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Abstract

This paper deals with reducing the secret key computation time of small scale variants of the AES
cipher using algebraic cryptanalysis, which is accelerated by data mining methods. This work is based
on the known plaintext attack and aims to speed up the calculation of the secret key by processing the
polynomial equations extracted from plaintext-ciphertext pairs. Specifically, we propose to transform
the overdefined system of polynomial equations over GF(2) into a new system so that the computation
of the Grobner basis using the F4 algorithm takes less time than in the case of the original system.
The main idea is to group similar polynomials into clusters, and for each cluster, sum the two most
similar polynomials, resulting in simpler polynomials. We compare different data mining techniques
for finding similar polynomials, such as clustering or locality-sensitive hashing (LSH). Experimental
results show that using the LSH technique, we get a system of equations for which we can calculate the
Grébner basis the fastest compared to the other methods that we consider in this work. Experimental
results also show that the time to calculate the Grobner basis for the transformed system of equations
is significantly reduced compared to the case when the Grobner basis was calculated from the original
non-transformed system. This paper demonstrates that reducing an overdefined system of equations
reduces the computation time for finding a secret key.

Keywords: AES, Algebraic Cryptoanalysis, Grobner Bases, Data Mining, Partitioning Around Medoids,
Locality Sensitive Hashing

1 Introduction

Algebraic cryptanalysis is gaining more and more
attention and has been successfully applied in
many cryptosystems. It is especially relevant for
the AES cipher [1], which was designed to be
mainly resistant to standard techniques such as
linear and differential cryptanalysis. Algebraic
cryptanalysis consists of two main parts. First,

a cryptosystem is transformed into a polynomial
equation system over some finite field. Then, a
secret key is revealed by solving this system using
existing methods, such as SAT solvers or algo-
rithms for computing Grobner basis. Note that
the problem of solving a system of multivariate
polynomial equations over a finite field is an NP-
complete problem, even if the system consists of
quadratic equations and the field is GF(2) [2].



The AES cipher can be considered a map from
a finite set to a finite set. According to the Uni-
versal Mapping Theorem [3], any such map can
be written as a polynomial system over GF(p),
where p is some prime number. Following this
theorem, it is possible to represent the AES as
a system of polynomial equations over GF(p), no
matter how complex the structure of the AES is.
However, the design of the AES can be described
using standard algebraic operations, which allows
the relatively easy construction of a system of
polynomial equations, as described in Section 4.
This work considers this system of polynomial
equations over GF(2), and the unknown variables
correspond to secret key bits.

Also, this work deals with small scale variants
of the AES [4] since it is computationally unfeasi-
ble to apply the algebraic cryptanalysis proposed
in this paper using our working machine. Alge-
braic cryptanalysis is based on a known plaintext
attack in our work, i.e., we assume that we have
several pairs of plaintexts and the corresponding
ciphertexts. From each such pair, we create a sys-
tem of polynomial equations over GF(2), where
the number of equations equals the length of a
secret key. For more than one pair, we obtain an
overdefined system, i.e., the number of equations
is greater than the number of unknown variables.
In this work, we conducted experiments with rel-
atively large systems extracted from several hun-
dred plaintext-ciphertext pairs. Our experimental
results indicate that the more such systems, the
lower the entropy of the secret key.

The contribution of this paper is an approach
for mining the data about the secret key from
big data that are in the form of large polynomial
equations over GF(2). Specifically, we proposed
an approach based on data mining methods to
process the large polynomial equations in a more
appropriate form (w.r.t. time complexity) for the
algorithm F4 [5] for computing Grébner bases.
The main idea behind using data mining meth-
ods is to use these approaches to cluster the
equations in groups of similar equations. Then,
for each cluster, we find the two most similar
polynomials (w.r.t. some similarity function) and
sum them. The resulting polynomials are given as
input to the F4 algorithm to compute Groébner
basis. According to the Elimination theorem (see
Section 3), the secret key is trivial to extract
using polynomials from reduced Grobner basis.

Our experimental results demonstrate that find-
ing the secret key of some small scale variants of
the AES is significantly faster for the F4 algorithm
than when using the conventional way, i.e., the
F4 algorithm is directly applied to the polynomial
equations without the preprocessing part.

The rest of this paper is organized as follows.
Section 2 provides an overview of the related works
focused on algebraic cryptanalysis. Section 3 intro-
duces technical terms to understand the math-
ematical background, specifically the theory of
Grobner bases. Rather than presenting the AES,
a well-known cipher described in many papers, we
describe the structure of small scale variants of
the AES cipher in this section. In Section 4, we
present the construction of the system of polyno-
mial equations that can be used to model these
variants. Section 5 presents three existing meth-
ods, two of them from the data mining domain,
which we used for reducing overdefined systems of
polynomial equations, making the computation of
Grobner bases using the F4 algorithm more effi-
cient and thereby speeding up the finding of the
secret key. Section 6 presents the experimental
results of the three methods and compares them
in terms of computational times, memory require-
ments, and other metrics. Section 7 concludes the
work and provides directions for future work.

2 Related Work

Algebraic cryptanalysis of small scale variants of
AES has been the subject of numerous prior stud-
ies. The authors of [6] defined two sets of small
variations of AES that differ in the form of the
final round. In addition, they provided instruc-
tions for constructing systems of equations corre-
sponding to these small scale variants of the AES.
The idea of using the zero-dimensional Grobner-
representation for AES was proposed in [7]. Based
on their research results, the authors demon-
strated the possibility of an attack using a single
plaintext-ciphertext pair for the full AES-128.
The interpretation of AES as a system of
equations over GF(2%) is presented in [8]. The
authors also introduced a new technique that fur-
ther simplifies the analysis of the AES. Instead of
describing the AES encryption process in terms
of operations on an array of bytes, they repre-
sented the data as column vectors. The authors
also introduced a new iterated block cipher, the



Big Encryption System (BES), which operates on
128-byte blocks with a 16-byte key.

The authors of [9] presented some algebraic
aspects of the representation of AES as a sys-
tem of polynomial equations according to the
BES approach. Using stepwise substitutions, they
were able to get rid of all intermediate variables
and obtain two systems whose solution exactly
corresponds to revealing the secret key.

In [10], researchers conducted specific stud-
ies on the linear transformation and the system
of multivariate polynomial equations of AES-256.
Then, they proposed a zero-dimensional Grébner
basis construction method for the system by
selecting the appropriate term order and variable
order. In addition, a Grébner basis attack scheme
was proposed, which has lower complexity than a
brute force attack.

The authors of [11] described AES as a sys-
tem of overdefined sparse quadratic equations
over GF'(2). They also suggested a new technique
called an XSL attack for the family of XSL-ciphers
that includes AES. In [12], the authors explained
the rationale behind various claims for AES key
recovery attacks based on the XSL technique.
To better understand the XSL algorithm and its
behavior, the authors of [13] examined it more
thoroughly and explained it more succinctly. How-
ever, the authors have also demonstrated that the
XSL algorithm cannot solve the system arising
from the AES, as presented in [11]. After dis-
cussing some of the XSL algorithm’s alternatives,
the authors concluded that it is unlikely for the
algorithm to solve the AES system of equations
efficiently in its current state.

The authors of [14] investigated methods for
obtaining and solving key variable-only equations
that arise during the cryptanalysis of small AES
variants. Unlike many other attempts, the method
described in this paper is unusual in that the
researchers focused on obtaining equations for
only the key variables and used a zero-dimensional
Grobner representation for the AES but worked
over GF(2).

The authors of [15] investigated algebraic
attacks on the AES. They began with a brief
history of AES, followed by a description of
the AES algorithm, and then discussed various
techniques for solving systems of multivariate
quadratic equations over arbitrary fields, such as
relinearization and XL algorithm.

In [16], the authors worked with the small
scale variants of AES. They also represented the
ciphers as systems of polynomial equations over
GF(2) that only included the variables of the ini-
tial key and found the secret keys using Groébner
bases. The authors compared the performance of
Grobner bases to that of an SAT solver, demon-
strating the supremacy of Grébner bases in solving
polynomial systems for larger variants of the AES.

3 Background

This chapter presents the basic definitions of all
mathematical terms used in this work. We will
mainly focus on the area of Grébner bases and the
definition of small scale variants of the AES.

3.1 Grobner Bases

In this section, we introduce the concept of the
Grébner basis of an ideal and explain their pur-
pose in the computations of a secret key from a
system of polynomial equations over GF(2). Most
definitions listed here are from [5].

Definition 3.1. Let I C k[z1,...,z,] be an ideal
(other than {0}) and let have some monomial
order on k[z1, ..., z,]. Then:

(i) A set of leading terms of nonzero elements from
T is denoted by LT(I), and is defined by

LT(I) = {cx® | 3f € I\ {0}, LT(f) = cz“}.

(ii) An ideal generated by LT(I) is denoted by
(LT(I)).

Theorem 3.2. Let I C k[xy, ..
other than {0}.

(i) (LT(I)) is a monomial ideal.
(ii) There are gi,...,g¢ € k[xy,...
(LT(I)) = (LT(g1), -, LT(gs)).

The proof of this theorem is given in [5, p. 77].
Theorem 3.3. Hilbert Basis Theorem. Every
ideal I C klxq,...,x,] has a finite generating set,
i.e., I ={g1,...,g:) for some g1,...,g; € I.

The proof of this theorem is given in [5,
p. 77]. Recall that a basis is a set of polyno-
mials in k[zq,...,x,] that generates an ideal I.
Hilbert basis theorem then states that every ideal
I in k[zq,...,z,] is generated by finitely many
polynomials.

&y be an ideal

,Znl, such that



Definition 3.4. Let’s have a monomial order on
the polynomial ring I C k[zy,...,x,]. A finite
subset G = {g1,...,g:} of a nonzero ideal I C
klxy,...,2,] is a Grobner basis if

(LT(g1), -, LT(g)) = (LT(I)).

This definition states that a set {g1,...,g:} C I
is a Grobner basis for I if and only if the leading
term of any element of I is divisible by some of
the LT (g;).

Corollary 3.5. Let’s have a monomial order on
klx1,...,2n]. Then every ideal I C k[, ..., 2] has
a Grébner basis.

The proof of this theorem is given in [5, p. 78].
Definition 3.6. Let I C k[zq,...,x,] be an ideal.
Then V(I) denotes a set

{(a1,...,a,) €K™ |VfeT: f(ay,...,a,) = 0}.

Theorem 3.7. V(I) is an affine variety. Specifi-

Ca”y’ ZfI = <f17"'7f5> then V(I) - V(flv"'afs)‘
An important consequence of this theorem is

that ideals determine varieties.

Definition 3.8. Let G be a Groébner basis for

polynomial ideal I. A Reduced GréGbner basis

for I is a Grobner basis for I such that:

(i) LC(p) = 1 for all p € G, where LC denotes
leading coefficient.
(ii) For all p € G, no monomial p belongs to

(LT(G\A{p}))-

Any polynomial ideal has its reduced Grébner
basis, and this basis is unique. Several computer
algebra systems, such as Magma [17], compute
reduced Grobner basis.

Definition 3.9. Let Fy[z,...,z,] be a polyno-
mial ring over the finite field F,, where ¢ = p™,
p is a prime number and m is a positive integer.
For every ¢ = 1,...,n, the polynomials ! — x; are
called field equations of F,.

Theorem 3.10. Finiteness Theorem. Let
fi,-ooy fm € Fylza,...,2,] be polynomials over
Fq. If we have (f1,..., fm) NFqlz;] # 0 for all z;,
then V({f1,..., fm)) CFy is finite.

According to the Finiteness Theorem, adding
the field equations into a polynomial system
extracted from a cipher ensures that the system
will have finitely many solutions. If F' is an exten-
sion of a finite field F, then all elements of the

field F' satisfy the field equations over F', but no
element of the set F \ F satisfies these equations.

Definition 3.11. Let I = (fi,...,fm) C
Flx1,...,2,] be an ideal. The [-th elimination
ideal I; is the ideal of F[x;41,...,2,] given by

I, = IQF[1'1+17...,$TL].
Theorem 3.12. The Elimination Theorem.
Let G C I CFxy,...,x,] be a Grobner basis of T
so that Tl tlez €2 tleaz o tleaz L, where tlex 18
the lexicographic monomial order. Then, for every
0 <1< n, the set Gy = GNFlaiy1,...,2,] i a
Grébner basis of the l-th elimination ideal I;.

The Elimination Theorem provides a method
for eliminating unknown variables in polynomi-
als belonging to Grébner basis. The eliminated
system is considerably easier to solve, and the
eliminated variables can be found using the sub-
stitution method.

In the experimental part of this work, we used
the F4 algorithm [18], proposed by Faugere in
1999, to compute Groébner bases.

3.2 Small Scale Variants of the AES

Due to the computational complexity of solv-
ing the problem of finding the secret key of the
AES cipher, it was necessary to develop reduced
variants of the AES, which would have simi-
lar algebraic properties to AES, but its analysis
would take significantly less time and memory to
analyze.

Carlos Cid et al. [4] proposed a whole fam-
ily of such ciphers, which we will call small scale
variants of the AES. Each of these variants can
be characterized by four parameters n, r, ¢, and e
which are defined as follows

® n - the number of rounds performed by the
encryption algorithm, 1 <n <10

e r - number of rows r of the variable state, r =
1,2,4

® ¢ - number of columns ¢ of the variable state,
c=1,2,4

® ¢ - the number of bits e indicating the size of
the word (an element of the state), e = 4,8

For the small scale variant of the AES, we
adopted the notation SR(n,r, ¢, e) from [4].

The size of the variable state for the particular
variants of the cipher can then be calculated from
the parameters as r-c-e bits, which are represented
by an array of r - ¢ words.



Note that, for the e parameter, the individual
ciphers work with elements from the field GF(2¢),
and hence, an irreducible polynomial must be
defined for each e. The variants of SR(n,r,c,8)
work with polynomials from the field defined as
GF(2)[z] \ (z® + 2* + 23 + 2 + 1). On the other
hand, the variants SR(n, r, ¢,4) work with the irre-
ducible polynomial p(x) = z*+z+1, i.e., the field
GF(2)[z] \ (z* + = + 1).

For the original AES algorithm, each round
consists of the SubBytes, ShiftRows, MizColumns,
and AddRoundKey functions, except for the last
round where MizColumns is missing. The same
holds for small scale variants of the SR*(n,r, ¢, e)
cipher, which use simplified variants.

The same simplified functions are also used
by the SR(n,r, c,e) variants. However, the last
round is not different from the previous ones and
contains all functions, including MizColumns.

From the description of all the above parame-
ters, it now follows that the full version of the AES
algorithm corresponds with the SR*(10,4,4,8)
variant. Since, when encrypting the plaintext with
the same secret key, the ciphertexts from the
versions SR*(n,r,c,e) and SR(n,r,c,e) can be
converted to each other using an affine mapping,
we can only use SR(n, r, ¢, €) versions in our work.

We will describe the differences in individual
transformation functions for their simplified vari-
ants. The SubBytes function replaces individual
bytes of the state variable using the S-box substi-
tution table. For e = 8, the SubBytes function is
identical to the one used for full AES.

For e = 4, the SubBytes function is created
using the following transformations.

i) Take the multiplicative inversion in GF(2%)
(the element 014 is mapped onto itself).

ii) Apply the following affine transformation over
GF(2%):

W] [to11] [] [0
vl {110t |6 |1
= 11110l e T W
w|  lot11] |es] o

The function ShiftRows works independently
of the number of rows and columns so that we can
define it in the same way as for the original AES.
Each row is cyclically rotated to the left by the

number of bytes determined by the index of the
given row if we index from 0.

The function MizColumns for ¢ = 4 works the
same as for the original AES. For ¢ = 2, the linear
transformation using matrix multiplication is as
follows:

86,0 ~ 103 02{ |so,c
] < [ o] oo oo o

S1,c S1,c

Note that for e = 4 and e = 8, the respec-
tive field GF(2°) and its irreducible polynomial
are used.

The AddRoundKey function works the same
for all variants. At the beginning of the algorithm
and at each round, it simply xor the corresponding
part of the expanded key to the state variable.

However, the difference between the variants
occurs in the KeyFEzrpantion function when creat-
ing an expanded key. The length of the original
key itself is no longer fixed at 128 bits but is cal-
culated from the specified parameters as (r - c) - e.
The length of the expanded key is then calculated
asc-(n+1)-e.

4 Polynomial Equations
Deriving from AES

The system of equations for the AES cipher con-
sists of two parts. One part is obtained from the
transformations during the key expansion, and the
other during the encryption. While the system
for key expansion depends only on the variables
of this secret key, part of the system for encryp-
tion already includes the variables of individual
plaintexts and ciphertexts. As a result, we can gen-
erate a different polynomial system for each pair
of plaintext and ciphertext, even when using the
same secret key [19].

There are several ways in which the polyno-
mial system of equations for the AES cipher can be
constructed, which are described, for example, in
[4], [19] or [20]. In this work, we use the construc-
tion of a system that is exhaustively described in
our previous work [16].

Systems of equations for all small scale versions
of AES are modeled in the same way. However, for
the sake of illustration, we will provide in next two
subsections a concrete example of the construc-
tion of a polynomial system corresponding to the
SR(n,2,2,4) cipher.



4.1 Quadratic Equations

First, we will focus on the single non-linear trans-
formation of the entire algorithm, which occurs
when applying the reduced S-box table described
in Section 3.2.

If we take the polynomial b € GF(2°) as the
input and ¢ € GF(2¢) as the output of the S-box,
we know that bc = 1, if b £ 0. However, the prob-
ability of the situation b = 0 is minimal [19], and
if it were to occur, we would avoid this problem
by choosing other input data.

We can now define the first four equations that
describe the result of the polynomial multiplica-
tion operation in GF(2)[z]\ (z*+2z+1) for be = 1,
where the coefficients b; and ¢; are from GF(2)

1 = bgco D bscy B bacoy D bics

0 = b1co D bgcr B bgea B bacs P byey @ bacay P bics
0 = baco @ bici @ boca @ bscg @ bgca @ bacs

0 = bscy P bacy B bicy D bycs D bes

(3)

For the variant e = 8, we would get a total of
eight equations in a similar way.

The relation bc = 1 can also provide other
equations. For example, we can multiply the entire
formula by the polynomial b or ¢ and thus get the
relations bc? = ¢ and b?c = b and from them, the
equations bc? + ¢ = 0 and b%c + b =0.

To obtain quadratic equations from the rela-
tion bc? 4+ ¢ = 0, we must first calculate ¢2. Since
in (3) we have already received the result of the
bc operation, we can now replace b; with ¢; in it
and thus obtain the following coefficients

2
cy =Co Do

C% = C2

(4)

2
¢y =cpDes

03203

We can then substitute these coefficients into
the relation bc? + ¢ = 0 and the result will be the
following four quadratic equations

0 = boco @ boca ® bzca ® bacy @ bacz ® bics ® ¢y

0 =b1co D bica D byca @ bgcy @ bgcg @ bgca D bacy
@ bics B ey

0 = bacy @ baca B bica B bocy @ bocs D bscy D bacs

©® Co
0 = bzcy D bgcy B bacy B bicy @ bicg B byes D bzes
©® C3

Using the same procedure, we can obtain the
equations for the relation b%c +b = 0, and as a
total, we obtain eight additional equations for our
system. We can point out here that for the variant
e = 8, we would get 16 equations this way.

In the next step, we can multiply the original
formulas by a specific power of one of its vari-
ables. The most advantageous for us will be the
third power since when using the square power,
the result would contain cubic equations and not
just quadratic ones.

We take the relation bc* = ¢ and adjust it
again to bc* + ¢ = 0. We get the coefficients
for ¢* as a result of multiplying c?c?, where c?
is calculated in (4). Using substitution into the
equations (3), then after all adjustments, we get
the equations

0 = bgcg D bscy B bacs B bacy B bicg D byes B bpeso
@ boc1 @ boco B c3c1 @ cacy B caco B e

0 = bgca G bscy B baca B bica @ bicy B bico B bocs
@ bocy @ caca @ caco B cico D ca

0 = bgcy @ bacy P bacy B bacy @ bics D bicy D boes
@ boca D c3ca P c3c1 B e3¢y D cacy P cacy
@ cico D 2

0 = baco @ bzcy ® bzco @ bacg @ bacy @ bicz @ bicy
@ bocs B caca D eaca D eact DeaDead ey

Using the same procedure, we also get the
equations for the formula b*c+b> = 0, and in total,
we get eight more equations for our system. We
end up with twenty quadratic equations for the
variant e = 4 and forty for the variant e = 8. As
stated in [19], we will not need all 20 equations
for our system, but the first twelve will suffice.

4.2 Linear Equations

We will construct the next equations only from
linear transformations, and hence, these equations
will also be linear. We begin by introducing the
equations related to the S-box table.

These equations are based on the second step
of the reduced S-box table construction given in



Section 3.2 and can be directly expressed using the
expression from (1). As an input to this expres-
sion, we take the polynomial ¢ € GF(2°), which
is the output of the transformation described in
Section 4.1. If we combine the four linear equations
created in this way with the twelve quadratic
equations from the previous section, we get six-
teen equations that accurately describe the table
for the S-box.

Next, we will focus on modeling the individual
transformations of the entire AES algorithm. For
simplicity, we work with data that describes the
entire two-dimensional array of the state variable.

For the function SubBytes, we introduce the
matrix L, which is based on the matrix used to
produce the S-box in the expression (1), as follows

1011 Ly 0 0 0
1101 oL, 0 0
Li=11110] 7%= 0 01 0
0111 00 0 L

At the same time, we also expand the con-
stant vector (0,1,1,0)7 = 616 from (1) to v =
(616,616, 616,616) so that we can work with the
entire state and not only with individual bytes.
Furthermore, we denote the input vector of the
function SubBytes as b and the output vector as
b1 (since it contains inverse elements from b).
Each component of these vectors consists of four
coeflicients of the b and ¢ polynomials defined in
Section 4.1, and hence each element brings twelve
quadratic equations to our system.

For the Shift Rows function, we will then intro-
duce the matrix R, which will represent the
rotation of individual rows

co o~
S ooo
oSN oo
co o

where I, is the identity matrix of size 4 x 4.

To illustrate the MizColumns function, we first
rewrite the polynomial multiplication operation bc
from (3) into the matrix form

bo b3 ba b1 o
b1 bo @ bz b3 @ by by @ by 1
bg b1 bo D bg b3 D bQ C2
b3 bo by bodbs) \c3

If we now substitute the binary values of coef-
ficients 0316 and 0216 from (2) for the individual
bits b; in the matrix from (5), we get the following
two matrices

1001 0001
1101 1001
Mos= (o110 2M2=147100
0011 0010

The matrix M that describes the entire Miz-
Columns function is then

Moz Moz 0 0O

Mos Mps 0 0O
0 0 Moys My
0 0 Moys Mos

M =

We can now express one round 0 < i < n of
the SR(n,2,2,4) cipher using this expression:

bi = MRLb; ", +k; + v,

where k; is a vector containing 16 bits representing
variables in the given part of the expanded key for
round 4.

From this expression, we get sixteen lin-
ear equations for each round. In addition, we
add twelve quadratic equations for each element
from b, 117 so that in total, we have sixty-four
equations in our system for each round of the
algorithm.

In the beginning, we get bg by taking the
plaintext values and adding to them the variables
of the initialization part of the expanded key,
which are directly the variables of the secret key.
As a result, sixteen more equations are added to
the system before the first round.

4.3 Key Expansion Equations

Let kl = (ki70,ki,1,ki72,]€i’3)T S GF(24)4 denote
the given part of the secret key for round <.
According to [4], this part is then defined for each
round ¢ as:

() = (Hemy o (8o« (5)

Z k
i—1,2t
(ki1,2t+1)

t=0



for 0 < q < 2, where sg = k;_lm,sl = k;_lljz,
and k; is the round constant from GF(2%). From
this expression, we get sixteen linear equations for
each round.

When generating parts of the key for each
round, the S-box is always applied twice. For each
round, we add another 2 - 12 quadratic equations
to our system, which we defined in Section 4.1.
Thus, for each round, we add a total of forty lin-
ear and quadratic equations to our system that
describe the expanded secret key.

5 Reducing Overdefined
Systems

This section presents techniques based on data
mining used for transforming the original systems
of polynomial equations into a new system for
which the F4 algorithm can calculate the Groeb-
ner base faster than the direct application of F4
to the original system. This kind of attack is a
known plaintext attack where we assume that we
have several different plaintexts and correspond-
ing ciphertexts. For each plaintext-ciphertext pair,
we obtain as many polynomials as the number
of secret key bits, and as a result, we create an
overdefined system of polynomial equations. We
will then reduce the system using various data
mining algorithms to accelerate the calculation of
the Grobner base and, as a result, the secret key.

More preciselly, the problem to be solved via
data mining methods is defined as follows:

Let P be a system of m polynomial equations
{pi(k1,...,kn) = 0] i =1,...,m} over GF(2),
where m depends on the number of plaintext-
ciphertext pairs (denoted by num) according to
the formula m = num - n. The secret key K =
(k1,...,kn) is a solution of P. The goal is to
transform the original system P to a new sys-
tem of polynomial equations, the system @ =
{gj(k1,...,kp)=0]35=1,...,m'} such that:

e K belongs to an affine variety V' (J), where J is
an ideal generated by m’ polynomials from Q,
where m > m’ > n,

e the F4 algorithm computes the Grobner basis
faster for the preprocessed system () than for
the original system P.

To deals with this problem, we suggest the
following approach:

1. group the polynomials p;,i = 1,...,m, to m’
clusters according some similarity function,

2. for each cluster 7,7 = 1,...,m/, find two the
most similar polynomials, and sum them to
obtain the polynomials ¢;(k1,..., k),

3. run the F4 algorithm for the system @ to
compute Grébner basis.

Let I be an ideal generated by the polyno-
mials of the system P, ie., I = (p1,...,pm). It
is trivial to prove that V(I) C V(J), and hence
the secret key belongs also to V(J). Experimen-
tal results in Section 6 demonstrate that the F4
algorithm computes the Groébner basis faster for
the preprocessed system () than for the original
system P. We considered only the secret key calcu-
lation method based on the Grobner base, which
is calculated using the F4 algorithm implemented
in the software Magma [17].

In the rest of this section, we present
three techniques for reducing the original
system of polynomial equations: Partitioning
Around Medoids (PAM), Locality-Sensitive Hash-
ing (LSH), and Removing the Most Significant
Monomial (RMSM), where PAM and LSH are
data mining methods. We implemented each of
these techniques and provided implementation
details.

5.1 Cluster Analysis

We first explored the application of cluster anal-
ysis, or clustering [21]. Its principle consists of
dividing relevant data into groups so that in each
group, there are data similar to each other with
respect to some similarity function. Since we work
with polynomials over GF(2), we used a similarity
function based on the Hamming distance.

In our case, the relevant data consists of all
individual polynomials, and the Hamming dis-
tance is defined as the number of different mono-
mials of the given two polynomials. Since we
work in GF(2), the Hamming distance can be
calculated as the number of monomials of the
polynomial formed by the mutual xor of the given
two polynomials.

We will show that such Hamming distance
modified for working with polynomials satisfies all
the axioms of the distance definition:

i) d(p,q) = 0 if and only if p = ¢: Since the poly-
nomials are defined in GF(2), all monomials



contained in both p and ¢ polynomials cancel
each other during xoration. As a result, only
the different monomials remain. Therefore, for
the resulting polynomial to be zero, p must
contain the same monomials as ¢ and hence,
p=gq

ii) d(p,q) = d(q,p): It follows directly from the
definition of the xor operation that it is com-
mutative. [22]

iii) d(p,q) < d(p,r)+d(r,q): Proof of this property
follows from the definition of the xor opera-
tion. It is stated in [21] that this axiom does
not have to be fulfilled for the purposes of
clustering.

5.1.1 Partitioning Around Medoids

As a suitable clustering algorithm for our data,
we chose the Partitioning Around Medoids (PAM)
algorithm [23] since it is based on the search for
k representative centers, so-called medoids, which
belong to a given data set. In other words, clusters
(groups of data) are formed around medoids in
this case, which are always selected only from the
specified set. This differs from the more frequently
used K-means algorithm, which also divides the
data into groups around certain centers called cen-
troids. However, these centroids are calculated as
the optimal centers of all data of the given group
and may not occur in the ideal generated by the
polynomials from the system P.

Another reason why we used the PAM algo-
rithm is that it allows clustering with respect
to any distance metric, i.e., it is not limited to
an Euclidean distance, which is not suitable for
GF(2). The pseudocode of the PAM algorithm is
described in Algorithm 1.

At the beginning of the algorithm, the medoids
are chosen randomly, and then the distance of all
elements from the set P to each of the medoids is
calculated. Individual elements are then assigned
to the closest medoids. Then the so-called total
cost of this assignment is calculated, equal to the
sum of the distances of all data to their respective
medoids.

The algorithm works in a cycle and executes
the following commands for each medoid. For each
element that is assigned to the closest medoid,
it recalculates the distances as if it were its cen-
ter and then calculates a new total price. If the

Algorithm 1 PAM algorithm

Input: Number of clusters k, set of data points P
Output: k clusters
1: Initialize: randomly select k£ data points from
P to become the medoids
2: Assign each data point to its closest medoid
3: for all cluster do
4: identify the observation that would yield
the lowest average distance if it were to be
re-assigned as the medoid
5: if the observation is not current medoid
then
make this observation the new medoid
end if
end for
if at least one medoid has changed then
10: go to step 2
11: else
12: end the algorithm.
13: end if

© ® 3>

total cost is lower than the previous one, the given
medoid is updated to this element.

The for cycle in step three continues as long as
the medoids are updated. And when it runs out,
we get the required number of clusters around the
respective medoids, which terminates the PAM
algorithm.

In our implementation, the calculation contin-
ues since the required output of this polynomial
processing method is not entire clusters but only
one representative from each of them. Instead of
choosing one random polynomial, we optimized
the resulting system as follows.

We select two polynomials from each cluster
that are most similar to each other and then take
the result of their mutual xor as a representative of
this cluster. As a result, the selected polynomials
will be shorter (in terms of number of monomials)
than all the originally generated polynomials.

5.2 Locality-Sensitive Hashing

As another type of polynomial system process-
ing, we experimented with a group of algorithms
called Locality Sensitive Hashing (LSH) [25]. The
goal of LSH is for a given element p to find such
x € {x1,...,x,} for which d(p,z) is the smallest
of all {x1,...,2,}, where d(p,z) is their mutual



distance. There are effective algorithms for solv-
ing this problem for data with a lower number
of dimensions. However, since we work in a mul-
tidimensional space, we used approximate nearest
neighbor search algorithms [24]. In our case of
searching for the most similar polynomials, we
defined the distance d between two polynomials as
the number of monomials of their xor.

If we find the most similar polynomials from
the entire generated set, then by xoring them, we
will again obtain simpler polynomials (in terms
of a number of monomials) which we can use
to calculate Grobner bases. Our implementation
of LSH consists of the following parts: Shinling,
MinHashing, and Bucketing.

5.2.1 Shinling

Initially, it is necessary to create sets of all
monomials that individual polynomials contain.
A superset is constructed from these sets, which
includes monomials from all polynomials. A dic-
tionary is then generated from this superset, where
a number is assigned for each monomial. We
then convert individual polynomials into so-called
sparse binary vectors. Each element of this vec-
tor now represents exactly one monomial from the
dictionary of all monomials. If the given polyno-
mial contains a certain monomial, one is assigned
at the corresponding place in the binary vector;
otherwise, there is zero.

5.2.2 MinHashing

In the next part, the first hashing process converts
sparse vectors into dense ones, which we call signa-
tures. These signatures are of the same size for all
polynomials. The size depends on the size of the
dictionary, but it is smaller in order of magnitude.

For each polynomial, one signature is created
such that a random permutation of dictionary-
sized numbers is created for each element of this
signature. In that permutation, the ordinal place
where the number 1 is located is then searched,
and it is determined whether 1 is located in the
same place in the corresponding sparse vector. If
so, the number 1 from the permutation is stored
as one element of the signature. Otherwise, it is
searched at which place in the permutation the
number 2 is, and analogically, this place is com-
pared with the sparse vector. If there is a 1, it is
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written as signature element number 2, and if not,
this procedure is repeated for 3, 4, and so on.

5.2.3 Bucketing

In the last step of the algorithm, similar signa-
tures are searched for, which will determine the
so-called pairs of candidates for similar polynomi-
als. However, if we were looking for the similarity
of the entire signatures, it would mean that we are
only looking for almost identical polynomials, and
very few candidates would be found.

Therefore, the algorithm first divides the sig-
natures into several subparts, which are hashed
again, each one separately. Then, if the same hash
appears for two different polynomials, at least for
some part, these two polynomials are marked as
candidates for a similar pair.

For each pair of candidates found, their mutual
distance and the polynomial formed by their xor
are then calculated. These pairs of candidate poly-
nomials are then sorted by their mutual distance
from smallest to largest, and the correspond-
ing number of the smallest ones is then used to
calculate the Grobner basis.

5.3 Algorithm for Removing the
Most Significant Monomial

As the last type of polynomial system process-
ing, we experimented with a method in which,
from a large number of generated polynomials,
we select for the calculation of the Grobner basis
precisely those whose leading monomial, using
the inverted graded lexicographic order, has the
smallest possible degree. With such polynomials,
the F4 algorithm works faster since in the Com-
puteM function (described in chapter 10 of [5]),
all monomials from all polynomials are processed
in a cycle from the largest to the smallest. If
we take polynomials with the smallest possible
leading monomials, fewer of them would be pro-
cessed. This strategy focusing on leading terms
was mentioned in [26].

If two different polynomials have the same
leading monomial, we can sum them, and the
resulting polynomial will have an even smaller
degree of the leading monomial, making it more
convenient to calculate the Grébner basis.



In the rest of this section, we provide the
implementation details. First, we find the lead-
ing monomial and calculate its degree for each
polynomial. Our scripts implement polynomials
using structures from the PolyBoRi package [27].
The functions lead() and deg() are directly imple-
mented here, which provide this functionality.

The problem is, however, that these functions
operate with monomials ordered using lexico-
graphic ordering, whereas, for the F4 algorithm,
it is more advantageous to order monomials in
an inverted graded lexicographic order, as recom-
mended in [18]. It is, therefore, necessary to find
the leading monomial in this order.

All polynomials are arranged in an array
according to the degree of their leading monomial
from the smallest to the largest. Another polyno-
mial with the same leading monomial as a given
polynomial is successively searched for all polyno-
mials. When such a pair is found, its xor is selected
into the set for calculating the Grébner basis, and
both polynomials are discarded from the origi-
nal pair search array. This procedure is repeated
until we get the required number of polynomials
to calculate the Grobner basis.

6 Experimental Results

All experiments were performed on the machine
with the operating system Ubuntu 20.04.4 LTS
running on two Intel Xeon Gold 6136 processors
containing 12 cores each. In total, the machine has
24 cores and 768 GB of RAM.

The following experiments deal with reduc-
ing overdefined systems of polynomial equations
derived from small scale variants of the AES. For
each plaintext-ciphertext pair, we get one subsys-
tem with as many equations as unknown bits of
the secret key. By uniting these subsystems, we
get an overdefined system to which we gradually
apply the three algorithms described in Section
5 to reduce the system. For such a reduced sys-
tem, we compute the Grobner basis using the F4
algorithm to obtain the secret key. We compared
the computation times of this approach with the
standard method, i.e., direct application of the F4
algorithm without reducing the equations.

For each of the selected simplified variants
of the AES cipher, we experimented with the
parameter num, which indicates the number of
plaintext-ciphertext pairs from which individual
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polynomial subsystems are generated. Since the
secret key computation duration depends on this
input data, we repeated each measurement ten to
twenty times for different data sets (i.e., systems of
polynomial equations). We computed the average
values and the deviations from the computational
times from all the experiments and present them
in this section.

For each cipher, we then generated graphs of
the average time of polynomials generation and
secret key calculation depending on the value of
the num parameter. We selected the best result
from each combination and present them for each
cipher in a table with the following records

e (Cipher - Selected variant of the AES cipher

e KB - Number of key bits

® num - Number of generated polynomial subsys-
tems

e POL - Number of polynomials chosen for com-
putation of the Grébner basis

¢ MON - Average number of monomials in poly-
nomials

e TIMEpgrgp - Average preprocessing time of
polynomials

e TIMEkgy - Average time to compute the secret
key

e TIMEar1, - Average time of the entire compu-
tation, i.e., TIMEprgp+TIMEkgy

¢ MEM - Average used memory [MB]

The computational times are given in seconds.
The missing values were caused by the computa-
tion time exceeding the maximum set limit (four
hours) or some internal error in Magma scripts
that occurred during the calculation.

6.1 Reference Solution

This section presents the experiments for the so-
called reference solution, defined as follows. We
generated random data consisting of the binary
values of the plaintexts and the secret key, from
which the ciphertext and the required polynomi-
als were computed. We measured how long it takes
to compute the secret key for different numbers
of generated polynomial subsystems (i.e., for dif-
ferent num values) without using any polynomial
system reduction.

As was demonstrated in our previous work
[16], the key computation time decreased when we
considered more polynomials than the secret key



Table 1: Measured runtimes without using reduction - the reference solution.

. KB TIMEprep | TIMEkgy | TIMEAr;, | MEM
Cipher [bits] num | POL | MON 5] [s] Is] (MB]
SR(1,2,2,4) 16 2 32 20 <1 <1 1 33
SR(2,2,2,4) 16 2 32 2451 2 3 5 68
SR(3,2,2,4) 16 2 32 32762 7 793 800 | 24464
SR(1,4,2,4) 32 2 64 36 1 <1 1 33
SR(2,4,2,4) 32 2 64 33142 5 — — —
SR(1,2,4,4) 32 2 64 23 1 <1 1 33
SR(2,2,4,4) 32 2 64 6689 3 — — —
SR(1,4,4,4) 64 2 128 40 3 <1 3 33
SR(1,2,2,8) 32 2 64 316 7 <1 7 33
SR(1,4,2,8) 64 2 128 566 14 2 16 33
SR(1,2,4,8) 64 4 256 347 14 3 17 33
SR(1,4,4,8) | 128 8 1024 598 39 — — —

bits. Therefore, we started our experiments from
num= 2.

Since there is no reduction of polynomials,
the more we generate, the longer the total com-
putation time since more polynomials must be
processed. Table 1 lists the results for each vari-
ant of the cipher whose cryptanalysis took an
acceptable time (i.e., less than four hours).

Table 1 shows that the higher the number of
rounds, the more monomials in polynomials. How-
ever, this only applies until the third round since
the number of monomials does not increase from
the fourth round, which aligns with our previ-
ous work [16]. Therefore, we did not conduct
experiments for ciphers with four or more rounds.

For example, for the SR(2,2,2,4) cipher, we
present the following graphs based on Table 1. In
Fig. 1, we can see the relation between the number
of generated polynomial subsystems (i.e., num)
and the following average computational times:
the preparation time (i.e., the time of extraction
of polynomials from the cipher), the computation
of the secret key, and the total time, which is a
sum of the previous two times. Fig. 2 shows the
relation between the number of polynomial sys-
tems and the average number of monomials for the
given polynomials.

6.2 PAM

This section presents the results of the reduction
method based on clustering using the PAM algo-
rithm. As input data, we used the same plaintexts

Average key computation time
Average preparation time
Average total time ———

Time [s]

Fig. 1: The graph of the average computation
time for different num for SR(2,2,2,4) in the ref-
erence solution.
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Fig. 2: The graph of the average number of
monomials in polynomials for different num for

SR(2,2,2,4) in the reference solution.



Table 2: Measured runtimes for the best configurations using the PAM method.

. KB TIMEprgp | TIMEkgy | TIMEAr;, | MEM
Cipher [bits] num | POL | MON 5] Is] s [MB]
SR(1,2,2,4) 16 8 128 19 1 <1 1 33
SR(2,2,2,4) 16 8 64 1847 12 2 14 73
SR(3,2,2,4) 16 2 16 32598 24 647 671 | 28465
SR(1,4,2,4) 32 8 256 14 2 <1 2 33
SR(2,4,2,4) 32 2 32 29207 58 — — —
SR(1,2,4,4) 32 8 256 23 2 <1 2 33
SR(2,2,4,4) 32 48 32 1148 5018 26 5044 406
SR(1,4,4,4) 64 8 512 40 11 <1 11 33
SR(1,2,2,8) 32 8 256 315 17 <1 17 50
SR(1,4,2,8) 64 8 512 566 99 4 103 245
SR(1,2,4,8) 64 8 512 364 58 46 104 720
SR(1,4,4,8) | 128 8 256 412 438 7 445 215

and secret keys as were generated for the reference
solution.

In Table 2, we present the best results from all
experiments performed for this reduction method.
Note that for all reduced variants of the cipher
AES, we considered the following POL values:
1xKB, 2xKB, 4xKB, and 8xKB. For all reduc-
tion methods presented in this work, the cor-
responding tables, i.e., Table 2 for PAM, Table
3 for LSH, and Table 4 for RMSM, show only
the fastest calculation times obtained from these
four values of the POL parameter. We experi-
mented with values of the parameter num from
the set {2,4,8,12,16,32,48,96,128}.We started
the experiments with num = 2 and the number of
secret key bits equal to the number of polynomi-
als from which the Grobner basis was calculated.
If the Grobner basis could not be calculated, we
increased the value of the num parameter. This is
how we proceeded also with the experiments for
LSH and RMSM.

For example, for SR(1,2,2,4), Fig. 3 demon-
strates the relation between the number of polyno-
mial subsystems that were reduced using the PAM
algorithm to the one system and the average com-
putational time of the entire computation of the
secret key. The figure shows this relation for differ-
ent values of the parameter POL. The option POL
= 1xKB takes the highest computation time,
while the other options have significantly bet-
ter results. Note that the number of polynomials
for computation of the Grobner basis corresponds
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to the number of clusters PAM

algorithm.

created by the
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Fig. 3: The graph of the average key computation
time for different num for SR(1,2,2,4) using the
PAM method.

For the SR(2,2,2,4) and SR(3,2,2,4) ciphers,
we did not achieve the best results with the
option where we have the most polynomials for
computing the Grébner basis (i.e., POL=8xKB),
as is the case with the other ciphers. For the
SR(2,2,2,4), the best results were obtained if we
chose four times the number of key bits, and for
the SR(3,2,2,4) variant, we only need the same
number of polynomials as the key has bits.

In addition, the cipher SR(2,2,2,4) is the only
one where the time to compute the secret key
decreases for the increasing parameter num. This
dependence is presented in Fig. 4. We broke the



Table 3: Measured runtimes for the best configurations using the LSH method.

Time [s]

Fig. 4: The graph of the average key computation
time for different num for SR(2,2,2,4) using the
PAM method.

SR(2,2,4,4) cipher only once out of all attempts,
where 48 subsystems were reduced. The resulting
calculation is shown in Table 2.

Using the PAM method, we found the secret
key even for the first round of the full AES
cipher, i.e., SR(1,4,4,8). However, the reduction
takes a relatively long time in this case, so only
the computation for a maximum of sixteen gen-
erated polynomial systems (num=16) reached the
set limit (three hours). In this case, the computa-
tion of the key took only four seconds. Although
for the variant num=8, the key computation took
three seconds longer, and the reduction was faster
by half an hour.
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. KB TIMEprgp | TIMEkgy | TIMEAr, | MEM
Cipher [bits] num | POL | MON 5] Is] 5] (MB]
SR(1,2,2,4) 16 8 128 6 1 <1 1 33
SR(2,2,2,4) 16 12 128 555 3 <1 3 47
SR(3,2,2,4) 16 16 16 32335 174 589 763 24553
SR(1,4,2,4) 32 8 256 14 2 <1 2 33
SR(2,4,2,4) 32 64 128 | 10240 2543 4490 7033 | 249128
SR(1,2,4,4) 32 8 256 6 2 <1 2 36
SR(2,2,4,4) 32 8 64 2056 24 8 32 461
SR(1,4,4,4) 64 8 512 13 5 <1 5 33
SR(1,2,2,8) 32 8 256 200 9 <1 9 144
SR(1,4,2,8) 64 8 512 405 20 14 34 5199
SR(1,2,4,8) 64 8 512 195 17 1 18 434
SR(1,4,4,8) | 128 48 512 288 144 3 147 5634
6.3 LSH

This section presents the experimental results of
the reduction method based on the LSH algo-
rithm. We used the same plaintexts and secret
keys as were generated for the reference solution.
We performed four sets of experiments differing in
the number of polynomials used to compute the
Grobner basis. We gradually set this number to
one times the number of key bits, then two times,
four times, and finally eight times.

In Table 3, we present the best results from
all sets of experiments performed for the LSH
reduction method. For most ciphers, we observed
that the more polynomials chosen to calculate the
Grobner basis, the faster the basis was calculated.
Hence, for most ciphers, the best results were
achieved for the number of chosen polynomials
corresponding to eight times the key bits.

For simpler ciphers, the LSH method was able
to find such similar polynomials at higher num
that the resulting xors of polynomials contained
even less than three monomials, as can be seen in
Fig. 5. For the SR(3,2,2,4) cipher, the computa-
tion of the Grobner basis did not end at all with
num > 1, so in Table 3, we only present the result
where the number of polynomials equals number
of key bits.

Using the LSH-based method, like using the
PAM-based method, we found a secret key for the
first round of the full version of the AES cipher.
Among all sets of experiments, the secret key was



Table 4: Measured runtimes for the best configurations using the RMSM method.

. KB TIMEprgp | TIMEkgy | TIMEAr, | MEM
Cipher (bits] num | POL | MON [s] Is] 5] [MB]
SR(1,2,2,4) 16 2 16 22 <1 <1 1 33
SR(2,2,2,4) 16 4 16 771 2 6 8 376
SR(3,2,2,4) 16 8 32 32777 62 514 576 22700
SR(1,4,2,4) 32 2 32 35 1 <1 2 35
SR(2,4,2,4) 32 96 32 32133 185 — —
SR(1,2,4,4) 32 2 32 26 1 <1 2 33
SR(2,2,4,4) 32 8 256 6141 494 154 648 13024
SR(1,4,4,4) 64 8 128 41 14 <1 15 33
SR(1,2,2,8) 32 8 256 326 12 <1 12 104
SR(1,4,2,8) 64 8 64 579 <1 — —
SR(1,2,4,8) 64 16 512 389 138 27 165 | 102153
SR(1,4,4,8) | 128 96 256 634 11 — —

a polynomial
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Fig. 5: The graph of the average number of
monomials in polynomials for different num for
SR(1,2,2,4) using the LSH method.

computed the fastest when 4-128 polynomials were
chosen to compute the Grobner basis.

Our experimental results indicate that we
achieve better results for higher values of the
num parameter. The reason is that the techniques
for reducing overdefined systems of polynomial
equations process the input set of polynomials
and produce simpler polynomials (concerning the
number of monomials) that are more suitable for
computing Grobner basis than the original, i.e.,
not reduced polynomials.

6.4 Removing the Most Significant
Monomial

The last reduction method we considered in the
experiments is Removing the Most Significant
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Monomial (RMSM). We used the same plaintexts
and secret keys as were generated for the reference
solution. In Table 4, we present the best results
from all sets of experiments performed for the
RMSM reduction method.

For SR(1,2,2,4), the results do not change as
the number of polynomials increases. The prepro-
cessing of polynomials for num up to 512 takes
up to under a minute, and the key is always
found within one second. For SR(2,2,2,4), there
was a significant change in the average number of
monomials per polynomial between two and four
systems. Approximately 2000 polynomials have
been reduced to just 771 in this case.

For SR(1,4,2,4), there is a significant increase
in polynomial reduction time, but the key compu-
tation still fits within one second. Figures 6 and
7 show the time for preparing the polynomials,
calculating the secret key, and the average num-
ber of monomials for the given polynomials for
SR(1,4,2,4).

6.5 Comparison of Reduction
Methods

When comparing all tested methods of reducing
a system of polynomials, we first consider only
the secret key computation time. For small val-
ues of the num parameter, the reduction methods
did not show faster calculation times for finding
the secret key than the reference solutions, which
is demonstrated in Tables 1 to 4. However, at
higher values of the num parameter, i.e., if we
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Fig. 6: The graph of the average computation
time for different num for SR(1,4,2,4) using the
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Fig. 7: The graph of the average number of
monomials in polynomials for different num for
SR(1,4,2,4) using the method of removing the
most significant monomial.

use more equations for preprocessing, the reduc-
tion methods achieved a significantly shorter time
for calculating the key. This is demonstrated for
SR(1,4,2,4) in Fig. 8, where all reduction methods
significantly outperformed the reference solution.
According to this figure, the computation of the
secret key from the already reduced polynomials
takes almost the same short time for the PAM and
LSH methods.

The following experiment focuses on the run-
ning time of the entire script, i.e., both the compu-
tation of the secret key and the time for generating
and reducing all the polynomials. Figure 9 for
SR(1,4,2,4) shows that the reduction of a large
number of polynomials took the longest when clus-
tering using the PAM algorithm. On the contrary,
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Fig. 8: The graph of the average key computation
time for different num for SR(1,4,2,4) - compari-
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Fig. 9: The graph of the average time of the entire
computation for different num for SR(1,4,2,4) -
comparison of all four methods.

when using the LSH or the RMSM, the reduction
took a relatively short time, even for a large num-
ber of polynomials. However, the PAM method is
still more efficient than the RMSM when focusing
only on a small number of polynomials, as can be
seen, for example, in Fig. 10. In the figures 9 and
10, we can see that the entire computation time,
in contrast to the PAM method, fluctuates for the
RMSM.

The following comparison focuses on the
SR(1,4,4,8) cipher, i.e., the full version of AES
with only one round. Note that we only broke this
cipher using PAM and LSH.

Figure 11 demonstrates for SR(1,4,4,8) that
using the PAM method, the computation of the
secret key took a shorter time than using LSH
for the same num parameter. On the other hand,
reduction using PAM took an order of magnitude
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the entire computation for different num for
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Fig. 12: The graph of the average time of
the entire computation for different num for
SR(1,4,4,8) - comparison of PAM and LSH meth-
ods.
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longer than using LSH, even for a small number
of generated polynomials. Hence, the entire com-
putation took significantly longer for the PAM
method, as shown in Fig. 12 for SR (1,4,4,8).
Therefore, we consider the LSH method to be
more effective than PAM.

Based on Tables 1 to 4, we can determine that,
on average, the RMSM method needed the most
memory and, comparable to it, the LSH method.
The PAM method required significantly less mem-
ory, and the reference solution required the least
memory compared to all reduction methods.

Finally, we can compare our results with those
achieved in [16]. For most ciphers, the authors of
[16] revealed the secret key after the first round
in a few seconds using two polynomial systems
without reduction. These results correspond to our
reference solution, which we then further improved
with the mentioned reduction methods.

For the small scale variants of the AES ciphers
with two rounds, the authors in [16] used the
reduction, which searches for the most similar
polynomials in a set of polynomials from a few
other systems of polynomials. Using this method,
the authors managed to compute the secret key
of the SR(2,2,4,4) cipher in 1 hour. Using the
PAM method, the key for this cipher was calcu-
lated in 26 seconds using the same computer as
used in [16]. However, the polynomial reduction
took an inordinately long time, which resulted in
the PAM-based method being slower. However,
with the LSH method, the reduction took signifi-
cantly less time, and the entire computation took
32 seconds, of which only 8 seconds were needed
to reveal the key.

The only cipher with three rounds for which
we revealed the secret key was SR(3,2,2,4). In [16],
after the reduction, the key calculation took over
25 minutes; using the PAM and the LSH methods,
it was only 10 minutes on average. In comparison,
RMSM took 12.6 minutes for this cipher.

7 Conclusion

In this work, we applied three techniques
for reducing overdefined systems of polynomial
equations. We used a method for Removing the
Most Significant Monomial and two data min-
ing methods, Partitioning Around Medoids and
Locality Sensitive Hashing, both used for finding



pairs of the most similar polynomials. We com-
pared these methods in terms of computational
time and memory requirements. Using these meth-
ods, we reduced the original system of polynomial
equations, in terms of the number and size of the
equations, to a form more suitable for the F4 algo-
rithm designed for calculating the Grébner base.
The experimental results showed that the prepro-
cessing of the equations can significantly reduce
the computation time for finding a Grébner base
and, as a result, the secret key.

In this work, we focused on one type of sim-
ilarity of polynomials based on the number of
common monomials. In future work, we plan to
focus on several similarity functions, which will
not only focus on the number of monomials but
also their order in a given monomial order. Further
experiments can be focused on higher numbers
of equations in the system and quantification of
the degree of simplification of the computation of
the F4 algorithm based on the number of input
equations.
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