
Relating Code Equivalence to Other Isomorphism Problems

Huck Bennett∗ Kaung Myat Htay Win†

May 28, 2024

Abstract

We study the complexity of the Code Equivalence Problem on linear error-correcting codes by relating
its variants to isomorphism problems on other discrete structures—graphs, lattices, and matroids. Our
main results are a fine-grained reduction from the Graph Isomorphism Problem to the Linear Code
Equivalence Problem over any field F, and a reduction from the Linear Code Equivalence Problem over
any field Fp of prime, polynomially bounded order p to the Lattice Isomorphism Problem. Both of these
reductions are simple and natural. We also give reductions between variants of the Code Equivalence
Problem, and study the relationship between isomorphism problems on codes and linear matroids.

1 Introduction

A linear error-correcting code (or simply code) C ⊆ Fn is a linear subspace of Fn, where F is a (typically
finite) field. Variants of the Code Equivalence Problem (CE) ask, given two codes C1 and C2 as input, whether
C1 and C2 are “the same” in some sense. Specifically, Permutation Code Equivalence (PCE) asks if the codes
are the same up to permutation of coordinates of codewords, and Linear Code Equivalence (LCE) asks if
they are the same up to permutation and scaling of coordinates of codewords.

In addition to isomorphism problems on fundamental discrete structures like codes being of inherent
interest, the code equivalence problem appears prominently in cryptography. Indeed, several code-based
cryptosystems are directly inspired by the code equivalence problem, including the well-known McEliece
public-key cryptosystem [McE78] from the late 1970s; a recent instantiation (“Classic McEliece”) of the
McEliece cryptosystem, submitted to the NIST post-quantum standardization process [ABC+22]; and the
recent LESS identification scheme [BMPS20, BBPS21]. Furthermore, cryptosystems like LESS are not only
inspired by CE, but rely on its hardness for their security. Accordingly, understanding the complexity of CE
is important for cryptography.

Another active line of more recent work has studied the Lattice Isomorphism Problem (LIP). Informally,
two point lattices L1 and L2 are said to be isomorphic if one is a rotation of the other. In particular, in the
last few years, a number of LIP-inspired cryptosystems have been proposed including a KEM [DvW22], a
public-key cryptosystem [BGPS23], a digital signature scheme [DPPvW22], and [BCK23]. Although these
“LIP cryptosystems” are analogous to and in part inspired by “CE cryptosystems,” very little work has
directly compared these cryptosystems, or directly compared CE and LIP.

1.1 Our Results

In this work, we study the complexity of the Code Equivalence Problem by relating it to isomorphism
problems on other discrete structures. We next summarize our results, while deferring formal definitions to
Section 2.

∗University of Colorado Boulder. huck.bennett@colorado.edu. Supported in part by NSF grant No. 2312297. Part of this
work was completed while the author was at Oregon State University.

†Oregon State University. htaywink@oregonstate.edu.

1

mailto:huck.bennett@colorado.edu
mailto:htaywink@oregonstate.edu

GI LCE UCE

PCE

SPCE

LIP

q = 2

Figure 1: Reductions between the Graph Isomorphism Problem (GI), variants of Code Equivalence (CE), and the

Lattice Isomorphism Problem (LIP). When working over Fq for q = 2, all four variants of CE are the same, and

when q = 3, LCE and SPCE are the same. Several of these reductions were already known, or known with worse

parameters. Our first main result, given in Theorem 1.1 and formally in Corollary 3.7, is a fine-grained reduction

from GI to Linear Code Equivalence (LCE) and Signed Permutation Code Equivalence (SPCE) over any field F. Our

second main result, given in Theorem 1.2 and formally in Theorem 5.1, is a reduction from SPCE (and LCE) over

fields Fp of prime order to the Lattice Isomorphism Problem (LIP).

1.1.1 Reducing Graph Isomorphism to Code Equivalence

Our first main result is a fine-grained reduction from the Graph Isomorphism Problem (GI) to Linear Code
Equivalence over any field F. See Section 3.2 for formal statements.

Theorem 1.1 (GI to LCE; informal). There is a polynomial-time reduction from GI on graphs with n
vertices and m edges to LCE over any field F on codes of dimension n+O(1) and block length m+O(n).

Theorem 1.1 is not the first reduction showing GI-hardness of code equivalence. Indeed, such a re-
duction was first given by Petrank and Roth [PR97], and additional reductions were given by Kaski and
Österg̊ard [KO06] and Grochow [Gro12].

However, our reduction has several advantages. First, our reduction is fine-grained: it outputs codes of
dimension roughly n whereas the reductions in [PR97, Gro12] output codes of dimension m. (The block
length of their output codes, which is 3m + n, is also nearly always higher than for our codes.) Second,
our reduction holds over all fields F, and in particular all finite fields Fq. The reductions of [PR97, KO06]
are only for binary codes. Third, our reduction is simple and natural: if the input graphs are sufficiently
“well-connected” we just map them to their (transposed) incidence matrices, which are generator matrices
for the output codes. The reduction in [KO06] is similar to ours and also simple, but ours is more efficient
and general. Fourth, our reduction is to LCE and not just PCE as in [Gro12]. There is a known dimension-
preserving reduction from LCE to PCE ([SS13b]; see also Corollary 4.5), and so showing hardness of LCE
is at least as strong.

We note that despite being fine-grained our reduction only shows relatively mild hardness of LCE simply
because Babai’s quasipolynomial-time algorithm for GI [Bab16] shows that GI is not that hard. I.e., even
if Babai’s algorithm were optimal, our reduction would not imply (sub)exponential hardness of LCE. Nev-
ertheless, understanding the relationship between GI and CE is a fundamental question, and our reduction
shows a strong connection between the problems.

1.1.2 Reducing Code Equivalence to Lattice Isomorphism

Our second main result is an efficient reduction from LCE fields of prime, polynomially-bounded order p to
to the Lattice Isomorphism Problem (LIP) on point lattices. See Section 5 for formal statements.

Theorem 1.2 (LCE to LIP; informal). Let n ∈ Z+ and p = p(n) ≤ poly(n) be a prime. There is a
polynomial-time reduction from LCE on codes over Fp of block length n to LIP.

The p = 2 case of Theorem 1.2 was already given by Regev in unpublished work [Reg14], modulo some
technical details. We follow his reduction approach, which is quite simple and natural. Indeed, his reduction

2

maps linear codes C1, C2 ⊆ Fn
2 with sufficiently large minimum distance to the lattices L1 := C1 + 2Zn,

L2 := C2 + 2Zn (the so-called Construction-A lattices obtained from C1 and C2). However, there are issues
that arise when trying to generalize this approach to the p > 2 case. The main issue is that the isometry
groups of C1 and C2 and L1 and L2 no longer “align nicely.” When p = 2, PCE and LCE are the same
problem, but this is no longer true for p > 2, and so there is also the question of which variant of CE to
reduce from. We handle these issues by reducing a different variant of CE called the Signed Permutation
Code Equivalence Problem (SPCE) to LIP, and then reducing the more standard LCE to SPCE.

We also note that combining Theorems 1.1 and 1.2 shows GI-hardness of LIP, giving an alternative
to a previous such reduction appearing in [DSV09]. (In fact, Regev [Reg14] observed that combining the
reduction in [PR97] and the p = 2 case of Theorem 1.2 already shows this.)

1.1.3 Other Results

In part to give a modular reduction from LCE to SPCE, we introduce the Universal Code Equivalence
Problem (UCE). UCE is a promise version of CE in which the input codes C1, C2 are either promised to be
permutationally equivalent (YES instances), or not even linearly equivalent (NO instances). The promise
excludes the case where C1, C2 are linearly but not permutationally equivalent. We then show that taking the
closures of the input codes C1, C2 gives a reduction from LCE to UCE, where the closure of a code C ⊆ Fn

q

is the code C ⊗ (a)a∈F∗
q
. This builds on a result of Sendrier and Simos [SS13b] who showed that computing

the closures of C1, C2 gives a reduction from LCE to PCE. Indeed, because UCE trivially reduces to each
of PCE, SPCE, and LCE (preserving the dimension and block length of the underlying codes), our work
strengthens the result of [SS13b].

Finally, we discuss connections between codes and linear matroids. In particular, we note that there is
a close connection between equivalent matroid representations and equivalent codes, and specifically that
codes with parity-check matrices A1 and A2 being (semi-)linearly equivalent implies that the linear matroids
M [A1] and M [A2] are isomorphic. We did not see this connection discussed elsewhere. See Section 6.

1.2 Related Work on Matroid Theory and its Applications to Reductions

We focus on saying more about work related to the hardness reduction used to show Theorem 1.1, and
sketching how it is useful to us. First, we note that our reduction is similar to and was inspired by a
reduction from GI to LIP in work of Dutour Sikirić, Schürmann, and Vallentin [DSV09]. This in turn is
related to an earlier reduction from GI to CE over F2 appearing in [KO06, Theorem 11.55]. Although the
reduction in [KO06] uses similar ideas to ours, it is not fine-grained as ours is. ([KO06] uses less efficient
graph gadgets to ensure “well-connectedness” and does not observe that it is more efficient to work with the
dual codes to the ones they output.) So, our work is the first to achieve the parameters in Theorem 1.1 even
in the important case of binary codes (F = F2), although [KO06] could have achieved this with a bit more
work. More importantly, our reduction works for general fields F and not just F2.

We note that the main technical tools in our hardness reduction corresponding to Theorem 1.1 and
in [KO06, DSV09] come from matroid theory. (Although our reduction is simpler and achieves better pa-
rameters than the one used by Petrank and Roth [PR97], its correctness analysis requires heavier machinery.)
Many of these results are stated in Oxley’s textbook on matroids [Oxl11], and we have written our reduction
in a way that relies on results written there as much as possible.

In particular, Theorem 1.1 and the reductions in [KO06, DSV09] use the work of Whitney [Whi33] on
the connection between isomorphic graphs and isomorphic graphic matroids, and the theory Tutte [Tut71]
developed about chain groups. Tutte uses the algebraic topological view of the |V | × |E| incidence matrix
A of a graph G = (V,E) as the boundary operator, which is a linear map from 1-chains (vectors indexed
by edges in a graph) to 0-chains (vectors indexed by vertices in a graph). He also studies the transposed
incidence matrix AT or co-boundary operator, which maps 0-chains to 1-chains.

By definition, the kernel of A is called the cycle group of G, and because of this codes C := ker(A) for
such A are called cycle codes. Tutte showed that the set of supports of primitive vectors in such a cycle code
C (i.e, of non-zero vectors in C with inclusion-wise minimal support) is in bijective correspondence with the

3

set of simple cycles in G. The set of simple cycles of G determines the graphic matroid M(G) of G, which
in turn determines the graph G (up to isomorphism, for “well-connected” G) by Whitney’s work [Whi33].

1.3 Other Related Work

A substantial amount of additional work has studied algorithmic and cryptanalytic aspects of CE includ-
ing [Sen00, BCGQ11, Beu20, BBPS23]. Additionally, [SS13a, SS13b, BD22, DG23] study the relationship
between variants of code equivalence. Specifically, [SS13a, SS13b] give a reduction from LCE to PCE (men-
tioned above), [DG23] uses a similar idea to [SS13b] to give a reduction from SPCE to PCE, and [BD22]
shows that two codes are equivalent under a very general notion of “equivalence” if and only if they are
semi-linearly equivalent.

Our main reductions are from GI to CE and CE to LIP, respectively. We note two prior works that in
some sense give reductions in the opposite direction of ours for special cases. Specifically, [BOS19] gives an
efficient reduction from PCE to GI when the codes in the PCE instance have a trivial hull (the hull of a code
C with dual code C⊥ is C ∩ C⊥). [DG23] gives an efficient algorithm for LIP on Construction-A lattices built
from codes with trivial hulls using oracles for both SPCE and ZLIP, which is LIP restricted to rotations
of Zn. To the best of our knowledge, [Reg14, DG23] are the only prior works considering the relationship
between CE and LIP.

In terms of other work on the complexity of CE, [PR97] shows GI-hardness of PCE on binary codes
(as noted above), and gives an interactive proof system for the problem, showing that it is unlikely to be
NP-hard (we discuss this proof system in Section 6). Moreover, recent work [BM23] gives a search-to-decision
reduction for PCE.

The main algorithm for the general LIP is [HR14], although some other work has studied LIP on struc-
tured families of lattices, mainly by reducing it to the Shortest Vector Problem on those lattices. In [CGG17],
the authors study when Construction-A lattices built from binary and ternary codes have orthogonal bases
(i.e., are isomorphic, up to scaling, to Zn).

Finally, we note the work of Rao and Sarma [RS11], which to the best of our knowledge is the only
systematic study of computational isomorphism problems on matroids. We discuss this work further in
Section 6.

1.4 Acknowledgments

We would like to thank Jean-François Biasse, Léo Ducas, Josh Grochow, Amir Nayyeri, Oded Regev, and
Noah Stephens-Davidowitz for helpful comments and discussions. We would also like to thank Raghavendra
Rao for answering our question about [RS11].

2 Preliminaries

We use ∥x∥0 to denote the Hamming weight of a vector, and ∥x∥ to denote the Euclidean norm of a vector
in x ∈ Rn. We will use the notation AI,J to denote the |I| × |J | submatrix of an m× n matrix A formed by
taking the rows indexed by I ⊆ [m] and columns indexed by J ⊆ [n] of A.

2.1 Algebra

We use F to denote a field and Fq to denote a finite field of order q, where q is a prime power. Given a
commutative ring R, we use R∗ to denote its multiplicative subgroup. When R is a field F, F∗ = F \ {0}.
We use Sym(S) to denote the symmetric group on a finite set S, and define Sn := Sym([n]).

2.1.1 Matrix Groups

Let R be a commutative ring. We define Pn(R) to be the set of n×n permutation matrices over R, SPn(R) to
be the set of n×n signed permutation matrices over R, Mn(R) to be the set of n×n monomial matrices over

4

R, and GLn(R) to be the set of invertible n×n matrices over R. A signed permutation matrix S ∈ SPn(R)
is a matrix with S = DP for a diagonal matrix D = diag(d1, . . . , dn) with d1, . . . , dn ∈ {−1, 1} and P ∈ Pn.
A monomial matrix M ∈ Mn(R) is a matrix with M = DP for a diagonal matrix D = diag(d1, . . . , dn)
with d1, . . . , dn ∈ R∗ and P ∈ Pn. We note that Pn(R) ⊆ SPn(R) ⊆ Mn(R) ⊆ GLn(R) for any R, and that
each of these sets of matrices forms a group under matrix multiplication. For fields F, Mn(F) corresponds
to the set of linear isometries on Fn with respect to Hamming distance.

An orthogonal matrix is a matrix O ∈ Rn×n satisfying OTO = In. We define On to be the set of n× n
orthogonal matrices. We note that On is the set of linear isometries on Rn with respect to Euclidean distance,
and so for any O ∈ On and x ∈ Rn, ∥Ox∥ = ∥x∥.

2.2 Codes

A linear code (or simply code) is a linear subspace C ⊆ Fn, where F is a field. (Typically F is taken to be
a finite field Fq, but codes are well-defined over general fields and one of our main results holds for such
general fields.) Here n is called the block length of C, the dimension k of C is its dimension as a vector space,
and the minimum distance of the code is defined as

d = d(C) := min
x,y∈C,
x ̸=y

∥x− y∥0 = min
x∈C\{0}

∥x∥0 .

A code over F with block length n, dimension k, and minimum distance at least d is called an [n, k, d]F code.
We sometimes drop d or F and write things like [n, k, d] or [n, k]F when we do note wish to specify a code’s
distance or field of definition. For codes over finite fields F = Fq of order q, we write [n, k, d]q and [n, k]q.

There are two standard ways to represent codes [n, k]F codes, both of which we will use. The first way
to represent a code is as the linear span of the columns of a generator matrix G ∈ Fn×k with linearly
independent columns (equivalently, the image of G):1

C(G) := {Gx : x ∈ Fn} .

The second, dual representation is as the kernel of a parity check matrix H ∈ F(n−k)×n with linearly
independent rows:

C⊥(H) := {x ∈ Fn : Hx = 0} .

We note that G ∈ Fn×k of full column rank and H ∈ F(n−k)×n of full row rank satisfy C(G) = C⊥(H) if and
only if HG = 0.

For convenience, we will in fact allow slightly more general versions of generator (respectively, parity-
check) matrices, in which the columns (respectively, rows) are not required to be linearly independent. I.e.,
we allow generator matrices of [n, k] codes with more than k basis vectors, and parity-check matrices of
such codes with more than n − k parity-check constraints. It is straightforward to compute a “standard”
generator matrix with exactly k basis vectors or parity-check matrix with exactly n−k constraints efficiently
from an “overcomplete” generator or a parity-check matrix of an [n, k] code using Gaussian elimination.
Additionally, it is efficient to compute a generator matrix from a parity-check matrix and vice-versa.

Given a code C ⊆ Fn, we define its dual code as

C⊥ := {x ∈ Fn : ∀y ∈ Fn, ⟨x,y⟩ = 0} .

If G is a generator matrix of a code C and H is a parity-check matrix of C (i.e., C = C(G) = C⊥(H)) then
the dual code C⊥ of C satisfies C⊥ = C(HT) = C⊥(GT). If C is an [n, k] code then C⊥ is an [n, n− k] code.

For a code C ⊆ Fm1 with generator matrix G and a vector y ∈ Fm2 , we define

C ⊗ y := C(G⊗ y) = {x⊗ y : x ∈ C} ⊆ Fm1m2 ,

1In coding theory codes are often generated by the rows of generator matrices. Here we match the column-basis convention
commonly used for lattices.

5

where ⊗ denotes the Kronecker product.2 Given a code C ⊆ Fn, we call the code CI := {(xi)i∈I : x ∈ C} ⊆ F|I|

for I ⊆ [n] a punctured code with puncture pattern I. I.e., CI is the code obtained from C by projecing each
codeword of C onto the coordinates I.

2.3 Lattices

A lattice L is set of all integer linear combinations of some n linearly independent vectors b1, . . . , bn ∈ Rm.
The matrix B := (b1, . . . , bn) with these vectors as its columns is called a basis of L. That is,

L = L(B) := {Bz : z ∈ Zn} = {
n∑

i=1

aibi : z1, . . . , zn ∈ Z} .

Here n is the rank of the lattice, and m is its ambient dimension. The minimum distance of a lattice L is
defined as

λ1(L) := min
x,y∈L,
x ̸=y

∥x− y∥ = min
x∈L\{0}

∥x∥ .

We note that codes and lattices are defined analogously. In particular, the dimension of a code is
analogous to the rank of a lattice and the block length of a code is analogous to the ambient dimension of
a lattice. The minimum distance of a code is defined in terms of Hamming distance, while the minimum
distance of a lattice is defined in terms of Euclidean distance.

Furthermore, we note that two generator matrices G1, G2 ∈ Fm×n
q generate the same code if and only if

G2 = G1U for some U ∈ GLn(Fq), and similarly that two basis matrices B1, B2 ∈ Rm×n generate the same
lattice if and only if B2 = B1U for some U ∈ GLn(Z). Matrices in GLn(Z) are called unimodular matrices.

2.3.1 Construction A

There is a simple way to define a lattice LA(C) from a code C ⊆ Fn
p for prime p, which is called a Construction-

A lattice [CS99].3 Specifically, the Construction-A lattice associated with such a code C is the lattice defined
as

LA(C) := C + pZn . (1)

I.e., LA(C) is the lattice obtained by lifting C to the integers, and allowing for adding integer multiples of p
to each coordinate. (When lifting Fp to Z and mixing arithmetic between elements in Fp and Z, we associate
the elements of Fp with the integers {0, 1, . . . , p− 1} in the natural way.) We note that LA(C) has rank and
ambient dimension n. We also note that C is isomorphic to LA(C)/(pZn) as an additive group.

Let ei be the ith standard normal basis vector. The following lemma gives a sufficient condition for the
2n vectors ±pei to be the (only) shortest non-zero vectors in LA(C) when C ⊂ Fn

p .

Lemma 2.1. Let p be a prime, and let C ⊂ Fn
p be a linear code with minimum distance d > p2. Then

λ1(LA(C)) = p and x ∈ LA(C) satisfies ∥x∥ = p if and only if x = ±pei for some i ∈ [n].

Proof. By definition, ±pei ∈ LA(C) for every i, which implies that λ1(LA(C)) ≤ p. It remains to show that
any vector x ∈ LA(C) \ {0,±pe1, . . . ,±pen} is such that ∥x∥ > p. By definition of LA(C), we can write
any such x as x = c + y for c ∈ C and y ∈ pZn. If c = 0, then x ∈ pZn \ {0,±pe1, . . . ,±pen}, and so
∥x∥ ≥

√
2p > p. Otherwise, if c ̸= 0, ∥x∥ ≥

√
∥c∥0 ≥

√
d > p. The lemma follows.

2One can more generally define the tensor product of codes C1 and C2 with generator matrices G1 and G2 as C1 ⊗ C2 =
C(G1 ⊗G2), but we will only use the case where C2 is one-dimensional (generated by a single vector y).

3Technically, the definition of Construction-A lattices in [CS99] is only for the p = 2 case, but it immediately generalizes to
arbitrary primes p.

6

2.4 Matroids

We next give background on matroids. We refer the reader to the book of Oxley [Oxl11] for a comprehensive
resource on matroids. We will generally use the notation in [Oxl11] and will cite a number of results from it.

Definition 2.2. A matroid M = (E, I) is a pair consisting of a ground set E and a collection I of subsets
of E that satisfy the following three properties:

1. ∅ ∈ I.

2. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I.

We call the second and third items the hereditary and independence augmentation properties of matroids,
respectively. We call sets I ∈ I independent sets and sets S ⊆ E,S /∈ I dependent sets of M , respectively.
We call a maximal independent set I ∈ I a basis of M , and a minimal dependent set S ⊆ E of M a circuit of
M . I.e., adding any element to a basis makes it dependent, and removing any element from a circuit makes
it independent.

Two matroids M1 = (E1, I1) and M2 = (E2, I2) are said to be isomorphic if there is a bijection π : E1 →
E2 such that for every set S ⊆ E1, S ∈ I1 if and only if π(S) ∈ I2.

2.4.1 Classes of Matroids

The two most important classes of matroids (which inspire much of the terminology about matroids) are
graphic matroids and linear matroids.

Definition 2.3. Given an undirected graph G = (V,E), the graphic matroid (or cycle matroid) M(G)
derived from G is defined as follows. Its ground set is the set E of edges in G, and S ⊆ E is an independent
set if and only if the subgraph G′ = (V, S) of G is acyclic (i.e., a forest).

For connected graphs G, the bases of M(G) are spanning trees of G. The circuits of M(G) are the (sets
of edges contained in) cycles of G.

Definition 2.4. Given a matrix A = (a1, . . . ,am) ∈ Fn×m over a field F, the linear matroid M [A] is defined
as follows. Its ground set is the set of indices [m] of columns of A, and S ⊆ [m] is independent if and only if
the (multi)set of columns indexed by S is linearly independent over F.

A matroid M is called F-representable if there exists a matrix A over F such that M = M [A]. Such a
matrix A is called an F-representation of M . A matroid M is called representable (or simply linear) if it is
F-representable for some F. We next show that every graphic matroid is F-representable for every field F.

Given a simple graph G = (V,E), we call a directed graph D = D(G) = (V,E′) an orientation of G if for
every undirected edge {u, v} ∈ E, exactly one of the directed edges (u, v) and (v, u) is in E′. Furthermore,
given a directed graph D = (V,E), we define the incidence matrix A = A(D) ∈ {−1, 0, 1}V×E of D as
follows.4 Let v ∈ V and let e = (u,w) ∈ E be a directed edge. Then

Av,e :=


1 if v = w,

−1 if v = u,

0 otherwise.

(2)

We note that A is well-defined over any field F (with −1 = 1 if F is a characteristic-2 field), that each column
of A has exactly two non-zero entries (corresponding to the head w and tail u of each edge in D), and that

4We use notation like A ∈ {−1, 0, 1}V ×E to indicate that A is an |V | × |E| matrix whose rows and columns are indexed by
V and E, respectively.

7

if D1 and D2 are orientations of the same undirected graph G that A(D1) = A(D2) · F for some diagonal
matrix F with ±1 entries on the main diagonal.

The following theorem says that incidence matrices of (orientations of) graphs G are representations of
M(G).

Theorem 2.5 ([Oxl11, Proposition 5.1.2 and Lemma 5.1.3]). If G is a simple graph, then M(G) is repre-
sentable over any field F. Moreover, if D = D(G) is an (arbitrary) orientation of G, then A(D) ∈ FV×E is
an F-representation of M(G).

We will use the following standard fact.

Lemma 2.6. Let G = (V,E) be a connected graph and let F be a field. Then the incidence matrix A ∈ FV×E

has row rank |V | − 1.

Proof. Let n := |V |. Because each column of A contains one 1, one −1, and otherwise 0s, we have that
1TA = 0. So, the row rank of A is at most n− 1.

We now prove that the row rank of A is at least n − 1. Let T = (V,ET) be a spanning tree of G with
incidence matrix AT . Because AT is a submatrix of A, it suffices to show that AT has rank (exactly) n− 1.
Specifically, we claim that for every edge f ∈ ET , e

T
f is in the row span of AT , where ef ∈ {0, 1}ET is the

standard normal basis vector indexed by f . Fix such an edge f . Then removing f from ET partitions T
into two connected components with respective vertex sets W and W . Define x ∈ {0, 1}V by

xv :=

{
0 if v ∈ W ,

1 if v ∈ W .

Then xTAT = ±eTf , as needed.

2.5 Isomorphism Problems

We next define (the decision versions of) several computational isomorphism problems.

2.5.1 Problems on Graphs

We first define the Graph Isomorphism Problem (GI).

Definition 2.7 (Graph Isomorphism Problem). The Graph Isomorphism Problem (GI) is the decision
problem defined as follows. Given graphs G1 = (V,E1) and G2 = (V,E2) with n := |V | as input, decide
whether there exists σ ∈ Sn such that (vi, vj) ∈ E1 if and only if (vσ(i), vσ(j)) ∈ E2 for all i, j ∈ [n], i ̸= j.

2.5.2 Problems on Codes

We say that codes C1, C2 ⊆ Fn are permutationally (respectively, signed permutationally, linearly) equivalent
if there exists P ∈ Pn(F) (respectively, S ∈ SPn(F), M ∈ Mn(F)) such that PC1 = C2 (respectively,

SC1 = C2, MC1 = C2). We use C1
P
≈ C2, C1

SP
≈ C2, and C1

L
≈ C2 to denote that codes are permutationally,

signed permutationally, and linearly equivalent, respectively. We define the following three corresponding
computational problems.

Definition 2.8 (Code Equivalence Problem Variants). For n, k ∈ Z+ and a field F, the Permutation Code
Equivalence Problem (respectively, Signed Permutation Code Equivalence Problem, Linear Code Equivalence
Problem over F, denoted PCEF (respectively, SPCEF, LCEF), is the decision problem defined as follows. On
input generator matrices G1, G2 ∈ Fn×k, decide whether there exist P ∈ Pn(F) (respectively, S ∈ SPn(F),
M ∈ Mn(F)) such that PG1U = G2 (respectively, SG1U = G2, MG1U = G2).

8

We note that all three problems are the same in the F = F2 case since Pn(F2) = SPn(F2) = Mn(F2),
and that SPCE and LCE are the same in the F = F3 case since SPn(F3) = Mn(F3).

We will also use the following promise problem, which we call the Universal Code Equivalence Problem
(UCE). It has the YES instances of PCE and the NO instances of LCE.

Definition 2.9 (Universal Code Equivalence Problem). For n, k ∈ Z+ and a field F, the Universal Code
Equivalence Problem over F (UCEq) is the decision problem defined as follows. On input generator matrices
G1, G2 ∈ Fn×k, decide which of the following holds:

1. (YES instance.) There exist P ∈ Pn(F) and U ∈ GLk(F) such that G2 = PG1U .

2. (NO instance.) There do not exist M ∈ Mn(F) and U ∈ GLk(F) such that G2 = MG1U .

We note that UCE trivially reduces to each of the other three variants of code equivalence that we have
defined.

Lemma 2.10. Let n, k, d ∈ Z+ and let F be a field. There is a polynomial-time reduction from UCEF on
[n, k, d] codes to each of LCEF, SPCEF, and PCEF on [n, k, d] codes.

Proof. The reduction is the identity mapping. The lemma follows by noting that the YES and NO instances
of UCEF are subsets of the respective YES and NO instances of each of LCEF, SPCEF, and PCEF.

We will use the following lemma, which says that two codes are equivalent (in any of the above senses)
if and only if their dual codes are equivalent.

Lemma 2.11. Let n, k ∈ Z+ and let F be a field. If two [n, k]F codes C1 and C2 are permutationally (re-
spectively, signed permutationally, linearly) equivalent, then their dual codes C⊥

1 and C⊥
2 are permutationally

(respectively, signed permutationally, linearly) equivalent.

Proof. Suppose that G1, G2 ∈ Fn×k are respective generator matrices of C1, C2, that H1 is a parity-check

matrix for C1, and that C1
P
≈ C2. Then by assumption, H1G1 = 0 and there exist P ∈ Pn(F) and U ∈ GLn(F)

such that PG1U = G2. We claim that H2 := H1P
−1 is a parity-check matrix for C2. Indeed, this follows

because H2G2 = H1P
−1PG1U = 0. Therefore, HT

1 , H
T
2 are generator matrices for C⊥

1 , C⊥
2 , respectively, and

HT
2 = (P−1)THT

1 . It follows that C⊥
1

P
≈ C⊥

2 .
A similar argument works with signed permutational or linear equivalence in place of permutational

equivalence.

Additionally, we note that even if G1, G2 ∈ Fn×k′
are overcomplete generator matrices of [n, k]F codes

C1, C2 (i.e., if k′ > k), it still holds that C1
P
≈ C2 if and only if there exist a permutation matrix P ∈ Pn(F) and a

full-rank matrix U ∈ GLk′(F) such that PG1U = G2. Similar statements are true for signed permutationally
and linearly equivalent codes.

Finally, we note that two codes C1, C2 ⊆ Fn over a field F are called semi-linearly equivalent if there exist
M ∈ Mn(F) and a field automorphism α of F such that C2 = MC′

1, where

C′
1 := {(α(x1), . . . , α(xn))

T : x = (x1, . . . , xn)
T ∈ C1} .

2.5.3 Problems on Lattices

We now define the Lattice Isomorphism Problem (LIP).

Definition 2.12 (Lattice Isomorphism Problem). For n ∈ Z+, the Lattice Isomorphism Problem (LIP) is
the decision problem defined as follows. On input bases B1, B2 ∈ Qn×n, decide whether there exist O ∈ On

and U ∈ GLn(Z) such that B2 = OB1U .

9

3 From Graphs to Codes

We now present our fine-grained reduction from the Graph Isomorphism Problem to Linear Code Equiva-
lence over any field. Our reduction uses matroid theory, and we use results about matroids from Oxley’s
textbook [Oxl11].

3.1 Results about Isomorphic Matroids

We start by collecting useful results about when matroids are isomorphic.
The following result addresses the relationship between when two graphs G1 and G2 are isomorphic and

when their corresponding graphic matroids M(G1) and M(G2) are isomorphic. In fact, Whitney’s famous 2-
isomorphism theorem [Whi33] gives a complete characterization of when M(G1) and M(G2) are isomorphic,
but we will only consider the special case when the graphs are 3-connected. A graph G is called k-vertex-
connected or simply k-connected if it has at least k vertices and it remains connected when fewer than k
vertices and their incident edges are removed.

Theorem 3.1 ([Oxl11, Lemma 5.3.2]). If G1 and G2 are 3-connected graphs and M(G1) and M(G2) are
isomorphic, then G1 and G2 are isomorphic.

We note that the converse statement to Theorem 3.1—if G1 and G2 are isomorphic then M(G1) and
M(G2) are isomorphic—holds in general, regardless of whether G1 and G2 are 3-connected. We will use this
in the sequel.

We next give an efficient reduction from the Graph Isomorphism Problem on general graphs to the
Graph Isomorphism Problem on k-connected graphs, which shows that the assumption about 3-connectivity
in Theorem 3.1 is essentially without loss of generality. A very similar reduction was used in a similar context
to ours in [DSV09].

Lemma 3.2. For any k, n ∈ Z+, there is a poly(k, n)-time reduction from GI on graphs with n vertices and
m edges to GI on k-connected graphs with n+ k vertices and m+ kn edges.

Proof. On input graphs G1 = (V,E1) and G2 = (V,E2), the reduction constructs G′
i from Gi for i = 1, 2

as follows. It adds k new vertices to Gi, and adds an edge between each of these k new vertices and each
of the original vertices v ∈ V . It is straightforward to check that G′

1 and G′
2 are k-connected, and that if

G1 and G2 are isomorphic then so are G′
1 and G′

2. Furthermore, because each new vertex in G′
1 and G′

2 has
degree n (which is higher than the degree of any old vertex), any isomorphism between G′

1 and G′
2 must

map old and new vertices to each other. It follows that if G′
1 and G′

2 are isomorphic then G1 and G2 are
also isomorphic.

We next present a result about when two matrices represent the same linear matroid.

Theorem 3.3 ([Oxl11, Proposition 6.3.12]). Let n, k ∈ Z+, let F be a field, and let A1, A2 ∈ Fk×n. Suppose
that there exist U ∈ GLn(F) and a non-singular m × m diagonal matrix D such that UA1D = A2. Then
M [A1] = M [A2].

From this, we get the following corollary saying that two codes being isomorphic implies that the linear
matroids defined by their parity-check matrices are isomorphic.

Corollary 3.4. Let n, k ∈ Z+, let F be a field, and let A1, A2 ∈ Fk×n. If C⊥(A1)
L
≈ C⊥(A2) then M [A1]

and M [A2] are isomorphic.

Proof. Using the assumption that C⊥(A1)
L
≈ C⊥(A2) and the fact that codes are linearly equivalent if and only

if their dual codes are (Lemma 2.11), there exist U ∈ GLk(F) and M ∈ Mn(F) such that MTAT
1 U

T = AT
2

(and therefore also UA1M = A2), with M = DP for a non-singular n × n diagonal matrix D and for
P ∈ Pn(Fq). Let A′

1 := UA1D. Then M [A1] = M [A′
1] by Theorem 3.3, and M [A′

1] and M [A2] are
isomorphic since A2 = A′

1P . The result follows.

10

3.2 The Reduction

We are now ready for our main reduction from Graph Isomorphism to Code Equivalence.

Theorem 3.5. For any field F, there is a polynomial-time reduction from the Graph Isomorphism Problem
on 3-connected graphs with n vertices and m edges to each of SPCEF and LCEF on codes of dimension n− 1
and block length m.

Proof. On input graphs G1 = (V,E1) and G2 = (V,E2), each with n vertices and m edges, the reduction
works as follows. It constructs arbitrary orientations of G1 and G2 with respective incidence matrices A1 and
A2. It then outputs their transposed incidence matrices AT

i ∈ {−1, 0, 1}Ei×V ⊆ FEi×V (recall Equation (2))
for i = 1, 2 as generator matrices for the codes C1 := C(AT

1) and C2 := C(AT
2), respectively.

It is clear that the reduction is efficient and that the output codes have block length m. Moreover, the
incidence matrices A1 and A2 have row rank n−1 by Lemma 2.6, and so the codes C1 and C2 have dimension
n− 1. It remains to show correctness.

Assume that G1 and G2 are isomorphic via an isomorphism π : V → V . Then there exists U ∈ Pn(Fq)
corresponding to the permutation v 7→ π(v) for v ∈ V , P ∈ Pm(F) corresponding to the permutation
e 7→ π(e) for e ∈ E1, and D = diag(d1, . . . , dm) for d1, . . . , dm ∈ {−1, 1} such that DPAT

1 U = AT
2 .

5 It

follows that C1
SP
≈ C2 and C1

L
≈ C2.

Now, assume that C1
L
≈ C2 (which is implied by C1

SP
≈ C2). By Lemma 2.11, this implies that the dual

codes C⊥
1 = C⊥(A1) and C⊥

2 = C⊥(A2) are also linearly equivalent. By Corollary 3.4, it then holds that the
linear matroids M [A1] and M [A2] are isomorphic, which in turn implies that the graphic matroids M(G1)
and M(G2) are isomorphic by Theorem 2.5. Finally, using Theorem 3.1 and the fact that G1 and G2 are
3-connected, we have that G1 and G2 are isomorphic.

Remark 3.6. We make two remarks about Theorem 3.5 and its proof. First, we remark that it is not really
necessary to switch back and forth between considering the codes C1 and C2 and their dual codes in the proof
above. However, working with C1 and C2 directly implies that the corresponding dual matroids of M∗(G1)
and M∗(G2), called the cographic or bond matroids of G1 and G2, are isomorphic instead of that M(G1)
and M(G2) are isomorphic directly. It is not difficult to show both that codes are equivalent and matroids
are isomorphic if their duals are, but we need to use duals either for matroids or codes in order to apply
results from [Oxl11] as they are stated. (The reduction in [DSV09] works with bond matroids instead of
cycle matroids directly when reducing GI to LIP.)

Second, we remark that not only does the proof of Theorem 3.5 work for codes defined over arbitrary
fields, it largely work for codes defined over arbitrary rings. Indeed, the theory of chain groups developed
by Tutte in [Tut71], which underlies this reduction, allows for using rings rather than fields. However, codes
defined over rings (which are modules instead of vectors spaces) are not as nice algebraically and do not
allow for some of what we have done above.

We conclude with the following corollary about reducing Graph Isomorphism on arbitrary graphs to
Linear Code Equivalence.

Corollary 3.7. For any field F, there is a polynomial-time reduction from GI on graphs with n vertices and
m edges to LCEF on codes of dimension n+ 2 and block length m+ 3n.

Proof. Combine the reduction in Lemma 3.2, setting k = 3, with Theorem 3.5.

4 Reductions Between Code Equivalence Variants

In this section we give reductions between variants of the Code Equivalence Problem, which we will use in
the next section.

5Here D fixes inconsistent orientations of edges e ∈ E1 and π(e) ∈ E2 in the incidence matrices A1 and A2.

11

4.1 Distance-Increasing Self-Reductions for LCE and PCE

The following lemma says that every permutation σ on the Cartesian product [m]×[n] induces a permutation
σ′ on [m] such that σ′ is a “projection” of σ.

Lemma 4.1. Let m,n ∈ Z+ and let σ ∈ Sym([m] × [n]). Then there exists σ′ ∈ Sym([m]) such that for
every i ∈ [m] there exist j, j′ ∈ [n] such that σ(i, j) = (σ′(i), j′).

Proof. Construct the bipartite graph G = (V = L ⊔R,E), where L = {v1, . . . , vm}, R = {w1, . . . , wm}, and
there is an edge from vi ∈ L to wi′ ∈ R if and only if there exist j, j′ ∈ [n] such that σ(i, j) = (i′, j′).

Notice that to prove the lemma it suffices to show that G contains a perfect matching (where an edge
from vi to wi′ in the perfect matching corresponds to the mapping σ′(i) = i′). We claim that for every S ⊆ L,
|N(S)| ≥ |S|. Assuming this claim, G contains a perfect matching by Hall’s Theorem (see, e.g., [Got21])
and the lemma follows.

It remains to prove the claim. Let S ⊆ L, and suppose that |N(S)| < |S|. Let T := {(i, j) : vi ∈ S, j ∈ [n]}
and T ′ := {(i′, j′) : wi′ ∈ N(S), j′ ∈ [n]}. Then σ(T) ⊆ T ′, and so |σ(T)| ≤ |T ′| = n |N(S)| < n |S| = |T |.
However, σ is a permutation and hence injective, so |σ(T)| < |T | is a contradiction.

We now get the following theorem, which gives efficient distance-increasing but dimension-preserving
reductions for LCE and PCE.

Theorem 4.2. Let q be a prime power, let r ∈ Z+, let y ∈ (F∗
q)

r, let C1, C2 be [n, k, d]q codes for some
n, k, d ∈ Z+, and let C′

1, C′
2 be the [rn, k, rd]q codes defined by C′

1 := C1 ⊗ y, C′
2 := C2 ⊗ y, respectively. Then:

1. C1
L
≈ C2 if and only if C′

1

L
≈ C′

2.

2. If y = 1r, then C1
P
≈ C2 if and only if C′

1

P
≈ C′

2.

Proof. We first prove the forward direction of the items, in which we assume that C1 and C2 are equivalent.
For Item 1, suppose that M ∈ Mn(Fq) is such that M(C1) = C2. We claim that M ′ := M ⊗ Ir ∈ Mnr(Fq) is
such that M ′(C′

1) = C′
2. Because C′

1 and C′
2 are codes of the same dimension and M ′ is injective, to show that

C′
1

L
≈ C′

2 it suffices to show that for every c′1 ∈ C′
1, M

′c′1 ∈ C′
2. By assumption, such a codeword c′1 = c1 ⊗ y

for some codeword c1 ∈ C1, and moreover c2 := Mc1 ∈ C2. So,

M ′c′1 = (M ⊗ Ir)(c1 ⊗ y) = (Mc1)⊗ (Iry) = c2 ⊗ y ∈ C′
2 ,

where the second equality uses the mixed-product property of Kronecker products. The claim follows. The
forward direction of Item 2 follows from a very similar argument with P ∈ Pn(Fq) and P ′ := P⊗Ir ∈ Pnr(Fq)
in place of M and M ′, respectively.

Now, we prove the backward direction of the items, in which we assume that C′
1 and C′

2 are equivalent.
For Item 1, we have by assumption that there exists M ′ = D′P ′ ∈ Mnr(Fq) such that M ′C′

1 = C′
2 where D′ ∈

Fnr×nr
q is a full-rank diagonal matrix and where P ′ ∈ Pnr(Fq). Then by identifying elements (i, j) ∈ [n]× [r]

with indices (i − 1)r + j ∈ [nr] and applying Lemma 4.1, there exists a submatrix P = (P ′)I,J of P ′ such
that P ∈ Pn(Fq), I := {(i− 1)r + ji : i ∈ [n]}, and J := {(σ(i)− 1)r + j′i : i ∈ [n]} for some permutation
σ ∈ Sn and j1, . . . , jn, j

′
1, . . . , j

′
n ∈ [r]. Let M := (M ′)I,J and note that M ∈ Mn(Fq).

Define the punctured codes

Ĉ1 := {cJ : c ∈ C′
1} , Ĉ2 := {cI : c ∈ C′

2} ,

and notice that M Ĉ1 = Ĉ2, which in particular implies that Ĉ1
L
≈ Ĉ2. Because linear equivalence is a

transitive relation on codes, to show that C1
L
≈ C2, it therefore suffices to show that C1

L
≈ Ĉ1 and C2

L
≈ Ĉ2.

Let D1 := diag(yj′1 , . . . , yj′n) and let D2 := diag(yj1 , . . . , yjn). Then D1C1 = Ĉ1 and D2C2 = Ĉ2, from which

it follows that C1
L
≈ Ĉ1 and C2

L
≈ Ĉ2, as needed.6

6We note that full-rank diagonal matrices such as D1 and D2 are themselves monomial matrices.

12

A similar argument to the one above shows that the backward direction of Item 2 holds. It suffices to
run the same argument and note that (1) if M ′ = D′P ′ for D′ = Inr then M = InP for P ∈ Pn(Fq), and

(2) using the assumption that y = 1r, we have that D1 = D2 = In. Indeed, (1) implies that Ĉ1
P
≈ Ĉ2, and

(2) implies that Ĉ1 = C1 and Ĉ2 = C2. The result follows.

The following corollary is immediate.

Corollary 4.3. Let q be a prime power, and let n, k, d, r ∈ Z+. Then there is a poly(n, r, log q)-time
reduction from LCE (respectively, PCE) on [n, k, d]q codes to LCE (respectively, PCE) on [rn, k, rd]q codes.

4.2 A Reduction from LCE to UCE

We next give a reduction from LCEq to PCEq appearing in [SS13b]. The reduction is to map the input codes
Ci for i = 1, 2 to C′

i := Ci ⊗ (a)a∈F∗
q
, which [SS13b] calls the closure of Ci. However, [SS13b] did not include

a correctness proof, so we give one as the proof of Theorem 4.4. In fact, we only prove correctness for one
direction of the reduction since Theorem 4.2 already implies the converse and in fact something stronger;
see Corollary 4.5 below.

Theorem 4.4. Let q be a prime power, let n, k, d ∈ Z+, let y := (a)a∈F∗
q
, let C1, C2 be [n, k, d]q codes, and

let C′
1, C′

2 be the [(q − 1)n, k, (q − 1)d]q codes defined by C′
1 := C1 ⊗ y, C′

2 := C2 ⊗ y, respectively. If C1
L
≈ C2,

then C′
1

P
≈ C′

2.

Proof. For any a ∈ F∗
q , multiplication by a induces a permutation on the elements in F∗

q . Therefore, for
every a ∈ F∗

q , there exists a matrix Qa ∈ Pq−1(Fq) such that

Qay = ay . (3)

Suppose that M = DP ∈ Mn(Fq) for D = diag(a1, . . . , an) and P ∈ Pn(Fq) is such that M(C1) = C2.
Let Q ∈ F(q−1)n×(q−1)n

q be the block diagonal matrix defined as

Q :=


Qa1 0 · · · 0
0 Qa2

· · · 0
...

...
. . .

...
0 0 · · · Qan

 ,

where each Qai is as defined in Equation (3). Let P ′ := Q · (P ⊗ In), and note that P ′ ∈ P(q−1)n(Fq). We
claim that P ′C′

1 = C′
2, which implies the theorem. To prove this, it suffices to show that for every vector

c′1 ∈ C′
1, P

′c′1 ∈ C′
2. By assumption, such a vector c′1 is of the form c′1 = c1 ⊗ y for some c1 ∈ C1, and

c2 := Mc1 is contained in C2.
Then, using the mixed-product property of the Kronecker product several times,

P ′c′1 = Q · (P ⊗ In) · (c1 ⊗ y)

= Q · ((Pc1)⊗ (Iny))

= Q · ((D−1c2)⊗ y)

= Q · (D−1 ⊗ y) · c2
= (In ⊗ y) · c2
= c2 ⊗ y ,

which is contained in C′
2, as needed. The penultimate equality follows from the fact that

Q · (D−1 ⊗ y) =


Qa1(a

−1
1 y) 0 · · · 0
0 Qa2

(a−1
2 y) · · · 0

...
...

. . .
...

0 0 · · · Qan
(a−1

n y)

 = In ⊗ y ,

13

where we have used the definition of the matrices Qai from Equation (3).

We now get the following corollary, which says that LCEq efficiently reduces to UCEq. We note that al-
though the reduction is the same as in [SS13b], our result is stronger than the corresponding result in [SS13b],
which says that LCEq efficiently reduces to PCEq instead of UCEq. This strengthening requires Theorem 4.2,
but from that is just an observation.

Corollary 4.5. Let q be a prime power, and let n, k, d ∈ Z+. Then there is a poly(n, q)-time reduction from
LCE on [n, k, d]q codes to UCE on [(q − 1)n, k, (q − 1)d]q codes.

Proof. Let y := (a)a∈F∗
q
. On input generator matrices G1 and G2, the reduction outputs the generator

matrices G′
1 := G1 ⊗ y and G′

2 := G2 ⊗ y. The reduction clearly runs in poly(n, q) time. Furthermore,

if C(G1)
L
≈ C(G2) then C(G′

1)
P
≈ C(G′

2) by Theorem 4.4, and if C(G′
1)

L
≈ C(G′

2) then C(G1)
L
≈ C(G2) by

Theorem 4.2, Item 1.

5 From Codes to Lattices

In this section, we give a simple, efficient reduction from the Signed Permutation Code Equivalence Problem
on prime fields Fp (SPCEp) with sufficiently large minimum distance to the Lattice Isomorphism Problem
(LIP). Using reductions from the previous sections, this also yields an efficient reduction from LCEp to LIP.
We again note that the p = 2 case of this reduction is due to Regev [Reg14].

Theorem 5.1. Let p be a prime and let n ∈ Z+. There is a poly(n, log p)-time reduction from SPCEp on
codes with block length n and minimum distance at least p2 + 1 to LIP on lattices of rank n.

Proof. On input generator matrices G1 and G2, the reduction outputs bases of L1 := LA(C1) and L2 :=
LA(C2), where C1 := C(G1) and C2 := C(G2). It is efficient to compute bases of L1 and L2. Indeed, they have
respective generating sets (G1 | pIn) and (G2 | pIn), and these can be converted into bases by computing
their Hermite Normal Formal in poly(n, log p) time (see, e.g., [MG02]).

It remains to show correctness. First, suppose that C1
SP
≈ C2, and that SC1 = C2 for S ∈ SPn. We then

get that SL1 = S(C1 + pZn) = C2 + pZn = L2.
Now, suppose that L1 and L2 are isomorphic, and that OL1 = L2 for O ∈ On. By Lemma 2.1 we have

that ±pei ∈ L1 and ±pei ∈ L2 for all i ∈ [n], and, using the assumption that C1 and C2 each have minimum
distance at least p2 + 1, that all other non-zero vectors in L1 and L2 have norm greater than p. Because
multiplication by O is norm-preserving (and in particular O is non-singular), it follows that for every i ∈ [n],
O(pei) = ±pej for some j, and that O(pei) ̸= O(±pei′) for i ̸= i′. This implies that O ∈ SPn(R).

Let S ∈ SPn(Fp) be the signed permutation matrix obtained fromO by mapping the elements−1, 0, 1 ∈ Z
to the elements −1, 0, 1 ∈ Fp entry-wise in the natural way. We claim that SC1 = C2. Indeed, for every
x ∈ C1 we have that Ox ∈ L2, Sx = Ox mod pZn,7 and C2 = L2 mod pZn. So, Sx ∈ C2 as needed.

We now get the following corollary, which is our main result relating the complexity of (Linear) Code
Equivalence and the Lattice Isomorphism Problem.

Corollary 5.2. Let p be a prime, and let n, k ∈ Z+. Then there is a poly(n, p)-time reduction from LCEp

on [n, k]p codes to LIP on lattices of rank R, where R := 5n if p = 2 and R := (p−1)(p+2)n = (p2+p−2)n
for p > 2.

Proof. If p = 2, apply Corollary 4.3 with r := 5 to reduce LCE2 on [n, k]2 codes to LCE2 on [5n, k, 5]2 codes,
and then reduce to LIP using Theorem 5.1 (where we note that 5 > p2 and that LCE2 = SPCE2).

If p > 2, first apply Corollary 4.3 with r := p + 2 to reduce LCEp on [n, k]p codes to LCEp on [(p +
2)n, k, p + 2]p codes. Second, apply Corollary 4.5 to reduce these LCEp instances to UCEp instances on

7We interpret mod pZn as a map from Zn to Fn
p , and note that y mod pZn is equivalent to applying the mod p operation

coordinate-wise to y.

14

[dn, k, d]p codes, where d := (p − 1)(p + 2) = p2 + p − 2 > p2. Third, apply Lemma 2.10 to reduce these
UCEp instances to SPCEp instances on [dn, k, d]p codes. Finally, apply Theorem 5.1 to reduce these SPCEp

instances to LIP on lattices of rank R = dn.

5.1 Examples Showing Non-Reductions

We conclude this section with examples showing non-reductions. Specifically, we show that the simple
“Construction-A” reduction in Theorem 5.1 does not (directly) work as a reduction from either of PCEp of
LCEp to Lattice Isomorphism, which motivates reducing from SPCEp instead.

We first show that the reduction does not work for PCEp. Let C1, C2 ⊂ F10
3 be the dimension-1 codes

with generator matrices G1 :=

(
1
1

)
⊗ 15 and G2 :=

(
1
−1

)
⊗ 15, respectively. Then C1, C2 have minimum

distance greater than 9, C1 ̸
P
≈ C2, and LA(C1) is isomorphic to LA(C2).

We now show that the reduction does not work for LCEp. Let C1, C2 ⊂ F26
5 be the dimension-1 codes

with generator matrices G1 :=

(
1
1

)
⊗ 113 and G2 :=

(
1
2

)
⊗ 113, respectively. Then C1, C2 have minimum

distance greater than 25, C1
L
≈ C2, and LA(C1) is not isomorphic to LA(C2).

6 Isomorphism Problems on Matroids and their Connection to
Code Equivalence

In this section, we discuss connections between isomorphism problems on matroids and their connections
to code equivalence. We focus on the (dis)similarities between the Linear Matroid Isomorphism (defined
formally below) and Code Equivalence.

In Section 3, we used results about when graphic and linear matroids were isomorphic in our main
reduction, but we did not study the corresponding computational problems in their own right. We now
define these problems, more or less following the definitions given in [RS11].

Definition 6.1 (Graphic Matroid Isomorphism). The Graphic Matroid Isomorphism (GMI) Problem is
defined as follows. Given two graphs G1 = (V,E1) and G = (V,E2) as input, decide whether M(G1) is
isomorphic to M(G2).

Definition 6.2 (Linear Matroid Isomorphism). For a field F, the Linear Matroid Isomorphism Problem
(LMIF) is defined as follows. Give two matrices A1, A2 ∈ Fk×n for some k, n ∈ Z+, decide whether M [A1] is
isomorphic to M [A2].

First, we note that combining Theorem 3.1 and Lemma 3.2 yields a reduction from Graph Isomorphism to
Graphic Matroid Isomorphism. (We emphasize that without the 3-connectedness assumption in Theorem 3.1,
it is not true that two graphs need be isomorphic if their corresponding graphic matroids are.) Second, we
note that Theorem 2.5 gives a reduction from GMI to LMIF for any field F. Combining these results implies
that GMI and LMIF over any field F are GI-hard. In what follows, we discuss the complexity of LMI itself
and its connection to code equivalence.

6.1 The relationship between CE and LMI

The definition of a linear matroid M [A] from a matrix A is similar to the parity-check definition of a code
C⊥(A), and so it is natural to ask how the two objects are related. More specifically, it is natural to ask how
CE and LMI are related.

Question 6.3. Let A1 and A2 be matrices. What is the relationship between the codes C⊥(A1) and C⊥(A2)
being equivalent and the linear matroids M [A1] and M [A2] being isomorphic?

15

To make this question precise, we need to specify what variant of code equivalence we mean and what
field F we are working over. However, it is interesting for essentially any choices of these things.

Equivalent matroid representations. Oxley [Oxl11, Chapter 6.3] defines two representations A and
A′ of a linear matroid to be projectively equivalent if there exist an invertible matrix U and a non-singular
diagonal matrix D such that UAD = A′. He defines two representations to be equivalent if it is possible
to apply a field automorphism to each entry in UAD for such U and D to obtain A′ (the same field
automorphism is applied to each entry). We note that projective equivalence is stronger than equivalence.
(In fact, Oxley defines both terms in terms of applying a sequence of operations, but then proves that these
definitions are equivalent to the descriptions given above in [Oxl11, Propositions 6.3.12 and 6.3.13]; we stated
Proposition 6.3.12 as Theorem 3.3 in the previous section.)

Relating equivalent representations and equivalent codes. We note the close correspondence be-
tween projective equivalence (respectively, equivalence) of matroid representations and linear equivalence
(respectively, semi-linear equivalence) of codes. Indeed, the only difference is that there is no permutation
matrix in the definition of (projective) equivalence, i.e., (projectively) equivalent representations generate
the same matroid, not just isomorphic matroids. However, if we extend the definitions in the natural way
to isomorphisms, we recover the definitions of linear and semi-linear code equivalence.

Define two linear matroids M1 and M2 represented by matrices A1 and A2 to be linearly isomorphic if
there exists a matrix A′

1 such that (1) A1 and A′
1 are projectively equivalent representations of M1, and (2)

A′
1P = A2 for a permutation matrix P . Define M1 and M2 to be semi-linearly isomorphic in the same way,

but with “projectively equivalent” replaced with “equivalent” in condition (1). Then M [A1] and M [A2] are
linearly isomorphic (respectively, semi-linearly isomorphic) if and only if C⊥(A1) and C⊥(A2) are linearly
equivalent (respectively, semi-linearly equivalent). In fact, we already formalized the linear equivalence part
of this in Theorem 3.3 and Corollary 3.4 in the previous section but without phrasing it this way.

6.2 Known Hardness of LMI

Oxley and Welsh [OW02] use a result by Khachiyan [Kha95], which proves NP-hardness of a problem he
calls Linear Degeneracy. The problem is to decide whether every size-k subset of n rational input points in
k dimensions is linearly independent. Specifically, [OW02] notes that this result implies that it is coNP-hard
to decide whether the linear matroid generated by M [A] for a (single) matrix A ∈ Qk×n is isomorphic the
the uniform matroid Uk,n (i.e., the matroid on a ground set of size n whose bases are all subsets of size
k).8 They call the problem of checking whether a linear matroid is isomorphic to Uk,n the Uniform Matroid
Isomorphism Problem.

The work of Rao and Sarma. In [RS11], Rao and Sarma formally define computational problems on
matroids and study the complexity of these problems. In particular, they define and study LMI. As part
of they work, they note that it is possible to represent Uk,n over any field with at least n elements using
a Vandermonde matrix, which implies that Uniform Matroid Isomorphism is efficiently reducible to Linear
Matroid Isomorphism over such fields. Combining this with [OW02], this implies that LMIQ is coNP-hard.

However, [RS11] also claims more. In its abstract, [RS11] claims that LMI is coNP-hard over “polyno-
mially growing fields,” and discussion in the paper seems to imply that LMI is coNP-hard on all fields with
at least n non-zero elements. (The relevant theorem statement in their work, [RS11, Proposition 3.4], just
claims that “LMI is coNP-hard” without explicitly specifying for which fields or giving a proof past the
discussion above.)

In fact, the key result in [Kha95] on which [OW02, RS11] rely, is stated only for infinite fields (specifically,
for the rationals). So, the coNP-hardness proof for LMI over finite fields in [RS11] at a minimum contains a
gap (we thank Raghavendra Rao for confirming this [Rao24]). It appears to be wrong for fields of polynomial
order, but likely to be correct for prime fields of sufficiently large exponential order.

8In fact, they state their result as showing NP-hardness rather than coNP-hardness, presumably under Turing reductions.

16

The hardness reduction in [Kha95] is a reduction from Subset Sum over the integers, to Linear Degeneracy
over the rational numbers (the output Linear Degeneracy instance is in fact integral). However, the reduction
seems likely to work more generally as a reduction from Subset Sum over fields F of size at least roughly n
(where n is the number of values in the Subset Sum instance) to Linear Degeneracy over F.

Subset Sum is in fact still NP-hard on prime fields Fp of sufficiently large exponential order (fields of order
2Ω(nc) for some constant c > 0). One can see this by upper bounding the (largest possible) values output by
the standard reduction from 3-SAT to Subset Sum, and then choosing p to be larger than their sum. This
ensures that there is no “wrap-around,” i.e., subset sums of values are valid over Fp if and only if they are
valid over the integers. On the other hand, Subset Sum is polynomial-time solvable over fields of polynomial
order by using a dynamic programming algorithm similar to the one for knapsack on bounded-weight items.
So, Khachiyan’s reduction only proves vacuous hardness over such fields, and therefore Rao and Sarma’s
claim about coNP-hardness of LMI over such fields is incorrect.

6.3 A Complexity Discrepancy Between LCE and LMI

Assuming that the coNP-hardness reduction in [RS11] does work for prime fields of order p = 2O(nc), this
shows a gap between the hardness of LMI and LCE over Fp. Indeed, LCEp for such p is clearly in NP, and
is in coAM using a slight variant of a protocol introduced by Petrank and Roth [PR97] (see below). From
this it follows that LCEp is not NP-hard or coNP-hard unless the polynomial hierarchy collapses.

The coAM protocol for LCEq is as follows (q need not be a prime). On input generator matrices G1, G2 ∈
Fn×k
q , Arthur samples a uniformly random bit b ∼ {0, 1}, uniformly random M ∼ Mn(Fq), and uniformly

random U ∼ GLk(Fq). He then sends MGbU to Merlin, and asks what b is. The protocol in [PR97] uses
the same idea, but is for PCE. This protocol only runs in polynomial time for LCE over finite fields Fq with
log q = poly(n), and does not work for LCE over infinite fields.

References

[ABC+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange,
Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth G. Pater-
son, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer,
Cen Jung Tjhai, Martin Tomlinson, , and Wen Wang. Classic McEliece, 2022. NIST Post-
Quantum Cryptography Standardization Project submission. 1

[Bab16] László Babai. Graph isomorphism in quasipolynomial time. In STOC, 2016. 2

[BBPS21] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. LESS-FM:
fine-tuning signatures from the code equivalence problem. In PQCrypto, volume 12841, pages
23–43. Springer, 2021. 1

[BBPS23] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. On the
computational hardness of the code equivalence problem in cryptography. Adv. Math. Commun.,
17(1):23–55, 2023. 4

[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equivalence and
group isomorphism. In SODA, 2011. 4

[BCK23] Alessandro Budroni, Jesús-Javier Chi-Domı́nguez, and Mukul Kulkarni. Lattice isomorphism
as a group action and hard problems on quadratic forms. IACR Cryptol. ePrint Arch., page
1093, 2023. 1

[BD22] Simeon Ball and James Dixon. The equivalence of linear codes implies semi-linear equivalence.
Des. Codes Cryptogr., 90(7):1557–1565, 2022. 4

17

[Beu20] Ward Beullens. Not enough LESS: an improved algorithm for solving code equivalence problems
over Fq. In SAC, volume 12804, pages 387–403. Springer, 2020. 4

[BGPS23] Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz. Just how
hard are rotations of Zn? algorithms and cryptography with the simplest lattice. In EURO-
CRYPT, pages 252–281, 2023. 1

[BM23] Jean-François Biasse and Giacomo Micheli. A search-to-decision reduction for the permutation
code equivalence problem. In ISIT, 2023. 4

[BMPS20] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini. LESS is more:
Code-based signatures without syndromes. In AFRICACRYPT, volume 12174, pages 45–65.
Springer, 2020. 1

[BOS19] Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha. Permutation code equivalence is
not harder than graph isomorphism when hulls are trivial. In ISIT, pages 2464–2468, 2019. 4

[CGG17] Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu. Deciding orthogo-
nality in construction-a lattices. SIAM J. Discret. Math., 31(2):1244–1262, 2017. 4

[CS99] John Conway and Neil J. A. Sloane. Sphere packings, lattices, and groups. Springer, 1999. 6

[DG23] Léo Ducas and Shane Gibbons. Hull attacks on the lattice isomorphism problem. In PKC,
2023. 4

[DPPvW22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J. van Woerden. Hawk:
Module LIP makes lattice signatures fast, compact and simple. In ASIACRYPT, volume 13794,
pages 65–94, 2022. 1

[DSV09] Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin. Complexity and algorithms
for computing Voronoi cells of lattices. Mathematics of Computation, 78(267):1713–1731, sep
2009. 3, 10, 11

[DvW22] Léo Ducas and Wessel P. J. van Woerden. On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In EUROCRYPT, 2022. 1

[Got21] Felix Gotti. Matching and Hall’s theorem, 2021. Lecture notes. Available at https:

//math.mit.edu/~fgotti/docs/Courses/Combinatorial%20Analysis/30.%20Matchings%

20and%20Hall%27s%20Theorem/Matching%20and%20Hall%27s%20Theorem.pdf. 12

[Gro12] Joshua A. Grochow. Matrix isomorphism of matrix lie algebras. In CCC, 2012. 2

[HR14] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In SODA, 2014. 4

[Kha95] L. Khachiyan. On the complexity of approximating extremal determinants in matrices. Journal
of Complexity, 11(1):138–153, 1995. 16, 17

[KO06] Petteri Kaski and Patric R.J. Österg̊ard. Classification Algorithms for Codes and Designs.
Springer-Verlag, 2006. 2, 3

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory, 1978. DSN
Progress Report. 1

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems – a cryptographic
perspective, volume 671 of The Kluwer international series in engineering and computer science.
Springer, 2002. 14

18

https://math.mit.edu/~fgotti/docs/Courses/Combinatorial%20Analysis/30.%20Matchings%20and%20Hall%27s%20Theorem/Matching%20and%20Hall%27s%20Theorem.pdf
https://math.mit.edu/~fgotti/docs/Courses/Combinatorial%20Analysis/30.%20Matchings%20and%20Hall%27s%20Theorem/Matching%20and%20Hall%27s%20Theorem.pdf
https://math.mit.edu/~fgotti/docs/Courses/Combinatorial%20Analysis/30.%20Matchings%20and%20Hall%27s%20Theorem/Matching%20and%20Hall%27s%20Theorem.pdf

[OW02] James G. Oxley and Dominic J. A. Welsh. Chromatic, flow and reliability polynomials: The
complexity of their coefficients. Comb. Probab. Comput., 11(4):403–426, 2002. 16

[Oxl11] James Oxley. Matroid Theory. Oxford University Press, 02 2011. Second Edition. 3, 7, 8, 10,
11, 16

[PR97] E. Petrank and R.M. Roth. Is code equivalence easy to decide? IEEE Transactions on
Information Theory, 43(5):1602–1604, 1997. 2, 3, 4, 17

[Rao24] Raghavendra Rao, 2024. Personal communication. 16

[Reg14] Oded Regev, 2014. Personal communication. 2, 3, 4, 14

[RS11] B. V. Raghavendra Rao and Jayalal Sarma. On the complexity of matroid isomorphism problem.
Theory Comput. Syst., 49(2):246–272, 2011. Preliminary version in CSR 2009. 4, 15, 16, 17

[Sen00] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The support split-
ting algorithm. IEEE Trans. Inf. Theory, 46(4):1193–1203, 2000. 4

[SS13a] Nicolas Sendrier and Dimitris Simos. How easy is code equivalence over Fq? In International
Workshop on Coding and Cryptography (WCC), 2013. 4

[SS13b] Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence over Fq and its
application to code-based cryptography. In PQCrypto, 2013. 2, 3, 4, 13, 14

[Tut71] W. T. Tutte. Introduction to the theory of matroids, 1971. RAND Technical Report. 3, 11

[Whi33] Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245–254, 1933.
3, 4, 10

19

	Introduction
	Our Results
	Reducing Graph Isomorphism to Code Equivalence
	Reducing Code Equivalence to Lattice Isomorphism
	Other Results

	Related Work on Matroid Theory and its Applications to Reductions
	Other Related Work
	Acknowledgments

	Preliminaries
	Algebra
	Matrix Groups

	Codes
	Lattices
	Construction A

	Matroids
	Classes of Matroids

	Isomorphism Problems
	Problems on Graphs
	Problems on Codes
	Problems on Lattices

	From Graphs to Codes
	Results about Isomorphic Matroids
	The Reduction

	Reductions Between Code Equivalence Variants
	Distance-Increasing Self-Reductions for LCE and PCE
	A Reduction from LCE to UCE

	From Codes to Lattices
	Examples Showing Non-Reductions

	Isomorphism Problems on Matroids and their Connection to Code Equivalence
	The relationship between CE and LMI
	Known Hardness of LMI
	A Complexity Discrepancy Between LCE and LMI

