, it is un-
likely that this leads to an attack that is faster than the current procedure with

16 Arnaud Sipasseuth

ConvertSalt(salt) (one basic method)

1 : b← ⌊log2(q)/n⌋
2 : if b ∗ n = log2(q) then r ← 0 else r ← 1

3 : A← Idn, s← salt

4 : for i ∈ [1, n− r] do

5 : A[i, i]← A[i, i] + (s mod 2b)

6 : buf ← ⌊s/2b⌋
7 : if r = 1 then A[n, n]← A[n, n] + s

8 : return A

Fig. 4: Transforming salt to a salt matrix

the normal salts salt, which is: expand a seed with the known salt and test
for group action collision. While there are computable algebraic relationships
between ALF3s that use the same seeds and the same positions for the r − K
seeds given publicly in the signature, it is not clear how this would enable a
significantly faster attack concerning the K matrices that involves the secret
key.

Second, the larger is the number of rounds, the more efficient this transfor-
mation is likely to be, especially when r is over the hundreds and one extra
special group action should add less than 1% of computation time (at least in
non-vectorized implementations) when experimentally having SHAKE instead of
AES256-CTR using AES-NI lose us > 5% time. Note, that we can still expand this
extra group action from GL(n, q), as long as the cost of the extra group action
is lower than the performance loss due to expanding larger seeds, the strategy
remain valid.

Relying on the non-commutativity for security Let us give a more algebraic point-
of-view of DVA-OTP. The security here relies on the assumption that recognizing
ALF3s that used the same seed but different salt is hard, thanks to the group
action computation being non-commutative. For A a chosen salt matrix, B ∈
GL(n, q) being secret and generated on a seed, The K matrices used for signing
have form (∆i ×A×B) and

– On top of attacking (∆i ×A×B), (∆i ×A×B)−1 is available.
– Similarly, (∆i ×A×B)t is also available for an attacker to play with.

Since the new public knowledge is A, the problem now is to go back to the original
ALTEQ equation, or rather the initial ALF3 that would allow the original attack
to be restored, i.e to find (∆i×B) or ψ = ϕ◦(∆i×B). For randomly sampled A ∈
GL(n, q) this is probably as hard as ALTEQ itself, but we used diagonal matrices
as our example, which can be commutative in certain cases (like whenever A or B
is symmetric, which is unlikely for the current ALTEQ parameters). It is probably

DVA: Dangerous Variations of ALTEQ 17

safer to use less trivial sparse matrices such as low-weight cyclic matrices, but
to encourage cryptanalytic targets we keep the diagonal matrices for now. A
graphical approach on breaking DVA-OTP, is to consider a special identification
problem that we show in figure 5 where ψB1 are the ALF3s computed by an
attacker in the original attack.

ϕi

ϕ0

ψA

ψAB2

ψB1

∆i
A

B1

B2

∆iAB2

∆iA

Fig. 5: DVA-OTP’s “special" identification problem: B1 = B2?

If this “special” identification problem requires less than a group action com-
putation, then the protection provided by this variation to Beullens’ seed collision
attack is weaker than expanding with a salt. If it requires at least one group
action, then we can assume its security is equal to the original countermeasure
of expanding larger seeds containing salt and positions, since testing equality of
a random group action operation can be done after fixing a salt value just like
fixing a matrix A.

TODO: implementation test In theory, for r large enough we should be more
efficient as long as AES-NI is available, but we have not yet completed an im-
plementation to test our theory. The problem is r being large usually means we
target a larger security level, where the seeds are large, and hence for seeds larger
than 256-bits our proposal might not be relevant. We will attempt to publicly
release a test implementation when we can.

3.3 DVA-GG and splitting seeds into distinct algebraic components

In the case that the basic DVA-OTP is insecure no matter what matrix set A
we use, we still two options to use to keep using faster expanders that requires
lower value seeds.

– Option 1, cut the expansion into multiple calls of the faster expander: for
example expand s1 for the lower bits and s2 for the higher bits of the matrix
coefficients, such that

s1 = (sold|salt1|rid), s2 = (sold|salt2|rid), salt = (salt1|salt2)

We believe this should be safe algebraically, as the opposite could imply
we can separate and simplify the ATFE problems into lower and higher bits

18 Arnaud Sipasseuth

parts. Note, this above example makes sense if and only if s1 and s2 are less
than 256-bits and calling AES-NI intrinsics twice for AES256-CTR is faster
than using SHAKE once. This process can be generalized into k splits for
(n2/k) log2(q)-bits per expander, as long as we remain more efficient than a
single SHAKE call for n2 log2(q)-bits. The value salt does not have to be
the only cut value either, as sold can also be cut. This is useful for whenever
sold is also too large for the fast expanders (256-bits, for example).

– Option 2, deepen DVA-GG even further for algebraic variants of Option 1.

To exploit DVA-GG even further, we make note that DVA-OTP only offered one
point for every ALF3s. With split seeding, we can in fact offer multiple transfers
per ALF3. For example, suppose every position splits into 2 group actions, using
the LU decomposition:

– s1 expands into a lower triangular matrix L, and is the first group action.
– s2 expands into an upper triangular matrix U , and is the second and last.

Since almost every matrix of GL(n, q) admits an LU decomposition, this method
allows a safe double expansion with close to the same arithmetic cost as a full
matrix. The L,U matrices can also be decomposed/generated in column form,
so theoretically there is no loss in efficiency either.

As shown earlier in figure 2, ALTEQ in fact already performs a splitting into n
transition points by using the column decomposition of their invertible matrices:
each column is considered a group action, and their code reflects that as their
group action function is called n times per matrix, with a different index pa-
rameter and a different column. Thus we could in fact split the seeds to expand
into several columns, by option 1 for all columns, or by choosing different split
seeds per column. Security-wise, we do not see any particular issue: the r −K
seed expansions in the signature are public anyway as used by the verifier, and
the K matrices are not just the result of an expansion but are the result of a
matrix product thus the multiplication by the secret key (hopefully generated
from a more secure method) should hide any poorly structured randomness from
a smaller seed that an attacker wish to exploit.

3.4 DVA-GG potentially opening split structures

Beyond attempting different counters to Beullens’ seed collision attack, DVA-GG
warms-up the exploration of diverse matrix decompositions. Recall that ALTEQ
already uses a matrix decomposition to improve efficiency, and DVA-OTP uses
a public/private split of a group action to patch seed collision vulnerabilities
through an algebraic decomposition. This approach can be slightly altered to
accelerate signatures and verifications:

– Instead of using an easy to compute public part and a hard to compute
secret part, we can instead use a “not-so-easy” to compute public part and

DVA: Dangerous Variations of ALTEQ 19

“less-hard” to compute private part. For a two-part DVA-OTP, imagine (∆i×
A×B) where the public part A could be set as GL(n, q) but B is a smaller,
easier to compute set for group actions than GL(n, q).

– Since the computation of A is done only once, a sufficiently easier to compute
set of matrices B could lead to a performance increase even in the presence
of a low value r in the (r,K,C) parameters, i.e a low amount of rounds.

– While there is a distinct public and private part, the private expansion can
re-use information of the public part and likewise, both salt matrices A and
expanded matrices B can be split into multiple parts (such as n column
matrices).

Note, that if we maintain the secret matrices ∆i as random elements of GL(n, q),
then the “faster” matrices B are mostly useful for the verifier for r −K group
actions, thus for any choice of parameters (r,K,C) this thought experiment is
only useful when K is much lower than r, which should usually be the case when
aiming to minimize signature size anyway.

Whether the security approach of DVA-OTP remains valid, an “easier to
compute” B leads to two new potential weaknesses we need to be wary of:

1. Leak attacks in the presence of many signatures. Since there is full knowledge
of A in (∆i×A×B), it is possible that information on ∆i is leaked through
an accumulation of many signatures using the same ∆i if the set of matrices
B is picked from introduce leakage.

2. Direct recovery of B through standard attacks: since ψ0 = ϕ0 ◦ A is public,
an attacker can just directly attack ψi = ψ0 ◦Bi where Bi is likely to enable
faster heuristic attacks: known zero positions would simplify the algebraic
systems to solve for example.

The first point might be a bit premature to consider, as NIST itself fixed a
hard limit of 264 signatures per key for their candidates and is also willing to
consider systems with a lower limit which in our opinion enable the consideration
of cryptosystems that leak but have limited leakage14. It is also better to research
leak attacks that do not even exist for ALTEQ yet, after the second point has
been considered. The second point is more interesting, as it encourages to craft
efficient algebraic structures while considering different types of attacks. Some
attacks are q insensitive and only depend on n, some attacks depends on both
n and q, so it is possible that for some parameter sets there is an alternative
to GL(n, q) that does change the minimum security level for all attacks. For
example, suppose we measure the security by an attack α and an attack β, where
the security for α is 128-bits and the security for β is 190-bits: we could introduce
then an algebraic structure, for which the security by α is unchanged but the
security by β lowers to 130-bits. The overall security level would be unchanged
and remain at 128-bits. In particular, such scenarios could arise from changing

14 “NIST asks for public feedback on a version of SPHINCS+ with a lower number of
maximum signatures” [35]. But we might be over-interpreting.

20 Arnaud Sipasseuth

the ALF3 of ALTEQ to ALFd: some attacks may be disabled entirely, while others
might see an exponential increase in complexity, or may stay unchanged such
as brute-forcing the seeds. However, diverging from GL(n, q) only makes sense
if there is some form of performance increase, mainly implementation-wise. A
whole discussion on alternatives to ALTEQ’s column decompositions of GL(n, q)
is discussed in section 5.

3.5 DVA-GG to DVA-GM (Group Messages): Signing for a group

The following part is a usage of the DVA-GG point-of-view to inject certain
fancy capabilities into the ALTEQ scheme which may or may not be plugged
into more advanced cryptographic constructions. In DVA-OTP, the signature
contained a salt salt extended into a “salt matrix” S, where the matrix created
a transfer point ψ0 that determines exactly the rest of all subsequent following
computation results of ψ1, ψ2, In this part, we exploit DVA-GG by inserting
points just like DVA-OTP but to create different constructions, which could be
arguably be done without the properties of the graph. The point here is to show
how the algebraic structure can be leveraged instead of generic hash functions:
there are probably better cryptographic constructions out there that serve the
same purpose15, but the aim is to maybe inspire new usages of the primitive to
people more familiar with super fancy cryptographic constructions.

A hospital’s waiting room Let us present a simple construction using the
same trick as in DVA-OTP, i.e a salt matrix S generated involves sid concatenated
to the salt, or even with the message: the point is to force the salt matrix
generation to be involved using the identification string sid, but not just sid. This
generation has to be one-way, i.e do not use the generation shown in algorithm 4.
Our hospital’s waiting room proceeds as follows:

1. A patient arrives with his own identification string sid, or is provided one by
the hospital.

2. When the hospital wants to call the patient, they provide a signature where
the salt matrix is

S ← expCols(r||sid)

where r is chosen randomly (or not) by the hospital, and publicly provide a
signature by omitting S, sid, but provide r.

3. The patient can reveal S, every party can verify that the signature is correct
with the salt matrix S, and sid is not revealed. The same patient can be
called several times, or never called at all: the hospital gets to decide.

This construction can also be achieved without an algebraic component by using
a new random bit string as a salt instead of a salt matrix, but we aim to showcase
that algebraic properties can be leveraged instead. No new calculation capacity
15 We are not familiar with advanced cryptographic constructions, but we are welcom-

ing any new knowledge.

DVA: Dangerous Variations of ALTEQ 21

is necessary: column expansion is already required to verify a signature, so if
r||sid is lower than a seed we could re-use the original function. The same could
be said for an expanding a new random bit string, but this depends on the
functions used (SHA3, AES, etc...). Note that variations exist, which prompts
caution:

– without r, sid has a unique use.
– if sid is chosen by the patient, r needs to be mandatory as there could be

otherwise be a risk that a malicious patient attempt to recover the hospital’s
keys by choosing the intermediate ALF3/salt matrix. Note that we do not
need to limit ourselves to one transfer point, so we can combine with another
layer of DVA-OTP to avoid this scenario, or just use extended expansion with
salt/position.

– The hospital can also send a signature nobody can verify, or have a dishonest
patient that in fact do not want to step forward.

This hospital’s waiting room scenario illustrates some semi-algebraic variant of
ATFE problem, represented by the shape of its “incomplete” signature in figure 6:
given a correct signature for DVA-OTP but without the salt matrix S, can you
guess S, i.e the transfer from ϕ0 to ψ0? In a sense, this is a “reverse” ALTEQ,
where you have the signature but are lacking some public key information. This
could be harder than ALTEQ, since the challenge generation is not algebraically
linked to the ATFE problem and the ψi are not part of the signature. If the final
ALF3s (ψ1, ψ2, . . .) are given, then the problem is purely algebraic and reduce
to a pure ATFE problem between ϕ0 and ψ0. In particular, giving a large amount
of signatures with the same ψ0 might not help solve the problem: ψ0 can always
be guessed through inversion if the ALF3s ψi are given.

ϕ0

ψ0

S?

ϕ1 ϕ2

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

M1,4 M2,6

s1 s2
s3

s5

Fig. 6: DVA-GM, hospital’s queue: what is S given (s1, s2, s3, s5,M1,4,M2,6)?

22 Arnaud Sipasseuth

Forcing a conversation order in a group chat, protect chat history Let
us consider a group chat, where everybody signs their own messages, and the
server just accepts and distributes the correctly signed messages to the recipients
and keep very limited internal data. The setting is the following:

– Every user generates their own public and private key, for the group chat,
and will use those to sign their self-generated messages. We assume the public
keys have been shared.

– The server initially and publicly attributes a matrix Mi ∈ GL(n, q) for each
user, and a matrix G ∈ GL(n, q) for the group chat: this information can be
given to the public.

Every time a user i sends a message, the following process happens:

1. The message must be signed with the public key of the sender, with a “trans-
fer point” ψ0 specific to the sender just as in DVA-OTP, using G×Mi or just
G such that ψ0 = ϕ0 ◦G, but do not need to send it as part of the signature:
the server and every other user can verify themselves that the message signed
with the sender’s public key is valid as G,Mi are public data (and thus can
compute the correct intermediate ALF3 from the sender’s public key).

2. The server redistributes the signed message to the other users, but G is
updated to G← G×Mi and Mi is updated according to the content of the
new message and its previous data. This could be a new expansion using the
previous Mi, the message and the previous group data. We could also choose
to not update Mi, but then G is independent of the message and signature
contents.

3. Note that at all times beyond the setup, Mi, G needs not to be sent: since
every user has their own local copy, they could just update G, Mi themselves.

The above process allows to force the integrity of the all messages in all devices:
a somehow simple representation is given in figure 7. For the sake of simplicity,
we also ignore all details pertaining to encryption of the messages, establishing
trust between users, the server and the sharing of the public keys per user, etc.
We could verify from scratch, that the whole conversation has been unaltered
by a single party, as every user has the capability to recompute all the succes-
sive transfer points from the content of the messages, and the order in which
they were sent. It is possible to delete previous messages if the status is stored,
but then we can only check the integrity of the message history from before the
deletion and after the deletion but not consecutively between the two parts.

Note that we were intentionally vague on how Mi is updated, as it depends
on what properties we would like to enforce:

– Mi is never updated, only G: any user can freely modify their own message
in their device. This will not show on other people’s devices, and there might
not be any proof of tampering. If the message disappears, other users should
be able to guess through G that something must have been there.

DVA: Dangerous Variations of ALTEQ 23

Users Chat Room Server
Setup ALTEQ keypair Setup Mi ∈ GL(n, q) per user
Share all public keys Setup G ∈ GL(n, q)

G,Mi

Sign m with G,Mi

s,m

Check s is valid for G,Mi,m

Update Mi, G← G×Mi

s,m

if correct, to all other users

Update Mis, G

Fig. 7: DVA-GM, a (heavily simplified) group chat

– Mi is updated with its own message content, but after the signing process:
it becomes possible for other users to predict the transfer point of this user,
if he is bound to be the next one to write a message and its message pattern
is predictable.

– Mi is updated before the signing process with the message: unless the other
users know exactly what the message is going to be, they should not be able
to guess the transfer point.

– Mi is updated simultaneously and tied to the signature/message content:
not only predicting the next step is hard, but modifying a message breaks
the verification chain.

With this process, from the starting Mi and the starting G, any group user can
check the integrity of his chat history by checking that all successive matrix
multiplications lead to correct transfer points, correct signatures for each public
key at every step of the conversation for all messages. Note, that this forces
asynchronous messaging: if several users send a message to the server at the
same time, only one unique message will be accepted to update G and Mis and
the others discarded, and render invalid every other message sent simultaneously
(before receiving the new message). This property also implies that a user can-
not communicate with the other users if the status matrices are not up-to-date
(and possibly checked to be correct according to all new messages), or at least
cannot prove his messages are correct within the group at this point in time. In
the example construction we just described, the server is quite passive. It could
play a more active role, as forcing certain updates to Mi and G per message so
that consecutive messages from the same user have to wait for server updates
before being treated. All-in-all, the challenge is the following: given a record-

24 Arnaud Sipasseuth

ing of successive messages, can a malicious external party insert false messages
undetected within the group chat, corrupting chat history?

4 DVA-PC: precomputations for more practical usages

4.1 Rationale

The GMW-FS construction used by ALTEQ, for which we do not go into details,
was built on security proofs on top of another. There are however practical con-
siderations that the theoretical constructions do not usually consider, and one
of them is intermediate memory. One of the main considerations when setting
parameters using the GMW-FS framework is to either minimize the size of the
signature, largely dominated by the choice of K, or the public key, largely dom-
inated by the choice of C. As a result, the round number r is often considered
last, even though it is the main factor in computation time. In particular, the
intermediate memory used by the challenge computation costs a lot of memory:
we need to hash r ALF3s, and for any parameter r > C this can be problematic
considering the already large size of each ALF3. This will become worse if we
move to ALFd.

Thus, we retrace the computation steps that leads to the challenge and come
up with a simple solution:

1. The seeds sa are expanded into matrices D′coli .
2. The matrices D′coli are used to compute ψ′i from ϕ0.
3. Those ψ′i are used with the hashed message H(M), to compute Ch′. This is

one of the speed and memory bottlenecks of ALTEQ.
4. Since ψ′i are heavy, why not give hi = H(ψ′i) instead?

This simple transformation should be as secure as ALTEQ under the “random
oracle model”16. We call this second variation DVA-PC (or DVA-PC0 as Precom-
putation 0), and present the only change in figure 8. The rest of the section is
to show this extra, mostly inexpensive step, has uses.

In theory, this looks like an extra computation step, but in practice, we see
at least two advantages that can be leveraged performance-wise:

– Each hash of an ALF3 can be computed independently on a parallel manner.
The final output is a hash of then much smaller data, which can directly
translates into a speed improvement in both signing and verifying time.

– The intermediate memory necessary to compute the challenge can be essen-
tially reduced to one ALF3 and r hashes. Due to the large size of the ALF3s,
this is often less than two ALF3s. For vectorized/parallel implementations,
we can limit the number of ALF3s to be pre-hashed simultaneously by a

16 This was pointed by a reviewer, and we believe it is correct, but sadly we also believe
this does not give any form of protection against the attack risks we later explain.

DVA: Dangerous Variations of ALTEQ 25

SignDVA(sk,M)

...
7 : Ch← H(H(M)||{H(ψi)}[r])

...

VfDVA(pk,M, Sig)

...
9 : Ch′ ← H(H(M)||{H(ψi)}[r])

...

Fig. 8: DVA-PC0: Precomputations, version 0

number of ALF3s smaller than the number of rounds r. In table 1 we com-
pare the size of an ALF3 according to the new parameters of [14], and the
number of hashes of size 2λ-bits to reach an equivalent entry size: in par-
ticular the input size is 77 lower for the lowest security level, and the input
size savings tend to increase with higher security levels or tensors degrees17
making the option of replacing ALF3s by hashes more attractive.

– This ease-up the communications if we wish to delegate the computations
of the group actions to an external device: ALF3 and their group action
computations takes the most time and intermediate memory by far. It could
then be interesting to delegate the computation of such items to external
devices, through trust must be established first [24], and we do not consider
this problematic for now: an extra computational device connected through
USB or a local network could do the trick18. In such a case, the exchanges
between the two parties are basically seeds (or matrices) and hashes, after a
setup process to communicate the ALFs: since only the hash is necessary for
the computation of the challenge, transmitting the ALF3 or ALFd becomes
unnecessary. In particular for security level 1 (λ = 128), a hash of an ALF3

is 2λ-bits and thus at least 77 times lighter than the ALF3 itself.

A note on memory costs Very recently, we were told to have a look at [28]. We
are grateful to be pointed towards this presentation as we acquired new knowl-
edge from the slides. Essentially, ALTEQ was not tested in [28]’s target platform
because of its huge memory cost. While DVA-PC0 can partly solve this problem,
it might not be enough itself: the GMW-FS construction in its core seems par-
ticularly ill-suited for this as the FS step takes a lot of memory. Targeting the
machine advertised by [28] was never a target of ALTEQ’s conceptors, but it is
doable, at least for security level 1 in our opinion: the first step to change would
be the (r,K,C) parameters by reducing r and C but increasing K which would
17 For 4-tensors, n, q would likely be lowered compared to their ALF3 counterpart by

matching the resulting increase in heuristic security. Thus, those values are clearly
overestimated but serve as a reference.

18 Our prior PQC2024 submission considered an online server users would rely on to,
but if this online server is malicious this would cause havoc as pointed out by a
reviewer. For now, we are limiting the scope of the third parties unless a provably
trustable setup comes out.

26 Arnaud Sipasseuth

NIST security level 1 3 5
Estimation of n, log2(q) 18, 24 27, 21 39, 24

Bitsize of one ATF (3-tensor) 19584 61425 219336
Equivalent number of 2λ-bits hashes 77 160 429

Bitsize of one 4-tensor 73440 368550 1974024
Equivalent number of 2λ-bits hashes 287 960 3856

Table 1: Size of entries of the challenge generation (excluding H(M))

lead to an increased signature size but decrease intermediate memory, and the
second step would be to get rid of the internal TF forms and work exclusively
with the ALF3s. We could also use [43] to decrease the overall values of (r,K,C),
but this should severely impact the signing time. Nevertheless, it is a very inter-
esting research direction but one we did not pursue yet (maybe in a very near
future!).

4.2 Further precomputations

DVA-PC0 essentially transforms the ALF3s into a digest that is more palat-
able for the challenge generation (a bit-string of lower size), and doing so in a
parallel manner that allows to reduce the intermediate memory. However, note
that this operation does not need the message. In fact, we can then precompute
those hashes before getting a message to sign. Thus, in this part we consider
a scenario not considered the NIST framework, or rather not considered in the
initial ALTEQ submission: a distinction between, an offline mode and an online
mode, which allows us to perform precomputations offline. The topic of precom-
putations to accelerating schemes is not new [15]19. This could be useful for a
wide-range of applications, where the heavy part of the signatures can be com-
puted in advance (namely, the group actions), and then we can just wait for a
message to continue the rest of the signature process. Note that the precompu-
tations we propose in this paper do not affect the verifications, thus while there
should be some impact on asynchronous protocols such as TLS, the bottleneck
of verification speed cannot be circumvented by this technique alone, although
within certain conditions, verification times could be side-stepped20. However, if
the goal is to send an expected message quickly on obtaining the message infor-
mation, then this technique can greatly reduce the latency between obtaining

19 Thomas Plantard pointed out that MAYO [12] also considers precomputations and
separated an offline expansion part [11] from their signing and verification process.
Thus, our approach is not marginal among in PQC. We are at least 2!

20 If we sign a message for step k of some protocol, but detect an invalid signature
received in a previous step: we could abort the protocol before step k+ 1, assuming
step k did not send anything compromising. This requires step k to be safe to
perform regardless of what was previously received. Because we are not familiar
with advanced constructions, this could be a very terrible idea.

DVA: Dangerous Variations of ALTEQ 27

a message and signing it, assuming the necessary extra resources are available.
For example:

– When we can start precomputing the moment a message is being written
i.e any situation where the sender of the message sign his own message (like
a signed letter/package). This can be done in parallel or even before the
preparation of the message: for example while writing a lengthy e-mail we
wish to sign to some forum (say [pqc-forum]), we give plenty of time for the
precomputations to be executed in the background, which in turn decreases
the delay for the message to actually be signed and sent21.

– If the message source is not the sender itself but is expected, a natural appli-
cation arises whenever the message source is from a very far distant location
(or a very laggy one): assuming extremely fast communication speed, let’s
say light speed (299792458 m/s), then an information sent from Paris to
Tokyo takes more than 32 milliseconds, and more than 56 milliseconds from
Paris to Sydney. For a lot of cryptographic schemes, this is the time taken
by a large amount of signatures. In such use cases, precomputations makes
a lot of sense especially since superluminal communication is theoretically
impossible so far22, and from personal experience we believe it is hard to
have less than 300 ms of ping between Sydney and Paris23.

To improve on the efficiency of the precomputations, we make full use of our
new DVA-PC0 construction.

The idea here is simple. The self-feeding hash challenge used in the verifica-
tion and the signature in DVA-PC0 does not make use of the ALF3, but only of
hashes. Thus, the very natural idea is to compute the hashes in advance, then
wait for the message. Unlike ALF3s, hashes are easier to store: we are not com-
pletely certain of the size the hashes need to be for security, but arbitrarily we
set to the standard size of 2λ-bits for λ-bits of security. Note that in our case,
we have one precomputation per signature. This is different from other forms of
precomputations, that are done once per key pair for signing [22,12], or once
per key and verifier, using public information only, for verifying [5]. And unlike
[5], the precomputation does not compress internal long term storage, but only
expands it (although temporarily), thus this suggestion is only applicable in ap-
plication cases where we have memory to spare. The closest analogy we know of
is probably the precomputation of Gaussian sampling [37], which also make use
of an online/offline phase.

It is clear that if everything is done offline and assuming forgers only use
and see the online data, then there is no obvious loss of security as no external
21 For example, appending a PGP signature at the end. It also seems like MLS [7] also

have a PrivateMessage component where the sender signs their own message, but
we are not familiar with it.

22 As far as we know quantum communications are still sublight speed.
23 Over several years, we conducted lengthy and painful experimentations on particular

“real-time” multi-users applications.

28 Arnaud Sipasseuth

information is ever leaked or requested. However, if we consider offline attackers
that have access to intermediate data, intermediate computations, etc... then
there is a massive risk of permitting a “data thief” to sign messages without the
secret key, although when and where this particular setting comes in real-life is
not very clear to us: if an attacker can steal offline data, he might as well directly
steal the secret key, so a particular attack model should be required to properly
analyse this angle. Stealing the secret key offline would affect every other scheme
after all. Currently, we are not sure which attack model to consider24, and for
simplicity it might be better to leave this for further work.

First level of precomputation The first basic transformation is to just save
the information we need for the “self-feeding" hash. This lead to the split of
the signature process into two parts, namely PreSign1DVA and FinishSign1DVA,
presented in figure 9, that we name DVA-PC1 (Precomputation 1), that omit
failure management (that we discuss shortly later), or the salt (we do not make
a clear choice between larger seeds and using a salt).

PreSign1DVA(pk)

1 : ϕ0 ← expATF(δ0)

2 : β ←R {0, 1}λ, salt←R {0, 1}2λ

3 : {si}[r] ← expSeeds(β, r)

4 : {Bcol
i }[r] ← expCols({si||salt||i}[r])

5 : {ψi}[r] ← ActATF({ϕ0, B
col
i }[r])

6 : {hi}[r] ← {H(ψi)}[r]
7 : return PreSgn = ({si, hi}[r], salt)

FinishSign1DVA(sk,PreSgn,M)

1 : {δi}J0,CK ← expSeeds(sk, C + 1)

2 : Ch← H(H(M)||{hi}[r])
3 : {ci}[r] ← expCha(Ch)

4 : S← {}, I∆ ← {}
5 : for i ∈ [r] do

6 : if ci = 0 then App(S, si)

7 : else App(I∆, i)

8 : {Bcol
i }I∆ ← expCols({si||salt||i}I∆)

9 : {∆col
ci }I∆ ← expCols({δci}I∆)

10 : {Di}[K] ← ColMul({∆col
ci , B

col
i }I∆)

11 : {Dcol
i }[K] ← ColDec({Di}[K])

12 : Sig = (Ch, salt, S, {Dcol
i }[K])

13 : return Sig

Fig. 9: DVA-PC1: light precomputations

24 The random oracle model does not answer our worries: we are concerned about
vulnerabilities arising from large secret temporary data such as bypassing ASLR and
other shenanigans we are honestly not familiar with. We could go on a tangent on
models vs reality, but ultimately any way to measure the threat posed by large
temporary secret sizes could be better than none.

DVA: Dangerous Variations of ALTEQ 29

The current form of the precomputation data PreSgn is linear in r and λ per
signature, making it very light or heavy depending upon the size of r: we believe
it is actually shorter than a single ALF3 (

(
n
3

)
× 32-bits) for most parameters

sets in ALTEQ, and very likely to be smaller than most cryptographically usable
d-tensors (

(
n
d

)
× log2(q)-bits). The columns are expanded twice to save memory

for PreSgn since expCols is fast (or at least was with AES-NI), but we can choose
to change the shape of PreSgn to store {Bcol

i }[r] instead of {si}[r] for marginally
faster signing but add a quadratic factor n2 in memory space.

Structure of the precomputation data Interestingly, this variation only use the
public key to perform precomputations, and not the secret key, which may have
repercussions in later parts of the paper. In particular, PreSign1DVA can be per-
formed by any party, and its content can be used by both signatories and verifiers:
this, and the combination of low-size data linear in λ and r, make it an ideal tool
for future fancy cryptographic constructions which we do not tackle here. This
paper is solely focused on improving/modifying ALTEQ performance, plus there
is a major security issue to consider: the seed used for the K matrices in the
signature should never be leaked (as mentioned previously, see [9]). Note that
only the seeds si needs to be securely stored as in “no external actor can read
the data”: the hashes hi are publicly available to the future verifier anyway, thus
even publicly announcing in advance the ALF3s or their hashes should not lower
the security.

Algebraic precomputation There is a tiny algebraic change that only marginally
improve the performance of ALTEQ, but could noticeably improve the perfor-
mance of FinishSign1DVA: changing the structure of the secret key, but without
affecting the algebraic security. Currently, in ALTEQ, the secret key is generated
as a column decomposition and its inverse computed and used for the setup. The
secret key is then recomposed at every signature, multiplied by another column
decomposition into a non-column decomposition to be decomposed again. Thus
we propose:

– To generate full matrices in GL(n, q) as the secret key, not in column form.
We expand directly into n2 values, and then compute the inverse of the
matrices to generate the public keys. Note, that if we cannot compute an
inverse, it means the matrix is not invertible: we then discard and resample.

– Every time we wish to sign, expanding the stored seed (or seeds) of the secret
matrices will guarantee invertible recomposed matrices without checking,
since checking was done already at setup time.

Or, the simpler change but that requires more long-term memory for the secret
key: recompose the secret matrices from their column form, and store them. We
stress that this tiny change mostly affects FinishSign1DVA, which main operation
is not in fact the matrix multiplication, but the column decomposition algorithm
due to the high number of modular inversions required. In the original ALTEQ,
the group action takes most of the time.

30 Arnaud Sipasseuth

Second level of precomputation We can further accelerate the online sign-
ing phase, if polynomial storage space is not considered a main issue, with
much heavier precomputations both in memory and time. While PreSign1DVA
and FinishSign1DVA have roughly the same complexity as SignDVA, we can choose
to precompute much larger data to reduce the signature procedure to be essen-
tially one of the fastest post-quantum signing procedure if we exclude the cost of
the offline phase. We say potentially because it depends upon certain choice of
parameters, and frankly we do not know the details of every signature scheme
on the planet25, but the reasoning is essentially the following:

– There is not a lot of procedures that are faster than a hash.
– A lot of post-quantum signature procedures requires to hash an object.
– A lot of them require that hash before their heaviest computations can start.

For example, hash-and-sign procedures like Falcon [22].
– In this option, once a message is received, we just compute two hashes, and

then insert data at correct positions which is in theory faster than hashing.
– Once the precomputation is done, we do not even need sk!

The details of the procedures PreSign2DVA and FinishSign2DVA are presented in
figure 10, and we name the overall transformation DVA-PC2 (Precomputation
2). Unlike DVA-PC1, DVA-PC2 actually needs the secret key for its offline phase,
but does not need it for its online phase.

Since this lies outside the framework suggested by the NIST, it is very possible
that such a transformation exist for many other submissions and that we are far
from being the most efficient one. Furthermore, while the theoretical speed of
FinishSign2DVA is incontestable, the drawbacks that comes with PreSign2DVA are
also incontestable:

1. In theory, the failure rate increases drastically at the precomputation level
when calling ColDec. Experimentally, it is still low26, but it might no longer
be negligible depending of parameters (as reducing q). One option is to store
a failure symbol in PreSgn during PreSign2DVA, and take another sample
PreSgn if the failure symbol is selected in FinishSign2DVA, i.e we hope that
the challenge generation does not pick a failure case during the online phase.
This does slightly increase the complexity of FinishSign2DVA, but we discuss
failure management in the next part of this subsection: there might be more
attractive options.

2. While PreSign1DVA produced PreSgn that are linear in λ and r only, the
precomputation procedure PreSign2DVA produces PreSgn that are linear in
r,K,C, λ, q and quadratic in n. It is still manageable because the memory
required is not exponential, but it is still several orders of magnitude larger
(DVA-PC2 takes Cn2 log2(q) times more offline memory than DVA-PC1).
NIST recommends 264 signatures per key: unless we dynamically recompute
some samples to store while we sign (with two dedicated separated hard-
ware/processes), it is unlikely that managing so many samples of this size
have no impact on performance.

25 We welcome every feedback.
26 We did not see any on our old PQC2024 submission code

DVA: Dangerous Variations of ALTEQ 31

PreSign2DVA(pk, sk)

1 : {δi}J0,CK ← expSeeds(sk, C + 1)

2 : ϕ0 ← expATF(δ0)

3 : β ←R {0, 1}λ, salt←R {0, 1}2λ

4 : {si}[r] ← expSeeds(β, r)

5 : {Bcol
i }[r] ← expCols({si||salt||i}[r])

6 : {ψi}[r] ← ActATF({ϕ0, B
col
i }[r])

7 : {hi}[r] ← {H(ψi)}[r]
8 : {∆col

i }[C] ← expCols({δi}[C])

9 : for i ∈ [r] do

10 : for j ∈ [C] do

11 : D(i,j) ← ColMul(∆col
j , Bcol

i)

12 : Dcol
(i,j) ← ColDec(Di,j)

13 : Samplei ← {si, {D
col
(i,j)}[C], hi}

14 : PreSgn← ({Samplei}[r], salt)
15 : return PreSgn

FinishSign2DVA(PreSgn,M)

1 : Ch← H(H(M)||{hi}[r])
2 : {ci}[r] ← expCha(Ch)

3 : S← {}, D← {}
4 : for i ∈ [r] do

5 : if ci = 0 then App(S, si)

6 : else App(D, Dcol
(i,ci))

7 : return Sig = (Ch, salt, S,D)

Fig. 10: DVA-PC2: heavy precomputations

Precompute the precomputations The only difference between PreSign1DVA and
PreSign2DVA is the presence of matrices that should not be leaked to the pub-
lic, which is a major difference between the two versions. While we present
PreSign2DVA here as an independent entity of PreSign1DVA, it does not have to
be. It is totally possible to use PreSign1DVA as a precomputation of PreSign2DVA:
the computation of the ALFd are independent of the computation of the matrix
products, they just share a same seed which is also an output of PreSign1DVA.
In particular, we can afford to have a larger amount of samples out of DVA-PC1

and fewer samples of DVA-PC2 and convert samples of DVA-PC1 to samples of
DVA-PC2 when necessary: since the samples from DVA-PC2 are much larger in
memory, it might be more practical to store only a few, and have a larger bunch
of DVA-PC1 samples in the back ready to convert.

Dealing with failures, erasing failures The easiest way to deal with failures
is to follow the original scheme, and use another set of samples PreSgn and
discard the old set27. However, it might be in our interest to be able to effectively
use all samples we generated and never (if possible) discard them. To avoid ALF3

27 We can still use the PreSgn batch for another message: nobody should be able to see
the difference as SignDVA and FinishSign1DVA have identical output structure, except
for timing attacks since a swap of memory addresses may take some time. But even

32 Arnaud Sipasseuth

collision attacks, PreSgn should never be reused when successfully used to sign,
but in a case of failure, PreSgn can be recycled if a salt or a trick like DVA-
OTP is not used. Without a salt or DVA-OTP (assume just larger seeds), we can
recycle the following way: for the position that failed (or any random position
i ∈ [r]), swap this sample with another one with the same index in another
PreSgn batch that has not been used yet. Due to the matrix expanders using
the round indexes rid as part of their seeds, the permutations advertised in [43]
are not usable unless we discard rid (but we can keep salt). And if there is
neither any salt nor rid, anything can be swapped and the division into distinct
PreSgn batches is not relevant. To be able to swap between batches we must
obviously to have at least two batches PreSgn of samples precomputed. To give
a mental image, use figure 11 and imagine the batches of PreSgn as horizontal
bit strings stacked vertically, and see [43]’s swaps as horizontal swaps within the
same PreSgn, and what we propose here as vertical swaps between two distinct
PreSgn. If all vertical swaps fail (Br possibilities for B batches PreSgn), then we
have no choice but to resample.

PreSgn1

PreSgnB

s(1,1), h(1,1) s(1,2), h(1,2) ... s(1,r), h(1,r)

s(B,1), h(B,1) s(B,2), h(B,2) ... s(B,r), h(B,r)

VerticalHorizontal

Fig. 11: DVA-PC’s vertical swap (no salt) and [43]’s (no rid) horizontal swap.

The other, expensive option to deal with failures is to make sure no failure
exists during the online phase. This can be achieved in both DVA-PC1 and DVA-
PC2 by performing the computation done in DVA-PC2 and reject every seed s
that expands into M such that there exists a choice of a secret matrix ∆ where
ColDec(∆M) fails. DVA-PC2 already performs all possible combinations, thus
it should not add too much complexity to its offline phase. DVA-PC1 however,
would take a massive toll to its offline performance if this solution is chosen.
However, we can imagine a world where DVA-PC1 is used with such an approach:
this completely removes the need of a check in FinishSign1DVA and FinishSign2DVA,

in the case of timing attacks (online, not offline), the information learned is really
low, and we have yet to see a proper exploit.

DVA: Dangerous Variations of ALTEQ 33

ignore any permutation shenanigans and guarantees algorithmic constant-time
in all cases28.

4.3 Deeper into the rabbit hole: DVA-HA and DVA-PC-HA

We showed that replacing ALF3s with their hashes for the challenge compu-
tation allows lower intermediate memory, and have lesser storage when using
precomputations. Here we show here that by hashing further, a supplementary
hash allows gaining further computational speed and may save even more mem-
ory for precomputations. This supplementary hash also concern the challenge
computations: we propose to hash all the ALF3s or their hashes into a single
hash value. We name this option DVA-HA (Hash All), which is compatible with
ALTEQ and DVA-PC0/1/2. Since the cost of a hash is mainly decided by the size
of the entry, adding an extra hashing step H = H({hi}[r]) or H = H({ψi}[r]) to
the computation of the challenge Ch, which facilitates the final challenge com-
putation. In short, the final challenge computation for a message M is

– Ch = H(H(M)|H) = H(H(M)|H({hi}[r])) for DVA-PC0/1/2.
– Ch = H(H(M)|H) = H(H(M)|H({ψi}[r])) for ALTEQ.

and if the message M is constant size (in both cases), we can discard one hash
and obtain Ch = H(M |H) i.e a single hash for the online phase. We could also
even fix the size of M (or H(M)) and H to properly fit SHA256/384/512 and
make use of the dedicated, already existing hardware intrinsics for SHA2 such as
SHA-NI [25]29. This accelerates even further the online signing phase of DVA-
PC1/2, but adds 2λ-bits of storage for PreSgn and partly disable the permutation
techniques to deal with failures, since H changes for any bitwise change. We
describe DVA-PC-HA as an example in algorithm 12.

Note, that in the case of DVA-PC1/2, if we choose to ignore dealing with fail-
ures (by token swap), we could replace the (2rλ)-bits used for challenge compu-
tations (namely {hi}[r]), with simply the hash of all samples H of size (2λ)-bits.
The only swap possible then in case of failure is to swap the whole PreSgn, i.e.
swap two distinct H leaving less margins to deal with failures in matrix decom-
positions. Since we still need to store the seeds, which have total size (rλ)-bits,
the interest of this technique is to divide by 3 the internal storage of PreSgn for
DVA-PC1 (from (3rλ)-bits to ((r+2)λ)-bits), but has almost no impact in DVA-
PC2 for most parameters (the matrices represent the overwhelming majority of
the memory for most parameters).

28 We do not guarantee constant-time implementation-wise, as there could be cache
misses, unpredictable memory access times, and so on especially when the managed
data is very large, such as here in DVA-PC2

29 SHA512 intrinsics are recent, thus might not be common in most machines. Their
documentation seems less than a year old: https://www.intel.com/content/www/
us/en/developer/articles/release-notes/intrinsics-guide-release-notes
.html.

https://www.intel.com/content/www/us/en/developer/articles/release-notes/intrinsics-guide-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/intrinsics-guide-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/intrinsics-guide-release-notes.html

34 Arnaud Sipasseuth

PreSignDVA-HA(sk)

...
15 : H ← H({hi}[r])
16 : App(PreSgn,H)
17 : return PreSgn

FinishSignDVA-HA(PreSgn,M)

1 : Ch← H(H(M)||H)
...

VfDVA-PC-HA(pk,M, Sig)

...
9 : H ← H({h′

i}[r])
10 : Ch′ ← H(H(M)||H)

...

Fig. 12: DVA-PC-HA: extra hash (changes from DVA-PC1/2)

Reducing storage size to exactly 3λ-bits with DVA-PC1-HA We said earlier that
DVA-PC-HA may reduce the storage cost even further. This is mostly true for
DVA-PC1 and the current ALTEQ implementation. In practice, the seeds used in
ALTEQ are expanded from one single seed, i.e we use one seed of λ-bits to create
r more seeds of λ-bits: the original one seed is never communicated. Since this
is the case, we could store this one source seed instead of the r seeds, leading
with H to a storage of only 3λ-bits per signature. If the salt is included in that
seed expansion, we can maintain that 3λ-bits storage, otherwise this might rise
to 5λ-bits with a salt of 2λ-bits. Note that if a seed of λ-bits was deemed too
weak, we could double the source seed size and store 4λ-bits instead.

4.4 Accelerating expCha: using the combinatorial number system

With DVA-PC2, the main online computation is the hash and the challenge
generation. Currently, the challenge generation in ALTEQ is implemented as ex-
tracting the first 256-bits of a challenge hash and using them as a seed for an
AES-CTR-based random bit generator and sample the values from this genera-
tor30. Reminder on the challenge shape:

1. Essentially, we are sampling K distinct numbers within [r].
2. For each of those K positions, we sample randomly a value in [C]. Those

values do not have to be distinct.

If we admit that the challenge hash cannot be manipulated by an attacker, then
by considering the challenge hash as a random value x within [22λ] we can just
extract the K values in [C] by considering x in base C and taking its first or last
K digits: no need for relying on AES-NI. Then the job is to extract K distinct
numbers within [r] from x−CK and every combination must be equally probable
30 This is for all parameters, any bit beyond the 256-th is ignored. It seems exploitable

for an attacker, but we do not know how.

DVA: Dangerous Variations of ALTEQ 35

(as much as possible anyway). Thus, here comes our proposal: the combinatorial
number system31.

The combinatorial number system allows extracting from a large number N
a strictly decreasing sequence cK > ... > c1 ≥ 0 where

N =

(
cK
K

)
+ · · ·+

(
c2
2

)
+

(
c1
1

)
In particular, the largest number in our case would (very naturally) be

Nmax =

(
r − 1

K

)
+ · · ·+

(
r −K + 1

2

)
+

(
r −K

1

)
=

(
r

K

)
− 1

which leads to the combination r > r−1 > · · · > r−K, with the lowest number
being 0 represented by K > K − 1 > · · · > 1, thus mapping one-to-one every
possibility and [0, Nmax]. We believe that extracting the choices among C from
(x mod CK) then the combination from

(
(x− CK) mod

(
r
K

))
should be faster

than an AES-CTR-based sampler, but we have yet to implement the algorithm
and test. Plus, AES-NI is really fast. At least our suggestion could provide a
gain for platforms where AES-NI is not available. Currently, we are thinking to
implement the search of the combination in a one-or-two-dimensional array of
size r ×K, where a basic greedy algorithm will diagonally traverse the array to
choose the ci. We also believe that a parameter C as a power of 2 will make
extracting the K positions among C really fast by shift and mask operations.

4.5 DVA-PC into DVA-Tok: Adding a token to further exploit hashes

In this part we propose another failure management method, through exploiting
the properties of hashes even further and sidegrade [43]’s other variation of AL-
TEQ. DVA-Tok however increases the signature size, although very marginally:
in practice, the increase should be less than a dozen of bits. In a recently ac-
cepted paper, [43] proposed to introduce a rejection probability to the challenge
generation to reject combinations of r ALF3s, which remove the ability of the
owner of the secret key to be able to sign any series of r ALF3s, but allows to de-
crease the GMW-FS parameters (r,K,C) as a result to compensate the increase
of the heuristic security introduced by the probability function. This probability
function is computed at the same time as the challenge, by requesting the hash
function to produce b extra bits, and then compare the number to some prede-
termined value and reject the combination of ALF3s if the value is too high or

31 This was mentioned by [31] who apparently quoted a work from the 19th century
we could not verify, and was probably written in Italian.

36 Arnaud Sipasseuth

accept if it is low enough (this could be reversed)32.

The practical problem in [43], is that we have to either resample and re-
compute r group actions for each failure (which could range in the thousands
in average to get one correct combination, depending on the parameters). To
tackle this practical issue, [43] proposed to use permutations such as Heap’s al-
gorithm [26] to find valid combinations [43]. Problem: this is no longer a valid
approach without significant changes to the current ALTEQ, since a round in-
dex rid has been appended to the seed for matrix expansion to patch Beullens’
seed collision attack [9]. Since we cannot permute horizontally samples within
one batch without increasing the seed size (to patch Beullens’ attack), we could
use DVA-PC1/2-HA or DVA-PC1/2 to vertically swap several precomputed sam-
ples from distinct batches instead. However, since we could expect up to several
thousands of vertical swaps per signature instead of an occasional vertical swap
once for every few thousands of signatures, another idea to improve [43]’s non-
constant signing time is highly desirable. Still, a slight change to ALTEQ can
make this work practical, or at least with DVA-HA or DVA-PC-HA by re-using
the reasoning used so far.

DVA-Tok’s idea is to add an extra token t seen as a bit string of arbitrary
size. Recall that [43]’s security assumption was, in short: for λ-bits security,
just ensure the probability of a random trial has success chance 2−λ. Since the
ALF3s are only seen as bit strings in the challenge computation, extending that
bit string by a value t controllable by the signatory should not drastically affect
the security (we discuss this later). Let’s suppose that Ch now also contains the
permutation acceptance boolean with probability p. Thus:

– Initially, we use a challenge/validation computation with Ch = H(H(M)|H),
or anything that was only ALF3s and message M dependent.

– Instead, use Ch = H(t|C) where C = H(H(M)|H), or C = H(H(M)|{hi}[r]),
or C = H(H(M)|{ψi}[r]), or even C = (H(M)|{ψi}[r]), etc.

– The bit string t is independent from any other input of H, and can be chosen
freely or enumerated. While non-constant time, this operation only deal with
publicly available thus do not weaken security.

This extra hashing allows the signatory (and a forger, but the security model
of [43] is unchanged) to resample rejected ALF3s combinations by resampling
new tokens t. The size of the token is up to the cryptographer: in fact, t with
size 0 can be considered equal to the original ALTEQ scheme or any of the DVA.
We do however advise making full use of intrinsics: have t get a size lower than
2λ, so that Ch = H(t′|C) can be computed with hardware intrinsics specific to

32 Note that in hindsight, those b extra bits are not necessary in practice. For a chal-
lenge value Ch larger than the necessary size λ-bits, we could reject deterministically
a fraction p of all possible values of Ch as long as there are 2λ non-rejected combina-
tions left. Technically, this can be easily done in combination with the combinatorial
number system we introduced since the hash value has size 2λ in the ALTEQ code.

DVA: Dangerous Variations of ALTEQ 37

SHA256/384/512 for example, where t′ is t appended with zeroes or any other
string easily computable to the verifier. Note that in practice, there is no reason
to have t larger than the number of samples we are willing to try since t increases
the signature by log2(t), so this condition might always be verified. And at the
same time, adding this extra bit token is also useful on its own to resample a
new challenge in the case the factorization into column matrices fail, allowing for
new valid challenges without recomputing group actions. In particular, we can
use salt and DVA-OTP, rid instead of larger seeds and not have to recompute
or permute ALF3, their hashes, batch of PreSgn and so on in case of a column
decomposition failure.

Saving one hash using precomputations It is possible to set Ch = H(H(M)|C)
with C = H(t|{hi}[r]) instead and precompute several C in advance for several
token values t, but we do not propose it here. Assuming enough token are pre-
computed, we reduce the online signing speed by only one single call to a hash.
Since there is a non-zero chance that all token lead to invalid challenges (or that
not enough token were precomputed), we assume modifying t during the online
phase is the most natural choice since the number of trials would theoretically
not change much and remain exactly unpredictable per message33.

DVA-Tok’s security By adding a token into the protocol, we simplify resampling
through the signing phase but also simplify the forgery attempts as a forger can
attempt a new token instead of a new permutation. However, we believe that
asymptotically we should not be too worried about this. The message M is a
bit string goes through one or two more hashes than the token, or even none34,
before the final hash for the computation of the challenge, so both the message
M and the token t are bit strings that go through similar operations at the same
protocol step. In short: since the message and the token shares relatively close or
identical structure links in the whole scheme, an attack through the token could
also mean chosen ciphertext attacks in the original ALTEQ. If ALTEQ is secure
through manipulation attacks of the message M , so is DVA-Tok.

4.6 Timing tests: TODO (but DVA-PC2-HA should be more than
4/5 times faster than Dilithium)

Currently, we did not have the time yet to re-implement all our procedures in an
acceptable way. A previous version as part of the PQC2024 submission on an old
ALTEQ modification that is no longer relevant showcased times that were 4 faster
than the level 3 of the AES-NI variant of Dilithium, and 5 times faster for their
level 5 parameters. We also stated that comparing a precomputation variant
with an implementation that does not have one was not fair, even though our

33 SHA3, SHA2, or any chosen one-way function should not have malleable outputs
34 Recall that ALTEQ’s justification to hash the message was to facilitate the imple-

mentation for messages of flexible size. For constant-sized messages, this hash might
not even be needed.

38 Arnaud Sipasseuth

code was poorly optimized and lost 70% of performance in memory management
(we will aim to improve that). Furthermore, we believe we should also compare
ourselves to MAYO [12], in particular their timing with precomputations that
came to our attention after PQC2024, notably in the first few minutes of the talk
given for their update [11]. Their reported timings are also faster than Dilithium
and make for a fairer comparison, although we have no idea yet if the level of
optimization between their code and ours are equal, and we are not very familiar
with their scheme either: pros and cons will have to be discussed, like memory
sizes for example. We also apologize that due to reasons independent of our
will, we cannot publicly release the old code of PQC2024, nor publicly provide a
working repository at the moment35. We will however attempt to publicly release
a better version as soon as we can, although we do not have a clear calendar
for this. On a technical note, we would like to get our hands on a machine that
has the SHA512 intrinsics available, as this would greatly accelerate our modified
challenge generation beyond the level 1 security.

5 DVA-DM: Dangerous Matrices for efficiency

5.1 Rationale

The biggest bottleneck in computation time is the group action, while the biggest
bottleneck in signature size is the matrix size. To deal with the group action
computation, we could craft either specialized ALFd, or special matrices yield-
ing faster computations: the latter seems more accessible for now. Intuitively,
even if we wanted to compress the manipulated ALF3s, we must make sure that
the group action operation maintains a compressed form. Thus, it makes sense to
work on the matrices first, then consider their links to the ALF3s. In this section
though, we merely just mention the matrices: link to an eventual ALF3 form
could be discussed later. Furthermore, since it is the biggest culprit in signature
size, proposing matrices that carry a more compact structure in the signature
could be interesting as well.

The research of specific matrix structures did not start with this paper: prior
research was conducted on which matrix groups were leading to easier-to-solve
ATFE instances, leading as far as possibly dropping an entire complexity class
level [16]. In particular, according to [16], the orthogonal group and the unitary
group are easier to solve than GL(n, q) in practice due to the presence of isomor-
phism invariants. Beullens’ attack [10] also seems to rely on finding invariants.
Although both orthogonal and unitary groups are still GI-hard (Graph Isomor-
phism) [16], the GI class of complexity was shown to be “not so hard” [4] (but
not polynomial either).

In ALTEQ, the matrices mostly belong to GL(n, q) but are chosen only among
those which admit a column decomposition without permutation. The aforemen-
35 The reasons are not purely technical, but they are not permanent roadblocks.

DVA: Dangerous Variations of ALTEQ 39

tioned set is clearly not a group: hence why there is a failure test for the com-
putation of the column decomposition. Thus following this train of thought, we
search for structures that improve the algebraic computational efficiency with
sacrificing as little as possible in security, or if we are sure we will lose “some”
anyway, to gain as much efficiency as possible. We follow three trains of thoughts,
and provide cryptanalytic targets as examples:

– Matrix structures solely decided on what we could do with available specific
hardware accelerations, implementation-wise.

– Matrix structures solely bent on compressing the signature size through in-
troducing some dependencies.

– Matrix structures solely focused on avoiding as many operations as possible
from an algorithmic point-of-view.

Note that we have not tested any of the performance gains yet, but will do so
in the future. Especially if any variations of those structures are shown to be
secure: this would give extra motivation.

5.2 Implementation-wise only considerations

To research which form of algebraic structure could be interesting to use instead
of GL(n, q), we first and foremost check which basic arithmetic operations are
the most efficient on most computers. To see which operations could be efficient
especially for vectorized instructions, our initial approach is both a mix of algebra
and “lego blocks"36 by looking at the available pool of operations at [1]. We
have two reasons to use [1]: the first is Intel x64 architecture being targeted by
the NIST in their signature calls (other targets were also encouraged, but not
explicitly named as far as we know), the second is our shameful lack of knowledge
concerning other targets37. While AVX512 registers (the zmm) do not seem to be
widely available38, it does seem that the AVX2 registers are (the ymm) and even
beyond Intel processors, thus we focus on AVX2 in particular. From our quick
observations:

– Additions, subtractions, shifts, logical operations or, xor, and, andnot and
comparison functions are available for all integers sizes of 8, 16, 32 and
64-bits in AVX2 vectors. We can flip signs for all but the 64-bits size. All
those operations seem to be close in performance. Multiplications however,
are slower, not always consistently available and sometimes benefits from
special operations, depending on the size.

36 This is our personal opinion on the matter, and maybe why we think it is fun. More
experienced implementers might feel differently, or hate Legos.

37 We are very willing to learn though.
38 For now, but who knows: AVX512 can be efficiently simulated through some “double

pumping” [2]. Thus, AVX512 might become widespread in the future despite Intel’s in-
tent on their own creation. Native AVX512 is rumoured to be present on one of AMD’s
upcoming chips Zen5, while Intel may be pushing for AVX10 and APX instead [3]. We
currently lack the competence to either predict or encourage a direction.

40 Arnaud Sipasseuth

– For 64-bits integers, we can perform multiply-and-add for 52-bits integers,
extracting either the low part or the high part of the 104-bits intermediate
results (only with AVX_IFMA). Currently, we are not sure how GCC could
detect those use cases for those instructions without forcing intrinsic calls.

– For 32-bits integers, we can multiply and either keep the low part, or the
whole 64-bits results if we ignore half of the entry vectors.

– For 16-bits integers, we can multiply and keep the low parts, or the high
parts. We believe the ability to use low and high parts of the multiplica-
tion results was key in the modified Montgomery algorithm used in Seiler’s
work [41], and instrumental in the efficiency of Dilithium [18]. We can also
do a multiply-and-add combined with a horizontal sum that results into 32-
bits values, which could be interesting to us: using extra shifts and modular
reductions can leverage this instruction into a modular-multiply-and-add se-
quence (depending on the moduli size).

– For 8-bits integers, we can also do a multiply-and-add combined with a hor-
izontal sum that results into 16-bits values. We can use this specific instruc-
tion to multiply integers into 16-bits values by filling half the vector with
zeroes. There are also some forms absolute-difference operations for which
we did not find a way to leverage yet.

For ALTEQ, the size of q forces us to 32-bits and 64-bits instructions39 and cur-
rently the instruction vpmuludq generated by GCC is extensively used to produce
64-bits integers to be added, using 32-bits integers within half of the vector en-
tries. Now that the moduli size has been reduced to 24 or 21-bits according to
the latest poster [14], maybe using vpmadd52luq when AVX_IFMA is available
could be worthwhile despite the documentation on the Intel website lacking in-
formation on the latency or the throughput (CPI) of that instruction.

Since the moduli size has decreased with the latest update [14], one idea
is to simply use smaller entries for B (such as 8 or 11-bits integers) so we can
multiply 8 32-bits integers (which are initially 24 or 21-bits) with one instruction
and keeping the result within 32-bits, using vpmulld for example, despite its
apparently “undefined” or very high latency. Another idea we propose is to use
low weight integers entries, such that the multiplications can be replaced by
one, two or three shift-then-add operations: each matrix entry can have its own
shift value through vpsllvd. Thus, if we use the parameters n 18 and 27 as
given in [14], multiplying through a single power of 2 (i.e just operating a shift)
in each position already yield a number of possible matrices of 818

2 ≈ 2972 for
the security level 1 and 1127

2 ≈ 22521 for security level 2 thus we may discard
concerns about bruteforce attacks, however new algebraic attacks could see rise
(thus using weight 2/3 integers instead or just one, or even adding signs). To
keep a cryptanalytic target we keep just the simple shift matrix: it is interesting
to see which new attacks could arise from targeting group actions computed from
a matrix containing exclusively low powers of 2. The matrix B used algebraically
39 Although 4-tensors could help push q below 16-bits, to allow us to use those sweet

16-bits instructions.

DVA: Dangerous Variations of ALTEQ 41

will be internally represented by a matrix S, where S ∈ {0, ..., 7}n×n for security
level 1 such that

B =

 2S1,1 . . . 2S1,n

...
...

2Sn,1 . . . 2Sn,n


Beyond the computational acceleration, this suggestion opens the way for

specific arithmetic forms to be used. Forcing integers to be of certain values
could remove the checks for zeroes in the column generations for example, and
simplify the code. We could also craft set of matrices such that we can guarantee
that a product admits a column decomposition without permutation, although
we do not see a way to produce this yet. For now, we suggest to check first how
weak those “shift matrices” actually are.

5.3 Adding some polynomial structure

The idea here is to use an algebraic structure that is inspired from what has
been done in lattice-based cryptography. Basically, we can replace matrices with
non-linked rows with algebraically linked rows, essentially having matrices be-
ing represented by polynomials instead (such as NTRU [27]). In the simplest
form40, this allows to replace n × n entries with just n entries. The product of
the matrices is the matrix generated by the product of the polynomials, given
that the algebraic link between the rows is the same.

Let us illustrate our statement with an example. Let PA, PB ∈ Fq[X]/ ⟨G⟩
where G = X5 − 1 is the algebraic link between the rows and PA, PB are the
polynomials associated to A,B respectively. Each row ai+1 is generated from
the previous row ai as (Pai+1 = Pai ×X mod G). Then, still for the sake of the
example, set PA = X + 1 and PB = X2 + 1, the matrices A and B are then

A =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

 , B =


1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 1

 , A×B =


1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1


and one can check that indeed, PA × PB mod G = PAB = X4 +X3 +X2 + 1.
Since the matrices given in the signature are typically just a product of matrices,
then assuming the matrices generated by a seed for the signature and the those
of the secret keys share the same algebraic link, then we can give the matrices
as just a polynomial Psignature = P∆i × PB , reducing n2 log2(q)-bits object into
a n log2(q)-bits object. However, we did not find a way to leverage this structure
to accelerate the computations of the group actions, and the column decompo-
sition might still have to be computed in that regard: thus the speed advantage
40 We are not going to talk about ideal/module lattices and use as little background

as possible. For lattice-people (and beyond), this subsection may be trivial.

42 Arnaud Sipasseuth

is really unclear to us (maybe aside from matrix multiplication, using NTTs,
Karatsuba [29] or a mix of both [32]), and only the signature size may benefit
from this structure.

Note that this was somehow proposed in our initial submission to PQC 2024,
but we also recommended against it because of our fear of an incredibly weak
structure: any attack involving polynomial system solving will now have only
n variables to guess instead of n2, plus adding potential dependencies into the
ALF3 coefficient equations that did not previously exist (especially due to the
algebraic links between the rows). However, the submission to PQC 2024 was
before the updated algebraic attack of [38] which may lead to a significant in-
crease of n. Hence, a transformation from n2 to n is now more attractive and
we are no longer discarding this idea as quickly. Furthermore, since we are pro-
viding cryptanalysis targets in this paper, we might as well set an easy target
to encourage the understanding of such objects. First and foremost, we would
like to know how much n or q have to be increased to reach a certain amount of
security, or if the attacks are in fact polynomial time and thus this approach is
infeasible. And how would those attacks carry-over on d-tensors?

Let n′, q′ be the parameters necessary to reach a certain security level for the
polynomial structure we just described, and n, q the traditional parameters in
GL(n, q) for the same security level. It is very likely that n′ ≥ n and/or q′ ≥ q,
but as long as n′ log2(q′) < n2 log2(q), then there is a gain in the signature
size. Intuitively we believe the structure could be broken quite easily, but our
interest in this structure does not stop there. In the likely case there is no
practical parameters in this “one-block” structure, why not take inspiration of
the special matrices used in the two lattice-based NIST finalists, Dilithium [18]
and Falcon [22]? We could cut it into a 2 × 2 matrix where each block of size
n/2×n/2 is generated by a polynomial, or split even further until the matrix is
composed of n/2×n/2 blocks of size 2×2, which would still divide the signature
size by 2. Either no cut lead to a gain in signature size, either the proper cut
needs to be found: see the blocks A below from n× n to 2× 2:

(
A
)
,

(
A1,1 A1,2

A2,1 A2,2

)
, ...,



A1,1 A1,2 . . . A1,(n/2)−1 A1,n/2

A2,1
. . . A2,n/2

...
. . .

...

An/2−1,1
. . .

...
An/2,1 An/2,2 . . . An/2,(n/2)−1 An/2,n/2


Could we find heuristically secure trade-offs or is this doomed to fail? And since
we have less restrictions (no “short vectors” consideration for example, so no
need to have the “algebraic link” G to be a small sparse polynomial) and smaller
matrices, maybe there are openings for more creativity.

DVA: Dangerous Variations of ALTEQ 43

5.4 Removing computations with more zeroes

In the original rejected paper in PQC 2024, we proposed a structure to avoid
as many computations as possible by introducing flexible zeroes positions that
would avoid several multiply-and-add and modular reductions. As the reviewers
pointed out, there was a miscalculation in the number of permutations but as the
structure was scalable anyway the reasoning is still sound. Let us then present
what we called “crossed-boxes” matrices, inspired by immigration questionnaire
forms. The crossed-boxes matrices we proposed have the following form:

∀P1, P2 ∈ Sn,M ∈ Γk, we have Bi = P1MP2 ∈ B

where Sn is the set of permutation matrices, and Γk is a scalable structure with
k ranging from 1 to n − 2 that we represent in the following form for k = 1 in
column decomposition:

M col =



a1,1 a1,2 a1,n−1 a1,n
a2,1 a1,2 0 0 a2,n

... 0
. . . 0 0

...
...

...
... 0 ai,i 0

...
...

...
... 0 0

. . . 0
...

an−1,1 0 0 an−1,n−1 an−1,n
an,1 an,2 an,n−1 an,n


∈ S0

i.e, a matrix M col with a column decomposition where only the following el-
ements are non-zero: the first and last element of each row/column, and the
diagonal values. Preliminary experimental computations shows that while such
M col are very sparse, the associated M ∈ GL(n, q) are completely dense, and so
are M−1 and their column decomposition (M−1)col. Generalizing the structure
give us Γk the set of invertible matrices with column decompositions Acol such
that the “contour” is dense and the “non-contour” has at most k non-zero ele-
ments per row and column. Obviously Γ1 is the most “empty” one since diagonal
coefficients need to be non-zero, but in case of security issues we can “slide” k
until we reach the full representation with k = n − 2 which are most of the
ALTEQ matrices.

Note that a reviewer pointed that each column of (M−1)col is indeed linked to
M col. In particular, the same reviewer wrote that those matrices can be written
as A+R+C+Q, where A is a rank 1 matrix, R is a matrix with one row, C is a
matrix with one column, and Q is a monomial matrix i.e. a product of a diagonal
and permutation matrix, at least for Γ1. As stressed by the reviewer, this does
seem exploitable by an attacker and we completely agree with the sentiment, but
we are not sure how to attack this structure either. Exploiting the zeroes seems
the way to go: after all, since Γn−2 is roughly equivalent to the matrices used in
ALTEQ, Γ1’s sparsity should be an obvious attack angle. The permutations make

44 Arnaud Sipasseuth

it hard to predict accurately where the zeroes are going to be. While there is a
good chance to guess one of the zeroes (since most coefficients are zeroes), how
many zeroes can we guess until one guess is likely to be false and thus wasting
computing resources on an unsolvable algebraic system? Would it be possible to
identify zero positions in polynomial time, leading to a full break?

The idea of the “cross-boxes” had their inspiration from filling forms, but
the core reasoning is predictable zeroes for the signer, a staple idea that we
took from UOV [30] schemes: knowing zeroes in a certain “secret transforma-
tion” lead to an easy system-solving, which could not be done with “random
transformations”. In the “cross-boxes” case, the transformation is only rows and
columns permutations of the matrix: the zeroes are still there in plain matrix
view, but the matrix is hidden as a solution to a system of multivariate polyno-
mials. There could be more interesting, computationally efficient tranformations,
that hide more securely the zeroes and still provide a computational gain: maybe
exploiting DVA-GG and considering the product of multiple sparse structures (as
ALTEQ’s n column matrices, see figure 2).

Another problem come from the implementation of this “cross-box” structure,
or all other permuted-sparse structures: the permutations themselves. While
there is no field operations, in theory this should be a fast operation sequen-
tially. In parallel (vectorization, etc...) this is another story. We do not know of
a way to produce random permutations in a vectorized manner efficiently, and
ALTEQ’s current efficiency relies strongly on interwoven data. Shuffle operations
are available [1], but mostly concerns elements within the same vector: not only
you need several vectors to cover just one ALF3 (thus we also need blending
strategies), but this would also require the ALF3 to be unvectorized. We stress
this does not mean we automatically give up on this subject: how many distinct
uniformly distributed permutations can we cover with a limited set of instruc-
tions, and if they are easily distinguishable. In particular, we might have to
study shuffle groups and more obscure combinatorial structures. Or, a more rad-
ical solution, target hardware that does not depend on vectorization and have
extremely fast random data swaps41. Challenging maybe, but interesting.

6 Open questions

We presented some variations of ALTEQ (DVA) to improve computational ef-
ficiency in different scenarios and explore new applications. We took risks in
heuristic security, by stepping out of the usual constructions that were used in
the conception of ALTEQ, while discussing the level of risk regarding the known
attacks. Thus the following questions naturally come, that likely needs further
work:

– We introduced DVA-GG as a generic view of the group actions operated in
ALTEQ, leading to a potential countermeasure against Beullens’ seed collision

41 Not sure if that even exists?

DVA: Dangerous Variations of ALTEQ 45

attack. We also presented some example use cases of the intermediate graph
points. So far those usages can also be realized with non-primitive related
modifications, namely with successive hashes and/or expansions. Are there
more creative way to use those intermediate points, especially in a way that
would be specific to the primitive and cannot be replicated by hashes or
expansions?

– DVA-PC0/1/2 improves the efficiency of the results to be communicated if
we delegate the computation of the group actions. We discussed the advan-
tage of precomputations in asynchronous protocols or long distance commu-
nications, but that only concerns devices that can afford them. Could we
construct further variations to DVA-PC that would suit less powerful de-
vices? For example, fitting targets like the ones used in [28] may already be
challenging for DVA-PC1/2, let alone ALTEQ. What about smartphones42?
Another use case of using hashes is to limit communications with precom-
putation devices. But how can we securely delegate the computations of the
group actions, if the only return value we get is a hash? How realistic is a
third-party precomputation device?

– We presented some matrix structures to either reduce the signature size or
improve the overall speed of the signature and verification processes. The
practical security is currently unknown for those matrices, and we would
like to have a general study of those objects to see if there is some rele-
vant instantiation that could make them secure. Or better, if there is some
security reduction hidden somewhere? What would be interesting is to find
another matrix structure that we could bind to the ALF3 structure, or ALFd

structure: this could be the only way to provide both compressed and faster
objects.

Acknowledgments. All the ALTEQ team, who introduced the GMW-FS framework
and the ATFE problem to us. Kazuhide Fukushima, Yuto Nakano and other members of
KDDI Research Inc for introducing “real-life” stuff to us or other communities like the
IETF. Saarinen and Beullens, simply because this work was inspired by their comments
on [pqc-forum].

Disclosure of Interests. All members of the ALTEQ team, and by extension, peo-
ple working in the same companies/institutes, such as KDDI Research Inc, Saarland
University, SandboxAQ, Nokia Bell Labs, Birmingham University, the University of
Wollongong and the University of Technology Sydney.

References

1. Intel® Intrinsics Guide , https://www.intel.com/content/www/us/en/docs/i
ntrinsics-guide/index.html

2. 4TH GEN AMD EPYC PROCESSOR ARCHITECTURE, https://www.amd.co
m/system/files/documents/4th-gen-epyc-processor-architecture-white-p
aper.pdf

42 For example, https://developer.android.com/privacy-and-security/keystore
does not seem to define a hard limit. Thus this could be a hardware problem only.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf
https://developer.android.com/privacy-and-security/keystore

46 Arnaud Sipasseuth

3. Introducing Intel® Advanced Performance Extensions (Intel® APX), https:
//www.intel.com/content/www/us/en/developer/articles/technical/advan
ced-performance-extensions-apx.html

4. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing. pp. 684–697 (2016)

5. Bajard, J.C., Fukushima, K., Plantard, T., Sipasseuth, A.: Fast verification and
public key storage optimization for unstructured lattice-based signatures. Journal
of Cryptographic Engineering pp. 1–16 (2023)

6. Baldi, M., Barenghi, A., Beckwith, L., Biasse, J.F., Esser, A., Gaj, K., Mohajerani,
K., Pelosi, G., Persichetti, E., Saarinen, M.J., Santini, P., Wallace, R.: LESS (Linear
Equivalence Signature Scheme) (2023), https://www.less-project.com/

7. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon, K.:
The Messaging Layer Security (MLS) Protocol. Tech. rep., Internet Engineering
Task Force (2023), https://datatracker.ietf.org/doc/html/rfc9420

8. Beullens, W.: Battle report (first 30 hours, add’l sigs round 1) (2023), https:
//groups.google.com/a/list.nist.gov/g/pqc-forum/c/5JMFqozi1Bc/m/qnWns
AtxBQAJ

9. Beullens, W.: Trivial multi-key attacks + attack on alteq (2024), https://groups
.google.com/a/list.nist.gov/g/pqc-forum/c/tjhrrmv837w/m/sjxHooYgBAAJ

10. Beullens, W.: Graph-theoretic algorithms for the alternating trilinear form equiva-
lence problem. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology
– CRYPTO 2023. pp. 101–126. Springer Nature Switzerland, Cham (2023)

11. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: Nibbling MAYO:
Optimized implementations for AVX2 and Cortex-M4 (2024), https://csrc.nis
t.gov/Events/2024/fifth-pqc-standardization-conference

12. Beullens, W., Campos, F., Celi, S., Hess, B., Kannwischer, M.J.: MAYO: Practical
Post-Quantum Signatures from Oil-and-Vinegar Maps (2023), https://pqmayo.o
rg/

13. Bläser, M., Duong, D.H., Narayanan, A.K., Plantard, T., Qiao, Y., Sipasseuth,
A., Tang, G.: The alteq signature scheme: Algorithm specifications and supporting
documentation. NIST PQC Submission (2023), https://pqcalteq.github.io/A
LTEQ_spec_2023.09.18.pdf

14. Bläser, Markus and Duong, Dung Hoang and Narayanan, Anand Kumar and Plan-
tard, Thomas and Qiao, Youming and Sipasseuth, Arnaud and Tang, Gang: AL-
TEQ : ALternating Trilinear form EQuivalence, poster for the 5th NIST PQC
Standardization Conference, online at https://pqcalteq.github.io/alteqpost
er.pdf

15. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factoring
based schemes via precomputations. In: Nyberg, K. (ed.) Advances in Cryptology
— EUROCRYPT’98. pp. 221–235. Springer Berlin Heidelberg, Berlin, Heidelberg
(1998)

16. Chen, Z., Grochow, J.A., Qiao, Y., Tang, G., Zhang, C.: On the Complexity of Iso-
morphism Problems for Tensors, Groups, and Polynomials III: Actions by Classical
Groups. In: 15th Innovations in Theoretical Computer Science Conference (ITCS
2024). Schloss-Dagstuhl-Leibniz Zentrum für Informatik (2024)

17. Chou, T., Niederhagen, R., Persichetti, E., Ran, L., Randrianarisoa, T.H., Reijn-
ders, K., Samardjiska, S., Trimoska, M.: MEDS: Matrix Equivalence Digital Sig-
nature (2023), https://www.meds-pqc.org/

18. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: Crystals-dilithium algorithm specifications and supporting documen-
tation. Round-2 submission to the NIST PQC project 35 (2021)

https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://www.less-project.com/
https://datatracker.ietf.org/doc/html/rfc9420
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5JMFqozi1Bc/m/qnWnsAtxBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5JMFqozi1Bc/m/qnWnsAtxBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/5JMFqozi1Bc/m/qnWnsAtxBQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/tjhrrmv837w/m/sjxHooYgBAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/tjhrrmv837w/m/sjxHooYgBAAJ
https://csrc.nist.gov/Events/2024/fifth-pqc-standardization-conference
https://csrc.nist.gov/Events/2024/fifth-pqc-standardization-conference
https://pqmayo.org/
https://pqmayo.org/
https://pqcalteq.github.io/ALTEQ_spec_2023.09.18.pdf
https://pqcalteq.github.io/ALTEQ_spec_2023.09.18.pdf
https://pqcalteq.github.io/alteqposter.pdf
https://pqcalteq.github.io/alteqposter.pdf
https://www.meds-pqc.org/

DVA: Dangerous Variations of ALTEQ 47

19. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: Module lip
makes lattice signatures fast, compact and simple. In: ASIACRYPT 2022. Springer-
Verlag (2022)

20. Espitau, T., Niot, G., Sun, C., Tibouchi, M.: Squirrels: Square unstructured integer
euclidean lattice signature (2023), https://squirrels-pqc.org

21. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

22. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Fast-fourier lattice-based compact
signatures over NTRU (2018), https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-2/submissions/Falcon-Round
2.zip, NIST PQC

23. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. Journal of the ACM
(JACM) 38(3), 690–728 (1991)

24. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. Journal of the ACM (JACM) 62(4), 1–64 (2015)

25. Gulley, S., Gopal, V., Yap, K., Feghali, W., Guilford, J., Wolrich, G.: New Instruc-
tions Supporting the Secure Hash Algorithm on Intel Architecture Processors.
Tech. rep. (2013), https://www.intel.com/content/www/us/en/developer/arti
cles/technical/intel-sha-extensions.html

26. Heap, B.: Permutations by interchanges. The Computer Journal 6(3), 293–298
(1963)

27. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Algorithmic number theory, pp. 267–288. Springer (1998)

28. Kannwischer, M.: pqm4: Benchmarking NIST Additional Post-Quantum Signature
Schemes on Microcontrollers (2024), https://csrc.nist.gov/Presentations/20
24/pqm4-benchmarking-additional-pq-signature-schemes

29. Karatsuba, A.: Multiplication of multidigit numbers on automata. In: Soviet
physics doklady. vol. 7, pp. 595–596 (1963)

30. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 206–222. Springer (1999)

31. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional (2005)

32. Moenck, R.T.: Practical fast polynomial multiplication. In: Proceedings of the
third ACM symposium on Symbolic and algebraic computation. pp. 136–148. ACM
(1976)

33. NIST: Post-quantum cryptography standardization (2018), https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography

34. NIST: Post-Quantum Cryptography Standardization (2022), https://csrc.nis
t.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4

35. NIST: Post-Quantum Cryptography Standardization (2022), https://www.nist
.gov/news-events/news/2022/07/pqc-standardization-process-announcin
g-four-candidates-be-standardized-plus

36. NIST: Post-Quantum Cryptography Standardization (2023), https://csrc.nis
t.gov/Projects/pqc-dig-sig/round-1-additional-signatures

37. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Annual Cryp-
tology Conference. pp. 80–97. Springer (2010)

https://squirrels-pqc.org
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Falcon-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Falcon-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Falcon-Round2.zip
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://csrc.nist.gov/Presentations/2024/pqm4-benchmarking-additional-pq-signature-schemes
https://csrc.nist.gov/Presentations/2024/pqm4-benchmarking-additional-pq-signature-schemes
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4
https://www.nist.gov/news-events/news/2022/07/pqc-standardization-process-announcing-four-candidates-be-standardized-plus
https://www.nist.gov/news-events/news/2022/07/pqc-standardization-process-announcing-four-candidates-be-standardized-plus
https://www.nist.gov/news-events/news/2022/07/pqc-standardization-process-announcing-four-candidates-be-standardized-plus
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

48 Arnaud Sipasseuth

38. Ran, L., Samardjiska, S., Trimoska, M.: Algebraic algorithm for the alternating
trilinear form equivalence problem. In: Code-Based Cryptography: 11th Inter-
national Workshop, CBCrypto 2023, Lyon, France, April 22–23, 2023, Revised
Selected Papers. p. 84–103. Springer-Verlag, Berlin, Heidelberg (2023). https:
//doi.org/10.1007/978-3-031-46495-9_5

39. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2) (1978)

40. Saarinen, M.J.O.: Official comment: Alteq (2023), https://groups.google.com/
a/list.nist.gov/g/pqc-forum/c/-LCPCJCyLlc/

41. Seiler, G.: Faster AVX2 optimized NTT multiplication for ring-LWE lattice cryp-
tography. Cryptology ePrint Archive, Report 2018/039 (2018), https://eprint.i
acr.org/2018/039

42. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997)

43. Sipasseuth, A.: Faster verifications and smaller signatures: Trade-offs for ALTEQ
using rejections (2024), to appear in ACISP 2024

44. Takagi, N., Yoshiki, J., Takagi, K.: A fast algorithm for multiplicative inversion
in GF(2m) using normal basis. IEEE Transactions on Computers 50(5), 394–398
(2001). https://doi.org/10.1109/12.926155

45. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms. In:
Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT
2022. pp. 582–612. Springer International Publishing, Cham (2022)

https://doi.org/10.1007/978-3-031-46495-9_5
https://doi.org/10.1007/978-3-031-46495-9_5
https://doi.org/10.1007/978-3-031-46495-9_5
https://doi.org/10.1007/978-3-031-46495-9_5
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/-LCPCJCyLlc/
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/-LCPCJCyLlc/
https://eprint.iacr.org/2018/039
https://eprint.iacr.org/2018/039
https://doi.org/10.1109/12.926155
https://doi.org/10.1109/12.926155

	DVA: Dangerous Variations of ALTEQ
	Introduction
	Background
	Basic notations
	Trilinear forms and a natural group action on them
	Invertible column matrices
	ALF3s and group actions in algorithms
	The ALTEQ cryptosystem

	DVA-GG: General Graph navigation, algebraic variants and patches to collision attacks
	Rationale
	DVA-GG to DVA-OTP (One Transfert Point): Patching Beullens' attack with smaller seeds
	DVA-GG and splitting seeds into distinct algebraic components
	DVA-GG potentially opening split structures
	DVA-GG to DVA-GM (Group Messages): Signing for a group

	DVA-PC: precomputations for more practical usages
	Rationale
	Further precomputations
	Deeper into the rabbit hole: DVA-HA and DVA-PC-HA
	Accelerating expCha: using the combinatorial number system
	DVA-PC into DVA-Tok: Adding a token to further exploit hashes
	Timing tests: TODO (but DVA-PC2-HA should be more than 4/5 times faster than Dilithium)

	DVA-DM: Dangerous Matrices for efficiency
	Rationale
	Implementation-wise only considerations
	Adding some polynomial structure
	Removing computations with more zeroes

	Open questions

