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Abstract. Isogeny-based cryptography is cryptographic schemes whose
security is based on the hardness of a mathematical problem called the
isogeny problem, and is attracting attention as one of the candidates for
post-quantum cryptography. A representative isogeny-based cryptogra-
phy is the signature scheme called SQIsign, which was submitted to the
NIST PQC standardization competition. SQIsign has attracted much at-
tention because of its very short signature and key size among the candi-
dates for the NIST PQC standardization. Recently, a lot of new schemes
have been proposed that use high-dimensional isogenies. Among them,
the signature scheme called SQIsignHD has an even shorter signature
size than SQIsign. However, it requires 4-dimensional isogeny computa-
tions for the signature verification. In this paper, we propose a new sig-
nature scheme, SQIsign2D-East3, which requires only two-dimensional
isogeny computations for verification, thus reducing the computational
cost of verification. First, we generalized an algorithm called RandIs-
ogImg, which computes a random isogeny of non-smooth degree. Then,
by using this generalized RandIsogImg, we construct a new signature
scheme SQIsign2D-East.

1 Introduction

In recent years, isogeny-based cryptography has been actively studied as one of
the candidates for post-quantum cryptography (PQC). One of the representa-
tive isogeny-based cryptographies is the signature scheme called SQIsign [11],
which was submitted to the NIST PQC standardization competition. SQIsign
has attracted much attention because of its very short signature and key size
among the candidates for the NIST PQC standardization. Another well-known
isogeny-based cryptography is SIDH [17], which is proposed by De Feo and Jao.
Additionally, SIKE [1], a key encapsulation scheme based on SIDH, remained
an alternative candidate for the NIST PQC standardization competition un-
til Round 4. However, recent attacks [5,20,24] broke the security of SIDH and

3 Originally, our protocol was named SQIsign2D, but Andrea Basso, Luca De Feo,
Pierrick Dartois, Antonin Leroux, Luciano Maino, and Benjamin Wesolowski also
studied a signature of the same name independently of us. After discussions with
them, we decided to name our protocol SQIsign2D-East and theirs SQIsign2D-West,
based on their respective locations.
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SIKE. These attacks find the secret isogeny from the two point images under
the isogeny by computing high dimensional isogenies.

In response, a number of cryptographic applications of attacks on SIDH have
been studied, such as SQIsignHD [9], FESTA [3], QFESTA [22] SCALLOP-
HD [7], and IS-CUBE [21]. Among them, SQIsignHD is a variant of SQIsign
that has a shorter signature size and higher singing performance than SQIsign.
However, it requires 4-dimensional isogeny computations for signature verifica-
tion, which leads to a large computational cost. Since NIST calls for signature
schemes that have short signatures and fast verification, reducing the verification
cost of SQIsignHD is an important issue.

1.1 Contribution

In this paper, we make the following contributions:

1. We construct a new algorithm GenRandIsogImg, which is a generalization
of the algorithm called RandIsogImg proposed in [22], which computes the
codomain and point images of a given degree isogeny from a special elliptic
curve E0. OurGenRandIsogImg computes the codomain and point images
of a given degree isogeny from a given elliptic curve E.

2. Using GenRandIsogImg as a building block, we propose a new variant of
SQIsignHD, which only requires 2-dimensional isogeny computations for the
verification. We name this signature scheme ‘SQIsign2D-East’.

3. We give concrete parameters of SQIsign2D for the NIST security level 1,
3, and 5. Under these parameter settings, we analyse the signature sizes
and show that our signature sizes are smaller than SQIsign and larger than
SQIsignHD.

4. We analyse the computational cost of SQIsign2D-East under the parameter
for the NIST security level 1 and show that the verification cost of SQIsign2D
is smaller than that of SQIsignHD.

1.2 Related works

At the same time as this work, [2] and [14] also proposed a variant of SQIsignHD
based on 2-dimensional isogeny. The former one is called ‘SQIsign2D-West’ and
the later one is called ‘SQIPrime’. These protocols are similar to ours, but they
were proposed independently of us. Our protocol has a stronger security assump-
tion than their protocol but seems to be more efficient. we leave the comparison
with their protocol as future work.

Recently, [23] proposed an algorithm called IdealToIsogenyIQO that makes
the key generation and the signing procedure in SQIsign at least twice as fast.
However, their costs are still lager than SQIsignHD and SQIsign2D-East as de-
scribed in their paper.
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1.3 Organizations

In Section 2, we give some notation and background knowledge used in our
protocol. In Section 3, we construct a generalized RandIsogImg. In Section 4,
we propose our new signature scheme SQIsign2D-East and its security is analysed
in Section 5. In Section 6, we give some concrete parameters for SQIsign2D-East
and analyse the data size and the computational cost of SQIsign2D-East. Finally,
in Section 7, we give the conclusion of this paper.

2 Preliminaries

In this section, we summarize some background knowledge used in our protocol.

2.1 Notation

Throughout this paper, we use the following notation. We let p be a prime
number of cryptographic size, i.e., p is at least about 2256 and let λ be a security
parameter. Let f(x) and g(x) be real functions. We write f(x) = O(g(x)) if there
exists a constant c ∈ R such that f(x) is bounded by c ·g(x) for sufficiently large
x. f(x) is negligible if |f(x)| < x−c for all positive integers c and sufficiently
large x. We write f(x) < negl(x) if f(x) is negligible. For a finite set S, we
write x ∈U S if x is sampled uniformly at random from S. Let ⊥ be the symbol
indicating failure of an algorithm.

2.2 Abelian varieties and Isogenies

In this paper, we mainly use principally polarized superspecial abelian varieties
defined over a finite field of characteristic p of dimension one or two. Such a
variety is isomorphic to a supersingular elliptic curve, the product of two su-
persingular elliptic curves, or a Jacobian of a superspecial hyperelliptic curve of
genus two, and always has a model defined over Fp2 . Therefore, we only consider
varieties defined over Fp2 .

Basic Facts. An isogeny is a rational map between abelian varieties which is a
surjective group homomorphism and has finite kernel. The degree of an isogeny φ
is its degree as a rational map and denoted it by degφ. An isogeny φ is separable
if # kerφ = degφ. A separable isogeny is uniquely determined by its kernel up to
post-composition of isomorphism. For an isogeny φ : A→ B between principally
polarized abelian varieties, there exists a unique dual isogeny φ̂ such that φ̂ ◦ φ
is equal to the multiplication-by-degφ map on A.

Let φ : A→ B, ψ : A→ C, and ψ′ : B → D be isogenies. If kerψ′ = φ(kerψ)
holds, we say that ψ′ is the push-forward of ψ by φ and denote it by ψ′ = [φ]∗ψ.
Under the same situation, we say that ψ is the pull-back of ψ′ by φ and denote
it by ψ = [φ]∗ψ.
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Let A and B be principally polarized abelian varieties. If there exists an
isogeny between A and B then the dimensions of A and B are the same. If A is
superspecial then there exists an isogeny between A and B if and only if B is a
superspecial abelian variety of the same dimension as A.

Let A be a principally polarized abelian variety and ℓ a positive integer. An
ℓ-isotropic subgroup of A is a subgroup of the ℓ-torsion subgroup A[ℓ] of A on
which the ℓ-Weil pairing is trivial. An ℓ-isotropic subgroup G is maximal if there
is no other ℓ-isotropic subgroup containing G. A separable isogeny whose kernel
is a maximal ℓ-isotropic subgroup is called an ℓ-isogeny if the dimension of the
domain is one or an (ℓ, ℓ)-isogeny if the dimension of the domain is two.

Let E be an elliptic curve defined over Fp2 . Among the isomorphism class
of E, we can chose a Montgomery curve as a canonical representative by using
[6, Algorithm 1]. We call this curve the normalized curve of E. In this paper,
we assume that all elliptic curves are normalized. Moreover, we can compute
a canonical basis of the n-torsion subgroup E[n] defined over Fp2 by using [6,
Algorithm 3].

Computing Isogenies. Let A be a principally polarized abelian variety, ℓ a
positive integer, and G a maximal ℓ-isotropic subgroup of A.

If the dimension of A is one then we can compute an ℓ-isogeny φ with kernel
G by Vélu’s formulas [26]. More precisely, given A, ℓ, G, Vélu’s formulas give a
method to compute the codomain of φ in O(ℓ) operations on a field containing
the points in G. In addition, for additional input P ∈ A, we can compute φ(P ) in
O(ℓ) operations on a field containing the points in G and P . These computational
costs are improved to Õ(

√
ℓ) by Bernstein, De Feo, Leroux, and Smith [4].

For an isogeny φ : A → B, we say that information Iφ is an efficient repre-
sentation of φ when we can compute φ(P ) efficiently from a given point P ∈ A
and the information Iφ. For example, the tuple (A, ℓ,G) described above is an
efficient representation of ℓ-isogeny φ : A→ B when ℓ is smooth.

If A is the Jacobian of a hyperelliptic curve of genus two and ℓ = 2 then we
can compute (2, 2)-isogeny by formulas in Smith’s Ph.D thesis [25]. Formulas
of (2, 2)-isogenies for the case A is the product of two elliptic curves is given
by Howe, Leprévost, and Poonen [16]. In 2023, more efficient formulas of (2, 2)-
isogenies is proposed by Dartois, Maino, Pope, and Robert [10]. An algorithm
to compute (ℓ, ℓ)-isogenies for a general ℓ was given by [8] and later improved
by [19]. The computational cost of this algorithm is O(ℓ2) operations on a field
containing the points in G.

2.3 Quaternion Algebras and the Deuring Correspondence

Quaternion Algebras. A quaternion algebra over Q is a division algebra de-
fined by Q + Qi + Qj + Qk and i2 = a, j2 = b, ij = −ji = k for a, b ∈ Q∗. We
denote it by H(a, b). We say H(a, b) is ramified at a place v of Q if H(a, b)⊗QQv
is not isomorphic to the algebra of the 2 × 2 matrices over Qv. There exists a
quaternion algebra ramified exactly at p and ∞. Such an algebra is unique up
to isomorphism. We denote it by Bp,∞.



SQIsign2D-East 5

Let α = x+yi+zj+tk ∈ H(a, b) with x, y, z, t ∈ Q. The canonical involution
of α is x − yi − zj − tk and denoted by ᾱ. The reduced norm of α is αᾱ and
denoted by n(α).

An order O of H(a, b) is a subring of H(a, b) that is also a Z-lattice of rank
4. This means that O = Zα1 + Zα2 + Zα3 + Zα4 for a basis {α1, α2, α3, α4} of
H(a, b). We denote such an order by Z⟨α1, α2, α3, α4⟩. An order O is said to be
maximal if there is no larger order that contains O.

For a maximal order O, the (integral) left O-ideal I is a Z-lattice of rank 4
satisfying I ⊂ O and O · I ⊂ I. The right O-ideal is similarly defined. For an
ideal I, we denote its conjugate by Ī = {ᾱ | α ∈ I}. We denote by n(I) the
reduced norm of ideal I, defined as (the unique positive generator of) Z-module
generated by the reduced norms of the elements of I. The left O-ideal I of integer
norm can be written as I = Oα +On(I) for some α ∈ I. We denote such I by
I = O⟨α, n(I)⟩. The ideal equivalence denoted by I ∼ J means that there exists
β ∈ B∗p,∞ such that I = Jβ.

Deuring Correspondence. Deuring [13] showed that the endomorphism ring
of a supersingular elliptic curve over Fp2 is isomorphic to a maximal order of
Bp,∞ and gave a correspondence (Deuring correspondence) where a supersingular
elliptic E curve over Fp2 corresponds to a maximal order isomorphic to End(E).

Suppose p ≡ 3 (mod 4). This is the setting we use in our protocol. Then
we can take Bp,∞ = H(−1,−p) and an elliptic curve over Fp2 with j-invariant
1728 is supersingular. Let E0 be the elliptic curve over Fp2 defined by y2 =
x3 + x. Then j(E0) = 1728, so E0 is supersingular. We define endomorphisms
ι : (x, y) 7→ (−x,

√
−1y) and π : (x, y) 7→ (xp, yp) of E0, where

√
−1 is a

fixed square root of −1 in Fp2 . The endomorphism ring of E0 is isomorphic to

O0 := Z⟨1, i, i+j
2 ,

1+k
2 ⟩. This isomorphism is given by ι 7→ i and π 7→ j. From

now on, we identify End(E0) with O0 by this isomorphism.
Some isogeny-based protocols, e.g., SQISign [11], need to compute the image

under an element in O0 represented by the coefficients with respect to the basis
(1, i, i+j

2 ,
1+k
2 ). Let P ∈ E0(Fp2) and α = x + yi + z i+j

2 + t 1+k
2 for x, y, z, t ∈

Z. Given P and x, y, z, t, one can compute α(P ) in O(logmax{|x|, |y|, |z|, |t|})
operations on Fp2 and O(log p) operations on Fp4 . The latter operations on Fp4
is necessary only for the case when the order of P is even. We need to compute
α(P0) and α(Q0) for a fixed basis P0, Q0 of E0[2

a] for some integer a in our
protocol. In this case, by precomputing the images of P0 and Q0 under i, i+j

2 ,

and 1+k
2 , we can compute α(P0) and α(Q0) by scalar multiplications by x, y, z, t

and additions.
Deuring Correspondence also gives correspondence between isogeny and ideal.

Let E1 be a supersingular elliptic curve over Fp2 and let O1 be a maximal order
of Bp,∞ such that O1

∼= End(E1). Let ϕ : E1 → E2 be an N -isogeny, then the
isogeny ϕ can be associated to a left O1-ideal Iϕ. This ideal Iϕ is also a right
O2-ideal for a maximal order O2 satisfying O2

∼= End(E2). Such an ideal Iϕ is
called a connecting ideal from O1 to O2. Furthermore, it is known that its norm
n(Iϕ) equals to the degree N of ϕ. The order O denoted by O = O1∩O2 is called
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Eichler order and O = Z+Iϕ holds. Moreover, two isogenies ϕ, ψ : E1 → E2 that
have same domain and codomain correspond to the equivalent ideals Iϕ ∼ Iψ.

Let Iτ be a connecting ideal of norm d from O0
∼= End(E0) to O1

∼= End(E1)
and let τ : E0 → E1 be the corresponding isogeny. In our protocol, we need
to compute the image under an endomorphism α1 ∈ End(E1) represented as
an element α ∈ O0 ∩ O1. Since α ∈ O0, we can compute the image under the
corresponding endomorphism α0 ∈ End(E0) as described above. Then, if the
order n of P ∈ E1 is coprime to d, we can compute α1(P ) as follow:

α1(P ) =
1

d
τ ◦ α0 ◦ τ̂(P ),

where
1

d
is an inversion of d modulo n.

Algorithms Using Quaternion Algebra. As in the above, we let O0 be
the maximal order of Bp,∞ with basis (1, i, i+j

2 ,
1+k
2 ). Here, we introduce some

existing algorithms using quaternion algebra necessary for the construction of our
SQIsign2D-East. These algorithms are used in SQISign (see the official document
[6] for detail).

– RandomEquivalentIdealM (I): Take an integer M and a left-O0 ideal I
as input, output an uniformly random equivalent ideal J ∼ I such that
n(J) < M . When M ≈ p1/2, there exists such an ideal J with the high
probability.

– FullRepresentIntegerO0
(M): Take an integer M > p as input, output

α ∈ O0 such that n(α) =M .

– EichlerModConstraint(I, γ, δ): Take a left-O0 ideal I of prime norm N
and γ, δ ∈ O0 as input, output (C0 : D0) ∈ P1(Z/NZ) such that γ(C0j +
D0k)δ ∈ Z+ I.

– StrongApproximationM (N,C0, D0): Take integers M,N,C0 and D0 as
input, output µ ∈ O0 such that n(µ) = M and µ = m(C0j +D0k) + Nµ1,
where m ∈ Z and µ1 ∈ O0.

2.4 Computing Isogenies of Dimension one from Dimension Two

In this subsection, we give an algorithm to compute isogenies of dimension one
by using an isogeny of dimension two, which is an important sub-algorithm for
our protocol. This algorithm comes from recent attacks to SIDH by [5,20,24].
We use the following theorem, which is based on Kani’s criterion [18].

Theorem 1 ([20, Theorem 1]). Let N1, N2, and D be pairwise coprime in-

tegers such that D = N1 + N2, and let E0, E1, E2, and E3 be elliptic curves
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connected by the following diagram of isogenies:

E0
ψ2 //

ψ1

��

E2

ψ′
1

��
E1

ψ′
2

//

f
==

E3,

where ψ′
2 ◦ψ1 = ψ′

1 ◦ψ2, f = ψ2 ◦ ψ̂1, deg(ψ1) = deg(ψ′
1) = N1, and deg(ψ2) =

deg(ψ′
2) = N2. Then, the isogeny

Φ =

(
ψ̂1 −ψ̂2

ψ′
2 ψ′

1

)
: E1 × E2 → E0 × E3 (1)

is a (D,D)-isogeny with respect to the natural product polarizations on E1 ×E2

and E0 × E3, and has kernel {([N2]P, f(P )) | P ∈ E1[D]}.

Conversely, a (D,D)-isogeny with kernel {([N2]P, f(P )) | P ∈ E1[D]} is of the
form ι ◦ Φ with an isomorphism ι from E0 × E3. To construct algorithms to
evaluate the isogenies in the matrix in Equation (1), we need to restrict the
possibility of ι. In particular, we assume that the codomain E3 of ψ′

1 and ψ′
2

is not isomorphic to E0. This assumption is plausible because there exist about
p/12 supersingular elliptic curves over Fp2 up to isomorphism and ψ′

1 seems to
be a random isogeny unless we intend to have E1

∼= E3. Under this assumption,

an isomorphism from E0 ×E3 is represented by

(
ι0 0
0 ι3

)
or

(
0 ι3
ι0 0

)
, where ι0 is

an isomorphism from E0 and ι3 is an isomorphism from E3. Since we assume
that E0 and E3 are normalized, we can determine the codomain of Φ in only two
ways: E0 × E3 or E3 × E0.

Using Theorem 1 and assuming the above assumption, we construct an al-
gorithm to evaluate the isogenies in the matrix in Equation (1) by computing a
(D,D)-isogeny. We denote the algorithm by KaniCod.

Let N1, N2 be integers coprime with each other and D = N1+N2. Let E1, E2

supersingular elliptic curves over Fp2 , (P1, Q1) a basis of E1[D], (P2, Q2) a ba-
sis of E2[D], S1 a finite subset of E1, and S2 a finite subset of E2. If there
exist isogenies ψ1 : E0 → E1 and ψ2 : E0 → E2 such that degψ1 = N1

degψ2 = N2, P2 = ψ2 ◦ ψ̂1(P1), and Q2 = ψ2 ◦ ψ̂1(Q1), then KaniCod with
input (N1, N2, E1, E2, P1, Q1, P2, Q2;S1;S2) returns the curve E0, the image of

S1 under ψ̂1, and the image of S2 under ψ̂2. If such isogenies do not exist then
KaniCod returns ⊥. The procedure for KaniCod is as follows:

1. Compute a (D,D)-isogeny Φ with kernel ⟨([N2]P1, P2), ([N2]Q1, Q2)⟩.
2. If the codomain of Φ is not the product of elliptic curves then return ⊥.
3. Otherwise let F1 × F2 be the codomain of Φ.
4. Let P ′

1 and Q′
1 be first components of Φ((P1, OE2

)) and Φ((Q1, OE2
)).

5. Compute the D-Weil pairings eD(P1, Q1) and eD(P
′
1, Q

′
1).
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6. If eD(P1, Q1)
N1 = eD(P

′
1, Q

′
1) then return F1 and the first components of

Φ((R1, OE2
)) and Φ((OE1

, R2)) for R1 ∈ S1 and R2 ∈ S2.
7. If eD(P1, Q1)

N2 = eD(P
′
1, Q

′
1) then return F2 and the second components of

Φ((R1, OE2
)) and Φ((OE1

, R2)) for R1 ∈ S1 and R2 ∈ S2.
8. Otherwise, return ⊥.

When D is smooth, P1, Q1 ∈ E1(Fp2), S1 ⊂ E1(Fp2), P2, Q2 ∈ E2(Fp2), and
S2 ⊂ E2(Fp2) the computational costs of KaniCod are O((#S1 +#S2) logD)
operations on Fp2 by using the methods stated in Section 2.2. Especially, D is a
power of 2 in our case.

2.5 RandIsogImg

Here, we describe the conventional algorithm RandIsogImg which evaluates
the codomain of a random isogeny of non-smooth degree and some point images
under the isogeny. This algorithm was proposed in the paper of QFESTA [22]
and is an important component of our SQIsign2D-East.

Let E0 be the elliptic curve over Fp2 defined as E0 : y2 = x3 + x. Let D be a
smooth integer satisfying E0[D] ⊂ E0(Fp2) and D ≈ p, and let d be an integer
coprime to D satisfying D−d ≈ p. RandIsogImg takes integers d,D satisfying
these conditions and a finite subset S of E0 as input, and outputs the codomain
of a random d-isogeny τ and the images of the points in S under τ .

In this algorithm, we first compute an endomorphism α ∈ End(E0) of degree
d · (D−d) using FullRepresentInteger and decompose it into α = ρ̂◦τ , where
τ and ρ are the isogenies whose domains are E0 and whose degrees are d and
D − d, respectively. (See the following diagram.) Since deg τ + deg ρ = D and
gcd(deg τ,deg ρ) = 1, we can evaluate point images under the isogeny τ by using
KaniCod. We describe the pseudo code of RandIsogImg in Algorithm 1.

Algorithm 1 RandIsogImgO0
(d,D;S)

Require: Relatively prime Integers d,D such that D − d ≈ p and E0[D] ⊂ E0(Fp2)
and a finite subset S ⊂ E0.

Ensure: (EA, τ(S)) for a random d-isogeny τ : E0 → EA.
1: Let α← FullRepresentIntegerO0

(d · (D − d)).
2: Take a basis P0, Q0 of E0[D].
3: (EA, τ(S), ∅)← KaniCod(d,D − d,E0, E0, P0, Q0, α(P0), α(Q0);S; ∅).
4: return (EA, τ(S)).

In addition, we can compute the left O0-ideal Iτ = O0⟨α, d⟩, which corre-
sponds to the isogeny τ . We denote the algorithm which outputs (EA, τ(S), Iτ )
by RandIsogImgWithIdeal.



SQIsign2D-East 9

2.6 SQIsignHD

SQIsignHD is a signature scheme proposed in [9] in 2023, which is based on
SQIsign and utilizes an attack on SIDH to achieve a smaller signature length than
SQIsign. There are two types of SQIsignHD, one using 4-dimensional isogenies
and the other using 8-dimensional isogenies for the verification. In this section,
we introduce an overview of SQIsignHD using 4-dimensional isogenies. For more
details, refer to [9].

First, we show the system parameters of SQIsignHD. Let a, b be integers
satisfying 2a ≈ 3b ≈ 2λ, and let p be a prime satisfying p = 2a3bf − 1 for
a sufficiently small integer f . Let E0 be the elliptic curve over Fp2 defined as
E0 : y2 = x3 + x. Furthermore, we say that an odd integer q is 2a-good if there
exist integers m1,m2 satisfying m2

1 +m2
2 = 2a − q.

SQIsignHD is obtained by applying Fiat-Shamir transform [15] on the identi-
fication scheme based on the following diagram. In the following, we describe the

overview of SQIsignHD identification protocol, which is similar to our protocol.

keygen: The prover generates a random 32b-isogeny τ : E0 → EA and publishes
the curve EA as the public key.

commit: The prover generates a random 32b-isogeny ψ : E0 → E1 and sends E1

to the verifier as the commitment.

challenge: The verifier generates a random 3b-isogeny ϕ : E1 → E2 and sends
it to the prover.

response: The prover computes the ideal J corresponds to ϕ ◦ ψ ◦ τ̂ and finds
a random equivalent ideal Iσ ∼ J whose norm q is 2a-good. Then, the prover
sends to the verifier an efficient representation of the q-isogeny σ : EA → E2

corresponds to Iσ.

verify: The verifier checks that the response send by the prover correctly rep-
resents a q-isogeny σ : EA → E2.

As an efficient representation of the q-isogeny σ, the prover sends (q, σ|EA[2a]).
Then, the verifier recovers the isogeny σ using Theorem 1. To apply Theorem 1,
the verifier needs to compute a (2a − q)-isogeny from EA. However, this task
is hard since the degree 2a − q is generally non-smooth. The verifier instead
computes the 2-dimensional endomorphism over EA × EA of degree 2a − q as
follows:

1. Find two integers m1,m2 satisfying m2
1 +m2

2 + q = 2a.
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2. Let ω be the 2-dimensional endomorphism of degreem2
1+m

2
2 = 2a−q defined

as follow:

ω =

(
m1 −m2

m2 m1

)
.

Let I2 be the 2 × 2 identity matrix. Under the following diagram, the verifier
can recover σ by computing 4-dimensional 2a-isogeny. In this step, the verifier
uses an extension of Theorem 1 to higher dimension by Robert [24].

EA × EA
σI2 //

ω

��

E2 × E2

ω′

��
EA × EA

σI2

// E2 × E2.

Security. In [9], the following oracle and problem are defined to discuss the
security of SQIsignHD.

Definition 1 A random uniform good degree isogeny oracle (RUGDIO) is an
oracle taking as input a supersingular elliptic curve E defined over Fp2 and
returning an efficient representation of a random isogeny σ : E → E′ of 2e-good
degree prime to 3 such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.
(ii) The conditional distribution of σ given E′ is uniform among isogenies E →

E′ of 2e-good degree prime to 3.

Problem 1 (Supersingular Endomorphism Problem) Given a supersingu-
lar elliptic curve E/Fp2 , find an efficient representation of a non-scalar endo-
morphism α ∈ End(E).

Then, SQIsignHD is proven to be universally unforgeable under chosen message
attacks secure in the random oracle model under the following assumptions.

Assumption 1 The commitment curve E1 is computationally indistinguishable
from an elliptic curve chosen uniformly at random in the supersingular isogeny
graph.

Assumption 2 Problem 1 is computationally hard to solve even with the access
to the RUGDIO.

3 Building Block for SQIsign2D-East

In this section, we give an algorithmic building block for SQIsign2D-East. We
assume that we have a prime p = 2a+bf − 1 with a ≈ b ≈ λ and c ∈ N as small
as possible. We use the same notation q := deg(σ) as in subsection 2.6. Note
that the degree q is approximately p1/2. In SQIsignHD, the verifier required a
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4-dimensional isogeny computations since the auxiliary path ω of degree (2a−q)
is a 2-dimensional isogeny. Our main idea is to generate the auxiliary path ω
as 1-dimensional isogeny of degree 2a − q using RandIsogImg. However, the
conventional RandIsogImg can only compute an isogeny from a specific elliptic
curve E0. Since the auxiliary path we need is the isogeny from the public key
EA, we have to construct a generalized RandIsogImg.

3.1 Generalized RandIsogImg

We construct a generalized RandIsogImg so that we can compute an isogeny
from arbitrary curves. Let E be an elliptic curve isogenous to E0 and let O ∼=
End(E). Let τ be an N -isogeny from E0 to E and let Iτ be a left O0-ideal
corresponding to τ . We propose an algorithm to compute an isogeny of non-
smooth degree from E.

In the procedure of RandIsogImgO0
(d,D;S), we use O0 only in step 1,

where we find α ∈ O0 satisfying n(α) = d ·(D−d). Therefore, to construct a gen-
eralized RandIsogImg, we have to find α ∈ O satisfying n(α) = d·(D−d). This
can be achieved by usingEichlerModConstraint and StrongApproximation
as follows:

1. Using EichlerModConstraint(Iτ , 1, 1), obtain (C0 : D0) ∈ P1(Z/NZ) such
that C0j +D0k ∈ Z+ Iτ = O0 ∩ O.

2. Using StrongApproximationd(D−d)(N,C0, D0), we can find α ∈ O0 ∩ O
satisfying n(α) =M .

The above approach is used in the key generation algorithm of SQIsign [12].
Since we use StrongApproximation, the degree N of τ must be prime and
d(D − d) > pN3 must hold. If we assume that D − d ≈ p as with the original
RandIsogImg, the requirement on the degree d will be d > N3. In addition,
if we fix D around p, the condition D − d ≈ d holds for almost all d satisfying
d < D. From the above argument, a generalized RandIsogImg for E is as
shown in Algorithm 2.

Algorithm 2 GenRandIsogImgτ,Iτ (d,D;S)

Require: An isogeny τ : E0 → E of prime degree N , its corresponding ideal Iτ ,
relatively prime integers d,D such thatD ≈ p, d > N3, d < D, and E[D] ⊂ E(Fp2),
and a finite set S ⊂ E.

Ensure: (F, ι(S)) for a random d-isogeny ι : E → F .
1: (C0 : D0)← EichlerModConstraint(Iτ , 1, 1).
2: α← StrongApproximationd·(D−d)(N,C0, D0).
3: Let P,Q be a basis of E[D].
4: (F ; ι(S); ∅)← KaniCod(d,D − d,E,E, P,Q, α(P ), α(Q);S, ∅).
5: return (F, ι(S)).
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3.2 Computing Auxiliary Path

Unfortunately, the requirement d > N3 is too strong to compute an auxiliary
path of degree d = 2a − q ≈ p1/2. To allow the use of smaller d, we take the
following approach:

1. Let D1 be a smooth integer such that d(D1 − d) > N3 and d(D1 − d) < D.
2. Compute a d(D1 − d)-isogeny using GenRandIsogImg.
3. By computing a (D1, D1)-isogeny, obtain a d-isogeny.

Then, the lower bound of d decreases from N3 to approximately N3/D1.

Remark 1. Strictly speaking, the lower bound of d isB = D1/2−
√

(D1/2)2 −N3 =

(D1/2) · (1−
√
1− 4N3/D2

1). Especially when D2
1 ≫ N3, we have B ≈ N3/D1,

where we used
√
1− ϵ ≈ 1− ϵ/2 for ϵ≪ 1.

We show the algorithm to compute an auxiliary path in Algorithm 3.

Algorithm 3 AuxiliaryPathτ,Iτ (d,D1, D;S)

Require: An isogeny τ : E0 → E of prime degree N , its corresponding ideal Iτ ,
integers d,D1, D such that d is coprime to both D1 and D, D ≈ p, d(D1−d) > N3,
d(D1 − d) < D, and E[D] ⊂ E(Fp2), and a finite set S ⊂ E.

Ensure: (F, ω(S)) for a random d-isogeny ω : E → F .
1: Let P,Q be a basis of E[D1].
2: (F ′, ι(P ), ι(Q))← GenRandIsogImgIτ (d(D1 − d), D;P,Q).
3: (F ;ω(S); ∅)← KaniCod(d,D1 − d,E, F ′, P,Q, ι(P ), ι(Q);S; ∅).
4: return (F, ω(S)).

Especially in our protocol, we use D1 = 2a ≈ p1/2 and D = 2a+b ≈ p. Since
the degree d = 2a − q of the auxiliary path we need is around p1/2, we have
d(D1 − d) ≈ p for almost all d < D1. Hence, the condition d(D1 − d) > N3 is
satisfied when N < p1/3.

Now the remaining requirements on the degree d are as follows:

d is odd integer smaller than 2a,

d(2a − d) < 2a+b.

Since d = 2a − q, the requirements on the degree q of σ are also as follows:

q is odd integer smaller than 2a,

q(2a − q) < 2a+b.

When q satisfies the above conditions, we say that q is ‘(2a, 2b)-nice’

Remark 2. The odd integer q < 2a is always (2a, 2b)-nice when a ≤ b + 2 from
the following inequality:

q · (2a − q) = 22a−2 − (2a−1 − q)2 < 22a−2 ≤ 2a+b.
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Additional constraint on the norm q. In fact, there is an additional con-
straint on the norm q other than the (2a, 2b)-niceness. In Algorithm 2, we use
StrongApproximationd(2a+b−d)(N,C0, D0) with d = q(2a − q), N = Nτ , and
(C0, D0) ← EichlerModConstraint(Iτ , 1, 1) to generate an auxiliary path.
Then, StrongApproximationd(2a+b−d)(N,C0, D0) outputs µ ∈ O0 such that

n(µ) = d(2a+b − d) and µ = m(C0j+D0k) +Nτµ1,

where m ∈ Z and µ1 ∈ O0. Therefore, the following equation holds:

n(µ) = m2p(C2
0 +D2

0) = d(2a+b − d) mod Nτ .

For such an integer m to exist, the following condition must be satisfied:(
d(2a+b − d)

Nτ

)
=

(
p(C2

0 +D2
0)

Nτ

)
,

where
( a
N

)
is the quadratic residue symbol. On the other hand, from the defi-

nition of EichlerModConstraint, there exists an integer m′ satisfying

m′ + C0j+D0k ∈ Iτ .

Hence, we have

n(m′ + C0j+D0k) = (m′)2 + p(C2
0 +D2

0) = 0 mod Nτ ,

which means that (
p(C2

0 +D2
0)

Nτ

)
=

(
−1
Nτ

)
.

Summarizing the above discussion, d = q(2a − q) must satisfy(
d(2a+b − d)

Nτ

)
=

(
−1
Nτ

)
.

This condition is expected to hold with approximately 1/2 probability. We say
the integer q is ‘(2a, 2b, Nτ )-nice’ when q is (2a, 2b)-nice and satisfies the above
condition.

4 New Signature Scheme: SQIsign2D-East

In this section, we describe our new signature scheme SQIsign2D-East. First,
we describe the detailed algorithm for SQIsign2D-East and then we propose its
variant named ‘CompactSQIsign2D-East’, which has smaller signature size than
the original SQIsign2D-East.
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4.1 Description of SQIsign2D-East

We first describe the identification protocol underlying SQIsign2D-East. SQIsign2D-
East identification protocol is based on the following diagram.

We show the algorithms for the SQIsign2D-East identification scheme blow.

Parameter setting. The public parameter of SQIsign2D-East is taken as fol-
lows:

1. Let p be a prime of the form p = 2a+bf − 1, where f is a small integer and
a ≈ b ≈ λ.

2. Let E0 be the elliptic curve over Fp2 defined as E0 : y2 = x3 + x.
3. Let P0, Q0 be a basis of E0[2

a+b].
4. Let O0 = Z⟨1, i, i+j

2 ,
1+k
2 ⟩, which is isomorphic to End(E0).

5. Let param = (p, a, b, E0, P0, Q0,O0).

Key generation. As we stated in subsection 3.2, we have to take the degree
Nτ of the secret isogeny τ smaller than p1/3. Fortunately, we can take N as small
as approximately p1/4 while achieving λ-bits security as follows:

1. Take a random prime N < p1/4.
2. Compute a random N -isogeny τ : E0 → E.

This method is also used in the key generation of SQIsign [11].
Since Nτ is a large prime, we cannot compute τ efficiently from ker τ using

Vélu’s formulas. Instead, we compute an efficient representation (Nτ , τ(P0), τ(Q0))
of τ using RandIsogImg. By using (Nτ , τ(P0), τ(Q0)), we can efficiently com-
pute τ(T0) for any T0 ∈ E0[2

a+b] as follow:

1. Compute s, t ∈ Z/2a+bZ such that T0 = sP0 + tQ0.
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2. Return τ(T0) = sτ(P0) + tτ(Q0).

Now we show the key generation algorithm in Algorithm 4.

Algorithm 4 keygen(param)→ (pk, sk)

Require: Public parameter param = (p, a, b, E0, P0, Q0,O0).
Ensure: Public key pk and secret key sk.
1: Take a random prime Nτ < p1/4.
2: (EA, RA, SA, Iτ )← RandIsogImgWithIdealO0

(Nτ , 2
a+b;P0, Q0).

3: return pk = EA, sk = (τ = (Nτ , RA, SA), Iτ ).

Commitment. The commitment phase is similar to the key-generation. How-
ever, the degree Nψ need not to be prime smaller than p1/4 unlike Nτ . Hence,
we just chose an odd integer Nψ smaller than 22λ.

As with the key generation, we compute (Nψ, ψ(P0), ψ(Q0)) as an efficient
representation of ψ using RandIsogImg. As described above, we can efficiently
evaluate ψ over the 2a+b-torsion subgroup using this representation. In addition,
we can compute ψ̂(T1) for any T1 ∈ E1[2

a+b], where E1 is the codomain of ψ as
follow:

1. Compute s, t ∈ Z/2a+bZ such that T1 = sψ(P0) + tψ(Q0).

2. Return ψ̂(TA) = sNψP0 + tNψQ0.

Now, we show the commitment algorithm in Algorithm 5.

Algorithm 5 commit(param)→ (com, s)

Require: Public parameter param.
Ensure: Commitment com and secret information s.
1: Take a random odd integer Nψ < 22λ.
2: (E1, R1, S1, Iψ)← RandIsogImgWithIdealO0

(Nψ, 2
a+b;P0, Q0).

3: return com = E1, s = (ψ = (Nψ, R1, S1), Iψ).

Remark 3. We can fix Nψ to an odd integer around 22λ and include it in the
system parameter without any security loss.

Challenge. We just compute a random 2b-isogeny from E1 using Vélu’s formu-
las. We show the challenge algorithm in Algorithm 6.

Response. In the response phase, we first compute the ideal Iϕ. This can
be done by using IsogToIdeal algorithm [9, Algorithm 10], which takes two
isogenies ψ : E0 → E1 and ϕ : E1 → E2 and the ideal Iψ corresponds to ψ
as input and return the ideal Iϕ corresponds to ϕ. Then, we compute the ideal
J corresponds to ϕ ◦ ψ ◦ τ̂ and finds a random equivalent ideal Iσ ∼ J whose
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Algorithm 6 challenge(pk,param)→ ch

Require: Public key pk and public parameter param.
Ensure: Challenge ch.
1: Take a random integer u ∈U Z/2bZ.
2: Let P ′

1, Q
′
1 be the canonical basis of E1[2

b].
3: K′

1 ← P ′
1 + uQ′

1.
4: return ch = K′

1, a generator of the kernel of ϕ : E1 → E2.

norm q is (2a, 2b, Nτ )-nice. Next, we compute an efficient representation of the
q-isogeny σ : EA → E2 corresponds to Iσ. Finally, we generate an auxiliary
path ω : EA → E3 and return an efficient representation of σ ◦ ω̂. We show the
response algorithm in Algorithm 7.

Algorithm 7 response(sk, s, ch,param)→ resp

Require: Secret key sk, secret information s, challenge ch, and public parameter
param.

Ensure: Response resp.
1: Let Iϕ ← IsogToIdeal(ϕ, ψ, Iψ).

2: Let J = ĪτIψIϕ and Iσ = J
ᾱ

NτNψ2b
← RandomEquivalentIdeal2a(J).

3: Let q = n(Iσ) and r = 2a − q. (If q is not (2a, 2b, Nτ )-nice, go back to step 2.)
4: Let PA, QA be the canonical basis of EA[2

a+b] and let (P ′
A, Q

′
A) = 2b(PA, QA).

5: Compute R′
2 = 1

NτNψ
ϕ ◦ ψ ◦ τ̂ ◦ α̂(PA) and S′

2 = 1
NτNψ

ϕ ◦ ψ ◦ τ̂ ◦ α̂(QA).
6: Let (E3, R

′
3, S

′
3)← AuxiliaryPathIτ (r, 2

a, 2a+b;P ′
A, Q

′
A).

7: Let P ′
3, Q

′
3 be the canonical basis of E3[2

a] and compute the change of basis matrix
M such that (P ′

3, Q
′
3) = (R′

3, S
′
3)M .

8: Compute (U ′
2, V

′
2 ) = −(R′

2, S
′
2)M .

9: return resp = (E3, U
′
2, V

′
2 ).

Applying the Deuring correspondence on the equation Iσ = ĪτIψIϕ · ᾱ
NτNψ2b

in step 2, we obtain the following equation:

σ ◦ [2b] = 1

NτNψ
ϕ ◦ ψ ◦ τ̂ ◦ α̂.

Therefore, the point R′
2 in step 5 in Algorithm 7 satisfies the following equation:

R′
2 =

1

NψNτ
ϕ ◦ τ ◦ ψ̂ ◦ α̂(PA)

= σ(2bPA)

= σ(P ′
A).

Similarly, S′
2 = σ(Q′

A) also holds. In step 7, we compute R′
3 = ω(P ′

A) and
S′
3 = ω(Q′

A) for an r-isogeny ω : EA → E3. From the equation (P ′
3, Q

′
3) =

(R′
3, S

′
3)M = (ω(P ′

A), ω(Q
′
A))M in step 7, the following equation holds:

(ω̂(P ′
3), ω̂(Q

′
3)) = (rP ′

A, rQ
′
A)M = (−qP ′

A,−qQ′
A)M,
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where we used r = 2a− q ≡ −q mod 2a. By taking the image under the isogeny
σ of both sides, we obtain

(σ ◦ ω̂(P ′
3), σ ◦ ω̂(Q′

3)) = (−qR′
2,−qS′

2)M.

Therefore, we obtain the following equation:

(U ′
2, V

′
2) = −(R′

2, S
′
2)M =

(
1

q
σ ◦ ω̂(P ′

3),
1

q
σ ◦ ω̂(Q′

3)

)
. (2)

Verify. We show the response algorithm in Algorithm 8.

Algorithm 8 verify(pk, com, ch, resp, param)→ accept/reject

Require: Public key pk, commitment com, challenge ch, response resp, and public
parameter param.

Ensure: accept or reject.
1: Let P ′

3, Q
′
3 be the canonical basis of E3[2

a].
2: Compute a (2a, 2a)-isogeny Φ : E3×E2 → A with kernel K = ⟨(P ′

3, U
′
2), (Q

′
3, V

′
2 )⟩.

3: if A ∼= EA × F or A ∼= F × EA for an elliptic curve F then
4: return accept.
5: else
6: return reject.
7: end if

Correctness. We prove that SQIsign2D-East is correct. Assume here that the
prover computes the response honestly. From Equation 2, the subgroup K of
EA × F satisfies the following equation:

K = ⟨(P ′
3, U

′
2), (Q

′
3, V

′
2)⟩

=

〈(
P ′
3,

1

q
σ ◦ ω̂(P ′

3)

)
,

(
Q′

3,
1

q
σ ◦ ω̂(Q′

3)

)〉
= ⟨(qP ′

3, σ ◦ ω̂(P ′
3)), (qQ

′
3, σ ◦ ω̂(Q′

3))⟩.

Let σ′ = [ω]∗σ, ω
′ = [σ]∗ω, and F be the codomain of σ′ and ω′. From Theorem 1,

a (2a, 2a)-isogeny Φ with kernel K has the following form:

Φ =

(
ω̂ −σ̂
σ′ ω′

)
: E3 × E2 → EA × F

up to isomorphism. Therefore, the verifier accepts the honest response.

4.2 Reducing Signature Size

Applying the Fiat-Shamir transform, the signature of our protocol is made of
the data (E1, E3, R

′
2, S

′
2), where E1 is the commitment elliptic curve, E3 is the
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codomain of the auxiliary path, and R′
2, S

′
2 ∈ E2[2

a]. E1 and E3 can be de-
termined by their j-invariant j(E1), j(E3) ∈ Fp2 . Therefore, storing E1 and E3

takes 2 log2 p
2 ≈ 8λ bits. The points R′

2 and S′
2 can be compressed as SIKE.

Using this compression, R′
2 and S′

2 requires 4a ≈ 4λ bits. Totally, the signature
size is 12λ bits.

Actually, we can reduce the signature size by about 2λ bits by using the same
method as SQIsign: include ker ϕ̂ instead of the commitment E1 in the signature.
We name this variant ’CompactSQIsign2D-East’. To apply this method, we com-
pute ω′ = [σ]∗ω using KaniCod. Now we explain how the CompactSQIsign2D-
East works. Let H : {0, 1}∗ × Fp2 → Z/2bZ × {0, 1} be a cryptographic hash
function and let GenKernel be an algorithm defined as follows:

GenKernel(m,E1)→ K ′
1:

1. h,bin← H(m, j(E1)).
2. Let P ′

1, Q
′
1 be the canonical basis of E1[2

b].
3. If bin = 0, return K ′

1 = hP ′
1 +Q′

1.
4. Otherwise, return K ′

1 = P ′
1 + hQ′

1.

In the following, we regard Fp2 as a totally ordered set under an appropriate order
relation. We show the explicit algorithms for CompactSQIsign2D-East in Algo-
rithm 9 and 10. Note that the key generation algorithm for CompactSQIsign2D-
East is same as Algorithm 4.

Next, we discuss the signature size of CompactSQIsign2D-East. The reduced
signature of CompactSQIsign2D-East is made of the data (E4, R

′
4, S

′
4, b2, s2, t1),

where (R′
4, S

′
4) = ([r−1] ◦ ω′ ◦ σ(P ′

A), [r
−1] ◦ ω′ ◦ σ(Q′

A)) for the canonical basis
P ′
A, Q

′
A of EA[2

a], b2 is a bit, and s2, t1 are two elements of Z/2aZ, Therefore,
the signature size is log2 p

2 + 4a+ 1 + a+ a ≈ 10λ bits.

4.3 Increasing the possibility that there exists an equivalent ideal
Iσ whose norm q is (2a, 2b, Nτ )-nice

In step 2 and 3 of the response algorithm shown in Algorithm 7, we have to
find an equivalent ideal Iσ whose norm q is (2a, 2b, Nτ )-nice. If there is no such
an ideal, we fail the response and have to return to the commitment phase. To
avoid the failure of the response or reduce the possibility of failure at least, we
discuss how to increase the possibility that there exists an equivalent ideal Iσ
whose norm q is (2a, 2b, Nτ )-nice.

From now on, we assume that b ≤ a− 2, which means that about half of odd
integers smaller than 2a are (2a, 2b, Nτ )-nice (see Remark 2). In the previous
subsections, we have assumed that there exists an equivalent ideal Iσ whose
norm q is odd and q < 2a in high probability, since 2a ≈ p1/2. Strictly speaking,
however, 2a is less than p1/2 when f > 4 since p = 2a+bf − 1 = 22a−2f − 1.
Therefore, depending on the value of f , the probability of existing such an ideal
Iσ becomes small. We give two solutions for this problem below:

(i) Use q′ = q/ gcd(q, f) instead of q. This reduces the constraint of q from
q < 2a to q′ < 2a ⇔ q < gcd(q, f) · 2a.
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Algorithm 9 CompactSign(pk, sk,m, param)→ sig

Require: The public key pk, the secret key sk, the message m, and the public param-
eter param.

Ensure: The signature sig.
1: (E1, Nψ, R1, S1, Iψ)← commit(param).
2: K′

1 ← GenKernel(m,E1).
3: For the canonical basis P ′

2, Q
′
2 of E2[2

a], find u, v satisfying ker(ψ̂) = ⟨uP ′
2 + vQ′

2⟩.

4: if 2|u then
5: s← uv−1, bin1 ← 0.
6: Find t satisfying K′

1 = tϕ̂(P ′
2).

7: else
8: s← u−1v,bin1 ← 1.
9: Find t satisfying K′

1 = tϕ̂(Q′
2).

10: end if
11: Compute P ′

3, Q
′
3, R

′
2, S

′
2, and resp = (E3, U

′
2, V

′
2 ) using Algorithm 7.

12: (E4; ∅;R′
4, S

′
4)← KaniCod(q, r, E3, E2, P

′
3, Q

′
3, U

′
2, V

′
2 ; ∅;R′

2, S
′
2).

13: Let M3 and M4 be the Montgomery coefficient of E3 and E4, respectively.
14: if M3 ≤M4 then
15: bin2 ← 0.
16: else
17: bin2 ← 1.
18: end if
19: return sig = (E4, R

′
4, S

′
4,bin1,bin2, s, t).

(ii) Allow q to be even. This makes the number of usable q about twice.

In our implementation, we only used the method (i). In the following, we explain
the method (i) in detail. The method (ii) is described in Appendix A.

Let σ be a q-isogeny computed as in Algorithm 7. Let g = gcd(q, f), q =
g · q′, and r = 2a − q′. We formally decompose the q-isogeny σ to a g-isogeny
σg : EA → E′

A and a q′-isogeny σ′ : E′
A → E2. The procedure of the method (ii)

is as follows:

1. Compute kerσg by evaluating σ over EA[g].

2. Compute σg : EA → E′
A using Vélu’s formulas.

3. Obtain a r-isogeny ω : EA → E3 using AuxiliaryPath.

4. Let σ′
g = [ω]∗σg.

5. Compute kerσ′
g = ω(kerσg).

6. Compute σ′
g : E3 → E′

3 using Vélu’s formulas.

7. Evaluate σ′ and ω′ over E′
A[2

a] by using σ′ =
1

g
σ ◦ σ̂g and ω′ =

1

g
σ′
g ◦ω ◦ σ̂g.

When using this method, we have to include a generator of kerσg to the
signature.
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Algorithm 10 CompactVerify(pk,m, sig,param)→ accept/reject

Require: The public key pk, the message m, the signature sig, and the public param-
eter param.

Ensure: accept or reject.
1: Let P ′

A, Q
′
A be the canonical basis of EA[2

a].
2: Compute a (2a, 2a)-isogeny Φ : EA × E4 → A with kernel ⟨(P ′

A, R
′
4), (Q

′
A, S

′
4)⟩.

3: if not A ∼= F0 × F1 for elliptic curves F0 and F1 then
4: return reject.
5: end if
6: Let M0 and M1 be the Montgomery coefficient of F0 and F1, respectively.
7: if M0 > M1 then
8: F0, F1 ← F1, F0.
9: end if
10: E2 ← Fbin2 .
11: Let P ′

2, Q
′
2 be the canonical basis of E2[2

a].
12: if bin1 = 0 then
13: Compute a 2a-isogeny ϕ̂ : E2 → E1 = E2/⟨sP ′

2 +Q′
2⟩.

14: L′
1 ← ϕ̂(P ′

2).
15: else
16: Compute a 2a-isogeny ϕ̂ : E2 → E1 = E2/⟨P ′

2 + sQ′
2⟩.

17: L′
1 ← ϕ̂(Q′

2).
18: end if
19: K′

1 ← GenKernel(m,E1).
20: if K′

1 = tL′
1 then

21: return accept.
22: else
23: return reject.
24: end if

E0

τ

��

ψ
// E1

ϕ

��
EA

ω

��

σg //

σ

&&
E ′
A

ω′

��

σ′
// E2

E3

σ′
g // E ′

3,

Note that there is a concern that deg σg = g is not coprime to degω = r.
This means that the degree of ω′ = [σg]∗ω may not be equal to r but reduces
to r̃ = r/h for a factor h of gcd(g, r). In this case, we additionally compute a
random h-isogeny ι from E′

3 and use ι ◦ ω′ as an auxiliary path.
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5 Security Analysis

In this section, we give the security analysis for CompactSQIsign2D-East. The
analysis for the normal SQIsign2D-East is considered to be similar.

5.1 Security Proof

Our protocol mainly differs from SQIsignHD in the following three ways:

(i) We compute the commitment using RandIsogImg.
(ii) The degree q of σ is not 2a-good but (2a, 2b, Nτ )-nice.
(iii) We compute an auxiliary path ω using AuxiliaryPath and include it into

the signature.

First, to cover the difference (i), we use the following assumption instead of
Assumption 1.

Assumption 3 The commitment curve E1 computed by RandIsogImg is com-
putationally indistinguishable from an elliptic curve chosen uniformly at random
in the supersingular isogeny graph.

This assumption is considered to be reasonable for the same reasons stated in
[22]. Next, to cover the differences (ii) and (iii), we define the following two
oracles. The former one is an analogy of RUGDIO in SQIsignHD and the latter
one is the oracle that simulates AuxiliaryPath.

Definition 2 A random uniform nice degree isogeny oracle (RUNDIO) is an
oracle taking as input a supersingular elliptic curve E defined over Fp2 and
returning an efficient representation of a random isogeny σ : E → E′ of (2a, 2b)-
nice degree prime such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.
(ii) The conditional distribution of σ given E′ is uniform among isogenies E →

E′ of (2a, 2b)-nice degree.

Definition 3 An auxiliary path oracle (APO) is an oracle taking as input a
supersingular elliptic curve E defined over Fp2 and a (2a, 2b, Nτ )-nice integer q
and returning an efficient representation of a (2a − q)-isogeny ω : E → E′ such
that the distribution of ω is same as AuxiliaryPathIψ (q, 2

a+b).

Remark 4. Since (2a, 2b)-nice integer q is (2a, 2b, Nτ )-nice with approximately
1/2 probability, we can obtain a random isogeny of (2a, 2b, Nτ )-nice degree by
executing RUNDIO several times. From Remark 2, especially when a ≤ b + 2,
RUNDIO can be seen as the oracle that returns a random isogeny whose degree
q is smaller than 2a. In this sense, RUNDIO is a weaker oracle than RUGDIO.

Finally, we prepare the following assumption instead of Assumption 2.
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Assumption 4 Problem 1 is computationally hard to solve even with the access
to the RUNDIO and APO.

Now, we have the following theorem.

Theorem 1 CompactSQIsign2D-East is universally unforgeable under chosen
message attacks in the random oracle model. secure in the random oracle model
under Assumption 3 and Assumption 4.

Proof. By [27, Theorem 7], it is sufficient to prove that the underlying identifi-
cation scheme is knowledge sound and honest-verifier zero knowledge.

Soundness: The proof of soundness of our protocol is quite similar to that
of SQIsignHD. Let (E1, ϕ, E4, R4, S4) and (E1, ϕ

′, E′
4, R

′
4, S

′
4) are two Compact-

SQIsign2D-East transcripts with the same commitment E1 but different chal-
lenges ϕ ̸= ϕ′. From (E4, R4, S4) and (E′

4, R
′
4, S

′
4), we can compute efficient

representations of σ : EA → E2 and σ′ : EA → E′
2, where E2 and E′

2 are
codomains of ϕ and ϕ′, respectively.

Therefore, we obtain an efficient representation of α = σ̂′ ◦ ϕ′ ◦ ϕ̂ ◦ σ ∈
End(EA). Finally, the proof that α is non-scalar is exactly same as SQIsignHD
since it depends only on the fact that q = deg(σ) and q′ = deg(σ′) are coprime
to deg(ϕ) = deg(ϕ′).

Zero knowledge: We now prove that there exists a random polynomial time
simulator S with access to a RUNDIO and APO that simulates transcripts
(E1, ϕ, E4, R4, S4) with a computationally indistinguishable distribution from
the transcripts of the CompactSQIsign2D-East identification protocol.

First, the simulator applies the RUNDIO several times with the input EA
and obtains an efficient representation of a random isogeny σ′ : EA → E′

2 of

(2a, 2b, Nτ )-nice degree. Then, it selects a 2a-isogeny ϕ̂′ : E′
2 → E′

1 uniformly at
random among all 2a-isogenies from E′

2. Finally, it applies the APO with the
input E′

2 and q′ = deg(σ′) and obtains an efficient representation of a (2a − q)-
isogeny ω′ : E′

2 → E′
4. Hence, we can compute (R′

4, S
′
4) = (σ′ ◦ ω′(PA), σ

′ ◦
ω′(QA)), where PA, QA is the canonical basis of EA[2

a] and obtain the transcripts
(E′

1, ϕ
′, E′

4, R
′
4, S

′
4).

We now prove that the transcripts (E′
1, ϕ

′, E′
4, R

′
4, S

′
4) of S are computation-

ally indistinguishable from the transcripts (E1, ϕ, E4, R4, S4) of the Compact-
SQIsign2D-East identification protocol. By the definition of the RUNDIO, E′

2

is uniformly random in the supersingular isogeny graph. From the uniformity
of E′

2 and ϕ̂′, E′
1 is also uniform and ϕ′ can be regarded as uniformly selected

among all 2a-isogenies from E′
1. Besides, E1 is statistically close to uniformly

random as well by assumption and ϕ is also uniformly selected by construction.
Consequently, the distribution of E2 is also uniform.

Next, conditionally to E′
2, σ

′ is uniformly random among isogenies EA → E′
2

of (2a, 2b, Nτ )-nice degree by the definition of RUNDIO. Besides, conditionally
to E2, σ has the same distribution by construction.
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Finally, (E4, ω) and (E′
4, ω

′) have the same distribution by the definition of
APO. Since (σ, ω) and (σ′, ω′) have the same distribution as described above,
(R4, S4) = (σ ◦ ω(PA), σ ◦ ω(QA)) and (R′

4, S
′
4) = (σ′ ◦ ω′(PA), σ

′ ◦ ω′(QA)) also
have the same distribution. ⊓⊔

5.2 Hardness Analysis

We now discuss the hardness of the supersingular endomorphism problem with
access to the RUNDIO and the APO. In this subsection, we assume a ≤ b+2. In
this case, the RUNDIO can been seen as a weaker oracle than the RUGDIO as
noted in Remark 4. Therefore, by the same argument in [9, Section 5.3], we can
expect that the RUNDIO does not help solve the supersingular endomorphism
problem. Similarly, we believe that the APO does not help either, but we leave
a detailed analysis as a future work.

6 Efficiency

In this section, we analyse the efficiency of SQIsign2D-East and CompactSQIsign-
2D-East. First, we provide concrete parameters for these protocols, then com-
pare the data sizes of these protocols such as public key size and ciphertext
size with SQIsign and SQIsignHD. Finally, we analyse the computational cost
of SQIsign2D-East and CompactSQIsign2D-East.

6.1 Parameters

We give concrete parameters for SQIsign2D-East and CompactSQIsign2D-East
satisfying the NIST security level 1, 3, and 5:

– Level 1:

a = 127, b = 126, p = 2253 · 27− 1.

– Level 3:

a = 191, b = 189, p = 2380 · 35− 1.

– Level 5:

a = 261, b = 259, p = 2520 · 2− 1.

6.2 Data Sizes

In this subsection, we compare the signature sizes of SQIsign, SQIsignHD, SQIsign-
2D-East, and CompactSQIsign2D-East using the above parameters. Table 1
shows each signature size. Note that we do not give the signature size of SQIsignHD
for the level 3 and 5 since sufficient information to evaluate the signature sizes
are not given in [9]. As shown in Table 1, the signature size of SQIsign2D-East is
larger than both SQIsign and SQIsignHD for every security level. On the other
hand, the signature size of CompactSQIsign2D-East is smaller than SQIsign and
lager than SQIsignHD for every security level.
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Security Protocol Signature (bytes)

Level 1 SQIsign 177
SQIsignHD 109

SQIsign2D-East 197
CompactSQIsign2D-East 164

Level 3 SQIsign 263
SQIsignHD -

SQIsign2D-East 294
CompactSQIsign2D-East 245

Level 5 SQIsign 335
SQIsignHD -

SQIsign2D-East 396
CompactSQIsign2D-East 331
Table 1. Signature size comparison

6.3 Computational Cost

We compare the computational costs of SQIsignHD, SQIsign2D-East, and Com-
pactSQIsign2D-East for the security level 1. Table 2 shows the number of isogeny
computations of each degree. As Table 2 shows, our protocol does not require

Protocol (Security level 1) 2 3 (2, 2) (2, 2, 2, 2)

keygen 378 234 - -
SQIsignHD sign 252 312 - -

verify - 78 - 142

keygen - - 253 -
SQIsign2D-East sign 126 0-3 633 -

verify 126 0-3 127 -

keygen - - 253 -
CompactSQIsign2D-East sign 126 0-3 760 -

verify 126 0-3 127 -
Table 2. Number of isogeny computations of each degree

any 4-dimensional isogeny computation for the verification. In addition, the
number of 2-dimensional isogeny computations is smaller than the number of
4-dimensional isogeny computations in SQIsignHD. Therefore, the verification
cost of our protocol is clearly smaller than that of SQIsignHD. As for the key
generation and signing, our protocol requires 2-dimensional isogeny computa-
tions, whereas SQIsignHD only requires 1-dimensional isogeny computations.
Therefore, our protocol is likely to have a larger cost for the key generation and
signing.

Finally, in Table 3, we show the actual computational times of SQIsign2D-
East and CompactSQIsign2D-East implemented in Julia. The implementation is
available at: https://github.com/hiroshi-onuki/SQIsign2D-East.jl. These
are the averages of 100 run times. The computational times are measured on a
computer with an Intel Core i7-10700K CPU@3.70Hz without Turbo Boost. The
cost evaluation through an optimized implementation is a future work.

https://github.com/hiroshi-onuki/SQIsign2D-East.jl
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Security Protocol keygen sign verify

Level 1 SQIsign2D-East 0.55 1.50 0.20
CompactSQIsign2D-East 0.60 1.80 0.28

Level 3 SQIsign2D-East 1.00 2.68 0.58
CompactSQIsign2D-East 0.95 3.28 0.49

Level 5 SQIsign2D-East 1.38 5.16 0.62
CompactSQIsign2D-East 1.47 6.42 0.71

Table 3. Computational times (sec.)

7 Conclusion

In this paper, we introduce SQIsign2D-East, a new variant of SQIsignHD, which
requires only 2-dimensional isogeny computations for the verification, while the
conventional SQIsignHD requires 4-dimensional isogeny computations. As a build-
ing block of SQIsign2D-East, we construct a new algorithm, which is a gener-
alization of the conventional algorithm called RandIsogImg. In addition, we
propose CompactSQIsign2D-East, which has shorter signature size but has larger
signing cost.

Both SQIsign2D-East and CompactSQIsign2D-East have less verification
costs than SQIsignHD. On the other hand, the signing costs are expected to be
larger than SQIsignHD though they are expected to be smaller than SQIsign. The
signature size of SQIsign2D-East is longer than both SQIsign and SQIsignHD.
The signature size of CompactSQIsign2D-East is shorter than SQIsign but longer
than SQIsignHD.

As a future work, we need more detailed analysis on the security of our
protocol. The cost evaluation of SQIsign2D-East through an optimized imple-
mentation is also a future work.
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A Allow q to be even

Assume that q is an even integer smaller than 2a. Let q = 2e · qodd, where qodd
is odd integer and let r = 2a−e − qodd. Note here that qodd is smaller than 2a−e

since q < 2a. Next, we decompose the q-isogeny σ to a 2e-isogeny σ2 : EA → E′
A

and a qodd-isogeny σodd : E′
A → E2. SQIsign2D-East using the method (i) is

based on the following diagram:

E0

τ

��

ψ
// E1

ϕ

��
EA

ω

��

σ2 //

σ

&&
E ′
A

ω′

��

σodd // E2

E3

σ′
2 // E ′

3,

where ω is an r-isogeny, σ′
2 = [ω]∗σ2, and ω

′ = [σ2]∗ω. In this diagram, we can
compute σ2 by using Vélu’s formulas. In addition, we can evaluate σ over EA[2

a]
as in Algorithm 7. Therefore, we can evaluate σodd over E′

A[2
a−e] by evaluating

σ ◦ σ̂2 = [2e]◦σodd over E′
A[2

a]. We can also evaluate ω′ over E′
A[2

a−e] as follow:

1. Obtain ω|EA[2a] for an r-isogeny ω : EA → E3 using AuxiliaryPath.
2. Compute ω′|E′

A[2a−e] by evaluating σ′
2 ◦ ω ◦ σ̂2 = [2e] ◦ ω′ over E′

A[2
a]. (We

can compute σ′
2 from its kernel ω(kerσ2) by using Vélu’s formulas.)

Then, the response is (E′
3, R

′
2 = [q−1

odd] ◦ σodd ◦ ω̂′(P ′
3), S

′
2 = [q−1

odd] ◦ σodd ◦
ω̂′(Q′

3), kerσ2) for the canonical basis of E′
3[2

a−e]. Note that we have to chose σ

so that ker(ϕ̂◦σ) is cyclic. This can be done by choosing α = τ̂ ◦ σ̂◦ϕ◦ψ ∈ O0 so
that α ̸∈ 2O0 when runningRandomEquivalentIdeal in step 2 of Algorithm 7.

For the verification, we first compute the short path σ2 : EA → E′
A using

Vélu’s formulas. Then we compute (2a−e, 2a−e)-isogeny Φ : E′
3 × E2 → A with

kernel ⟨(P ′
3, R

′
2), (Q

′
3, S

′
2)⟩. Finally, we check if A ∼= E′

A × F for a curve F .
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