
How to Redact the Bitcoin Backbone Protocol
Mehmet Sabir Kiraz

De Montfort University
Leicester, UK

mehmet.kiraz@dmu.ac.uk

Enrique Larraia
nChain

Barcelona, Spain
e.larraia@nchain.com

Owen Vaughan
nChain

London, UK
o.vaughan@nchain.com

Abstract—We explain how to extend the Bitcoin backbone
model of Garay et al. (Eurocrypt, 2015) to accommodate for
redactable blockchains. Our extension captures fluid blockchain-
based databases (with mutability requirements) and compliance
with existing legislation, such as the GDPR right to be forgotten,
or the need to erase offending data from nodes’ databases
that would otherwise provoke legal shutdowns. Our redactable
backbone protocol retains the essential properties of blockchains.
Leveraging zero-knowledge proofs, old data can be erased
without requiring trusted third parties or heuristics about past
chain validation. Our solution can be implemented on Bitcoin
immediately without hard-forks, and it is scalable. It allows the
redaction of data from UTXOs or unconfirmed transactions that
have not yet flooded the network, while guaranteeing invariance
of the Bitcoin state. Thus, offending data does not need to persist
in the system, not even temporarily.

I. INTRODUCTION

Public blockchains have in-built features of data integrity,
transparency, verifiability, and a distributed network architec-
ture. However, the same features that make the technology
so attractive also pose a challenge for regulatory compliance.
This is more important to large, risk-averse organisations who
may not want to handle data that contains sensitive information
without the ability to remove that data upon request [35], [49],
[56]. This is enshrined in laws such as the European General
Data Protection Regulation (GDPR) “right to be forgotten”
[29], [42], [43]. It is the goal of this paper to make it easier
to comply with this type of regulation without sacrificing the
integrity of the underlying blockchain.

A Bitcoin transaction can be divided into payment data
and non-payment data. Typical examples of non-payment data
include image or text files. Such validation-oblivious data
usually appears either in unspendable transaction outputs, or
in unreachable script fragments of spendable outputs [40].
Consider a blockchain service provider that processes transac-
tions on behalf of users. They give their users proof that their
transactions have appeared on the blockchain1. If a user asks
the service provider to remove their data from a transaction,
then the service provider can no longer prove the integrity of
the remaining fields in that transaction. The service provider
is faced with the dilemma of either (1) keep the integrity of
the transaction and do not remove user data, or (2) lose the

This is the full version of the paper. Differences with respect the conference
version are: (i) expanded the review of the Bitcoin Backbone execution model
in preliminaries, (ii) Bitcoin redactions (Section IV) has been extended to
greater detail, and (iii) we acknolwedge a related work.

1This can be done efficiently with Simplified Payment Verification (SPV).

integrity of the transaction and remove user data. Redactable
blockchains aims to address this problem.

Redactable Blockchains: Ateniense, Magri, Venturi, and
Andrade were the first to propose a blockchain with rewriting
capabilities [2]. Their suggestion is to mine blocks using a
chameleon hash (CH) [18]. The content of a block can be
updated with the knowledge of the trapdoor key, which is
secret-shared among a set of trustees. They can redact data
by engaging in a multiparty protocol. CH-based redactions
has spawned its own line of research [37], [38], [50], [51],
[54], [55], [57], and more. For example, the authors of [38]
use decentralized policy-based chameleon hashes to distribute
redactions. In [34], the authors proposed another redactable
blockchain scheme with a semi-trusted regulator who is as-
sumed to follow the protocol.

Florian et al. in [24] propose the intriguing concept of
functionality-preserving local erasures (FPLE) for Bitcoin.
Offending or sensitive data is physically erased from storage
or garbled, never again stored in a reconstructable form, and
never shared with other nodes. To deal with validation, a set
of pragmatic workarounds is proposed relying in SPV-like
heuristics (e.g. if a transaction spending an output with erased
data has been mined already, it is assumed the validation
was correct) that effectively forces new joiners to trust past
actions. Deuber et al. [22] introduce blockchain-policy allowed
redactions. Miners decide with a PoW-based voting scheme if
redactions are valid according to the policy (we note the miners
need the original data to check policy compliance during the
voting period).

For Ethereum, Puddu et al. present µchain [46]. It maintains
encrypted versions of smart contract data, called “mutations”,
and only the unencrypted version is active. Upon user’s
request, miners can switch between versions via threshold
decryption. Redactions via mutations may trigger a cascade of
changes in other data: when a mutated transaction affects other
transactions, they need to mutate all affected transactions.
Manevich et al. [39] investigate redaction techniques for the
execute-order-validate architecture of Hyperledger. Recently,
[52] presented a new blockchain system called Strongly Syn-
chronized Redactable Blockchain (SSRB) scheme which is
based on verifiable delay functions (VDF).

More related to our work, Botta et. al. [16] propose redac-
tions for Bitcoin using NIZKs to prove partial knowledge
of SHA preimages. Their technique is quite similar to ours,
although we depart significantly from their work and improve

on a number of aspects that we will ellaborate after detailing
our contributions.

Summarising, most of the state of the art proposals for
redactable blockchains are either in the permissioned setting,
or require trusted parties or heuristics. More importantly, they
also require a hard fork, which is not realistic for chains,
especially Bitcoin and Ethereum (see Table I). In addition,
many suffer from scalability issues, particularly those that are
MPC-based or secret-share key material across miners.

A. Our Contributions and techniques

Our main contribution is an abstract framework to redact
Bitcoin-like blockchains that allows nodes to store different
validation-oblivious data locally. That is, in our framework
GDPR-compliant mining nodes can coexist with nodes that
insist in storing offending (again, validation-oblivious) data
without breaking consensus or security at the application layer.
We are the first to propose a novel solution for Bitcoin that
is decentralised (miner-redactable), does not require trustees,
heuristics, or hard-forks, and it is scalable. We use non-
interactive zero-knowledge proofs (NIZKs) as building block,
as in [16]. More concretely, our contributions are at the two
levels of the Bitcoin blockchain.

a) Consensus level: We augment the Bitcoin backbone
model of [27] to account for redactable blockchains. In our
redactable model, the data set is partitioned into disjoint
classes according to system-wide agreed-upon policies. In
the augmented model, consensus pertains now to classes of
blockchains, and consequently nodes are allowed to hold
different data, or switch altogether from one blockchain rep-
resentation to another representation of the same class. Let
us emphasize once more that nodes can store locally different
data and yet agree on the same history, namely, agree to the
same blockchain class. Technically, we need to address two
challenges:
• How can we maintain the existing proof of work? If

a single bit of block data anywhere is altered, then a
different block summary is produced. Thus, we cannot
use the summary of the redacted block as it will invalidate
the existing proof of work. We overcome this issue lifting
the domain of the cryptographic hash G that is used to
summarise blocks.

• How nodes that switch to a new representation of a
blockchain class can erase the old representation from
their local databases and yet check the redaction is
compliant with the system-wide policy? In [24] this is
achieved relying on an SPV-like heuristic, which under-
mines trustless validation in (full) mining nodes. We deal
with block erasures leveraging NIZKs; if the setup of
the NIZK is publicly-verifiable, no trust assumption is
needed.

We provide a security analysis in the UC framework [19], with
erasures, which fits perfectly with the model of the Bitcoin
Backbone protocol [27]. The NIZK must be non-malleable.
Indeed the non-malleability property ensures that from any
redacted block proposed by (a possibly dishonest) mining node

we are able to extract the unredacted block for which the proof
of work was produced, even if the redacter has seen simulated
proofs in the ideal process. If a SNARK is used, the size of
the proof is (poly)logarithmic, sometimes constant, in the size
of the redacted block.

b) Application level: We show how the redactable frame-
work can be used in Bitcoin. Our policy PB only permits
redaction of validation-oblivious data. This ensures the state
of the blockchain remains unaltered, even if the redacted
transaction is unconfirmed or part of the UTXO set. Compare
this with [24] where this is not allowed at all, or with [22]
where the unredacted transaction must persist in the system
during the voting period. We achieve instant erasures of all
types of transactions via enforcing transaction “templates”
that ensures modifications only of non-executable portions of
unlocking scripts. This also guarantees that no further changes
in child transactions are required after the redaction happens,
which fixes the “‘cascade of changes” problem present in
µchain [46]. For example, a valid redaction template has an un-
spendable output locked with script OP 0 OP RETURN ⟨Data⟩.
In analogy with regular expressions in matching patterns, the
matched part or public pattern of the script above are the two
opcodes, and the unmatched part or wildcard is the to-be-
redacted Data. To guarantee a redaction is compliant with PB
in the block erasure setting, were Data is kept private by the
redacter node, we give two NIZKs to selectively prove partial
equality to SHA256 preimages of variable length, that may be
of independent interest.

B. Comparison with the work of Botta et. al. [16]

Botta Iovino and Visconti employ a similar technique to
redact Bitcoin transactions using NIZKs. The main differences
of their work and ours are the following.2

• We describe how to redact at the consensus layer of the
Bitcoin backbone protocol, with or without privacy, by
introducing the concept of “classes” of blockchains. Thus,
unlike in [16] our approach is not hard-coded to Bitcoin,
and works for any PoW-based blockchain.

• In [16] the security analysis is very sketchy and not
formal. Importantly, they do not account for proof mal-
leability. Thus, when simulating an honest proof it is
conceivable that dishonest miners seeing such simulated
proof can simulate proofs on their own. As commented in
Section I-A we provide a formal security analysis in the
UC framework provided the NIZK is simulation sound
extractable.

• To redact Bitcoin spendable outputs, [16] needs to pro-
duce additional NIZKs (for consistency of the redacted
locking script and its hash used internally by opcode
OP CHECKSIG to generate the signing message). We
leverage OP CODESEPARATOR to not produce any addi-
tional NIZK.

2In the conference version of this work, we missed comparing our work
with [16]. We fill this gap in the full version.

Scheme Setting Redactable
by Decentralized No hard-

fork
Building
block

[2] Permissionless Central
Authority ✗ ✗ CH

[46] Permissioned Central
Authority ✗ ✓ Encryption

[22] Permissionless Miners ✓ ✗ PoW-voting
[24] Permissionless Miners ✓ ✓ SPV heuris-

tic

[34] Permissioned Central
Authority ✗ ✗ CH

[39] Permissioned
Peers
(Valida-
tors)

✗ ✗ Unhashed
data

[54] Permissioned Central
Authority ✗ ✗ Signatures,

CH

[38] Permissioned Central
Authority ✗ ✗ DPCH

[50] Permissioned Central
Authority ✗ ✗ CH

[51] Permissioned Central
Authority ✗ ✗ Commitments,

CH

[57] Permissioned Central
Authority ✗ ✗ CH

[52] Permissioned Central
Authority ✗ ✗ VDF

[16] Permissionless Miners ✓ ✓ NIZK
Ours Permissionless Miners ✓ ✓ NIZK

TABLE I: Comparison of redactable blockchains. (We see
MPC or secret-shared based approaches as centralized because
security relies on a fixed and small set of users.)

• Regarding proving partial equality to large SHA preim-
ages. The approach of [16] is to reveal all the midstates of
the original txid, and only verify redacted midstates. They
claim this is a minimal leakage. We instead provide two
approaches. A commit-and-prove approach for enforcing
redactions in midstate individually, and, to reduce the
number of midstate proofs, a recursive approach. Both
of our approaches fully conceal the unredacted data.
Thus, our approaches are applicable to other scenarios
where partial equality to large SHA preimages is needed,
whereas theirs is not truly zero-knowledge due to the
leakage of the midstates.

II. PRELIMINARIES

A. Backbone Protocol

The Backbone protocol Π was introduced in the seminal
work of Garay, Kiayias, and Leonardos [27] to formally asses
the security of Nakamoto’s Bitcoin protocol [41].

Blockchain Abstraction: Blocks in [27] are modelled as
tuples B := ⟨ctr, s, x⟩, where ctr ∈ N is a nonce for mining,
s ∈ {0, 1}κ is a pointer to another block, and x ∈ {0, 1}∗
is the actual block data. A blockchain of length ℓ is any
ordered sequence C := B1, . . . ,Bℓ. The ordering is settled
by requiring that for any two consecutive blocks Bi−1, Bi it
holds si = H(ctri−1, G(si−1, xi−1)), where H,G are two
cryptographic hash functions H,G : {0, 1}∗ 7→ {0, 1}κ, both
with range size set to the security parameter κ. H is used to
mine blocks, and G to summarize block data before mining
it. This distinction between H and G will be important to us.
The prefix chain resulting from pruning the k rightmost blocks

of C is typically denoted with C⌈k, and the notation C′ ⪯ C
indicates that C′ = C⌈k for some k ≤ ℓ.

Backbone Protocol: The Backbone protocol Π is
application-agnostic and its goal is to achieve proof-of-
work based consensus. It consists in a two-layer protocol.
• Application layer: Semantics at this layer are unspecified.

The protocol is parametrized with three (unimplemented)
functions. The input-contribution function I(·) essentially
prepares new candidate blocks, the chain-reading function
R(·) interprets the blockchain data xC, and the content
validation predicate V (·) decides whether xC is correct
according to the application running on top.

• Consensus layer: Π fully specifies three functions
validate,maxvalid, pow that are used for chain validation,
chain comparison and proof of work, respectively.

In this work we do not explicitly write out the func-
tions (pow, validate, maxvalid) nor the description of Π,
and refer to [28] for full details. A high-level description
is as follows. The Backbone protocol Π is an infinite loop
where at each step (round) miners fetch new content, either
from the application layer or from other miners, and either
broadcast fresh mined blocks or move on to the next round
if a new valid block arrives from another node. For a given
difficulty target T, and assuming up to q hash tries, a block
B := ⟨ctr, s, x⟩ is considered ‘mined’, i.e. it has proof of work
if H(ctr,G(s, x)) ≤ T ∧ ctr < q. In this case, predicate
validblockTq (B) is set to true. A blockchain is deemed valid
if all its blocks have been mined, and blockchain data xC is
semantically valid according to V (·). The function validate
from [27] is parametrized with the hash functions H , G and
with the content validation predicate V (·). To actually mine
blocks, the function pow iterates over the nonce ctr till it finds
a hash (of H) below the current difficulty target T.3

Execution Model: The execution model for the backbone
protocol Π provided in [27] is inspired by the UC framework
[19]. A protocol is a collection of programs run by a set
of parties which are captured as interactive Turing Machines
(ITMs). In the Bitcoin context, the n main parties (Pi)i≤n of
the protocol are also called nodes or ‘miners’. The model also
incorporates two special ITMs, the environment Z and the
adversary A. The interactions between all machines (possibly
including ‘suboroutine’ machines different than Pi,Z,A) are
governed by a control function C that dictates who can
communicate with: at the very least, only the environment
Z can specify the inputs of the main parties Pi, and at the
end of the protocol, each Pi must send back its output to Z .
Also, C allows bilateral backdoor communication between the
adversary A and Pi, and between A and Z . We stress that the
role of C in 19 is not meant to model communication channels
across the main parties Pi, instead it sets up the communica-
tion rules of system of ITMs that later enable simulation-based
security analysis. In [27], the control function C is further
restricted to only allow a ‘round-robin’ interaction between

3In practice, the difficulty target is inversely proportional to the collective
computational power of the miners, and it is adjusted periodically.

the main parties Pi, and the adversary is assumed to corrupt
t′ ≤ t parties for a fixed threshold t hard-coded in C; the later
models the honest-majority assumption necessary for proof-of-
work based blockchains.

Resources as ideal functionalities: Communication across
the parties Pi is abstracted away with an ideal ‘diffuse’
functionality FDIFF with a twofold purpose: it models a non-
reliable broadcast channel, and structures the communication
into sequential rounds; the adversary A can spoof and send
inconsistent messages (for example, change the order of the
messages that parties send or receive to launch partition
attacks) but A cannot avoid deliveries between the parties.
Mining (hashing) is modelled with an ideal random oracle
functionality FRO, defined in the natural way: FRO maintains
internal tables for the query/responses pairs, where responses
are sampled uniformly on fresh queries. In [27] one table per
hash function H,G is maintained. In our case, FRO is only
used to model hash H (and possibly other queries, e.g. related
to NIZKs), but we assume a description (circuit) of the hash
G used to summarise blocks is known. The number of queries
issued to H to mine blocks are less than a fixed bound q per
each honest party and round, and less than t′ · q adversarial
queries per round (if A corrupts t′ parties at the given round).
Both functionalities FDIFF, FRO share state but for clarity of
exposition it is more convenient to describe them separately.
The Backbone protocol Π is assumed to have access to these
two functionalities as subroutines.

Refinements: The model we have sketched this far is known
as the q-bounded synchronous model. We refer the reader to
[27], [28] for full details. Later [45] extend it to the semi-
synchronous model where the adversary A can delay messages
up to ∆ rounds, and in [3] it was extended to account for
adversaries that can temporarily corrupt a majority of miners.
To phrase it in a more UC style, one can think that the
security of Π is carried over ‘the (FRO,FDIFF)-hybrid model’,
Badertscher et al. [4] provide a thorough formalization of this
intuition in the UC framework of Bitcoin when seen as a
transaction ledger.

Property-based security: For a given security parameter
κ, let the random variable viewq,t,n

Π,A,Z(1
κ) that describes the

joint view of all parties (Pi)i≤n when running the Backbone
protocol Π with functionalities FRO, FDIFF, and Z’s input
fixed to 1κ. Note that the joint view is a function of κ, Z and
A.

In [27] a property Q is a binary predicate over the joint
view, and we say Q holds for Π if for all Z and A it holds

Pr[Q(viewq,t,n
Π,A,Z(1

κ)) = false] ≤ neg(κ).

We emphasize that as defined, joint views correspond to
single standalone executions of Π, and the probabilities are
taken over the random choices made by all the system ITMs
(including the hybrid subroutines modelling resources).

Regardless of the actions of A, three properties hold over
Π (proved in [28]).

• QcommonPrefix: Any pair of local chains C1, C2, adopted
by any pair of honest miners at (possibly distinct) rounds,
share the same prefix. That is, it holds C1 = C

⌈k
2 , for a

given parameter k .
• QchainQuality: It has parameters ℓ, µ. In any ℓ consecutive

blocks of C, the ratio of honest blocks contributed by
honest parties is at least µ.

• QchainGrowth: It has parameters τ , s. After s rounds, the
chain will be at least τs blocks longer.

Formal definitions of the properties informally stated above
can also be found in [28].

B. Bitcoin Blockchain

In Bitcoin the chain reading function R(·) parses block
data x into an ordered set of transactions x := (tx1, . . . , txn)
interpreted as the entries of a double-entry accounting system.
Each transaction specifies a list of inputs (debit) and a list
of outputs (credit). The credit of an output is spent if it is
referenced as an input of a transaction appearing in a future
block. Regarding validation V (·), besides enforcing no double
spending, Bitcoin comes with a stack-based programming
language in which spending conditions (puzzles) can be coded
up in locking scripts associated to outputs. The inputs of a
transaction, reference (spend) previous outputs, and also pro-
vide an unlocking script, with the arguments (puzzle solutions)
needed to execute the locking script of the referenced output.
The spending is allowed if the execution resolves to true. An
output is spendable if the conditions specified in the locking
script can be met.

a) Transaction Identifiers.: There exists several imple-
mentations of Bitcoin [9]–[11] differing in details such as
transaction format, block size, or expressiveness of the spend-
ing conditions, but they all generate transaction identifiers by
double hashing with SHA256. Our techniques can be applied
to any of these implementations.

b) Arbitrary Content Data.: In Bitcoin, besides financial
data, a transaction can also contain arbitrary content. There
are several insertion methods: (1) in locking scripts after
opcode OP RETURN, (2) in unreachable conditional branches
of locking scripts, (3) in coinbase inputs (only available to
miners), or (4) in public keys, public key hashes and pay-
to-script hashes. We will collectively denote the data inserted
with the first two techniques as non-executable locking script
(NELS) data. According to [40], a vast majority of non-
financial data in the BTC network is OP RETURN data 4.
It is reasonable to assume that insertion via NELS data
will become the de facto strategy. The permitted size varies
between blockchain implementations, but for some it can be
very large. For example, BTC can store data up to 80 bytes
[12] whilst BSV has recorded mainnet transactions of 42 MB
[53].

4 [40] reports that 86, 8% of BTC non-financial data is OP RETURN data,
as per 2017.

C. NIZKs

Non-Interactive Zero-Knowledge Arguments of Knowledge
(NIZKs) were first introduced by Blum, Micali, and Fieldman
in [13], [14]. Given an NP relation R and L its associated
language. A (pre-processing) non-interactive zero-knowledge
argument of knowledge (NIZK) for R is a triplet of algorithms
Γ := (S,P,V) defined as follows:
• S(1λ,R)→ (pk, vk) takes as input a security parameter
λ and a description of relation R and it outputs a pair of
keys pk, vk.

• P(pk, x, w) → π takes the proving key pk, the public
instance x and the private witness w as input and outputs
a proof π.

• V(vk, x, π)→ b takes the verification key vk, the public
instance x, and the proof π as input, and outputs either
b := true (valid proof) or b := false (invalid proof).

Γ is in the random oracle model if S, P, V are given oracle
access to a random function (in our context, access to the FRO

functionality). Informally, Γ is complete if V always accepts
proofs π generated by the honest prover P on inputs (x;w) ∈
R. It is computationally sound if no efficient cheating prover
P∗ can produce a proof π for a false statement x /∈ L. It is
zero-knowledge if no information about the witness w is leaked
from the proof π; formalised by requiring the existence of a
simulator S that can forge proofs for fake statements x /∈
L, or for valid statements for which no witness is known. S
has some extra power: in the common reference string (CRS)
model it has access to a simulation trapdoor implicit in crs :=
(pk, vk), and in the random oracle model it has the ability to
program FRO.

Simulation Sound Extractability (SSE): Γ is adaptive knowl-
edge sound if for any efficient algorithm P∗(crs) that pro-
duces a valid proof for x we can extract a witness to the
statement x ∈ L. A stronger notion capturing NIZKs that
are non-malleable is simulation sound extractability [47], [48],
and it requires the above to hold even if P∗ sees simulated
proofs produced by the zero-knowledge simulator S . In this
work, we consider black-box SSE-NIZKs. Thus, we assume
the existence of an efficient extractor that works for all efficient
cheating provers. It is known that BB-SSE is necessary to
construct UC-secure NIZKs [20], [31], [33].

zkSNARKs: If the NIZK is computational knowledge-sound
and the size of the proof is |π| = Oλ(1), then it is a succinct
non-interactive argument of knowledge [8]. There has been
an explosion in the design of SNARKs partially fuelled by
applications in cryptocurrencies [6], [15]. The constructions
are either in the standard (CRS) model or in ROM. See for
example [7], [21], [25], [30], [44], to name just a few. In [32],
Groth and Maller construct white-box SSE SNARKs, however,
it is usually believed that black-box SSE SNARKs cannot be
attained in the standard model. The intuition is that a succinct
proof cannot contain enough information about a witness, and
hence the extractor should be hard-coded to a concrete P∗. If
the succinctness property is relaxed so that the size of π can
depend quasi-linearly in the size of w (but still sublinear in the

size of the circuit describing R) then BB-SSE for SNARKs is
possible [1], [36]. Recently, Ganesh et al. construct wittness-
succinct UC-secure SNARKs in the random oracle model [26]
from succinct polynomial commitment schemes and using the
Fischlin transform [23] to avoid rewinds.

III. REDACTABLE BACKBONE PROTOCOL

A. The extended model for redactable blockchains

Policies: We extend the backbone protocol to redactable
blockchains by partitioning the set of possible blockchains C
into disjoint classes according to some policy P. We formalize
the notion of policy through an equivalence relation over
{0, 1}∗ that is efficiently testable.

Definition 1 (P-equivalent data, blocks, and chains): Let
∼ be an equivalence relation (reflexive, symmetric, transitive)
over {0, 1}∗ and a probabilistic polynomial-time (PPT) algo-
rithm P such that x ∼ x∗ if and only if exists σ ∈ {0, 1}∗
such that P(x, x∗, σ) = 1. Here σ is auxiliary information,
possibly set to empty. The class [x] is the set of all x∗ related
to x.
• Two blocks B := ⟨ctr, s, x⟩, B∗ := ⟨ctr, s, x∗⟩ are

equivalent if x ∼ x∗. The class [B] is the set of all B∗

related to B.
• Two chains of the same length C := (B1, . . . ,Bℓ), C∗ :=
(B∗1, . . . ,B

∗
ℓ) are equivalent, if Bi ∼ B∗i for i = 1, . . . , ℓ.

The class [C] is the set of all C∗ related to x.
In the redactable model, we are interested in the system
agreeing in the same blockchain class [C] of the quotient space
C/∼. In particular, two nodes may store locally two different
blockchain representations C′,C′′ ∈ [C], or at some point in
time, all nodes may switch from the first representation C′ to
the second one C

′′
.

Redactions via policies may render validation at the appli-
cation layer of the backbone protocol invalid. Although this
is acceptable, it requires changes in the logic of V (·). If this
is not the case, we say the policy P is compatible with V (·).
Recall that xC denotes the data held in blockchain C.

Definition 2 (V -compatible policies): A policy P as in Defn.
1 is compatible with a validation-content function V (·) if, for
any two related blockchains C1 ∼P C2, we have that V (xC1) =
true⇔ V (xC2

) = true.
Importantly, V -compatible policies guarantee that after redact-
ing into block B∗, a cascade of changes in other blocks is not
triggered. Our policy for Bitcoin in Section IV is compatible
with the existing content validation logic (i.e. with Script
execution).

Redactable Hashes: Data recorded in a redactable
blockchain is the class [x]. Therefore, we need to lift the
domain of the cryptographic hash that is used to summarise
block data. Given a cryptographic hash G, define the hash of
(s, [x]) as the set of all hashes of bitstrings x∗ related to x.
This mapping is well-defined over domain D := {0, 1}κ ×
{0, 1}∗/∼ and it is hard to find collisions over D.

Lemma 1: Let an equivalence relation ∼ over {0, 1}∗, and
let a cryptographic hash G : {0, 1}κ × {0, 1}∗ → {0, 1}κ.

The function G̃ with domain {0, 1}κ × {0, 1}∗/∼ given by
G̃(s, [x]) := {g∗ | ∃x∗ ∼ x s.t. g∗ = G(s, x∗)} has the
following properties:

(i) G̃ is well defined. That is, G̃(s, [x1]) = G̃(s, [x2]) for all
x1 ∼ x2.

(ii) G̃ is collision resistant in the following sense: for any
s ∈ {0, 1}κ and x1 ̸∼ x2 ∈ {0, 1}∗/∼, it is unfeasible to
find g ∈ G̃(s, [x1]) ∩ G̃(s, [x2]).

(iii) G̃ is efficiently computable. Thus, G(s, x) ∈ G̃(s, [x]).

Proof: We start proving that G̃ is well-defined. Let
x1 ∼ x2, and g∗ ∈ G̃(s, [x1]). There exists x∗1 ∼ x1 such
that g∗ = G(s, x∗1). By transitivity x∗1 ∼ x2, and therefore
g∗ ∈ G̃(s, [x2]). This shows the ‘⊆’ direction. The other
direction ‘⊇’ is argued similarly and using the symmetry of
∼.

Collision resistance is straightforward. If there exists a
collision finder Ã that outputs s, x1 ̸∼ x2 with G(s, x1) =
G(s, x2), then Ã also finds collisions for G.

Last, using the reflexive property of ∼ we have that g :=
G(s, x) ∈ G̃(s, [x]).

Redacting Data and Proof of Work: We want to mine class
blocks [B = ⟨ctr, s, x⟩] only once, and not every time a new
representation x∗ ∼ x of the data comes in. We reconcile these
two apparent conflicting requirements by deeming a redacted
block B := ⟨ctr, s, x∗⟩ mined if there exists proof of work
for an old representation B ∈ [B∗]. More concretely, we set
predicate validblockTq (B

∗) to true if:

∃x ∈ [x∗] s.t. H(ctr,G(s, x)) < T ∧ (ctr ≤ q),

where q is a bound on the number of queries to FRO. To
be able to evaluate the above predicate we use an ideal
functionality Fredact that allows miners to validate whether
or not a hash g is in the set G̃(s, [x∗]). The functionality
also allows miners to register unredacted data x ∼ x∗ with
other miners under a handle τ . Since we want to reuse proof-
of-work, the hash g = G(s, x) is always given away after
redaction, however, registering x can potentially leak more
information about x (e.g. register by broadcasting handle
τ := x). To capture this, Fredact is parametrized with a leakage
function L such that L(x, σ) is always given to the ideal
adversary S. See Figure 1 for the full description of commands
registerRedaction, and validateRedaction of Fredact.

Functions of the Redactable Backbone Protocol: The func-
tions maxvalid∗ and pow∗ of Π∗ are exactly the same as in
the standard backbone protocol Π. The syntax of function
validate∗ is slightly different than validate from [27]. The
changes are only related to setting the right value of g∗ (either
G(s, x∗) or old mined digest g).

We do not specify how the handle τ and the old mined
digest g are transmitted between peers, nor where handlers
are stored at the receiving node. We just assume they are part
of the internal state st of Pi at the moment of validating.
In practice, the old digest g can be retrieved from the block
headers, and the handler τ can be encoded as part of the

Functionality FG,L
redact

The functionality is parametrized by a cryptographic hash G and a leakage
function L.

Register redactions:
Upon receiving (registerRedaction, x∗, x, σ, s) from miner Pi.

• Do nothing if P (x∗, x, σ) ̸= 1. (Thus, if x ̸∼ x∗.)
• Else:

– Send (leak, x∗, G(s, x),L(x, σ)) to adversary S and wait for
response τ .

– Store (x∗, s, x, τ)
– Output τ to Pi

Validate redactions:
Upon receiving (validateRedaction, x∗, s, g, τ) from miner Pi:

• If (x∗, s, ⋆, τ) not stored send (unredactedData, x∗, s, g, τ) to S
and wait for response (x, σ). If P (x∗, x, σ) = 1 and g = G(s, x),
store (x∗, s, x, τ).

• If (x∗, s, ⋆, τ) is stored, output true to Pi, else output false.

Fig. 1: Ideal functionality to register and validate redactions.

redacted block data5, or sent separately by other means.
Thus, in our redactable model with Fredact, block validity is
implemented as follows:
Predicate validblockTq (B, st):

1: ⟨ctr, s, x∗⟩ ← B
2: (g, τ)← getUnredactedBlockSummary(x∗, st)
3: if (g, τ) = ∅ then
4: g∗ ← G(s, x∗)
5: validRedaction← true
6: else
7: g∗ ← g
8: validRedaction← FG,L

redact(validateRedaction, x
∗, s, g, τ)

9: end if
10: validPoW← (H(ctr, g∗)

?
< T) ∧ (ctr

?
< q)

11: return (validPoW ∧ validRedaction)

We emphasize that since in the redactable model we deal
with class blocks [B], beyond the restatement of predicate
validblockTq , the function validate from [27] and our own
validate∗ have the same semantics.

B. Properties in the Redactable Model

The notion of chain prefix is extended to the quotient C/∼
in the natural way. Thus, [C]⌈k denotes the chain class resulting
from pruning the k rightmost class blocks from [C]. We write
[C1] ⪯ [C2] if [C1] is a prefix of [C2] in the above sense. The
common prefix property QcommonPrefix for Π∗ is defined using
this partial ordering in C/∼.

Similarly, we can restate properties QchainQuality and
QchainGrowth. For chain quality, what is demanded is that a
fraction of class blocks are honest; therefore, in ℓ consecutive
blocks, the adversary A is allowed to contribute with a fraction
larger than µ as long as the original data and the adversarial
data are related through ∼. Note that the redaction can even
happen in the node that receives or compiles the block data in
the first place; in this sense, it is responsibility of the agreed-
upon policy to decide what is fine to ‘censor’ (i.e. to redact)
in the network and what not.

5For example, in Bitcoin one can embed τ in an unspendable UTXO of a
transaction of x∗.

Following [27], we consider the redactable Backbone proto-
col Π∗ in the (Fredact,FRO,FDIFF)-hybrid model, where recall
FRO models calls to the hash H and FDIFF models network
communication.

Now, let {viewq,t,n
Π∗,A,Z(1

κ)}κ∈N be the random variable
ensemble that describes the joint view of the nodes when
running the hybrid redactable backbone protocol Π∗. Recall
from Section II that property Q holds for Π∗ if for all environ-
ments Z and adversariesA we have Pr[Q(viewq,t,n

Π∗,A,Z(1
κ)) =

false] ≤ neg(κ).
Theorem 1: The properties QcommonPrefix, QchainQuality,

QchainGrowth hold for runs of the redactable backbone protocol
Π∗ in the (Fredact,FRO,FDIFF)-hybrid model.

Proof (sketch): The proof strategy in [27] crucially relies
on the properties of ‘typical executions’ of the Backbone
protocol Π, which in turn rely on the properties of the random
oracle FRO modelling H and G (cf. [28, Defn. 9, Thm. 10]).
The same proof strategy can be extended to the redactable
Backbone protocol Π∗ with the natural restatements of block
insertion, block copy and block prediction for blocks B,B∗,B′

[28, Defn. 8] for class blocks [B], [B∗], [B′], and leveraging the
collision resistance of the redactable hash G̃ shown in Lemma
1.

C. ImplementingFredact with Block Erasures

Fredact can be trivially implemented if the redacter leaks
the original (unredacted) block data x —i.e broadcasts handler
τ := x along with redaction x∗. To validate x∗, miners simply
check that x∗ ∼ x and g = G(s, x). However, this approach
is problematic if x contains offending data or conflicts with
privacy regulations. We observe that the node preparing a
redaction x∗ can also prove in zero-knowledge the existence of
x such that x∗ ∼ x. This allows to remove x from validating
nodes, as we shall see.

Recall we are assuming ∼ is an equivalence relation effi-
ciently testable with policy algorithm P (cf. Defn. 1).

Definition 3 (Redaction language): Consider the following
NP relation parametrized by a cryptographic hash G and
policy P:

Rred :=

{
((x∗, σ, s, g);x)

∣∣∣∣ g = G(s, x)
P(x, x∗, σ) = 1

}
.

The associated language Lred is any redacted block data x∗ ∈
[x], the old pointer s, and the digest g; the witness is the
original block data x for which the digest g was computed.
Let Γred := (Sred,Pred,Vred) be a NIZK scheme for Rred.
The redactor node can produce a proof π to the statement
“(x∗, σ, s, g) ∈ Lred” with Pred, and broadcast B∗ :=
⟨ctr, s, x∗⟩ to the system along with the tuple π, σ, g. The
other nodes, after verifying with Vred the validity of π, replace
B := ⟨ctr, s, x⟩ with B∗ in their local databases. Importantly,
nodes that have not seen the original block B and only receive
B∗, σ, g, π, for example new joiners, will also be convinced
that the redaction B∗ adheres to the agreed policy P, and
validate the proof of work by themselves using g, without
relying on SPV heuristics or on trusted third parties.

Function ΠG,Γred

redact

The function is parametrized with a cryptographic hash G, and NIZK Γred.
The function makes calls to an ideal functionality Fλ,Γred

KEYGEN to get the NIZK
keys.

On input (cmd, q) do the following:
1: if cmd = registerRedaction then
2: (x∗, x, σ, s)← q
3: g ← G(s, x)

4: pk ← Fλ,Γred
KEYGEN(provingkey)

5: π ← Pred(pk, (x
∗, σ, s, g), x)

6: Erase x and all internal randomness used in Pred

7: return τ := (σ, π) ▷ Handle set to nizk π and auxiliary
information σ

8: end if
9: if cmd = validateRedaction then

10: (x∗, s, g, τ := (σ, π))← q

11: vk ← Fλ,Γred
KEYGEN(verificationkey)

12: return (true
?
= Vred(vk, (x

∗, σ, s, g), π))
13: end if

Fig. 2: The function used to register and validate redactions
x∗ ∼ x with block erasures.

The Redact Function: We assume the keys of Γred are
generated as prescribed by the setup algorithm. This as-
sumption is realistic if Γred does not have a trusted setup,
as in this case one can publicly verify that the keys are
correct. Otherwise, the trust posed on the keys generation
can be mitigated if the scheme is updatable —essentially,
by running a multiparty computation protocol to generate a
new key pair deemed secure. The ideal functionality Fλ,Γred

KEYGEN

gives access to honestly generated keys. On initialization runs
(pk, vk)← Sred(1

λ,Rred). Then, on query provingkey returns
pk, and on query verificationkey returns vk.

In Figure 2 we define the function Πredact that uses a NIZK
scheme Γred for Rred with access to the verification key vk
via Fλ,Γred

KEYGEN. We have the following result.
Theorem 2: Let Γred be a NIZK for relation Rred with

black-box simulation sound extractability. Then, ΠG,Γred

redact UC-
realizes the functionality FG,L

redact in the Fλ,Γred

KEYGEN-hybrid world
for leakage function L(x, σ) = σ. Thus, for every real
adversary A against ΠG,Γred

redact , there exists an ideal adversary
S against FG,L

redact such that it holds execΠredact,A,Z(1
λ) ≈

execFredact,S,Z(1
λ).

Proof: In the UC experiment, the ideal execution involves
an ideal adversary S that simulates a real execution towards
its environment Z . S is connected to Z and Fredact, but has no
access to the dummy parties P̃i (which simply relay messages
between Z and Fredact). S runs Πredact internally with a copy
of the real adversary A and parties Pi. If A corrupts Pi, S tells
Fredact to corrupt dummy P̃i, and in response gets the internal
state of P̃i ; also S can specify the output of corrupted P̃i.

The ideal adversary S is defined as follows:
• When S receives (leak, x∗, g,L(x, σ) := σ) from Fredact,

it simulates a proof π for statement (x∗, σ, s, g) ∈ Lred.
It sends handle τ := (σ, π) to Fredact.

• When S receives (unredactedData, x∗, s, g, τ := (σ, π))
from Fredact. If the proof π is not valid for statement

(x∗, σ, s, g,), it sets x := ⊥. Else, it extracts witness
preimage x. S sends (x, σ) to Fredact.

• When A corrupts real party Pi, S gets from Fredact all
registrations and validations queried by dummy party
P̃i. S can simulate validations towards A by simply
running Vred. To simulate registration queries, S only
sends (simulated) proofs π to A, but not the unredacted
data x (which S does not have). This is allowed because
in step (6) of Πredact, the real party Pi has erased its
internal tape where it supposedly runs Pred.

It is not difficult to see with a hybrid argument that the ideal
execution involving Fredact described above is indistinguish-
able from the real execution of Πredact. The hybrid argument
leverages black-box simulation extractability and is the same
as the one used by Groth in [31] to implement the functionality
FNIZK in a model with erasures. We refer to Theorem 20 of
the full version of [31] for details.

On simulation soundness: To avoid malleability attacks
where a cheating redaction node mauls proofs of non-
compliant redactions we need the NIZK Γred to be simulation
sound. Black-box SSE is necessary to argue composable UC-
security [19] of Πredact as in Thm. 2. However, the execution
model of the backbone protocol is in the standalone setting
(see Section II-A), and therefore it may be the case that white-
box SSE, or just simulation soundness, suffices. This affects
what schemes can be used. For example, the SNARK of [32]
and variants of Groth16 [5] are white-box SSE, and do not
need compilers [1], [26], [36] to lift to black-box SSE.

IV. CONTENT REDACTION IN BITCOIN TRANSACTIONS

A. The Redaction Policy

We will only allow redaction of non-executable portions of
locking scripts. This guarantees that the state of the Bitcoin
blockchain, such as the UTXO set, and the traceability of spent
coins remains the same after a redaction happens.

Definition 4 (NELS data): Let x := (tx1, . . . , txn) ∈ {0, 1}∗
be a set of Bitcoin transactions forming a block. We say that
Data forms part of the non-executable locking script data
(NELS) of block x if some output txi.outj ∈ {0, 1}∗ is of
the form:

txi.outj := “OP 0 OP RETURN ⟨Data⟩”,

or it has pattern:6

txi.outj :=

“ OP 0 OP IF ⟨Data⟩ OP ENDIF OP CODESEPARATOR ***”.

The first pattern is a standard unspendable UTXO. The second
pattern can contain any succeeding script code (the ***
part above); namely it is to redact spendable outputs. More
complex patterns can be added to define NELS data. We say
that two data blocks x, x∗ are related in Bitcoin, if they have

6In the conference version, an incorrect pattern that would invalidate content
validation was given: “‘*** OP RETURN ⟨Data⟩ OP CODESEPARATOR”. The
unlocking signature of any preceeding P2PK/P2PKH script would be for a
message that includes the unredacted data Data.

the same number n of transactions, and each of their (ordered)
transactions have same non-NELS data. In simple words, two
blocks are related if the financial data that miners use for
validation is the same in both blocks.

Definition 5 (NELS-equivalent data): We say that two
transactions tx, tx∗ of the same length ℓ are related if for
some subset σ ⊆ {1, . . . , ℓ} it holds:

(i) The bits of tx∗ at positions {1, . . . , ℓ}\σ form NELS data.
(ii) The bits of tx and tx∗ at positions σ ⊆ {1, . . . , ℓ} are

equal.
We will write PB(tx, tx∗, σ) = 1 if this is the case. Two data
blocks x := (tx1, . . . , txn), x∗ := (tx∗1, . . . , tx

∗
n) with the same

number of transactions are related if txi is related to tx∗i for
all i ≤ n. With slight abuse of notation we will also write
PB(x, x∗,σ) = 1 if this is the case, where σ = (σi)

n
i=1.

It is not difficult to see that PB defines an efficiently testable
equivalence relation (cf. Defn. 1) over the set of Bitcoin
blocks.

Bitcoin Validation Compatibility: In the second pattern of
NELS data (cf. Defn. 4) we add opcode OP CODESEPARATOR

to make sure that if the output has been spent already, and the
succeeding script code involves a signature check (for example
a P2PKH script), the signed message does not include the
unredacted data Data [17] (see also footnote 6). With this
trick we can redact Data without invalidating the signature
already present in the spending transaction, and hence no
further changes in other transactions are needed. Thus, PB is
compatible with the Bitcoin content validation content VB(·)
as per Defn. 2.

B. Redacting Bitcoin blocks

In Bitcoin, the hash G ignores the pointer s and computes
the root of the Merkle tree whose leaves are the transaction
IDs (txidi)

n
i=1. Thus g := Merkle.getRoot((txi)i)

The partial equality relation Rpeq: Say that a subset of r
transactions (txij)

r
j=1 of a block B are redacted as transactions

(tx∗ij)
r
j=1. A redaction Bitcoin node needs to prove that they

are related to the original transactions (txij)j . He will do so by
disclosing the original transaction identifier txidij and proving
partial equality of tx∗ij to preimage txij of txidij . Thus, we
consider the following relation:

Rpeq :=

{
((tx∗, txid, σ); tx)

∣∣∣∣ txid = SHA256d(tx),
tx∗[k] = tx[k] ∀k ∈ σ

}
where SHA256d denotes double hashing and tx[k] denotes the
k-th bit of transaction tx. Observe that this covers item (ii)
of policy PB.

Parsing redacted blocks: We augment each redacted tx∗ij
with an extra unspendable output containing the positions
of the unchanged bits σij , the original transaction identifier
txidij , and the proof πj for the partial equality statement. If
the the original and redacted transactions txij , t̃x

∗
ij have m

outputs, the last output of the augmented redacted transaction
t̃x
∗
ij is

t̃x
∗
ij .outm+1 := OP 0 OP RETURN ⟨red, txidij , σj , πj⟩,

where red is a flag that marks the transaction as redacted.
The redacted block is B∗ := ⟨ctr, s, (t̃x∗i)i⟩. The parser
getUnredactedBlockSummary identifies the redacted transac-
tions t̃x∗i of B∗ searching for flag red, and extracts (txidij , πj)
from its last output. In case tx∗i is not marked as redacted (thus
tx∗i = txi), it just sets (txid∗i , ∅). Thus the parser outputs the
(implicit) original block summary g := (txidi)i, and handle τ
set to the pair of vectors σ := (σi)i, π := (πi)i. Note that the
only information leaked about the original (unredacted) block
data x are the redacted bit positions σ.

Proving and verifying redactions in Bitcoin: Using any
NIZK Γpeq := (Speq,Ppeq,Vpeq) for the partial euqality
relation Rpeq we can build a NIZK Γred := (Sred,Pred,Vred)
to prove and verify redactions in Bitcoin.

Prover Pred: On input an original block B := ⟨ctr, s, (t̃xi)i⟩
and redacted block B∗ := ⟨ctr, s, (t̃x∗i)i⟩

1) for each redacted transaction pair (txij , tx
∗
ij
) gen-

erate a proof for the partial equality statement
(tx∗ij , txidij , σj ; txij) ∈ Rpeq:

πj ← Ppeq((tx
∗
ij , txidij , σj), tx

∗
ij)

2) output π := (πj)j

Verifier Vred: On input a redacted block B∗ :=
⟨ctr, s, (t̃x∗i)i⟩ and proofs π := (πj)j

1) extract proof πj , original txidij and σj from augmented
transaction t̃x

∗
ij

2) check proof:

true
?
= Vpeq((tx

∗
ij , txidij , σj), πj)

3) check item (i) of Defn. 4 explicitly using tx∗ij , σj .

C. Partial equality to SHA256 preimages

SHA256 follows the Merkle-Damgard construction with a
compression function CFsha over 512-bit words messages and
256-bit digests. We will start assuming that the size of the
transaction that needs to be redacted is less than 512 bits, as
in this case a single call to CFsha is needed7 and our technique
is easier to understand. Later, we will explain how to deal with
larger preimages.

The main difficulty strives in the fact that Bitcoin transac-
tions are customisable in the number of inputs, the number of
outputs, and their script patterns. This means that one cannot
predict in advance which substring of a serialised transaction
will correspond to NELS data.

We design a circuit that takes σ as part of its public input.
That is, a circuit that allows to prove dynamically what bits
have been not been modified. If the transaction tx has ℓ bits,

7Actually, with padding, transactions of more than 447 bits need more calls
to CFsha.

we will represent the subset σ of non-redacted bit positions
as a vector of ℓ bits such that:

σ[k] =

{
0 if k-th bit of tx is changed (redacted) in tx∗

1 if k-th bit of tx is not changed in tx∗

This ℓ-bit vector σ acts as a “ bit selector” between the bits
of the original non-redacted tx and the new redacted t̃x:

tx = σ · t̃x∗ + (1− σ) · tx, (1)

where above ‘+’, ‘−’, and ‘·’ denote component-wise addi-
tion, subtraction, and multiplication, respectively, and 1 is the
ℓ-bit vector of ones. In other words, for preimages of sizes
less than 512 bits the checks that need to be enforced in zero-
knowledge are:

1) Check that 0 = (t̃x
∗ − tx) · σ

2) Check that txid = CFsha(CFsha(tx))

Above 0 is the ℓ-bit vectors of zeros. Check #1 is equivalent to
equation (1) but slightly optimized, requiring four bit decom-
positions and two component-wise arithmetic operations (as
opposed to equation (1) that requires five bit decompositions
and three operations). The double call to CFsha is there because
txid is the double hash of tx —In reality, we need to account
for padding and work with 512-bit vectors, but this is an
implementation detail that can be easily dealt with.

D. Dealing with large transactions

It is not possible to express Rpeq as a monolithic circuit
if we want to account for variable transaction lengths: two
transactions of different length would require different number
of calls to the compression function CFsha. We propose two
different strategies to deal with arbitrarily large transactions
yielding two different circuits. Each has its own advantages
and disadvantages.

a) Approach #1: Commit to midstates: The idea is to
commit in cm to the N midstates hi of SHA256 and produce
N proofs attesting to (i) correctness of the selector equation
(1), for the Nbit i-th chunk σi of the selector vector σ, (ii)
the correctness of the N calls of the compression function
CFsha and (iii) the correctness of the commitments cmi−1, cmi

to the input and output midstates hi, hi−1, respectively. We
commit to midstates to not leak information about the original
transaction tx.

Circuit Cmid[ck]:

Public Input: m∗i , cmi, cmi−1, σ
Private Input: mi, hi, hi−1, ri, ri−1
Steps:

1: Check that 0 = (m∗i [k]−mi[k]) · σ[k] ▷ k-th bit, k ≤ 512

2: Check that hi = CFsha(mi, hi−1)
3: Check that cmi−1 = Commit(ck, hi−1, ri−1)
4: Check that cmi = Commit(ck, hi, ri)

The commitment key ck is hard-coded in the circuit de-
scription, and h0 is the intialization vector (IV) of SHA256.
This approach adds a relatively mild overhead to the resulting
circuit if we use a zero-knowledge friendly commitment

NIZK (S
(mid)
peq ,P

(mid)
peq ,V

(mid)
peq)

S(mid)
peq (1λ):

1: ck← GenCommKey(1λ)
2: (pkmid, vkmid)← Smid(1

λ,Cmid[ck])
3: Output pk := (pkmid, ck), vk := (vkmid, ck)

P(mid)
peq (pk, (tx∗, txid, σ), tx):

1: parse (mi,m
∗
i , σi)1≤i≤N ← (tx, tx∗, σ)

2: parse (pkmid, ck)← pkmid

3: h0 ← IV ▷ For IV of SHA256
4: r0 ← Random(1λ) ▷ Random element from appropriate domain
5: cm0 ← Commit(ck, h0, r0)
6: for i← 1 to N do
7: hi ← CFsha(mi, hi−1)
8: ri ← Random(1λ)
9: cmi ← Commit(ck, hi, ri)

10: zi ← (m∗
i , cmi, cmi−1, σi) ▷ Current public input

11: wi ← (mi, hi, hi−1, ri, ri−1) ▷ Current witness
12: πi ← Pmid(pkmid, zi, wi)
13: end for
14: Output π := ((πi)1≤i≤N , (cmi)0≤i≤N , hN , rN) ▷

hN = SHA256(tx)

V(mid)
peq (vk, (tx∗, txid, σ), π):

1: parse (m∗
i , σi)1≤i≤N ← (tx∗, σ)

2: parse (vkmid, ck)← vk
3: parse ((πi)1≤i≤N , (cmi)0≤i≤N , hN , rN)← π
4: if txid ̸= SHA256(hN) ∨ cmN ̸= Commit(ck, hN , rN) then
5: return false
6: end if
7: for i← 1 to N do
8: zi ← (m∗

i , cmi, cmi−1, σi)
9: if false = Vmid(vkmid, zi, πi) then

10: return false
11: end if
12: end for
13: return true

Fig. 3: The NIZK Γpeq for relation Rpeq implemented with
the commit-to-midstate approach.

scheme. However, on the downside, it requires to verify N
proofs during block validation.

Specifically, using as building block a NIZK
(Smid,Pmid,Vmid) to prove satisfiability of N different
instantiations of circuit Cmid[ck], we can build
Γpeq := (Speq,Ppeq,Vpeq) for relation Rpeq. See Figure 3 for
details. Note that during proofs validation, the commitment
of the current midstate in the i-th proof (i.e. used as the first
commitment of the public input of Cmid) must be used as the
commitment of the previous midstate in the (i + 1)-th proof
(i.e. used as the second commitment of the public input).

b) Approach #2: Commit to selector vector: The key
idea is to accumulate a hash of the selector vector σ and the
redacted transaction tx∗ with a collision-resistant hash function
Hash, while simultaneously ensuring partial equality for each
chunk of N bits of tx∗ and tx. The circuit Csel has as public
inputs the three midstates corresponding to tx, tx∗, σ.
Circuit Csel:

Public Input: hi, ai
Private Input: hi−1, ai−1,mi,m

∗
i , σ

Steps:
1: Check that 0 = (m∗i [k]−mi[k]) · σ[k] ▷ k-th bit, k ≤ 512

2: Check that hi = CFsha(mi, hi−1)

NIZK (S
(sel)
peq ,P

(sel)
peq ,V

(sel)
peq)

S(sel)
peq (1λ):

1: (pksel, vksel)← Ssel(1λ,Csel)
2: z0 ← (h0 := IV, a0) ▷ For IV of SHA256, and known a0

3: Output pk := (pksel, z0), vk := (vksel, z0)

P(sel)
peq (pk, (tx∗, txid, σ), tx):

1: parse (mi,m
∗
i , σi)1≤i≤N ← (tx, tx∗, σ)

2: parse (pksel, (h0, a0))← pk
3: π0 ← ∅
4: for i← 1 to N do
5: hi ← CFsha(mi, hi−1)
6: ai ← Hash(ai−1,m

∗
i , σi)

7: zi−1 ← (hi−1, ai−1) ▷ Input of the incremental step
8: zi ← (hi, ai) ▷ Output of the incremental step
9: ωi ← (mi,m

∗
i , σi) ▷ Non-deterministic advice

10: πi ← Psel(pksel, (i, z0, zi), (ωi, zi−1, πi−1))
11: end for
12: Output π := (πN , hN) ▷ hN = SHA256(tx)

V(sel)
peq (vk, (tx∗, txid, σ), π):

1: parse (m∗
i , σi)1≤i≤N ← (tx∗, σ)

2: parse (vksel, z0 := (h0, a0))← vk
3: parse (πN , hN)← π
4: if txid ̸= SHA256(hN) then
5: return false
6: end if
7: for i← 1 to N do
8: ai ← Hash(ai−1,m

∗
i , σi)

9: end for
10: zN ← (hN , aN)
11: if false = Vsel(vksel, (N, z0, zN)) then
12: return false
13: end if
14: return true

Fig. 4: The NIZK Γpeq for relation Rpeq implemented with
the commit-to-selector approach.

3: Check that ai = Hash(ai−1,m
∗
i , σ)

Above a0, is set to an arbitrary known value. The satisfi-
ability of Csel can be proved with an incrementally verifiable
computation scheme (Ssel,Psel,Vsel). Namely circuit Csel mod-
els a single step of an iterated function zi = F (zi−1;ωi).
The current input is zi := (hi, ai), the previous input
zi−1 := (hi−1, ai−1), and the non-deterministic advice is
ωi := (mi,m

∗
i , σi). At each step, a proof for the previous

iteration or for correct proof/instance accumulation is verified
as well. As before, the redactor only needs to reveal the
unredacted transaction digest hN := SHA256(tx), so tx and
midstates hi remain private.

See Figure 4 for the SNARK Γpeq implemented with this
approach. The advantage with respect the previous approach
is that now only the last proof is verified, since this proof
attests to the partial equality of all the N chunks mi,m

∗
i

according to a selector and tx∗ accumulated in aN . However,
the disadvantage is the recursion overhead incurred by the
augmented circuit, stemming from the extra step that verifies
the previous proof or the correctness of the accumulation in
zero-knowledge.

REFERENCES

[1] Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: Obtaining
simulation extractable subversion and updatable snarks generically. In:
CCS ’20: 2020 ACM SIGSAC

[2] Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain
– or – rewriting history in bitcoin and friends. In: 2017 IEEE European
Symposium on Security and Privacy

[3] Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security
under temporary dishonest majority. In: Financial Cryptography and
Data Security 2019

[4] Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a
transaction ledger: A composable treatment. In: Advances in Cryptology
- CRYPTO 2017

[5] Baghery, K., Pindado, Z., Ràfols, C.: Simulation extractable versions of
groth’s zk-snark revisited. IACR Cryptol. ePrint Arch.

[6] Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy

[7] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-
Interactive Zero Knowledge for a von Neumann Architecture. In:
USENIX 2014

[8] Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein,
A., Tromer, E.: The hunting of the SNARK. IACR Cryptol. ePrint Arch.
(2014)

[9] Bitcoin Cash (BCH). https://github.com/bitcoin
[10] Bitcoin Core (BTC). https://github.com/bitcoincashbch
[11] Bitcoin Satoshi Vision (BSV). https://github.com/bitcoin-sv
[12] Bitcoin.org: https://developer.bitcoin.org/devguide/transactions.html#null-

data
[13] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and

its applications (extended abstract). In: Simon, J. (ed.) ACM Symposium
on Theory of Computing, 1988

[14] Blum, M., Santis, A.D., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput.

[15] Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: Decentralized
cryptocurrency at scale. IACR Cryptol. ePrint Arch. p. 352 (2020)

[16] Botta, V., Iovino, V., Visconti, I.: Towards data redaction in bitcoin.
IEEE Transactions on Network and Service Management 19(4) (2022)

[17] BSV Wiki: https://wiki.bitcoinsv.io/index.php/OP CODESEPARATOR
[18] Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig,

D.: Chameleon-Hashes with Ephemeral Trapdoors. In: Public-Key Cryp-
tography – PKC 2017

[19] Canetti, R.: Universally composable security: A new paradigm for
cryptographic protocols. In: FOCS 2001

[20] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: ACM Symposium on
Theory of Computing, 2002

[21] Chen, B., Bünz, B., Boneh, D., Zhang, Z.: Hyperplonk: Plonk
with linear-time prover and high-degree custom gates. In: Advances in
Cryptology – EUROCRYPT 2023

[22] Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in
the permissionless setting. In: 2019 IEEE Symposium on Security and
Privacy (SP) (2019)

[23] Fischlin, M.: Communication-efficient non-interactive proofs of knowl-
edge with online extractors. In: Advances in Cryptology - CRYPTO
2005

[24] Florian, M., Henningsen, S., Beaucamp, S., Scheuermann, B.: Erasing
data from blockchain nodes. In: 2019 IEEE European Symposium on
Security and Privacy Workshops

[25] Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of
Knowledge. IACR Cryptology ePrint Archive (2019)

[26] Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi,
D.: Witness-succinct universally-composable snarks. In: Advances in
Cryptology - EUROCRYPT 2023

[27] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol:
Analysis and applications. In: Advances in Cryptology - EUROCRYPT
2015

[28] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol:
Analysis and applications. IACR Cryptol. ePrint Arch. p. 765 (2014)

[29] GDPR: Principles relating to processing of personal data. https://gdpr-
info.eu/art-5-gdpr

[30] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Advances in Cryptology – EUROCRYPT 2016

[31] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Advances in Cryptology - ASI-
ACRYPT 2006

[32] Groth, J., Maller, M.: Snarky signatures: Minimal signatures of knowl-
edge from simulation-extractable snarks. In: Advances in Cryptology -
CRYPTO 2017

[33] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Advances in Cryptology - EUROCRYPT 2006

[34] Jia, Y., Sun, S.F., Zhang, Y., Liu, Z., Gu, D.: Redactable blockchain
supporting supervision and self-management. ASIA CCS ’21

[35] Karasek-Wojciechowicz, I.: Reconciliation of anti-money laundering
instruments and European data protection requirements in permissionless
blockchain spaces. Journal of Cyber Security 7(1), tyab004 (03 2021)

[36] Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou,
C., Pass, R., abhi shelat, Shi, E.: C∅c∅: A framework for building
composable zero-knowledge proofs. Cryptology ePrint Archive, Paper
2015/1093

[37] Li, J., Ma, H., Wang, J., Song, Z., Xu, W., Zhang, R.: Wolverine: A
scalable and transaction-consistent redactable permissionless blockchain.
IEEE Transactions on Information Forensics and Security (2023)

[38] Ma, J., Xu, S., Ning, J., Huang, X., Deng, R.H.: Redactable blockc hain
in decentralized setting. IEEE Transactions on Information Forensics
and Security (2022)

[39] Manevich, Y., Barger, A., Assa, G.: Redacting transactions from execute-
order-validate blockchains. In: 2021 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC)

[40] Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J.H., Müllmann, D.,
Hohlfeld, O., Wehrle, K.: A quantitative analysis of the impact of
arbitrary blockchain content on bitcoin. In: Financial Cryptography and
Data Security 2018

[41] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf (2008)

[42] Office, I.I.C.: Data minimisation. https://ico.org.uk/for-
organisations/guide-to-data-protection/guide-to-the-general-data-
protection-regulation-gdpr/principles/data-minimisation/, last accessed
14/09/2023

[43] Pagallo, U., Bassi, E., Crepaldi, M., Durante, M.: Chronicle of a
clash foretold: Blockchains and the gdpr’s right to erasure. In: Legal
Knowledge and Information Systems - JURIX (12 2018)

[44] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly
Practical Verifiable Computation. In: 2013 IEEE Symposium on Security
and Privacy

[45] Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in
asynchronous networks. In: Coron, J., Nielsen, J.B. (eds.) Advances in
Cryptology - EUROCRYPT 2017

[46] Puddu, I., Dmitrienko, A., Capkun, S.: µchain: How to forget without
hard forks. Cryptology ePrint Archive, Paper 2017/106 (2017)

[47] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: FOCS 1999

[48] Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.:
Robust non-interactive zero knowledge. In: Advances in Cryptology -
CRYPTO 2001

[49] Schellinger, B., Völter, F., Urbach, N., Sedlmeir, J.: Yes, i do: Marrying
blockchain applications with gdpr (09 2021)

[50] Shen, J., Chen, X., Liu, Z., Susilo, W.: Verifiable and redactable
blockchains with fully editing operations. IEEE Transactions on Infor-
mation Forensics and Security (2023)

[51] Tian, G., Wei, J., Kutyłowski, M., Susilo, W., Huang, X., Chen, X.: Vrbc:
A verifiable redactable blockchain with efficient query and integrity
auditing. IEEE Transactions on Computers (2023)

[52] Wang, W., Duan, J., Wang, L., Hu, X., Peng, H.: Strongly synchronized
redactable blockchain based on verifiable delay functions. IEEE Internet
of Things Journal (2023)

[53] Whatsonchain: https://shorturl.at/axzEY
[54] Xu, S., Ning, J., Ma, J., Huang, X., Deng, R.H.: K-time modifiable and

epoch-based redactable blockchain. IEEE Transactions on Information
Forensics and Security (2021)

[55] Xu, S., Ning, J., Ma, J., Xu, G., Yuan, J., Deng, R.H.: Revocable policy-
based chameleon hash. In: Computer Security – ESORICS 2021

[56] Zhang, D., Le, J., Lei, X., Xiang, T., Liao, X.: Exploring the redaction
mechanisms of mutable blockchains: A comprehensive survey. Interna-
tional Journal of Intelligent Systems (2021)

[57] Zhang, D., Le, J., Lei, X., Xiang, T., Liao, X.: Secure redactable
blockchain with dynamic support. IEEE Transactions on Dependable
and Secure Computing (2023)

	Introduction
	Our Contributions and techniques
	Comparison with the work of Botta et. al. BVV22

	Preliminaries
	Backbone Protocol
	Bitcoin Blockchain
	NIZKs

	Redactable Backbone Protocol
	The extended model for redactable blockchains
	Properties in the Redactable Model
	ImplementingFredact with Block Erasures

	Content Redaction in Bitcoin Transactions
	The Redaction Policy
	Redacting Bitcoin blocks
	Partial equality to SHA256 preimages
	Dealing with large transactions

	References

