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Abstract. In a recent Eurocrypt’24 paper, Manulis and Nguyen have
proposed a new CCA security notion, vCCA, and associated construc-
tion blueprints to leverage both CPA-secure and correct FHE beyond
the CCA1 security barrier. However, because their approach is only valid
under the correctness assumption, it leaves a large part of the FHE spec-
trum uncovered as many FHE schemes used in practice turn out to be
approximate and, as such, do not satisfy the correctness assumption. In
this paper, we improve their work by defining and investigating a variant
of their security notion which is suitable for a more general case where
approximate FHE are included. As the passive security of approximate
FHE schemes is more appropriately captured by CPAD rather than CPA
security, we start from the former notion to define our vCCAD new secu-
rity notion. Although, we show that vCCA and vCCAD are equivalent
when the correctness assumption holds, we establish that vCCAD se-
curity is strictly stronger than vCCA security in the general case. In
doing so, we interestingly establish several new separation results be-
tween variants of CPAD security of increasing strength. This allows us
to clarify the relationship between vCCA security and CPAD security,
and to reveal that the security notions landscape is much simpler for
exact FHE than when approximate ones are included — in which case,
for example, we establish that multiple challenges security notions are
strictly stronger than single-challenge ones for both CPAD and vCCAD

security. Lastly, we also give concrete construction blueprints, showing
how to leverage some of the blueprints proposed by Manulis and Nguyen
to achieve vCCAD security. As a result, vCCAD security is the strongest
CCA security notion so far known to be achievable by both correct and
approximate FHE schemes.

⋆ This work was supported by the France 2030 ANR Projects ANR-22-PECY-003
SecureCompute.
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1 Introduction

Since its inception more than ten years ago, Fully Homomorphic Encryption has
been the subject of a lot of research toward more efficiency and better practi-
cality. From a security perspective, however, FHE still raises a number of ques-
tions and challenges. In particular, all the FHE usable in practice, BFV [5,11],
BGV [6], CKKS [9] and TFHE [10], achieve only CPA-security (and all of these
schemes are trivially CCA1 insecure). Although it is well-known that malleabil-
ity is contradictory with CCA2 security, building efficient FHE constructions
achieving some degree of CCA security (e.g. CCA1) remains a very important
open challenge.

From a theoretical perspective, a significant step has been recently achieved
by Manulis and Nguyen in [19], with the introduction of the notion of vCCA
security which is proven to be strictly stronger than CCA1 security while be-
ing achievable by FHE-based malleable schemes through several construction
blueprints. In essence, these construction strategies consist in starting from a
CPA secure and correct FHE and augmenting it with the machinery required for
proving the well-formedness of fresh ciphertexts (i.e. ciphertexts which are direct
outputs of the encryption function) as well as that of evaluated ciphertexts (i.e.
ciphertexts derived from well-formed fresh ciphertexts by means of genuine ho-
momorphic operations), with the decryption function of the augmented scheme
returning � when the proof verification fails. The intuition behind such construc-
tion strategies is that the proof machinery downgrades attackers to CPA ones
and that, as a result, some form of CCA security is achieved by the augmented
scheme. Although several techniques can be used to ensure the well-formedness
of fresh ciphertexts (such as signatures in the private key setting or Naor-Yung
[20] in the public key setting), their approach intimately relies on Succinct Non-
interactive Arguments of Knowledge (SNARKs) to enforce the well-formedness
of evaluated ciphertexts. Under the assumption that the underlying SNARK is
simulation-sound extractable, it then becomes possible to define a new (single
challenge) security game along with a new security notion (vCCA), in the spirit
of the CCA2 game: when the (second step) CCA2 game decryption oracle re-
jects the challenge ciphertext, the vCCA security game (second step) decryption
oracle rejects all byproducts of the challenge ciphertext which it identifies by
means of the SNARK extractor. One of their main contributions is to show, in-
terestingly, that the resulting security notion is strictly stronger than CCA1 (no
second step oracle) as well as a strict relaxation of CCA2 (because the CCA2
decryption oracle is more permissive than the vCCA decryption one). They also
investigate the relationship between vCCA security and other CCA2 relaxations
such as RCCA, CCA1.5, and others.

Another very important security notion for FHE is that of CPAD security
[17] which formalizes the security of FHE against a slight and seemingly be-
nign extension of CPA security where the adversary is granted access only to a
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highly constrained decryption oracle which accepts only genuine ciphertexts or
ciphertexts derived from genuine ciphertexts by means of genuine homomorphic
operations. The initial intuition is that, by knowing the cleartext inputs of an
FHE calculation, the adversary should be able to compute all the outputs of that
decryption oracle by his or herself and that, as a consequence, CPAD security
is implied by or even equivalent to CPA security. However, the correctness as-
sumption implicitly lies at the heart of this reasoning and Li and Micciancio [17]
demonstrated that these intuitions are not true for approximate FHE schemes
such as CKKS for which it turns out that the CPAD decryption oracle outputs
leak the LWE noises in the ciphertexts, resulting in the ability for the adversary
to easily and practically recover the secret decryption key of the scheme. Al-
though initially introduced for approximate FHE, recent works [7,8] have shown
that the non-approximate FHE schemes that were previously considered im-
mune to CPAD attacks are, contrary to this folklore belief, all CPAD insecure
as soon as decryption errors can or can be made to occur with a non-negligible
probability.

In their paper, Manulis and Nguyen [19] define and study vCCA security
only under the correctness assumption and touch only very briefly on CPAD

security, essentially claiming informally that their vCCA scheme construction
blueprints also apply to approximate FHE “with the caveat that approximate
FHE schemes need to be CPAD-secure”. In the present paper, we clarify the
relationship between vCCA security and CPAD security, and propose a new CCA
security notion, vCCAD, covering the spectrum of both correct and approximate
FHE schemes. However, we show that both notions are equivalent when the
correctness assumption holds, and we establish that vCCAD security is strictly
stronger than vCCA security in the general case where approximate FHE are
allowed. In doing so, we interestingly establish several new separation results
between variants of CPAD security of increasing strength. This allows us to show
that vCCA security does not imply CPAD security but rather a much weaker
single-challenge “CCA1 style” variant of it. We also reveal that the security
notion landscape is much simpler for exact FHE than in the general case where,
for example, we establish that multiple challenges security notions are strictly
stronger than single-challenge ones for both CPAD and vCCAD security. Lastly,
we also give concrete construction blueprints, showing how to leverage some of
the blueprints proposed in [19] to achieve vCCAD security.

1.1 Summary of security notions and contributions

In this work, we study the following (non standard) security notions:

– CPAD: the multiple challenges passive security notion introduced in [17] for
approximate FHE.

– CPAD
2 ≡CPAD

SC: restriction of CPAD to the single challenge case.
– CPAD

1 : restriction of CPAD
2 with the decryption oracle closing after the

challenge request (similar in spirit to the CCA1/CCA2 definitions). Note
that CPAD

1 is different from non-adaptive CPAD as defined and studied in
[17].
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– vCCASC: the single challenge CCA security notion introduced in [19] for
correct FHE. Note that it is simply denoted vCCA in [19].

– vCCA: the multiple challenge variant of vCCA (this variant was not consid-
ered in [19]).

– vCCAD: our main new multiple challenge CCA security notion for FHE in
the general regime which includes approximate FHE.

– vCCAD
SC: restriction of vCCAD to the single challenge case.

Note that, following standard conventions [3], the multiple challenge notions will
sometimes be prefixed by LOR- to avoid any ambiguity with the corresponding
single challenge notions (also known as FTG).

With this in mind, the contributions of this paper are as follows:

– When the correctness assumption holds for the underlying FHE, we show
that:
● CPAD

1 , CPAD
2 ≡CPAD

SC and CPAD security are (unsurprisingly) all equiv-
alent to CPA security.
● In that regime we also show that vCCASC, vCCA, vCCAD

SC and vCCAD

security are also all equivalent.
– In the general case where the correctness assumption does not necessarily

hold and approximate FHE are allowed, the picture we reveal is much more
interesting:
● For CPAD security, we establish that CPAD

1 ≺CPAD
2 ≺CPAD security which,

as a bonus, settles the question of the relationship between single and
multiple-challenge CPAD security that was left open in [17].
● We clarify the relationship between vCCA and CPAD security by show-

ing that CPAD
1 ≺vCCASC but that vCCASC security implies neither

CPAD
2 nor CPAD security (and vice-versa), contrary to what was infor-

mally claimed in [19].
● For vCCA security, we further establish that vCCASC≡vCCA and that

vCCASC≺vCCAD
SC, thus demonstrating that our new security notion is

strictly stronger than vCCA security even in the single challenge case.
● Lastly, for vCCAD security, we prove that CPAD ≺vCCAD and further

prove that vCCAD
SC≺vCCAD which therefore implies that vCCAD is the

strongest of all these notions in the general FHE case and that it is the
one that should be strived for.

– Lastly, we revisit the CPA-to-vCCA FHE scheme construction blueprints
proposed in [19] under the correctness assumption and turn them, when
possible, into CPAD-to-vCCAD blueprints. In particular, we are able to do
so and prove the vCCAD security of the (private key, designated verifier)
Encrypt-then-MAC, (private key, public verifier) Encrypt-then-Sign, (public
key, designated verifier) CCA2-Companion-Ciphertext blueprints while we
also show that the (public key, public verifier) Naor-Young-based blueprint
cannot be used when the correctness assumption does not hold.

Figure 1 summarizes the relationships between these notions in the general
case. When proving relationships between security notions, we make a differ-
ence between the correct case or correct regime, where the FHE correctness
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assumption is assumed to hold, and the general case or general regime, where
approximate FHE are allowed. This terminology is used consistently in the pa-
per.

CPA CPAD
1

vCCASC

vCCA

CPAD
2

vCCAD
SC

CPAD

vCCAD CCA2

Fig. 1. Summary of the security notions investigated in this paper and their relation-
ships in the general regime where approximate FHE are allowed. Note that all single
arrows are strict implications, and remind that CPAD

2 ≡CPAD
SC is the restriction of

CPAD to the single challenge case and that CPAD
1 is the restriction of CPAD

2 with the
decryption oracle closing after the challenge request. Also remind that notions without
a subscript in their names are multiple challenge ones and that, for consistency, we
denote by vCCASC the single challenge security notion defined in [19].

1.2 Paper organization

This paper is organized as follows. After some preliminaries (Sect. 2), Sect. 3
introduces the definition of vCCAD security and recalls the definitions of CPAD

and vCCA security. It also investigates the definitional connexions between these
notions. Then, in Sect. 4, we investigate the relationship among the single chal-
lenge variants of these security notions in both the restricted setting where the
correctness assumption holds and in the general case where approximate FHE
are allowed. Then, in Sect. 5, we focus on unveiling the relationships between
the single and multiple-challenge variants of these security notions as well as the
relationships between the multiple-challenge variants between each other. Sect. 6
is devoted to prove the security of several generic scheme construction blueprints
with respect to the stronger multiple challenge vCCAD security notion. Sect. 7
then concludes the paper.

2 Preliminaries

We define an encryption scheme E = (KeyGen,Enc,Dec) over key space K, plain-
text domain P and ciphertext domain C as a triplet of PPT algorithms:

– KeyGen: which, on input 1λ, outputs an encryption key ek and a decryption
key dk.
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– Encek: which, on inputs m ∈ P and the encryption key ek, outputs an en-
cryption c ∈ C of m.

– Decdk: which, on inputs c ∈ C and the decryption key dk, outputs a decryption
m ∈ P ∪ {�} of c.

Let COIN denote the randomness space of E , we will sometimes externalize the
randomness used in the encryption function by means of the notation Encek(m; r),
with m ∈ P and r ∈ COIN (in this case, the function Encek ∶ P ×COINÐ→ C is de-
terministic). When ek is public, we say that E is a public-key encryption scheme.
Conversely, when ek has to remain private and an adversary can create valid
ciphertexts with at most neg(λ) probability using only public knowledge, we
say that E is a private-key encryption scheme. When for all (ek,dk) ∈ K and all
m ∈ P we have that

Pr
r∈COIN

(Decdk(Encek(m; r)) ≠m) ≤ neg(λ), (1)

we say that E is correct. A ciphertext is valid if it is the output of the encryption
function for some message m ∈ P, that is, if there exists m ∈ P and some ran-
domness r ∈ COIN such that c = Encek(m; r). We further say that E is verifiable
if there exists a PPT algorithm Verif, taking a ciphertext as input, which tells
whether or not this ciphertext is valid with a neg(λ) probability of error for an
adversary with knowledge of only public data. For verifiable schemes, the de-
cryption function with input ciphertext c outputs � when Verif(c) = False. Note
that for all non-homomorphic schemes considered in this paper, Decdk will al-
ways be a deterministic polynomial-time algorithm. When there is no ambiguity,
we omit the ek and dk subscripts to Enc and Dec to lighten the notation.

Given a function class FH , we define an homomorphic encryption (HE)
scheme EH as an encryption scheme augmented by a deterministic1 polynomial-
time algorithm Eval which, on input f ∈ FH and c1, ..., cK ∈ CK (where K denotes
the arity of function f), outputs a new evaluated ciphertext. When EH satisfies
condition (1) and when Eval is such that for all (ek,dk) ∈ K, all f ∈ FH and all
m1, ...,mK ∈ PK

Pr
r⃗∈COINK

(Dec(Eval(f,Enc(m1; r1), ...,Enc(mK ; rK))) ≠ f(m1, ...,mK)) ≤ neg(λ),

we say that EH is a correct HE scheme. When this is not the case, we say that EH
is an approximate HE scheme. To avoid arbitrary schemes with unreliable Eval
to be marketed as approximate HE schemes, we may want to add an additional
condition such that with high-enough (λ-independent) probability

∣Dec(Eval(f,Enc(m1), ...,Enc(mK))) − f(m1, ...,mK))∣ ≤ ε. (2)

When EH achieves correctness only for FC ⊂ FH and K(FC) ⊂ K, it is said to
be FC-correct (in the spirit of [1]).
1 As is the case for the mainstream FHE schemes such as BFV, BGV, TFHE and even

CKKS.
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All the HE schemes we consider in this paper are public-key. Also note that
for the homomorphic schemes considered in this paper, Decdk is by default a
deterministic polynomial-time algorithm, unless explicitly stated otherwise (e.g.
CKKS with noise flooding as defined in [18] has a probabilistic decryption algo-
rithm). When � ∈ EH .P, we will further always assume a consistency property
which requires that ∀m⃗, r⃗ ∈ PK × COINK ,

Dec(Eval(f,Enc(m1; r1), ...,Enc(mK ; rK))) ≠ �, (3)

and
Dec(Eval(f, c1, ..., cK))) = �, (4)

whenever ∃i ∶ Dec(ci) = �.
As in [19], for signatures and MAC we use the standard definitions respec-

tively Σ = (KeyGen,Sign,Verify) and M = (KeyGen,Tag,Verify) and assume SUF-
CMA security. In our case, EUF-CMA security will not be sufficient because
we essentially use signatures as a building block for CCA2 encryption schemes
in the private key setting. Lastly, we consider straightline-extractable SNARK,
Π = (Setup,Prove,Verify), over function class FE (slightly departing from [19]
which required simulation-sound extractability). Indeed, in the security proofs
of the constructions we study in Sect. 6, we are in the setup where only the
adversary generates proofs and where our simulator only invokes the SNARK
extractor when Π.Verify(π) = True on a proof π. Additionally, because we do not
investigate circuit privacy, we do not need zk-SNARKs.

3 Defining vCCAD security

This section introduces our vCCAD security notion which is an extension of both
vCCA and CPAD (hence the name). As they both are extensively referred to in
this paper, we start by recalling the games associated with these two notions.
We then define the vCCAD game.

3.1 The CPAD game

The CPAD game has been introduced in the context of approximate FHE. CPAD

security is a slight extension of CPA security defined by the following Left-Or-
Right multiple challenge security game.

Given an homomorphic encryption scheme

EH = (KeyGen,Enc,Dec,Eval),

an adversaryA and value λ for the security parameter, the game is parameterized
by a bit b

$←Ð {0,1}, unknown to A, and an initially empty state S of message-
message-ciphertext triplets:

– Key generation: Run (ek,dk) ← KeyGen(1λ), and give ek to A (when the
scheme is public-key).



8 S. Canard et al.

– Encryption request: When A queries (plaintext,m), m ∈ P compute c =
Enc(m), give c to A and do

S ∶= [S; (m,m, c)].

– Challenge request: When A queries (test messages,m0,m1), m0,m1 ∈ P2

(m0 ≠m1) compute c = Enc(mb), give c to A and do

S ∶= [S; (m0,m1, c)].

– Evaluation request: When A queries (eval, f, l1, . . . , lK) (li ∈ {1, ..., ∣S∣},∀i),
compute

m′0 = f(S[l1].m0, . . . , S[lK].m0),
and

m′1 = f(S[l1].m1, . . . , S[lK].m1),
as well as

c′ = Eval(f,S[l1].c, . . . , f[lK].c),
give c′ to A and do

S ∶= [S; (m′0,m′1, c′)].
– Decryption request: When A queries (ciphertext, l) (l ∈ {1, ..., ∣S∣}) proceed

as follows: if S[l].m0 ≠ S[l].m1 then return � to A, otherwise return her
Dec(S[l].c).

– Guessing stage (after polynomially many interleaved encryption and decryp-
tion requests): When A outputs (guess, b′), the outcome of the game is de-
termined as follows. If b′ = b then A wins the game. Otherwise, A loses the
game.

A number of points should be emphasized with respect to the above game.
First, the decryption oracle accepts only ciphertexts from the game state which
are necessarily well-formed (either produced by an encryption or challenge re-
quest, or derived by the evaluation oracle via an evaluation request i.e., derived
by correctly applying homomorphic operators to well-formed ciphertexts). As
such, the above game thus does not capture any CCA aspects. Second, when
S[l].m0 = S[l].m1 it is important that the decryption oracle returns Dec(S[l].c)
and not S[l].m0 (or, equivalently in that case, S[l].m1). For exact FHE, this
has no impact, as Dec(S[l].c) = S[l].m0 = S[l].m1 in that case (and, as A
learns nothing it does not already know, CPAD security coincides with CPA
security for exact FHE). For approximate FHE, however, even when S[l].m0 =
S[l].m1, we have (with overwhelming probability) that Dec(S[l].c) ≠ S[l].m0

and Dec(S[l].c) ≠ S[l].m1. Thus for approximate FHEs, the decryption oracle
grants A access to information she cannot compute on her own, resulting or not
in a guessing advantage depending on whether or not the cryptosystem at hand
is CPAD secure. Additionally, let us also emphasize that, in the above game,
A has control on the homomorphic calculations that are performed as f is in-
cluded in the evaluation request. As a last remark, we acknowledge the fact that
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explicitly adding encryption requests to the above game is redundant as these
are simply challenge requests with m0 =m1 (as was assumed in the original def-
inition of [17]). However, since we are going back and forth between single and
multiple challenges security notions in the sequel, we feel that this explicitation
may avoid later confusions. Although the number of allowed challenge requests
may vary from one security notion to another, the number of encryption requests
an adversary can perform always remains “unlimited”.

3.2 The vCCA game

We now consider the vCCA game as recently introduced in [19]. Contrary to
the CPAD game presented in the previous section, that game is single challenge
meaning that the adversary performs only one request to the challenge oracle
with m0 ≠ m1. As already stated in Sect. 1.1, we will now consistently refer to
the original game and security notion in [19] as vCCASC and reserve the vCCA
naming for its multiple challenge generalisation which we introduce and study
in Sect. 5. Also, in the vCCASC security game, the cryptosystem is augmented
with an extractor i.e., a PPT algorithm Extract ∶ C Ð→ FE ∪ {id} × C∗ such that:

– For any ciphertext c ∈ C which is obtained by invoking Eval(f, c1, ..., cK),

Extract(c) = (f, c1, ..., cK).

– Otherwise, Extract(c) = (id, c).

In particular, the above definition implies that

Extract(Enc(m,r)) = (id,Enc(m,r)), (5)

and that,

Extract(Eval(f,Enc(m1, r1), ...,Enc(mK , rK))) = (f,Enc(m1, r1), ...,Enc(mK , rK)).
(6)

Being single challenge, the vCCASC game therefore has two decryption or-
acles2. Before the unique challenge encryption oracle request, the first step de-
cryption oracle is simply as follows:

– Decryption request (first step): When A queries (ciphertext, c) proceed as
follows: return her Dec(c).

Then, after challenge generation,

– Decryption request (second step): When A queries (ciphertext, c) proceed
as follows:

2 Of course, the vCCASC game has no evaluation oracle as the adversary performs the
homomorphic evaluations on its own in both the private and public key setting.
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1. Let
(f, c1, ..., cK) = Extract(c),

if
c∗ ∈ {c1, ..., cK} (7)

then return � to A.
2. Otherwise return her Dec(c).

where c∗ is the challenge ciphertext. As such, the vCCASC game is exactly
the single challenge CCA2 game, with the second step decryption oracle being
augmented with case 1 above (which, in essence, filters out all byproducts of
the challenge ciphertext). Let us emphasize that vCCASC security is defined
and investigated in [19] only under the (strong) assumption that S is correct.
However, let us also emphasize that the correctness assumption plays no role
in the above definition which remains meaningful in the general regime where
approximate FHE are allowed.

As a last comment, let us emphasize that, although its definition seems in-
trinsically single-hop (e.g., limited to one homomorphic evaluation over fresh
ciphertexts), vCCASC security can, at least in principle, be extended to the
multi-hop setting by allowing recursive calls to Extract [19, Remark 2, p. 28].
Still, as emphasized in [19] and later in Sect. 6, coming up with practically cred-
ible constructions for achieving vCCA security limited to the single-hop setting
is already quite challenging yet sufficient to cover a wide range of FHE use-cases.

3.3 vCCADsecurity: definitions and first properties

Contrary to the original vCCA security game introduced and studied in [19]
(which, again, we refer to as vCCASC in this paper), the vCCAD game is a
multiple challenge one. Due to subtleties that will soon be clear, we first define
it in the private key setting, starting from the CPAD game in Sect. 3.1 without
the evaluation oracle and assuming, as in vCCASC, the existence of the same
extractor.

In the private key setting, the vCCAD game decryption oracle is defined as:

– Decryption request: When A queries (ciphertext, c) proceed as follows:
1. Let

(f, c1, ..., cK) = Extract(c),
if

f(left(c1), ..., left(cK)) ≠ f(right(c1), ..., right(cK)) (8)

then return � to A.
2. Otherwise return her Dec(c).

Where for any ciphertext c ∈ C we define

left(c) = {S[i].m0 if ∃i ∶ S[i].c = c,
� otherwise, (9)
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as well as,

right(c) = {S[i].m1 if ∃i ∶ S[i].c = c,
� otherwise, (10)

and with the convention that f(m1, ...,mK) = � when ∃i ∶ mi = �. Note that
if the left and right evaluations both give �, condition (8) is not satisfied and
Dec(c) is returned to A.

Remark 1. It is clear that any ciphertext accepted by the vCCAD game decryp-
tion oracle is also accepted by the LOR-CCA2 game one but not vice-versa. For
example, ciphertext Eval(sum, c∗,Enc(1)) is accepted by the LOR-CCA2 decryp-
tion oracle (but rejected by the vCCAD one) and trivially allows an adversary
to win the CCA2 game. It follows that vCCAD security is a strict relaxation of
CCA2 security (which is well-known to exclude malleability3). †

Remark 2. In the private key setting, well-formed fresh ciphertexts (including
challenge ones) can only be obtained by means of (encryption or challenge) oracle
requests. Therefore, all such ciphertexts are registered in the game state S. It
then follows that for any ciphertext of the form

c = Eval(f,Enc(m1), ...,Enc(mK))

we have that left(c) ≠ � and right(c) ≠ �. However, when the correctness as-
sumption does not hold, we may have that Dec(c) ≠ f(left(c1), ..., left(cK)) as
well as Dec(c) ≠ f(right(c1), ..., right(cK)). †

If we compare the vCCASC game in previous Sect. 3.2 and the single challenge
variant, vCCAD

SC, of the above game, vCCASC’s second step oracle filters out
all byproducts of the challenge ciphertext whereas (single challenge) vCCAD

SC
filters out only those byproducts which allow to disciminate which of the two
challenge plaintexts was encrypted.

Remark 3. From the definition of the two games, it is clear that all the ci-
phertexts accepted by the vCCASC decryption oracle are also accepted by the
vCCAD

SC one (but not vice-versa). There are indeed two types of ciphertexts
which are rejected by the vCCASC decryption oracle but accepted by the vCCAD

SC
one:

1. Ciphertexts obtained through a legit call to Eval over well-formed fresh ci-
phertexts (with one of them being the challenge ciphertext) for which con-
dition (8) does not hold, e.g. Eval(f, c∗,Enc(m2), ...,Enc(mK)) with

f(m∗0,m2, ...,mk) = f(m∗1,m2, ...,mk),

where m∗0 and m∗1 denote the two challenge plaintexts. For example, cipher-
text Eval(mul, c∗,Enc(0)) fall into this category.

3 Additionally, it is well known that LOR-CCA2 security is equivalent to (single chal-
lenge) CCA2 (a.k.a., FTG-CCA2) in both the public key [4] and private key [3]
settings. Also, note that CCA1 obviously does not really make sense in the multiple
challenge setting.
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2. Ciphertexts obtained through a legit call to Eval over arbitrary ciphertexts,
with one of them being the challenge ciphertext and at least one of the others
being ill-formed.

†

Throughout this paper and in particular in the separation results we estab-
lish, we (almost) always exploit the first of the above two gaps. As will be seen in
Sect. 6, the second gap will be closed in the construction themselves by including
the machinery necessary for the decryption function of the proposed schemes to
reply � when given either an ill-formed ciphertext or an evaluated ciphertext
over non well-formed ones.

Defining vCCAD security in the public key case. In the public key setting,
the adversary can generate well-formed fresh ciphertexts independent of the
challenge on his or her own. So only challenge dependent fresh ciphertexts are
guaranteed to be registered in the game state. In order to perform the left and
right cleartext evaluations we therefore need a mean to access the messages
that were given as inputs to the encryption function for well-formed ciphertexts
that the adversary generated by his or herself. Note that, when the correctness
assumption does not hold (which is also the regime under which we are willing
to operate in this paper), these inputs cannot be recovered by merely decrypting
those ciphertexts within the vCCAD game decryption oracle.

Therefore, to define the vCCAD game in the public key setting we need an
additional extractor, denoted Extract′, for recovering the encryption function
inputs for fresh well-formed ciphertexts i.e.,

Extract′(c) = {(m; r) when c ∶= Enc(m,r),
� otherwise.

Following this, in the public key setting, the vCCAD game decryption oracle
is then defined similarly to the private key case but with the notable difference
that the left and right functions are replaced by the left′ and right′ functions
defined as

left′(c) = {S[i].m0 if ∃i ∶ S[i].c = c,
Extract′(c).m otherwise,

as well as,

right′(c) = {S[i].m1 if ∃i ∶ S[i].c = c,
Extract′(c).m otherwise.

Following this, we however emphasize that, as we shall later see in Sect. 6,
among the two public key vCCASC scheme construction blueprints considered
in [19], only the one in which fresh ciphertexts are defined as the association of
a FHE ciphertext encrypting m by means of randomness r and another cipher-
text encrypting the concatenation of m and r under a CCA2-secure encryption
scheme is applicable in the general case where the correctness assumption may
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not hold. In this approach the well-formedness of fresh ciphertext is verified by
first decrypting the companion CCA2 ciphertext to recover m and r and then
checking that the associated FHE ciphertext is indeed equal to EH .Enc(m,r).
This, in essence, provides the additional extractor, Extract′, expected in the
above definition.

vCCAD security vs CPAD security. As a warm-up, let us now prove a first
separation result between CPAD and vCCAD security.

Lemma 1. vCCAD security implies CPAD security.

Proof. By definition of the two games, the result of any encryption or decryption
request performed by a CPAD adversary is also accessible to a vCCAD adversary.

⊓⊔

Proposition 1 (CPAD /Ô⇒vCCAD). If there exists a vCCAD-secure scheme
S, then there exists a scheme S′ which is CPAD-secure but not vCCAD-secure.

Proof. Let us start from a vCCAD-secure scheme S = (KeyGen,Enc,Dec,Eval).
We now consider the scheme S′ which is exactly S except that the public material
of S′ further includes a special ciphertext c△ = Enc(sk), where sk is the secret
key of S. The CPAD security of S′ then follows from the CPAD security of
S (by Lemma 1) as well as the fact that the CPAD game decryption oracle
takes state indices rather than ciphertexts as argument. As a consequence, a
CPAD adversary against S′ cannot add c△ to the game state (with non-negligible
probability) without already knowing its associated (non public) plaintext, as
well as the randomness used for generating c△. Yet, S′ is trivially vCCAD-
insecure, as a vCCAD adversary can submit c△ to the vCCADgame decryption
oracle and get sk in return. ⊓⊔

This simple proof pattern will occur several times in this paper.

4 Relations among the single challenge notions

We consider in this section the single challenge variants of vCCAD and vCCA
which we respectively denote vCCAD

SC and vCCASC. Following Sect. 3.2, in these
single challenge variants, we allow only one challenge request with m0 ≠m1. The
challenge ciphertext and the associated messages are respectively denoted c∗,
m∗0 and m∗1. We further consider in this section the single challenge variant of
CPAD which we denote CPAD

SC. In the single challenge case, we can further
meaningfully split CPAD

SC in CPAD
1 and CPAD

2 ≡CPAD
SC. Analogously to the

distinction between CCA1 and CCA2, in CPAD
1 , the CPAD

SC decryption oracle
closes after the challenge request is performed.
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4.1 Relations between single-challenge variants of CPAD

Because CPAD security collapses onto CPA security in the correct regime, then
CPAD

1 is equivalent to CPAD
2 in that regime. In the general regime, however,

we have the following separation result (considering that CPAD
2 trivially implies

CPAD
1 ).

Proposition 2 (CPAD
1 /Ô⇒CPAD

2 ). If there exists an FHE scheme S which
is CPAD

2 -secure, then there exists an FHE encryption scheme S′ which is CPAD
1 -

secure but CPAD
2 -insecure.

Proof. Let us consider a CPAD
2 -secure FHE scheme S = (KeyGen,Enc,Dec,Eval).

Consider the approximate scheme S′ = (KeyGen′,Enc′,Dec′,Eval′) built from S
such that

Enc′(m) = Enc(m + g(m)),

where g is some function such that g(0) ≠ 0, and KeyGen′, Dec′ and Eval′ are
similar to those of S. For example, we can choose g(m) = max(1, ⌈m/B⌋) for
some constant B.

S′ is CPAD
1 -secure. This follows from the CPAD

2 security of S and the fact
that the approximation noise g(m) is independent of S secret key material (which
is the only information not available to a CPAD

1 adversary).
S′ is not CPAD

2 -secure. The adversary issues the unique encryption request
with m0 ≠m1 to get

m∗0,m
∗
1,Enc′(m∗b),

say with m∗0 = 0 and m∗1 = 1. He or she subsequently asks for an encryption of 0,
c0, and then asks for the computation of

cmul = Eval′(mul, c0, c
∗)

which the CPAD
2 decryption oracle accepts as it is associated to the triplet

(0,0, cmul) in the game state (cmul is an encryption of 0 with respect to S′). The
adversary therefore gets (b + g(b))g(0) i.e. g(0)2 when b = 0 or (1 + g(1))g(0)
when b = 1. Thus, assuming g(0)2 ≠ (1 + g(1))g(0) (which is the case with the
above example), the adversary can decide that b = 0 when

Dec′(c0)2 = Dec′(cmul)

and b = 1 otherwise, and win the CPAD
2 game with certainty. ⊓⊔

Note that this result is different from Proposition 2 in [17] which establishes
that there exists (approximate) FHE schemes which are non-adaptive CPAD

secure while being adaptive CPAD insecure. Indeed, there is a slight difference
between the notion of adaptability as understood in the multiple-challenge con-
text of [17] (the adversary performs all its requests at once) and that which
is usually assumed between single-challenge CCA1 and CCA2 (the adversary
performs all its requests before the challenge is published).
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4.2 Relations between vCCASC and single-challenge variants of
CPAD

Let us emphasize that the issue of approximate schemes is only succinctly and
informally discussed in [19]. Indeed, from a construction point of view, that paper
claims to define blueprints for constructing vCCA-secure schemes from “state-
of-the-art FHE such as TFHE or CKKS with the caveat that approximate FHE
schemes need to be CPAD-secure”4. It turns out that the results in this section
clarify the relationship between vCCASC security and CPAD security in the
general regime where approximate FHE are allowed: vCCASC in fact requires
much less than full-blown CPAD security but rather its weaker “CCA1 style”
variant, CPAD

1 . Implicitly, we consider here a generalization of vCCASC security
beyond the correctness assumption. However, as argued in Sect. 3.2, in terms of
security game definition, there is no dependency on the correctness assumption.
Indeed, in [19], that assumption only steps in for proving the vCCASC security
of the proposed constructions.

Proposition 3. vCCASC security implies CPAD
1 security.

Proof. By definition, a CPAD
1 adversary can only perform decryption requests

which are independent of the challenge ciphertext. It thus follows that any re-
quest performed by a CPAD

1 adversary can also be performed by a vCCASC

one. ⊓⊔

Proposition 4 (vCCASC /Ô⇒CPAD
2 ). If there exists a vCCASC-secure sche-

me S, then there exists a scheme S′ which is vCCASC-secure and CPAD
2 -insecure.

Proof. We proceed similarly to the proof of Proposition 2. Let us start from a
vCCASC-secure scheme S = (KeyGen,Enc,Dec,Eval) from which we build the
scheme S′ with the only modification that

Enc′(m) = Enc(m + g(m)).

with g as in the proof of Proposition 2.
S′ is vCCASC-secure. Let A be a successful adversary against the vCCASC secu-
rity of S′. It is then easy to build an adversary B against the vCCASC security
of S. Indeed, B simulates A encryption and challenge requests simply by adding
g(m) to m. All other requests are transferred “as is” by B to the vCCASC game
against S.
S′ is CPAD

2 -insecure. Identical to proof of Proposition 2: the CPAD
2 decryption

oracle accepts the cmul ciphertext since it is duly registered in the game state
within the triplet (0,0, cmul) as an encryption of 0 with respect to S′. ⊓⊔

Proposition 5 (CPAD
2 /Ô⇒ vCCASC). If there exists a CPAD

2 -secure scheme
S, then there exists a scheme S′ which is CPAD

2 -secure and vCCASC-insecure.
4 Following the recent attacks in [7,8], the authors of [19] further updated their ePrint

version to put additional emphasis on the FHE correctness assumption (see Remark
1 on p. 5 and Sect. 5.4).
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Proof. The proof is essentially identical to that of Proposition 1, but starting
from a CPAD

2 -secure scheme S from which we create a scheme S′ is a similar
way. On one hand, the CPAD

2 -security of S′ follows from that of S and the fact
that a CPAD

2 adversary against S′ cannot add c△ to the game state. On the
other hand, the vCCASC-insecurity of S′ follows from the fact that the vCCASC

game decryption oracle accepts c△ as it bears no relationship with the challenge
ciphertext. ⊓⊔

4.3 Relations between vCCASC and vCCAD
SC security

In this section, we establish the relationships between vCCASC security (recall
that only vCCASC is studied in [19] and, as such, only denoted vCCA) and
vCCAD

SC in both the correct regime and the general regime where approximate
FHE are allowed. In a nutshell, we establish that, although the two notions
are equivalent in the correct regime, vCCAD

SC security is strictly stronger than
vCCASC is the general case.

Lemma 2. vCCAD
SC security implies vCCASC security.

Proof. By definition of the two games, all decryption requests accepted by the
vCCASC decryption oracle are also accepted by the vCCAD

SC one (recall also
Remark 3 on p. 11). It thus follows that any request performed by a vCCASC

adversary can also be performed by a vCCAD
SC one. ⊓⊔

Note that the above implication holds in the general regime i.e., independently
of the correctness assumption.

We then prove a first result showing that vCCASC /Ô⇒vCCAD
SC in the correct

regime, under some condition on the probability that an adversary may bypass
plaintext awareness.

Proposition 6. Let S be a vCCASC-secure scheme and let µ� denotes the prob-
ability that Dec(u) = � for u

$←Ð C, then, under the correctness assumption, there
exists an (active) adversary against the vCCAD

SC-security of S which achieves
advantage (1 − µ�)(1 − 1/∣P∣).

Proof. Consider a vCCASC-secure scheme S = (KeyGen,Enc,Dec,Eval) and as-
sume m∗0 = 0, m∗1 = 1 and c∗ = Enc(m∗b). We now consider the following active
adversary vCCAD

SC attack against S. First, A picks a ciphertext crnd uniformly
at random in C. He or she then performs,

cmul = Eval(mul, c∗, crnd).

where cmul (as well as crnd) decrypts to � with probability µ�5. Now, since it is a
byproduct of the challenge ciphertext via an invocation of Eval, ciphertext cmul

is rejected by the vCCASC game decryption oracle. However, cmul is accepted by
the vCCAD

SC game decryption oracle: since crnd cannot be part of the vCCAD
SC

5 Following the consistency assumption (4) (Sect. 2).
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game state (as A does not know the associated plaintext), then neither can be
cmul. When Dec(cmul) = 0, then A decides that b = 0 and, under the correctness
assumption, wins the vCCAD

SC game with probability 1 − 1
∣P∣ . Hence the claim.

⊓⊔

Note that thanks to condition (2), this proposition can also easily be generalized
to the general regime which also include approximate FHE schemes. However this
result is of limited interest as the above attack leads to a non-negligible advantage
only if S is such that 1−µ� > neg(λ). However, as already discussed in Sect. 3.2
(recall Remark 3, page 11 and its follow up discussion) all the vCCASC-secure
constructions proposed in [19] and revisited in Sect. 6 include the machinery
necessary for their decryption function to return � when given either an ill-
formed ciphertext (which will then be the case of crnd with at least 1 − neg(λ)
probability) or an evaluated ciphertext over non well-formed ones (which is then
the case of cmul). As a consequence, it is interesting to study the relationship
between vCCASC-security and vCCAD

SC-security when the adversary is limited
to exploit only legit ciphertexts (well-formed fresh ciphertexts or ciphertexts
derived from fresh well-formed ciphertexts via legit homomorphic evaluations),
i.e. when the adversary remains passive.

Proposition 7. Under both the FHE correctness and passive adversary assump-
tions, vCCASC security is equivalent to vCCAD

SC security.

Proof. Following Lemma 2 we have that vCCAD
SC security implies vCCASC secu-

rity. For the other direction, let us consider a scheme S which is vCCASC secure
and vCCAD

SC insecure. So let us consider a successful (passive) vCCAD
SC attack

against S. This means that there exist a set of ciphertexts of the form (assum-
ing wlog that the challenge ciphertext appears only once as the first position
argument)

ci = Eval(gi, c∗, c(i)1 , ..., c
(i)
K−1)

where c
(i)
j = Enc(m(i)j ), j ∈ {1, ...,K − 1}, such that

gi(m∗0,m
(i)
1 , ...,m

(i)
K−1) = gi(m

∗
1,m

(i)
1 , ...,m

(i)
K−1) = ri (11)

and such that the vCCAD
SC adversary correctly guesses the challenge bit with

a non negligible advantage from the knowledge of the Dec(ci)’s. It is easy to
see that the ci’s are filtered out by the vCCASC decryption oracle whereas the
vCCAD

SC one let their decryption pass through to the (vCCAD
SC) adversary. How-

ever, because the FHE scheme is correct, we have

Dec(ci) = ri

with probability at least 1−neg(λ). Since, the (vCCAD) adversary can compute
the ri’s on his or her own by means of (11), he or she can extract new knowl-
edge from the Dec(ci)’s only with a negligible advantage. This contradicts the
successful attack assumption and the claim follows. ⊓⊔
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In the general case, however, it turns out that the two notions can be sepa-
rated as established by the following proposition.

Proposition 8 (vCCASC /Ô⇒vCCAD
SC). In the general regime, if there exists

a vCCAD
SC-secure scheme S, then there exists a scheme S′ which is vCCASC-

secure but vCCAD
SC-insecure, even against a passive adversary.

Proof. We proceed similarly to the proof of Proposition 2 (and Proposition 4).
Let us start from a vCCAD

SC-secure scheme S = (KeyGen,EncDec,Eval) from
which we build the scheme S′ with the only modification that

Enc′(m) = Enc(m + g(m)).

with function g as in the proof of Proposition 2.
S′ is vCCASC-secure. Since S is vCCAD

SC-secure, it is also vCCASC-secure (from
Lemma 2). Now, let A be a successful adversary against the vCCASC security
of S′. It is then easy to build an adversary B against the vCCASC security of
S. Indeed, B simulates A encryption and challenge requests simply by adding
g(m) to m. All other request are transferred “as is” by B to the vCCASC game
against S.
S′ is vCCAD-insecure. Identical to proof of Proposition 2: the vCCAD

SC de-
cryption oracle accepts the cmul ciphertext as, recall (9) and (10), left(cmul) =
right(cmul) = 0 (as cmul is an encryption of 0 with respect to S′).
Since this latter attack involves only legit ciphertexts, it can be performed by a
passive adversary. ⊓⊔

Following Lemma 2 and Proposition 8 we can conclude that vCCAD
SC security

is strictly stronger than vCCASC security in the general regime.

5 Relations among the multiple challenge notions

5.1 Relations between CPAD
SC and CPAD security

In this section, we first focus on CPAD and study the relationship between
the single and multiple-challenge variants of this notion. This is an interesting
question as, unless the FHE scheme is restricted to the evaluation of univariate
functions, the usual hybrid argument e.g. in [3] (theorem 4) for showing the
equivalence (up to an increase in advantage linear in the number of challenge
ciphertexts) between FTG-CPA6 (resp. FTG-CCA) and LOR-CPA (resp. LOR-
CCA) does not work directly. This is so because an adversary confronted to a
hybrid game (where the encryption oracle replies according to b = 0 up to a
random point after which it replies according to b = 1) can detect the transition
between the first and second phase since ciphertexts from the two phases may
interact via evaluation requests. The relationship between single and multiple-
challenge variants of CPAD was also explicitly left as an open question in [17].
6 Recall that Find-Then-Guess (FTG) is the terminology for single challenge security

notions in the foundational papers [3,4].



Relations among new CCA security notions for approximate FHE 19

Then, we also establish that, for CPAD, the single and multiple challenge
variants are (without surprise) equivalent in the correct regime and, more inter-
estingly, that the two notions can be separated in the general regime (which is
the non-trivial CPAD setting).

We first recall the following well-known theorem from [3].

Theorem 1. For any encryption scheme S = (KeyGen,Enc,Dec), LOR-CPA is
equivalent to FTG-CPA7.

For CPAD security, in the correct FHE regime, we have the following equiva-
lence. This equivalence is not surprising since CPAD security collapses onto CPA
security for correct FHE.

Proposition 9. For any correct FHE scheme, S = (KeyGen,Enc,Dec,Eval),
CPAD security is equivalent to CPAD

SC security.

Proof. For a correct FHE scheme, it is well-known that LOR-CPAD is equivalent
to LOR-CPA [17]. This means that an adversary to the LOR-CPAD game has
exactly the same advantage as an adversary to the LOR-CPAD game without
the decryption oracle, which is the same as the LOR-CPA game plus the evalua-
tion oracle (recall that the LOR-CPAD game decryption oracle, Sect. 3.1, takes
indices from the game state rather than ciphertexts as input). Let’s call this
the LOR-CPAE game (“CPA with an evaluation oracle”). It is easy to see that
LOR-CPAE is exactly LOR-CPA. For the same reasons, CPAD

SC is equivalent to
FTG-CPA. The claim then follows from theorem 1 above. ⊓⊔

In the general regime where approximate FHE are allowed, things are more
interesting as we can actually separate the two notions. We start by proving the
separation in the special case of additive FHE scheme.

Proposition 10. In the general regime, if there exists an additive HE scheme
S which is CPAD-secure, then there exists an additive HE scheme S′ which is
CPAD

SC-secure and CPAD-insecure.

Proof. So let us start with a CPAD-secure additive HE scheme

S = (KeyGen,Enc,Dec,Eval).

Then, consider the scheme S′ = (KeyGen′,Enc′,Dec′,Eval′) such that

Enc′(m) = Enc(m + g(m)),

where g is some non linear function such that g(a+b) ≠ g(a)+g(b)8. Additionally
KeyGen′, Dec′ and Eval′ are the same as those of S.
7 More precisely [3] established that the advantage of a LOR-CPA (resp. LOR-CCA)

adversary is bounded by qeαsc, where qe is an upper bound the number of encryption
queries with m0 ≠ m1 and αsc is the advantage of an FTG-CPA (resp. FTG-CCA)
adversary.

8 More precisely, we need g such that there exists a, b, a′ and b′ such that a+b = a′+b′
while g(a) + g(b) ≠ g(a′) + g(b′).
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S′ is CPAD
SC-secure. First of all, let us remark that the CPAD

1 security of S′

follows from the CPAD security of S and the fact that the approximation noise
g(m) is independent of S secret key material (which is the only information
not available to a CPAD

1 adversary). So to break the CPAD
SC security of S′, an

attacker has to exploit the challenge ciphertext. However, after the adversary
issues his or her unique challenge request with m0 ≠ m1 to get m∗0, m∗1 and
c∗ = Enc′(m∗b), he or she can only

– asks for a decryption of c∗, which is rejected by the CPAD
SC decryption oracle

since m∗0 ≠m∗1,
– asks for a decryption of csum = Eval′(sum, c∗, c(1), ..., c(K)) where9 all the

c(i)’s are such that m
(i)
0 = m

(i)
1 . The decryption of csum is also blocked by

the CPAD
SC decryption oracle since

m∗0 +∑
i

m
(i)
0 ≠m∗1 +∑

i

m
(i)
1 .

So the adversary can learn nothing on b and the CPAD
SC-security of S′ follows.

S′ is not CPAD-secure. Now let the adversary issue two challenge requests
with m0 ≠m1 getting,

m∗0,m
∗
1, c
∗ = Enc′(m∗b),

as well as
m†

0,m
†
1, c

† = Enc′(m†
b),

such that Z = m∗0 +m
†
0 = m∗1 +m

†
1 and g(m∗0) + g(m

†
0) ≠ g(m∗1) + g(m

†
1). The

adversary then computes

csum = Eval′(sum, c∗, c†)

which the CPAD decryption oracle accepts since the left and right evaluations
both give Z i.e., csum is an encryption of Z with respect to S′. However, with
respect to S, csum is an encryption of Z + g(m∗b) + g(m

†
b), hence the adversary

gets
Dec′(csum) = Dec(csum) = Z + g(m∗b) + g(m†

b)

as a result of a decryption request on csum. Since g(m∗b) + g(m
†
b) ≠ g(m∗b +m

†
b)

and g(m∗0) + g(m
†
0) ≠ g(m∗1) + g(m

†
1), the adversary recovers b with certainty,

leading the claim. ⊓⊔

As an example of concrete values for the attack in the above proof we can
consider g(x) = ⌊x/B⌉2 with e.g. B = 10000. The adversary then chooses m⋆0 =
m†

0 = 10000 as well as m⋆1 = 0 and m†
1 = 20000. With these parameters, Z = 20000

and Dec′(csum) = 20002 when b = 0 or 20004 when b = 1.
We now further establish the separation result without the restriction to

additive HE schemes.
9 Without loss of generality we assume that c∗ appears only once and in the first place

in the Eval′(sum, ...) arguments.
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Corollary 1 (CPAD
SC /Ô⇒CPAD). In the general regime, if there exists an

FHE scheme S which is CPAD-secure, then there exists an FHE scheme S′

which is CPAD
SC-secure and CPAD-insecure.

Proof. So let us start with a CPAD-secure FHE scheme

S = (KeyGen,Enc,Dec,Add,Mul).

Then, consider the scheme S′ = (KeyGen′,Enc′,Dec′,Add′,Mul′) such that

Enc′(m) = (Enc(m),Enc(g(m))) = (c0, c1) = c,

(with g being the same as in the proof of the previous Proposition 10) and

Dec′(c) = Dec(c0) +Dec(c1).

Now we consider the following homomorphic addition and multiplication opera-
tors:

Add′(c, c′) = (Add(c0, c′0),Add(c1, c′1))

and
Mul′(c, c′) = (Mul(c0, c′0),Enc(0)).

Essentially, in S′, the approximation noise is encrypted separately to the mes-
sage (to make both easily separable) and the multiplication operator resets that
noise. So as soon as the adversary performs a multiplication, he or she closes the
information channel that function g opens. Although S′ is duly fully homomor-
phic, we therefore end up in the same conditions as in the proof of Proposition
10. Indeed, in any successful CPAD

SC or CPAD attack involving both homomor-
phic additions and multiplications, the multiplications are redundant. ⊓⊔

Since CPAD security trivially implies CPAD
SC security, the following result is

a direct consequence of Corollary 1.

Proposition 11. In the general regime, CPAD is strictly stronger than CPAD
SC.

Note that the above proposition (partly) settles the question of the relation-
ship between single and multiple-challenge CPAD security that was left open in
[17] (p. 14): “It remains an interesting open question to find out the relation-
ship between (q; ℓ)-IND-CPAD and (q; ℓ + 1)-IND-CPAD securities (and same
for SIM-CPAD).” (in their notations, ℓ is the number of queries to the encryp-
tion oracle with m0 ≠ m1 and q the number of decryption queries). Indeed, we
have shown above that, even for q = 1, there exists homomorphic schemes which
are (q; 1)-CPAD-secure while being (q,2)-CPAD-insecure (in the notations of
[17]). Of course, to completely settle the above question we also need to prove
separation or equivalence of (q, ℓ)-CPAD-security and (q, ℓ + 1)-CPAD-security
with ℓ > 2. We leave this remaining question as an open problem, although we
conjecture that (q, ℓ)-CPAD security is equivalent to (q,2)-CPAD security for
all ℓ ≥ 2.
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5.2 Relations between vCCASC and vCCA security

Recall that [19] defines and studies only vCCASC security (also recall that in
that paper it is simply referred to as vCCA). The question of the relationship
between vCCASC security and LOR-vCCA security (or simply vCCA security
with our present conventions) therefore deserves to be settled. So let LOR-vCCA
denote the multiple challenges variant of vCCA in which the decryption oracle
condition (7) is replaced by

C∗ ∩ {c1, ..., cK} ≠ ∅, (12)

where C∗ is the set of challenge ciphertexts. We then have the proposition below.

Proposition 12. vCCA security is equivalent to vCCASC security.

Proof. The standard hybrid argument, e.g. in the proof of [3, Theorem 4] (which
corresponds to Theorem 1 for both CPA and CCA), holds without modification,
since an adversary confronted to a hybrid game (where the encryption oracle
replies according to b = 0, up to a random point after which it replies accord-
ing to b = 1) cannot detect the transition between the first and second phases.
Indeed, although challenge ciphertexts from both phases may interact via ho-
momorphic evaluations, condition (12) above guarantees that such interactions
lead to ciphertexts rejected by the above LOR-vCCA decryption oracle. ⊓⊔

Note that in the above proof, we make no assumption about the correctness of
the FHE scheme, so the above equivalence holds in the general regime.

As a consequence of Proposition 8, this establishes that the single challenge
variant of vCCAD security, vCCAD

SC, is already strictly stronger than the mul-
tiple challenge variant of vCCA.

5.3 Relations between vCCAD
SC and vCCAD security

Lastly, we now unveil the relationship between the single and multiple challenge
variant of vCCAD security. Similarly to the CPAD case, there is a distinction
between the correct and general regime.

Proposition 13. In the correct regime, vCCAD is equivalent to vCCAD
SC.

Proof. The claim follows directly from proposition 7 (and its straightforward
generalization to the multiple challenges variants of vCCA and vCCAD) as well
as proposition 12 above. ⊓⊔

We now turn to the general regime and, as in Sect. 5.1, first consider the case
of linearly homomorphic schemes.

Proposition 14. In the general regime, if there exists an additive HE scheme
S which is vCCAD-secure, then there exists an additive HE scheme S′ which is
vCCAD

SC-secure and vCCAD-insecure.
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Proof. We proceed similarly to the proof of Proposition 10. So let us start with
a vCCAD-secure additive HE scheme S = (KeyGen,Enc,Dec,Eval) from which
we build the scheme S′ with the only modification that

Enc′(m) = Enc(m + g(m)),

where g is as in the proof of Proposition 10.
S′ is vCCAD

SC-secure. Since vCCAD security trivially implies vCCAD
SC secu-

rity, S is vCCAD
SC-secure. Let A be a successful adversary against the vCCAD

SC
security of S′. It is then easy to build an adversary B against the vCCAD

SC se-
curity of S. Indeed, B simulates A encryption and challenge requests simply by
adding g(m) to m. All other request are transferred “as is” by B to the vCCAD

SC
game against S.
S′ is vCCAD-insecure. Identical to proof of Proposition 10: the vCCAD de-
cryption oracle accepts the csum ciphertext as, recall (9) and (10), left(csum) =
right(csum) = Z (as an encryption of Z with respect to S′). ⊓⊔

Corollary 2 (vCCAD
SC /Ô⇒vCCAD). In the general regime, if there exists an

FHE scheme S which is vCCAD-secure, then there exists an FHE scheme S′

which is vCCAD
SC-secure and vCCAD-insecure.

Proof. Identical to that of Corollary 1. ⊓⊔

Since vCCAD security trivially implies vCCAD
SC security, the following result

is a direct consequence of Corollary 2.

Proposition 15. In the general regime, vCCAD is strictly stronger than vCCAD
SC.

It follows that vCCAD security is the strongest CCA security notion so far
known to be achievable by FHE in the general regime.

6 Construction blueprints

In this section, we revisit the four construction blueprints proposed in [19] to
leverage CPA-secure and correct FHE schemes into vCCASC-secure schemes,
and study both their applicability in the general regime where approximate
FHE are allowed as well as their vCCAD security. As such, we emphasize that
the constructions themselves are not new.

6.1 Private key constructions

We first consider the Encrypt-then-Sign construction blueprint proposed in [19].
The construction is built over a public-key FHE scheme EH , a public-key signa-
ture scheme Σ = (KeyGen,Sign,Verify), as well as a designated-verifier SNARK
Π = (Setup,Prove,Verify), to obtain an encryption scheme E⋆H defined as follows.

– E⋆H .KeyGen: run EH .KeyGen, Σ.KeyGen, Π.Setup, let ek = (EH .pk,Sign.sk,Π.σ)
as well as dk = (EH .sk,Sign.pk,Π.τ).
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– E⋆H .Enc: given m ∈ P generate ciphertext (c, π) = (EH .Enc(m),Σ.Sign(c)).
– E⋆H .Eval: given ciphertexts (c1, π1), ..., (cK , πK) such that Σ.Verify(ci, πi),∀i,

generate ciphertext (ce, πe) such that

ce = EH .Eval(f, c1, ..., cK),

and

πe =Π.Prove(Σ.Verify(ci, πi),∀i ∧ ce = EH .Eval(f, c1, ..., cK)).

– E⋆H .Dec: given ciphertext (c, π) return EH .Dec(c) when Σ.Verify(c, π) = True
or Π.Verify(c, π) = True and � otherwise.

Intuitively, the essence of this construction is to rely on a trusted encryption
oracle that generates only well-formed ciphertexts with respect to EH and signs
them such that they are recognizable. As such, this construction is not public key,
due to the presence of Σ.sk in ek. To improve the practicality of this construction
(at the expense of input privacy), it is also possible to modify it such that the
statements for which the Π outputs a proof during Eval does not have to include
the verification of the input ciphertexts’ signatures. In that case, both the input
and output ciphertexts must be available to the decryption algorithm which is
then responsible for verifying the signatures of the former. When this is the case,
Eval and Dec are therefore modified as follows:

– E⋆H .Eval: given ciphertexts (c1, π1), ..., (cK , πK) compute

(ce = EH .Eval(f, c1, ..., cK), πe =Π.Prove(c′ = EH .Eval(f, c1, ..., cK))).

and return ciphertext ((ce, πe), (c1, π1), ..., (cK , πK)).
– E⋆H .Dec (fresh ciphertext): given (c, π), return EH .Dec(c) if Σ.Verify(c, π) =

True and � otherwise.
– E⋆H .Dec (evaluated ciphertext): given ((ce, πe), (c1, π1), ..., (cK , πK)) return
EH .Dec(ce) when Π.Verify(ce, πe) = True and Σ.Verify(ci, πi) = True,∀i and
� otherwise.

In this modified construction, the signature scheme can be replaced by a MAC
M = (KeyGen,Tag,Verify), leading to the Encrypt-then-MAC blueprint of [19].

The above Encrypt-then-Sign construction was proved in [19] to lead a vCCASC-
secure scheme from a CPA-secure correct FHE scheme, a SUF-CMA-secure sig-
nature scheme and a simulation-sound extractable SNARK (which implies the
existence of an extractor as defined in Sect. 3.2). Their proof technique consists
in showing that a successful vCCASC attack over scheme E⋆H implies a successful
CCA2 attack against the private key (non homorphic) encryption scheme ob-
tained by associating EH and Σ. It turns out that the security of this construc-
tion goes beyond this setting as we now prove that the above Encrypt-then-Sign
blueprint in fact offers vCCAD security beyond the correct FHE regime, as long
as we instantiate it from a CPAD-secure rather than CPA-secure/correct FHE.

To do so, we now prove that an adversary breaking vCCAD security on
the above construction also breaks the CPAD security of the underlying FHE
scheme, thus leading to a contradiction with the the CPAD security of the latter.
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Proposition 16. Let A be an adversary against the vCCAD security of E⋆H ,
then, under the assumption that Σ is SUF-CMA secure and Π is straightline-
extractable, there exists an adversary B against the CPAD security of EH which
uses A as a subroutine.

Proof. Because the scheme is not public key, all encryptions are performed
through vCCAD game encryption requests. Also, B mimics the CPAD game
state and initially starts with an empty state SB = []. Then, given a ciphertext
c, we denote by idx(c), its index in the game state SB (which is the same as the
index at which the ciphertext is stored in the CPAD game state S). Then A can
issue the following requests, which B emulates as follows:

– When A issues a vCCAD game encryption request for plaintext m, then B
issues a CPAD game encryption request to get ciphertext c. He or she then
does SB ∶= [SB; (m,m, c)], generates π = Σ.Sign(c) and return (c, π) to A.

– When A issues a vCCAD game challenge request for plaintexts m0,m1 (m0 ≠
m1), then B issues a CPAD game challenge request to get ciphertext c. He
or she then does SB ∶= [SB; (m0,m1, c)], generates π = Σ.Sign(c) and return
(c, π) to A.

– When A issues a vCCAD game decryption request for ciphertext (c, π),
proceeds as follows:
● If Σ.Verify(c, π) = True (i.e., when (c, π) is a fresh well-formed ciphertext)

he or she issues a CPAD game decryption request on idx(c) and return
the result to A.
● If Π.Verify(c, π) = True, B invokes Π’s Extract procedure over (c;π) to

get f ; (c1;π1), ..., (cK ;πK). In this case, if Σ.Verify(ci, πi)) = False for
some i he or she returns � to A. Otherwise (when (c, π) is a well-formed
evaluated ciphertext), he or she then does a CPAD game evaluation
request with parameters f ; idx(c1), ..., idx(cK) and get ciphertext c′ = c
(recall that Eval is deterministic) in return (with also the effect of adding
c′ = c along with the associated left and right cleartext evaluations in the
CPAD game state), he or she also performs the left and right cleartext
evaluations for his or herself to get

m′0 = f(SB[idx(c1)].m0, ..., S
B[idx(cK)].m0)

and
m′1 = f(SB[idx(c1)].m1, ..., S

B[idx(cK)].m1)
and do SB ∶= [SB; (m′0,m′1, c′)]. Finally, B issues a CPAD game decryp-
tion request with idx(c′) = ∣SB ∣ and returns the result to A.
● Lastly, when Σ.Verify(c, π) = False, B returns � to A.

Thus, B can duly simulate all the vCCAD game requests issued byA. Because the
simulator B does not provide an evaluation oracle and, hence, does not generate
any proofs (B only invokes the SNARK extractor when Π.Verify(π) = True on
a proof π he or she has not generated), A has only access to proofs he or she
has generated by his or herself and, as such, has no access to any simulator
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oracle against Π. It follows that the straightline-extractability of Π is sufficient
for the vCCAD security of the construction to hold without any additional non-
malleability property for the SNARK. ⊓⊔

6.2 Public-key constructions

We now consider the public key, designated-verifier10 construction blueprint pro-
posed in [19] which we refer to as the CCA2-Companion-Ciphertext approach
in this paper. The construction is built over a public-key FHE scheme EH , a
public-key (CCA2-secure) scheme E = (KeyGen,Enc,Dec), and a designated-
verifier SNARK Π = (Setup,Prove,Verify), to obtain encryption scheme E⋆H :

– E⋆H .KeyGen: run EH .KeyGen, E .KeyGen, Π.Setup, let ek = (EH .pk,E .pk,Π.σ)
as well as dk = (EH .sk,E .sk,Π.τ).

– E⋆H .Enc: given m ∈ P generate ciphertext (c, c′) = (EH .Enc(m; r),E .Enc(m∣r))
(where ∣ denotes the concatenation operator).

– E⋆H .Eval: given ciphertexts (c1, c′1), ..., (cK , c′K), compute

(ce = EH .Eval(f, c1, ..., cK), πe =Π.Prove(ce = EH .Eval(f, c1, ..., cK))).

and return ciphertext ((ce, πe), (c1, c′1), ..., (cK , c′K)).
– E⋆H .Dec (fresh ciphertext): given (c, c′), return EH .Dec(c) if Verif((c, c′) =

True and � otherwise11.
– E⋆H .Dec (evaluated ciphertext): given ciphertext ((ce, πe), (c1, c′1), ..., (cK , c′K))

return EH .Dec(ce) when Verif(ci, c′i) = True,∀i and Π.Verify(ce, πe). Return
� otherwise.

Where Verif((c, c′)) runs (m′, r′) = E .Dec(c′) and returns True iff

c = EH .Enc(m′, r′).

Intuitively, the essence of this construction is to define fresh ciphertexts as
the association of an FHE ciphertext encrypting m by means of randomness
r and another ciphertext encrypting the concatenation of m and r under a
CCA2-secure encryption scheme. This allows to verify the well-formedness of
these fresh ciphertexts by first decrypting the companion CCA2 ciphertext to

10 In [19] terminology this just tells whether or not the well-formedness of fresh cipher-
texts is verifiable publicly or privately. This is independent of whether the SNARK
is publicly verifiable or designated-verifier.

11 Here, we slightly depart from the construction of [19] in the following sense. When
decrypting a fresh ciphertext (c, c′), they indeed proceed by calling E .Dec(c′) to
get m and r and return m when Verif((c, c′)) = True (i.e., they never decrypt the
FHE ciphertext). We, on the contrary, return EH .Dec(c) when Verif((c, c′)) = True.
Although both options are equivalent under the correctness assumption of EH , this is
not the case in the general regime. However, when EH is CPAD-secure (as required for
the construction in the general regime), this difference has no security implications.
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recover m and r12 and then checking that the associated FHE ciphertext is
indeed equal to EH .Enc(m,r) (note that the verification may succeed when
EH .Dec(EH .Enc(m,r)) ≠ m which is what we want when the correctness as-
sumption does not hold for EH). The approach, however, has the drawback that
it cannot achieve any form of input privacy as this verification requires the
knowledge of the CCA2 scheme decryption key and, as a consequence, can be
performed only in the decryption function of the overall scheme, requiring the
availability of the input ciphertexts.

The above CCA2-Companion-Ciphertext blueprint was proved in [19] to lead
a vCCASC-secure scheme from a CPA-secure correct FHE scheme, a CCA2-
secure scheme and a simulation-sound extractable SNARK (which implies the
existence of an extractor as defined in Sect. 3.2). Their proof technique consists
in showing that a successful vCCASC attack over scheme E⋆H implies a successful
CCA2 attack on the companion CCA2 scheme. As in the previous section, it
turns out that the security of this construction goes beyond this setting as we
now prove that it also achieves vCCAD security in the general regime, as long
as we instantiate it from a CPAD-secure rather than CPA-secure/correct FHE.

Proposition 17. Let A be an adversary against the vCCAD security of E⋆H ,
then, under the assumption that E is CCA2-secure and Π is straightline-extracta-
ble, there exists an adversary B against the CPAD security of EH which uses A
as a subroutine.

Proof. The proof is quite similar to that of Proposition 16 except that we slightly
modify the CPAD encryption oracle (but not the challenge oracle) such that it
further takes randomness r as a parameter (this is benign for public-key FHE
schemes, and all FHE schemes in this paper are public key). When B processes a
decryption request (assuming evaluated ciphertexts), the input ciphertexts which
are challenge ones are already in his or her internal state (ditto for the CPAD

defender). For the input ciphertext which are challenge-independent, the message
and randomness are recovered by B via the decryption of the CCA2 companion
ciphertexts. Then B can issue the proper CPAD encryption requests (with the
additional randomness parameter) to populate the CPAD defender state (and his
or her mirrored one at the same time). Then B can issue the CPAD evaluation
request with the appropriate game state indices to obtain c′ = c (due to the
deterministic evaluation assumption) and add it to the CPAD defender game
state. Finally, B issues the CPAD decryption request with idx(c). ⊓⊔

Lastly, let us emphasize that the Naor-Yung-based [20] construct of [19],
which, in order to encrypt a plaintext, associates two FHE ciphertexts of this
plaintext under different keys, and bind them by a proof that these two cipher-
texts are encrypting the same plaintext, requires correctness. Indeed, in [20]
(definition 3.4), the scheme used in the construction must verify ∀m ∈ P,∀r ∈
12 As such, in the CCA2-Companion-Ciphertext construct, we exactly get the addi-

tional extractor Extract′ needed in the vCCAD game definition in the public key
case (Sect. 3.3).
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{0; 1}p(n),Dec(Enc(m,r)) = m. As such it is not applicable in the general case
where approximate FHE schemes are allowed.

7 Conclusion and future work

Following the work of Manulis & Nguyen [19] as well as the improvements on that
work we presented in this paper, designing practical FHE-style malleable schemes
enforcing CCA security properties beyond the CCA1 barrier seems within reach,
at least for specific applications. Indeed, recent advances in SNARK for ring
arithmetic, such as [12], give us the necessary toolbox for attempting concrete
instantiations of the construction blueprints discussed in Sect. 6. Furthermore,
in many usual applications of FHE, the set of algorithms that needs to run in
the encrypted domain is very limited (for example, a FHE aggregation server
involved in a Federated Training protocol for a machine learning model may
only have to run a simple average [13] or a majority voting algorithm [14,15]).
This gives us hope to be able to design practical vCCAD-secure schemes with
simplified SNARK or Verifiable Computing techniques tailored to these sets
of algorithms. Lastly, it will also be interesting to investigate which building
blocks are friendly towards each others e.g., finding “SNARK friendly” signature
schemes for concrete instantiation of the Encrypt-then-Sign blueprint.

Also, following a recent burst of new CPAD attacks on both noise-flooded
CKKS and “exact” schemes such as BFV, BGV or TFHE [16,7,8] new FHE
security paradigms are being proposed. As an example, Alexandru et al. [1]
have proposed a new weaker variant of CPAD security, termed application-aware
security. In essence, this new definition acknowledges that for non-exact FHE
schemes, CPAD security should be defined relatively to a function class FC and a
ciphertext noise estimation strategy, rather than absolutely. With respect to that
new security notion, the cryptosystem parameters should then be set relatively
to these, and the homomorphic evaluations should be limited to the functions
or circuits in the class. However, one of the main drawbacks of the application-
aware approach is that the burden of enforcing the above constraints lies, so
far, solely on the library user’s shoulders (see also [2] and, in particular, its
new Sect. 2.6.1). As a starting point, an interesting line of research would then
be to connect the application-aware paradigm with both vCCA and vCCAD

security notions by defining new weaker variants of these notions, e.g. FC-vCCA
and FC-vCCAD security, for leveraging somewhat correct (and CPA) or CPAD

schemes, i.e. schemes achieving correctness or CPAD security only over FC , to
CCA security levels. For example, the vCCASC and vCCAD decryption oracles
may further check that f /∈ FC in conditions (7) and (8), respectively (which is
precisely what is suggested for the CPAD game evaluation oracle in [1]). Our
intuitions are that the picture depicted in this paper will be relatively similar
for these restricted security notions but we leave this for further work. However,
a difficult point will be to capture the dependency of the application aware
approach upon noise estimation strategies in meaningful CCA security notions,
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with the hope of achieving both beyond CCA1 security and relieving the library
users of the burden of enforcing by hand the constraints of that paradigm.
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