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Abstract

Witness encryption (WE) allows a ciphertext to be encrypted under
an NP problem such that anyone holding a valid witness for that problem
can decrypt it (flexible decryptors), without interaction with others (non-
interaction). However, existing schemes are either impractical or achieve
only a part of these WE features. We propose a novel WE scheme that
1) is based on bilinear maps such as pairings, 2) achieves the property
of flexible decryptors, and 3) still requires the decryptor’s communication
with a trusted signer, who only performs a fixed amount of computa-
tion and communication at regular intervals, regardless of the number of
ciphertexts. It provides extractable security and can be extended to a
threshold multiple signers setting, avoiding reliance on a single signer. As
a significant application of our WE scheme, we build a novel one-time
program (OTP) scheme in which the signers’ computational and commu-
nication costs remain constant, independent of the number of OTPs to be
evaluated simultaneously. This feature ensures scalable OTP evaluations
without risking decreased signer participation or compromised decentral-
ization due to increased operational costs for the signers.

1 Introduction

Witness encryption (WE) [GGSW13] generalizes the concept of public key en-
cryption (PKE). In this scheme, an encryptor encrypts a message under an
instance x of an NP language L, which serves the role typically played by a
public key. A decryptor can decrypt the ciphertext if the decryptor possesses
a witness ω for x, which fulfills the role usually reserved for a private key. A
key feature of this scheme is that the encryptor is not required to specify the
decryptor or the witness to be used; any holder of a valid witness can decrypt
the ciphertext. Moreover, the decryptor does not need to interact with the
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encryptor during decryption. Leveraging these two features of WE, we can
build strong cryptographic primitives without the need for indistinguishabil-
ity obfuscation (iO) [GVW19, FNV17, FWW23]. Besides, a combination of
WE and blockchain allows novel applications that disclose secrets only when
a specific future event occurs, e.g., time-lock encryption (TLE) [LJKW18] and
one-time programs (OTPs) [GG17]. Especially, OTPs extend the functionality
of WE from simply encrypting messages to evaluating secret functions, allow-
ing the decryptor to evaluate a secret circuit only once with the decryptor’s
arbitrary input without revealing the circuit [GG17, SH23]. However, although
most of these applications require WE to handle complex conditions for de-
cryption, all of the WE schemes supporting any NP language rely on ineffi-
cient cryptographic schemes or not well-studied assumptions such as multilin-
ear maps [GGSW13, GLW14, GKP+13, ULCG21], iO [AFP16, CJK20], affine
determinant programs [BIJ+20], and not well-established variants of LWE as-
sumption [VWW22, Tsa22].

Interestingly, some WE schemes have been proposed built from practical
and well-studied cryptographic tools, specifically bilinear maps, at the cost of
significantly restricting the supported NP languages. We categorize these into
two categories: commitment-based WE (CWE) [DS18, BL20, CDK+22, CFK24,
FHAS24] and signature-based WE (SWE) [DHMW23, MTV+22]. In the CWE
scheme, the encryptor encrypts a message for the commitment of the decryp-
tor’s input, and the decryptor can decrypt the ciphertext if the input meets
the specified conditions [BL20]. The decryptor does not need to interact with
the encryptor at the time of decryption if they provide their commitment for
the encryptor beforehand. Notably, the size of the commitment in some CWE
schemes [FHAS24, CFK24] remains constant regardless of the input size. How-
ever, the decryption requires the randomness used to generate the commitment
as part of the witness, which restricts decryption to one who created the com-
mitment.

In the SWE scheme, the encryptor encrypts a secret message by specifying
the verification key of a digital signature scheme and the signing target, which
is the message to be signed [DHMW23, MTV+22]. The decryptor can then
decrypt the ciphertext using a valid signature for the specified verification key
and signing target. As a result, once the signature is available, anyone who
possesses the signature can decrypt the ciphertext. Moreover, if the signer, who
holds the signing key corresponding to the verification key, is different from the
encryptor, only interaction with the signer is necessary at the time of decryption.
This means that there is no need for the encryptor to communicate with the
decryptor after the ciphertext has been released. However, the computational
and communication costs for the signer are not scalable because the signer must
generate a signature on each signing target for which the ciphertext is generated.
In this way, no previous WE scheme built from bilinear maps requires only a
sublinear amount of communication for decryption and avoids specifying the
decryptor at the time of encryption.

Our question thus arises:
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Can we build WE from bilinear maps that allows decryption with a signature
while minimizing the signer’s computational and communication costs relative

to the number of signing targets?

Our Contribution: Yes, we can. We propose a WE scheme for a signa-
ture on a digest of multiple signing targets. Our scheme maintains the signer’s
computational and communication costs constant because the signer only needs
to sign the digest that has a constant size regardless of the number of signing
targets. Additionally, it provides extractable security, a stronger security def-
inition than that of standard WE [GKP+13]. Similar to CWE and SWE, our
construction relies only on bilinear maps, such as pairings, and standard cryp-
tographic schemes, specifically symmetric-key encryption (SKE), in the random
oracle model (ROM). We can extend its signature generation algorithm to a
threshold multiple signers setting, where decryption requires signatures from at
least a threshold number of signers.

By employing our WE scheme, we build trust-scalable OTPs (TSOTPs).
Specifically, to enable the evaluation of a polynomial number of OTPs gen-
erated by independent OTP generators, the signer only needs to perform a
fixed amount of computation and communication at regular intervals. No-
tably, this is the first OTP scheme where the computational and communi-
cation costs for trusted components prepared for OTPs, such as tamper-proof
hardware [GKR08, GIS+10, EGG+22] or nodes for OTP evaluations that are
assumed to be honest above a certain threshold [GKM+22, SH23], remain con-
stant regardless of the number of independent OTPs 1. This feature allows
the signer to simply operate a machine capable of performing a fixed amount
of computation and communication required for generating signatures on the
digest. Consequently, when threshold multiple signers are employed, even if
the number of evaluated OTPs increases, the operational costs of the signers’
machines is bounded. In other words, OTP evaluation can be scaled without
increasing the risk to reduce the number of signers and worsen decentralization.

2 Technical Overview

2.1 Review of Witness Encryption built from Bilinear Maps

Before explaining the construction of our scheme, we review common techniques
in the CWE and SWE schemes, which are built from bilinear maps [DS18, BL20,
CDK+22, CFK24, FHAS24, DHMW23, MTV+22]. Each scheme defines the
NP relation R that should be satisfied by the instance x and the witness ω as
a linear equation defined over bilinear groups bgλ = (p,G1,G2,GT , g1, g2, e).
Specifically, while a vector of elements in G2 and an element in GT , denoted

1One exception is an OTP scheme using blockchain proposed in [GG17]. However, it relies
on extractable witness encryption (EWE) for arbitrary NP languages, which might be infea-
sible because the only known constructions of such EWE are based on non-standard assump-
tions [GKP+13, ABG+13, BCP14], and it has been shown that EWE for general NP languages
may not be secure against adversaries with access to arbitrary auxiliary data [GGHW17].
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by [g]2 and [h]T respectively, only depends on x, a vector of elements in G1,
denoted by [f]1, is derived from ω. These satisfy the following condition:

(x, ω) ∈ R ⇔ e([f]1, [g]2) = [h]T

We call [f]1 valid for [g]2 and [h]T if the above equation holds.
Using [g]2 and [h]T , an encryptor can compute a common secret element in

GT such that only a decryptor who holds the [f]1 valid for the [g]2 and [h]T can
derive the same element later. In more detail, the encryptor samples a random
scalar s ←$ Fp and computes s[g]2 and s[h]T . They then encrypts a message
using a secret key derived from s[h]T and publishes s[g]2 and the ciphertext. If
the decryptor knows the valid [f]1, they should be able to derive the same s[h]T
as e([f]1, s[g]2) = s[h]T holds. Thus, the decryptor can recover the same secret
key to decrypt the ciphertext. However, an adversary without the valid [f]1
cannot achieve this. Informally, this is because the adversary cannot predict
s[h]T from [g]2 and [h]T due to the randomness s. In this way, the linearly
verifiable equation defined over bilinear groups can be easily extended to WE.

Notably, the WE for KZG commitments [KZG10] proposed in [FHAS24]
provides extractable security, which is a stronger form of the standard security
definition known as semantic security. While semantic security ensures that
an adversary cannot learn non-trivial information about the message from the
ciphertext if the instance used for the ciphertext is not in the NP language (i.e.,
no witness corresponds to the instance), extractable security ensures that an
adversary who can break the confidentiality of the ciphertext must be able to
provide a witness for the instance [GKP+13]. This stronger security is necessary
for some applications of WE, particularly OTPs, where the instance is in the
NP language but the adversary cannot obtain its witness in a realistic time-
frame [GG17]. The WE scheme in [FHAS24] achieves it by first constructing
extractable witness key encapsulation mechanism (EKEMs) and converting it
to EWE. Similarly, we apply the same techniques as those used in [FHAS24] to
our linear equation for verifying a signed vector digest.

2.2 Witness Encryption for Signed Vector Digests

The review in Subsection 2.1 suggests that our task in building a new WE
scheme from bilinear maps is to define a linear equation for the NP relation to
verify a signature on a digest of multiple signing targets. Recall that our goal is
to aggregate multiple signing targets into a constant-sized digest, requiring the
signer to sign only the digest. To achieve this, we define a signed vector digest
(SVD) scheme.

It is based on a vector commitment in [LY10] and its extension in [GRWZ20],
with three differences outlined below.

1. Unlike vector commitments, the SVD scheme does not ensure a hiding
property because anyone can test if a digest corresponds to a specific
vector2. However, the size of the digest is constant and independent of

2This is why the SVD scheme is not called commitment scheme.
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the vector size.

2. The SVD scheme includes a signing algorithm that uses a given signing
key to output a signature on the given digest.

3. The verification algorithm of the SVD scheme requires not only a signing
target in the digest and its opening but also a signature on the digest.
Specifically, the verification passes if and only if 1) the opening proves
that the given signing target is included in the digest at the given position
and 2) the same digest is signed with a signing key corresponding to the
given verifying key.

Additionally, we introduce the concept of time epochs, which is a counter
incremented by the signer each time a new digest is signed. Each signature is
associated with a specific time epoch t and can be verified with t. The signer
is assumed to generate only one signature per time epoch3. Thus, the signer is
stateful.

For simplicity, we first explain how the SVD scheme works in our WE scheme
when a single encryptor generates ciphertexts for all indexes of a n-sized signing
target vector and a signle decryptor specifies all signing targets. Let sk ∈ Zp

and vk = [sk]2 ∈ G2 be, respectively, the signer’s signing and verifying keys,
which have the same format as that of BLS signature [BLS04]. The encryptor
samples a trapdoor α ←$ Zp and derives an output of a random oracle (RO)
[rt]1 from vk and a time epoch t. Using them, it outputs a common reference
string (CRS) as below:

crs1 ← (([αi]1)i∈{1,...,n,n+2,...,2n}) ∈ G2n−1
1

crs2 ← (([αi]2)i∈{1,...,n}, vk) ∈ Gn+1
2

crsT ← ([v0]T = e([αn+1]1, vk), ([vi]T = e(αn+1−i[rt]1, vk))i∈{1,...,n}) ∈ Gn+1
T

When encrypting a message for a signing target Ti and its position index i ∈
{1, . . . , n}, the encryptor prepares the following vector [g]2 and element [h]T .

[g]2 ← ([αn+1−i]2,−vk)
[h]T ← Ti[v0]T + [vi]T

By applying techniques described in Subsection 2.1 to the above [g]2 and [h]T ,
the encryptor can generate a ciphertext that can be decrypted with a vector [f]1
satisfying e([f]1, [g]2) = [h]T .

The decryptor with n signing targets T = (T1, . . . , Tn) then aggregates them
into a digest digest and requests the signer to generate a signature sign for digest
and the time epoch t. Specifically, digest and sign are defined with the CRSs
and T as follows:

digest← [d]1 = Σj∈[n]Tj [α
j ]1 ∈ G1

sign← [σ]1 = sk([rt]1 + [d]1) ∈ G1

3In the threshold multiple signers setting, the same assumption is made for more than the
threshold number of signers.
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, where [rt]1 is the output of RO for vk and t. Notably, the signer’s computational
cost is constant regardless of n. To prove that Ti is included in digest at the
position i, the decryptor computes an opening openi:

openi ← [Wi]1 = Σj∈{1,...,i−1,i+1,...,n}Tj [α
n+1−i+j ]

You can see that [f]1 = ([σ]1, [Wi]1) satisfies the equation e([f]1, [g]2) = [h]T
as below:

e([f]1, [g]2)

=e([σ]1, [α
n+1−i]2) + e([Wi]1,−vk)

=[sk · rtαn+1−i]T + [sk · Σj∈{1,...,n}Tjα
n+1−i+j ]T − [sk · Σj∈{1,...,i−1,i+1,...,n}Tjα

n+1−i+j ]T

=Ti[sk · αn+1]T + [sk · rtαn+1−i]T

=Ti[v0]T + [vi]T

=[h]T

Thus, after receiving the signature [σ]1, the decryptor can decrypt a ciphertext
for any (i, Ti) such that Ti exists in the digest [d]1 at the position i.

However, an adversary cannot forge the valid [f]1 for [g]2 and [h]T cor-
responding to any (i, Ti) that is not included in the digest. Informally, since
[αn+1]1 is excluded from crs1, the adversary cannot make a term of Ti[sk·αn+1]T
without adding Ti to the signed digest. Besides, the adversary cannot obtain
any signature for the time epoch t before the signer outputs it because the adver-
sary cannot compute a term of [sk · rt]T , where rt is unique to each t, without
the signer’s help. These security features are defined as the binding and the
time-locking properties in Definitions 10 and 11, respectively. In this manner,
we can define the secure SVD scheme of which the verification is represented by
the linear equation.

2.3 Trust-Scalable One-Time Programs

Using the WE scheme defined for the SVD scheme, we construct trust-scalable
OTPs (TSOTPs), where the signer’s computational and communication costs
remain constant for each time epoch t, independent of the number of OTP
generators L and the input size n of the circuits to be evaluated. In a nutshell,
our OTP construction is based on that of [SH23], which is built from a garbled
circuit and SWE. However, we 1) replace SWE with our WE scheme and 2)
makes the OTP secure against an adaptive adversary who chooses the input
after seeing the OTP.

We first present the basic idea of our OTP construction, where the OTP is
secure only against a selective adversary who chooses the input before seeing
the OTP. For a circuit C with the input size n, the signer’s verifying key vk,
and the next time epoch t, the OTP generator generates a garbled circuit C̃ and
its garbled inputs (labi,b)i∈{1,...,n},b∈{0,1}, generates a CRS of the WE scheme
for vk and t, and encrypts each labi,b under i and b. It implies that the labi,b

6



can be recovered iff the input bit b is included in the signed digest as the i-th
siging target. The garbled circuit and these ciphertexts constitute the OTP,
formally referred to as the compiled circuit. Its evaluator chooses the n-sized
input T ∈ {0, 1}n, computes its digest, requests the signer to sign the digest,
decrypts each encryption of labi,Ti

, and evaluates the garbled circuit. This
construction prevents the evaluator from evaluating C on multiple inputs as
long as the signer signs a digest only once for each time epoch t.

Unfortunately, we cannot formally prove the adaptive security of the above
construction because a simulator, behaving as an honest generator, cannot know
the adaptive adversary’s circuit input when generating the compiled circuit. In
more detail, even the adaptively secure garbled circuit requires the simulator to
know the circuit output, depending on the circuit input, to generate a simulated
garbled input that is independent of the input [HJO+15]. However, the simu-
lator needs to complete all generation processes before the adaptive adversary
chooses the input in the above construction.

To fix this issue, we employ RO to allow the simulator to simulate the gar-
bled input after learning the adversary’s input in a manner similar to [BHR12].
Specifically, the simulator first samples 2n random bit strings (ri,b)i∈{1,...,n},b∈{0,1}
and outputs each ri,b instead of the encryption of the garbled input labi,b. Ad-
ditionally, it generates a secret key k and the corresponding ciphertext ct for
(n + 1, 0) with the EKEM scheme. The ct is added to the compiled circuit,
allowing the evaluator to recover the same k iff the evaluator holds a signature
for the time epoch t on the digest in which a signing target Tn+1 = 0 is included
at the position n+ 1.

After the adversary chooses the input T ∈ {0, 1}n, the simulator computes
a digest aggregating the n + 1 signing targets (T1, . . . , Tn, 0) ∈ {0, 1}n+1, and
the signer returns a signature on that digest. At the same time, the simulator

derives the simulated garbled input (lab
′

i)i∈[n] from the circuit output C(T),
and programs the RO for each i ∈ {1, . . . , n} as follows, where ℓ corresponds to
the generator’s index among multiple generators.

• Upon the input (k, ℓ, i, Ti), the RO outputs the XOR of ri,Ti
and the WE

encryption of the simulated garbled input lab
′

i.

• Upon the input (k, ℓ, i, 1 − Ti), the RO outputs the XOR of ri,1−Ti and
the WE encryption of a zero bit string 0.

As the inputs to the RO depend on the secret key k, which requires the signature
to be recovered, the adversary cannot obtain the RO outputs involving the
encryptions of the garbled inputs before submitting the circuit input. Therefore,
the adversary cannot distinguish this simulated case from a real case where the
compiled circuit contains the XOR of ri,b and the encryption of the real garbled
input labi,b for each i ∈ {1, . . . , n} and b ∈ {0, 1}, and the RO simply outputs ri,b
for the input (k, ℓ, i, b). Besides, in the simulated case, the simulator can output
the simulated garbled circuit that is independent of C instead of the real garbled
circuit because there is only the garbled input for T in the adversary’s view. In
this way, by modifying the selectively-secure OTP construction with the RO,
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we can prove that even the adaptive adversary cannot distinguish the real view
from the simulated view that does not reveal the non-trivial information about
C.

3 Preliminaries

3.1 Notations

Let N and R the sets of natural and real numbers, respectively. For n ∈ N, [n]
denotes a set of {1, . . . , n}, and [0] represents an empty set ∅. A vector and a
matrix are denoted by bold letters, e.g., a and A. For any n-length vector a
and its index i ∈ [n], ai represents the i-th component of a, and |a| is the length
of a. For any distribution X , x←$ X denotes that x is sampled from X .

Let λ be a security parameter. A function negl(λ) : N→ R is called negligi-
ble, if there exists n ∈ N for all constants c > 0 such that negl(λ) < λ−c holds
for all λ > n.

3.2 Bilinear Groups

For a security parameter 1λ, bilinear groups bgλ = (p,G1,G2,GT , g1, g2, e) are
defined by a tuple of a prime p, cyclic groups G1,G2,GT of order p, their
generators g1 ∈ G1, g2 ∈ G2, and a bilinear map e : G1 × G2 → GT that is
efficient and non-degenerat. A generator of GT is defined as gT = e(g1, g2).

We adopt the same bracket notation for group elements as in [CFK24]. That
is, for t ∈ {1, 2, T}, [a]t represents gat , and its scalar multiplication is denoted
by x[a]t = gxat . For every [a]1 and [b]2, the bilinear map e satisfies e([a]1, [b]2) =
[ab]T . All of G1, G2, and GT are assumed to be additive groups. For two
vectors with the same length [a]1 ∈ Gn

1 , [b]2 ∈ Gn
2 , e([a]1, [b]2) represents

Σi∈[n]e([ai]1, [bi]2). Similarly, for a matrix [A]1 ∈ Gn×m
1 and a vector [b]2 ∈ Gm

2 ,
e([A]1, [b]2) = [Ab]T holds.

In the following, we show some security assumptions defined over a group or
bilinear groups. They are employed to prove the security of our schemes.

Definition 1 (Hardness of Discrete Logarithm Problem (DLP)). For a group G
and its generator [1], the discrete logarithm problem (DLP) is said to be hard,
if for every PPT adversary A and a ∈ Fp,

Pr[a← A([1], [a])] < negl(λ)

holds.

Definition 2 is taken from [BFL20].

Definition 2 (Hardness of q-Discrete Logarithm Problem (q-DLP)). For a
group G and its generator [1], the q-discrete logarithm problem (q-DLP) is
said to be hard, if for every PPT adversary A and a←$ Fp,

Pr[a← A([1], [a], . . . , [aq])] < negl(λ)
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holds.

Definition 3 is based on a definition of a co-Diffie-Hellman problem with a
Type 3 pairing in [CHKM10].

Definition 3 (Hardness of co-Diffie-Hellman Problem (co-DHP)). For bilinear
groups bgλ = (p,G1,G2,GT , g1, g2, e), the co-Diffie-Hellman problem (co-DHP)
is said to be hard, if for every PPT adversary A, [a]1, [a]2, and [b]2,

Pr[[ab]2 ← A([1]1, [1]2, [a]1, [a]2, [b]2)] < negl(λ)

holds.

While a n-Diffie-Hellman exponent problem is initially defined with sym-
metric bilinear maps in [BBG05, BGW05], Definition 4 follows its extension to
asymmetric bilinear maps in [LPR22].

Definition 4 (Hardness of n-Diffie-Hellman Exponent Problem (n-DHEP)).
For bilinear groups bgλ = (p,G1,G2,GT , g1, g2, e), the n-Diffie-Hellman Expo-
nent Problem (n-DHEP) is said to be hard, if for every PPT adversary A and
α←$ Fp,

Pr
[
[αn+1]1 ← A([1]1, [1]2, [α]1, . . . , [αn]1, [α

n+2]1, . . . , [α
2n]1, [α]2, . . . , [α

n]2)
]
< negl(λ)

holds.

3.3 Algebraic Group Model

The security of our schemes is proven in the algebraic group model (AGM),
introduced in [FKL18]. This model allows an adversary to perform algebraic
operations on group elements but requires it to output coefficients to represent
its output group element as a linear combination of the given group elements.
Our formal definition of the AGM model is based on that of [CFK24], which
extends the original definition in [FKL18] to asymmetric bilinear groups.

Definition 5 (Algebraic Adversarie). Let bgλ = (p,G1,G2,GT , g1, g2, e) be
bilinear groups. A PPT adversaryA with input [x]1 ∈ Gn

1 , [y]2 ∈ Gm
2 , [z]T ∈ Gl

T

is said to be algebraic, if in addition to its outputs

[p]1 = ([p1]1, . . . , [pn′ ]1) ∈ G
′

1

[q]2 = ([q1]2, . . . , [qm′ ]2) ∈ G
′

2

[r]T = ([r1]T , . . . , [rl′ ]T ) ∈ G
′

T

A also provides coefficients (Ai,j)i∈[n′ ],j∈[n], (Bi,j)i∈[m′ ],j∈[m], (Ci,j,k)i∈[l′ ],j∈[n],k∈[m], (Di,j)i∈[l′ ],j∈[l]

such that the following equations hold:

∀i ∈ [n
′
], [pi]1 = Σj∈[n]Ai,j [xj ]1

∀i ∈ [m
′
], [qi]2 = Σj∈[m]Bi,j [yj ]2

∀i ∈ [l
′
], [ri]T = Σj∈[n],k∈[m]Ci,j,ke([xj ]1, [yk]2) + Σj∈[l]Di,j [zj ]T
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3.4 Symmetric-Key Encryption

We use the definition of a symmetric-key encryption scheme SKE for a key space
K and a message spaceM from Definition 10 in [FHAS24]. Notably, it assumes
that the key k is randomly sampled from K.

The SKE scheme defined for a key space K and a message spaceM consists
of the following algorithms:

• SKE.Enc(k,m)→ ct: it takes as input a key k ∈ K and a message m ∈M,
and outputs a ciphertext ct.

• SKE.Dec(k, ct) → m: it takes as input a key k ∈ K and a ciphertext ct,
and outputs a message m ∈M.

The SKE scheme is correct if for every λ ∈ N, k ∈ K, and m ∈ M, it holds
that

Pr[SKE.Dec(k, SKE.Enc(k,m)) = m] = 1

We require the SKE scheme to satisfy EAV-security, which is weaker than
IND-CPA security because the same key is used only for the encryption of the
challenge message in the EAV-security.

Definition 6 (EAV-Security of the SKE scheme). Let SKE = (Enc,Dec) be a
symmetric-key encryption scheme defined for a key space K and a message space
M. The SKE scheme is said to be EAV-secure, if for every security parameter
λ ∈ N and PPT adversary A,

Pr
[
EXPSKE-EAV

A (1λ) = 1
]
<

1

2
+ negl(λ)

holds, where the experiment EXPSKE-EAV
A (1λ) is defined as follows:

EXPSVD
A,OSign(1

λ)

1 : k ←$ K.
2 : (m0,m1)← A(1λ).
3 : b←$ {0, 1}.
4 : ct← SKE.Enc(k,mb).

5 : b
′
← A(ct).

6 : return b = b
′
.

3.5 Adaptively Secure Garbled Circuit

Our definition of an adaptively secure garbled circuit GC is based on Definition
1 in [HJO+15]. However, ours assumes that the garbled inputs are projective
in similar to Definition 7 of [EGG+22], that is, the garbled inputs can be de-
composed into parts each of which depends on only one bit of the input. This
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assumption is reasonable, as there are known garbled circuit schemes that are
both adaptively secure and projective [HJO+15, JO20, BHR12].

The adaptively secure and projective garbled circuit GC, defined for a circuit
class Cn,m where a circuit has the input size n and the output size m, consists
of the following algorithms:

• GC.Circuit(1λ, C) → (C̃, state = (labi,b)i∈[n],b∈{0,1}): it takes as a security

parameter 1λ and a circuit C ∈ Cn,m, and outputs a garbled circuit C̃ and
a state state consisting of garbled wires of all input bits (labi,b)i∈[n],b∈{0,1}.

• GC.Input(state, x) → x̃ = (labi,xi
)i∈[n]: it takes as input a state state

and an input x ∈ {0, 1}n, and outputs a garbled input x̃ consisting of
(labi,xi)i∈[n].

• GC.Eval(C̃, x̃) → y: it takes as input a garbled circuit C̃ and a garbled
input x̃, and outputs the evaluation result y ∈ {0, 1}m.

The GC scheme is correct if for every λ ∈ N, C ∈ Cn,m, and x ∈ {0, 1}n, it
holds that

GC.Eval(C̃, x̃) = C(x)

, where (C̃, state)← GC.Circuit(1λ, C) and x̃← GC.Input(state, x).

Definition 7 (Adaptive Security of the GC scheme). Let GC = (Circuit, Input,Eval)
be a garbled circuit scheme defined for a circuit class Cn,m. The GC scheme is
said to be adaptively secure, if for every security parameter λ ∈ N, there exist
PPT simulators GC.SimC and GC.SimIn such that

Pr
[
EXPGC-Adap

A (1λ) = 1
]
<

1

2
+ negl(λ)

holds for every PPT adversary A, where the experiment EXPGC-Adap
A (1λ) is de-

fined as follows:

EXPGC-Adap
A (1λ)

1 : (C, stateA)← A(1λ), where stateA is the state of A.
2 : b←$ {0, 1}.
3 : If b = 0, let (C̃, stateGC)← GC.Circuit(1λ, C).

4 : If b = 1, let (C̃, stateGC.Sim)← GC.SimC(1λ, 1|C|).

5 : x← A(stateA, C̃).

6 : If b = 0, let x̃← GC.Input(stateGC, x).

7 : If b = 1, let x̃← GC.SimIn(C(x), stateGC.Sim).

8 : b
′
← A(stateA, x̃).

9 : return b = b
′
.
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4 Signed Vector Digests (SVDs)

We first construct a SVD scheme. In the SVD scheme, there are L parties, a
trusted stateful signer, and a verifier. Each of the L parties specifies the signer’s
verifying key vk, a time epoch t, and n signing targets, and one of them computes
a digest from all nL signing targets. The signer signs the data derived from the
submitted digest and t using the signing key sk. However, the signer does not
output the signatures for multiple digests with the same t. Once the signature
is available, anyone, even a person who is not in the L parties submitting the
signing targets, can show a verifier that the signing target is in the signed digest.

The significant efficiency property of the SVD scheme is that the signer’s
computational and communication costs are constant for each t regardless of
the vector size, which is defined as trust-scalable property in Definition 9. This
is because the signer only needs to sign the constant-size data for each t, and the
same signature can be used for the verifications of all messages in the digest. It
allows many parties to employ the same well-trusted signer for large-size vectors.

4.1 Definition

The SVD scheme defined for a signing target space T consists of the following
algorithms:

• SVD.SetupKey(1λ) → (sk, vk): it takes as input a security parameter 1λ

and outputs a pair of signing and verifying keys (sk, vk).

• SVD.SetupCRS(pp = (1λ, n, L), vk, t) → (crsl, tdl)l∈[L]: it takes as input a

public parameter pp, consisting of a security parameter 1λ and integers
n,L ∈ N bounded by a polynomial in λ, a verifying key vk, and a time
epoch t. It outputs each party’s common reference string crsl and its
trapdoor tdl.

• SVD.Digest((crsl)l∈[L], (Tl)l∈[L]) → digest: it takes as input common ref-
erence strings (crsl)l∈[L], and signing targets (Tl)l∈[L], each of which is in
T n. It outputs a digest digest.

• SVD.Sign(pp, sk, t, digest)→ sign: it takes as input a signing key sk, a time
epoch t, and a digest digest. It outputs a signature sign.

• SVD.Open((crsl)l∈[L], (Tl)l∈[L], ℓ, i) → openℓ,i: it takes as input common
reference strings (crsl)l∈[L], signing targets (Tl)l∈[L], and indexes ℓ ∈ [L]
and i ∈ [n]. It outputs an opening proof openℓ,i.

• SVD.Verify(crsl, sign, ℓ, i, Tℓ,i, openℓ,i)→ {0, 1}: it takes as a input common
reference string crsℓ, a time epoch t, a signature sign, indexes ℓ ∈ [L] and
i ∈ [n], an expected signing target Tℓ,i, and an opening proof openℓ,i. It
outputs either 1 or 0.
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The SVD scheme is correct if for every λ ∈ N, n,L, t ∈ N bounded by poly(λ),
(Tl)l∈[L] ∈ T nL,

Pr
[
SVD.Verify(crsℓ, sign, ℓ, i, Tℓ,i, openℓ,i) = 1

]
≥ 1− negl(λ)

holds for every ℓ ∈ [L] and i ∈ [n], where (sk, vk) ← SVD.SetupKey(1λ),
(crsl, tdl)l∈[L] ← SVD.SetupCRS(pp, vk, t), digest← SVD.Digest((crsl)l∈[L], (Tl)l∈[L]),
sign← SVD.Sign(pp, sk, t, digest) and openℓ,i ← SVD.Open((crsl)l∈[L], (Tl)l∈[L], ℓ, i).

Before defining the security of the SVD scheme, we introduce a stateful
signer oracle OSign in association with the SVD scheme.

Definition 8 (Stateful Signer Oracle). Let SVD=(SetupKey, SetupCRS, Digest,
Sign, Open, Verify) be a SVD scheme defined for a signing target space T .
A stateful signer oracle OSign defined for SVD and public parameters pp =
(1λ, n, L) maintains state ← (sk, t), where sk is the signing key of the SVD
scheme and t ∈ N is the latest time epoch.

OSign is initialized as below.

1. Sample (sk, vk)← SVD.SetupKey(1λ).

2. Let state be (sk, 1).

3. Output vk.

Subsequently, for each query, OSign receives digest as input and performs
the following procedure.

1. Parse state as (sk, t).

2. Compute signt ← SVD.Sign(pp, sk, t, digest).

3. Update state to (sk, t+ 1).

4. Output signt.

We define the following efficiency property for cryptographic schemes that
depends on OSign.

Definition 9 (Trust-Scalable Cryptographic Scheme). A cryptographic scheme
that employs a stateful signer oracle OSign is said to be trust-scalable, if the
signer’s computational and communication costs for each time epoch t is bounded
by a polynomial in a security parameter poly(λ).

The secure SVD scheme should satisfy the binding and time-locking prop-
erties: the former ensures that a signer cannot open the same digest with the
same position and different signing targets and the latter claims that an adver-
sary cannot obtain any valid signature for a time epoch t∗ before the trusted
signer outputs the t∗-th signature. Notably, no PPT adversary should be able
to break any property for ℓ as long as the ℓ-th trapdoor tdℓ is hidden from the
adversary.
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Definition 10 (Binding of the SVD scheme). Let SVD=(SetupKey, SetupCRS,
Digest, Sign, Open, Verify) be a SVD scheme defined for a signing target space T .
The SVD scheme is said to be binding if for every λ ∈ N, n,L, t∗ ∈ N bounded
by poly(λ), ℓ ∈ [L], i ∈ [n], and algebraic adversary A,

Pr
[
EXPSVD-Bind

A,OSign (1λ, n, L, t∗, ℓ, i, T ∗
ℓ,i) = 1

]
< negl(λ)

holds, where OSign is a stateful signer oracle for SVD and 1λ, and EXPSVD-Bind
A,OSign (1λ, n, L, t∗, ℓ, i, T ∗

ℓ,i)
is an experiment defined as follows:

EXPSVD-Bind
A,OSign (1λ, n, L, t∗, ℓ, i, T ∗

ℓ,i)

1 : OSign is initialized, which outputs vk.

2 : A calls OSign until the time epoch in state is less than t∗. Let stateA be the A’s state.
3 : (crsl, tdl)l∈[L] ← SVD.SetupCRS(pp = (1λ, n, L), vk, t∗)

4 : (Tl)l∈[L] ← A(stateA, (crsl)l∈[L], (tdl)l∈[L]/{ℓ}), where Tℓ,i ̸= T ∗
ℓ,i

5 : digest← SVD.Digest((crsl)l∈[L], (Tl)l∈[L])

6 : signt ← OSign(digest)

7 : (sign∗, open∗ℓ,i)← A(stateA, signt)

8 : return SVD.Verify(crsℓ, sign
∗, ℓ, i, T ∗

ℓ,i, open
∗
ℓ,i) = 1

Definition 11 (Time-Locking of the SVD scheme). Let SVD=(SetupKey, SetupCRS,
Digest, Sign, Open, Verify) be a SVD scheme defined for a signing target space
T . The SVD scheme is said to be time-locking if for every λ ∈ N, n,L, t∗ ∈ N
bounded by poly(λ), ℓ ∈ [L], i ∈ [n], and algebraic adversary A,

Pr
[
EXPSVD-Time

A,OSign (1λ, n, L, t∗, ℓ, i, T ∗
ℓ,i) = 1

]
< negl(λ)

holds, where OSign is a stateful signer oracle for SVD and 1λ, and EXPSVD-Time
A,OSign (1λ, n, L, t∗, ℓ, i, T ∗

ℓ,i)
is an experiment defined as follows:

EXPSVD-Time
A,OSign (1λ, n, L, t∗, ℓ, i, T ∗

ℓ,i)

1 : OSign is initialized, which outputs vk.

2 : A calls OSign until the time epoch in state is less than t∗. Let stateA be the A’s state.
3 : (crsl, tdl)l∈[L] ← SVD.SetupCRS(pp = (1λ, n, L), vk, t∗)

4 : (sign∗, open∗ℓ,i)← A(stateA, (crsl)l∈[L], (tdl)l∈[L]/{ℓ})

5 : return SVD.Verify(crsℓ, sign
∗, ℓ, i, T ∗

ℓ,i, open
∗
ℓ,i) = 1

Remark 1 (Security against Malicious Adversaries). The above security defi-
nitions assume semi-honest adversaries, i.e., the adversary follows the protocol
but tries to learn the honest party’s information as much as possible. For ex-
ample, although the adversary can learn all trapdoors except for the ℓ-th one,
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their corresponding CRSs are assumed to be generated honestly. We can easily
make our scheme secure against malicious adversaries with zk-SNARKs [Nit20],
ensuring that CRSs and digests are generated in honest manners without re-
vealing the underlying randomnesses. However, the proof size and the verifier’s
computation completely of the zk-SNARKs schemes should be constant irre-
spective of the complexity of the NP relation to be proved, which is represented
by 1λ, n, and L in our case. Such zk-SNARKs schemes, e.g., Groth16 [Gro16]
and Plonk [GWC19], maintain the signer’s computational and communication
costs constant for each time epoch t.

4.2 Construction

Our construction relies on a random oracle RO that maps a public parameter
pp, a verifying key vk, and a time epoch t to a random element [rt]1. It is used
in the SVD.SetupCRS and SVD.Sign algorithms. Additionally, the signing target
space is assumed to be a subset of Fp or equal to Fp, i.e., T ⊆ Fp.

The SVD.SetupCRS algorithm in our construction is defined as a computa-
tion among L parties, where each party performs an individual CRS generation
algorithm SVD.SetupCRSEach as below. Specifically, for ℓ ∈ [L], the ℓ-th party
generates its CRS crsℓ using the previous parties’ CRSs (crsl)l∈[ℓ−1]. It implies
that the CRSs are generated in a non-interactive but sequential manner.

• SVD.SetupKey(1λ)→ (sk, vk):

1. Sample sk← Zp.

2. Let vk← [sk]2.

3. Output sk and vk.

• SVD.SetupCRSEach(pp = (1λ, n, L), vk, t, ℓ, (crsl)l∈[ℓ−1])→ (crsℓ, tdℓ):

1. Sample αℓ ∈ Zp.

2. Compute [rt]1 ← RO(pp, vk, t).

3. For each l ∈ [ℓ− 1], parse crsl as (pp, crsl,1, crsl,2, crsl,T ).

4. For each l ∈ [ℓ− 1], extract ([αi
l ]1)i∈[2n]/{n+1} from crsl,1.

5. For each l ∈ [ℓ− 1] and i, j ∈ [n], compute [uℓ,l,i,j ]1 ← αi
ℓ[α

j
l ]1.

6. Compute [vℓ,0]T ← e([αn+1
ℓ ]1, vk) and [vℓ,i]T ← e(αn+1−i

ℓ [rt]1, vk) for
i ∈ [n].

7. Let crsℓ,1 ← (([αi
ℓ]1)i∈[2n]/{n+1}, ([uℓ,l,i,j ]1)l∈[ℓ−1],i,j∈[n]).

8. Let crsℓ,2 ← (([αi
ℓ]2)i∈[n], vk).

9. Let crsℓ,T ← ([vℓ,0]T , ([vℓ,i]T )i∈[n]).

10. Output crsℓ ← (pp, crsℓ,1, crsℓ,2, crsℓ,T ) and tdℓ ← (αℓ).

• SVD.SetupCRS(pp, vk, t)→ (crsl, tdl)l∈[L]:
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1. For each ℓ ∈ [L], the ℓ-th party sequentially performs SVD.SetupCRSEach(pp, vk, t, ℓ, (crsl)l∈[ℓ−1]),
which returns crsℓ and tdℓ.

2. Output (crsl, tdl)l∈[L].

• SVD.Digest((crsl)l∈[L], (Tl)l∈[L])→ digest:

1. For each l ∈ [L], parse crsl as (pp, crsl,1, crsl,2, crsl,T ).

2. For each l ∈ [L], extract ([αi
l ]1)i∈[n] from crsl,1.

3. Compute [d]1 ← Σl∈[L]Σj∈[n]Tj [α
j
l ]1.

4. Output digest← [d]1.

• SVD.Sign(pp, sk, t, digest)→ sign:

1. Parse digest as [d]1.

2. Compute [rt]1 ← RO(pp, vk, t).

3. Compute [σ]1 ← sk([rt]1 + [d]1).

4. Output sign← [σ]1.

• SVD.Open((crsl)l∈[L], (Tl)l∈[L], ℓ, i)→ openℓ,i:

1. For each l ∈ [L], parse crsℓ as (pp, crsℓ,1, crsℓ,2, crsℓ,T ).

2. For each l ∈ [L], parse crsℓ,1 as (([α
i
ℓ]1)i∈[2n]/{n+1}, ([uℓ,l,i,j ]1)l∈[ℓ−1],i,j∈[n]).

3. Compute [W s
ℓ,i]1 ← Σj∈[n]/{i}Tj [α

n+1−i+j
ℓ ]1.

4. Compute [W o
ℓ,i]1 ← Σj∈[n](Σl∈[ℓ−1]Tl,j [uℓ,l,n+1−i,j ]1+Σl∈[L]/[ℓ]Tl,j [ul,ℓ,j,n+1−i]1).

5. Compute [Wℓ,i]1 = [W s
ℓ,i]1 + [W o

ℓ,i]1.

6. Output openℓ,i ← [Wℓ,i]1.

• SVD.Verify(crsℓ, sign, ℓ, i, Tℓ,i, openℓ,i)→ {0, 1}:

1. Parse crsℓ as (pp, crsℓ,1, crsℓ,2, crsℓ,T ).

2. Extract [αn+1−i
ℓ ]2 and vk from crsℓ,2.

3. Extract [vℓ,0]T and [vℓ,i]T from crsℓ,T .

4. Parse sign as [σ]1.

5. Parse openℓ,i as [Wℓ,i]1.

6. Output 1 if e([σ]1, [α
n+1−i
ℓ ]2) = e([Wℓ,i]1, vk) + Tℓ,i[vℓ,0]T + [vℓ,i]T ,

otherwise output 0.
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The correctness proof is straightforward.

e([σ]1, [α
n+1−i
ℓ ]2)

=e(sk · ([rt]1 + {Σl∈[L]Σj∈[n]Tl,j [α
j
l ]1}), [α

n+1−i
ℓ ]2)

=e(Σj∈[n]/{i}Tℓ,j [α
n+1−i+j
ℓ ]1 +Σj∈[n](Σl∈[ℓ−1]Tl,j [α

n+1−i
ℓ αj

l ]1 +Σl∈[L]/[ℓ]Tl,j [α
j
lα

n+1−i
ℓ ]1), vk)

+ Tℓ,ie([α
n+1
ℓ ]1, vk) + e([rtα

n+1−i
ℓ ]1, vk)

=e([W s
ℓ,i]1 + [W o

ℓ,i]1, vk) + Tℓ,i · e([αn+1
ℓ ]1, vk) + e([αn+1−i

ℓ rt]1, vk)

=e([Wℓ,i]1, vk) + Tℓ,i[vℓ,0]T + [vℓ,i]T

The SVD scheme is trust-scalable.

Lemma 1. The construction of the SVD scheme in Subsection 4.2 is trust-
scalable (Definition 9).

Proof. In that construction of the SVD scheme, the only algorithm performed
by the signer is SVD.Sign. It consists of calling RO with the fixed input size,
adding [r]1 to the given digest [d]1, and multiplying sk by [r]1 + [d]1. It is clear
that these computational and communication complexities are bounded by a
polynomial in 1λ and do not depend on the other parameters such as n and
L.

The above construction satisfies the binding and time-locking properties.

Lemma 2. The construction of the SVD scheme in Subsection 4.2 is bind-
ing (Definition 10).

Proof. A simulator of the experiment EXPSVD-Bind
A,OSign programs a random oracle RO

in a lazy manner. That is, for each query (pp, vk, t), if RO[(pp, vk, t)] = [rt]1 ̸=⊥,
i.e., any [rt]1 is already returned for the same query, the simulator returns the
same [rt]1. Otherwise, it samples a random [rt]1 ←$ G1, sets RO[(pp, vk, t)] ←
[rt]1, and returns [rt]1.

Suppose that algebraic adversariesA in AGMmodel output (T1, . . . ,TL, [σ
∗]1, [W

∗
i,ℓ]1, T

∗
ℓ,i)

such that the equation in the SVD.Verify algorithm holds. A computes [σ∗]1 and
[W ∗

i,ℓ]1 as a linear combination of seen elements in G1. That is, it outputs coef-
ficients such that the following holds:

[σ∗]1 = x0[1]1 +Σj∈[2n]/{n+1}xj [α
j
ℓ ]1 +Σt∈[t∗]x2n+t[rt]1 +Σt∈[t∗]x2n+t∗+t[σt]1

[W ∗
i,ℓ]1 = y0[1]1 +Σj∈[2n]/{n+1}yj [α

j
ℓ ]1 +Σt∈[t∗]y2n+t[rt]1 +Σt∈[t∗]y2n+t∗+t[σt]1

Notably, the elements ([uℓ,l,i,j ])l∈[L]/{ℓ},i,j∈[n] are not used as the basis because
the adversary can employ (tdl)l∈[L]/{ℓ} and ([αi

ℓ])i∈[n] to obtain [uℓ,l,i,j ]1 by

calculating [uℓ,l,i,j ]1 = αj
l [α

i
ℓ]. Besides, we ignore the output of RO that is not

equal to any of ([r1]1, . . . , [rt]1), which is obviously independent of the other
basis.

We separate the terms of [σ∗]1 and [W ∗
ℓ,i]1 into those depending on sk and

those that do not. Specifically, [σ∗]1 and [W ∗
ℓ,i]1 are, respectively, represented
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as [P + Q · sk]1 and [R + S · sk]1. Here, we show some useful claims to prove
P = 0 and S = 0.

Claim 1. Assuming the hardness of the co-DHP (Definition 3), for every alge-
braic adversary A and random x←$ Fp,

Pr
[
[x2]1 ← A([1]1, [1]2, [x]1, [x]2)

]
< negl(λ)

Proof. A PPT adversary B that breaks the hardness of the co-DHP assump-
tion can be constructed by invoking A. Given ([1]1, [1]2, [a]1, [a]2, [b]1), B first
randomly samples s, t ←$ Fp and provides ([1]1, [1]2, [x]1 = s[a]1 + [t]1, [x]2 =
s[a]2 + [t]2) for A. In the AGM model, the A outputs [x2]1 along with coeffi-
cients u, v such that [x2]1 = u[1]1 + v[x]1. Therefore, B can compute x as one
root of the equation X2 − vX − u = 0, which suggests a = s−1(x − t). Hence,
it can output a[b]1 = [ab]1.

Claim 2. Assuming the hardness of the co-DHP (Definition 3), for every alge-
braic adversary A and random x←$ Fp,

Pr
[
[x−1]1 ← A([1]1, [1]2, [x]1, [x]2)

]
< negl(λ)

Proof. A PPT adversary B that breaks the hardness of the co-DHP assump-
tion can be constructed by invoking A. Given ([1]1, [1]2, [a]1, [a]2, [b]1), B first
randomly samples s, t ←$ Fp and provides ([1]1, [1]2, [x]1 = s[a]1 + [t]1, [x]2 =
s[a]2 + [t]2) for A. In the AGM model, the A outputs [x−1]1 along with coeffi-
cients u, v such that [x−1]1 = u[1]1 + v[x]1. Therefore, B can compute x as one
root of the equation X−1 − vX − u = 0 ⇔ vX2 + uX − 1 = 0, which suggests
a = s−1(x− t). Hence, it can output a[b]1 = [ab]1.

First, Claim 1 implies S = 0. Suppose S ̸= 0, a PPT adversary B1 that
breaks Claim 1 can be constructed by internally invokingA. Given ([1]1, [1]2, [a]1, [a]2),
B1 first randomly samples (αl)l∈[L], (rt)t∈[t∗] and let [sk]1 ← [a]1 and vk← [a]2.
It then constructs (crsl, tdl)l∈[L] using these values, and provides (crsl)l∈[L] and
(tdl)l∈[L]/{ℓ} for A, which returns (Tl)l∈[L]. B1 provides A with sign = [σ]1 =

(rt + Σl∈[L]Σj∈[n]Tl,jα
j
l )[sk]1. A finally returns sign∗ = [σ∗]1, open

∗
ℓ,i = [W ∗

ℓ,i]1,
and T ∗

ℓ,i. Here, A should also output coefficients such that the following holds:

(P +Q · sk)αn+1−i
ℓ = (R+ S · sk) · sk+ T ∗

ℓ,iα
n+1
ℓ · sk+ rt∗α

n+1−i
ℓ · sk

⇔S · sk2 = Pαn+1−i
ℓ + (Qαn+1−i

ℓ −R− T ∗
ℓ,iα

n+1
ℓ − rt∗α

n+1−i
ℓ ) · sk

Therefore, suppose S ̸= 0, B1 can compute [a2] = [sk2]1 = S−1{Pαn+1−i
ℓ [1]1 +

(Qαn+1−i
ℓ − R − T ∗

ℓ,iα
n+1
ℓ − rt∗α

n+1−i
ℓ )[sk]1}, which breaks Claim 1. This is a

contradiction, hence S = 0 holds.
Next, we show P = 0 from Claim 2. Suppose P ̸= 0, a PPT adversary

B2 that breaks Claim 2 can be constructed by internally invoking A. Given
([1]1, [1]2, [a]1, [a]2), B2 calls A in the same manner as B1 defined in the proof
of S ̸= 0. It then constructs (crsl, tdl)l∈[L] using these values, and provides
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(crsl)l∈[L] and (tdl)l∈[L]/{ℓ} for A, which returns (Tl)l∈[L]. A should output
sign∗ = [σ∗]1, open

∗
ℓ,i = [W ∗

ℓ,i]1, T
∗
ℓ,i, and coefficients such that the following

holds:

(P +Q · sk)αn+1−i
ℓ = R · sk+ T ∗

ℓ,iα
n+1
ℓ · sk+ rt∗α

n+1−i
ℓ · sk

⇔Pαn+1−i
ℓ sk−1 = −Qαn+1−i

ℓ +R+ T ∗
ℓ,iα

n+1
ℓ + rt∗α

n+1−i
ℓ

Therefore, suppose P ̸= 0, B2 can compute [a−1] = [sk−1]1 = P−1α−n−1+i
ℓ (−Qαn+1−i

ℓ +
R + T ∗

ℓ,iα
n+1
ℓ + rt∗α

n+1−i
ℓ )[1]1, which breaks Claim 2. This is a contradiction,

hence P = 0 holds.
The above shows the following equation.

Qαn+1−i
ℓ · sk = R · sk+ T ∗

ℓ,iα
n+1
ℓ · sk+ rt∗α

n+1−i
ℓ · sk

⇔Qαn+1−i
ℓ = R+ T ∗

ℓ,iα
n+1
ℓ + rt∗α

n+1−i
ℓ

⇔Σt∈[t∗]x2n+t∗+tσtα
n+1−i
ℓ = y0 +Σj∈[2n]/{n+1}yjα

j
ℓ +Σt∈[t∗]y2n+trt + T ∗

ℓ,iα
n+1
ℓ + rt∗α

n+1−i
ℓ

⇔Σt∈[t∗−1]x2n+t∗+tσtα
n+1−i
ℓ + x2n+2t∗{rt∗αn+1−i

ℓ +Σj∈[n](Tℓ,jα
n+1−i+j
ℓ +Σl∈[L]/{ℓ}Tl,jα

n+1−i
ℓ αj

l )}
= y0 +Σj∈[2n]/{n+1}yjα

j
ℓ +Σt∈[t∗]y2n+trt + T ∗

ℓ,iα
n+1
ℓ + rt∗α

n+1−i
ℓ

⇔(x2n+2t∗α
n+1−i
ℓ − y2n+t∗ − αn+1−i)rt∗

= −Σt∈[t∗−1]x2n+t∗+tσtα
n+1−i
ℓ − x2n+2t∗Σj∈[n](Tℓ,jα

n+1−i+j
ℓ +Σl∈[L]/{ℓ}Tl,jα

n+1−i
ℓ αj

l )

+ y0 +Σj∈[2n]/{n+1}yjα
j
ℓ +Σt∈[t∗−1]y2n+trt + T ∗

ℓ,iα
n+1
ℓ

From the hardness of DLP (Definition 1), the coefficient of rt∗ should be zero,
i.e., y2n+t∗ = (x2n+2t∗−1)αn+1−i

ℓ . To prove that, we construct a PPT adversary
B3 that breaks the hardness of DLP by invoking A. Given ([1]1, [a]1), B3 first
randomly samples (αl)l∈[L], sk, (rt)t∈[t∗−1]β, γ ←$ Fp and let [rt∗ ]t ← β[a]1+[γ]1.
It then constructs (crsl, tdl)l∈[L] using these values, and provides (crsl)l∈[L] and
(tdl)l∈[L]/{ℓ} for A, which returns (Tl)l∈[L]. B3 provides A with sign = [σ]1 =
SVD.Sign(pp, sk, t∗,SVD.Digest((crsl)l∈[L], (Tl)l∈[L])). A finally returns sign∗ =

[σ∗]1, open
∗
ℓ,i = [W ∗

ℓ,i]1, T
∗
ℓ,i. Suppose y2n+t∗ ̸= (x2n+2t∗ − 1)αn+1−i

ℓ , it holds
that

rt∗ = (x2n+2t∗α
n+1−i
ℓ − y2n+t∗ − αn+1−i

ℓ )−1{−Σt∈[t∗−1]x2n+t∗+tσtα
n+1−i
ℓ

− x2n+2t∗Σj∈[n](Tℓ,jα
n+1−i+j
ℓ +Σl∈[L]/{ℓ}Tl,jα

n+1−i
ℓ αj

l ) + y0 +Σj∈[2n]/{n+1}yjα
j
ℓ + T ∗

ℓ,iα
n+1
ℓ }

Therefore, B3 can compute a = β−1(rt∗ − γ), which breaks the DLP. This is a
contradiction, hence y2n+t∗ = (x2n+2t∗ − 1)αn+1−i

ℓ holds.
We finally show that A allows us to construct a PPT adversary B4 that

breaks the hardness of the n-DHEP (Definition 4). Given ([1]1, [αℓ]1, . . . , [α
n
ℓ ]1, [α

n+2
ℓ ]1, . . . , [α

2n
ℓ ]1,

[1]2, [αℓ]2, . . . , [α
n
ℓ ]2), B4 first samples (α)l∈[L]/{ℓ}, (rt)t∈[t∗], sk and constructs

(crsl, tdl)l∈[L] using those values. Subsequently, it provides (crsl)l∈[L] and (tdl)l∈[L]/{ℓ}
forA, which returns (Tl)l∈[L]. B4 providesA with sign = [σ]1 = SVD.Sign(pp, sk,
SVD.Digest((crsl)l∈[L], (Tl)l∈[L])). A finally returns sign∗ = [σ∗]1, open∗ℓ,i =
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[W ∗
ℓ,i]1, and T ∗

ℓ,i. They should satisfy the following equation:

(x2n+2t∗Tℓ,i − T ∗
ℓ,i)α

n+1
ℓ

= −Σt∈[t∗−1]x2n+t∗+tσtα
n+1−i
ℓ − x2n+2t∗(Σj∈[n]/{i}Tℓ,jα

n+1−i+j
ℓ +Σj∈[n]Σl∈[L]/{ℓ}Tl,jα

n+1−i
ℓ αj

l )

+ y0 +Σj∈[2n]/{n+1}yjα
j
ℓ +Σt∈[t∗−1]y2n+trt

When x2n+2t∗Tℓ,i − T ∗
ℓ,i ̸= 0, B can obtain [αn+1]1 as follows:

[αn+1
ℓ ]1 =(x2n+2t∗Tℓ,i − T ∗

ℓ,i)
−1{−Σt∈[t∗−1]x2n+t∗+tσtα

n+1−i
ℓ

− x2n+2t∗(Σj∈[n]/{i}Tℓ,j [α
n+1−i+j
ℓ ]1 +Σj∈[n]Σl∈[L]/{ℓ}Tl,jα

j
l [α

n+1−i
ℓ ]1)

+ y0[1]1 +Σj∈[2n]/{n+1}yj [α
j
ℓ ]1 +Σt∈[t∗−1]y2n+trt[1]1}

When x2n+2t∗Tℓ,i − T ∗
ℓ,i = 0, since T ∗

ℓ,i ̸= Tℓ,i, T
∗
ℓ,i = x2n+2t∗Tℓ,i ̸= Tℓ,i, i.e.,

x2n+2t∗ ̸= 1 and Tℓ,i ̸= 0. Hence, y2n+t∗ = (x2n+2t∗ − 1)αn+1−i
ℓ follows

y2n+t∗ = (x2n+2t∗ − 1)αn+1−i
ℓ

⇒[αn+1]1 = (x2n+2t∗ − 1)−1y2n+t∗ [α
i]1

Therefore, B can obtain [αn+1]1 with non-trivial probability. This contradicts
that no PPT adversary can solve the n-DHEP, hence we can conclude that the
binding property holds.

Lemma 3. The construction of the SVD scheme in Subsection 4.2 is time-
locking (Definition 11).

Proof. A simulator of the experiment EXPSVD-Time
A,OSign programs a random oracle RO

in a lazy manner. That is, for each query (pp, vk, t), if RO[(pp, vk, t)] = [rt]1 ̸=⊥,
i.e., any [rt]1 is already returned for the same query, the simulator returns the
same [rt]1. Otherwise, it samples a random [rt]1 ←$ G1, sets RO[(pp, vk, t)] ←
[rt]1, and returns [rt]1.

Suppose that algebraic adversariesA in AGMmodel output (T1, . . . ,TL, [σ
∗]1, [W

∗
i,ℓ]1, T

∗
ℓ,i)

such that the equation in the SVD.Verify algorithm holds. As indicated in the
proof of Lemma 2, A also outputs coefficients such that the following holds:

[σ∗]1 = Σt∈[t∗−1]x2n+t∗+t[σt]1

[W ∗
i,ℓ]1 = y0[1]1 +Σj∈[2n]/{n+1}yj [α

j
ℓ ]1 +Σt∈[t∗]y2n+t[rt]1

Besides, the previous proof also shows y2n+t∗ = (x2n+2t∗−1)αn+1−i
ℓ = −αn+1−i

ℓ .
Notably, the coefficient x2n+2t∗ is zero becasue A cannot obtain the t∗-th sig-
nature [σt∗ ] in this experiment.

From the above results, we can construct a PPT adversary B that breaks the
hardness of the n-DHEP (Definition 4). Given ([1]1, [αℓ]1, . . . , [α

n
ℓ ]1, [α

n+2
ℓ ]1, . . . , [α

2n
ℓ ]1,

[1]2, [αℓ]2, . . . , [α
n
ℓ ]2), B first samples (α)l∈[L]/{ℓ}, (rt)t∈[t∗], sk and constructs (crsl, tdl)l∈[L]

using those values. Subsequently, it provides (crsl)l∈[L] and (tdl)l∈[L]/{ℓ} for A,
which returns sign∗ and open∗ℓ,i along with their corresponding coefficients. Here,

since y2n+t∗ = −αn+1−i
ℓ holds, B can compute [αn+1

ℓ ]1 = −y2n+t∗ [α
i
ℓ]. This con-

tradicts that no PPT adversary can solve the n-DHEP, hence we can conclude
that the time-locking property holds.
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5 Extractable Witness Key Encapsulation Mech-
anisms (EKEMs) for SVDs

We next show EKEMs for SVDs.

5.1 Definition

The EKEM scheme for SVDs is defined in association with a specific SVD
scheme. That is, its encryption algorithm depends on the CRS of the SVD
scheme.

We denote a space of the key output by the encryption and decryption
algorithms by K.

• EKEM.Enc(crsℓ, x = (ℓ, i, Tℓ,i)) → (ct, k): it takes as input a common
reference string crsℓ, and an instance x consisting of integers ℓ, i ∈ N and
a signing target Tℓ,i ∈ T . It outputs a ciphertext ct and a key k ∈ K.

• EKEM.Dec(ct, ω)→ k
′
: it takes as input a ciphertext ct and a witness ω.

It outputs a key k
′ ∈ K.

The correctness of the EKEM scheme defined for a key space K and an SVD
scheme SVD with a signing target space T holds if for every λ ∈ N, n,L, t ∈ N
bounded by poly(λ), (Tl)l∈[L] ∈ T nL,

Pr
[
k = k

′
]
≥ 1− negl(λ)

holds for every ℓ ∈ [L] and i ∈ [n], where (sk, vk) ← SVD.SetupKey(1λ),
(crsl, tdl)l∈[L] ← SVD.SetupCRS(pp, vk, t), digest← SVD.Digest((crsl)l∈[L], (Tl)l∈[L]),
sign← SVD.Sign(pp, sk, t, digest), openℓ,i ← SVD.Open((crsl)l∈[L], (Tl)l∈[L], ℓ, i),

(ct, k)← EKEM.Enc(crsℓ, x = (ℓ, i, Tℓ,i)), and k
′ ← EKEM.Dec(ct, ω = (sign, openℓ,i)).

Using the stateful signer oracle OSign in Definition 8, we define an ex-
tractable security of the EKEM scheme defined for the SVD scheme.

Definition 12 (Extractability of the EKEM scheme). Let EKEM=(Enc, Dec)
be an EKEM scheme defined for a key space K and a binding SVD scheme SVD
with a signing target space T . The EKEM scheme is said to be extractable, if
for every λ ∈ N, n,L, t∗ ∈ N bounded by poly(λ), ℓ ∈ [L], i ∈ [n], Tℓ,i ∈ T ,
algebraic adversary A, polynomial q(λ), there exists a PPT extractor E and a
polynomial p(λ) such that

Pr
[
EXPEKEM

A (1λ, n, L, t∗, ℓ, i, T ∗
ℓ,i) = 1

]
≥ 1

2
+

1

q(λ)

⇒Pr
[
SVD.Verify(crsℓ, sign

∗, ℓ, i, T ∗
ℓ,i, open

∗
ℓ,i) = 1

]
≥ 1

p(λ)

holds, where (sign∗, open∗ℓ,i) ← EA(pp, t∗, x, (crsl)l∈[L], (tdl)l∈[L]/{ℓ}), and the

experiment EXPEKEM
A,OSign(1

λ, n, L, t∗, ℓ, i, T ∗
ℓ,i) is defined associated with a stateful

signer oracle OSign for pp = (1λ, n, L) and SVD as follows:
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EXPEKEM
A,OSign(1

λ, n, L, t∗, ℓ, i, T ∗
ℓ,i)

1 : OSign is initialized, which outputs vk.

2 : A calls OSign until the time epoch in state is less than t∗. Let stateA be the A’s state.
3 : (crsl, tdl)l∈[L] ← SVD.SetupCRS(pp = (1λ, n, L), vk, t∗)

4 : b ∈ {0, 1}.
5 : (ct, k0)← EKEM.Encap(crsℓ, x = (ℓ, i, T ∗

ℓ,i)).

6 : k1 ←$ K.
7 : b

′
← AOSign(SVD.Digest((crsl)l∈[L],·))(stateA, (crsl)l∈[L], (tdl)l∈[L]/{ℓ}, ct, kb)

8 : Output b = b
′
.

Notably, A can obtain the t∗-th signature for a digest of the CRSs (crsl)l∈[L]

and any signing targets (Tl)l∈[L] from OSign only once, and E is allowed to call
OSign only with (Tl)l∈[L] submitted by A.

5.2 Construction

We construct the EKEM scheme using the SKE scheme whose key space is
K, the SVD scheme constructed in Subsection 4.2, and a random oracle RO
mapping an element in GT into a key in K.

• EKEM.Enc(crsℓ, x = (ℓ, i, Tℓ,i))→ (ct, k):

1. Parse crsℓ as (pp, crsℓ,1, crsℓ,2, crsℓ,T ).

2. Extract [αn+1−i
ℓ ]2 and vk from crsℓ,2.

3. Extract [vℓ,0]T and [vℓ,i]T from crsℓ,T .

4. Let [g]2 be ([αn+1−i
ℓ ]2,−vk) and [h]T be Tℓ,i[vℓ,0]T + [vℓ,i]T .

5. Sample s ∈ Zp.

6. Compute ct← s[g]2.

7. Compute z ← s[h]T and k ← RO(z).

8. Output (ct, k).

• EKEM.Dec(ct, ω)→ k
′
:

1. Parse ct as s[g]2.

2. Parse ω as ([σ]1, [Wℓ,i]1).

3. Compute z
′ ← e(([σ]1, [Wℓ,i]1), s[g]2).

4. Output k
′ ← RO(z

′
).

22



To prove the correctness of the EKEM scheme, we first show that z in the
EKEM.Enc algorithm is equal to z

′
in the EKEM.Dec algorithm.

z = s[h]T

= s(Tℓ,i[vℓ,0]T + [vℓ,i]T )

= e([σ]1, s[α
n+1−i
ℓ ]2) + e([Wℓ,i]1,−s · vk)

= e(([σ]1, [Wℓ,i]1), s[g]2)

= z
′

Therefore, k = RO(z) = RO(z
′
) = k

′
.

Next, we show the extractability of the above EKEM scheme.

Lemma 4. The construction of the EKEM scheme in Subsection 5.2 is ex-
tractable (Definition 12).

Proof. Let [x]1 be a vector connecting [1]1, the G1 elements in crsℓ, and the out-
puts from the random oracle by the construction of the SVD scheme in Subsec-
tion 4.2 and the signer oracle OSign, i.e., [x]1 ← ([1]1, (α

i
ℓ)i∈[2n]/{n+1}, ([rt]1)t∈[t∗], ([σt]1)t∈[t∗])

4.
Let [y]2 be a vector connecting [1]2 and the G2 elements in crsℓ, i.e., [y]2 ←
([1]2, ([α

i
ℓ]2)i∈[N ], vk). Let [z]T be a vector connecting [1]T and the GT elements

in crsℓ, i.e., [z]T ← ([1]T , [vℓ,0]T , ([vℓ,i]T )i∈[n]). A vector (sk, αℓ, rt) is denoted by
td ∈ F3

p. We define functions Ψ(X), Ω(X), and Φ(X) such that [Ψ(td)]1 = [x]1,
[Ω(td)]2 = [y]2, and [Φ(td)]T = [z]T holds, respectively. Similary, G(X) and
H(X) are defined as functions such that [G(td)]2 = [g]2 and [H(td)]T = [h]T
hold.

We construct an extractor E as follows. Given (pp = (1λ, n, L), t, x =
(ℓ, i, T ∗

ℓ,i), (crsl)l∈[L], (tdl)l∈[L]/{ℓ}), E first computes (ct, k0), samples k1 ←$ K
and b←$ {0, 1}. It then provides ct and kb for A, which returns b

′ ∈ {0, 1}. For
each A’s oracle access to OSign, E forwards the output of that oracle without
modification. E also programs the random oracle RO for A as follows.

1. If RO[z] = k ̸=⊥, return k.

2. Else if z is equal to s[h]T , which is generated in the EKEM.Enc algorithm,
set RO[s[h]T ] = k0 and return k0.

3. Else, generate a random key k∗ ∈ K, set RO[z] = k∗, and return k∗.

Since A is an algebraic adversary, A should outputs z with coefficient ma-
trixes P, Q0, Q1, R, and a scalar S such that z = [Ψ(td) · (Ω(td)P+G(td)Q0+
sG(td)Q1) + Φ(td)R+ SH(td)]T holds. E outputs ⊥ if A does not output any
coefficient matrixes such that Ψ(X) ·YG(X)Q1 = Y H(X) holds for any X and
Y .

We show that the above E can extract the witness td from A with a non-
negligible probability if the polynomial q(λ) is non-negligible. First, if the output

4For the same reason described in the proof of Lemma 2, the elements generated in the
SVD.SetupCRS2 algorithm are not contained in [x]1.
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from E is not ⊥, E can output ω that satisfies the required condition. Since
Ψ(X)·YG(X)Q1 = Y H(X) holds, [f]1 = Ψ(td)Q1 = [x]1Q1 makes the equation
e([f]1, [g]2) = [h]T true. From the definitions of [g]2 and [h]T , [f]1 can be parsed
as ([σ]1, [Wℓ,i]1), which satisfies SVD.Verify(crsℓ, [σ]1, ℓ, i, T

∗
ℓ,i, [Wℓ,i]1) = 1.

Next, the probability that the output of E is ⊥ is negligible. Let Hit be an
event that A queries RO with the input z = s[h]T .

If Hit does not occur, i.e., RO[s[h]T ] =⊥, edv cannot distinguish kb from a
random key in K. Therefore, the following holds.

1

2
+

1

q(λ)
≤ Pr

[
EXPEKEM

A (1λ, n, L, t, ℓ, i, Tℓ,i) = 1
]

= Pr
[
b = b

′
]

= Pr
[
b = b

′
|Hit

]
Pr[Hit] + Pr

[
b = b

′
|H̄it

]
Pr

[
H̄it

]
= Pr

[
b = b

′
|Hit

]
(1− Pr[Hit]) +

1

2
Pr

[
H̄it

]
≤ (1− Pr

[
H̄it

]
) +

1

2
Pr

[
H̄it

]
= 1− 1

2
Pr

[
H̄it

]
Hence, Pr

[
H̄it

]
≤ 1− 2

q(λ) .

We next consider a case where Hit occurs but A outputs no coefficient ma-
trixes such that Ψ(X) · YG(X)Q1 = Y H(X) holds. As z = s[h]T , (td, s) is
one root of a non-zero polynomial Γ(X, Y ) = Ψ(X) · (Ω(X)P + G(X)Q0 +
sG(X)Q1) + Φ(X)R + SH(X) − Y H(X). To show that the adversary cannot
output the non-zero polynomial Γ, we prove the following lemma.

Claim 3. For every n, d ∈ N, s1, . . . , sn ←$ Fp, algebraic adversary A, it holds
that

Pr
[
F(X1, . . . , Xn) ̸= 0 ∧ F(s1, . . . , sn) = 0 : F← A([1]T , ([si]T , . . . , [sdi ]T )i∈[n])

]
< negl(λ)

, where F is a non-zero n-variable polynomial in which the maximum degree of
Xi is less than d+ 1 for every i ∈ [n].

Proof. Suppose an algebraic adversary A that outputs the non-zero polynomial
F whose root is (s1, . . . , sn) with non-trivial probability, we can construct an
adversary B that breaks the hardness of the d-DLOG (Definition 2).

If n = 1, given ([1]T , [s1]T , . . . , [s
d
1]T ), B provides ([1]T , [s1]T , . . . , [s

d
1]T ) for

A, which returns a non-zero polynomial F(X1) whose one root is s1. Therefore,
B can find s1 by solving the equation F(X1) = 0.

If B can find s1 in the case of n−1, i.e., A outputs a non-zero (n−1)-variable
polynomial whose one root is (s1, . . . , sn−1), B can also find s1 in the case of
n as follows. Given ([1]T , [s1]T , . . . , [s

d
1]T ), B samples s2, . . . , sn−1, z ←$ Fp and

sets [sjn] to [sjn]T = zj [sj1]T for every j ∈ [d]. Notably, sn = zs1 and a random
sn are statically indistinguishable. B provides ([1]T , ([si]T , . . . , [s

d
i ]T )i∈[n]) for
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A, which returns a non-zero n-variable polynomial F(X1, . . . , Xn) whose one
root is (s1, . . . , sn).

• When F(s1, . . . , sn−1, Xn) = 0, B organizes F(X1, . . . , Xn) in the variable
Xn, i.e., F(X1, . . . , Xn) = C0(X1, . . . , Xn−1) + C1(X1, . . . , Xn−1)Xn +
· · · + Cd(X1, . . . , Xn−1)X

d
n. As F(X1, . . . , Xn) ̸= 0, there is at least one

non-zero polynomial Cj(X1, . . . , Xn−1) in (Ci)i∈{0,1,...,n}. At the same
time, since F(s1, . . . , sn−1, Xn) = 0, Cj(s1, . . . , sn−1) = 0 also holds.
Therefore, B can find s1 from Cj(X1, . . . , Xn−1).

• When F(s1, . . . , sn−1, Xn) ̸= 0, B can find a root sn = zs1 by solving the
equation F(s1, . . . , sn−1, Xn) = 0. Therefore, B can output s1 = sn

z .

Hence, B can break the hardness of d-DLOG in the case of n.
The above argument shows that if A outputs a non-zero polynomial F whose

root is (s1, . . . , sn) with non-trivial probability, B can break the hardness of the
d-DLOG. Since the hardness of the d-DLOG is assumed, the probability that
A outputs a non-zero polynomial F whose root is (s1, . . . , sn) with non-trivial
probability is negligible.

By Claim 3, Pr[Γ(td, s) = 0] < negl(λ), i.e., Pr
[
⊥= EA,OSign(pp, t, x, (crsl)l∈[L], (tdl)l∈[L]/{ℓ})

]
<

negl(λ) holds. Therefore,

Pr
[
SVD.Verify(crsℓ, sign

∗, ℓ, i, Tℓ,i, open
∗
ℓ,i) = 1

]
= 1− Pr

[
⊥= EA,OSign(pp, t∗, x, (crsl)l∈[L], (tdl)l∈[L]/{ℓ})

]
= 1− negl(λ)

≥ 1

p(λ)

holds for some polynomial p(λ).

6 Extractable Witness Encryption for SVDs

We are ready to present a construction of the EWE for SVDs. Similar to the
EKEM scheme, it is defined for a specific SVD scheme, which employs the CRS
of the SVD scheme.

6.1 Definition

• EWE.Enc(crsℓ, x = (ℓ, i, Tℓ,i),m)→ ctx: it takes as input a common refer-
ence string crsℓ, an instance x consisting of integers ℓ, i ∈ N and a signing
target Tℓ,i ∈ T , and a message m ∈M. It outputs a ciphertext ctx.

• EWE.SignDigest((crsl)l∈[L], (Tl)l∈[L]) → signt: it takes as input common
reference strings (crsl)l∈[L], and signing targets (Tl)l∈[L], each of which is
in T n. It outputs a signature signt generated by a trusted stateful signer
for the time epoch t.
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• EWE.Dec((crsl)l∈[L], (Tl)l∈[L], signt, ctx) → m: it takes as input common
reference strings (crsl)l∈[L], signing targets (Tl)l∈[L], a signature signt, and
a ciphertext ctx, . It outputs a message m or ⊥.

The EWE scheme defined for a message spaceM and an SVD scheme SVD
with a signing target space T is correct if for every λ ∈ N, n,L, t ∈ N bounded
by poly(λ), (Tl)l∈[L] ∈ T nL, and mx ∈M,

Pr
[
EWE.Dec((crsl)l∈[L], (Tl)l∈[L], signt,EWE.Enc(crsℓ, x,mx)) = mx

]
≥ 1−negl(λ)

holds for every x ∈ [L]×[n]×T , where (sk, vk)← SVD.SetupKey(1λ), (crsl, tdl)l∈[L] ←
SVD.SetupCRS(pp, vk, t), and signt ← EWE.SignDigest((crsl)l∈[L], (Tl)l∈[L]).

Its extractable security is defined with the oracle OSign.

Definition 13 (Extractability of the EWE scheme). Let EWE = (Setup,Enc,SignDigest,Dec)
be an EWE scheme defined for a message spaceM and a binding SVD scheme
SVD with signing target space T . The EWE scheme is said to be extractable,
if for every λ ∈ N, n,L, t∗ ∈ N bounded by poly(λ), ℓ ∈ [L], i ∈ [n], Tℓ,i ∈ T ,
algebraic adversary A, polynomial q(λ), there exists a PPT extractor E and a
polynomial p(λ) such that

Pr
[
EXPEWE

A (1λ, n, L, t∗, ℓ, i, T ∗
ℓ,i) = 1

]
≥ 1

2
+

1

q(λ)

⇒Pr
[
SVD.Verify(crsℓ, sign

∗, ℓ, i, T ∗
ℓ,i, open

∗
ℓ,i) = 1

]
≥ 1

p(λ)

holds, where (sign∗, open∗ℓ,i)← EA,OSign(pp, t∗, x, (crsl)l∈[L], (tdl)l∈[L]/{ℓ},m0,m1),

and the experiment EXPEWE
A,OSign(1

λ, n, L, t∗, ℓ, i, T ∗
ℓ,i) is defined associated with a

stateful signer oracle OSign for pp = (1λ, n, L) and SVD as follows:

EXPEWE
A,OSign(1

λ, n, L, t∗, ℓ, i, T ∗
ℓ,i)

1 : OSign is initialized, which outputs vk.

2 : A calls OSign until the time epoch in state is less than t∗. Let stateA be the A’s state.
3 : (crsl, tdl)l∈[L] ← SVD.SetupCRS(pp = (1λ, n, L), vk, t∗)

4 : (m0,m1)← A(stateA, (crsl)l∈[L], (tdl)l∈[L]/{ℓ}).

5 : b ∈ {0, 1}.
6 : ctx ← EWE.Enc(crsℓ, x = (ℓ, i, T ∗

ℓ,i),mb).

7 : b
′
← AOSign(SVD.Digest((crsl)l∈[L],·))(stateA, ctx)

8 : Output b = b
′
.

Notably, A can obtain the t∗-th signature for a digest of the CRSs (crsl)l∈[L]

and any signing targets (Tl)l∈[L] from OSign only once, and E is allowed to call
OSign only with (Tl)l∈[L] submitted by A.
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6.2 Construction

The following construction of the EWE scheme is based on the EKEM scheme
in 5.2 and a SWE scheme whose message space isM and a key space K is the
same as that of the EKEM scheme.

• EWE.Enc(crsℓ, x = (ℓ, i, Tℓ,i),m)→ ctx:

1. Compute (ct0, k)← EKEM.Enc(crsℓ, x).

2. Compute ct1 ← SKE.Enc(k,m).

3. Output ctx ← (ct0, ct1).

• EWE.SignDigest((crsl)l∈[L], (Tl)l∈[L])→ signt:

1. Compute digest← SVD.Digest((crsl)l∈[L], (Tl)l∈[L]).

2. Output signt ← OSign(digest).

• EWE.Dec((crsl)l∈[L], (Tl)l∈[L], signt, ctx)→ m:

1. Parse ctx as (ct0, ct1).

2. Compute openℓ,i ← SVD.Open((crsl)l∈[L], (Tl)l∈[L], ℓ, i).

3. Compute k
′ ← EKEM.Dec(ct0, ω = (signt, openℓ,i)).

4. Compute m
′ ← SKE.Dec(k

′
, ct1).

5. Output m
′
.

The correctness of the SVD, EKEM, and SKE schemes ensures the correctness
of the EWE scheme as follows:

m
′
= SKE.Dec(EKEM.Dec(ct0, (signt, openℓ,i)), ct1)

= SKE.Dec(k,SKE.Enc(k,m))

= m

The EWE scheme for SVDs is trust-scalable.

Theorem 1. The construction of the EWE scheme for SVDs in Subsection 6.2
is trust-scalable (Definition 9).

Proof. In that construction of the EWE scheme, the signer only needs to return
the output of the signer oracle OSign. As proved in Lemma 1, it requires the
signer to spend only constant computational and communication costs bounded
by poly(λ). Besides, OSign can be called only once for each time epoch t.
Therefore, the signer’s costs in the EWE scheme are bounded by poly(λ).

From the extractability of the EKEM scheme and the EAV security of the
SKE scheme, we prove that the above construction satisfies the extractability of
the EWE scheme.
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Theorem 2. The construction of the EWE scheme in Subsection 6.2 is ex-
tractable (Definition 13).

Proof. Suppose a PPT adversaryA that outputs 1 in ExpEWE
A,OSign with probability

greater than or equal to 1
2 + 1

q(λ) for some polynomial q(λ), we can construct a

PPT adversary B with which the experiment ExpEKEMB,OSign ouputs 1. B forwards
the A’s oracle access to OSign and returns its output without modification.
When the time epoch in state is t∗, B receives ((crsl)l∈[L], (tdl)l∈[L]/{ℓ}, ct0, k) as

defined in ExpEKEMA,OSign, where b0 ∈ {0, 1} is randomly sampled in that experiment.
It provides (crsl)l∈[L] and (tdl)l∈[L]/{ℓ} for A, which returns m0 and m1. B
then samples b1 ←$ {0, 1} and computes ct1 ← SKE.Enc(k,mb1) and provides
ctx = (ct0, ct1) for A. A might submit (Tl)l∈[L] to have B call the oracle
OSign(SVD.Digest((crsl)l∈[L], ·). A finally returns b2. B returns 0 if b1 = b2 and
1 otherwise.

Here, we define a variance of the experiment ExpEWE
A,OSign as ExpẼWE

A,OSign, where
the key k is sampled randomly from K. In other words. one of the challenge

messages is encrypted under a random key k ←$ K in ExpẼWE
A,OSign. From the EAV

security of the SKE scheme, we prove that ExpẼWE
A,OSign outputs 1 with less than

or equal to trivial probability.

Claim 4. For every λ ∈ N, n,L, t∗ ∈ N bounded by poly(λ), ℓ ∈ [L], i ∈ [n],
Tℓ,i ∈ T , algebraic adversary A, the following holds:

Pr
[
EXPẼWE

A (1λ, n, L, t∗, ℓ, i, Tℓ,i) = 1
]
≤ 1

2
+ negl(λ)

Proof. Suppose there exists a PPT adversaryA that outputs 1 in ExpẼWE
A,OSign with

non-trivial probability. We can construct a PPT adversary B that outputs 1 in
the experiment ExpSKE-EAVB . B initialize the signer oracle OSign, which generates
signing and verifying keys (sk, vk) and sets state, and returns a signature signt
for each A’s query. Given 1λ, B sets pp = (1λ, n, L), generates (crsl, tdl)l∈[L],
and provides (crsl)l∈[L] and (tdl)l∈[L]/{ℓ} for A, which returns m0 and m1. B
submits the same challenge messages in ExpSKE-EAVB . B then receives the SKE
encryption ct1 for mb, where b ←$ {0, 1} in ExpSKE-EAVB . B computes (ct0, k) ←
EKEM.Enc(crsℓ, x) and provides ctx = (ct0, ct1) for A, which returns (Tl)l∈[L].
It then digest ← SVD.Digest((crsl)l∈[L], (Tl)l∈[L]) and signt ← OSign(digest),

which is provided for A. B forwards the final A’s output b′ . Since B completely

simulates ExpẼWE
A,OSign, the following holds:

Pr
[
EXPSKE-EAV

B (1λ) = 1
]
= Pr

[
EXPẼWE

A,OSign(1
λ, n, L, t∗, ℓ, i, Tℓ,i) = 1

]
>

1

2
+negl(λ)

This is a contradiction to the EAV security of the SKE scheme. Therefore, the
claim holds.
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The experiment ExpEKEMB,OSign for b0 = 0 and b0 = 1, respectively, simulates

ExpEWE
A,OSign and ExpẼWE

A,OSign. Hecen, by Claim 4, there exists a polynomial q
′
(λ)

such that the following holds:

Pr
[
ExpEKEMB,OSign(1

λ, n, L, t∗, ℓ, i, Tℓ,i) = 1
]

=Pr[b0 = 0]Pr
[
ExpEWE

A,OSign(1
λ, n, L, t∗, ℓ, i, Tℓ,i) = 1|b0 = 0

]
+Pr[b0 = 1]Pr

[
ExpẼWE

A,OSign(1
λ, n, L, t∗, ℓ, i, Tℓ,i) = 1|b0 = 1

]
=
1

2
Pr

[
ExpEWE

A,OSign(1
λ, n, L, t∗, ℓ, i, Tℓ,i) = 1|b0 = 0

]
+
1

2
(1− Pr

[
ExpẼWE

A,OSign(1
λ, n, L, t∗, ℓ, i, Tℓ,i) = 1|b0 = 1

]
)

≥1

2
(
1

2
+

1

q(λ)
+ 1− 1

2
− negl(λ))

=
1

2
+

1

2q(λ)
− negl(λ)

≥ 1

q′(λ)

Therefore, the extractability of the EKEM scheme ensures that there exists
a PPT extractor E1 such that

Pr
[
SVD.Verify(crsℓ, sign

∗, ℓ, i, Tℓ,i, open
∗
ℓ,i) = 1

]
≥ 1

p(λ)

holds for some polynomial p(λ), where (sign∗, open∗ℓ,i) ← E
B,OSign
1 (pp, t∗, x =

(ℓ, i, T ∗
ℓ,i), (crsl)l∈[L], (tdl)l∈[L]/{ℓ}). Using E1, we can construct a PPT extrac-

tor E2 that returns the same output as that of E1 from pp, t∗, x, (crsl)l∈[L],
(tdl)l∈[L]/{ℓ}, m0, and m1 with oracle access to A and OSign. E2 forwards
the given pp, t∗, x, (crsl)l∈[L], and (tdl)l∈[L]/{ℓ} to A, which returns ω =
(sign∗, open∗ℓ,i). During the execution of E1, it should be able to call the or-
acle B. Therefore, E2 simulates B by employing A as described above. In this
way, E2 can extract ω = (sign∗, open∗ℓ,i) such that

Pr
[
SVD.Verify(crsℓ, sign

∗, ℓ, i, T ∗
ℓ,i, open

∗
ℓ,i) = 1

]
≥ 1

p(λ)

holds. Therefore, the extractability of the EWE scheme is proven.

6.3 Threshold Multiple Signers

The above EWE scheme can be easily extended to support threshold signatures.
That is, an encryptor specifies N verifying keys and an decryptor employs more
than or equal to θ ∈ [N ] signatures to decrypt each ciphertext. We propose two
approaches to achieve that.
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Approach 1: the first approach is that the encryptor splits a message m
into θ-of-N shares (m

′

1, . . . ,m
′

N ) using Shamir’s secret sharing [Sha79], and

encrypts m
′

i for the i-th verifying key vki. If more than or equal to θ signatures
are provided, the decryptor can obtain more than θ secret shares by employing
each signatre to decrypt the corresponding ciphertext, and recovers m from
those shares.

Approach 2: in the second approach, the N signers perform distributed
key generation (DKG) protocol [GJKR07] to generate linear secret shares of a
main siging key such that skM = li1ski1+· · ·+liθ skiθ holds with some coefficients
li1 , . . . , liθ ∈ Fp. Its main verifying key is vkM = [skM ]2. Then, the encryptor
encrypts a message m for vkM , which is the same as the flow in the single-signer
case. On the other hand, the decryptor with more than or equal to θ signatures,
e.g., ([σi1 ]1, . . . , [σiθ ]1), can compute a signature for vkM as [σM ]1 = skM [d]1 =
(li1ski1 + · · ·+ liθ skiθ )[d]1 = li1 [σi1 ]1+ · · ·+ liθ [σiθ ]1. The resulting [σM ]1 allows
the decryptor to decrypt the ciphertext.

Comparison between Approaches 1 and 2: Comparing Approaches
1 and 2, the former increases the computational and communication overhead
for the encryptor and decryptor but maintains the same costs for the signer,
whereas the latter does the opposite. In other words, they have opposite trade-
offs. However, these approaches can be employed together. When each of M
signers forms a cluster with a small communication overhead because they are
geographically close to each other, i.e., there are N/M clusters, each M signers
adopts Approach 2 and prepares N/M verifying keys in total. The encryptor
generatesN/M encryptions of each secret share in the same manner as Approach
1. We can control the above trade-off by adjusting the value of M .

7 Trust-Scalable One-Time Programs

As a significant application of our EWE scheme, we present TSOTPs with a
signer oracle, where the signer’s computational and communication complexities
are constant irrespective of the input size n and the number of evaluated OTPs
L.

7.1 Definition

We define the TSOTP scheme for a circuit class Cn,m as a tuple of the following
algorithms.

• TSOTP.Setup(pp = (1λ, n, L), vk, t) → (crsl, tdl)l∈[L]: it takes as input a

public parameter pp, consisting of a security parameter 1λ and integers
n,L ∈ N bounded by a polynomial on λ, a verifying key vk, and a time
epoch t. It outputs each party’s common reference string crsl and its
trapdoor tdl.

• TSOTP.Compile(crsℓ, ℓ, Cℓ) → CCℓ: it takes as input a common reference
string crs, consisting of a security parameter 1λ and integers n,L ∈ N
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bounded by a polynomial on λ, a verifying key vk, a time bound t, an
integer ℓ ∈ [L], and a circuit Cℓ ∈ Cn,m. It outputs a compiled circuit
CCℓ.

• TSOTP.SignDigest((crsl)l∈[L], (Tl)l∈[L])→ signt: it takes as input common
reference strings (crsl)l∈[L], and signing targets (Tl)l∈[L] ∈ {0, 1}n×L. It
outputs a signature signt.

• TSOTP.Eval((crsl)l∈[L], (Tl)l∈[L], signt,CCℓ) → y: it takes as input com-
mon reference strings (crsl)l∈[L], singing targets (Tl)l∈[L] ∈ {0, 1}n×L, a
signature signt, and a compiled circuit CCℓ. It outputs the evaluation
result y.

The TSOTP scheme is correct if for every λ ∈ N, n,L, t ∈ N bounded by a
polynomial on λ, a verifying key vk, an integer ℓ ∈ [L], and a circuit Cℓ,

Pr
[
Cℓ(Tℓ) = TSOTP.Eval(crsℓ,CCℓ, ℓ,OTP.SignDigest((crsl)l∈[L], (Tl)l∈[L]))

]
= 1−negl(λ)

, where (crsl, tdl)l∈[L] ← TSOTP.Setup(pp = (1λ, n, L), vk, t) and CCℓ ← TSOTP.Compile(crsℓ, ℓ, Cℓ).
In its security definition, a view of an adversary given a compiled circuit

CCℓ should be simulated without C and CCℓ by employing an one-time evalu-
ator oracle that returns the output of Cℓ on arbitrarily input only once. The
adversary and the simulator are allowed to make queries to a stateful signer
oracle OSign (Definition 8), which outputs a signature for a digest of the given
signing targets.

Definition 14 (One-Time Security of the OTP scheme). Let TSOTP = (Gen,SignDigest,Eval)
be an TSOTP scheme for a circuit class Cn,m. The TSOTP scheme is said to
be one-time secure with a stateful signer oracle, if for every security parameter
λ ∈ N, n, n′

, L, t∗ ∈ N bounded by a polynomial on λ, stateful signer oracle
OSign defined for pp

′
= (1λ, n

′
, L) and an SVD scheme with a singing target

space T = {0, 1}, integer ℓ ∈ [L], and circuit Cℓ ∈ Cn,m, there exists a PPT
simulator TSOTP.Sim such that no PPT adversary A can distinguish between
the following distributions with a non-trivial probability:

{AOSign(pp, ℓ, t∗, (crsl)l∈[L], (tdl)l∈[L]/{ℓ},CCℓ)}

≈{TSOTP.SimOOTECℓ
(·),OSign(pp, ℓ, t∗, (crsl)l∈[L], (tdl)l∈[L], 1

|Cℓ|)}

,where pp = (1λ, n, L), vk is a verifying key of OSign, (crsl, tdl)l∈[L] ← TSOTP.Setup(pp, vk, t),
and CCℓ ← TSOTP.Compile(crsℓ, ℓ, Cℓ). Here, A can make queries to OSign un-
til the time epoch t in its state is less than or equal to t∗, and OTP.Sim can call
an one-time evaluator oracle that on input Tℓ ∈ {0, 1}n outputs the evaluation
result Cℓ(Tℓ) only once.

7.2 Construction

We present a construction of the TSOTP scheme from a garbled circuit GC
scheme, an SVD scheme constructed in Subsection 4.2, an EKEM scheme defined
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for the SVD scheme with a key space K, an EWE scheme defined for the SVD
scheme with a message space M, a stateful signer oracle OSign defined for
pp

′
= (1λ, n + 1, L) and the SVD scheme. Let sizect be the size of the EWE

encryption of a message inM. The construction also employs a random oracle
RO that maps K × [L]× [n]× {0, 1} into a bit string r ∈ {0, 1}sizect .

• TSOTP.Setup(pp = (1λ, n, L), vk, t)→ (crsl, tdl)l∈[L]:

1. Let pp
′ ← (1λ, n+ 1, L).

2. Output (crsl, tdl)l∈[L] ← SVD.Setup(pp
′
, vk, t).

• TSOTP.Compile(crsℓ, ℓ, Cℓ)→ CCℓ:

1. Extract pp
′
= (1λ, n+ 1, L) from crsℓ.

2. Generate a garbled circuit and its garbled wires of all input bits
(C̃, state = (labi,b)i∈[n],b∈{0,1})← GC.Circuit(1λ, Cℓ).

3. For i ∈ [n] and b ∈ {0, 1}, compute ctℓ,i,b ← EWE.Enc(crsℓ, x =
(ℓ, i, b), labi,b).

4. Compute (ctℓ,n+1, k)← EKEM.Enc(crsℓ, x = (ℓ, n+ 1, 0)).

5. For i ∈ [n] and b ∈ {0, 1}, compute ctmask
ℓ,i,b ← ctℓ,i,b ⊕ RO(k, ℓ, i, b).

6. Let CCℓ ← (ℓ, C̃ℓ, (ct
mask
ℓ,i,b )i∈[n],b∈{0,1}, ctℓ,n+1).

7. Output CCℓ.

• TSOTP.SignDigest((crsl)l∈[L], (Tl)l∈[L])→ signt:

1. For l ∈ [L], assert that Tl ∈ {0, 1}n holds.

2. For l ∈ [L], let T
′

l ← Tl||0.

3. Output signt ← EWE.SignDigest((crsl)l∈[L], (T
′

l)l∈[L]).

• TSOTP.Eval((crsl)l∈[L], (Tl)l∈[L], signt,CCℓ)→ y:

1. Parse CCℓ as (ℓ, C̃ℓ, (ct
mask
ℓ,i,b )i∈[n],b∈{0,1}, ctℓ,n+1).

2. Extract pp
′
= (1λ, n+ 1, L) from crsℓ.

3. Compute k
′ ← EKEM.Dec(ctℓ,n+1, (signt, openℓ,n+1)), where openℓ,n+1 ←

SVD.Open((crsl)l∈[L], (Tl)l∈[L], ℓ, n+ 1).

4. For i ∈ [n], compute ctℓ,i,Tℓ,i
← ctmask

ℓ,i,Tℓ,i
⊕ RO(k

′
, ℓ, i, Tℓ,i).

5. For i ∈ [n], compute labi,Tℓ,i
← EWE.Dec((crsl)l∈[L], (Tl)l∈[L], signt, ctℓ,i,Tℓ,i

).

6. Output y ← GC.Eval(C̃, (labi,Tℓ,i
)i∈[n]).
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The correctness of the above construction is shown from the correctness of
the EKEM, EWE, and GC schemes. First, k

′
= EKEM.Dec(ctℓ,n+1, (signt, openℓ,n+1)) =

k holds. Thus, for every i ∈ [n], it holds that,

ctmask
ℓ,i,Tℓ,i

⊕ RO(k
′
, ℓ, i, Tℓ,i)

=ctℓ,i,Tℓ,i

=EWE.Enc(crsℓ, x = (ℓ, i, Tℓ,i), labi,Tℓ,i
)

Hence, EWE.Dec((crsl)l∈[L], (Tl)l∈[L], signt, ctℓ,i,Tℓ,i
) = labi,Tℓ,i

. Finally, we can

show that GC.Eval(C̃, (labi,Tℓ,i
)i∈[n]) = Cℓ(Tℓ).

The TSOTP scheme is trust-scalable.

Theorem 3. The construction of the TSOTP scheme in Subsection 7.2 is trust-
scalable (Definition 9).

Proof. In that construction of the TSOTP scheme, the signer only needs to
return the output of the signer oracle OSign, which is executed internally in
the EWE.SignDigest algorithm. As it is called only once for each time epoch t
in the TSOTP scheme, Theorem 3 straightforwardly follows that the signer’s
computational and communication costs are bounded by poly(λ).

The above construction satisfies the one-time security of the OTP scheme
as follows.

Theorem 4. The construction of the TSOTP scheme in Subsection 7.2 is one-
time secure (Definition 14).

Proof. We first define a simulator OTP.Sim. It maintains a state stateS consist-
ing of bit strings (ri,b)i∈[n],b∈{0,1}, outputs of the EKEM.Enc algorithm (ctn+1, k),

and outputs of the GC.SimC algorithm (stateGC.Sim, C̃ℓ), i.e., stateS = ((ri,b)i∈[n],b∈{0,1}, ct, k, stateGC.Sim, C̃ℓ).
It refers to stateS to generate a simulated compiled circuit and program a ran-
dom oracle RO. At the beginning of the experiment, OTP.Sim initializes stateS
and OSign as follows.

1. For i ∈ [n] and b ∈ {0, 1}, sample a bit string ri,b ←$ {0, 1}sizect .

2. Compute (ctℓ,n+1, k)← EKEM.Enc(crsℓ, x = (ℓ, n+ 1, 0)).

3. Generate a simulated garbled circuit (stateGC.Sim, C̃ℓ

′

)← GC.SimC(1λ, 1|Cℓ|).

4. Set stateS ← ((ri,b)i∈[n],b∈{0,1}, ctℓ,n+1, k, stateGC.Sim, C̃ℓ

′

).

5. Initialize OSign with pp
′
= (1λ, n+1, L) and SVD as defined in Definition 8,

which outputs a verifying key vk.

It takes as input pp, ℓ, t∗, (crsl)l∈[L], (tdl)l∈[L], 1
|Cℓ| and stateS , and outputs

a simulated compiled circuit CCℓ as follows.
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1. Extract pp
′
= (1λ, n+ 1, L) from crsℓ.

2. Parse stateS as ((ri,b)i∈[n],b∈{0,1}, ctℓ,n+1, k, stateGC.Sim, C̃ℓ).

3. For i ∈ [n] and b ∈ {0, 1}, let ctmask
ℓ,i,b ← ri,b.

4. Let CCℓ ← (ℓ, C̃ℓ, (ct
mask
ℓ,i,b )i∈[n],b∈{0,1}, ctℓ,n+1).

5. Output CCℓ.

OTP.Sim programs RO in a lazy manner. That is, upon the input (k, ℓ, i, b),
it outputs ri,b if RO[(k, ℓ, i, b)] = ri,b is already computed, and otherwise, it
samples a new ri,b ∈ {0, 1}sizect , sets RO[(k, ℓ, i, b, )]← ri,b, and outputs it.

When OSign is called at the time epoch t∗, RO is updated by referring to
the submitted singing targets (Tl)l∈[L] along with calling the oracle OOTE.

1. Parse stateS as ((ri,b)i∈[n],b∈{0,1}, ctℓ,n+1, k, stateGC.Sim, C̃ℓ).

2. Obtain the evaluation result y by calling OOTE on input Tℓ.

3. Simulate the garbled input (lab
′

i)i∈[n] ← GC.SimIn(y, stateGC.Sim).

4. For i ∈ [n], compute ctℓ,i,Tℓ,i
← EWE.Enc(crsℓ, x = (ℓ, i, Tℓ,i), lab

′

i) and
ct0ℓ,i,1−Tℓ,i

← EWE.Enc(crsℓ, x = (ℓ, i, Tℓ,i),0).

5. For i ∈ [n], set RO[(k, ℓ, i, Tℓ,i)] ← ctℓ,i,Tℓ,i
⊕ ri,Tℓ,i

and RO[(k, ℓ, i, 1 −
Tℓ,i)]← ct0ℓ,i,1−Tℓ,i

⊕ ri,1−Tℓ,i
.

Notably, the above process does not depend on the circuit Cℓ.
We next define a sequence of hybrids and prove that each contiguous hybrids

are indistinguishable.
Hybrid 1: it is the same as the real experiment where the adversary A

receives a compiled circuit CCℓ.
For i ∈ [n] and b ∈ 0, 1,
Hybrid 2i + b for every i ∈ [n] and b ∈ {0, 1}: it is the same as Hy-

brid 2i + b − 1 except that the TSOTP.Compile algorithm computes ctmask
ℓ,i,b and

RO[(k, ℓ, i, b)] in a different manner as follows:

• ri,b is set to ctmask
ℓ,i,b , where ri,b ←$ {0, 1}sizect is randomly sampled.

• ctℓ,i,b ⊕ ri,b is set to RO[(k, ℓ, i, b)].

Hybrid 2n + 2i + b for every i ∈ [n] and b ∈ {0, 1}: it is the same as
Hybrid 2n+2i+ b−1 except that the value of RO[(k, ℓ, i, b)] is set not when the
TSOTP.Compile algorithm is executed but when the OSign is called at the time
epoch t∗. Notably, if the (k, ℓ, i, b) is queried to RO before OSign with the time
epoch t∗ is called, a random r ←$ {0, 1}sizect is sampled and set to RO[(k, ℓ, i, b)],
and RO[(k, ℓ, i, b)] is not updated anymore if it is already set.
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Hybrid 4n+1+ i for every i ∈ [n]: it is the same as Hybrid 4n+ i except
that the value of RO[(k, ℓ, i, 1−Tℓ,i)] is replaced with ct0ℓ,i,1−Tℓ,i

⊕ri,1−Tℓ,i
, where

ct0ℓ,i,1−Tℓ,i
← EWE.Enc(crsℓ, x = (ℓ, i, 1− Tℓ,i,0)).

Hybrid 5n+2: it is the same as Hybrid 5n+1 except that the garbled circuit
C̃ℓ and the garbled input (labi,Tℓ,i

)i∈[n] are replaced with the simulated ones

C̃ℓ

′

and (lab
′

i)i∈[n], where (C̃ℓ

′

, stateGC.Sim) ← GC.SimC(1λ, 1|Cℓ|), (lab
′

i)i∈[n] ←
GC.SimIn(y, stateGC.Sim), and y ← OOTE(Tℓ).

We prove that each pair of contiguous hybrids are indistinguishable.
Indistinguishability between Hybrids 2i + b − 1 and 2i + b: the only

differences between these hybrids are the values of ctmask
ℓ,i,b and RO[(k, ℓ, i, b)].

Since ctℓ,i,b ← ctmask
ℓ,i,b ⊕RO[(k, ℓ, i, b)] is the same between two hybrids, and each

randomness ri,b is used only once, their indistinguishability is straightforwardly
proven from one-time pad security.

Indistinguishability between Hybrids 2n+2i+b−1 and 2n+2i+b: the
only difference between these hybrids is when ctℓ,i,b⊕ri,b is set to RO[(k, ℓ, i, b)].
Let bad be an event that A submits any query to RO that contains k before
calling OSign at the time epoch t∗. If bad does not occur, these hybrids are
indistinguishable because the value of RO[(k, ℓ, i, b)] is the same between these
hybrids after OSign returns the t∗-th signature. Therefore, we show that the
probability that bad occurs is negligible in both hybrids as follows.

Claim 5. If no PPT adversary A can break the time-locking of the SVD scheme
(Definition 11), Pr[bad] < negl(λ) holds both in Hybrids 2n + 2i + b − 1 and
2n+ 2i+ b.

Proof. We show that there exists an extractor E that outputs a signature sign∗

and an opening oepn∗ℓ,i from Definition 12, which can be used to break the time-
locking of the SVD scheme. Suppose that Pr[bad] is larger than or equal to
1

q(λ) with some polynomial q(λ), there exists a PPT adversary B with which

the experiment ExpEKEMB,OSign(1
λ, n + 1, L) outputs 1. B forwards the A’s oracle

access to OSign and returns its output without modification. At the time epoch
t∗, B receives ((crsl)l∈[L], (tdl)l∈[L]/{ℓ}, ctn+1, k) as defined in ExpEKEMA,OSign, where
b0 ∈ {0, 1} is randomly sampled in that experiment. B generates a compiled
circuit CCℓ using the given values and programs RO in the same manner as each
Hybrid, and provides (crsl)l∈[L], (tdl)l∈[L]/{ℓ}, and CCℓ for A. B returns 0 if
bad occurs, and 1 otherwise. Notably, if A requests B to call OSign at the time
epoch t∗, B returns 1 without calling OSign. Here, the following holds:

Pr
[
ExpEKEMB,OSign(1

λ, n+ 1, L, t∗, ℓ, i, Tℓ,i) = 1
]

=Pr[b0 = 0]Pr[bad|b0 = 0] + Pr[b0 = 1]Pr
[
¯bad|b0 = 1

]
=
1

2
{Pr[bad|b0 = 0] + (1− Pr[bad|b0 = 1])}
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When b0 = 0, B simulates either Hybrids 2n+2i+b−1 or 2n+2i+b. Therefore,
Pr[bad|b0 = 0] = Pr[bad] ≥ 1

p(λ) stands. On the other hand, Pr[bad|b0 = 1] is

negligible since k is randomly sampled. Hence,

1

2
{Pr[bad|b0 = 0] + (1− Pr[bad|b0 = 1])}

>
1

2
{ 1

q(λ)
+ (1− negl(λ))}

>
1

2
+

1

q′(λ)

holds for some polynomial q
′
(λ).

Definition 12 follows that there exists an extractor E that outputs a signature
sign∗ and an opening open∗ℓ,i by employing B. We can use E to construct a PPT

adversary C with which the experiment ExpSVD-Time
C,OSign (1λ, n+1, L, t∗, ℓ, i, b) outputs

1. At the time epoch t∗, given (crsl)l∈[L] and (tdl)l∈[L]/{ℓ}, C passes them to E ,
which returns (sign∗, open∗ℓ,i) such that SVD.Verify(crsℓ, sign

∗, ℓ, i, b, open∗ℓ,i) = 1.
In this process, while E needs to forward oracle access from B to OSign, B
described above does not call OSign at the time epoch t∗. Therefore, C does not
conflict with the condition for the adversary in ExpSVD-Time

C,OSign that the adversary
cannot call OSign at the time epoch t∗. Hence, C breaks the time-locking of the
SVD scheme. This is a contradiction, and thus Pr[bad] < negl(λ) holds.

Claim 5 follows Pr
[
¯bad

]
= 1 − Pr[bad] > 1 − negl(λ). Therefore, the indis-

tinguishability between Hybrids 2n+ 2i+ b− 1 and 2n+ 2i+ b is proven.
Indistinguishability between Hybrids 4n+ i and 4n+ 1 + i: the only

differences between these hybrids are the values of RO[(k, ℓ, i, 1 − Tℓ,i)]. That
is, while the encryption of labeli,Tℓ,i

is used in Hybrid 4n+1+ i, the encryption
of 0 is used in Hybrid 4n + i. Suppose that the adversary A distinguishes
these hybrids with a non-trivial probability, it should be able to distinguish
between those encryptions. Therefore, Definition 13 ensures that there exists
an extractor E that outputs a signature sign∗ and an opening open∗ℓ,i. We can use
those outputs to break the binding property of the EWE scheme (Definition 10),
which is a contradiction.

Formally, we first constructs a PPT adversary B with which the experiment
ExpEWE

B,OSign(1
λ, n+1, L, t∗, ℓ, i, 1−Tℓ,i) outputs 1. B forwards the oracle access of

A to OSign and returns its output without modification. At the time epoch t∗,
B receives ((crsl)l∈[L], (tdl)l∈[L]/{ℓ}) and returns m0 = labi,1−Tℓ,i

and m1 = 0. B
then receives a ciphertext ct∗ ← EWE.Enc(crsℓ, x = (ℓ, i, 1 − Tℓ,i),mb0), where

b0 ∈ {0, 1} is randomly sampled in the experiment ExpEWE
B,OSign. B generates

a compiled circuit CCℓ and programs RO using the given values and provides
((crsl)l∈[L], (tdl)l∈[L]/{ℓ},CCℓ) for A. Specifically, when the OSign is called, B
sets ct∗⊕ ri,1−Tℓ,i

to RO[(k, ℓ, i, 1− Tℓ,i)]. After obtaining a signature signt∗ for
a digest of signing targets (Tl)l∈[L], A returns b1 = 0 if it is in Hybrid 4n + i,
and b1 = 1 otherwise. B finally outputs b1 as its output. As B simulates the
A’s view in Hybrid 4n + i + b0, if A can distinguish between these hybrids,
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Pr
[
ExpEWE

B,OSign(1
λ, n+ 1, L, t∗, ℓ, i, 1− Tℓ,i) = 1

]
= Pr[b0 = b1] ≥ 1

q(λ) holds for

some polynomial q(λ). Therefore, from Definition 13, there exists an extractor
E that outputs a signature sign∗ and an opening open∗ℓ,i by employing B.

We next construct a PPT adversary C with which the experiment ExpSVD-Binding
C,OSign (1λ, n+

1, L, t∗, ℓ, i, 1−Tℓ,i) outputs 1. At the time epoch t∗, C receives ((crsl)l∈[L], (tdl)l∈[L]/{ℓ})

and passes pp
′
= (1λ, n+1, L), t∗, x = (ℓ, i, 1−Tℓ,i), (crsl)l∈[L], (tdl)l∈[L]/{ℓ}, m0,

and m1 to E . When E requests C to call OSign at the time epoch t∗ with signing
targets (Tl)l∈[L], which is given to E by B, C submits them and receives signt∗ in

the experiment ExpSVD-Binding
C,OSign . C finally forwards the E ’s output (sign∗, open∗ℓ,i).

Since that output satisfies SVD.Verify(crsℓ, sign
∗, ℓ, i, 1 − Tℓ,i, open

∗
ℓ,i) = 1, the

output of the experiment ExpSVD-Binding
C,OSign is 1. This is a contradiction, and thus

the indistinguishability between Hybrids 4n+ i and 4n+ 1 + i is proven.
Indistinguishability between Hybrids 5n + 1 and 5n + 2: the only

differences between these hybrids are the values of the garbled circuit and the
garbled input. Suppose A distinguishes between these hybrids with a non-trivial
probability, we can construct a PPT adversary B with which the experiment
ExpGC-AdapB (1λ) outputs 1. B first submits a circuit Cℓ and receives C̃ℓ, where

b←$ {0, 1} is sampled in the experiment ExpGC-AdapB . B then forwards the oracle
access of A to OSign and returns its output without modification until the
time epoch t∗. After that, B generates CRSs, trapdoors (crsl, tdl)l∈[L], and a

compiled circuit CCℓ using the given C̃ℓ, and provides (crsl)l∈[L], (tdl)l∈[L]/{ℓ},
and CCℓ for A. When A requests B to call OSign at the time epoch t∗, where the
submitted signing targets are denoted by (Tl)l∈[L], B submits Tℓ as the input

to the garbled circuit in the experiment ExpGC-AdapB (1λ). B then receives the
garbled input x̃∗ = (lab∗i )i∈[n] and emploies them to program RO. Specifically,
for every i ∈ [n], ctℓ,i,Tℓ,i

is calculated as the encryption of lab∗i , i.e., ctℓ,i,Tℓ,i
←

EWE.Enc(crsℓ, x = (ℓ, i, Tℓ,i), lab
∗
i ), and ct∗ℓ,i,Tℓ,i

⊕ri,Tℓ,i
is set to RO[(k, ℓ, i, Tℓ,i)].

A outputs b
′
= 0 if it is in Hybrid 5n+ 1, and b1 = 1 otherwise. B forwards b

′

as its output. As B simulates the A’s view in Hybrid 5n+b, if A can distinguish

between these hybrids, Pr
[
b = b

′
]
is non-negligible. This is a contradiction, and

thus the indistinguishability between Hybrids 5n+ 1 and 5n+ 2 is proven.
Hybrid 5n+2 is completely simulated by the simulator OTP.Sim, which does

not depend on the circuit Cℓ. Therefore, the real experiment corresponding to
Hybrid 1 is indistinguishable from the simulated experiment corresponding to
Hybrid 5n+ 2. This completes the proof.

8 Conclusion

In this paper, we propose witness encryption (WE) for signed vector digests, a
novel WE scheme built from bilinear maps. This scheme allows anyone with a
valid signature to decrypt ciphertexts while maintaining constant computational
and communication costs for the trusted signer at regular intervals. It provides
extractable security, a stronger security definition than that of standard WE.

37



Our construction uses bilinear maps and symmetric key encryption in the
random oracle model. Furthermore, we demonstrate that the construction can
be easily extended to a threshold multiple signers setting, where decryption
requires signatures from at least a threshold number of signers.

Using our WE scheme, we also construct trust-scalable one-time programs
(TSOTPs). Notably, the signer only needs to perform a fixed amount of com-
putation and communication at regular intervals to enable the evaluation of a
polynomial number of OTPs generated by independent OTP generators. This
feature bounds the operational costs of the signers’ machines even as the num-
ber of evaluated OTPs increases. Thus, it enables scalable OTP evaluations
without increasing the risk of the decrease in the number of signers and the
worsening of their decentralization.
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