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1 Introduction

Contrary to the enthusiastic Nike3 slogan “just do it”, in cryptography some things you just cannot
do. A set of parties cannot flip an unbiased coin without an honest majority among the partici-
pants, by a 1986 impossibility result of Cleve [Cle86]. Only two years later Micali famously noted
that “cryptographers seldom sleep well” [Kil88]. Given how important coin flipping protocols have
become in the context of large real-world distributed system, it is of no surprise that cryptogra-
phers may lose sleep over Cleve’s impossibility result. Nowadays, many large-scale blockchains, like
Algorand [GHM+17], Cardano [DGKR18], and Ethereum [Eth] rely on so-called randomness bea-
cons [Rab83, CMB23], that continuously generate fresh, independent, unbiasable random values.
Under the hood, these beacons themselves can be seen as distributed systems that repeatedly flip
coins and therefore they are subject to Cleve’s impossibility result.
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An interesting approach for circumventing Cleve’s result was proposed by Boneh and Naor [BN00].
They showed that two parties, in the presence of one corruption, can flip an unbiased coin by relying
on time-based cryptography [May93, CLSY93, RSW96]. Cleve’s result lives in a world where time
is independent of computation, meaning that when Alice evaluates a polynomial-sized circuit, the
clock ticks only once. Coin flipping protocols that rely on time-based cryptography instead live in
a world where computation time can be observed, meaning that the clock can tick multiple times
during Alice’s computation and that Bob can observe (or upper bound) how long it took. Time-
based cryptography is built upon the computational assumption that certain computations can be
efficiently performed by circuits of some sufficiently high depth, but not by any polynomially-sized
circuit with small depth, along with the physical assumption that evaluating a circuit must take
time proportional to its depth, no matter how much resources you invest.

Since the inception of time-based cryptography, dating back to May [May93] and Cai et
al. [CLSY93], there have been numerous other works proposing different time-based cryptographic
objects such as time-lock puzzles [RSW96], timed commitments [BN00], delay functions [GS98],
verifiable delay functions [BBBF18], homomorphic time-lock puzzles [MT19], and delay encryp-
tion [BD21]. All of these primitives allow for security and liveness guarantees in distributed systems
that are not possible classically.

Unfortunately, many of these works rely on new, poorly understood hardness assumptions,
some of which were proven false in terms of concrete parameters [LMP+23] and some of which were
proven false in terms of asymptotic guarantees [PT23]. Contrary to classical hardness assumptions
that talk about the hardness of problems w.r.t. to adversaries of polynomial size, much less is known
about the hardness of problems w.r.t. to adversaries of bounded depth. It is therefore natural to
ask, under what minimal assumptions one can construct time-based cryptography.

1.1 Our Contribution

In this work we make progress on several fronts in the domain of time-based cryptography. In the
following, let us highlight each contribution individually.

(Verifiable) Delay Functions. The concept of delay functions was informally introduced by
Goldschlag and Stubblebine [GS98]. In their work, they do not construct such functions, but ar-
gue that their existence would allow for solving certain distributed computing problems. A delay
function guarantees that its evaluation on a random input requires computing a high depth circuit.
Boneh et al. [BBBF18] introduce the concept of verifiable delay functions (VDFs) and propose
several candidate constructions based on new hardness assumptions. Such delay functions allow for
efficiently, i.e. in low depth, verifying that some given value is indeed the output of a delay function
for some given input.

In our work, we formally define the concept of delay functions and show that they can be
constructed from one-way functions and the existence of languages that can be decided by circuits
of polynomial size, but not by low depth circuits in the worst-case. We note that we do not assume
that we are given such a language, but merely that such a language exists. Using an appropriate
succinct proof system, our delay functions can be converted into a VDF.

To put our result into context, we would like to stress that the hardness assumption we use, is
very weak. For example, should any existing candidate construction for delay functions be secure,
then so is our construction. Yet, it is also entirely possible that we live in a world, where all currently
existing candidate constructions are broken, but our delay function remains secure.
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Delay Encryption. A recent work by Burdges and De Feo [BD21] introduced delay encryption,
which allows for encrypting messages towards an arbitrarily chosen identity id. Anybody can
derive the secret key corresponding to id, which allows for decrypting the corresponding encrypted
messages, but doing so requires evaluating a circuit of high depth. The authors show that delay
encryption can be constructed from a new hardness assumption about isogenies that they introduce
in their work.

In our work, we show that delay functions together with timeless classics that satisfy certain
efficiency criteria, allow for constructing delay encryption. Concretely, we show that either witness
encryption [GGSW13] or attribute-based encryption [SW05] suffice. While we do not currently
know how to construct witness or attribute-based encryption schemes that satisfy all of our effi-
ciency criteria, our results demonstrate that minimal time-based assumptions in combination with
standard cryptographic primitives are sufficient for constructing advanced objects from the realm
of time-based cryptography. We believe that our results provide an interesting new avenue towards
constructing delay encryption.

Randomness Beacons. We provide a formal model for randomness beacons which is tailored to
the blockchain setting and show that time-lock puzzles – one of the simplest time-based primitives
– in combination with standard cryptographic tools are sufficient for constructing provably secure
beacons. Time-lock puzzles allow for efficiently encoding a secret value inside of a puzzle, such that
retrieving the encoded value can only be done by solving the puzzle, which requires a high-depth
computation. In our model, parties can only speak once, and the output of the beacon must be
publicly verifiable without needing to repeatedly perform high-depth computations. It is desirable
that retrieving the beacon output should require as few high-depth computations as possible, and
that the beacon output should be available as soon as possible. The ideas behind our construction
here are not all entirely new and several of our insights have appeared in various shapes and forms
in previous works, but to the best of our knowledge this is the first fully formal treatment of
randomness beacons from time-lock puzzles in the specific context of blockchains.

Our modelling of randomness beacons assumes that parties speak one after another and we
assume that honest parties speak frequently enough, i.e. that every subsequence of T consecutive
speakers contains at least one honest party. Our construction of a randomness beacon from plain
time-lock puzzles requires solving one time-lock puzzle per beacon output on average, but solving
O(T ) many puzzles for retrieving a single beacon output. We show that a variant of linearly ho-
momorphic time-lock puzzles, introduced and constructed by Malavolta and Thyagarajan [MT19],
allows for reducing the worst-case costs to O(1) alone. The constructions of Malavolta and Thya-
garajan require a trusted setup, which is difficult to realize in practice. We generalize their approach
(and their hardness assumption) and show how to construct the linearly homomorphic time-lock
puzzles we need in a general algebraic framework, similar to the frameworks used in several recent
works of Abram et al. [ADOS22, ADIN24, ARS24]. Instantiating this framework with class groups
and an appropriate hardness assumption, provides us with our desired time-lock puzzles without
the need for a trusted setup.

1.2 Related Works

Time-based cryptography has been around for a while. In 1993, May [May93] suggested encrypting
messages to the future with the help of a social mechanism that would allow decrypting messages
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after some time has passed. In the same year, Cai et al. [CLSY93] introduced the concept of
uncheatable benchmarks, which allow a verifier to efficiently check an inherently slow computation
done by a powerful machine. Cai et al. proposed a candidate construction based on the assumption
that the fastest way to perform exponentiations in groups of unknown order, the RSA group
specifically, is via repeatedly performing squaring operations sequentially. To this day, this is one of
the main hardness assumptions underlying a large part of time-based cryptography [RSW96, BN00,
MT19, Pie19, Wes19, EFKP20, FKPS21, BDD+21, BDD+23], including the linearly homomorphic
puzzles we will use in our randomness beacon.

Assumptions Needed for Time-Based Cryptography. While currently not much is known
about which assumptions can be used for time-based cryptography, we know at least some things.
Mahmoody, Moran, and Vadhan [MMV11] showed that time-lock puzzles, where generating the
puzzle is much faster than solving it, cannot be constructed from random oracles alone. Their
result was later extended by Mahmoody, Smith, and Wu [MSW20] to show that VDFs, satisfying a
stronger form of security, cannot be constructed from random oracles alone either. Rotem, Segev,
and Shahaf [RSS20] rule out constructing delay functions from known-order cyclic groups.

On the positive side, both the work of Katz, Loss, and Xu [KLX20] and that of Rotem and
Segev [RS20] provide evidence suggesting that speeding up the approach sequential squaring for
performing exponentiations in certain groups of unknown order is as hard as factoring.

Time-Based Cryptography From Weaker Assumptions. Bitansky et al. [BGJ+16] showed
that time-lock puzzles can be constructed from standard cryptographic tools and the existence of
languages that in the worst case are decidable by polynomial size circuits, but not by low depth
circuits. In combination with one-way functions, their result allowed for constructing a weak form
of time-lock puzzles. In combination with indistinguishability obfuscation, their result allowed for
constructing standard time-lock puzzles. Jaques, Montgomery, and Roy [JMR20] then extended
the result of Bitansky et al. to the setting of VDFs by showing that these can be constructed
from an object they called iteratively sequential functions (ISFs), circular-secure FHE, and some
appropriate notion of a proof system.

Looking ahead, our construction of delay functions will closely follow the approach of Bitansky
et al., but by focusing on delay functions, instead of time-lock puzzles, we get away with just
using one-way functions and do not need to rely on indistinguishability obfuscation. In comparison
to Jaques, Montgomery, and Roy, our assumptions are weaker, as we do not need to rely on the
existence of ISFs or FHE.

Randomness Beacons. Several previous works have considered both coin flipping protocols and
randomness beacons from time-based cryptography. For a general overview of all popular approaches
to constructing randomness beacons, we refer the reader to the work of Choi, Manoj, and Bon-
neau [CMB23]. Here we focus on those that are most relevant to our work.

As already mentioned, Boneh and Naor [BN00] showed that time-based cryptography can allow
for two-party coin flipping protocols in the presence of one corruption. Freitag et al. [FKPS21]
showed how to construct multiparty coin flipping protocols in the presence of a dishonest majority
from time-based cryptography. Baum et al. [BDD+23] define a notion of randomness beacons in
the universal composability framework of Canetti [Can01] and present a construction thereof. All
of these works focus on the setting, where parties interact over multiple rounds with each other,
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meaning that parties speak more than once. While these protocols do tolerate malicious parties not
participating or speaking only once, they do require the honest parties to speak multiple times.

Boneh et al. presented a randomness beacon as an application of VDFs [BBBF18]. Their beacon
is designed to run parallel to a blockchain, using VDF evaluated on the latest block hash. While
they gave no security argument, informally security should require frequent enough honest blocks
so that the block hash is not predictable too long in advance.

2 Technical Overview

In this section, we will discuss the main ideas underlying the different constructions in this work.

2.1 Randomness Beacons from Time-Lock Puzzles

Recall that time-lock puzzles are a primitive that allows for hiding a message for a limited amount
of time. It is always possible to solve a given puzzle and retrieve the secret message, but doing so
requires performing a non-parallelizable, high-depth computation.

Unbiased sampling using time-lock puzzles. We build our randomness beacon in the blockchain
setting and we make the following assumption: the honest parties publish sufficiently often on the
blockchain that there exists at least one honest block in every subsequence of T (or T (λ) for security
parameter λ) consecutive blocks. A similar assumption is required for the randomness beacon of
[BBBF18].

Our idea is to publish a time-lock puzzle hiding a random λ-bit message in each block. Then, at
each step in time, we obtain a fresh beacon output by querying the concatenation of the solutions
of the last T published time-lock puzzles to a random oracle. We set the parameters of the puzzles
so that no PPT adversary is able to solve them before T − 1 new blocks are published on the
blockchain. In this way, we ensure that the adversary cannot bias the outputs of the beacon. Even
if the adversary publishes T − 1 consecutive malicious blocks after the publication of an honest
block, it will have no idea of how its choices affect the beacon outputs. To get a better intuition,
imagine an adversary that after seeing an honest block, regenerates T − 1 random blocks in its
head many times, hoping to find a combination that sets the first bit of the corresponding beacon
output to 0. With high probability, the adversary will find at least one of these combinations, but
it will not have time to recognise it, since that would require solving the puzzle in the last honest
block. By the time that the adversary solves that honest puzzle, T-1 new blocks will already be
posted, so it cannot make any decisions based on the solution. All outputs depending on this puzzle
will already be fixed, and future outputs will depend on new honest puzzles. To summarise, for
the adversary to bias the beacon output, it must generate a block based on the result of a long
computation, so long that it is impossible to complete in time to generate the block.

Fast verification. Currently, retrieving any beacon output requires each party to solve T time-lock
puzzles and while this cost can be amortised to one puzzle per output, it remains a high-depth
computation.

Suppose that a party solved all the puzzles necessary to compute a beacon output, how can it
quickly convince everybody else of the validity of the result it obtained? In particular, how can it

succeed in this without requiring anybody else to solve any puzzle?
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A possible solution to this problem is to rely on SNARKs, but there is a simpler solution. We
augment each block with a commitment to the value that was originally hidden in the time-lock
puzzle. We hide the opening information of this commitment inside the time-lock puzzle (along with
the secret bit string). Finally, we ensure that commitment and puzzle are consistent by relying on
a (simulation-extractable) NIZK.

With these changes, whenever we solve a time-lock puzzle, we obtain an opening of the com-
mitment. In order to quickly convince the other participant of the validity of a beacon output, it
is sufficient to broadcast the openings hidden in the relative puzzles. At that point, verifying the
output is only a matter of checking T NIZKs and T commitment openings.

A more efficient construction based on homomorphic time-lock puzzles. Although the amortised
cost of our randomness beacon is one time-lock puzzle resolution per beacon output, obtaining a
single beacon output requires solving T puzzles. We show that, by relying on linearly homomorphic
time-lock puzzle, the non-amortised cost can be lowered to that of a single puzzle resolution.

A linearly homomorphic time-lock puzzle [MT19] consists of a time-lock puzzle scheme where
the hidden messages belong to a ring Zq. The puzzles are additively homomorphic in the sense that
we can quickly combine (i.e. performing only low-depth computations) two puzzles hiding messages
x1 and x2 into a third puzzle hiding x1+x2. Malavolta and Thyagarajan [MT19] show how to build
homomorphic time-lock puzzle over ZN , where N is an RSA modulus that needs to be generated
via a trusted setup. By lifting the techniques of Malavolta and Thyagarajan to class groups, we
obtain homomorphic time-lock puzzles over Zq for any prime q. These puzzles do not require a
trusted setup.

We modify our randomness beacon by using a linearly homomorphic time-lock puzzle. In par-
ticular, the secrets will now belong to the ring Zq. Instead of generating the beacon outputs by
querying a random oracle with the concatenation of the puzzle solutions, we will query their sum
(ignoring any duplicates among the T considered puzzles). In order to obtain any beacon, it is
therefore sufficient to combine T puzzles and solve the resulting object. In other words, we need to
solve a single puzzle.

In order to allow the party solving the puzzle combination quickly to convince other participants
of the result, we rely on a commitment scheme that is additively homomorphic over Zq for both
secrets and openings. In other words, it is possible to combine two commitments with openings
(s1, v1) and (s2, v2) in Zq × Zq (where s1 and s2 are the secrets), into a third commitment with
opening (s1 + s2, v1 + v2). An example of such commitment schemes are Pedersen commitments
over multiplicative groups of order q.

To summarise, in order to obtain a beacon output, it is sufficient for one party to solve a single
time-lock puzzle, obtained by combining T puzzles published on the chain. In this way, the party will
obtain the sum of the openings of the corresponding T commitments. With such information, the
party can quickly convince all other participants of the validity of its computations. In particular,
the verification just requires checking T NIZKs and the opening of the combination of the T
commitment published on the chain.

Decreasing the delay. How much time goes by between learning a beacon output and the publication
of the last block upon which it depends? We call this quantity the delay of the beacon. Currently,
it is the time necessary to solve a time-lock puzzle. We recall that the parameters of the puzzles
are set so that their resolution takes long enough that at least T − 1 new blocks are published in
the meantime.
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Can we make the delay smaller without sensibly decreasing the efficiency of the construction?

Yes we can. Our idea is to modify our original scheme so that instead of having a single puzzle
per block, we have T puzzles of decreasing complexity hiding T independent messages. In particular,
the first puzzle preserves the privacy of its message long enough to guarantee that the next T − 1
blocks on the chain will be computationally independent of its secret. The second puzzle will have
similar guarantees but only for the next T − 2 blocks, and so on. In order to obtain the beacon
output derived from a subsequence of T consecutive blocks B1, . . . , BT , where B1 is the oldest
block and BT the youngest, we take the element in the first puzzle in B1, we add the element in
the second puzzle of B2, and so on, until we add the element in the T -th puzzle of BT . We query
the result to the random oracle.

With these modifications, the delay of our randomness beacon depends only on the security-gap
of the time-lock puzzle scheme we adopt. Let t(τ) be the time required to solve a time-lock puzzle
guaranteeing security against adversaries of depth τ , we define the security gap as t(τ) − τ . In
particular, if the gap was close to 0, the delay of the randomness beacon would also be close to 0.
As soon as any block is published, we can immediately start solving all its puzzles. By doing so,
we will finish solving all puzzles upon which a beacon output rely almost simultaneously, not long
after the last of these puzzles is published.

Observe that in order to preserve the quick verifiability of the outputs, each block will now
include T homomorphic commitments, one for each value hidden in the puzzles.

Batched homomorphic time-lock puzzles. It would seem that with the changes we just introduced,
yes, we managed to reduce the delay, but at the same time, we again increased the amount of
necessary computations. It would seem that each beacon output requires the resolution of T puzzles.
We show that if we rely on particular type of homomorphic time-lock puzzles, which we called
batched homomorphic time-lock puzzles, this issue can be avoided. The computations necessary for
obtaining each beacon output are essentially as expensive as the resolution of the most complex
puzzle. We explain how this is possible by presenting how to construct the primitive we need.

Everything starts once again from the construction of Malavolta and Thyagarajan. They con-
struct their homomorphic time-lock puzzles over a group G that can be decomposed as the direct
product of F and H, where F is cyclic, generated by an element f of known order q and discrete
logarithms can be efficiently computed over it. On the other hand, the order of H is unknown.
In [MT19], the group G corresponds to the Paillier group, however, similarly to [ADOS22], we
observe that also class groups satisfy all the desired properties. In order to generate a puzzle hid-
ing a message m ∈ Zq, we take an element g ∈ G, we sample a random integer r and we output

(x, y) := (gr, fm ·gr·2t), where t is a parameter of the puzzle, describing its complexity. It is possible
to retrievem from (x, y) in depth O(t), by computing the discrete logarithm of y ·x−2t . However, as-
suming that the exponentiation over G is “inherently sequential”, we can hope for (x, y) to preserve
the privacy of m against low-depth adversaries.

Now, suppose that we have T time-lock puzzles (x1, y1), . . . , (xT , yT ) with decreasing complexity
parameters t1 ≥ t2 ≥ · · · ≥ tT , hiding messages m1, . . . ,mT . In order to retrieve m1 + · · · +mT ,
we need to compute the discrete logarithm of (y1 · · · yT ) · (x−2t1

1 · · ·x−2tT
T ). Our main observation

is that x2
t1

1 · · ·x2
tT

T can be computed in depth O(t1): we start by deriving a1 := x2
t1−t2

1 in depth
O(t1 − t2). Next, when we obtain (x2, y2) (i.e. when it gets published on the chain), we compute
a2 := (a1 · x2)2

t2−t3 in depth O(t2 − t3). We continue in this way until we obtain (xT , yT ). At that
point, we derive x2

t1

1 · · ·x2
tT

T by calculating (aT−1 · xT )2
tT in depth O(tT ).
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2.2 Delay Functions from Weaker Assumptions

Delay functions guarantee that evaluation on random inputs is slow, i.e. their computation is
highly non-parallelizable, it can only be performed by high-depth circuits. We define their security
by asking that the output of their evaluation on random inputs should be unpredictable to any
low-depth adversary. Delay functions can be quickly compiled into verifiable delay functions by
relying on an appropriate succinct proof system.4

A delay function based on garbled circuits. We show how to build delay functions from minimal
assumptions: the existence of one-way functions and the existence of a language L ∈ P with a
decider D of depth d′ but no decider of depth d < d′. Our delay function is described by an
unstructured bit string, so it can, for instance, be generated by a random oracle. Its inputs are
unstructured strings as well. In order to evaluate the delay function, we regard the random string
in its description as the point-and-permute garbling of a universal circuit outputting a single bit
[Yao86, Rog91, BHR12]. We regard the input of the delay function as the list of input labels for
such garbled circuit. The output will consist of the output label obtained by evaluating the “garbled
circuit” on the given “input labels”. We stress that this is not a real garbled circuit evaluation,
because in reality we are just dealing with random strings. The crucial reason why this operation
still succeeds is that, in point-and-permute garbling, the encrypted circuit is indistinguishable from
a random scheme even if we provide the encoding of an input (in order for this property to hold,
we need to keep the output labels secret). We call this property evaluation-obliviousness.

Why is this secure? We observe that any low-depth adversary with the ability of predicting the
output of this delay function can be converted in a low-depth decider for the language L. Indeed,
the adversary would still be able to predict the output of the delay function even if we substituted
the random strings describing the function and its input with an actual garbling of the universal
circuit and the input labels corresponding to the pair (D,x) where x is the candidate member of
L. In this new setting, the delay function evaluation would return the output label corresponding
to 1 if and only if x ∈ L.

We use this to obtain a low-depth decider for L that relies on auxiliary randomness5, namely a
garbling of the universal circuit and the relative encoding and decoding information. Upon receiving
a candidate language member x, the decider provides the low-depth adversary with the garbled
circuit and the encoding of (D,x). Then, it outputs the decoding of the string returned by the
adversary. If the decoding procedure fails, the decider outputs a random bit.

This randomised decider correctly classifies any input x with probability that is noticeably
away from 1/2. We decrease the error probability to negligible by outputting the most common
outcome among multiple parallel executions of the randomised decider. Finally, we derandomise
the algorithm by relying on an averaging argument. Notice that the depth of the resulting decider
is larger than the adversary’s depth only by a O(log λ) amount (due to the depth of the encoding
and decoding procedures in garbled circuits and the computation of the most common outcome of

4 Doing this requires a little bit of care actually. Naively one would like to simply construct a VDF by using a proof
system for the statement “y is the output of delay function f on input x.”, but this does not necessarily work.
The size of description of the delay function, which is an input to the VDF verifier, may be proportional to the
required evaluation depth, thereby making the verifier not succinct. To get around this problem, however, one can
simply add the hash h of the function’s description and modify the statement to “y is the output of some delay
function f on input x and h = hash(f)”.

5 The decider receive the auxiliary randomness together with the input.
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the parallel executions of the randomised decider). Since L has no decider of depth d, our delay
function guarantees security against adversaries of depth d− ω(log λ).

Why not to directly garble the decider D? In principle, our construction would have been secure
even if we regarded the random string describing the delay function as the garbling of a circuit
topologically equivalent to D (two circuits are topologically equivalent if their underlying directed
graphs coincide). So, why did we instead rely on a universal circuit?

The reason is that, in this way, our construction is secure under a weaker assumption, namely
the mere existence of a language L having a decider that fits into the considered universal circuit
U , but having no decider of depth d. On the other hand, if we regarded the random string in the
delay function description as the garbling of a circuit of any other topology, the construction would
have been secure only if there exists a language having a decider of the given topology, but having
no decider of depth d. Notice that if a circuit C fits into the universal circuit U , then also any other
circuit topologically equivalent to C fits into U . In other words, by relying on universal circuits,
we are considering a broader class of languages, increasing the chances that one of them cannot be
decided in depth d.

Finally, we recall that Valiant showed how to build a universal circuit of size O(s · log s) and
depth O(s) accepting as input any circuits of size s [Val76]. If we rely on such construction, our
delay function can be evaluated in depth O(s).

2.3 Delay Encryption

Delay encryption [BD21] allows for quickly, i.e. via a low-depth computation, encrypting a message
under a random public label, guaranteeing its privacy for a limited amount of time. Concretely,
each label id is associated with a secret key that allows for quick decryption of any ciphertext
produced under id. Deriving the secret key associated with id can be done in polynomial time,
but requires a high-depth computation.

Let us start by observing that building delay encryption from obfuscation is trivial. The public
parameters would consist in an obfuscated program that, on input a label id, outputs a pseudo-
random public key pkid and a time-lock puzzle hiding the corresponding secret key. In order to
encrypt a message m under the label id, it is sufficient to compute Enc(pkid,m). Performing the
decryption would require the resolution of the time-lock puzzle containing the secret key. For this
reason, the focus of our work lies on building delay encryption outside of obfustopia.

Programmable delay functions. We present two blueprints for building delay encryption. The first
is based on witness encryption and the second one on attribute-based encryption. Independently of
the path we take, we rely on delay functions satisfying a particular property we call programmability.

A programmable delay function is a function for which we can program its evaluation on a
random input. Specifically, given any value y, we can generate the parameters of the function along
with a random-looking input x, so that x is mapped to y. We require that the programmed function
looks the same as a normal function. Additonally, we require that indistinguishability holds against
low-depth adversaries, even if we leak x. In particular, this means that the depth of the adversary
should be too low to evaluate the function on x.

We show that the delay functions we built using garbled circuits are programmable. Given a
value y ∈ {0, 1}λ, we generate the description of the function by garbling the universal circuit U
using y as the output label associated with the outcome 1. The input x that maps to y will be the
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encoding of any string v such that U(v) = 1. Notice that evaluating the garbling on x, still requires
a high-depth computation.

Delay functions from witness encryption. Our idea is fairly simple. The public parameters of our
construction will consist of the description of a programmable delay function. In order to encrypt a
message m under a label id, we encrypt it using witness encryption. The corresponding statement
claims that the evaluation of the delay function on id is different from 0. Given that the outputs
of the delay function are unpredictable, the claim will be true with overwhelming probability.
Importantly, a low-depth adversary will not be able to notice if we provide it with a random looking
label id on which the delay function was programmed to output 0. In such setting, plaintext privacy
is ensured by the security of witness encryption.

As for efficiency, we would like that encryption and decryption (assuming the knowledge of
a witness) are low-depth operations. Luckily, in the witness encryption construction from evasive
LWE of Vaikuntanathan, Wee and Wichs [VWW22], both the operations lie in NC1. On the other
hand, however, the ciphertext size scales linearly in the depth of the delay function.

Delay functions from attribute-based encryption. We follow the same blueprint as before. The public
parameters of our construction will consist of the description of a programmable delay function and
an ABE secret key sk, specifically, the one corresponding to the predicate

the evaluation of the delay function on the attribute is different from 0.

Therefore, in order to generate a ciphertext under a random label id, we just encrypt the message
using id as an attribute.

Correctness is guaranteed once again by the unpredictability of the delay function. Most likely
its output will be different from 0, so sk allows us to decrypt. Security follows instead from the fact
that a low-degree adversary cannot detect whether we provide it with a label id on which the delay
function was programmed to output 0. In such case, privacy is ensured by the security of ABE.

What is, however, the secret key associated with id that allows for quick decryption? In order
to answer this question, we require an additional property from the ABE scheme. We ask that given
sk, the label id and the master public key of the scheme (but no information about the ciphertext),
we can derive a label-specific key skid that allows for quick decryption. We show that the LWE-
based ABE scheme of Boneh et al. [BGG+14] satisfies this property. Encryption and decryption
(once given skid) lie in NC1. Unfortunately, however, their scheme does not satisfy all the efficiency
requirements we impose upon the needed ABE. Their ciphertext scales linearly with the depth
of the delay function. A recent work by Hsieh, Lin, and Luo [HLL23] shows how to construct an
ABE scheme with a ciphertext size that does not grow with the depth of f , but to the best of our
knowledge their construction does not allow for the type of quick decryption we need. We leave
constructing a sufficiently succinct ABE with our quick decryption property as an exciting open
problem.

3 Preliminaries

Throughout this paper we will focus on algorithms and adversaries that are represented as circuits.
This allows us to make precise statements about the depth and parallelism of any given computation.
A natural question to ask is whether our results are less general than they could be, as we will be
only considering adversaries that are circuits and not, for instance, Turing machines. We note that
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this is not the case, since any T -step Turing machine can be simulated by a O(T · lg T ) circuit, as
was shown by Pippenger and Fischer [PF79].

Definition 1 (Circuit Classes). A circuit class is a set C of sequences (Cλ)λ∈N where Cλ is a
circuit for every λ ∈ N.

Let (Cλ)λ∈N be a sequence of sets of circuits. The product circuit class induced by (Cλ)λ∈N is the
circuit class of all sequences (Cλ)λ∈N where Cλ ∈ Cλ for every λ ∈ N.

Definition 2 (Nicely Closed Circuit Class). We say that a circuit class C is nicely closed if
the following properties are satisfied:

– (Constant Sequentiality.) For every (Cλ)λ∈N, (C
′
λ)λ∈N ∈ C such that the input length of C ′

λ

and the output length of Cλ coincide for every λ ∈ N, the sequence (Cλ ⋄C ′
λ)λ∈N, where Cλ ⋄C ′

λ

denotes the sequential composition of Cλ and C ′
λ (i.e. we feed the outputs of Cλ into C ′

λ), still
belongs to C.

– (Polynomial Parallelisation.) For every (Cλ)λ∈N ∈ C and polynomial function T (λ), the

sequence (C
⊗T (λ)
λ )λ∈N, where C

⊗T (λ)
λ denotes the parallel composition of T (λ) copies of Cλ, still

belongs to C.
– (Input Fixing). For every (Cλ)λ∈N ∈ C, sets (Bλ)λ∈N and functions (fλ : Bλ → {0, 1})λ∈N

where Bλ is a subset of the input wires of Cλ, the sequence (Cλ[Bλ, fλ])λ∈N, where Cλ[Bλ, fλ]
denotes the circuit obtained by assigning the value fλ(w) to every input wire w ∈ Bλ of Cλ and
simplifying the result (i.e, we eliminate the gates where all inputs have been fixed), still belongs
to C.

– (Asymptoticity). For any sequences (Cλ)λ∈N and (C ′
λ)λ∈N such that there exists a λ ∈ N such

that Cλ = C ′
λ for every λ ≥ λ, if (Cλ)λ∈N ∈ C, then (C ′

λ)λ∈N ∈ C.

Definition 3. Let f(λ) be a function of the security parameter. We define the circuit class Cf as
follows

Cf := {(Cλ)λ∈N | ∃c ∈ N such that depth(Cλ) ≤ c · f(λ) ∀λ ∈ N} .
Similarly, we define the class Cf as follows

Cf := {(Cλ)λ∈N | depth(Cλ) ≤ f(λ) ∀λ ∈ N} .

Lemma 1. Let f(λ) be a function of the security parameter. Then, the circuit class Cf is nicely
closed.

Observe that Cf is a product class but it is not nicely closed.

Definition 4 (C-Solvable Language). Let C be a circuit class. We use LC to denote the set of
all languages that can be decided by an element in C, i.e. all languages L =

⋃
λ∈N Lλ for which there

exist a function ℓ : N→ N and (Cλ)λ∈N ∈ C such that

– For every λ ∈ N and x ∈ Lλ, we have |x| = ℓ(λ)
– For every λ ∈ N and x ∈ {0, 1}ℓ(λ), we have x ∈ L if and only if Cλ(x) = 1

In such case, we say that (Cλ)λ∈N is a decider for L.

Definition 5 (Infinitely Often C-Solvable Language). Let C be a circuit class. We use L̃C to
denote the set of all languages L =

⋃
λ∈N Lλ for which there exist a function ℓ : N → N, a subset

S ⊆ N of infinite cardinality and (Cλ)λ∈N ∈ C such that

– For every λ ∈ N and x ∈ Lλ, we have |x| = ℓ(λ)
– For every λ ∈ S and x ∈ {0, 1}ℓ(λ), we have x ∈ L if and only if Cλ(x) = 1
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3.1 Time Lock Puzzles

We now recall the definition of time-lock puzzles, a primitive introduced for the first time in 1996
by Rivest, Shamir and Wagner [RSW96]. A time-lock puzzle consists of an object hiding a message
m. Although the message can be retrieved in polynomial time, the operation is slow: it can only be
computed by high-depth circuits.

We start by formalising the syntax and the efficiency notions. Notice that in order for a con-
struction to be interesting, we would like the generation of the puzzle to be quick (i.e. low-depth).

Definition 6 (Time-lock puzzle). A time lock puzzle scheme with domain X = (Xλ)λ∈N consists
of a triple of algorithms (Setup,Gen,Solve) with the following syntax:

Setup(1λ, 1τ ): The algorithm takes as input the security parameter and a time parameter 1τ . The
output consists of public parameters pp.

Gen(1λ, pp,m): The algorithm takes as input the security parameter 1λ, public parameters pp and
a message m ∈ Xλ. The output is a puzzle z.

Solve(pp, z): The algorithm is deterministic and takes as input the public parameters pp and a
puzzle z. The output is a message m.

Definition 7 (Efficiency of time-lock puzzles). Let C0, C1 ⊆ poly(λ) be circuit classes. We say
that a time-lock puzzle scheme (Setup,Gen,Solve) is (C0, C1)-efficient if Gen ∈ C0, Solve ∈ C1 and
Setup ∈ poly(λ).

Next, we recall correctness: the property states that if we solve a puzzle hiding a message m,
we indeed retrieve m.

Definition 8 (Correctness of time-lock puzzles). A time-lock puzzle scheme (Setup,Gen,Solve)
with domain X = (Xλ)λ∈N is correct if, for every λ, τ ∈ N, message m ∈ Xλ and randomness
r ∈ {0, 1}∗, it holds that

Pr
[
pp←$ Setup(1λ, 1τ ) z ←$ Gen(1λ, pp,m; r) : Solve(pp, z) = m

]
= 1.

Finally, we formalise security: a time-lock puzzle scheme is secure against the sequence of circuit
classes (Cτ )τ∈N, if the privacy of the message hidden in a puzzle generated with time parameter τ
is preserved against all adversaries in Cτ . This is formalised by means of a IND-CPA-like security
game.

Definition 9 (Security of time-lock puzzles). Let Cτ = (Cτ,λ)λ∈N, where τ = τ(λ) ∈ N, be a
product circuit class. Let C be the sequence (Cτ )τ∈N. We say that an adversary A is (TLP, τ, C)-
respecting if, for every λ ∈ N, it holds that

Pr

[
pp←$ TLP.Setup(1λ, 1τ(λ))

(m0,m1,A′)←$A(1λ, pp)
: A′ ∈ Cτ(λ),λ

]
= 1.

Let τ(λ) be a polynomial function of the security parameter. A time-lock puzzle scheme TLP =
(Setup,Gen.Solve) is (C, τ)-secure if, for every polynomial function τ = Ω(τ(λ)) and (TLP, τ, C)-
respecting adversary A ∈ poly(λ), it holds that

AdvTLP-SEC,τTLP (A) :=
∣∣∣∣Pr[ExpTLP-SEC,τA,TLP (1λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

where experiment ExpTLP-SEC,τA,TLP is specified in Figure 1.
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ExpTLP-SEC,τA,TLP (1λ)

1 : pp←$ TLP.Setup(1λ, 1τ(λ))

2 : (m0,m1,A′)←$A(1λ, pp)
3 : b←$ {0, 1}

4 : z ←$ TLP.Gen(1λ, pp,mb)

5 : b′ ←$A′(z)

6 : return b = b′

Fig. 1. Time-lock puzzle security game TLP-SEC.

Linearly homomorphic time-lock puzzles. In [MT19], Malavolta and Thyaragajan showed how to
construct linearly homomorphic time-lock puzzles schemes: given a linear function f : ZM

q → Zq, it
is possible to quickly combine M time-lock puzzles hiding messages x1, . . . , xM , into a single time-
lock puzzle hiding f(x1, . . . , xM ). In other words, in order to obtain f(x1, . . . , xM ) it is sufficient
to solve a single puzzle instead of M .

Definition 10 (Linearly homomorphic time-lock puzzle). Let C be a circuit class. A time-
lock puzzle (Setup,Gen,Solve) is C-efficient Zq-linearly homomorphic if there exists a PPT algorithm
Eval ∈ C such that, for every λ, τ ∈ N, public parameters pp in the domain of Setup(1λ, 1τ ), linear
function f : ZM

q → Zq, elements x1, . . . , xM ∈ Zq and random strings r1, . . . , rM ∈ {0, 1}∗, there
exists a string r ∈ {0, 1}∗ such that

Eval(pp, f, z1, . . . , zM ) = Gen(1λ, pp, f(x1, . . . , xM ); r)

where, for every i ∈ [M ], we define zi as the output of Gen(1λ, pp, xi; ri).

Notice that since we are relying on a perfectly correct time-lock puzzle, by solving z :=
Eval(pp, f, z1, . . . , zM ), we obtain f(x1, . . . , xM ) with probability 1. Observe also that if we de-
fined the homomorphic properties of time-lock puzzles by just requiring this property, i.e. that the
resolution of the output of Eval returns f(x1, . . . , xM ), we would have obtained a weaker defini-
tion: there would be no guarantee that the output of the evaluation can be the input for another
evaluation!

3.2 Delay Encryption

Next, we recall the definition of delay encryption, formalised for the first time by Burdges and De
Feo [BD21]. In their work, they indirectly define delay encryption by defining an appropriate key
encapsulation mechanism. In our work, we prefer directly focusing on delay encryption as is own
primitive.

Let us start by defining the syntax and efficiency.

Definition 11. A delay encryption scheme for message space M := (Mλ)λ∈N and identity space
ID := (IDλ)λ∈N is a tuple of algorithms E = (Setup,Enc,Dec,Ext) defined as follows:

pp←$ Setup(1λ): The setup algorithm takes security parameter λ as input and returns public pa-
rameters pp.
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idk← Ext(pp, id): The extraction algorithm takes public parameters pp and an identity id ∈ IDλ

as input and returns an identity decryption key idk.
c←$ Enc(pp, id,m): The encryption algorithm takes public parameters pp, an identity id ∈ IDλ,

and a message m ∈Mλ as input and returns a ciphertext c.
m← Dec(pp, idk, c): The decryption algorithm takes public parameters pp, an identity decryption

key idk and a ciphertext c as input and returns a message m.

Definition 12 (Efficiency). Let λ ∈ N. We say a delay encryption scheme E = (Setup,Enc,Dec,Ext)
is C-efficient, if Enc,Dec ∈ C and Setup,Ext ∈ poly(λ).

Correctness states that if we decrypt a ciphertext generated under a label id using the identity
key idk produced by the extraction algorithm Ext, we always recover the plaintext.

Definition 13 (Correctness). We say a delay encryption scheme E = (Setup,Enc,Dec,Ext) for
message spaceM := (Mλ)λ∈N and identity space ID := (IDλ)λ∈N is correct if, for every sequence
(mλ)λ∈N such that mλ ∈Mλ for every λ ∈ N, it holds that

Pr


pp←$ Setup(1λ)

id←$ IDλ

c←$ Enc(pp, id,mλ)

idk← Ext(pp, id)

: Dec(pp, idk, c) = mλ

 ≤ negl(λ).

Finally, we recall the definition of security. The latter is defined by means of a IND-CPA-like
game against a low-depth adversary. The label under which we generate the ciphertexts is sampled
at random.

Definition 14 (Security). Let λ ∈ N. We say a delay encryption scheme E = (Setup,Enc,Dec,Ext)
for message spaceM := (Mλ)λ∈N and identity space ID := (IDλ)λ∈N is D-IND-CPA secure against
adversary class C, if for all adversaries A := (A0,A1) ∈ poly(λ)× C it holds that

AdvD-IND-CPA
E (A) :=

∣∣∣∣Pr[ExpD-IND-CPA
A,E (1λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where experiment ExpD-IND-CPA
A,E is specified in Figure 2.

ExpD-IND-CPA
A,E (1λ)

1 : pp←$ Setup(1λ)

2 : (aux,m0,m1)←$A0(pp)

3 : id←$ IDλ

4 : b←$ {0, 1}
5 : c←$ Enc(pp, id,mb)

6 : b′ ←$A1(aux, id, c)

7 : return b = b′

Fig. 2. Security game D-IND-CPA.
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3.3 Witness Encryption

We recall the definition of witness encryption, introduced for the first time by Garg, Gentry, Sahai
and Waters [GGSW13]. Informally, this primitive consists of an encryption scheme where there
exist no keys: the message is hidden under a statement for a relation R and can be retrieved using
a corresponding witness. If no such witness exists, the privacy if the plaintexts is guaranteed. We
start by recalling the syntax.

Definition 15 (Witness Encryption). Let R be a relation in NP. A witness encryption scheme
for the relation R consists of a pair of PPT algorithms (Enc,Dec) with the following syntax:

Enc(1λ, x,m): The algorithm takes as input the security parameter 1λ, a statement x and a message
m. The output is a ciphertext c.

Dec(c, w): The algorithm is deterministic and takes as input a ciphertext c and a witness w. The
output is a message m.

Correctness states that if we decrypt a ciphertext under a statement x using a witness for x
(i.e. an element w such that (x,w) ∈ R), we always recover the plaintext.

Definition 16 (Correctness). Let R be a relation in NP. A witness encryption scheme (Enc,Dec)
for the relation R satisfies correctness if, for every λ ∈ N and (x,w) ∈ R and message m, it holds

Pr
[
c←$ Enc(1λ, x,m) : Dec(c, w) = m

]
= 1.

Finally, we recall the definition of security for witness encryption: a scheme is secure if the pri-
vacy of the plaintext is preserved whenever the statement x under which we perform the encryption
is false (i.e. there exist no witness w such that (x,w) ∈ R).

Definition 17 (Security). Let R be a relation in NP. We say that an adversary A := (A0,A1)
is R-consistent if A0 always outputs a pair (x,m0,m1, ψ) where x ̸∈ LR, m0 and m1 are messages,
and ψ is an internal state. A witness encryption scheme (Enc,Dec) for R is secure if, for every
R-consistent adversary A = (A0,A1) ∈ poly(λ)× poly(λ), it holds that∣∣∣∣∣∣∣Pr

(x,m0,m1, ψ)←$A0(1
λ)

b←$ {0, 1}
c←$ Enc(1λ, x,mb)

: A1(ψ, c) = b

− 1

2

∣∣∣∣∣∣∣ ≤ negl(λ).

3.4 Strongly Homomorphic Commitments

Finally, we recall the definition of strongly homomorphic, non-interactive commitment. Such a
commitment scheme allows a party to commit to some chosen value and to reveal it at some later
point in time. This is obtained by broadcasting an object, called the commitment. The object
guarantees the privacy of the chosen value. Furthermore, it bounds the committer to reveal exactly
the value it has chosen at the time the commitment was broadcast. If the committer changes its
mind, revealing another message, all bystanders will realise that the broadcast value is inconsistent
with the previously sent commitment. On the other hand, in order to convince the bystanders of
the correct value, the committer need to provide auxiliary information called opening, which was
generated in conjunction with the commitment.
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Now, in a strongly homomorphic commitment scheme both messages and openings lie in a ring
Zq and it is possible to combine two commitments c1 and c2, with openings (s1, v1) and (s2, v2),
where s1 and s2 are the hidden messages, into a commitment c3 with opening (s1 + s2, v1 + v2).

Definition 18. A strongly homomorphic commitment consists of a tuple of PPT algorithms (D, Setup,
Commit,Add,Check) having the following syntax:

D(1λ): The algorithm takes as input the security parameter. The output is a positive integer q ∈ N.
Setup(1λ, q): The algorithm takes as input the security parameter and an integer q. The output is

a CRS ω.
Commit(ω, s): The algorithm takes as input the CRS ω and a message s. The output is a commit-

ment c and an opening v.
Add(ω, c1, c2): The algorithm is deterministic and takes as input the CRS ω and two commitments

c1 and c2. The output is another commitment c3.
Check(ω, c, s, v): The algorithm is deterministic and takes as input the CRS ω, a commitment c, a

message s and an opening v. The output is a bit b.

For correctness, we require that if a commitment c hides a message s and is generates together
with an opening v, the pair (s, v) is always accepted by the verification algorithm. Furthermore, we
requite that the combination of L commitments can be opened using the sum of the L openings.

Definition 19 (Correctness). The strongly homomorphic commitment scheme is correct if the
following properties are satisfied

– For every λ ∈ N and s ∈ N, we have

Pr

q ←$ D(1λ)

ω ←$ Setup(1λ, q)

(c, v)←$ Commit(ω, s)

: Check(ω, c, s, v) = 1

 = 1.

– For every λ, L ∈ N and s1, . . . , sL ∈ N, we have

Pr



q ←$ D(1λ)

ω ←$ Setup(1λ, q)

∀i ∈ [L] : (ci, vi)←$ Commit(ω, si)

s← (s1 + · · ·+ sL) mod q

v ← (v1 + · · ·+ vL) mod q

c← c1

∀i ∈ [2..L] : c← Add(ω, c, ci)

: Check(ω, c, s, v) = 1


= 1.

Finally, we recall the standard definitions of binding and hiding: if no opening is provided,
the commitment hides the message it contains. Furthermore, it is infeasible for polynomial time
adversaries to generate commitments that can be opened to different values.

Definition 20 (Binding). The strongly homomorphic commitment scheme is computationally
binding if, for every PPT adversary A

Pr

q ←$ D(1λ)

ω ←$ Setup(1λ, q)

(c, s1, v1, s2, v2)←$A(1λ, ω, q)
:

Check(ω, c, s1, v1) = 1

Check(ω, c, s2, v2) = 1

s1 ̸= s2

 ≤ negl(λ).
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Definition 21 (Hiding). The strongly homomorphic commitment scheme is computationally hid-
ing if, for every adversary A = (A0,A1) ∈ poly(λ)× poly(λ)∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



b←$ {0, 1}
q ←$ D(1λ)

ω ←$ Setup(1λ, q)

(s0, s1, ψ)←$A0(1
λ, ω, q)

(c, v)←$ Commit(ω, sb)

: A1(ψ, c) = b


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

3.5 Simulation-Extractable NIZKs

In this subsection, we recall the definition of simulation-extractable NIZKs [GO07]. A NIZK consists
of a primitive that allows proving knowledge of a witness w for a statement x in an NP-language
L without revealing any additional information. Specifically, let R be a relation for the language L
and imagine that a prover holds a pair (x,w) ∈ R. The scheme allows generating a proof π with
which the prover can convince any external verifier that it knows a witness for x. The proofs reveal
no information about the witnesses, not even if we provide many of them for different statements.
Furthermore, the prover cannot generate proofs for any statement x without knowing at least one
witness: by hiding a trapdoor in the public parameters of the scheme, we can extract a witness
from the verifying proofs any malicious prover generates. In other words, if the adversary is able
to generate proofs for some statement with non-negligible probability over the randomness of the
public parameters, then, there also exists a way for that adversary to derive a witness in polynomial
time. Below, we recall the syntax of simulation-extractable NIZKs.

Definition 22 (Simulation-extractable NIZK). Let R be a relation in NP. A simulation-
extractable NIZK for R consists of a tuple of algorithms (Setup,Prove,Verify,Sim1,Sim2,Ext) with
the following syntax:

Setup(1λ): The algorithm takes as input the security parameter and outputs a CRS σ.
Prove(σ, x, w): The algorithm takes as input a CRS σ, a statement x and a corresponding witness

w. The output is a proof π.
Verify(σ, x, π): The algorithm is deterministic and takes as input a CRS σ, a statement x and a

proof π, the output is a bit b ∈ {0, 1} representing whether the proof is accepted or not.
Sim1(1

λ): The algorithms takes as input the security parameter 1λ and outputs a CRS σ and a
trapdoor ζ.

Sim2(ζ, x): The algorithm takes as input a trapdoor ζ and a statement x, the output is a proof π.
Ext(ζ, x, π): The algorithm is deterministic and takes as input a trapdoor ζ, a statement x and a

proof π. The output is a witness w or ⊥.

Next, we recall their definition of correctness. We require two properties: the first one states
that if we generate a proof using a pair (x,w) ∈ R, then such proof is always accepted. The second
property states that if we run the extraction algorithm on a statement x and a proof π, the output
is either a witness for w or ⊥.

Definition 23 (Correctness). Let R be a relation in NP. A simulation-extractable NIZK (Setup,
Prove,Verify, Sim1,Sim2,Ext) is correct if:
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– For every λ ∈ N and (x,w) ∈ R, it holds that

Pr

[
σ ←$ Setup(1λ)

π ←$ Prove(σ, x, w)
: Verify(σ, x, π) = 1

]
= 1.

– For every λ ∈ N, statement x and proof π, it holds that

Pr

[
(σ, ζ)←$ Sim1(1

λ)

w ← Ext(ζ, x, π)
:
w ̸= ⊥
(x,w) ̸∈ R

]
= 0.

Next, we recall the definition of zero-knowledge: the proofs reveal no information that cannot be
already recovered from the statements. This is formalised by means of a indistinguishability-based
game definition: in one world, the adversary is provided with a honest CRS and with unbounded
oracle access to a proving oracle (the adversary gets to choose statements and witness), in the other
world, the CRS given to the adversary hides a trapdoor. The latter is used to generate fake proofs
without needing any information about the relative witnesses.

Definition 24 (Zero-knowledge). Let R be a relation in NP. A simulation-extractable NIZK
NIZK = (Setup,Prove,Verify, Sim1, Sim2,Ext) is zero-knowledge if, for every PPT adversary A6, it
holds that

AdvZKNIZK(A) :=
∣∣∣∣Pr[ExpZKA,NIZK(1

λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where experiment ExpZKA,NIZK is specified in Figure 3.

Zero-Knowledge Security Game ExpZKA,NIZK

Initialisation: This procedure is run only once at the beginning of the game.

1. b←$ {0, 1}
2. σ0 ←$ Setup(1λ)
3. (σ1, ζ)←$ Sim1(1

λ)
4. ψ ←$A(1λ, σb)

Proof: This procedure is run repeatedly after the initialisation, until the adversary halts.

1. (x,w, ψ)←$A(ψ)
2. π0 ←$ Prove(σ0, x, w)
3. π1 ←$ Sim1(ζ, x)
4. If (x,w) ∈ R: ψ ←$A(ψ, πb)
5. Otherwise: ψ ←$A(ψ,⊥).

Output: This procedure is run only once when the adversary halts outputting a bit b′. Output b = b′.

Fig. 3. Zero-knowledge security game ZK.

Finally, we recall the definition of simulation-extractability: even if we give unbounded oracle
access to simulated proofs, no adversary is able to generate any fresh valid proof for which the
extraction of the witness fails.
6 We require that A halts after a polynomial number of executions of the procedure Proof.
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Definition 25 (Simulation-extractability). Let R be a relation in NP. A NIZK NIZK = (Setup,
Prove,Verify,Sim1,Sim2,Ext) is simulation-extractable if, for every PPT adversary A, it holds that

Pr

(σ, ζ)←$ Sim1(1
λ)

(π, x)←$ASim2(ζ,·)(1λ, σ)
:

Verify(σ, x, π) = 1

Ext(ζ, x, π) = ⊥
x ̸∈ Q

 ≤ negl(λ),

where ASim2(ζ,·) indicates that the adversary has unbounded oracle access to Sim2(ζ, ·) and Q denotes
the set of all queries issued by the adversary to such oracle.

3.6 Garbled Circuits

A garbling scheme specifies how to encrypt a circuit while, at the same time, allowing us to evaluate
it on encrypted inputs. Furthermore, the scheme guarantees privacy: no information is revealed
beyond the output. Yao informally showed how to construct the primitive at FOCS’86 during the
presentation of [Yao86]: garbling just requires the existence of one-way functions. In order to garble
a circuit C, it is sufficient to associate each wire of C with a pair of keys (often called labels), one
for the value 0 and one for the value 1. Then, we encrypt each gate using the keys associated with
its input wires: if the gate computes the function f : {0, 1}×{0, 1} → {0, 1}, the keys for the input
wires are (k0a, k

1
a) and (k0b , k

1
b ), and the keys for the output wire are (k0c , k

1
c ), we encrypt k

f(x,y)
c

under the concatenation of kxa and kyb for every (x, y) ∈ {0, 1} × {0, 1}. The four ciphertexts are
then permuted. Now, if we want to evaluate such encrypted circuit on an input x ∈ {0, 1}n, it is
sufficient to just reveal one key for each input wire of the circuit: we reveal the key associate with 0
if the corresponding bit in x is 0, we reveal the other key otherwise. Given these keys, we can start
a cascade of decryptions, retrieving one key for every internal wire of the circuit (in particular, the
key associated with the value of the wire in C(x)). In this way, we obtain the key associated with
the outputs of the circuit, which can be easily decoded, assuming that the keys of the output wires
are given as part of the garbling.

All known garbling schemes follow this blueprint. What often changes is the way in which to
point to the ciphertexts that we need to decrypt during the evaluation: each encrypted gate consists
of four ciphertexts and we are able to decrypt only one of them! Which one is the right one? In
the original construction by Yao, the encrypted keys were padded with a sufficiently large number
of zeros. The right ciphertext was the one that decrypted into a string ending with a lot of zeros.
A more efficient solution is known as the point-and-permute technique, introduced by Rogaway
[Rog91], which allows for decrypting only the correct ciphertext directly.

4 Delay Functions

In this section, we discuss delay functions: we provide security definitions and we show how to
construct them from minimal assumptions.

Defining Delay Functions. A delay function is a function whose evaluation on random inputs
is slow. This primitive was introduced for the first time in 1998 by Goldschlag and Stubblebine
[GS98]. Their work only provides an informal study of the primitive and lacks precise definitions.
In this section, we present a more rigorous description of this cryptographic object and its security
properties. We start by presenting the syntax and the efficiency of delay functions.
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Definition 26 (Delay function). A delay function with domain X := (Xλ)λ∈N and range Y :=
(Yλ)λ∈N consists of a pair of algorithms (Setup,Eval) with the following syntax:

Setup(λ): This algorithm takes as input the security parameter 1λ and output public parameters pp.
Eval(pp, x): This algorithm is deterministic and takes as input public parameters pp and an input

x ∈ Xλ. The output is a value y ∈ Yλ.

Definition 27 (Efficiency of delay functions). Let C be a circuit class. A delay function
(Setup,Eval) is C-efficient if Eval ∈ C and Setup ∈ poly(λ).

Next, we present the definition of sequentiality. A low-depth adversary is unable to predict the
evaluation of the function on a random input, even if it is allowed to perform polynomial-time
preprocessing on the public parameters.

Definition 28 (Sequentiality of delay functions). Let C be a circuit class. We say a delay
function DF = (Setup,Eval) for domain X := (Xλ)λ∈N and range Y := (Yλ)λ∈N is C-sequential if,
for all adversaries A := (A0,A1) ∈ poly(λ)× C it holds that

AdvSEQDF (A) := Pr[ExpSEQA,DF(1
λ) = 1] ≤ negl(λ),

where experiment ExpSEQA,DF was specified in Figure 4 (notice that, compared to VDFs, the syntax of
Eval is slightly different in delay functions, as no proof of evaluation is produced).

ExpSEQA,DF(1
λ)

1 : pp←$ Setup(1λ)

2 : aux←$A0(pp)

3 : x←$ Xλ

4 : (y, π)← Eval(pp, x)

5 : y′ ←$A1(aux, x)

6 : return y = y′

Fig. 4. Sequentiality security game SEQ.

Finally, we introduce a new security notion, called programmability, for delay functions that
will be satisfied by the construction described later in this section. Programmability states that it
is possible to generate the public parameters of the delay function so that there exists a random
looking input that evaluates to a programmed value. More specifically, given a value ŷ, we are able
to generate public parameters pp and an input x̂ such that: (1) pp is indistinguishable from honestly
generated delay function parameters; (2) the evaluation of the function on x̂ gives ŷ; (3) the input
x̂ looks random to every low-depth adversary (even if the latter knows pp and ŷ). Notice that this
last property can be ensured only if the delay function evaluation is sufficiently deep to prevent the
adversary from computing it.

Definition 29 (Programmability). A delay function DF = (Setup,Eval) with domain X :=
(Xλ)λ∈N and range Y := (Yλ)λ∈N is C-programmable if there exists a PPT algorithm Program
satisfying the following properties:
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(Correctness). For every sequence (ŷλ)λ∈N such that yλ ∈ Yλ for every λ ∈ N,

Pr
[
(pp, x)←$ Program(1λ, ŷλ) : Eval(pp, x) ̸= ŷλ

]
≤ negl(λ).

(C-Indistinguishability). For all adversaries A := (A0,A1,A2) ∈ poly(λ)× poly(λ)× C it holds
that

AdvPROG
DF (A) :=

∣∣∣∣Pr[ExpPROG
A,DF (1λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where experiment ExpPROG
A,DF is specified in Figure 5.

ExpPROG
A,DF (1

λ)

1 : b←$ {0, 1}

2 : (ŷ, aux0)←$A0(1
λ)

3 : pp0 ←$ Setup(1λ)

4 : (pp1, x1)←$ Program(1λ, ŷ)

5 : x0 ←$ Xλ

6 : aux1 ←$A1(ppb, aux0)

7 : b′ ←$A2(aux1, xb)

8 : return b = b′

Fig. 5. Programmability indistinguishability game PROG.

Although it seems counterintuitive, programmability does not seem to imply sequentiality. We
can for instance imagine a delay function that consisting of an obfuscated program that on input
any x ∈ {0, 1}λ, produces an pseudorandom time-lock puzzle hiding 0. The message hidden in the
puzzle is the output corresponding to the input x. It is not hard to see that the construction does
not satisfy sequentiality: the output are highly predictable independently of the adversarial class.
However, thanks to indistinguishability obfuscation [BGI+01, JLS21] and the trick by Boyle, Chung
and Pass [BCP14], it is easy to modify the program so that, on input a value x̂ chosen at random,
it outputs a puzzle hiding the programmed value ŷ.

4.1 Building Delay Functions

We are now ready to show how to build programmable delay functions. We construct them based
on one-way functions and minimal delay assumptions. Our idea is to rely on point-and-permute
garbled circuits [Rog91]. The public parameters of the delay function will consist of a random string
that we regard as the garbling of a circuit of a particular topology. The delay function’s random
inputs are regarded as input labels for the garbled circuit. The evaluation of the function consist of
the output labels obtained by evaluating the “garbled circuit” (encoded in the public parameters)
on the “input labels”.

Now suppose that there exist two circuit classes C′ ⊆ C and a language L with a decider in C
but no decider in C′. We choose the length of the random string consisting in the public parameters
to match the length of the garbling of the universal circuit U for the evaluation of circuits in C.
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In this way, it is possible for us to replace the public parameters with a garbling of U without
the adversary noticing it. Furthermore, we can substitute the random input string with the labels
corresponding to the input (D,x), where D ∈ C is the decider for the language L and x is a
candidate element in the language. Notice that in this way, the evaluation of the delay function
returns the label corresponding with the output 1 or 0 depending on whether x ∈ L or not. Since we
rely on point-and-permute, the adversary cannot tell whether the input corresponds to real input
labels or purely random strings.

At this point, it is easy to imagine that if an adversary A ∈ C′ manages to predict the delay
function output with non-negligible probability, we can leverage it to construct a decider for L in
the circuit class C′. We do this by running multiple concurrent tests with A and using an averaging
argument (we need to assume that C′ is closed under polynomially-many parallel compositions).
Having reached a contradiction, we conclude that the delay function is C′-sequential. As for pro-
grammability, we notice that many garbled circuit schemes (including point-and-permute) allow us
to program the output labels. Furthermore, the knowledge of these labels gives no advantage in
speeding up the evaluation of the garbled circuit. This is sufficient to ensure the programmability
of the delay function.

Evaluation-Oblivious and Evaluation-Programmable Garbled Circuits. Before formalis-
ing our intuition, we need to define garbled circuit schemes and all the properties we require from
them. As already mentioned in the above paragraph, the classical point-and-permute construction
from one-way functions [Rog91] satisfies all the necessary conditions to build programmable and
sequential delay functions.

We start by recapping the syntax, correctness and authenticity of garbled circuits following the
blueprint of Bellare, Hoang and Rogaway [BHR12]. We recall that a garbling scheme consists of a
primitive describing how to encrypt a circuit so that we can still evaluate it on encrypted inputs
while preserving their privacy. Correctness states that if we evaluate the garbling of a circuit C on
the encoding of an input x, we obtain an encoding of y := C(x). Authenticity states instead that,
if we provide the garbling of a circuit C and the encoding of an input x, the only output encodings
the adversary will be able to derive are relative to y := C(x).

Definition 30 (Garbled Circuits [BHR12]). A garble circuit scheme for the circuit class
(Cλ)λ∈N consists of a tuple of PPT algorithms (Garble,Enc,Eval,Dec) with the following syntax:

(G, e, d)←$ Garble(1λ, C): The garbling algorithm takes as input the security parameter 1λ and a
circuit C ∈ Cλ. It returns a garbling G and encoding and decoding information e and d.

X ← Enc(e, x): The encoding algorithm takes as input encoding information e and a value x. The
output is an encoding of the input X.

Y ← Eval(G,X): The evaluation algorithm takes as input a garbling G and an encoding of the input
X. The output is an encoding of the output Y .

y ← Dec(d, Y ): The verification algorithm takes as input decoding information d and an encoding
of the output Y . The output is a value y or ⊥.

Definition 31 (Correctness of Garbled Circuits [BHR12]). We say that a garbled circuit
scheme for the circuit class (Cλ)λ∈N if there exists a negligible function negl(λ) such that, for every
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λ ∈ N, C ∈ Cλ and x in the input space of C,

Pr


(G, e, d)←$ Garble(1λ, C)

X ← Enc(e, x)

Y ← Eval(G,X)

y ← Dec(d, T )

: y ̸= C(x)

 ≤ negl(λ).

Definition 32 (Authenticity [BHR12]). A garbling scheme for the circuit class (Cλ)λ∈N satis-
fies authenticity if there exists a negligible function negl(λ) such that, for every PPT adversary A,
λ ∈ N, C ∈ Cλ and value x in the input space of C,

Pr

(G, e, d)←$ Garble(1λ, C)

X ← Enc(e, x)

Y ← A(1λ, G,X)

:
Dec(d, Y ) ̸= ⊥
Y ̸= Eval(G,X)

 ≤ negl(λ).

Next, we introduce the first property required to build sequential delay functions: evaluation-
obliviousness. The latter states that the garbled circuit G can be simulated without any knowledge
of the underlying circuit. Furthermore, the input labels can be simulated given just G, no other
information is required. If the simulators both outputs random strings, we say that the garbling
scheme satisfies strong evaluation obliviousness. Notice that this property implies that an adversary
cannot tell whether it is evaluating a garbled circuit on the actual input labels or on random strings.
We also highlight that the original garbling scheme of Yao [Yao86] does not satisfy evaluation
obliviousness due to the padding of zeros added to the encrypted labels (the padding indicates
which labels to use for the decryption of the next layer of gates). Point-and-permute garbling
[Rog91], on the other hand, is strongly evaluation-oblivious.

Definition 33 (Evaluation-Oblivious Garbled Circuits). We say that a garbled circuit scheme
for the circuit class (Cλ)λ∈N satisfies evaluation obliviousness if there exists PPT algorithms Sim1,
Sim2 and a negligible function negl(λ) such that, for every PPT adversary A, λ ∈ N, C ∈ Cλ and
x in the input space of C,∣∣∣∣∣Pr

[
(G, e, d)←$ Garble(1λ, C)

X ← Enc(e, x)
: A(1λ, G,X) = 1

]
− Pr

[
G←$ Sim1(1

λ)

X ←$ Sim2(G)
: A(1λ, G,X) = 1

]∣∣∣∣∣
is upper bounded by negl(λ). We say that the garbling scheme is strongly evaluation-oblivious if
Sim1 and Sim2 output uniformly random strings of bits of fixed polynomial length.

We highlight that evaluation-obliviousness is stronger than the simulation-based obliviousness
definition of [BHR12]. In their definition, the garbling and the input encodings were generated by
a single simulator, whereas, in the above definition, we rely on two simulators sharing no trapdoor.

The next garbled circuit property we define is necessary for delay function programmability; we
call it evaluation-programmability. It states that it is possible to program the encoding of one of
the outputs of the garbled circuit, namely given a pair (y, Ŷ ), we can garble a circuit C so that the
evaluation of the encrypted circuit on any input x, such that C(x) = y, returns the value Ŷ . We also
require two additional properties: we ask that the programmed garbled circuit looks like a normal
garbling of C, even if we provide the encoding of an input x such that C(x) ̸= y (if C(x) = y, the
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adversary can trivially verify if the encoding of the output y has been programmed to Ŷ by just
evaluating the encrypted circuit). Furthermore, we require that even if we program the encoding of
the output y, the garbling scheme still guarantees the privacy of the inputs: if C(x0) = C(x1) = y,
the encoding of x0 and x1 are still indistinguishable.

Definition 34 (Evaluation-programmability). Let GC := (Garble,Enc,Eval,Dec) be a garbled
circuit scheme for the circuit class (Cλ)λ∈N. For every λ ∈ N and C ∈ Cλ, we define the set

YC
λ :=

{
Eval(G,X)

∣∣∣(G, e, d) = Garble(1λ, C; r), r ∈ {0, 1}∗, e = Enc(e, x), x ∈ {0, 1}m
}

where m denotes the input size of C. We say that the garbled circuit scheme is evaluation-
programmable if there exists a PPT algorithm ProgramGarble satisfying the following properties:

(Programmability). For every λ ∈ N, C ∈ Cλ, Ŷ ∈ YC
λ , y ∈ {0, 1}∗ and x such that C(x) = y,

Pr

[
(G, e, d)←$ ProgramGarble(1λ, C, y, Ŷ )

X ← Enc(e, x)
: Eval(G,X) = Ŷ

]
= 1

(Indistinguishability). We say that an adversary A = (A0,A1) is valid if, on input 1λ, A0

outputs an internal state aux, a circuit C ∈ Cλ, an element Ŷ ∈ YC
λ and a pair (x, y) such

that x is in the input space of C and C(x) ̸= y. We require that for any valid adversary
A = (A0,A1) ∈ poly(λ)× poly(λ),

AdvEvPROG
GC (A) :=

∣∣∣∣Pr[ExpEvPROG
A,GC (1λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where experiment ExpEvPROG
A,GC is specified in Figure 6.

ExpEvPROG
A,GC (1λ)

1 : b←$ {0, 1}

2 : (aux, C, Ŷ , x, y)←$A0(1
λ)

3 : (G0, e0, d0)←$ Garble(1λ, C)

4 : (G1, e1, d1)←$ ProgramGarble(1λ, C, y, Ŷ )

5 : X0 ← Enc(e0, x)

6 : X1 ← Enc(e1, x)

7 : b′ ←$A1(aux, Gb, Xb)

8 : return b = b′

Fig. 6. Evaluation-programmability game EvPROG.

(Input privacy). We say that an adversary A = (A0,A1) is valid if, on input 1λ, A0 outputs
an internal state aux, a circuit C ∈ Cλ, an element Ŷ ∈ YC

λ and a triple (x0, x1, y) such that
C(x0) = C(x1) = y. We require that for any valid adversary A = (A0,A1) ∈ poly(λ)× poly(λ),

AdvPRIVGC (A) :=
∣∣∣∣Pr[ExpPRIVA,GC(1

λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where experiment ExpPRIVA,GC is specified in Figure 7.

25



ExpPRIVA,GC(1
λ)

1 : b←$ {0, 1}

2 : (aux, C, Ŷ , x0, x1, y)←$A0(1
λ)

3 : (G, e, d)←$ ProgramGarble(1λ, C, y, Ŷ )

4 : X0 ← Enc(e, x0)

5 : X1 ← Enc(e, x1)

6 : b′ ←$A1(aux, G,Xb)

7 : return b = b′

Fig. 7. Input privacy game PRIV.

We finally provide an efficiency definition with respect to a circuit class C. We are particularly
interested in the efficiency of the encoding and decoding procedures.

Definition 35 (Efficiency). Let C be a circuit class. We say that a garbling scheme is C-efficient
if Enc,Dec ∈ C.

The following theorem summarises the state-of-the-art on evaluation-oblivious, evaluation-
programmable garbled circuits. Thanks to the point-and-permute construction of Rogaway [Rog91],
we can build them from one-way functions.

Theorem 2 ([Yao86, Rog91]). Let (Cλ)λ∈N be a class of circuits such that for every λ ∈ N and
C0, C1 ∈ Cλ, the circuits C0 and C1 have the same underlying graph structure.

Assuming the existence of one-way functions, there exists a strongly evaluation-oblivious, evaluation-
programmable garbling scheme for (Cλ)λ∈N satisfying both correctness and authenticity. Moreover,
the scheme is NC1-efficient. The size of the garbled circuit is 4λ · s where s is the size of the garbled
circuit.

We observe that, depending on the circuit class (Cλ)λ∈N, the size of the strongly evaluation-
oblivious garbled circuit can be improved to 4λ · s′ where s′ denotes the number of non-linear
gates in the garbled circuit, thanks to the free-XOR technique of [KS08]. With this improvement,
however, the garbling scheme leaks information about the gates of the garbled circuit (in particular,
the number and the position of all linear gates).

Our Programmable and Sequential Delay Function. We can finally formalise our C′-
programmable, C′-sequential delay function based on garbled circuits and the existence of a circuit
class C ⊆ poly(λ) such that LC ̸⊆ L̃C′

. The scheme is described in Fig. 8. We state and prove the
security properties in the theorem below. Notice that we need to rely on LC ̸⊆ L̃C′

instead of the
weaker assumption LC ̸⊆ LC′

due to the usual gap between security and infinitely-often security:
the assumption LC ̸⊆ LC′

would only allow us to be a delay function that is C′-sequential only for
a strictly increasing subsequence of infinitely-many λ ∈ N.

Theorem 3. Le C ⊆ poly(λ) be the product circuit class induced by (Cλ)λ∈N. Let Uλ be the univer-
sal circuit for the circuit class Cλ. Let GC = (Garble,Enc,Eval,Dec, Sim1,Sim2) be an evaluation-
oblivious garbling scheme for a circuit class containing Uλ for every λ ∈ N. Suppose that the scheme
satisfies correctness, authenticity and C′-efficiency where C′ is nicely closed and contains NC1.
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A Delay Function based on Evaluation-Oblivious Garbled Circuits
Let Uλ be the universal circuit for the circuit class Cλ. Let GC = (Garble,Enc,Eval,Dec,Sim1, Sim2) be an
evaluation-oblivious garbling scheme for a circuit class containing Uλ for every λ ∈ N. Suppose also that Sim2

outputs a uniformly random value in the domain X

Setup(1λ): Output pp := G←$ GC.Sim1(1
λ)

Eval(pp = G,X): Output Y ← GC.Eval(G,X)

Fig. 8. A delay function based on evaluation-oblivious garbled circuits

Then, if LC ̸⊆ L̃C′
, the construction in Fig.8 is a C′-sequential delay function. Furthermore, if

GC is evaluation-programmable, the delay function is C′-programmable.

Proof. Suppose that our claim is wrong: there exists an adversary A = (A0,A1) ∈ poly(λ) × C′
such that the advantage AdvSEQDF (A) is a non-negligible function. Let ϵ(λ) be an inverse polynomial
function lower-bounding this advantage for infinitely many λ ∈ N. Let S be the subset of all such
values of λ.

We consider a language L =
⋃

λ∈N Lλ ∈ LC \ L̃C
′
. Let (Dλ)λ∈N ∈ C be a decider for such

language. We construct a sequence of circuits (Rλ)λ∈N as follows:

1. Rλ will receive a challenge x as input along with advice (e, d, aux).

2. Rλ will compute X ← GC.Enc(e, (Dλ, x)) and run Y ←$A1(aux, X).

3. Rλ will output GC.Dec(d, Y ) if the latter is different from ⊥, otherwise, it output a random bit.

We observe that (Rλ)λ∈N ∈ C′, given that such class is nicely closed.

Claim 4. There exists a negligible function negl(λ) such that, for every λ ∈ S,

Pr

(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

y ←$ Rλ(x, e, d, aux)

: y = Dλ(x)

 ≥ 1

2
+
ϵ(λ)

2
+ negl(λ).

Proof. We prove such claim by observing that, by the authenticity of the garbling scheme, there
exists another negligible function η1(λ) such that

Pr


(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

X ← GC.Enc(e, (Dλ, x))

Y ←$A1(aux, X)

:
GC.Dec(d, Y ) ̸= ⊥
Y ̸= GC.Eval(G,X)

 ≤ η1(λ).
Furthermore, due to the correctness of the garbling scheme, there exists a negligible function η2(λ)
such that

Pr

(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

y ←$ Rλ(x, e, d, aux)

: y = Dλ(x)


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= Pr


(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

X ← GC.Enc(e, (Dλ, x))

Y ←$A1(aux, X)

: Y = GC.Eval(G,X)



+
1

2
· Pr


(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

X ← GC.Enc(e, (Dλ, x))

Y ←$A1(aux, X)

: GC.Eval(G,X) = ⊥

+ η1(λ) + η2(λ) =

=
1

2
+

1

2
· Pr


(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

X ← GC.Enc(e, (Dλ, x))

Y ←$A1(aux, X)

: Y = GC.Eval(G,X)

+
η1(λ)

2
+ η2(λ).

Finally, by the evaluation-obliviousness of the garbling scheme, there exists a negligible function
η3(λ) such that

Pr


(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

X ← GC.Enc(e, (Dλ, x))

Y ←$A1(aux, X)

: Y = GC.Eval(G,X)



= Pr


G←$ GC.Sim1(1

λ)

aux←$A0(1
λ, G)

X ←$ GC.Sim2(G)

Y ←$A1(aux, X)

: Y = GC.Eval(G,X)

+ η3(λ).

Since GC.Sim2 samples X uniformly in X , we conclude that, for every λ ∈ S,

Pr

(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A0(1
λ, G)

y ←$ Rλ(x, e, d, aux)

: y = Dλ(x)

 =
1

2
+
ϵ(λ)

2
+
η1(λ)

2
+ η2(λ) +

η3(λ)

2

This ends the proof of the claim. ■

Now, consider the algorithm that, on input x, runs Rλ(x, e, d, aux) T times generating

(G, e, d)←$ GC.Garble(1λ, Uλ) and aux←$A0(1
λ, G)

freshly each time. Then, it outputs the most frequent result among the T executions. We observe
that, for every λ ∈ S, the number of correct outputs among the T executions is distributed according
to a binomial distribution with parameter p(λ) ≥ 1

2 + ϵ(λ)
4 . Using the Chernoff bound, we obtain

that the majority of outputs is correct with probability at least 1− e−Ω(ϵ2)·T for every λ ∈ S.
We conclude by an averaging argument: for every λ ∈ S and x, our algorithm correctly classifies

x with respect to Lλ with probability at least 1−e−Ω(ϵ2)·T over its randomness and the randomness
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of e, d, aux. Therefore, restricted to λ ∈ S, there exists a random tape for which our algorithm
correctly classifies at least a 1 − e−Ω(ϵ2)·T fraction of all values x. We say an x is bad if it is not
classified correctly by this random tape.

Let ℓ(λ) be the length of all elements in Lλ. We chose T such that T = ω(ℓ(λ) · ϵ−2) and we
observe that the number of bad x is less than 2ℓ(λ) ·e−ω(ℓ(λ)) such quantity is asymptotically strictly
smaller than 1. In other words, there exists a finite set E ⊆ N such that, for every λ ∈ S \E, there
is a random tape rλ for our algorithm that correctly classifies all instances x ∈ {0, 1}ℓ(λ). For every
λ ∈ N \ S, we set rλ to the all zero string.

We finally reach a contradiction: for every λ ∈ N, we consider the circuit obtained by fixing the
randomness of T parallel copies of Rλ and their advice (e, d, aux) according to rλ, or, when λ ∈ E,
the circuit Dλ. Such sequence of circuits constitutes an infinitely often decider for L belonging to
C′. So, L ∈ L̃C′

.

Programmability. We not show that the delay function is C′-programmable. Let x̂λ be an element of
Lλ. We consider the algorithm GC.Program that, on input 1lλ and Ŷ ∈ Yλ, computes the following
operations:

1. (G, e, d)←$ GC.ProgramGarble(1λ, Uλ, 1, Ŷ )
2. X ← GC.Enc(e, (Dλ, x̂λ))
3. Output (pp := G,X)

We observe that such algorithm satisfies the correctness of the delay function programmability
(see Def.29). Indeed, we have that Uλ(Dλ, x̂λ) = 1, therefore, by the correctness of evaluation-
programmability, we obtain that Eval(pp := G,X) = GC.Eval(G,X) = Ŷ .

Next, we focus on C′-indistinguishability. Suppose that there exists an adversary A = (A0,A1,
A2) ∈ poly(λ) × poly(λ) × C′ that wins the programmability game PROG (see Fig.5) with non
negligible advantage. Let ϵ(λ) be an inverse polynomial function lower-bounding this advantage for
infinitely many λ ∈ N. Let S be the subset of all such values of λ. We show how to build a decider
for the language L ∈ LC \ L̃C′

.
Consider any value x in the input space of Dλ. We consider the sequence of circuits (Rλ)λ∈N

performing the following operations:

1. Rλ will receive as input a challenge x and auxiliary advice (e, d, aux)
2. Rλ will compute X ← GC.Enc(e, (Dλ, x))
3. Rλ will output A2(aux, X).

Now, suppose that x ̸∈ L. We observe that∣∣∣∣∣∣∣Pr
(ŷ, aux0)←$A0(1

λ)

(G, e, d)←$ GC.ProgramGarble(1λ, Uλ, 1, ŷ)

aux←$A1(G, aux0)

: Rλ(x, e, d, aux) = 1



− Pr

(ŷ, aux0)←$A0(1
λ)

(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A1(G, aux0)

: Rλ(x, e, d, aux) = 1


∣∣∣∣∣∣∣ ≤ negl(λ).

Indeed, if that was not the case, we would contradict the second property of the evaluation
programmability of GC. Specifically, in the reduction, we would consider the adversary A′ =
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(A′
0,A′

1) against EvPROG (see Fig.6) where A′
0 runs (ŷ, aux0) ←$ A0 and outputs the tuple

(aux0, Uλ, ŷ, (Dλ, x), 1). The adversary A′
1, after receiving aux0, G and X, would instead compute

aux1 ←$A1(G, aux0) and output b′ ←$A2(aux1, X).
We observe that∣∣∣∣∣∣∣∣∣∣
Pr


(ŷ, aux0)←$A0(1

λ)

G←$ GC.Sim1(1
λ)

aux1 ←$A1(G, aux0)

X ←$ GC.Sim2(1
λ)

: A2(aux1, X) = 1



− Pr

(ŷ, aux0)←$A0(1
λ)

(G, e, d)←$ GC.Garble(1λ, Uλ)

aux←$A1(G, aux0)

: Rλ(x, e, d, aux) = 1


∣∣∣∣∣∣∣ ≤ negl(λ).

Indeed, if that was not the case, we would contradict the evaluation obliviousness of GC. Specifically,
in the reduction, we would consider the adversary A′ that runs (ŷ, aux0) ←$ A0 and computes
aux1 ←$A1(G, aux0) and output b′ ←$A2(aux1, X).

Similarly to before, we now consider the case in which x ∈ L. We observe that∣∣∣∣∣∣∣Pr
(ŷ, aux0)←$A0(1

λ)

(G, e, d)←$ GC.ProgramGarble(1λ, Uλ, 1, ŷ)

aux←$A1(G, aux0)

: Rλ(x, e, d, aux) = 1



− Pr


(ŷ, aux0)←$A0(1

λ)

(G, e, d)←$ GC.ProgramGarble(1λ, Uλ, 1, ŷ)

aux←$A1(G, aux0)

X ← GC.Enc(e, (Dλ, x̂λ))

: A2(aux, X) = 1


∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Indeed, if that was not the case, we would contradict the third property of the evaluation pro-
grammability of GC. Specifically, in the reduction, we would consider the adversary A′ = (A′

0,A′
1)

against PRIV (see Fig.7) where A′
0 runs (ŷ, aux0) ←$ A0 and outputs the tuple (aux0, Uλ, ŷ,

(Dλ, x̂λ), (Dλ, x), 1). The adversary A′
1, after receiving aux0, G and X, would instead compute

aux1 ←$A1(G, aux0) and output b′ ←$A2(aux1, X).
Now, let ℓ(λ) be the length of all elements in Lλ. Let T := λ · ϵ(λ)−2 · ℓ(λ) and define

p0(λ) := Pr


(ŷ, aux0)←$A0(1

λ)

G←$ GC.Sim1(1
λ)

aux1 ←$A1(G, aux0)

X ←$ GC.Sim2(1
λ)

: A2(aux1, X) = 1



p1(λ) := Pr


(ŷ, aux0)←$A0(1

λ)

(G, e, d)←$ GC.ProgramGarble(1λ, Uλ, 1, ŷ)

aux←$A1(G, aux0)

X ← GC.Enc(e, (Dλ, x̂λ))

: A2(aux, X) = 1


30



We know that for every λ ∈ S, |p0(λ)− p1(λ)| ≥ ϵ(λ).
We consider the algorithm that, on input the candidate value x for the language L, runs

Rλ(x, e, d, aux) for T times generating

(ŷ, aux0)←$A0(1
λ), (G, e, d)←$ GC.ProgramGarble(1λ, Uλ, 1, ŷ), aux←$A1(G, aux0)

freshly each time. The algorithm outputs 0 if the average result is closer to p0 than to p1, otherwise,
it outputs 1. Notice that by the Chernoff bound, when x ∈ L, the algorithm outputs 1 with
overwhelming probability. Otherwise, the algorithm outputs 0 with overwhelming probability.

We conclude again by an averaging argument: for every λ ∈ S and x, our algorithm correctly
classifies x with respect to Lλ with probability at least 1 − e−ϵ2·T/8 over its randomness and the
randomness of e, d, aux. Therefore, restricted to λ ∈ S, there exists a random tape for which our
algorithm correctly classifies at least a 1− e−Ω(ϵ2)·T fraction of all values x. We say an x is bad if
it is not classified correctly by this random tape. We observe that the number of bad x is less than
2ℓ(λ) · e−ω(ℓ(λ)) such quantity is asymptotically strictly smaller than 1. In other words, there exists
a finite set E ⊆ N such that, for every λ ∈ S \E, there is a random tape rλ for our algorithm that
correctly classifies all instances x ∈ {0, 1}ℓ(λ). For every λ ∈ N \ S, we set rλ to the all zero string.

We finally reach a contradiction: for every λ ∈ N, we consider the circuit obtained by fixing the
randomness of T parallel copies of Rλ and their advice (e, d, aux) according to rλ, or, when λ ∈ E,
the circuit Dλ. Such sequence of circuits constitutes an infinitely often decider for L belonging to
C′. So, L ∈ L̃C′

. ⊓⊔

5 Delay Encryption

In this section, we study delay encryption outside of obfustopia. Recall that within obfustopia one
can trivially achieve delay encryption as outlined in the technical overview. We propose two ways
to build delay encryption, both involving the use of programmable delay functions. The first one is
based on witness encryption, whereas the second one is based on attribute-based encryption.

5.1 Delay Encryption from Witness Encryption

We start by presenting the construction based on witness encryption. The idea is rather simple.
The public parameters of the primitive we want to build include the description of a delay function
and an element ŷ in its range. In order to encrypt a message m under a random label id, we just
rely on witness encryption. More precisely, the statement under which we generate the ciphertext
claims that the evaluation of the delay function on id does not return ŷ.

It is easy to see that the scheme satisfies correctness with overwhelming probability. Since the
delay function outputs are highly unpredictable, the evaluation on id will return ŷ with negligible
probability. On the other hand, the construction guarantees security against low-depth attackers.
We can consider a hybrid world in which we provide the adversary A with a random looking label id
on which the delay function is programmed to output ŷ. If A lies in a class C and the delay function
is C-programmable, the adversary is not able to detect the change. We conclude by observing that,
in this hybrid world, since the statement under which we generate the witness encryption ciphertext
is false, the privacy of the plaintext is preserved.

There are of course efficiency requirements that our scheme needs to satisfy. We would like the
witness encryption scheme to have quick decryption once a witness for the statement is known.
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Notice that this property does not contradict the security of our delay encryption construction
as long as any such witness is slow to derive. Furthermore, we would like the witness encryption
scheme to have also a fast encryption algorithm. Finally, we would like the ciphertext to be compact
in the sense that the ciphertext size is quasi independent of the time required for their decryption.

Assuming evasive LWE [VWW22], it is possible to build a witness encryption scheme with
some of the desired properties. Both encryption and decryption can be computed in low depth, but
unfortunately the ciphertexts are not compact. In the construction of Vaikuntanathan, Wee and
Wichs [VWW22], the ciphertext size grows polynomially in the witness size. It would therefore be
desirable that the size of the witness grows (poly)logarithmically in the time required to evaluate
the delay function. In particular this means that our witness cannot be the list of gate values in the
delay function evaluation. One could try to solve this problem by relying on succinct proofs, but
this would quickly run into another problem: in general, succinct proofs are not perfectly sound.
That would compromise the security of the whole construction as witness encryption guarantees
the privacy of the plaintext as long as there is no witness. For succinct proofs that are not perfectly
sound, however, there will always be false statements for which there exist proofs, even if the latter
are hard to find.

One potential solution out of this is to perhaps build “somewhere perfectly sound succinct
proofs”. Imagine a succinct proof scheme where the CRS hides a statement over which we achieve
perfect soundness. In order to prove that an encryption under a false statement x guarantees privacy,
we first make the succinct proof system perfectly sound on x by hiding it in the CRS, and then we
rely on the security of witness encryption. In other words, this type of proof system would allow us
to obtain delay encryption with ciphertext compactness from evasive LWE. We leave building such
a proof system as an exciting open problem for future work.

Theorem 5. Consider two circuit classes C0, C1, where C0 is nicely closed and C1 ⊆ C0 ⊆ poly(λ).
Let DF = (Setup,Eval) be a C0-programmable, C0-sequential delay function with domain X :=
(Xλ)λ∈N and range Y := (Yλ)λ∈N. Let (ŷλ)λ∈N be a sequence of elements where ŷλ ∈ Yλ for every
λ ∈ N. Consider the language

L := {(λ, x, pp)|x ∈ Xλ,Eval(pp, x) ̸= ŷλ} .

Let R be a relation for L. Let Witness be a polynomial time algorithm that, on input (λ, x, pp) ∈ L,
outputs w such that ((λ, x, pp), w) ∈ R.

Let WE = (Enc,Dec) be a witness encryption scheme for the relation R such that Enc,Dec ∈ C1.
Then, the construction in Fig.9 is a C0-secure, C1-efficient, correct delay encryption scheme.

Delay Encryption from Witness Encryption

Setup(1λ): Output pp←$ DF.Setup(1λ)
Enc(pp, id,m): Output c←$ WE.Enc(1λ, (λ, id, pp),m)
Ext(pp, id): Output idk := w ←Witness(λ, id, pp)
Dec(pp, idk := w, c): Output m←WE.Dec(c, w)

Fig. 9. Delay encryption from witness encryption
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Proof. It is trivial to see that the scheme is C1-efficient. Correctness is also straightforward: thanks
to C0-sequentiality, we know that, for a random id, Eval(pp, id) ̸= ŷλ with overwhelming probability.
Therefore, the property follows immediately from the correctness of the witness encryption scheme
and the fact that Witness outputs the witness for the statement provided as input.

We therefore focus on security. Suppose that there exists an adversary A = (A0,A1) ∈ poly(λ)×
C0 that wins the delay encryption security game with non-negligible advantage. We show that this
leads to a contradiction by a series of hybrids.

Hybrid 0. This hybrid corresponds to the original delay encryption security game D-IND-CPA
(see Fig. 14).

Hybrid 1. In this hybrid, we change the distribution of the public parameters pp and of the
identity id given as a challenge. Specifically, we generate the pair (pp, id) using Program(1λ, ŷλ).
Since A1 ∈ C0, WE.Enc is in C1 ⊆ C0 and C0 is nicely closed, we conclude that the advantage of A
in this hybrid is still non-negligible.

Hybrid 2. In this hybrid, we change the distribution of the ciphertext given to the adversary
A1. Specifically, we compute it using WE.Enc((λ, id, pp),m0), independently of the value of b.
Notice that (λ, id, pp) is not in the language L, so the advantage of A is still non-negligible thanks
to the security of witness encryption. We have reached a contradiction. Indeed, in Hybrid 2, all the
information received by A is independent of b. ⊓⊔

5.2 Delay Encryption from Attribute-Based Encryption

Following a similar blueprint, we show how to build delay encryption from delay functions and
attribute-based encryption schemes satisfying a particular condition we called it decryption amor-
tisability. Specifically, we require that, given a decryption key associated with a function f , the
master public key mpk and an attribute x, we are able to preprocess a fast decryption key fsk,
so that, whenever we are given an ABE ciphertext under the attribute x, we are able to quickly
decrypt it using fsk. We formalise the idea below. As we will explain later, the LWE-based ABE
scheme of Boneh et al. [BGG+14] satisfies the desired property.

Definition 36 (Decryption-amortisable ABE). Let C be a circuit class. A C-decryption-
amortisable ABE scheme is a tuple of PPT algorithms (Setup,Enc,KeyGen,Ext,FastDec) satisfying
the following properties:

(Correctness). For every function f : {0, 1}n → {0, 1} and x ∈ {0, 1}n such that f(x) = 1 and
message m,

Pr


(mpk,msk)←$ Setup(1λ)

skf ←$ KeyGen(msk, f)

c←$ Enc(mpk, x,m)

fsk← Ext(mpk, skf , x)

: FastDec(c, fsk) = m

 = 1

(Selective security). We say that an adversary A = (A0,A1) is valid if, A0 always outputs a
tuple (f, x,m0,m1, aux) where f : {0, 1}n → {0, 1} is a function such that f(x) = 0. The ABE
scheme is selectively secure if for every valid adversary A = (A0,A1) ∈ poly(λ) × poly(λ), it
holds that

AdvSELABE(A) :=
∣∣∣∣Pr[ExpSELA,ABE(1

λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where experiment ExpSELA,ABE is specified in Figure 10.
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(C-Efficiency). The algorithms Enc and FastDec belong to C.

ExpSELA,ABE(1
λ)

1 : b←$ {0, 1}

2 : (mpk,msk)←$ Setup(1λ)

3 : (f, x,m0,m1, aux)←$A0(1
λ,mpk)

4 : skf ←$ KeyGen(msk, f)

5 : c←$ Enc(mpk, x,mb)

6 : b′ ←$A1(c, skf , aux0)

7 : return b = b′

Fig. 10. Selective security game SEL.

As we already mentioned, the ABE scheme for generic circuits built by Boneh et al. [BGG+14]
is decryption-amortisable. We informally recap the construction and we explain why it satisfies our
desired property. The master public key of the ABE scheme consists of n+ 1 “fat” LWE matrices
A0, A1, . . . , An over a ring Zq. In order to encrypt a bit m ∈ {0, 1} under a attribute x ∈ {0, 1}n,
we sample a random vector s and low-norm vectors e0, . . . , en. The ciphertext will consist of the
list of n+ 1 vectors (c0, . . . , cn) where

ci = (Ai + xi ·G)⊺ · s+ ei for i = 1, 2, . . . , n

c0 = A⊺
0 · s+ e0 +

⌈q
2

⌋
·m

Above, G denotes the gadget matrix.

In [BGG+14], the authors showed that, for any function f : {0, 1}n → {0, 1}, by applying linear
operations depending only on A1, . . . , An, f and x on (c1, . . . , cn), it is possible to derive a vector
cf of the form (Af + f(x) ·G)⊺ · s+ ef , where ef is a small-norm vector and Af is a “fat” matrix
that can be easily computed from A1, . . . , An and f . The decryption key associated with f is a
small-norm matrix such that Af · skf = A0. In other words, if f(x) = 0, it is possible to retrieve m
by rounding c0 − sk⊺f · cf to the closest multiple of ⌈q/2⌋.

Notice that linear operations and rounding can be performed in logarithmic depth. So, we can
split the decryption of ciphertexts under the attribute x with respect to a secret key skf into two
phases: first, given the matrices A1, . . . , An, the function f and the attribute x, we derive the matrix
M describing the linear operations we need to apply on the vectors (c1, . . . , cn). Then, given the

ciphertexts c0, . . . , cn, we compute the plaintext m = Round
(
c0 − sk⊺f · M · (c1, . . . , cn)

)
. While

the first operation can be “slow” (depending on the function f), the second phase can always be
computed “quickly” by a circuit in NC1. To summarise, the fast decryption key relative to the
function f and the attribute x will be sk⊺f ·M .

Lemma 6 ([BGG+14]). Let ABE = (Setup,Enc,KeyGen,Dec) be the attribute-based encryption
scheme of [BGG+14]. Let Evalct be the algorithm used during the decryption procedure (see [BGG+14,
page 16]). Then, there exists a polynomial-time algorithm ABE.PreComp that, on input the public
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parameters mpk, a function f : {0, 1}n → {0, 1} and an attribute x, outputs a matrix M such that,
for every ciphertext c,

Pr

(mpk,msk)←$ ABE.Setup(1λ)

skf ←$ ABE.KeyGen(msk, f)

M ← ABE.PreComp(mpk, f, x)

:M · c = Evalct(mpk, f, x, c)

 = 1

Corollary 7. Consider the ABE scheme obtained by augmenting the construction of [BGG+14]
with the following procedures:

– ABE.Ext(mpk, skf , x)

1. M ← ABE.PreComp(mpk, f, x)
2. Output fsk := sk⊺f ·M

– ABE.FastDec(c, fsk):

1. z ← fsk · c
2. Output Round(v)

Under the security of LWE with subexponential modulus-to-noise ratio, the scheme described above
is NC1-decryption-amortisable.

Building Delay Encryption from Decryption-Amortisable ABE. It is now time to show
how to build delay encryption from ABE. The idea is the same as for witness encryption. The public
parameters of the scheme will include the description of a programmable delay function along with
a value ŷ in its range. Furthermore, the public parameters will also include an ABE secret-key
skf for the function that, on input a attribute x, evaluates the delay function on it and outputs
1 if and only if the result is different from ŷ. The rest is fairly straightforward: when we want to
encrypt a message m under a random label id, we just perform an ABE encryption of m using id

as attribute.

With overwhelming probability, the evaluation of the delay function on id will return a value
different from ŷ, so the parties can retrieve the plaintext using skf . On the other hand, if the delay
function is C-programmable, no adversary in C would be able to distinguish the real world from an
hybrid in which we provide a label id for which the delay function is programmed to output ŷ. In
such setting, the attribute under which the ciphertext is generated does not satisfy the policy f ,
so the security of ABE guarantees the privacy of the plaintext.

As for the efficiency properties, we notice that once the parties have derived the fast decryption
key relative to f and the label id, they can decrypt all encryptions under id quickly by evaluat-
ing low-depth circuits. Moreover, by the efficiency properties of the decryption-amortisable ABE
scheme, the encryption algorithm has low circuit depth.

Unfortunately, the scheme does not satisfy ciphertext compactness. We would like the size of
the ABE ciphertexts to be independent of the depth of the policy f , but their construction has a
ciphertext size that grows linearly in depth of f . A recent work by Hsieh, Lin, and Luo [HLL23]
shows how to construct an ABE scheme with a ciphertext size that does not grow with the depth of
f , but to the best of our knowledge their construction is not decryption-amortisable. If, one day, we
manage to build a decryption-amortisable ABE scheme where the ciphertext size is independent of
the depth of the policies, we would immediately obtain delay encryption schemes with ciphertext
compactness.
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Delay Encryption from Attribute-Based Encryption
Let f pp,ŷλ be the function that on input x, outputs 1 if and only if DF.Eval(pp, x) ̸= ŷ.

Setup(1λ):
1. pp′ ←$ DF.Setup(1λ)
2. (mpk,msk)←$ ABE.Setup(1λ)

3. sk← ABE.KeyGen(msk, f pp
′,ŷλ

λ )
4. Output pp := (mpk, sk)

Enc(pp = (mpk, sk), id,m): Output c←$ ABE.Enc(mpk, id,m)
Ext(pp = (mpk, sk), id): Output idk := fsk← ABE.Ext(mpk, sk, id)
Dec(pp, idk, c): Output m← ABE.FastDec(c, idk)

Fig. 11. Delay encryption from attribute-based encryption

Theorem 8. Let C0 and C1 be circuit classes where C1 ⊆ C0 ⊆ poly(λ) and C0 is nicely closed.
Let ABE = (Setup,Enc,KeyGen,Ext,FastDec) be a C1-description-amortisable ABE scheme. Let

DF = (Setup,Eval) be a C0-programmable, C0-sequential delay function with domain X := (Xλ)λ∈N
and range Y := (Yλ)λ∈N. Let (ŷλ)λ∈N be a sequence of elements where ŷλ ∈ Yλ for every λ ∈ N.
Then the scheme in Fig.11 is a C0-secure, C1-efficient, correct delay encryption scheme.

Proof. It is trivial to see that the scheme is C1-efficient. Correctness is also straightforward: thanks to
C0-sequentiality, we know that, for a random id, Eval(pp′, id) ̸= ŷλ with overwhelming probability.
Therefore, the property follows immediately from the correctness of the ABE scheme.

We therefore focus on security. Suppose that there exists an adversary A = (A0,A1) ∈ poly(λ)×
C0 that wins the delay encryption security game with non-negligible advantage. We show that this
leads to a contradiction by a series of hybrids.

Hybrid 0. This hybrid corresponds to the original delay encryption security game D-IND-CPA
(see Fig. 14).

Hybrid 1. In this hybrid, we change the distribution of the public parameters pp′ and of the
identity id given as a challenge. Specifically, we generate the pair (pp′, id) using Program(1λ, ŷλ).
Since A1 ∈ C0, ABE.Enc is in C1 ⊆ C0 and C0 is nicely closed, we conclude that the advantage of A
in this hybrid is still non-negligible.

Hybrid 2. In this hybrid, we change the distribution of the ciphertext given to the adversary
A1. Specifically, we compute it using ABE.Enc(mpk, id,m0), independently of the value of b. Notice

that f
pp′,ŷλ
λ (id) = 0, so the advantage of A is still non-negligible thanks to the selective security

of the ABE scheme. We have reached a contradiction. Indeed, in Hybrid 2, all the information
received by A is independent of b. ⊓⊔

6 Randomness Beacons do not Need VDFs

In this section, we show how to build randomness beacons based on timing assumptions without
making use of VDFs. We just need to rely on time-lock puzzles. Furthermore, our constructions
achieve better asymptotic complexity compared to the solution based on VDFs, both in terms of
rounds and computation. In particular, the schemes we present are non-interactive: after publishing
their block, the parties do not need to speak again.

Given that randomness beacons were never precisely defined [BBBF18], we start by formalising
the primitive and its security property. Then, we present two ways to instantiate the primitive.
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The first one is less efficient and is based on generic time-lock puzzles [RSW96], the second one,
achieving better computational complexity, is based on additively homomorphic time-lock puzzles
[MT19].

6.1 Defining Randomness Beacons

We now formalise randomness beacons and their security properties. Our definition, in particular
the syntax, reflects the characteristics of the constructions we are going to present later: non-
interactiveness, efficient verifiability and security in the programmable random oracle model.

Randomness beacons are protocols for the generations of randomness on a blockchain. In par-
ticular, the primitive specifies how to generate blocks to be published on the chain. From any
sequence of T blocks it is possible to derive a random string of bits. Although the computational
costs of this operation is relatively low, the procedure is slow : the algorithm producing the output
is highly non-parallelisable. This ensure that any adversary is not able to learn how to bias the
randomness produced by the beacon before an honest party publishes a new block. For intuition,
imagine an adversary that would like to bias the first bit of the next string produced by the beacon
towards 0: after learning the first T − 1 blocks, the adversary generates in its head the last block
many times with the intention of publishing one that makes the first bit of the output equal to 0.
However, checking which blocks satisfy the desired property takes time, in particular long enough
that, with extremely high probability, an honest party would end up publishing the last block first.
The adversary is therefore forced to publish a block without knowing how this will bias the output.

We finally present our definition of non-interactive, verifiable randomness beacon. The primi-
tive is non-interactive in the sense that it does not require any further communication from the
parties after they publish their block. Furthermore, it is verifiable meaning that, when T blocks
are processed to generate a random string, the procedure provides also an efficiently and quickly
verifiable proof of correct evaluation. In other words, the slow operations necessary to determine
the next random string produced by the beacon can be performed by a single party, which can then
quickly convince all other participants of the correct result.

Definition 37 (Non-interactive Verifiable Randomness Beacon). A non-interactive verifi-
able randomness beacon consists of a tuple of PPT algorithms (Setup,Gen,Solve,FastSolve,Verify)
with the following syntax:

Setup(1λ): The setup algorithm takes as input the security parameter 1λ and outputs public param-
eters pp

Gen(pp): The generation algorithm takes as input the public parameters pp. The output is a block
B.

Solve(pp, k, B1, . . . , BT ): The solving algorithm is deterministic and takes as input the public pa-
rameters pp, a block index k and blocks B1, . . . , BT for some T ∈ N. The output is a solution r
and a proof w.

FastSolve(pp, k, T,Bk, auxk−1): The fast solving algorithm is deterministic and takes as input the
public parameters pp, a block index k, a block number T , a block Bk and auxiliary information
auxk−1. The output is a solution r, a proof w and auxiliary information auxk.

Verify(pp, k, B1, . . . , BT , r, w): The verification algorithm is deterministic and takes as input the
public parameters pp, a block index k, blocks B1, . . . , BT , a solution r and a proof w. The
output is a bit b expressing whether r is a solution for B1, . . . , BT or not.
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In the above definition, we equipped the primitive with two algorithms for the computation of
the random strings produced by the beacon. The first one, Solve, is stateless and processes T blocks
at the time, returning the random string they generate. The second one, FastSolve, instead streams
over the blockchain, processing the blocks one at the time and returning the corresponding random
strings as the information is published on the chain. This second algorithm keeps an internal state,
represented by the auxiliary information aux, which is updated and passed on from execution to
execution. As the name suggest, FastSolve usually allows to stream through the outputs of the
beacon with higher efficiency.

Below, we formalise the completeness and the correctness of the randomness beacon. The former
guarantees that the proofs output by the solving algorithm always verify. The latter ensures instead
that the output of Solve and FastSolve always coincide.

Definition 38 (Completeness). A non-interactive verifiable randomness beacon (Setup,Gen,
Solve,FastSolve,Verify) is complete if, for every λ, T, k ∈ N,

Pr

pp←$ Setup(1λ)

∀i ∈ [T ] : Bi ←$ Gen(pp)

(r, w)← Solve(pp, k, B1, . . . , BT )

: Verify(pp, k, B1, . . . , BT , r, w) = 1

 = 1

Definition 39 (Correctness). A non-interactive verifiable randomness beacon (Setup,Gen, Solve,
FastSolve,Verify) is perfectly correct if, for every λ,M, T ∈ N and pp, B1, . . . , BM , it holds that

Pr

aux0 ← ⊥∀i ∈ [M ] : (ri, wi, auxi)← FastSolve(pp, i, T,Bi, auxi−1)

∀i ∈ [M ] : (r′i, w
′
i)← Solve(pp, i, Bi−T+1, . . . , Bi)

: (ri, wi) = (r′i, w
′
i) ∀i = T, . . . ,M

 = 1.

We define efficiency of randomness beacons with respect to circuit classes C1 ⊆ C2, C3. The
block generation algorithm and the verification belong to the class of quickly computable circuits
C1, whereas Solve and FastSolve belong to the more slower classes C2 and C3 respectively.

Definition 40 (Efficiency). Let C1, C2, C3 be circuit classes. We say that a non-interactive veri-
fiable randomness beacon (Setup,Gen, Solve,FastSolve,Verify) is (C1, C2, C3)-efficient if Gen,Verify ∈
C1, Solve ∈ C2, FastSolve ∈ C3.

Next, we formalise the security properties of the primitive. We start from soundness. The latter
ensures that no efficient adversary (even one that is allowed to performed highly non-parallelisable
operations) can generate valid proofs for any beacon outputs other than the correct ones.

Definition 41 (Soundness). A non-interactive verifiable randomness beacon (Setup,Gen, Solve,
FastSolve,Verify) is sound if, for every PPT adversary A,

Pr

pp←$ Setup(1λ)

(k,B1, . . . , BT , r, w)←$A(1λ, pp)
(r′, w′)← Solve(pp, k, B1, . . . , BT )

:
Verify(pp, k, B1, . . . , BT , r, w) = 1

r ̸= r′

 ≤ negl(λ).

Finally, we define simulation security in the programmable random oracle model. We define the
security property by relying on a real world - ideal world paradigm parametrised by three values:
C, describing the efficiency class of the adversary and time parameters T,D ∈ N.
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In the real world, after being provided with the public parameters of the randomness beacon, the
adversary is repeatedly faced with the decision of whether it wants the next block to be generated
by the honest parties according to the protocol or whether it wants to publish a possibly malicious
block of its own choice. With the delay of D blocks (used to model the time necessary for the honest
parties to run FastSolve or Solve), the adversary is also gradually provided with the randomness
beacon outputs and proofs confirming their validity. Notice that the adversary would be able to
compute these values on its own by relying on Solve or FastSolve.

In the ideal world, on the other hand, the adversary interacts with simulators that model the
blockchain execution and the random oracle responses. Every time a new block B is published, the
simulators are provided with a new random string r helping them simulate the real world. Upon
receiving r, the simulators get to immediately choose a proof w confirming its validity. The pair
(r, w) are revealed to the adversary with a delay of D blocks.

We ask that for any T -respecting adversary in C, meaning an adversary which ensures that,
for any sequence of T consecutive blocks, at least one is honestly generated, the two worlds are
indistinguishable.

Definition 42 ((C, T,D)-simulation security). Let RB := (Setup,Gen,Solve,FastSolve,Verify)
be a non-interactive verifiable randomness beacon where Ext outputs L(λ)-bit strings. Let H be a
random oracle outputting n(λ)-bit responses.

We say that an adversary A = (A0,A1) ∈ poly(λ) × C for the experiment ExpRBS,T,DA,Sim,RB (see
Figure 12) is T -respecting if it calls the procedure New Block at most a polynomial number of
times and never outputs c = 1 in T consecutive calls to such procedure.

We say that the scheme is (C, T (λ), D(λ))-simulation secure in the programmable random oracle
model, if, for every T -respecting adversary A = (A0,A1) ∈ poly(λ) × C, there exists a simulator
Sim := (Sim0, Sim1, SimRO) ∈ poly(λ)× C × C such that

AdvRBS,T,DRB,Sim (A) :=
∣∣∣∣Pr[ExpRBS,T,DA,Sim,RB(1

λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

The above definition essentially guarantees that as long as we are guaranteed the existence of
an honest block every T blocks, the outputs produced by the beacon look random. Furthermore,
at the time the i-th block is published on the blockchain, the (i + 1)-th output of the beacon, as
well as all the following ones, are unpredictable. Notice, however, that the adversary may discover
the beacon outputs D blocks in advance. In other words, by the time the honest parties discover
the i-th output, the adversary may already know also the following D outputs.

We highlight that the above form of simulation-based security definition for randomness beacons
is achievable only in the random oracle model.

6.2 Constructing Randomness Beacons from Time-Lock Puzzles

Our first randomness beacon construction is described in Fig.13. The idea is pretty simple: each
block of the randomness beacon includes of a time-lock puzzle z hiding a high-entropy random
string s. The output of the beacon are obtained by solving the time-lock puzzles in the last T
blocks and querying the random oracle with the concatenation of the resulting strings.

In order to obtain fast verifiability, we augment every block with a commitment c to the string s.
We hide the opening v of such commitment inside z so that, once the time-lock puzzle is solved, the
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Simulation Security for Randomness Beacons ExpRBS,T,D
A,Sim,RB

Initialisation: This procedure is run only once at the beginning of the game.
1. b←$ {0, 1}
2. i← 1
3. Q← ∅
4. pp0 ←$ Setup(1λ)
5. (pp1, ϕ)←$ Sim0(1

λ)
6. ψ ← AH

0 (1λ, ppb)
7. B0 ← ⊥
8. r−T+1, r−T+2, . . . , r−1, r0, r1, . . . , rT−1 ← ⊥

New Block: This procedure is run repeatedly after the initialisation, until the adversary halts.
1. (c, ψ)←$AH

1 (Bi−1, ri−D, w
b
i−D, ψ)

2. r1i ←$ {0, 1}L(λ)

3. If c = 0 :
(a) B0

i ←$ Gen(pp0)
(b) (B1

i , w
1
i , ϕ)←$ Sim1(ϕ,⊥, r1i )

(c) Bi ← Bb
i

4. If c = 1:
(a) (Bi, ψ)←$AH

1 (ψ)
(b) (w1

i , ϕ)←$ Sim1(ϕ,Bi, r
1
i )

5. (r0i , w
0
i )← Solve(ppb, Bi−T+1, . . . , Bi)

6. If i ≥ T : ri ← rbi
7. i← i+ 1

Oracle H: The adversary has unbounded access to this oracle. Let x̂ be the queried valued.
1. If there exists a pair (x, y) ∈ Q such that x = x̂, output y.
2. y0 ←$ {0, 1}n(λ)

3. (y1, ϕ)←$ SimRO(ϕ, x̂)
4. Q← Q ∪ {(x̂, yb)}
5. Output yb

Output: This procedure is run only once when the adversary halts outputting a bit b′. Output b = b′.

Fig. 12. Randomness beacon security game RBS.

parties not-only obtain s but also v. In this way, anybody can efficiently and quickly verify the result
of the computation validating it on c. Finally, we juxtapose a NIZK proving the well-formedness of
the pair (c, z).

The reason why this scheme satisfies simulation security is that, in order to learn a beacon
output, an adversary needs to solve all honestly generated time-lock puzzles in the previous T
blocks. We choose the parameters of the puzzles so that solving them requires long enough that,
almost certainly, other T −1 blocks will be published on the chain in the meantime. In other words,
even if the adversary will decide to generate some of the T blocks from which the output is derived
maliciously, its choice will be made obliviously of the random oracle query producing the result:
the adversary would have no time to solve all the puzzles generated by the honest parties. Since
the oracle query is highly unpredictable, the simulator is able to program the output of the random
oracle without the adversary spotting any inconsistency.

Theorem 9. Let f = Ω(log λ) be a polynomial function in the security parameter. Let (Commit,
Check) be a perfectly binding, computationally hiding non-interactive commitment. For every τ ∈ N,
let C′τ := Cτ and define C′ as (C′τ )τ∈N. Let TLP be a (C′, τ)-secure time-lock puzzle scheme. Finally,
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Randomness Beacon from Time-Lock Puzzles

Setup(1λ):
1. σ ←$ NIZK.Setup(1λ)
2. pp′ ←$ TLP.Setup(1λ, 1τ )
3. Output pp := (pp′, σ).

Gen(pp = (pp′, σ)):
1. s←$ {0, 1}λ
2. (c, v)←$ Commit(s;u0)
3. z ←$ TLP.Gen(1λ, pp′, (s, v);u1)
4. π ←$ NIZK.Prove(σ, (z, c, pp′), (s, v, u0, u1))
5. Output B := (c, z, π)

Solve(pp = (pp′, σ), k, B1 = (c1, z1, π1), . . . , BT = (cT , zT , πT )):
1. ∀i ∈ [T ] : bi ← NIZK.Verify(σ, (zi, ci, pp

′), πi)
2. S ← {i|bi ̸= 0}
3. ∀i ∈ S : (si, vi)← TLP.Solve(pp′, zi)
4. ∀i ∈ [T ] \ S : si ← ⊥
5. Output r := H(k ∥ s1 ∥ . . . ∥ sT ) and w := (s1, . . . , sT , v1, . . . , vT ).

FastSolve(pp = (pp′, σ), k, T,B = (c, z, π), aux = ((s1, v1), . . . , (sT−1, vT−1))):
1. b← NIZK.Verify(σ, (z, c, pp′), π)
2. If b = 0, sT ← ⊥
3. If b = 1, (sT , vT )← TLP.Solve(pp′, z)
4. Output r := H(k ∥ s1 ∥ . . . ∥ sT ), w := (s1, . . . , sT , v1, . . . , vT ), aux

′ := ((s2, v2), . . . , (sT , vT )).
Verify(pp = (pp′, σ), k, B1 = (c1, z1, π1), . . . , BT = (cT , zT , πT ), r, w = (s1, . . . , sT , v1, . . . , vT )):

1. ∀i ∈ [T ] : bi ← NIZK.Verify(σ, (zi, ci, pp
′), πi)

2. S ← {i|bi ̸= 0}
3. ∀i ∈ S : b′i ← Check(ci, si, vi)
4. If ∃i ∈ S such that b′i = 0, output 0.
5. If ∃i ∈ [T ] \ S such that si ̸= ⊥, output 0
6. If r = H(k ∥ s1 ∥ . . . ∥ sT ), output 1. Otherwise, output 0.

Fig. 13. Randomness beacon from time-lock puzzles

41



let NIZK be a zero-knowledge, simulation-extractable NIZK for the relation

R :=

{
(z, c, pp′, τ), (s, w, u0, u1)

∣∣∣∣∣(c, w) = Commit(s;u0)

z = TLP.Gen(1τ , pp′, (s, w);u1)

}

Suppose that NIZK.Sim2 ∈ Cg0, NIZK.Ext ∈ Cg1 for functions g0(λ) and g1(λ) of the security param-
eter. Suppose also that Commit, Check, TLP.Gen, NIZK.Prove, NIZK.Verify ∈ Cf . Then, if

τ(λ) = g0(λ) + (T (λ)− 1) · (g1(λ) + g(λ) · ω(log λ)), τ(λ) = Ω(τ(λ)),

where g(λ) is a function of the security parameter, the scheme in Fig.13 is a non-interactive verifi-
able randomness beacon satisfying completeness, correctness, soundness, (Cf , Cτ , Cτ )-efficiency and
(Cg, T (λ), T (λ))-simulation security in the programmable random oracle model.

Proof. We observe that our randomness beacon trivially satisfies completeness thanks to the com-
pleteness of the NIZK and the correctness of the commitment scheme and the time-lock puzzle.
Also correctness and (Cf , Cτ , Cτ )-efficiency is easily verifiable (notice that Cf and Cτ are nicely
closed). Soundness is instead implied by the soundness of the NIZK and the binding properties of
the commitment. We therefore focus on simulation security.

We consider the simulator Sim = (Sim0,Sim1, SimRO) defined as follows:

– Sim0(1
λ):

1. (σ, ζ)←$ NIZK.Sim1(1
λ)

2. pp′ ←$ TLP.Setup(1λ, 1τ )
3. Output pp := (pp′, σ) and ϕ = (pp′, σ, ζ)

– Sim1(ϕ = (pp′, σ, ζ, (j, r1j , sj , vj)j<i), Bi, r
1
i ):

• If Bi = ⊥:
1. si ←$ {0, 1}λ
2. (ci, vi)←$ Commit(si;ui,0)
3. zi ←$ TLP.Gen(1λ, pp′, (si, vi);ui,1)
4. πi ←$ NIZK.Prove(σ, (zi, ci, pp

′), (si, vi, ui,0, ui,1))
5. wi ← (si−T+1, . . . , si, vi−T+1, . . . , vi)
6. Output B1

i := (ci, zi, πi), wi and ϕ := (pp′, σ, ζ, (j, r1j , sj , vj)j≤i)
• If Bi = (ci, zi, πi) ̸= ⊥:

1. (si, vi, ui,0, ui,1)← NIZK.Ext(ζ, (ci, zi, pp
′), πi)

2. wi ← (si−T+1, . . . , si, vi−T+1, . . . , vi)
3. Output wi and ϕ := (pp′, σ, ζ, (j, r1j , sj , vj)j≤i)

– SimRO(ϕ, x̂) rewrites x̂ as a string (i ∥ s′i−T+1 ∥ . . . ∥ s′i). Then, it retrieves the tuples

(i, r1i , si, vi), (i− 1, r1i−1, si−1, vi−1), . . . , (i− T + 1, r1i−T+1, si−T+1, vi−T+1)

stored in ϕ. Finally, if si−j+1 = s′i−j+1 for every j ∈ [T ], the algorithm outputs r1i . In all other
cases, including when one of the above procedures fails, the algorithm outputs a random string
in {0, 1}L(λ).

We proceed by means of a sequence of hybrids.
Hybrid 0. This hybrid consists of the real world execution of the randomness beacon. In other

words, the challenger of the simulation security game behaves as if b = 0.
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Hybrid 1. In this hybrid, instead of generating σ using NIZK.Setup, we compute it embedding
a trapdoor in it. Specifically, we obtain the NIZK CRS as (σ, ζ)←$ NIZK.Sim1(1

λ). This hybrid is
computationally indistinguishable from Hybrid 0 thanks to zero-knowledge property of the NIZK.

Now, we define the event E1 in which the adversary publishes a block where the corresponding
NIZK verifies but the extraction of the witness fails. By the simulation extractability of the NIZK,
the probability of the event E1 occurring is negligible. This guarantees that the proofs wi given to
the adversary are consistent with the published blocks with overwhelming probability.

Now, we define the event E2 as the event in which the adversary queries a tuple (i∥s1 ∥ . . .∥sT )
to the random oracle, where sj is the first part of the solution of the time-lock puzzle in Bi−T+j

for every j ∈ [T ], before the block Bi is published.

We observe that the adversary can distinguish between Hybrid 1 and the ideal world execution
of the security game (i.e. when b = 1) if and only if the probability of E2 is non-negligible. Notice
that the probability of E2 in the two worlds are the same except for a negligible amount.

Suppose that the probability of E2 in the ideal world is non-negligible. Since the adversary halts
after a polynomial number of executions of the procedure New Block, there exists an index iλ
such that there exists a non-negligible probability that the adversary queries (iλ ∥ s1 ∥ . . . ∥ sT ) to
the random oracle, where sj is the first part of the solution of the time-lock puzzle in Biλ−T+j for
every j ∈ [T ], before the block Biλ is revealed. We call any of these queries bad queries. Let h be the
highest index such that Bh is honestly generated and h ≤ iλ. Since the adversary is T -respecting,
we know that h ≥ iλ − T (λ) + 1. We observe that the probability that the adversary issues a bad
query before Bh is revealed is at most 2−λ. Indeed, the adversary would have no information about
rh which is sampled at random in {0, 1}λ. Therefore, the adversary must be able to issue a bad
query in between the publication of Bh and Biλ with non-negligible probability.

Hybrid 2. In this hybrid, we change the distribution of the proof in the block Bh = (zh, ch, πh).
In particular, we generate it as πh ←$ NIZK.Sim2(ζ, (zh, ch, pp

′)). Observe that this hybrid is indis-
tinguishable from the previous one thanks to the zero-knowledge property of the NIZK. Therefore,
the adversary issues a bad query in between the publication of Bh and Biλ with non-negligible prob-
ability. In particular, this means that there exists a non-negligible probability that the adversary
issues an oracle query containing an opening of the commitment in Bh before Biλ is published.

Hybrid 3. In this hybrid, we change the distribution of the time-lock puzzle zh. Specifically,
we generate it as zh ←$ TLP.Gen(1λ, pp′,⊥). Thanks to the security of the time-lock puzzle and
the fact that τ(λ) = g0(λ) + (T (λ) − 1) · (g1(λ) + g(λ) · ω(log λ)), there is still a non-negligible
probability that the adversary issues an oracle query containing an opening of the commitment in
Bh before Biλ is published7. This contradict the hiding properties of the commitment scheme.

We conclude that the probability of the event E2 in the ideal world is negligible. This implies
that E2 occurs with negligible probability even in Hybrid 1. This is enough to prove that Hybrid 1
is indistinguishable from the ideal execution of the security game. This ends the proof. ⊓⊔

6.3 A More Efficient Construction from Homomorphic Time-Lock Puzzles

The randomness beacon we just finished presenting suffers from some disadvantages. First of all,
while the amortised computational cost is one time-lock puzzle per beacon output, retrieving a
single beacon output requires solving T puzzles. Furthermore, the parties would receive the beacon’s

7 g(λ) is multiplied by ω(log λ) due to the depth of the operations computed by SimRO for each oracle query (i.e.
O(log λ)).
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results with a delay of at least T blocks. We show how to improve our initial construction by relying
on a variant of linearly homomorphic time-lock puzzles [MT19] we name batched homomorphic
time-lock puzzles.

We start by defining and constructing such primitive. Later on, we show how the latter can be
used to build a randomness beacon for which each output requires the resolution of a single time-
lock puzzle. Furthermore, the delay with which the honest parties receive the inputs is significantly
lower.

Batched Homomorphic Time-Lock Puzzles. A batched homomorphic time-lock puzzle is
a primitive closely related to linearly homomorphic time-lock puzzles [MT19]: given any linear
function F , it is still possible to “quickly” assemble time-lock puzzles z1, . . . , zM with the same
choice of time parameter into a new time-lock puzzle which hides the evaluation of F on the values
hidden in z1, . . . , zM . We have, however, an additional property: given multiple time-lock puzzles
z1, . . . , zL with time parameters T1 ≥ · · · ≥ TL and hiding values m1, . . . ,mL in a group Zq, it is
possible to solve for m1 + · · ·+mL in time proportional to T1 = max(T1, . . . , TL).

Below, we formalise the syntax of the primitive. Observe that we allow the setup to run in time
proportional to max(T1, . . . , Tn). Notice also that the resolution of batches of time-lock puzzles does
not need to receive all its input at once: we rely on an algorithm to which we gradually feed the
puzzles in decreasing order with respect to their time parameters. Throughout its execution, the
algorithm passes along a state a.

Definition 43 (Batched homomorphic time-lock puzzle). A batched homomorphic time-lock
puzzle scheme is a tuple of PPT algorithms (Setup,Gen,Solve,EvalBatchSolve) with the following
syntax:

Setup(1λ, 1t1 , . . . , 1tL): The algorithm takes as input the security parameter 1λ, and time parameters
1t1 , . . . , 1tL for some L ∈ N. The output consists of public parameters pp and q ∈ N.

Gen(1λ, i, pp,m): The algorithm takes as input the security parameter 1λ, an index i ∈ [L], the
public parameters pp and a solution m ∈ Zq. The output is a puzzle z with time parameter

Ti :=
∑L

j=i tj.
Solve(pp, z): The algorithm is deterministic and takes as input the public parameters pp and a

puzzle z. The output is a solution m ∈ Zq.
Eval(pp, F, z1, . . . , zM ): The algorithm is deterministic and takes as input the public parameters pp,

a Zq-linear function F : ZM
q → Zq for any M ∈ N and M puzzles z1, . . . , zM . The output is a

puzzle z.
BatchSolve(pp, a, z): The algorithm is deterministic and takes as input the public parameters pp, a

state a and a puzzle z. The output is information h.

Next, we define correctness for batched homomorphic time-lock puzzles. Specifically, we require
three properties: if we generate a puzzle hiding a messagem, its resolution returnsm; if we evaluate a
linear function F on puzzles with the same time parameter hiding messages m1, . . . ,mM , we obtain
a third puzzle hiding the message F (m1, . . . ,mM ); if we batch-solve L time-lock puzzles with time
parameters T1, . . . , TL and hiding messages m1, . . . ,mL, we obtain m1 + · · ·+mL.

Definition 44 (Correctness). We say that a batched homomorphic time-lock puzzle scheme
BHTLP = (Setup,Gen,Solve,BatchSolve) is correct if, for every λ, t1, . . . , tL ∈ N, we have the
following properties

44



– For every i ∈ [L], pair (pp, q) in the support of Setup(1λ, 1t1 , . . . , 1tL), m ∈ N and random string
r ∈ {0, 1}∗, it holds that

Pr
[
z ←$ Gen(1λ, i, pp,m; r) : Solve(pp, z) ≡ m mod q

]
= 1.

– For every i ∈ [L], pair (pp, q) such that (pp, q) is in the support of Setup(1λ, 1t1 , . . . , 1tL), linear
function F : ZM

q → Zq, values m1, . . . ,mM ∈ N and random strings r1, . . . , rM ∈ {0, 1}∗, there
exists a random string r ∈ {0, 1}∗ such that

Eval(pp, f, z1, . . . , zM ) = Gen(1λ, i, pp, F (m1, . . . ,mM ); r),

where, for every j ∈ [M ], zj = Gen(1λ, i, pp,mj ; rj).
– For every m1, . . . ,mL ∈ N, it holds that

Pr


(pp, q)←$ Setup(1λ, 1t1 , . . . , 1tL)

∀i ∈ [L] : zi ←$ Gen(1λ, i, pp,mi)

a0 ← ⊥
∀i ∈ [L] : ai ← BatchSolve(pp, ai−1, zi)

: aL ≡
L∑
i=1

mi mod q

 = 1.

As for randomness beacons, we define the efficiency of batched homomorphic time-lock puzzles
with respect to circuit classes C1 ⊆ C2, C3: the generation and addition algorithms belong to the
class of quickly computable circuits C1, whereas Solve and BatchSolve belong to the slower classes
C2 and C3.

Definition 45 (Efficiency). We say that a batched homomorphic time-lock puzzle scheme
BHTLP = (Setup,Gen,Solve,Eval,BatchSolve) is (C1, C2, C3)-efficient if Gen,Eval ∈ C1, Solve ∈ C2
and BatchSolve ∈ C3.

Finally, we formalise security by providing a game based definition parametrised by a batch size
L, a time-parameter function t and a sequence of adversarial classes C := (Ci)i∈N. At the beginning
of the game, we provide the adversary with the public parameters of the time-lock puzzle, asking
it to choose two message m0 and m1, an index i ∈ [L] and the code of a circuit C ∈ Ci. We feed C
with a time-lock puzzle with time parameter Ti :=

∑L
j=i t(j). The adversary wins if C is capable

of distinguishing whether the puzzle hides m0 or m1. In other words, the game ensures that the
message in a puzzle with time parameter Ti is inaccessible to all adversaries in Ci.

Definition 46 (Security). Let Ci = (Ci,λ)λ∈N be a product circuit class for every i ∈ N. Let
C := (Ci)i∈N. Let t : N × N → N be a function. Finally, let L(λ) be a polynomial function
in the security parameter. Consider a batched homomorphic time-lock puzzle scheme BHTLP =
(Setup,Gen,Solve,Eval,BatchSolve). We say that an adversary A is (BHTLP, C, L, t)-consistent if,
for every sufficiently large λ ∈ N,

Pr

[
(pp, q)←$ Setup(1λ, 1t(1,λ), . . . , 1t(L(λ),λ))

(m0,m1, i,A′)←$A(1λ, pp, q)
: A′ ∈ Ci,λ

]
= 1.

We say that BHTLP is (C, L, t)-secure if, for every (BHTLP, C, L, t)-consistent PPT adversary
A, it holds that

AdvBHTLP-SEC,L,tBHTLP (A) :=
∣∣∣∣Pr[ExpBHTLP-SEC,L,tA,BHTLP (1λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

where experiment ExpBHTLP-SEC,L,tA,BHTLP is specified in Figure 14.
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ExpBHTLP-SEC,L,t
A,BHTLP (1λ)

1 : (pp, q)←$ Setup(1λ, 1t(1,λ), . . . , 1t(L(λ),λ))

2 : (m0,m1, i,A′)←$A(1λ, pp, q)
3 : b←$ {0, 1}

4 : z ←$ Gen(1λ, i, pp,mb)

5 : b′ ←$A′(z)

6 : return b = b′

Fig. 14. Batched homomorphic time-lock puzzle security game BHTLP-SEC.

Observe that the setup algorithm of batched homomorphic time-lock puzzles outputs also the
modulus q describing the group Zq over which the primitive is homomorphic. Now, in some in-
stantiations of the primitive, q is an RSA modulus. It is not hard to imagine applications of this
particular construction in contexts in which it is important that the factorisation of q remains
secret. How can we be sure that the setup of the time-lock puzzle, which generated q in the first
place, does not leak such factorisation or any other information that can compromise the security
of the whole system?

The below definition tries to formalise the needed property. Let D be a distribution over the
moduli q. We say that the batched homomorphic time-lock puzzle makes black-box group usage
with respect to D if the output of Setup can be efficiently simulated given a modulus q sampled
according to D.

Definition 47 (Black-box group usage). Let D be a distribution. We say that a batched ho-
momorphic time-lock puzzle BHTLP = (Setup,Gen,Solve,Eval,BatchSolve) makes black box use of
the group with respect to D if there exists a PPT simulator Sim such that, for every adversary
A = (A0,A1) ∈ poly(λ)× poly(λ), it holds that

AdvBBG,DBHTLP,Sim(A) :=
∣∣∣∣Pr[ExpBBG,DA,BHTLP,Sim(1

λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

where experiment ExpBBG,DA,BHTLP,Sim is specified in Figure 15.

ExpBBG,DA,BHTLP,Sim(1
λ)

1 : b←$ {0, 1}

2 : (t1, . . . , tL, ψ)←$A0(1
λ)

3 : (pp0, q0)←$ Setup(1λ, 1t1 , . . . , 1tL)

4 : (q1, aux)←$ D(1λ)

5 : pp1 ←$ Sim(1λ, 1t1 , . . . , 1tL , q1, aux)

6 : b′ ←$A1(ψ, ppb, qb)

7 : return b = b′

Fig. 15. Black-box group usage game BBG.
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Building Batched Homomorphic Time-Lock Puzzles. We show that the Paillier-based time-
lock puzzle of [MT19] is not only additively homomorphic but also a batched homomorphic time-
lock puzzle. Furthermore, the construction can be generalised to different settings: inspired by
[ADOS22, ADIN24, ARS24], we provide an algebraic framework over which it is possible to build
batched homomorphic time-lock puzzles following the blueprint of [MT19]. We call such framework
the DLOG framework. Among the various instantiations, we not only find the Paillier group but
also class groups. In this way, we manage to build batched homomorphic time-lock puzzles with a
transparent setup over any group Zq where q is a prime.

The DLOG framework consists of a multiplicative, abelian group G which can decomposed as
the direct product of subgroups F and H. The first subgroup, F , is cyclic, generated by an element
f of known order q. Furthermore, there exists an efficient algorithm for the computation of discrete
logarithms over F . The subgroup H, on the other hand, may not be cyclic and has unknown order.
Furthermore, discrete logarithms are hard to compute over H. The group G is also equipped with
an efficiently samplable distribution D.

Definition 48 (DLOG framework). The DLOG framework consist of a triple of PPT algorithms
(Setup,Gen,D,DLOG) with the following syntax:

Setup(1λ) : The algorithm takes as input the security parameter 1λ and outputs a positive integer
q.

Gen(1λ, q): The algorithm takes as input the security parameter 1λ and an integer q. The output
is groups G,H,F such that G = F ×H, an element f such that F = ⟨f⟩ and q = ord(f), an
integer ℓ and auxiliary information aux.

D(1λ, aux): The algorithm takes as input the security parameter 1λ and auxiliary information aux.
The output is a group element g and information ρ.

DLOG(h, aux): The algorithm is deterministic and takes as input h ∈ F and auxiliary information
aux. The output is a value m ∈ Zq.

We also require that, for every λ,m ∈ N, it holds that

Pr

q ←$ Setup(1λ)

(G,H,F, f, ℓ, aux)←$ Gen(1λ, q)

h← fm
: DLOG(h, aux) = m mod q

 = 1.

We highlight two facts: the generation algorithm outputs a positive integer ℓ. Such value will be used
to sample random exponents r ←$ [ℓ] so that gr, where (g, ρ)←$ D(1λ, aux), becomes unpredictable.
Notice that gr is not uniformly random as, in general, G ̸= ⟨g⟩ and ord(g) is unknown and different
from ℓ. The other observation concerns the information ρ output by D(1λ, aux) along with the
group element g. In many instantiations of the framework, ρ represents the randomness used to
sample g. Notice that sometimes (for instance, this is the case for class groups), the randomness ρ
is not simulatable from g. So, in order to make the sampling procedure D(1λ, aux) transparent, ρ
needs to be provided as part of the output.

We define the efficiency of the DLOG framework in terms of the depth of the circuit computing
the group multiplication and the size of the parameters q and ℓ.

Definition 49 (Efficiency in the DLOG framework). Let f0(λ), f1(λ) be functions of the
security parameter. We say that the DLOG framework DFW := (Setup,Gen,D,DLOG) is (f0, f1)-
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efficient if, for every λ ∈ N,

Pr

[
q ←$ Setup(1λ)

(G,H,F, f, ℓ, aux)←$ Gen(1λ, q)
: q, ℓ ≤ f0(λ)

]
= 1

and the computational depth of multiplications over G is upper bounded by f1(λ).

Finally, we describe the assumption we require in order to build batched homomorphic time-
lock puzzles over the framework. We call the assumption the (C, t)-time assumption, where C =
(Ci)i∈N denotes a sequence of adversarial circuit classes and t is function of the security parameter.
The assumption states that, for every polynomial function t = Ω(t) and adversary in Ct, the
tuples (g, ρ, gr, gr·2

t
) and (g, ρ, gr, fs · gr·2t), where (g, ρ) ←$ D(1λ, aux), r ←$ [ℓ] and s ←$ Zq, are

indistinguishable.

Definition 50 ((C, t)-time assumption). Let DFW := (Setup,Gen,D,DLOG) be a DLOG frame-
work. Let Ci = (Ci,λ)λ∈N be a product circuit class for every i ∈ N, and let C := (Ci)i∈N. Let t(λ)
be a function of the security parameter. We say that an adversary A is (DFW, C)-consistent if, for
every t, λ ∈ N, it holds that

Pr


q ←$ Setup(1λ)

(G,H,F, f, ℓ, aux)←$ Gen(1λ, q)

(g, ρ)←$ D(1λ, aux)

A′ ←$A0(1
λ, 1t, G,H, F, f, q, ℓ, aux, g, ρ)

: A′ ∈ Ct,λ

 = 1.

We say that the (C, t)-time assumption holds in the DLOG framework DFW if, for every
(DFW, C)-consistent PPT adversary A and polynomial function t = Ω(t(λ)), it holds that

AdvTIME,t
DFW (A) :=

∣∣∣∣Pr[ExpTIME,t
A,DFW(1λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

where experiment ExpTIME,t
A,DFW is specified in Figure 16.

We are finally ready to present how to build a batched homomorphic time-lock puzzle over
the DLOG framework. The idea is the same as in [MT19]: in the setup phase, we generate the
parameters for the group G = F × H and we sample an element g ∈ G. A puzzle with time
parameter T hiding a message m consists of a pair (x, y) := (gr, fm · gr·2T ) where r ←$ [ℓ]. Notice

that gT := g2
T
can be precomputed during the setup phase, so the generation of the puzzle is fast:

we require only O(log ℓ) group multiplications instead of O(T ) as fm · gr·2T = fm · grT . To retrieve

m, it is sufficient to compute DLOG(y/x2
T
) which requires O(T ) sequential group multiplications.

The idea is that under the time assumption of Def. 50, if T is sufficiently large, the message m
remains hidden from any computationally bounded adversary of depth o(T ).

It is easy to see that the scheme is linearly homomorphic: given α, β ∈ Zq, two puzzles (gr1 , fm1 ·
gr1·2

T
) and (gr2 , fm2 · gr2·2T ) can be quickly combined into another puzzle

(gα·r1+β·r2 , fα·m1+β·m2 · g(α·r1+β·r2)·2T )

by just raising the two pairs by α and β component-wise and then multiplying the results together.
As for the batched resolutions of puzzles (x1, y1) := (gr1 , fm1 · gr1·2T1 ), . . . , (xL, yL) := (grL , fmL ·
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ExpTIME,t
A,DFW(1λ)

1 : q ←$ Setup(1λ)

2 : (G,H,F, f, ℓ, aux)←$ Gen(1λ, q)

3 : (g, ρ)←$ D(1λ, aux)

4 : A′ ←$A0(1
λ, 1t(λ), G,H, F, f, q, ℓ, aux, g, ρ)

5 : b←$ {0, 1}
6 : r ←$ [ℓ]

7 : s←$ Zq

8 : x← gr

9 : y0 ← x2
t(λ)

10 : y1 ← fs · x2
t(λ)

11 : b′ ←$A′(x, yb)

12 : return b = b′

Fig. 16. Time assumption experiment for the DLOG framework.

grL·2
TL ), where T1 ≥ · · · ≥ TL, the operation can be performed in two steps: on one hand, we

compute

y = y1 · · · · · yL = fm1+...mL · gr1·2T1+···+rL·2TL ,

on the other, we compute

x =

(((x2T1−T2

1 · x2
)2T2−T3

· x3
)2T3−T4

· . . .

)2TL−1−TL

· xL


2TL

= gr1·2
T1+···+rL·2TL .

By computing DLOG(y/x), we obtain m1 + · · ·+mL at the cost of O(T1) group operations.

Theorem 10. Let DFW := (Setup,Gen,D,DLOG) be a DLOG framework and let d(λ), f0(λ), f1(λ),
t(λ), L(λ) be polynomial functions of the security parameter. Define Ci as Ci·d and C′i as Ci·d+f1+1.
Let C := (Ci)i∈N and C′ := (C′i)i∈N. Define the function t(i, λ) = t(λ).

If the (C′, t)-time assumption holds for a (f0, f1)-efficient DLOG framework DFW, the construc-
tion in Fig.17 is a batched homomorphic time-lock puzzle satisfying correctness, (Cf0·f1 , CL·t·f1 , Ct·f1)-
efficiency and (C, L, t)-security. Moreover, the scheme makes black-box group usage with respect to
DFW.Setup.

Proof. Our construction clearly makes black-box group usage with respect to DFW.Setup. We
start by proving the correctness of the batched homomorphic time-lock puzzle. We observe that

Gen(1λ, i, pp,m; r) outputs a triple z := (i, x, y) where x = gr and y = fm · gr·2(L(λ)−i+1)·t(λ)
.

Therefore, during the execution of Solve(pp, z), we obtain that

h = y · x−2(L(λ)−i+1)·t(λ)
= fm.

We conclude that the first correctness property is satisfied.
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Batched Homomorphic Time-Lock Puzzle

Setup(1λ, 1t1 , . . . , 1tL):
1. q ←$ DFW.Setup(1λ)
2. (G,H,F, f, ℓ, aux)←$ DFW.Gen(1λ, q)
3. (g, ρ)←$ DFW.D(1λ, aux)

4. ∀i ∈ [L] : gi ← g2
∑

j≥i tj

5. pp← (f, ℓ, aux, g, ρ, (g1, 1
t1), . . . , (gL, 1

tL))
6. Output pp and q.

Gen(1λ, i, pp = (f, ℓ, aux, g, ρ, (g1, 1
t1), . . . , (gL, 1

tL)),m):
1. r ←$ [ℓ]
2. x← gr

3. y ← fm · gri
4. Output z := (i, x, y)

Solve(pp = (f, ℓ, aux, g, ρ, (g1, 1
t1), . . . , (gL, 1

tL)), z = (i, x, y)):

1. h← y · x−2
∑

j≥i tj

2. Output DFW.DLOG(h, aux)
Eval(pp = (f, ℓ, aux, g, ρ, (g1, 1

t1), . . . , (gL, 1
tL)), F = (α1, . . . , αM ), z1 = (i, x1, y1), . . . , zM = (i, xM , yM )):

1. x← xα1
1 · · ·x

αM
M

2. y ← yα1
1 · · · y

αM
M

3. Output z := (i, x, y)
BatchSolve(pp = (f, ℓ, aux, g, ρ, (g1, 1

t1), . . . , (gL, 1
tL)), a = (a1, a2), z = (i, x, y)):

1. If a = ⊥, (a1, a2)← (1, 1)
2. h2 ← a2 · y
3. h1 ← (a1 · x)2

ti

4. If i = L, output DFW.DLOG(h1 · h−1
2 , aux)

5. Otherwise, output h := (h1, h2)

Fig. 17. Batched homomorphic time-lock puzzle
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Moving on to the second correctness property, we observe that, if F (m1, . . . ,mM ) = (α1 ·m1 +
· · ·+ αM ·mM , z1 = (i, x1, y1), . . . , zM = (i, xM , yM ), where

x1 = gr1 . . . xM = grM y1 = fm1 · gr1·2(L(λ)−i+1)·t(λ)
. . . yM = fmM · grM ·2(L(λ)−i+1)·t(λ)

,

the algorithm Eval(pp, F, z1, . . . , zM ) outputs a tuple (i, x, y) where

x = gα1·r1+···+αM ·rM and y = fα1·m1+···+αM ·mM · g(α1·r1+···+αM ·rM )·2(L(λ)−i+1)·t(λ)
.

Therefore, z = Gen(1λ, i, pp, F (m1, . . . ,mM ); r) where r = α1 · r1 + · · ·+ αM · rM .
Finally we prove the last correctness property. For every i ∈ [L(λ)], let zi := (i, xi, yi) be

the output of Gen(1λ, i, pp,mi). Observe that, for every i ∈ [L(λ)], there exists a ri such that

xi = gri and yi = fmi · g2(L(λ)−i+1)·t(λ)
. Now, recursively define ai = (ai,1, ai,2) as the output of

BatchSolve(pp, ai−1, zi) where a0 := ⊥. We claim that, for every i ∈ [L(λ)],

ai,1 =

i∏
j=1

grj ·2
(i−j+1)·t(λ)

and ai,2 = f
∑i

j=1 mj ·
i∏

j=1

grj ·2
(L(λ)−j+1)·t(λ)

(1)

It is easy to verify the claim for i = 1. Now, by induction suppose that the claim holds for i − 1.
We prove it for i. It is easy to see that ai,2 satisfies the second part of (1). As for ai,1, we observe
that

ai,1 = (ai−1,1 · xi)2
t(λ)

=
i−1∏
j=1

grj ·2
(i−j+1)·t(λ) · x2t(λ)i =

i−1∏
j=1

grj ·2
(i−j+1)·t(λ) · gri·2t(λ) =

i∏
j=1

grj ·2
(i−j+1)·t(λ)

We conclude by observing that aL(λ),2 · a−1
L(λ),1 = f

∑L(λ)
i=1 mi and ord(f) = q.

Since efficiency can be easily verified (we just need to apply exponentiation by squaring), we
focus on security. Suppose by contradiction that there exists a (BHTLP, C, L, t)-consistent PPT
adversary A that wins the (C, L, t)-security game with non-negligible advantage. We show how
to build a (DFW, C′)-consistent adversary B and a polynomial function τ = Ω(t(λ)) such that

AdvTIME,τ
DFW (B) is non-negligible.
We start by building τ . For every λ ∈ N, we define τ(λ) as j · t(λ) where j is the value in [L(λ)]

that maximises

δ(λ, j) :=

∣∣∣∣Pr[ExpBHTLP-SEC,L,tA,BHTLP (1λ) = 1, i = j]− 1

2
· Pr[i = j]

∣∣∣∣ .
Above, i denotes the index output by A in ExpBHTLP-SEC,L,tA,BHTLP (1λ). We observe that δ(λ, τ(λ)) is a
non-negligible function in λ. Indeed, L(λ) is polynomial and

AdvBHTLP-SEC,L,tBHTLP (A) ≤
L(λ)∑
j=1

δ(λ, j) ≤ L(λ) · δ(λ, τ(λ)).

We also observe that τ is polynomial as it is upper bounded by L(λ) · t(λ). Furthermore, τ is
Ω(t(λ)).

Next, we build B. Such adversary receives (G,H,F, f, q, ℓ, aux, g, ρ) from the challenger of

ExpTIME,τ
B,DFW(1λ). Then, it performs the following operations:
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1. ∀i ∈ [L(λ)] : gi ← g2
(L(λ)−i+1)·t(λ)

2. pp← (f, ℓ, aux, g, ρ, (g1, 1
t1), . . . , (gL, 1

tL))
3. (m0,m1, i,A′)←$A(1λ, pp, q)

Finally, it outputs the adversary B′ defined as follows. If i ̸= τ(λ), on input a pair of group elements
(x, y), B′ outputs a uniformly random bit. Otherwise, it performs the following operations:

1. b←$ {0, 1}
2. yb ← fmb · y
3. b′ ← A′(i, x, yb)
4. If b = b′, B′ outputs 0, otherwise, it output 1.

We notice that B is (DFW, C′)-consistent. Indeed, the first two operations performed by B′ require
depth f1(λ) (f

mb can be precomputed by B, so we just need to perform a multiplication). The third
step requires depth at most i · d(λ) as A′ ∈ Ci,λ. Finally, the last step has depth 1.

Concerning the advantage of B, we observe that, when y = fs·x2t(λ) and i = τ(λ), the probability
that b = b′ is exactly 1/2 (yb is independent of b). So, the probability that B wins the game if

y = fs · x2t(λ) is 1/2. If instead y = x2
t(λ)

, the probability that B wins the game is 1/2 when
i ̸= τ(λ), and 1/2 + δ(λ, τ(λ))/Pr[i = τ(λ)] or 1/2 − δ(λ, τ(λ))/Pr[i = τ(λ)] when i = τ(λ). We

conclude that AdvTIME,τ
DFW (B) = δ(λ, τ(λ))/2. Since this is a non-negligible amount, we reached a

contradiction. ⊓⊔

Randomness Beacon from Batched Homomorphic Time-Lock Puzzles. We finally show
how it is possible to improve the randomness beacon described at the beginning of this section
thanks to batched homomorphic time-lock puzzles.

Modified oracle queries and homomorphic puzzles. We start by modifying the construction in Fig.
13, changing the oracle queries producing the beacon’s output: instead of querying the concatenation
of the solutions of the puzzles in the last T blocks, we instead query their addition over Zq. In order
to avoid replay attacks, if there exist indexes j < i among the last T published blocks such that
Bi = Bj , we ignore Bi. Furthermore, we rely on a simulation-extractable NIZK to make the locks
non-malleable. We observe that the linearly homomorphic properties of the puzzles immediately
give us a way to retrieve the each beacon output at the costs of a single puzzle resolution: we
just homomorphically combine all puzzles in honestly generated blocks (i.e. those where the NIZK
verifies and that are not duplicates of previous blocks) and we solve the resulting object.

Security. Notice that the adversary is not able to bias the beacon’s outputs as long as there is at
least one honest block every T blocks and the time parameters of the puzzles are chosen sufficiently
large: in order to bias the output, the adversary would need to solve the puzzle published in the
last block generated by an honest party. The operation is however slow enough that, by the time
the adversary finishes, the honest parties have already managed to publish other T − 1 blocks. In
other words, by the time the adversary solves the puzzle, all beacon’s outputs depending on its
solution have already been fixed.

Efficient computation of proofs of correct evaluation. We have seen how the homomorphic properties
of the puzzles and the modified oracle queries allowed us to obtain every beacon’s output at the cost
of a single puzzle resolution. However, what about the quickly verifiable proof of correct evaluation?
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If we use generic commitments as in the construction in Fig. 13, the proof would need to include T
openings containing the solutions of the T puzzles in the last T blocks. In other words, in order to
obtain them proof of correct evaluation, we would still need to solve T puzzles. We solve this issue
by using a commitment scheme that is additively homomorphic over Zq with respect to both the
the values and the openings. In other words, two commitments c1 and c2 with openings (s1, v1) and
(s2, v2) can be quickly combined into a commitment c3 with opening (s1+s2 mod q, v1+v2 mod q).
Notice that if q is a prime (this is for instance the case if we instantiate the puzzles using class
groups), we can rely on Pedersen commitments. In other words, by solving the addition of the puzzles
in the last T blocks, we obtain the value and the relative opening of the sum of the commitments in
the last T blocks: in conclusion, we obtain each beacon’s output and a proof of correct evaluation
at the cost of a single puzzle resolution.

Decreasing the delay. In the construction in Fig. 13, the honest parties discover the beacon outputs
with a delay of at least T blocks. We wonder: is it possible to decrease this delay? We show that the
answer is yes. Our idea is the following: in each block Bi, we now include T time-lock puzzles hiding
independently sampled secrets (the puzzles are juxtaposed with equally as many commitments to
the secrets). The solution to the j-th puzzle in Bi will only contribute to the derivation of the j-th
beacon output after the publication of Bi (i.e. ri+j−1). We therefore choose the time parameter of
the j-th puzzle so that the adversary cannot find the solution before Bi+j−1 is published. Indeed,
once Bi+j−1 is published, the adversary cannot bias the beacon output ri+j−1 anymore as its value
is fixed.

To summarise, the T puzzles in Bi will be generated with increasing time parameters. Fur-
thermore, every beacon’s output is obtained by solving for the addition of the solutions of T
time-lock puzzles with different time parameters. Notice that since we rely on a batched homomor-
phic time-lock puzzle, each beacon’s output and the corresponding correctness proof have the same
computational complexity as the resolution of a single time-lock puzzle. Moreover, the delay with
which the honest parties learn the outputs is smaller: we can now choose the time parameters of
the puzzles so that the honest parties obtain the sum of the solutions necessary for ri soon after the
block Bi is published. Notice, however, that we still need to pay attention that the time parameters
are large enough to prevent the adversary from solving any of the T puzzles before Bi is published.

Theorem 11. Let T (λ), t(λ), f(λ), f0(λ), f1(λ), f2(λ), f3(λ), f4(λ) be polynomial functions in the
security parameter. Suppose that f1(λ) = ω(log λ) and f3(λ) = Ω(f1(λ)). For every i ∈ N, let
Ci := Ci·f0 and define C := (Ci)i∈N.

Let BHTLP = (Setup,Gen, Solve,Eval,BatchSolve) be a (Cf1 , Cf2 , Cf3)-efficient, (C, T, t)-secure
batched homomorphic time-lock puzzle. Let C = (D,Setup,Commit,Check) be a hiding and bind-
ing, strongly homomorphic commitment. Suppose that BHTLP makes black-box group usage with
respect to C.D. Suppose also that the modulo q generated by C.D is ω(log λ)-bit long. Let NIZK be a
simulation-extractable NIZK for the relation

R :=



(λ, (zj , z
′
j , cj)j∈[T ], pp

′, ω), (sj , vj , uj,0, uj,1, u
′
j,1)j∈[T ]

∀j ∈ [T (λ)] : (cj , vj) = C.Commit(ω, sj ;uj,0)

∀j ∈ [T (λ)] : zj = BHTLP.Gen(1λ, j, pp′, sj ;uj,1)

∀j ∈ [T (λ)] : z′j = BHTLP.Gen(1λ, j, pp′, vj ;u
′
j,1)


53



Randomness Beacon from Homomorphic Time-Lock Puzzles

Setup(1λ):
1. σ ←$ NIZK.Setup(1λ)
2. (pp′, q)←$ BHTLP.Setup(1λ, 1t(λ)·T (λ))
3. ω ←$ C.Setup(1λ, q)
4. Output pp := (pp′, σ, ω).

Gen(pp = (pp′, σ, ω)):
1. ∀j ∈ [T ] : sj ←$ Zq

2. ∀j ∈ [T ] : (cj , vj)←$ C.Commit(ω, sj ;uj,0)
3. ∀j ∈ [T ] : zj ←$ BHTLP.Gen(1λ, j, pp′, sj ;uj,1)
4. ∀j ∈ [T ] : z′j ←$ BHTLP.Gen(1λ, j, pp′, vj ;u

′
j,1)

5. π ←$ NIZK.Prove(σ, (λ, (zj , z
′
j , cj)j∈[T ], pp

′, ω), (sj , vj , uj,0, uj,1, u
′
j,1)j∈[T ])

6. Output B := ((cj , zj , z
′
j)j∈[T ], π)

Solve(pp = (pp′, σ, ω), k, B1 = ((cj,1, zj,1, z
′
j,1)j∈[T ], π1), . . . , BT = ((cj,T , zj,T , z

′
j,T )j∈[T ], πT )):

1. ∀i ∈ [T ] : bi ← NIZK.Verify(σ, (λ, (zj,i, z
′
j,i, cj,i)j∈[T ], pp

′, ω), πi)
2. ∀i < j such that Bi = Bj , set bj ← 0
3. S ← {i|bi ̸= 0}
4. ∀i ∈ [T ] \ S : zi,i ← BHTLP.Gen(1λ, i, pp′, 0; 0)
5. ∀i ∈ [T ] \ S : z′i,i ← zi,i
6. a0 ← ⊥
7. a′0 ← ⊥
8. ∀i ∈ [T ] : ai ← BHTLP.BatchSolve(pp′, ai−1, zi,i)
9. ∀i ∈ [T ] : a′i ← BHTLP.BatchSolve(pp′, a′i−1, z

′
i,i)

10. s← aT
11. v ← a′T
12. Output r := H(k ∥ s) and w := (s, v).

FastSolve(pp = (pp′, σ, ω), k, T,B = ((cj , zj , z
′
j)j∈[T ], π), aux = ((ak−1,1, a

′
k−1,1, B1), . . . , (ak−1,T , a

′
k−1,T , BT−1)):

1. b← NIZK.Verify(σ, (λ, (zj , z
′
jcj)j∈[T ], pp

′, ω), π)
2. If ∃i ∈ [T − 1] such that B = Bi, set b← 0
3. If b = 0, ∀j ∈ [T ] : zj ← BHTLP.Gen(1λ, j, pp′, 0; 0)
4. If b = 0, ∀j ∈ [T ] : z′j ← zj
5. ak−1,0 ← ⊥
6. a′k−1,0 ← ⊥
7. ∀j ∈ [T ] : ak,j ← BHTLP.BatchSolve(pp′, ak−1,j−1, zj)
8. ∀j ∈ [T ] : a′k,j ← BHTLP.BatchSolve(pp′, a′k−1,j−1, z

′
j)

9. s← ak,T
10. v ← a′k,T
11. aux′ ← ((ak,0, a

′
k,0, B2), . . . , (ak,T−2, a

′
k,T−2, BT−1), (ak,T−1, a

′
k,T−1, B))

12. Output r := H(k ∥ s), w := (s, v) and aux′.
Verify(pp = (pp′, σ, ω), k, B1 = ((cj,1, zj,1, z

′
j,1)j∈[T ], π1), . . . , BT = ((cj,T , zj,T , z

′
j,T )j∈[T ], πT ), r, w = (s, v)):

1. ∀i ∈ [T ] : bi ← NIZK.Verify(σ, (λ, (zj,i, z
′
j,i, cj,i)j∈[T ], pp

′, ω), πi)
2. ∀i < j such that Bi = Bj , set bj ← 0
3. S ← {i|bi ̸= 0}
4. ι← minS
5. c← cι,ι
6. ∀i ∈ S \ {ι} : c← C.Add(ω, c, ci,i)
7. b′ ← C.Check(c, s, v)
8. If r = H(k ∥ s), output b′. Otherwise, output 0.

Fig. 18.
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Suppose that C.Commit, C.Add, C.Check, NIZK.Prove, NIZK.Verify ∈ Cf1. Suppose also that the depth
of NIZK.Ext is upper-bounded by f1(λ) and the depth of NIZK.Sim2 is upper-bounded by f4(λ). Then,
if the f0(λ) = f(λ) ·ω(log λ)+f1(λ)+f4(λ)+ω(log λ), the construction in Fig. 18 is a randomness
beacon satisfying completeness, correctness, soundness, (Cf1 , CT ·f3 , Cf3)-efficiency and (Cf , T, T )-
simulation security in the programmable random oracle model.

Proof. We start our proof by considering two hybrids.

Hybrid 0. This correspond to the original randomness beacon described in Fig. 18.

Hybrid 1. In this hybrid, we change the distribution of the setup of the randomness bea-
con: instead of computing (pp′, q) using BHTLP.Setup, we sample q ←$ C.D(1λ) and pp′ ←$

BHTLP.Sim(1λ, 1t(λ)·T (λ), q). Observe that the distribution of the public parameters of the ran-
domness beacon in Hybrid 1 is computationally indistinguishable from the original one.

We show the completeness and correctness of the construction. Consider T blocks B1, . . . , BT

generated according to Gen(pp) where pp ←$ Setup(1λ). Let (sj,i, vj,i)j∈[T ] be the values hidden
in the time-lock puzzles (zj,i, z

′
j,i)j∈[T ] in the block Bi. Notice that for every i, j ∈ [T ], the pair

(sj,i, vj,i) is an opening of cj,i. We observe that with overwhelming probability Bi ̸= Bj for every
i ̸= j. Furthermore, thanks to the completeness of NIZK, all the NIZKs in the T blocks verify. So,
during the execution of Solve(pp, k, B1, . . . , BT ), the set S coincides with [T ]. Therefore, by the
correctness of the batched homomorphic time-lock puzzle, we obtain that w = (s, v) is such that
s = (s1,1 + s2,2 + · · ·+ sT,T ) mod q and v = (v1,1 + v2,2 + · · ·+ vT,T ) mod q. By the correctness of
the strongly homomorphic commitment, we conclude that, in Hybrid 1, (s, v) is a valid opening
of the commitment c computed during the execution of Verify(pp, k, B1, . . . , Bt, r, w). Since Hybrid
1 is indistinguishable from the original construction, the same must hold also in Hybrid 0 with
overwhelming probability. Completeness therefore follows from the fact that Solve(pp, k, B1, . . . , BT )
output r = H(k ∥ s).

Correctness can be easily verified: let B1, . . . , BM be a sequence of blocks. Let k ∈ [M ] be
an index greater than T . We observe that the value ai computed in the execution of Solve(pp, k,
Bk−T+1, . . . , Bk) coincides with the value ak−T+i,i computed by FastSolve(pp, k− T + i, T,Bk−T+i,
aux). This can be easily be verified by induction over i. In a similar way, the value a′i computed
in the execution of Solve(pp, k, Bk−T+1, . . . , Bk) coincides with the value a′k−T+i,i computed by
FastSolve(pp, k − T + i, T,Bk−T+i, aux).

Moving on to soundness, suppose that there exists a PPT adversary capable of generating, with
non-negligible probability, an index k, blocks B1, . . . , BT and values r, w such that Verify(pp, k, B1,
. . . , BT , r, w) = 1 but r is different from the value output by Solve(pp, k, B1, . . . , BT ). We consider
a new hybrid.

Hybrid 2. In this hybrid we change the distribution of the setup of the randomness beacon:
instead of generating σ suing NIZK.Setup(1λ), we generate using NIZK.Sim1(1

λ). Along with σ, this
algorithm provides us with a trapdoor ζ. We also change the verification and solving algorithm. For
every, i ∈ [T ], instead of computing NIZK.Verify(σ, (λ, (zj,i, z

′
j,i, cj,i)j∈[T ], pp

′, ω), πi), we compute

NIZK.Ext(ζ, (λ, (zj,i, z
′
j,i, cj,i)j∈[T ], pp

′, ω), πi).

If the extraction of the witness fails, we set bi ← 0, otherwise, we set bi ← 1.

By the simulation extractability of the NIZK, Hybrid 2 is computationally indistinguishable
from Hybrid 0. So, soundness is broken even in such setting. Now, consider the evaluation of
Verify(pp, k, B1, . . . , BT , r, w) = 1 in Hybrid 2 and let (si,j , vi,j , uj,0, uj,1, u

′
j,1)j∈[T ] be the witness
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extracted from the NIZK πi for every i ∈ S. Let E be the event in which s ̸= s′ where w =
(s′, v′) and s =

∑
i∈S si,i mod q. Define v =

∑
i∈S vi,i. By the strong binding property of the

commitment scheme C, the probability of the event E is negligible. Indeed, by the correctness of
the commitment, C.Check(ω, c, s, v) = 1. Moreover, with non-negligible probability, the adversary
would generate (s′, v′) such that C.Check(ω, c, s′, v′) = 1 and s′ ̸= s. We conclude that s′ = s
with overwhelming probability. By the correctness of the batched homomorphic time-lock puzzle,
in Hybrid 2, Solve(pp, k, B1, . . . , BT ) outputs (s, v). The last check performed in the randomness
beacon verification ensures soundness.

The efficiency of the construction can be easily verified. Notice indeed that Cf1 , CT ·f3 , Cf3 are
nicely closed classes. Furthermore, we observe that while Solve needs to run BHTLP.BatchSolve in
series, FastSolve can parallelise the procedure. For this reason, the depth of Solve turns out to be
T times larger than the depth of FastSolve.

Finally, we focus on simulation security. We consider the simulator Sim = (Sim0,Sim1,SimRO)
defined as follows:

– Sim0(1
λ):

1. (σ, ζ)←$ NIZK.Sim1(1
λ)

2. q ←$ C.D(1λ)
3. pp′ ←$ BHTLP.Sim(1λ, 1t(λ)·T (λ), q)
4. ω ←$ C.Setup(1λ, q)
5. Output pp := (pp′, σ, ω) and ϕ = (1λ, q, pp′, σ, ω, ζ)

– Sim1(ϕ = (1λ, q, pp′, σ, ω, ζ, (j, r1j , sj , vj)j<i+T−1), Bi, r):

• If Bi = ⊥:
1. ∀j ∈ [T (λ)] : sj,i ←$ Zq

2. ∀j ∈ [T (λ)] : (cj,i, vj,i)←$ Commit(ω, sj,i)
3. ∀j ∈ [T (λ)] : zj,i ←$ BHTLP.Gen(1λ, j, pp′, sj,i)
4. ∀j ∈ [T (λ)] : z′j,i ←$ BHTLP.Gen(1λ, j, pp′, vj,i)
5. πi ←$ NIZK.Sim2(ζ, (λ, (zj,i, z

′
j,i, ci,j)j∈[T ], pp

′, ω))
6. si+T−1 ← 0
7. vi+T−1 ← 0
8. r1i+T−1 ← ⊥
9. r1i ← r

10. ∀j ∈ [T (λ)] : si−1+j ← (si−1+j + sT+1−j,i) mod q
11. ∀j ∈ [T (λ)] : vi−1+j ← (vi−1+j + vT+1−j,i) mod q
12. Output B1

i := ((cj,i, zj,i, z
′
j,i)j∈[T ]πi), wi = (si, vi) and ϕ := (1λ, q, pp′, σ, ω, ζ,

(j, r1j , sj , vj)j≤i+T−1)

– If Bi = ((cj,i, zj,i, z
′
j,i)j∈[T ], πi) ̸= ⊥:

1. x := (sj,i, vj,i, uj,i,0, uj,i,1, u
′
j,i,1)j∈[T ] ← NIZK.Ext(ζ, (λ, (cj,i, zj,i, z

′
j,i)j∈[T ], pp

′, ω), πi)
2. If x = ⊥, ∀j ∈ [T (λ)] : (sj,i, vj,i)← (0, 0)
3. si+T−1 ← 0
4. vi+T−1 ← 0
5. r1i+T−1 ← ⊥
6. r1i ← r
7. ∀j ∈ [T (λ)] : si−1+j ← (si−1+j + sT+1−j,i) mod q
8. ∀j ∈ [T (λ)] : vi−1+j ← (vi−1+j + vT+1−j,i) mod q
9. Output wi = (si, vi) and ϕ := (1λ, q, pp′, σ, ω, ζ, (j, r1j , sj , vj)j≤i+T−1)
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– SimRO(ϕ, x̂) rewrites x̂ as a string (i ∥ s′i). Then, it retrieves the tuple (i, r1i , si, vi) stored in ϕ.
Finally, if si = s′i, the algorithm outputs r1i . In all other cases, including when one of the above
procedures fails, the algorithm outputs a random string in {0, 1}L(λ).

We consider a new hybrid.

Hybrid 3. In this hybrid we change the distribution of the honestly generated blocks: instead
of generating the NIZKs π using NIZK.Prove, we rely on NIZK.Sim2. This hybrid is computationally
indistinguishable from Hybrid 2 thanks to the zero-knowledge property of the NIZK.

Now, we define the event E1 in which the adversary publishes a block where the corresponding
NIZK verifies but the extraction of the witness fails. By the simulation extractability of the NIZK,
the probability of the event E1 occurring is negligible. Along with the correctness of BHTLP and C,
this guarantees that the proofs wi given to the adversary are consistent with the published blocks
with overwhelming probability.

Now, we define the event E2 as the event in which the adversary queries a tuple (i ∥ s) to the
random oracle, where wi = (s, v), before the block Bi is published.

We observe that the adversary can distinguish between Hybrid 3 and the ideal world execution
of the security game (i.e. when b = 1) if and only if the probability of E2 is non-negligible. Notice
that the probability of E2 in the two worlds are the same except for a negligible amount. Suppose
that the probability of E2 in the ideal world is non-negligible. Since the adversary halts after a
polynomial number of executions of the procedure New Block, there exists an index iλ such that
there exists a non-negligible probability that the adversary queries (iλ ∥ s) to the random oracle,
where wiλ = (s, v), before the block Biλ is revealed. We call any of these queries bad queries. Let
h be the highest index such that Bh is honestly generated and h ≤ iλ. Since the adversary is
T -respecting, we know that h ≥ iλ − T (λ) + 1.

We consider two new hybrids.

Hybrid 4. In this hybrid, we change the distribution of the time-lock puzzles zT−i+h,h and
z′T−i+h,h in block Bh. Specifically, we generate both of them using BHTLP.Gen(1λ, T − i+h, pp′, 0).
We observe that, since E2 can be verified in depth f4(λ)+(i−h) ·f(λ) ·O(log λ)+(i−h) ·f1(λ)+(i−
h) · O(log λ) since the generation of zT−i+h,h and z′T−i+h,h (notice that this depth is smaller than
(i − h) · f0(λ) for sufficiently large λ), the probability of the event E2 must still be non negligible
thanks to the (C, T, t)-security of the batched homomorphic time-lock puzzle8.

Hybrid 5.In this hybrid, we change the distribution of the commitment cT−i+h,h in the block
Bh. Specifically, instead of committing to sT−i+h,h, we commit to 0. Hybrid 5 is computationally
indistinguishable from Hybrid 4 thanks to the hiding property of the commitment scheme. This
implies that the probability of the event E2 is still non-negligible.

We reach a contradiction: the adversary receives no information about sT−i+h,h, so the proba-
bility that it guesses si =

∑
j∈[T ] sT−j+1,i−j+1 is negligible in λ. ⊓⊔

Acknowledgements. The initial version of this work contained an additional result about a
construction of fully homomorphic time-lock puzzles. It was pointed out to us by Nico Döttling
that the exact same construction we proposed, had already appeared in prior work by Brakerski et
al. [BDGM19]. For this reason, we have removed this part of the paper.

8 f(λ) is multiplied by O(log λ) due to the depth of the operations computed by SimRO for each oracle query.
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