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Abstract. NTRU-like cryptosystems are among the most studied lattice-
based post-quantum candidates. While most NTRU proposals have been
introduced over a commutative ring of quotient polynomials, other rings
can be used. Noncommutative algebra has been endorsed as a direction
to build new variants of NTRU a long time ago. The first attempt to
construct a noncommutative variant was due to Hoffstein and Silverman
motivated by more resistance to lattice attack. The scheme has been
built over the group ring of a dihedral group. However, their design dif-
fered from standard NTRU and soon was found vulnerable to algebraic
attacks. In this work, we revive the group ring NTRU over the dihedral
group as an instance of the GR-NTRU framework.

Unlike many proposals of noncommutative variants in the literature, our
work focuses on putting the scheme into practice. We clear all the aspects
that make our scheme implementable by proposing an efficient inversion
algorithm over the new setting of the noncommutative ring, describing
the decryption failure model, and analyzing the lattice associated with
our instantiation. Finally, we discuss the best-known attacks against our
scheme and provide an implementation targeting 128-bit, 192-bit, and
256-bit levels of security as proof of its practicality. ‡
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1 Introduction

The first NTRU cryptosystem was proposed early in 1996 by Hoffstein, Pipher,
and Silverman [22]. Two decades of thorough cryptanalysis could not degrade
the confidence in the hardness of NTRU assumption for well-chosen parame-
ter sets. The hard problem of NTRU can be related to finding unusually short
vectors in lattices of a particular structure(q-ary lattices), and in this regard,
NTRU is classified as a lattice-based cryptosystem. Because of the efficiency and
reasonable memory requirements of NTRU, different NTRU-like schemes have
been proposed in the literature, resulting in a standard (IEEE-1363.1) [53] and
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other competent candidates that progressed to the third round of NIST stan-
dardization process [8]. NTRU proposal inspired different NTRU-like designs
that replace the underlying ring with other rings motivated by faster compu-
tations [30] or more resistance to some lattice attacks [40]. Noncommutativity
has been endorsed as a promising direction for building NTRU-like schemes long
ago [13]. Consequently, a few works in literature have introduced variants based
on noncommutative algebra.

1.1 Related Work

Hoffstein and Silverman have introduced the first known noncommutative scheme
[24] in literature based on the dihedral group, which was vulnerable to an attack
by Coppersmith and Shamir [12]. The design of the key generation, encryption,
and decryption procedures differs from the standard NTRU, and the attack by
Coppersmith and Shamir exploits the fact that ciphertext is a pair of two ele-
ments from the ring. The attack applies a map on the first element and retrieves
some information that helps recover the message from the second element. We
refer the reader to the work by Truman [50] for a detailed analysis of this attack.
Similarly, NNRU [52] and PairTRU [31] have been proposed as noncommutative
analogs to NTRU operating over a matrix ring of k×k matrices of polynomials.
The motivation behind these variants was to avoid lattice attacks; however, the
schemes’ design differs from NTRU, i.e., the public key in [31,52] is a pair of two
elements from the underlying ring. Therefore, a thorough analysis of the hardness
of the new assumption is required before establishing trust in the schemes.

Other works introduce noncommutative NTRU-like schemes from quaternion
algebra where the lattice attacks are still applicable but harder to apply, accord-
ing to the authors’ claim. QTRU [40] is a noncommutative multi-dimensional
NTRU-like scheme using quaternion algebra. The authors conclude that QTRU
is four times slower than NTRU but more resistant to lattice attacks. BQTRU [6]
is another example of a noncommutative scheme based on quaternion algebra
with bivariate polynomials as the underlying ring. The design of BQTRU is in-
spired by QTRU, and the authors conclude that BQTRU can be faster than
NTRU for equivalent levels of security if Genty’s attack [18] is not applicable
against the scheme. Further, Ling and Mendelsohn [38] introduced an interesting
theoretical construction of an NTRU variant in quaternion algebras of bounded
discriminant. The doubts related to these variants of NTRU arise from the poor
analysis of the security of the associated lattices. For instance, none of these
schemes analyze the behavior of the lattice reduction algorithms in practice.
Moreover, the claim that Gentry’s attack is not practically applicable to the
associated lattices is not solid enough.

The Group ring NTRU or GR-NTRU [54] is an interesting proposal that
generalizes NTRU to a group ring NTRU. In GR-NTRU, different schemes with
an underlying hard assumption similar to that in the standard NTRU can be
designed from the group ring ZG, where Z refers to the integer ring and G is
any abelian or nonabelian group.
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1.2 Context

NTRU Hard Assumption: First NTRU scheme is defined over a truncated
ring of polynomials Rq = Zq[x]/(x

N − 1) for prime N and modulo q ∈ Z. The
private key is a pair of polynomials f, g ∈ Rq with small coefficients (ternary)
where f is an invertible polynomial. The public key is the polynomial calculated
as h := f−1 ∗ g ∈ Rq. NTRU hard problem is formulated as: given h, find
f ′, g′ ∈ Rq (two polynomials with small coefficients) such that f ′ ∗ h = g′

(mod q).
Knowing the public key h, there are mainly two paths to attack the problem:

either by following an efficient search approach like Meet-in-the-Middle attack
(MITM) [25,41,51] to find such pair (f ′, g′), or by mapping the problem of find-
ing the private key into finding a short vector in a lattice built from the public
key h using the lattice reduction algorithms [11,45].

NTRU Learning Problem [44, 4.4.4]: is a relaxed variant of NTRU problem
that assumes the attacker knows many samples of the public key hi calculated
using the same f but different gi. The problem is formulated as: given hi :=
f−1 ∗ gi for i ∈ {1, 2, . . . ,m}, find f (or xk ∗ f for some k). The NTRU learning
problem has been studied to analyze a simplified NTRU problem [47]. It was
believed to be hard and has been used to build some primitives like [1].

Recently, Kim and Lee [32] proposed a polynomial time attack that can break
NTRU learning problem if the attacker knows N different hi, where N refers to
the extension degree of the ring Rq. The attack exploits: 1○ The design of the
NTRU variant that samples the private polynomial g with exactly d ones and d
minus ones. 2○ The commutative algebra of the underlying ring Rq.

The broad idea of the attack relies on the fact that gi ∗ ḡi, where ḡi refers
to the conjugate of gi, always has a constant term c equal to the hamming
weight of gi. Therefore, for all the known hi, and since the underlying ring is
commutative, the attacker can build a system of linear equations of the form

constant(hi ∗ h̄i ∗ f ∗ f̄) = c

This system has f ∗ f̄ as a root that can recover the private key in a polyno-
mial time as described in [32]. Therefore, considering noncommutative algebras
makes some algebraic attacks harder to apply, thus increasing the security of the
cryptosystem constructed using them.

1.3 Our Work

Most of the noncommutative schemes in the literature have been proposed differ-
ently than the NTRU design, resulting in new schemes triggering doubts about
the hardness of the new proposed assumptions. Other schemes have been intro-
duced theoretically without clearing many aspects to make them implementable
and practical.

In our work, we focus on clearing all the aspects of designing a noncommu-
tative NTRU-like scheme based on the dihedral group. As an abbreviation, we
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call it DiTRU. For DiTRU, we not only discuss the theoretical foundation of
the cryptosystem but also provide experiments in support of our results. Our
contribution can be summarized in the following:

– DiTRU, a noncommutative analog of NTRU: We instantiate the GR-
NTRU framework [54] using the noncommutative dihedral group for our cryp-
tosystem. The selection of the dihedral group is motivated by its closeness to
the cyclic group, which enables the extension of many results and implementa-
tion constructions over the cyclic group(i.e., the underlying group of standard
NTRU) to the new setting of the noncommutative ring.

– Inversion algorithm: We propose an inversion algorithm that can check the
invertibility and find the inverse of elements over the group ring RDN . We
provide a necessary and sufficient condition to check/find inverses over RDN

by relating the inversion problem to the problem of checking/inverting ele-
ments over RCN (Theorem 2). Particularly, for R = Zq and q is a power of
two, one can construct the inverse with complexity O(N2).

– Analysis of DiTRU lattice: We show that even if the DiTRU lattice is
vulnerable to one layer of Gentry’s attack, one need not exactly double the
order of the dihedral group to match the same hardness of the SVP over the
cyclic group of order N . For precise analysis, we describe the probability of
decryption failure for DiTRU over DN (of order 2N) compared to NTRU over
CN (of order N). We show that the blocksize needed to retrieve the private
key for DiTRU is larger than that for NTRU when a negligible decryption
failure is allowed. This result follows as the lattice gap for DiTRU lattice is
greater even if the SVP is being solved over lattices of the same dimension.
For moderate lattice dimensions, we provide an experiment supporting our
claim. In our experiment, we identify the smallest blocksize β required to re-
trieve a decryption key for DiTRU vs. NTRU lattices when the SVP is solved
over the same dimension. Figure 1a summarizes the experimental results for
moderate-size lattices, and Figure 1b compares the estimated blocksize to re-
trieve the private key according to 2016-estimator in higher dimensions. Our
experiment’s implementation and detailed documentation can be accessed at
https://github.com/The-Isogeniest/DiTRU_blocksize_experiment.

– Full-fledged cryptosystem: We discuss the cost of the search, primal, hy-
brid, and other related attacks against DiTRU, and based on that, we define
three sets of parameters targeting 128-bit, 192-bit, and 256-bit security levels
defined by NIST. We provide a C reference implementation of DiTRU and
compare it with the parameter sets of NTRU that achieve the same security
level according to the evaluation criteria followed for DiTRU. The package can
be accessed at https://github.com/The-Isogeniest/DiTRU. To the best of
our knowledge, this is the first noncommutative analog to NTRU, accompa-
nied by a full-package implementation as proof of its practicality.

https://github.com/The-Isogeniest/DiTRU_blocksize_experiment
https://github.com/The-Isogeniest/DiTRU
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Fig. 1: Average blocksize needed to retrieve the key for DiTRU based on the di-
hedral group of order 2N after applying one layer of Gentry’s attack vs. NTRU
based on the cyclic group of order N . The experimental results are obtained for
q′ = 512 for NTRU lattice and q, achieving the same probability of decryp-
tion failure for DiTRU. While for 2016 estimation, the results are estimated for
(N, q′) = (263, 1024), (367, 2048), (461, 2048), (563, 2048), (661, 2048), (761, 2048), and
(863, 2048) for NTRU and the equivalent parameters that achieve the same decryption
failure for DiTRU. 2016-estimator estimates that the gaps of the obtained blocksizes
are 16, 18, 21, 24, 28, 31, and 35, respectively.

1.4 Organization

We introduce preliminaries, NTRU, GR-NTRU in Section 2. Section 3 introduces
DiTRU along with the inversion algorithm and the analysis of the associated
lattice. In Section 4, we provide cryptanalysis considering the well-known attacks
against DiTRU. The selected parameters are presented in Section 5 followed by
the adopted design rationale and implementation details in Section 6. Finally,
we conclude our work in Section 7.

2 Preliminaries

2.1 Notations

– Symbol ∗, wherever it occurs, denotes the multiplication of elements with
respect to the underlying structure.

– Z denote the set of integers and Zq = {a (mod q) | a ∈ Z,−q/2 < a ≤ q/2}
for a positive integer q.

– G denotes a finite group, R denotes a commutative ring with unity and R∗

be the group of units of R.
– Let Rn be the Euclidean space of dimension n, given a vector v = (v1, v2, . . . vn) ∈

Rn:
• The Euclidean norm ℓ2 is denoted ∥.∥ and calculated as ∥v∥ =

√∑n
i=1 vi

2.
• The ℓ−infinity norm ℓ∞ is denoted∥.∥∞ and calculated as∥v∥∞ = maxni=1|vi|.
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2.2 Definitions

Definition 1. (Lattice). Let B ∈ Rn×m with independent rows b1,b2, . . . ,bn ∈
Rm. A lattice L(B) generated by the matrix B is the set of integer linear com-
bination of rows of B, i.e.,

L(B) =

n∑
i=1

Zbi =


n∑

i=1

zibi, where zi ∈ Z

 . (1)

We call B a basis matrix of the lattice. If bi ∈ Zn, we call the lattice an
integral lattice. This paper considers only full-rank integral lattices, i.e., n = m.
We refer to the volume of the parallelepiped spanned by the basis bi’s as the
volume of the lattice defined as det(L(B)) =

√
|det(BBT )|.

Definition 2. (SVP). Given a lattice L(B) ⊂ Rn, the Shortest Vector Problem
(SVP) asks to find a non-zero vector v ∈ L(B) such that ∥v∥ ≤∥w∥ for all non-
zero vectors w ∈ L(B); the length of the shortest vector in the lattice is denoted
as λ1(L(B)).

A relaxed variant of the SVP called γ-SVP asks to find a short nonzero vector
x ∈ L(B) within an approximation factor γ(n) ≥ 1 of the length of the shortest
vector, i.e., ∥x∥ ≤ γ(n)λ1(L(B)).

Definition 3. (Gaussian heuristic). For a full rank lattice L(B) of dimension
d, the estimation of the norm of the shortest vector according to the Gaussian
heuristic is denoted as gh(L(B)), and calculated as

gh(L(B)) =
√
d/2πe · det(L(B))1/d. (2)

Definition 4. (Group ring). The group ring of a finite group G = {gi | i =
1, 2, . . . , n} over R is the ring

RG =

{
a =

n∑
i=1

αigi : αi ∈ R for i = 1, 2, . . . , n

}
(3)

with the following operations: Let a =
∑n

i=1 αigi, b =
∑n

i=1 βigi ∈ RG. Then
1. Sum of a and b is

∑n
i=1 αigi +

∑n
i=1 βigi =

∑n
i=1(αi + βi)gi.

2. Product of a and b is
∑n

i=1 αigi ∗
∑n

i=1 βigi =
∑n

i=1

(∑
ghgk=gi

αhβk

)
gi.

Definition 5. (Coefficient vector). The coefficient vector of a =
∑n

i=1 αigi ∈
RG is a = (α1, α2, . . . , αn) ∈ Rn.

We use a and a to denote the group ring elements interchangeably depending
on the context.

Definition 6. (Matrix representation). The RG-matrix of a =
∑n

i=1 αgigi ∈
RG is defined as

MRG(a) =


α
g−1
1 g1

α
g−1
1 g2

. . . . . . α
g−1
1 gn

α
g−1
2 g1

α
g−1
2 g2

. . . . . . α
g−1
2 gn

...
...

. . .
...

α
g−1
n g1

α
g−1
n g2

. . . . . . α
g−1
n gn

 . (4)
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The matrix representation of the group ring elements is unique and satisfies

MRG(a+ b) = MRG(a) +MRG(b), MRG(a ∗ b) = MRG(a) ∗MRG(b) (5)

for all a, b ∈ RG.

2.3 Lattice basis reduction

Given a publicly available ‘bad’ basis with large and highly non-orthogonal vec-
tors, a lattice reduction algorithm tries to find ‘good’ basis consisting of rea-
sonably short and orthogonal vectors that define the same lattice. LLL [37] is a
famous example of a polynomial-time basis reduction algorithm that produces a
good-reduced basis for low dimensions. Although LLL runs in polynomial time,
the quality of the reduced basis degrades as the dimension of the lattice in-
creases. BKZ [45], and its variants like BKZ2.0 [11] and Progressive BKZ [4] are
generalizations of LLL that consider an additional parameter: the blocksize or
β. The higher the value of β, the better the quality of the reduced basis and the
higher the running time.

For a full rank lattice L(B) reduced with a blocksize β such that ∥b1∥ ≤
∥b2∥ ≤ . . . ≤∥bd∥, we give the following definitions:

Definition 7. (Root Hermite factor). The root Hermite factor δ is defined via
∥b1∥ = δddet(L(B))1/d and can be estimated for larger β [10] as

δ =

(
β

2πe
(πβ)

1
β

) 1
2(β−1)

. (6)

Definition 8. (Geometric Series Assumption). The Geometric Series Assump-
tion(GSA) estimates that

∥∥b∗i ∥∥ ≈ δ−2
∥∥b∗i−1∥∥, where δ is the root Hermite factor.

The exact blocksize required to find a short vector with norm ∥v∥ lying
in a lattice L(B) is still an active area of research. A few estimators like 2016-
estimator [3] have been introduced to estimate the blocksize β needed to retrieve
a short vector v ∈ L. 2016-estimator briefly states that BKZ with blocksize β
can retrieve the vector v given that:√

β/d∥v∥ < δ2β−d−1 · det(L)1/d, (7)

where δ indicates the root Hermite factor. The value of β and, therefore, the
hardness of the problem increases with the increase of the lattice dimension

d, and the lattice gap ∥v∥
gh(L(B)) . A further discussion regarding the cost of the

SVP problem concerning DiTRU lattice with respect to enumeration and sieving
regimes is given in Subsection 4.2.



8 A. Raya et al.

2.4 NTRU cryptosystem

There are many variants of NTRU in literature. We discuss the key generation,
encryption, and decryption of NTRU cryptosystem as described in [21].

Let N, p, q be positive integers such that N, p are prime numbers, p≪ q, and
q is a power of 2. Let R, Rp, and Rq be the truncated ring of polynomials of
degree N defined as

R =
Z[x]

(xN − 1)
, Rp =

Zp[x]

(xN − 1)
, Rq =

Zq[x]

(xN − 1)
. (8)

Let TN be the space of all N length ternary polynomials with coefficients
−1, 0, 1 and TN (d1, d2) be the space of ternary polynomials with d1 coefficients
equal to 1, d2 coefficients equal to −1, and the remaining coefficients equal to 0.

– Key generation: The NTRU private key is pair (f, g) ∈ TN (d + 1, d) ×
TN (d, d), where d = ⌊N/3⌋ and f is invertible in Rp with inverse fp as well
as in Rq with inverse fq. NTRU public key is computed as h = fq ∗ g ∈ Rq.

– Encryption: A message m ∈ Rp is encrypted as c = pr ∗ h+m ∈ Rq, where
r is sampled randomly from T (d, d).

– Decryption: First, compute a = f ∗ c ∈ Rq, then the decrypted message is
retrieved as m′ = fp ∗ a ∈ Rp.

NTRU lattice: The problem of finding the NTRU private key can be related
to the SVP in a lattice of a certain form. Given the public information q,N
and h = fq ∗ g (mod q), construct the basis matrix for the lattice L(Bcyclic) as
follows:

Bcyclic =

(
IN Hcyclic

0N qIN

)
, (9)

where Hcyclic is a right circulant matrix whose rows are the coefficient vectors
of the polynomials xi ∗h for i ∈ {0, 1, . . . , N −1}. The determinant of the lattice
L(Bcyclic) is det(Bcyclic) = qN . Therefore, gh(L(Bcyclic)) =

√
qN/πe.

While the norm of the private elements (xi∗f, xi∗g) is approximately
√
4N/3

and (xi ∗f, xi ∗g) ∈ L(Bcyclic) since (x
i ∗f)∗h = xi ∗g (mod q). Therefore, one

expects (f, g) or its rotations to be the shortest vectors in the lattice L(Bcyclic)
for large values of N .

2.5 Group ring NTRU/GR-NTRU

There are various attempts in the literature to generalize NTRU. We find the
GR-NTRU by Yashuda et al. [54], the most reasonable description for designing
NTRU-like cryptosystems. We first describe NTRU as a cryptosystem based on
a group ring to lay the path for introduction to GR-NTRU.

One can think of the ring R = Z[x]/
(
xN − 1

)
as the group ring of cyclic

group CN =
〈
x | xN = 1

〉
of order N over the ring of integers Z. In other words,
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Z[x]
(xN−1)

≈ ZCN . The matrix Hcyclic in equation 9 is MZCN
(h), the ZCN -matrix

of the public key h. The rest of the design criteria, as discussed in section 2.4,
follow naturally over the group ring ZCN .

One can change the cyclic group CN with other groups to construct new
variants of NTRU. This motivates the definition of GR-NTRU introduced in [54]
as follows:

Definition 9. (GR-NTRU). The GR-NTRU over a finite group G is a cryp-
tosystem built over the group ring ZG with key generation, encryption, and de-
cryption the same as NTRU except that the operations are performed over the
rings ZG,ZpG, and ZqG, where p≪ q are positive integers.

In general, deciphering the private key of GR-NTRU is also related to the
shortest vector problem in lattices of particular structures associated with the
underlying group ring. This paper focuses on GR-NTRU based on the integral
group ring of dihedral group, which we call DiTRU.

3 DiTRU (GR-NTRU over dihedral group)

Let DN =
〈
x, y | xN = y2 = 1, xy = yxN−1〉 be dihedral group of order 2N .

DiTRU is a GR-NTRU over the group ring

ZDN ≈ Z[x, y]
(xN − 1, y2 − 1, xy − yxN−1)

. (10)

Any element of the group ring ZDN can be written in the form f = f0(x) +
yf1(x), where f0(x) and f1(x) are elements of the ring ZCN ≈ Z[x]/(xN − 1).

Let h = h0(x) + yh1(x) be the public key of DiTRU corresponding to the
private key (f, g) = (f0(x) + yf1(x), g0(x) + yg1(x)), and

Hdihedral = MZDN (h) (11)

be the matrix representation of h. Since f ∗Hdihedral = g (mod q), DiTRU can
be associated with the lattice L(Bdihedral) that contains (f, g), generated by the
basis matrix

Bdihedral =

(
I2N Hdihedral

02N qI2N

)
. (12)

It is discussed in [35] that Hdihedral =

(
H0 H1

H1 H0

)
, where H0,H1 are right and

left circulant matrices whose first rows are the coefficient vectors h0 of h0(x)
and h1 of h1(x), respectively.

Theorem 1. ( [35, Thereom 5]) For all 0 ≤ i ≤ N−1, the ‘rotations’ of private
key (f, g) given by

(xi ∗ f0, x−i ∗ f1, xi ∗ g0, x−i ∗ g1) and (xi ∗ f1, x−i ∗ f0, xi ∗ g1, x−i ∗ g0)

belong to the lattice L(Bdihedral).
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3.1 Inversion algorithm

There are works on characterizing units in dihedral group rings [39,43]. However,
all those classifications rely on group representation theory and are not easily
implementable to construct units. Further, Hurley in [29] relates the invertibility
of an element of the group ring RG with the invertibility of the associated RG-
matrix over the ring R. However, this method of matrix inversion is inefficient for
larger dimensions. Therefore, it becomes essential to look for alternative ways to
check for units. In this section, we provide a time-effective algorithm to generate
units in finite integral group rings of dihedral groups. Before discussing the main
inversion algorithm, let us give the required definition and result.

Definition 10. For f(x) = f0 + f1x + . . . + fN−1x
N−1 ∈ RCN , the conjugate

of f(x) is defined as f(x) = f(xN−1). In the vector form, conjugate of f =
(f0, f1, . . . , fN−1) is f̄ = (f0, fN−1, fN−2, . . . , f1).

One can check that u(x) = u(x), u(x)± v(x) = u(x)±v(x) and u(x) ∗ v(x) =
u(x) ∗ v(x) for all u(x), v(x) ∈ RCN .

Multiplication in RDN : The relation xy = yxN−1 between the generators
of DN gives that the product between two elements f = f0(x) + yf1(x) and
g = g0(x) + yg1(x) of the group ring RDN is

f ∗ g = f0(x) ∗ g0(x) + f1(x) ∗ g1(x) + y(f1(x) ∗ g0(x) + f0(x) ∗ g1(x)). (13)

Theorem 2. (Necessary and sufficient condition). Let f = f0(x) + yf1(x) ∈
RDN . Then, f is a unit in RDN if and only if c(x) = f1(x)∗f1(x)−f0(x)∗f0(x)
is a unit in RCN . Moreover, if i(x) denotes the inverse of c(x), then the inverse
of f is given by

f−1 = −f0(x) ∗ i(x) + yf1(x) ∗ i(x). (14)

Proof. From Equation 13

f ∗ f−1 = (f0(x) + yf1(x)) ∗ (−f0(x) ∗ i(x) + yf1(x) ∗ i(x))

= (f1(x) ∗ f1(x)− f0(x) ∗ f0(x)) ∗ i(x) = 1

Since c(x) ∗ i(x) = 1 therefore c(x) ∗ i(x) = c(x) ∗ i(x) = 1. Using the commutativity
of RCN , we get c(x) = c(x). Hence, by the uniqueness of the inverse, i(x) = i(x). Now,
consider

f−1 ∗ f = (−f0(x) ∗ i(x) + yf1(x) ∗ i(x)) ∗ (f0(x) + yf1(x))

= (f1(x) ∗ f1(x)− f0(x) ∗ f0(x)) ∗ i(x) = 1

Conversely, suppose f = f0(x) + yf1(x) is a unit in RDN with inverse f−1 =
u(x) + yv(x). Then f−1 ∗ f = 1 + y0 gives

f0(x) ∗ u(x) + f1(x) ∗ v(x) = 1 and f1(x) ∗ u(x) + f0(x) ∗ v(x) = 0.
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Equivalently

(
f0(x) f1(x)

f1(x) f0(x)

)(
u(x)
v(x)

)
=

(
1
0

)
. The uniqueness of the inverse in a group

ring guarantees that the matrix

(
f0(x) f1(x)

f1(x) f0(x)

)
is invertible; therefore, its determinant

f0(x) ∗ f0(x)− f1(x) ∗ f1(x) is a unit in RCN . Further,(
f0(x) f1(x)

f1(x) f0(x)

)−1(
1
0

)
= 1

f0(x)∗f0(x)−f1(x)∗f1(x)

(
f0(x) −f1(x)
−f1(x) f0(x)

)(
1
0

)
.

This gives that u(x) = −f0(x) ∗ i(x) and v(x) = f1(x) ∗ i(x). ⊓⊔

Algorithm 1: Inversion in RDN

Input: f = f0(x) + yf1(x) ∈ RDN

Output: f−1 = u(x) + yv(x) ∈ RDN an inverse of f , or a failure
1 mul1 ← f0(x) ∗ f0(x) /* product in RCN */

2 mul2 ← f1(x) ∗ f1(x) /* product in RCN */

3 c(x)← mul2 −mul1 /* Coefficient-wise subtraction in R */

4 i(x), found← find-inverse-in-RCN(c(x))

5 if not found then
6 return failure

7 u(x)← −f0(x) ∗ i(x) /* product in RCN */

8 v(x)← f1(x) ∗ i(x) /* product in RCN */

9 return f−1 = u(x) + yv(x)

Algorithm 1 relates the problem of finding the inverse of an element in RDN

to finding the inverse of an element in RCN (line 4). Therefore, the cost of
constructing the inverse in RDN equals the cost of computing an inverse in
RCN plus (4N2 + N). In case R = Zq for q prime or prime power, one can
use an efficient algorithm to find the inverse for units in ZqCN as in [46], and
therefore constructing units in ZqDN efficiently.

Corollary 1. If f = f0(x) + yf1(x) is a unit in RDN then f ′ = f1(x) + yf0(x)
is also a unit in RDN with inverse

f ′−1 = f1(x) ∗ i(x)− yf0(x) ∗ i(x) (15)

where i(x) is the inverse of f1(x) ∗ f1(x)− f0(x) ∗ f0(x) in RCN .

Since f ∈ T (d+1, d) therefore f1(1)∗f1(1)−f0(1)∗f0(1) ̸= 0 (mod 2). Hence,
for a prime N such that 2 is a primitive root modulo N , i.e., multiplicative order
of 2 modulo N is N − 1, the element f1(x) ∗ f1(x)− f0(x) ∗ f0(x) is invertible in
ZqCN with high probability and consequently f is invertible in ZqDN with high
probability, where q is a power of 2 [20, Page 3].

3.2 Analysis of DiTRU lattice

One-layer of Gentry attack: The dihedral group DN for prime N has a
composite order 2N ; therefore, one needs to consider if an extension of Gentry’s
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attack [18] applies to the DiTRU lattice. Gentry’s attack makes the problem
of solving SVP easier by mapping the original lattice into smaller dimensional
lattices through homomorphisms. In his original paper, Gentry elaborates his
attack for a cyclic group of composite order 2n for positive n. A similar one-layer
attack can be extended to DiTRU lattice corresponding toDN for primeN . If the
vector corresponding to the private key (f0, f1,g0,g1) ∈ L(Bh), then according
to the homomorphisms defined in Figure 2, (f0 + f1,g0 + g1) ∈ L(Bh0+h1

) and
(f0 − f1,g0 − g1) ∈ L(Bh0−h1). Therefore, it will be more beneficial for the
attacker to find these images and build them back to get the original vector
corresponding to the private key. Refer to [35] for a detailed discussion. One can

Fig. 2: One-layer of Gentry attack against DiTRU lattice

think that the hardness of solving the SVP for the DiTRU lattice of order 2N
is equivalent to that for a lattice built for a cyclic group of order N . However,
for accurate hardness analysis, the lattice gap of the images of the short vector
in the dimension-reduced lattices should be analyzed.

For a better understanding, we compare the hardness of the SVP for NTRU
lattices based on CN (order N) to that based on DN (order 2N) when an equal
negligible decryption failure is allowed. Hence, we first introduce the estimation
of the decryption failure for DiTRU before providing our analysis.

Decryption failure: The probability of decryption failure can be estimated
similarly to the discussion in [19]. For DiTRU based on a dihedral group of order
2N and designed according to the steps mentioned in section 2.4, a decryption
failure occurs if the absolute value of any coefficients in a = pr∗g+m∗f is greater
than t = q/2. Therefore, if g ∈ T (dg, dg) and d′g ≈ dg/2 (similar assumptions are
considered for f, r, and m), the probability of decryption failure is defined as

pdec(t) = Prob( ∥a∥∞ ≥ t), (16)

and calculated as
pdec = 2N ∗ erfc(t/σ

√
2), (17)

where σ2 = 8

(
p2(d′

rd
′
g)+d′

fd
′
m

N

)
and erfc refers to the complementary error func-

tion. To prove the correctness of 17, we make the following valid assumptions:
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Assumption 1 Let g = g0(x) + yg1(x) be elements of ZDN such that g ∈
T (dg, dg), then for large N , we approximately expect that g0(x), g1(x) ∈ T (d′g, d′g)
(similar assumptions are considered for f, r, and m).

Assumption 2 The coefficients of g0(x) are independent random variables tak-
ing the values 1 and −1 with probability d′g/N , and 0 with probability (N −
2d′g)/N . Assuming the same for g1(x), f0(x), f1(x), m0(x), and m1(x).

We know that a can be written as a = a0(x) + ya1(x) for:

a0(x) = p
(
r0(x) ∗ g0(x) + r1(x) ∗ g1(x)

)
+m0(x) ∗ f0(x) +m1(x) ∗ f1(x)

a1(x) = p
(
r0(x) ∗ g1(x) + r1(x) ∗ g0(x)

)
+m0(x) ∗ f1(x) +m1(x) ∗ f0(x).

We give the discussion for a0(x); the same discussion can be translated to a1(x). Let
Xj denote a coefficient in a0(x), then Xj is the sum of N terms as

Xj =

N∑
i=1

(
p(z0i + z1i) + (w0i + w1i)

)
,

where z0i , z1i , w0i , and w1i denote the coefficient of r0(x)∗g0(x), r1(x)∗g1(x), m0(x)∗
f0(x), and m1(x) ∗ f1(x), respectively. As a result, the variance

σ2 = E(X2
j ) =

N∑
i=1

(
p2(E(z20i) + E(z21i)) + E(w2

0i) + E(w2
1i)
)

= 2

(
p2

4d′rd
′
g

N
+

4d′fd
′
m

N

)
= 8

(
p2(d′rd

′
g) + d′fd

′
m

N

)
. (18)

For large N , we can apply the central limit theorem twice to estimate the probability,
consequently

Prob( |Xj | ≥ t) <
2√
2π

∫ ∞

t/σ

e−x2/2dx⇒ Prob( |Xj | ≥ t) < erfc(t/σ
√
2).

Therefore, the probability of decryption failure can be conservatively estimated to
have one coefficient or more, either in a0(x) or a1(x) with a value greater than t. Hence

pdec = 2N ∗ erfc(t/σ
√
2), for σ2 = 8

(
p2(d′rd

′
g) + d′fd

′
m

N

)
. (19)

Experimental results: As subsection 3.2 mentions, the DiTRU lattice is vulnerable
to one layer of Gentry’s attack. To understand the hardness of reducing DiTRU lattices
built over a dihedral group DN of order 2N , we experiment to figure out the minimum
blocksize needed to retrieve a decryption key for moderate lattice dimensions; then, the
results can be extended using simulators to estimate the blocksize for higher dimensions
(Figure. 1b). For reference comparison, we compare the obtained blocksizes to those
needed to reduce NTRU lattices over a cyclic group CN of order N . For a negligible
decryption failure, we set our experiment as the following:
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– identify q′, the modulo for cyclic NTRU, as the minimum power of 2 that satisfies
a decryption failure probability p′dec (as computed in [19]) equal to or smaller than
the targeted.

– identify q, the modulo for DiTRU over DN that gives an equal decryption failure
pdec compared to NTRU over CN .

– for each parameter set for cyclic and dihedral, generate 100 random private keys,
then build and publish the public key §.

– for NTRU over the cyclic group, find the minimum blocksize βcyclic needed to retrieve
a decryption key (non-ternary and ternary).

– for DiTRU lattice:
• apply one layer of Gentry’s attack and build the lattices L(Bh0+h1) and L(Bh0−h1).
• identify the smaller blocksize β1 to get a non-ternary decryption key and β2 the

minimum blocksize to retrieve the ternary key.
We highlight that the experiment uses progressive BKZ with increasing blocksizes up
to 65 with eight tours per blocksize and enumeration as an SVP-oracle. We ran the
experiment depending on FPyLLL [49] as a Python wrapper to FPLLL [48] on a sys-
tem Linux (Ubuntu 22.04.2 LTS) with Intel(R) Xeon(R) CPU E3-1246 v3 @ 3.50GHz
and 32 GB installed RAM. Furthermore, all the tested parameter sets are not in the
overstretched regime of NTRU lattices, and the non-ternary decryption key is accepted
if its norm is at most four times the original key. Table 1 shows the experimental results

Table 1: Average blocksizes needed to retrieve a decryption key checked experimentally
(NTRU over cyclic group vs. DiTRU after one-layer of Gentry’s attack.)

N 71 73 79 83 89 97 101 107 109 113 127 131

βcyclic 2.28 2.48 3.02 3.64 5.22 8.94 11.05 16.22 18.56 28.68 52.8 57.35

β1 2.62 2.95 3.54 4.94 7.06 11.62 15.59 25.47 32.75 43.1 63

β2 2.87 3 3.88 5.06 7.18 11.68 15.63 26.57 34.06 43.95 63.6

tested for the corresponding N and q′ = 512 for the NTRU over the cyclic group, and
q = 2 ∗ erfc−1(p

′
dec/2N) ∗ σ

√
2 for DiTRU parameter sets where p′dec is the probability

of decryption failure in the case of the cyclic parameters. While the difference between
the blocksizes may seem small, the gap in the running time is significantly large. For
instance, for N = 127, the running time took an average of 626.6 core hours to retrieve
the shortest vector in the case of DiTRU, while for NTRU, it took, on average, only
114.9 core hours.

4 Best known attacks

4.1 Search attack

A DiTRU private key (f, g) is a ternary vector where f = (f0, f1) ∈ T2N (d+ 1, d) and
g = (g0, g1) ∈ T2N (d, d) with d ≤ ⌊2N/3⌋. For convenience, let us denote T2N (d+ 1, d)
simply by T . An attacker can brute force search for an f ′ ∈ T such that f ′ ∗h (mod q)

§Starting from N = 113, the results are averaged over at least 20 trials (only) since
the time taken by one trial becomes extensively high. For N = 127 with DiTRU lattice,
we recorded the trials that found the key with β ≤ 65.
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is short, possibly ternary. Therefore, the cost of a combinatorial search on DiTRU is
given by

|T |
2N

=
1

2N

(
2N

d

)(
2N − d

d+ 1

)
, (20)

where we have divided by 2N to account for all the 2N rotations of f ′. In fact, com-
binatorial meet-in-the-middle (MITM) ¶ attacks by Odlyzko [25] and Howgrave et

al. [27] with complexity
(
|T |/2N

)0.5
(classically) and

(
|T |/2N

)0.25
(quantumly) can

be mounted by decomposing search space T into T ′ ⊕ T ′ such that |T ′| =
√

|T |.

Knowing the fact that partial information about the secret key is veiled in smaller
dimensional lattices L(Bh0+h1) and L(Bh0−h1) in the form of (f0 + f1, g0 + g1) and
(f0 − f1, g0 − g1), the attacker can hope to search in possible smaller spaces. Let

FN (d1, d2, d3, d4) =


f ∈ ZN

∣∣∣∣∣∣∣∣∣∣∣

f has d1 coefficients equal to 1
f has d2 coefficients equal to −1
f has d3 coefficients equal to 2
f has d4 coefficients equal to −2
and other coefficients are 0


, (21)

and FN ⊂ ZN be the space of all N length sequences with coefficients from the set
{0,±1,±2}.

According to assumptions 1, 2, for any f = (f0, f1) ∈ T , the attacker can expect
with high probability that f0 + f1, f0 − f1 ∈ S = FN (d1, d2, d3, d4) with

d1 = d2 =
df (N − df )

N
, d3 = d4 =

df
2

4N
.

Therefore, a brute force search with cost O(|S|) can be performed over the search
space S to find private vectors in the lattices L(Bh0+h1) and L(Bh0−h1), where

|S| =

(
N

d1

)(
N − d1
d1

)(
N − 2d1

d3

)(
N − 2d1 − d3

d3

)
. (22)

Further, MITM attacks cost
(

|S|
2N

)0.5
(classically) and

(
|S|
2N

)0.25
(quantumly).

4.2 Cost of SVP algorithms

Before discussing Primal and Hybrid attacks, we briefly introduce the cost of lattice
reduction by an algorithm like BKZ. BKZ with blocksize β produces a BKZ − β
reduced basis by calling the SVP oracle in smaller lattices of dimension β. Enumer-
ation and sieving are the most studied and used SVP oracles in the literature. The
called oracle heavily affects the memory and time requirements for running the BKZ
algorithm. Enumeration algorithms [16, 42] solve the SVP with polynomial memory
requirements and super-exponential time requirements while sieving algorithms [7,36]

¶May [41] proposed an MITM attack on NTRU-type cryptosystems with a complex-
ity O(|T |0.3)(classic). However, it cannot be combined with hybrid attacks; therefore,
we do not use it in our cost estimations.
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have exponential time and memory requirements. Kirshanova et al. [34] found exper-
imentally that sieving starts outperforming enumeration from dimension 65 onwards.
The best records for solving the SVP are over the sieving regime; however, the memory
consumption is extensive for these algorithms. To give a conservative parameter selec-
tion, we consider the model described in [3] that assumes that the sieving algorithm
works in the RAM model, i.e., the attacker can access any amount of the memory for
free. The classical asymptotic estimation of the number of the operations according to

this model of sieving is
√

3/2
β+o(β) ≈ 20.292β+o(β) classically [7] that can be brought

down to ≈ 20.265β+o(β) by employing Grover’s search [36]. However, a thorough analy-
sis of the quantum asymptotic estimation in [2] shows that the result may be far from
practicality. It is clear that the reduction cost increases with β, and therefore, from
the attacker’s perspective, it is beneficial to perform the reduction in the two lattices
L(Bh0+h1) and L(Bh0−h1). Considering assumptions 1, 2, we expect∥∥(f0 + f1, g0 + g1)

∥∥ ≈
∥∥(f0 − f1, g0 − g1)

∥∥ ≈
√
2
√
df + dg. (23)

Gaussian heuristic estimates the expected length of the shortest vector in lattices
L(Bh0+h1) and L(Bh0−h1) to be

gh(L(Bh0+h1)) = gh(L(Bh0−h1)) =

√
qN

πe
. (24)

Since df , dg ≤ 2N/3, and q = O(N), the ratios∥∥(f0 + f1, g0 + g1)
∥∥

gh(L(Bh0+h1)
≈
∥∥(f0 − f1, g0 − g1)

∥∥
gh(L(Bh0−h1)

≈ O

(
1√
N

)
. (25)

Therefore, the vectors (f0+f1, g0+g1) and (f0−f1, g0−g1) and all their rotations
are shortest vectors in the lattices L(Bh0+h1) and L(Bh0−h1), respectively, with a very
high probability.

4.3 Primal attack

We follow the methodology of Core-SVP and GSA to parameterize the proposed
cryptosystem. The Core-SVP ‖is a conservative methodology of estimating the security
that considers one call of the SVP oracle to be enough to solve the SVP. To estimate
β according to this methodology, we model the behavior of BKZ according to the
geometric series assumption (GSA, Definition 8), and depending on 2016-estimator
(Equation 7), we find the required blocksize β that is the input for the sieving or
enumeration model. In our case, we consider the sieving regime for security estimation.

4.4 Hybrid attack

The MITM attack can be combined with the lattice reduction attack called the hybrid
attack, introduced by Howgrave [26]. The basic idea is to reduce a (r2− r1) sized block

‖In NTRUPrime, the authors conclude that according to the submission to NIST
standardization process, a cryptosystem achieves levels of security corresponding to
AES-128, AES-192, and AES-256, if the classical (pre-quantum) Core-SVP model as-
sign at least 2125, 2181, and 2254, respectively to the selected parameter sets.
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L′ of the matrix

BH′ =

(
qIN 0N
H′ IN

)
=

 qIr1 0 0

∗ L′ 0

∗ ∗ I2N−r2

 . (26)

In our case, H′ = H0 +H1 and H′ = H0 −H1. Let U
′ be an unimodular matrix such

that U′L′ is reduced, and Y′ be an orthogonal transformation such that T′ = U′L′Y′

is a lower triangular matrix. Then, the lattice generated by the matrix

T = UBH′Y =

 Ir1 0 0

0 U′ 0

0 0 I2N−r2


 qIr1 0 0

∗ L′ 0

∗ ∗ I2N−r2


 Ir1 0 0

0 Y′ 0

0 0 I2N−r2

 (27)

is isomorphic to the original lattice L(BH′). Therefore, (g′, f ′)Y is a short vector
in the resulting lattice, where (g′, f ′) = (g0 + g1, f0 + f1) for H′ = H0 + H1 and
(g′, f ′) = (g0 − g1, f0 − f1) (or) for H

′ = H0 −H1.

The diagonal entries of T are {qα0 , qα1 , . . . , qα2N−1}, where
∑2N−1

i=0 αi = N , αi = 1
for i < r1, and αi = 0 for i > r2. The matrix L′ roughly obeys the geometric series
assumption (GSA), and the rate of decrease of αi can be estimated based on the
Hermite root factor δ achieved by the lattice reduction algorithm. As calculated in [20]

αr1 =
N − r1
r2 − r1

+ (r2 − r1) logq(δ), αr2 =
N − r1
r2 − r1

− (r2 − r1) logq(δ) (28)

and αi for i ∈ [r1, r2] decrease almost linearly.
Let K = 2N − r2; an attacker strives to balance the cost of combinatorial search

over the K coordinates against the cost of the lattice reduction. An MITM search can
be performed over the last K entries, and we assume that all collisions occur to have
a conservative security estimation.

Let π : ZN → ZK be the projection onto the last K coordinates and

Fπ = {π(v) : v ∈ S} ⊂ ZK . (29)

Since f ′ ∈ S, therefore, the projected component of f ′ appears in Fπ, and the search
can be performed with O(

√
|Fπ|) time and memory consumption. However, estimating

|Fπ| is not straightforward. Let

Fπ(a1, a2, a3, a4) =


v ∈ S

∣∣∣∣∣∣∣∣∣∣∣

π(v) has a1 coefficients equal to 1
π(v) has a2 coefficients equal to −1
π(v) has a3 coefficients equal to 2
π(v) has a4 coefficients equal to −2
and other coefficients are 0


, (30)

and P : FK → R be the probability mass function for the distribution induced on FK

by uniform and random sampling on S and projecting onto the last K coordinates.
Then, the size of the search space Fπ can be estimated as 2H(P ), where H(P ) is the
Shannon entropy of P .

For every tuple (a1, a2, a3, a4), let us fix a representative v(a1,a2,a3,a4) of the set
Fπ(a1, a2, a3, a4). Since the space S is symmetric under coordinate permutations there-
fore P (π(v)) = P (π(v(a1,a2,a3,a4))) for all v ∈ Fπ(a1, a2, a3, a4). The probability of
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every representative is given by

P
(
π(v(a1,a2,a3,a4)

)
= 1

K(a1,a2,a3,a4)

|Fπ(a1,a2,a3,a4)|
|S| , (31)

where

K(a1,a2,a3,a4) =

(
K

a1

)(
K − a1
a2

)(
K − a1 − a2

a3

)(
K − a1 − a2 − a3

a4

)
,

|Fπ(a1, a2, a3, a4)| = K(a1,a2,a3,a4) ×

(
N −K

d1 − a1

)(
N −K − d1 + a1

d1 − a2

)
×

(
N −K − 2d1 + a1 + a2

d3 − a3

)
(
N −K − 2d1 − d3 + a1 + a2 + a3

d3 − a4

)
.

Thus, the entropy of P is

H(P ) = −
∑

v∈FK

P (v) log2 P (v) = −
∑
v∈S

P (π(v)) log2 P (π(v))

= −
∑

0≤a1,a2≤d1
0≤a3,a4≤d3

K(a1,a2,a3,a4)P
(
π(v(a1,a2,a3,a4)

)
log2 P

(
π(v(a1,a2,a3,a4)

)
.

Considering the rotations, the search space size can be further decreased by a factor of
2N , and the log base 2 complexity of the hybrid MITM search is ξ(H(P )− log2(2N))
where ξ = 0.5(0.25) classically (quantumly).

In order to resist the hybrid attack and achieve a security level equal to λ, for each
fixed K we must have

log2 (hybrid attack cost) or log2 (lattice reduction cost) ≥ λ (32)

where the root Hermite factor δ satisfies αr2 ≥ logq(4). Equivalently,

log2(δ) ≤
N − r1

(2N −K − r1)2
log2 q −

2

2N −K − r1
. (33)

For hybrid attack cost estimation, we find an optimal K that balances and minimizes
the maximum of both costs in 32.

4.5 Subfield attack

As mentioned earlier, the standard NTRU lattice does not include only the vector
corresponding to the secret key (f, g) but also all the vectors corresponding to the
rotations (xi ∗ f, xi ∗ g) for 0 ≤ i ≤ n where n is the group order. All these ro-
tations form a dense sublattice(i.e., lattice with many exceptionally short vectors).
Finding a basis for this dense sublattice is called Dense Lattice Discovery (DSD). For
large values of q, Kirchner and Fouque [33] observed that DSD happens before the
event of finding a short vector in the lattice, and therefore, the SVP becomes eas-
ier to solve. Under this condition, the NTRU cryptosystem is called overstretched.
A refined analysis by Ducas and Woerden [15] shows that an NTRU-like cryptosys-
tem becomes overstretched when the value of q approximately exceeds 0.004 ∗ n2.484

for n > 100. Similarly, for DiTRU, the associated lattice does not include only the
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vector corresponding to the key (f0, f1, g0, g1), but also all the rotations of the form
(xi ∗ f0, x−i ∗ f1, xi ∗ g0, x−i ∗ g1) and (xi ∗ f1, x−i ∗ f0, xi ∗ g1, x−i ∗ g0) for 0 ≤ i ≤ N
where n = 2N is the group order. Even after applying one layer of Gentry’s attack,
the two lattices L(Bh0+h1),L(Bh0−h1) contain dense sublattices corresponding to the
images of the private key and its rotations according to the homomorphism defined in
Figure 2. Consequently, the estimation [15] remains valid for N that defines the dihe-
dral group DN . Obviously, one can notice that the selected parameter sets in Table 3
are not in the overstretched regime. Therefore, the subfield attack is not applicable to
our parameters.

4.6 Coppersmith and Shamir attack

We discuss the attack by Coppersmith and Shamir [12] on the first noncommutative
version of NTRU over the dihedral group ring by Hoffstein and Silverman [23], and its
inapplicability to DiTRU. The old cyptosystem is built over the subring R0 = {α ∈
ZDN : αy = yα}. The private key is (f, ω) where f ∈ R0 with coefficients from the

interval
(
− q−1

2
, q−1

2

]
and ω ∈ ZDN is an element with ternary coefficients. The public

key is constructed as h = pf∗ω∗F (mod q), where f∗F = 1 (mod q). The ciphertext of
any ternary message m ∈ ZDN is a pair (e, E) computed as e = ϕ ∗ h ∗ ϕ′ + ψ(modq)
and E = Ψ ∗ h+m(modq), where ϕ, ϕ′ ∈ R0, and ψ ∈ ZDN are ternary elements
with ψ = Ψ (mod p). First, one can observe that any attack on this cryptosystem to
recover the secret key from the public key or the message from the ciphertext is not
applicable in the case of DiTRU or, in general, GR-NTRU, as the design of Hoffstein
and Silverman’s scheme, i.e., key generation and encryption-decryption, is entirely
different from DiTRU.

Coppersmith and Shamir broke this cryptosystem using a subset {α ∈ ZDN : αy =
−yα} and a linear map θ : ZqDN → ZqDN that is identity on R0 and maps R1

to itself. An attacker tries to find an alternative ω′ with small coefficients such that
θ(h) = pω′. Then, applying θ to e helps recover ψ and consequently, the message. An
elaborate discussion on the Coppersmith attack regarding the construction of such a θ
and finding ω′ is provided in [50]. However, in the case of GR-NTRU, the ciphertext
is given by e = pr ∗ h+m(modq), and any map θ that recovers r breaks the standard
NTRU. Therefore, DiTRU, by design, is not vulnerable to this attack.

5 Parameter selection

According to NIST’s definition of the level of security, we propose three parameter sets
for levels 1,3 and 5. The parameters for DiTRU in Table 2 are selected according to
the cost of the previous attacks with ξ = 0.5(0.25) for the classical (quantum) cost
of the meet-in-the-middle search and considering the maximum depth of the quantum
circuit to be 296 when one is performing the quantum search. For the sake of accurate
comparison, we describe the parameter sets of NTRU in Table 3 that achieve the same
level of security according to the same evaluation criteria followed for DiTRU.

6 Design rationale

We follow a design rationale similar to the one used in the NTRUEncrypt submission
that designs the encryption scheme as a partially correct probabilistic public key scheme
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Table 2: Core-SVP cost against DiTRU parameter sets

Classical Quantum

security level (N, d, q) primal attack hybrid attack primal attack hybrid attack

β cost K β cost β cost K β cost

128 (541, 234, 2048) 445 130 164 524 153 445 118 155 545 144
192 (797, 530, 4096) 660 193 217 800 234 660 175 203 832 220
256 (1039, 478, 4096) 882 258 318 1057 309 882 234 300 1099 291

Table 3: Core-SVP cost against NTRU parameter sets

Classical Quantum

security level (N, d, q) primal attack hybrid attack primal attack hybrid attack

β cost K β cost β cost K β cost

128 (587, 195, 2048) 456 133 166 438 128 456 121 156 454 120
192 (863, 159, 2048) 701 205 298 658 192 701 186 282 684 181
256 (1109, 369, 4096) 893 261 331 883 258 893 237 311 915 242

(PPKE). One can notice that the design of the PPKE in Figure 3 is identical to
that used in standard NTRU, while the only difference is changing the underlying
ring to the noncommutative group ring of the dihedral group. Therefore, similar to
standard NTRU, the CPA security of the PPKE is based on the hardness of the NTRU
assumption. We provide a CCA-2 secure implementation of the proposed PPKE scheme
for DiTRU using the NAEP transformation [28] ∗∗. It can be converted into KEM
following similar steps as given in [9, Algorithm 9,10].

KeyGen(seed)

1. Instantiate Sampler with
Lf and seed

2. do f ← Sampler until f is
invertible modulo q

3. Instantiate Sampler with
Lg and seed

4. g ← Sampler
5. h← 3g ∗ fq(mod q)
6. return f ,h

Encrypt(h,m,coins)

1. Instantiate Sampler with
Lr and coins

2. r← Sampler
3. t = r ∗ h(mod q)
4. Instantiate Sampler with
T ′ and HASH(t)

5. mmask ← Sampler
6. m′ = m−mmask(mod p)
7. c = t + m′(mod q)
8. return c

Decrypt(f,c)

1. m′ = c ∗ f(mod p)
2. t = c−m′(mod q)
3. Instantiate Sampler with
T ′ and HASH(t)

4. mmask ← Sampler
5. m = m′ + mmask(mod p)
6. return m

Fig. 3: A PPKE scheme for DiTRU

∗ : product over the group ring ZDN modulo q and p.
Sampler : randomly samples an element unique to the seed from the input space.

Lf := {1 + 3F : F ∈ T2N (df + 1, df )}, Lg := T2N (dg, dg), Lr := T2N (dr, dr), T ′ := T2N ,

where dg = ⌊2N/3⌋ and dr = df . The decryption failure probability, according to

the considered design criteria, is given by equation 17 with σ2 = 2
(

drdg+dfdm
N

)
and

t = q−2
2p
.

∗∗Our implementation is based on NTRU submissions to the first and third round
of NIST competition with the required modifications to the dihedral group setup.
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Table 4 records the memory requirements and the average cycle counts for the rec-
ommended parameter sets of DiTRU, while Table 5 compares the implementation costs
for DiTRU vs. NTRU while encrypting/decrypting messages of the same length(for ev-
ery level of security, the length of the polynomial corresponding to the message is the
order of the dihedral group multiplied by the order of the cyclic group). The results
are measured on a device with the same specification mentioned in subsection 3.2 on
a single core, TurboBoost, and hyper-threading disabled. We compiled the code using
GCC version 4:11.2.0-1ubuntu1 with no optimization flags enabled.

Table 4: Memory requirements and implementation cost for DiTRU parameters
DiTRU2048 541 DiTRU4096 797 DiTRU4096 1039

size (in bytes) cpu cycles (ref) size (in bytes) cpu cycles (ref) size (in bytes) cpu cycles (ref)

sk: 217 gen: 83063049 sk: 319 gen: 178993352 sk: 416 gen: 301007142
pk: 1488 enc: 12653184 pk: 2391 enc: 26350252 pk: 3117 enc: 43440107
ct: 1488 dec: 23848004 ct: 2391 dec: 50365994 ct: 3117 dec: 83684000

Table 5: DiTRU vs. NTRU implementation cost (average CPU cycles)
Security
level

Key Generation Encryption Decryption

DiTRU NTRU ratio DiTRU NTRU ratio DiTRU NTRU ratio

128 83063049 67573991 1.23 7477322227 4509252772 1.65 14088417108 8267862833 1.70
192 178993352 144771971 1.24 23400674192 13256355697 1.77 44737178607 24807462541 1.80
256 301007142 237913501 1.26 48268245887 27633654748 1.75 92916097739 52110865556 1.78

One can notice from Table 5, the efficiency of our inversion algorithm for DiTRU.
Further, the cost of encryption/decryption is less than two times that of NTRU for
equivalent levels of security, even though the underlying algebra is noncommutative for
DiTRU.

7 Final remarks

This paper introduces DiTRU, a noncommutative analog of NTRU as GR-NTRU in-
stantiated over the dihedral group. Our work focuses on clearing all the aspects that
make the scheme practical. As a result, we provide a full-package cryptosystem accom-
panied by a detailed cryptanalysis. The security evaluation considers the one layer of
Gentry’s attack due to the algebraic structure of the dihedral group ring. Avoiding
the one-layer of Gentry’s attack means that lower values of N can achieve the same
level of security, thereby improving the time and memory requirements of DiTRU. One
way to achieve this could be twisting the multiplication of the group ring, resulting
in a generalized form of group rings called twisted group rings. We briefly discuss the
concept of twisted group rings.

Definition 11. (2-cocycle) A map λ : G × G → R∗ is called a 2-cocycle if satisfies
λ(1, 1) = 1 and λ(g1g2, g3)λ(g1, g2) = λ(g1, g2g3)λ(g2, g3) for all g1, g2, g3 ∈ G.

Definition 12. (Twisted group ring) A twisted group ring RλG of group G over the
ring R corresponding to the 2-cocycle λ is same as the group ring RG as in definition 4
but with a twisted multiplication given by

n∑
i=1

αigi ∗
n∑

i=1

βigi =

n∑
i=1

 ∑
ghgk=gi

αhβkλ(gh, gk)

 gi. (34)
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If we twist the dihedral group ring ZqDN with the 2-cocycle λ : DN ×DN → Z∗
q

defined as

λ(ykxi, ylxj) =

{
−1, for i, j ∈ {0, 1, . . . , N − 1} and k = l = 1

1, otherwise

then, the elements in the twisted group ring Zλ
qDN have the matrix representation of

the form

H =

(
H0 H1

−H1 H0

)
. (35)

To our understanding, it is not possible to reduce H into integral matrices of smaller
dimensions such that the corresponding lattices contain short vectors carrying partial
information about the secret key. One homomorphism that we can think of is H →
H0 ± iH1 where i =

√
−1, but then the smaller matrices have complex entries, and

to apply lattice reduction algorithms, one again needs to map these complex matrices
to larger dimensional real matrices. Moreover, the matrix representation of elements
in the ring Zq[x]/(x

N + 1) is also the same as for H. Therefore, if one can reduce H
into the desired form, then possibly the same reduction can be applied in the case of
Zq[x]/(x

N+1). However, it is known that the polynomial xN+1 does not factor over Zq

into smaller degree polynomials with small norm [5]. This is why the ring Zq[x]/(x
N+1)

is used in some cryptographic designs like [14, 17]. Although we have selected our
parameters considering one layer of Gentry’s attack, twisting the underlying algebra
can prevent the dimension reduction. This idea seems promising but needs a rigorous
analysis and thus is left as future work.
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