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Abstract—The extensive use of cloud storage has created an urgent need to search and share data. Public key authenticated encryption
with keyword search (PAEKS) allows for the retrieval from encrypted data, while resisting the insider keyword guessing attacks (IKGAs).
Most PAEKS schemes only work with single-receiver model, exhibiting very limited applicability. To address this concern, there have
been researches on broadcast authenticated encryption with keyword search (BAEKS) to achieve multi-receiver ciphertext search. But
to our best knowledge, existing BAEKS schemes are susceptible to quantum computing attacks. In this paper, we propose lattice-based
BAEKS, the first post-quantum broadcast authenticated encryption with keyword search, providing robust quantum-safety in multi-
receiver model. Specifically, we leverage several lattice sampling algorithms and rejection sampling technique to construct our BAEKS
scheme. Furthermore, we incorporate minimal cover set technique and lattice basis extension algorithm to construct an enhanced
version, namely FS-BAEKS. Moreover, we give a rigorous security analysis of our scheme. Ultimately, the best computational overhead
of BAEKS and Test algorithms in our BAEKS scheme delivers up to approximately 12-x and 402-x faster over prior arts when the number
of receivers is six, respectively, which is practical for cloud storage systems.

Index Terms—Cloud storage, broadcast authenticated searchable encryption, lattice, forward security.
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1 INTRODUCTION

C LOUD storage provides users with searching and shar-
ing their data between data senders and receivers

without any geographical restrictions. It has numerous ben-
efits, such as reducing local data maintenance, boosting
data circulation, and improving service elasticity [1], [2].
Meanwhile, data privacy leakage problem in cloud storage
is commonplace. In order to ensure data security as well as
data availability, one possible method is to encrypt the data
before sending it to the cloud server. Boneh et al. proposed a
cryptographic primitive namely public key encryption with
keyword search (PEKS) [3]. Through this technique, data
receiver can search the keyword ciphertext uploaded by
data sender, the specific process is depicted in Fig. 1.

Nevertheless, traditional PEKS schemes are vulnerable
to the insider keyword guessing attacks (IKGAs) [3], [4],
[5], [6], [7], [8], [9], [10], where an attacker (an external
adversary or cloud server) can intercept a search trapdoor,
select a keyword from a limited keyword space to compute
the keyword ciphertext by encryption algorithm, and then
obtain the keyword information by matching the obtained
ciphertext and trapdoor to result in the privacy leakage. In
order to resist these attacks, Huang et al. constructed public
key authenticated encryption with keyword search (PAEKS)
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schemes [11] by involving the secret key of data sender in
the encryption algorithm.

Most PAEKS primitives are primarily designed for
single-receiver model [11], [12], [13], [14], [14], [15], [16], [17].
However, multi-receiver model are more common in real-
world cloud storage systems [18]. Specifically, in the cloud-
assisted healthcare scenarios, electronic medical records
(EMR) are stored in a cloud server [19] [20], and when
different departments’ physicians need to access the same
patient’s EMR, a PAEKS scheme that supports multiple
users will be more convenient. To address this concern,
braodcast authenticated encryption with keyword search
(BAEKS) was proposed [21], [22], [23], supporting multiple
receivers to search keyword ciphertext uploaded by a data
sender. Unfortunately, these schemes neither resist quantum
computing attacks, nor avoid the secret key leakage prob-
lem. As far as we know, there exists no BAEKS schemes can
explicitly enjoy quantum-safety and forward security.

In this paper, we propose lattice-based BAEKS, a novel
broadcast authenticated encryption with keyword search
over lattice. It supports multi-receiver ciphertext search and
withstand the threat from cloud server (refers to IKGAs),
protecting the data privacy in the cloud storage systems.
Furthermore, we extend our BAEKS scheme to propose the
FS-BAEKS scheme, which can solve the secret key leakage
problems.

The constructions of BAEKS and FS-BAEKS primi-
tives address two challenges in terms of data security
for cloud storage. The first challenge is how to design a
post-quantum BAEKS scheme, which is characterized by
both multi-receiver support and IKGAs-resilience. Existing
BAEKS schemes [21], [22], [23] are vulnerable to quantum
computing attacks since their security relies on the tradi-
tional hardness assumptions, (i.e. discrete-logarithm (DL)
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Fig. 1. The ciphertext search model for cloud storage.

hardness). Different from these previous BAEKS schemes,
we introduce the lattice algebra structure and lattice basis
sampling algorithm to construct the post-quantum BAEKS
scheme. Specifically, we encrypt the keyword with a data
sender’s secret key and data receivers’ public keys to sup-
port multi-receiver usage. To calculate a search trapdoor,
a straightforward idea is to use SamplePre or SampleLeft
algorithm, however, it is unable for each receiver in the
data receivers set to search the keyword ciphertext, which is
a difficult issue to be concerned. In our design, we come
with a non-trivial way, by utilizing the SampleBasis and
GenSamplePre algorithms with inputting a data receiver’s
secret key (lattice basis matrix) to generate an appropriate
search trapdoor. More specially, our scheme has efficient
computational overhead than current BAEKS schemes [21],
[22] in terms of BAEKS and Test algorithms.

The second challenge is how to address the secret key
leakage problem for lattice-based BAEKS. More specifically,
a malicious adversary has the ability to calculate a trapdoor
corresponding to a specific keyword if it obtained the data
receivers’ secret key. Then, the adversary can send it to cloud
server in order to match the keyword ciphertext, thereby
significantly compromising the security of keywords. To
solve this problem, we achieve the forward security [24], it
means that the secret key leakage in a future time period
does not influenced the ciphertext security in past time
periods. Technically, inspired by Yu et al. [25], we introduce
the binary tree structure, minimal cover set technique and
lattice basis extension algorithm to update the receivers’
secret key. In a nutshell, our contributions are demonstrated
as follows:

• We present a novel scheme namely lattice-based broad-
cast authenticated encryption with keyword search
(BAEKS) in a quantum setting, as well as defining
system models, formal definitions and two security
models for it. Then, in order to ensure the security of
data receivers’ secret key, we propose lattice-based for-
ward secure broadcast authenticated encryption with
keyword search (FS-BAEKS) as the enhanced verison
of BAEKS. As far as we know, numerous existing PEKS
primitives cannot support multi-receiver model, and
are vulnerable to several attacks, e.g. quantum com-

puting attacks, IKGAs, secret key leakage attacks. Our
schemes have the ability to resist all of aforementioned
attacks simultaneously.

• We construct BAEKS scheme leveraged lattice algebra
structure, several lattice sampling algorithms and rejec-
tion sampling technique, which supports multi-receiver
ciphertext search to protect the data privacy in cloud
storage systems. Concretely, through the SampleBasis
and GenSamplePre algorithms, each receiver in the
data receivers set can generate a proper search trap-
door. Moreover, based on our BAEKS, the binary tree
structure, minimal cover set technique and lattice basis
extension algorithm [25] is introduced, achieving time
periods representation and data receivers’ secret key
update to construct FS-BAEKS scheme.

• Our BAEKS & FS-BAEKS schemes have been proven
to be secure in IND-CKA and UF-IKGA models, which
can be reduced to the LWE and SIS hardness in the
random oracle model, respectively. Performance eval-
uation and comparison manifests that our BAEKS &
FS-BAEKS schemes are more computationally efficient
in terms of BAEKS and Test algorithms compared to
the prior arts [21], [22]. In particular, for the computa-
tional overhead of our BAEKS scheme at the number
of receivers l = 6, the BAEKS algorithm delivers up to
6× and 12×, and the Test algorithm brings up to 120×
and 402× faster over prior arts [21], [22], respectively.
Moreover, the communication overhead has acceptable
growth trend with the increment of receivers, time
periods or security parameter.

The remainder of this paper is structured as follows.
Section 2 presents numerous related works to showcase
recent advancements. Following that, Section 3 provides
an introduction to the preliminary concepts. The system
models, formal definitions, and security models for BAEKS
are then depicted in Section 4. A detailed explanation and
its security analysis of BAEKS scheme is demonstrated in
Section 5, while Section 6 focuses on the FS-BAEKS scheme,
which is an enhanced version of BAEKS. In Section 7,
we delve into the performance evaluation and comparison.
Finally, we summarize this paper in Section 8.

2 RELATED WORKS

From the first PEKS scheme introduced by Boneh et al. [3],
various variant-PEKS schemes have been presented. Byun
et al. considered that the PEKS schemes does not resist
to keyword guessing attacks (KGAs) [29]. Then, numerous
researchers proposed numerous schemes to resist the KGAs
under the external adversary. In detail, Baek et al. con-
structed an efficient SCFPEKS scheme, which designates a
tester to remove a reliable channel between the data receiver
and cloud server [7]. Rhee et al. enhanced the security mod-
els to proposed designated tester public key encryption with
keyword search (dPEKS) [8], and constructed its generic
construction [9]. Chen et al. introduced a semi-trusted par-
ticipating entity namely keyword servers (KS) to construct
a SA-PEKS scheme [10], and gave an instantiation utiliz-
ing full-domain hash RSA signatures. To resist to IKGAs,
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TABLE 1
Comparison with the current state-of-art PEKS/PAEKS/BAEKS schemes

Schemes Multi-receiver support IKGA-resilience Quantum-resistance Forward security

Boneh et al. [3] # # # #

Baek et al. [7] # # # #

Rhee et al. [8] # # # #

Rhee et al. [9] # # # #

Chen et al. [10] # # # #

Huang et al. [11] # ! # #

Liu et al. [12] # ! ! #

Liu et al. [13] # ! ! #

Cheng et al. [14] # ! ! #

Yao et al. [17] # ! ! #

Ali et al. [26] ! # # #

Kiayias et al. [18] ! # # #

Liu et al. [21] ! ! # #

Mukherjee [22] ! ! # #

Emura et al. [23] ! ! # #

Zhang et al. [27] # # ! !

Yu et al. [25] # # ! !

Yang et al. [28] # # ! !

Xu et al. [15] # ! ! !

Our BAEKS ! ! ! #

Our FS-BAEKS ! ! ! !

Huang et al. introduced a public-key authenticated encryp-
tion with keyword search (PAEKS) scheme to implement
authentication through a data owner’s secret key, which can
ensure that the keyword encryption procedure can only be
performed by the data owner, and demonstrated a rigorous
prove for proposed scheme in the random oracle model
(ROM) [11]. Liu et al. put forward a generic construction for
PAEKS and an instantiation over lattice to achieve the anti-
quantum property [12], and enhanced its security [13]. Fur-
thermore, Cheng et al. pointed out some security issues [13],
[23], and constructed two PAEKS schemes over lattice [14].
Yao et al. then constructed a CCA-secure PAEKS scheme
over ideal lattice, and demonstrated that the resistance of
PAEKS scheme to IKGAs is equivalent to the unforgeability
of keyword ciphertexts [17].

Since encrypted messages can be decrypted by a group
of specified data users, broadcast encryption (BE), initialized
by Fiat et al. [30], is more practical compared to one-to-one
encryption and is exclusively used in numerous scenarios
(e.g. content subscription and digital rights management).
To mitigate the public key certificates storage overhead,
Delerablèe et al. put forward an identity-based broadcast
encryption scheme (IBBE), which keeps the ciphertext size
constant and realized the CCA security in the ROM [31].
After that, Boneh et al. provided a broadcast hierarchi-
cal identity-based encryption (HIBE) scheme with short
ciphertext [32]. Gentry et al. implemented the security of
IBBE under standard model [33]. Ali et al. foresaw the
combinability of BE and PEKS, and constructed a broadcast
searchable keyword encryption scheme, which is a novel
cryptographic primitive to search the keyword ciphertext
encrypted by the public key of a group of specified data
users [26]. Futhermore, an efficient broadcast encryption
with keyword search (BEKS) is introduced by Kiayias et
al., providing constant secret key and trapdoor size, and

the server’s storage overhead is independent of the number
of data receivers, but is not resistant to IKGAs [18]. En-
lightened by the concept of PAEKS, Liu et al. constructed
a broadcast authenticated encryption with keyword search
(BAEKS) cryptographic primitive to resist to IKGAs, and
the ciphertext and trapdoor security was proved under the
DBDH assumption [21]. In 2023, Mukherjee introduced a
more stronger security model, and ensured the ciphertext
and trapdoor security in the standard model [22]. Emura et
al. put forward a generic construction of fully anonymous
BAEKS, which provides the anonymity and consistency
of keyword ciphertext and supports multi-receiver model
[23]. However, none of aforementioned schemes can resist
to quantum computing attacks, and there exists no post-
quantum BAEKS scheme as so far.

In 2019, A lattice-based forward secure public key with
keyword search (FS-PEKS) scheme is proposed by Zhang
et al., which utilized lattice basis delegation to update the
secret key [27]. After that, Yu et al. introduced the binary
tree structure, minimal cover set technique and lattice basis
extension to construct an efficient FS-PEKS scheme over
lattice [25]. Then, Yang et al. presented a forward secure
identity-based PEKS, namely FS-IBEKS, which instantiated
two schemes over lattice to ensure security in the ROM
and standard model, respectively [28]. For PAEKS primitive,
Xu et al. constructed a forward secure PAEKS over lattice,
namely FS-PAEKS, to achieve the IND-CKA and IND-IKGA
secure [15]. However, there does not exist BAEKS scheme
with forward security till now.

To sum up, there exists a valuable requirement to
construct a BAEKS scheme and extend it to FS-BAEKS
for achieving the multi-receiver support, IKGAs-resilience,
quantum-resistance, and forward security. Table 1 com-
pares aforementioned properties between our proposed
BAEKS & FS-BAEKS schemes with the current state-of-art



4

TABLE 2
Glossary

Acronym Definition

[d] the number set {1, · · · , d}
i = [d] the iteration of each element in set

{1, 2, · · · , d} with variable i
l the number of data receivers
k the length of a keyword
τ the level number of binary tree
T the number of time period, where T = 2τ

W the keyword set
ck the keyword owned by data sender
tk the keyword to be searched by specific data

receiver
λ the security parameter
pp the public parameter
(pkS , skS) the public & secret keys of data sender
(pkR,i, skR,i) the public & secret keys of data receiver i,

where i ∈ [l]
(pkR,i, skR,i,t) the public key & secret key of data receiver

i with time period t
CT the keyword ciphertext
CTt the keyword ciphertext with time period t
TD the search trapdoor calculated by data re-

ceiver i, where i ∈ [l]
TDt the search trapdoor calculated by data re-

ceiver i with time period t, where i ∈ [l]

PEKS/PAEKS/BAEKS schemes.

3 PRELIMINARIES

We provide a concise summary of the notations, including
lattice, discrete Gaussian distribution, LWE & SIS hardness,
lattice basis sampling and extension lemmas, and reject sam-
pling lemma. Table 2 clarifies the acronyms and descriptions
utilized in this paper.
Definition 1. [34] Suppose a matrix M = (m1,m2, · · · ,mm)

is composed of m linearly independent vectors, the
lattice Λ is defined as:

Λ = Λ(M) = {x1m1+x2m2+· · ·+xmmm|xi ∈ Z, i ∈ [m]},

where M is a lattice basis of Λ.

Definition 2. [35] Suppose three integers n, m, q, and a
matrix M ∈ Zn×m

q , a q-ary integer lattice is defined as:

Λq(M) := {u ∈ Zm|∃v ∈ Zn
q ,M

⊤v = u mod q}.

Λ⊥
q (M) := {v ∈ Zm|Mv = 0 mod q}.

Λu
q (M) := {v ∈ Zm|Mv = u mod q}.

Definition 3. Suppose a parameter σ ∈ R+, a center c ∈ Zm,
and any vector v ∈ Zm, the discrete Gaussian distribu-
tion over Λ is defined as:

DΛ,σ,c(v) =
ρσ,c(v)

ρσ,c(Λ)
,

for ∀v ∈ Λ, where ρσ,c(v) = exp(−π ∥v−c∥2

σ2 ) and
ρσ,c(Λ) =

∑
v∈Λ ρσ,c(v).

Definition 4. [36] Suppose several positive integer n,m,q,
and an error distribution χ = Ψα, the LWEn,m,q,χ

hardness is defined as distinguishing two pairings

(M,M⊤s + e) and (M,v), where M ← Zn×m
q , s ←

Zn
q , e← χm, and v← Zm

q .

Definition 5. [35] Suppose several positive integer n,m,q,
the SISn,m,q,β hardness is defined as finding a non-zero
vector v ∈ Zm \ {0} s.t. Av = 0 and ∥v∥ ≤ β, where
A ∈ Zn×m

q , and β ≥
√
mqn/m.

Lemma 1. [37] Suppose a lattice Λ and its lattice basis TA,
we obtain:

Pr[∥v∥ > σ
√
m : v← DΛ,σ] ≤ negl(m),

where σ ≥ ∥T̃A∥ · ω(
√
logm).

Lemma 2. [37] Suppose three positive integers n, m, q, where
q ≥ 2, and m ≥ 5n log q. After input several positive in-
tegers n,m, q, the probabilistic polynomial time (PPT) al-
gorithm TrapGen(n,m, q) will calculate an uniform ma-
trix A ∈ Zn×m

q together with a lattice basis TA ∈ Zm×m
q

for Λ⊥
q (A), where A is statistically close to uniform

distribution on Zn×m and ∥T̃A∥ ≤ mω(
√
logm).

Lemma 3. [37] Suppose three positive integers n, m, q, where
q ≥ 2, and m ≥ 2n log q. After input a matrix A ∈ Zn×m

q ,
a lattice basis TA ∈ Zm×m

q for Λ⊥
q (A), and a Gaussian

parameter σ ≤ ∥T̃A∥ · ω(
√
logm), the PPT algorithm

SamplePre(A,TA,u, σ) will calculate a vector e ∈ Zm
q

statistically close to DΛu
q (A),σ , such that Ae = u mod q.

Suppose four positive integers n, m, q, k, a matrix A =
(A1 | · · · | Ak) ∈ Zn×km

q , and a setM = {i1, i2, · · · , ij} ⊂
[k], we set AM := (Ai1 | Ai2 | · · · | Aij ) ∈ Zn×jm

q . Then,
we introduce the Lemma 4 and 5 as follows:
Lemma 4. [38] Suppose four positive integers n, m,

q, k, where q ≥ 2, and m ≥ 2n log q. After in-
put a matrix A ∈ Zn×km

q , a lattice basis TAM for
Λ⊥
q (AM), a set M ⊂ [k], and a Gaussian parameter

L ≥ ∥T̃AM∥ ·
√
km · ω(

√
log km), the PPT algorithm

SampleBasis(A,TAM ,M, L) will calculate a matrix T′
A,

where T′
A is a lattice basis of Λ⊥

q (A) and ∥T̃′
A∥ ≤ L

with overwhelming probability.

Lemma 5. [38] Suppose four positive integers n, m, q, k,
where q ≥ 2, and m ≥ 2n log q. After input a ma-
trix A ∈ Zn×km

q , a lattice basis TAM for Λ⊥
q (AM),

a set M ⊂ [k], a vector u ∈ Zn
q , and a Gaussian

parameter σ ≥ ∥T̃AM∥ · ω(
√
log km), the PPT algo-

rithm GenSamplePre(A,TAM ,M,u, σ) will output a
vector e ∈ Zkm statistically close in DΛu

q (A),σ , such that
Ae = u mod q.

Lemma 6. [39] Suppose four positive integers n, m, m′,
q, two matrices A ∈ Zn×m, A′ ∈ Zn×m′

. After input
A′′ = (A | A′) ∈ Zn×(m+m′)

q , and a basis TA ∈ Zm×m
q

for Λ⊥
q (A), the deterministic polynomial time (DPT)

algorithm ExtBasis(A′′,S) will calculate a lattice basis
TA′′ for Λ⊥

q (A
′′) ⊆ Zm×m′′

q , where ∥T̃A∥ = ∥T̃A′′∥,
m′′ = m+m′.

Lemma 7. [40] Suppose a vector space W = {w ∈ Zm :
∥w∥ ≤ T}, a mapping h : W → R, a constant M , and
a Gaussian parameter σ = ω(T

√
logm), where w ← h,

the following two distributions are defined as:
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1) For w ← h, u ← Dm
σ , obtain (u,w) with probability

1
M .

2) For w ← h, u ← Dm
w,σ , obtain (u,w) with probability

min(
Dm

σ

M ·Dm
w,σ

, 1).

4 FRAMEWORK DESCRIPTION

The system models, formal definitions, and security models
of our BAEKS scheme are described in this sector.

4.1 System Models
The system models of our BAEKS scheme are illustrated
in Fig. 2, which contains four participating entities: key
generation center, data sender, data receivers, and cloud
server.

1) Key generation center (KGC): KGC is charged with
executing the Setup algorithm to obtain the public
parameters and calculate the public & secret keys for
data sender and data receivers.

2) Data sender: Data sender owns massive data from
different industries (e.g., medical data, logistics data,
research data, etc.), extracts and encrypts the keywords
from these data with its own secret key and a set of data
receivers’ public keys to calculate keyword ciphertext,
and sends them to the cloud server.

3) Data receivers: Data receivers consist of users from dif-
ferent industries (e.g., doctor, manufacturer, researcher,
etc.). To facilitate our BAEKS implementation, we as-
sume that there are at most l data receivers. When a
data receiver has a search requirement (e.g., the doctor
in Fig. 2), it generates a search trapdoor by calling
the Trapdoor algorithm, and uploads it to the cloud
server. If there exists a matching ciphertext, it receives
the search result from the cloud server.

4) Cloud server (CS): After receiving the keyword cipher-
text from a data sender and the search trapdoor from a
specific data receiver, CS executes the Test algorithm to
match the keyword ciphertext and the search trapdoor.
If the match is successful, CS sends the search result to
the data receiver. Otherwise, CS sends Null to it.

4.2 Formal Definitions
Our BAEKS scheme contains six algorithms ΠBAEKS =
(Setup,KeyGenS ,KeyGenR,BAEKS,Trapdoor,Test), the
formal definitions of these algorithms is described as:

• pp ← Setup(1λ): After inputting a security parameter
λ, this algorithm publishes a public parameter pp.

• (pkS , skS) ← KeyGenS(pp,TA): After inputting the
public parameter pp and a basis TA, this PPT algorithm
publishes the public & secret keys (pkS , skS) of a data
sender.

• (pkR,i, skR,i) ← KeyGenR(pp): For i = [l], after
inputting the public parameter pp, this PPT algorithm
publishes the public & secret keys (pkR,i, skR,i) of the
data receiver i.

• CT← BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}):
After inputting the public parameter pp, a keyword
ck ∈ W , a secret key skS of data sender, a set of
data receivers’ public keys {pkR,1,pkR,2, · · · ,pkR,l},

the data sender invokes this PPT algorithm to get the
ciphertext CT corresponding to ck.

• TD← Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,pkR,l},
skR,γ): After inputting the public parameter
pp, a keyword tk ∈ W , a public key pkS of
data sender, a set of data receivers’ public keys
{pkR,1,pkR,2, · · · ,pkR,l}, and a secret key skR,γ of
data receiver γ, the data receiver γ invokes this PPT
algorithm to get the trapdoor TD corresponding to tk.

• 1 or 0 ← Test(CT,TD): The server processes this DPT
algorithm to test if CT and TD correspond to the same
keyword. If yes, it outputs 1. Otherwise, it outputs 0.

Definition 6. For any pp ← Setup(1λ), (pkS , skS) ←
KeyGenS(pp,TA), (pkR,i, skR,i) ← KeyGenR(pp),
CT← BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}),
and TD← Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,
pkR,l}, skR,γ), we say that our BAEKS primitive satis-
fies correctness, if Pr[Test(CT,TD) = 1)] = 1 with a
non-negligible probability when the keyword ck = tk.

4.3 Security Models

In this section, we define two security models of BAEKS
scheme, namely ciphertext indistinguiability against chosen
keyword attacks (IND-CKA), and trapdoor unforgability
against insider keyword guessing attacks (UF-IKGA).

4.3.1 IND-CKA security
For the first part, we define the IND-CKA security model
ExpIND-CKA

BAEKS,A(λ) as follows:
1) Setup: Given a security parameter λ and many

LWE instances, a challenger C invokes the Setup(1λ)
algorithm to calculate pp. Then, C processes the
KeyGenS(pp,TA) and KeyGenR(pp) algorithms to
obtain a challenge sender’s public & secret keys
(pk∗

S , sk
∗
S) and the challenger receivers’ public & secret

keys (pk∗
R,i, sk

∗
R,i), where i = [l], respectively. Then,

C returns pp, pk∗
S , {pk∗

R,1,pk
∗
R,2, · · · ,pk

∗
R,l} to the

adversary A.
2) Phase 1: A can adaptively perform three oracles in

polynomial times.
a) Hash Queries OH1 : Given a keyword ck ∈ W from
A, C maintains a list LH1 and searches ck in it, and
then returns the answer to A.

b) Ciphertext Queries OCT: Given a ciphertext key-
word ck ∈ W and a set of data receivers’ public
keys {pkR,1,pkR,2, · · · ,pkR,l} from A, C invokes
the BAEKS(pp, ck, sk∗

S , {pkR,1,pkR,2, · · · ,pkR,l})
algorithm to calculate the ciphertext CT and sends
it to A.

c) Trapdoor Queries OTD: Given a keyword tk ∈ W ,
a public key pkS of data sender, a set of data
receivers’ public keys {pk∗

R,1,pk
∗
R,2, · · · ,pk

∗
R,l}

and γ ∈ [l] from A, C invokes the
Trapdoor(pp, tk,pkS , {pk

∗
R,1,pk

∗
R,2, · · · ,pk

∗
R,l},

sk∗
R,γ) to calculate the trapdoor TD and returns it to

A.
3) Challenge: A chooses ck0, ck1 ∈ W which have

not been queried in Phase 1 as two challenge ci-
phertext keywords, and sends them to C. After that,
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Fig. 2. System models of our BAEKS scheme for cloud storage.

C selects a random bit ξ ∈ {0, 1} and invokes
the BAEKS(ckξ, sk

∗
S , {pk

∗
R,1,pk

∗
R,2, · · · ,pk

∗
R,l}) algo-

rithm to obtain a challenge ciphertext CTξ . Finally, C
returns CTξ to A.

4) Phase 2: A executes these queries as above, neither ck0

nor ck1 can be queried.
5) Guess: A guess bit ξ′ ∈ {0, 1} is outputted by A. If

ξ′ = ξ, we say that A wins this game.
We define the advantage of A to win the above game

ExpIND-CKA
BAEKS,A(λ) as:

AdvIND-CKA
BAEKS,A(λ) = |Pr[ξ′ = ξ]− 1

2
|.

Definition 7. Our BAEKS primitive satisfies IND-CKA se-
curity, if any PPT malicious adversary wins the above
game ExpIND-CKA

BAEKS,A(λ) with a negligible advantage.

4.3.2 UF-IKGA security
For the second part, we define the UF-IKGA security model
ExpUF-IKGA

BAEKS,A(λ) as follows:
1) Setup: This part is same as the corresponding part in

ExpIND-CKA
BAEKS,A(λ).

2) Phase 1: A can adaptively perform three oracles in
polynomial times.

a) Hash Queries OH2 : Given a tuple (c1, b) correspond-
ing to the keyword ciphertext CT from A, C main-
tains a list LH2 and searches (c1, b) in it, and then
returns the answer to A.

b) Ciphertext Queries OCT: This part is same as the
corresponding part in ExpIND-CKA

BAEKS,A(λ).
c) Trapdoor Queries OTD: This part is same as the

corresponding part in ExpIND-CKA
BAEKS,A(λ).

3) Forgery: A selects γ ∈ [l] and sends it to
C. C invokes the Trapdoor(ck∗,pk∗

S , {pk
∗
R,1,pk

∗
R,2,

· · · ,pk∗
R,l}, sk

∗
R,γ) algorithm to obtain TD∗, and re-

turns it to A. Then, A forges a ciphertext CT∗ corre-

sponding to the challenge keyword ck∗, and wins this
game if the Test(CT∗,TD∗) algorithm publishes 1.

We define the advantage of A to win the above game
ExpUF-IKGA

BAEKS,A(λ) as:

AdvUF-IKGA
BAEKS,A(λ) = |Pr[Test(CT∗,TD∗) = 1]|.

Definition 8. Our BAEKS primitive satisfies UF-IKGA se-
curity, if any PPT adversary wins the above game
ExpUF-IKGA

BAEKS,A(λ) with a negligible advantage.

5 OUR PROPOSED BAEKS SCHEME

We describe our proposed BAEKS scheme in this section,
including the concrete construction, parameters setting and
correctness analysis, and security analysis.

5.1 Concrete Construction
• Setup(1λ): A security parameter 1λ is inputted by the

KGC, and then the public parameter pp is outputted
according to the following procedures.

1) Let the system parameters n, m, q, L, σ, k, and l.
2) Invoke (A,TA) ← TrapGen(n,m, q) to generate a

uniformly matrix A ∈ Zn×m
q and a basis TA ∈

Zm×m for Λ⊥
q (A).

3) Choose a vector u $← Zn
q uniformly.

4) Define two hash functions H1 : {0, 1}k → Zn×m
q , and

H2 : Zn
q × Z(l+1)m

q × {0, 1} → {−1, 0, 1}m.
5) Output pp := (n,m, q, L, σ, k, l,A,u, H1, H2) as the

public parameter.
• KeyGenS(pp,TA): The KGC inputs a public parameter
pp and a basis TA and then returns the public &
secret keys (pkS , skS) to a data sender according to
the following procedures.

1) Invoke (AS ,TAS
) ← TrapGen(n,m, q) to generate

a uniformly matrix AS ∈ Zn×m
q and a basis TAS

∈
Zm×m for Λ⊥

q (AS).
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2) Parse the matrix AS = (aS,1,aS,2, · · · ,aS,m), which
each vector aS,i ∈ Zn for i = [m].

3) For i = [m], sample a vector si ∈ Zm
q as

si ← SamplePre(A,TA,aS,i, σ), where si s.t. Asi =
aS,i mod q and si is statistically distributed in
Dm

Λ
aS,i
q (A),σ

.

4) Let a matrix S = (s1, s2, · · · , sm) ∈ Zm×m, where
AS = As mod q.

5) Output pkS := AS and skS := (TAS
,S) as the

public & secret keys of data sender.
• KeyGenR(pp): For i = [l], the KGC inputs a public

parameter pp and then returns the public & secret keys
(pkR,i, skR,i) to the data receiver i according to the
following procedures.

1) Invoke (AR,i,TAR,i
) ← TrapGen(n,m, q) to gener-

ate a uniformly matrix AR,i ∈ Zn×m
q and a basis

TAR,i
∈ Zm×m for Λ⊥

q (AR,i).
2) Output pkR,i := AR,i and skR,i := TAR,i

as the
public & secret keys of data receiver.

• BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}): A
data sender inputs a public parameter pp, a keyword
ck ∈ W , a sender’s secret key skS , a set of receivers’
public keys {pkR,1,pkR,2, · · · ,pkR,l}, and then
performs the following procedures.

1) Let a matrix AR = (AR,1 | AR,2 | · · · | AR,l) ∈
Zn×lm
q .

2) Calculate a matrix Ack = (AR | H1(ck)) ∈
Zn×(l+1)m.

3) Select a random vector v $← Zn
q uniformly, a random

number b ∈ {0, 1}, two noise vectors x0
$← χlm,

x1
$← χm, and a noise number x $← χ.

4) Calculate a vector c1 = A⊤
ckv + (x⊤

0 | x⊤
1 )

⊤ ∈
Z(l+1)m
q , and a number c2 = u⊤v + x+ b · ⌊ q2⌋ ∈ Zq .

5) Select a vector y $← Zm
q in Dm

σ uniformly.
6) Calculate a vector η1 = H2(Ay mod q, c1, b) ∈
{−1, 0, 1}m and another vector η2 = Sη1 + y ∈ Zm

q

with the probability min(
Dm

σ

M ·Dm
Sη1,σ

, 1).

7) Output CT := (c1, c2,η1,η2) as the ciphertext corre-
sponding to the keyword ck.

• Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,pkR,l}, skR,γ):
A data receiver γ ∈ [l] inputs a public parameter pp, a
keyword tk ∈ W , a sender’s public key pkS , a set of
receivers’ public keys {pkR,1,pkR,2, · · · ,pkR,l}, and
secret keys skR,γ with receiver γ, and then performs
the following procedures.

1) Calculate Atk,γ = (AR,γ | H1(tk)) ∈ Zn×2m
q and

Atk = (AR,1 | · · · | AR,l | H1(tk)).
2) Invoke TAtk,γ

← SampleBasis(Atk,γ ,TAR,γ
, {1}, L)

to obtain a basis TAtk,γ
∈ Z2m×2m for Λ⊥

q (Atk,γ).
3) Sample a vector εi ∈ Z(l+1)m as ε ←

GenSamplePre(Atk,TAtk,γ
, {γ, l+1},u, σ), where ε

s.t. Atkε = u mod q and ε is statistically distributed
in D(l+1)m

Λu
q (Atk)

.
4) Output TD := (ε,pkS) as the trapdoor correspond-

ing to the keyword tk.
• Test(CT,TD): The cloud server inputs the ciphertext
CT together with the trapdoor TD, and then processes

the following procedures.
1) Parse CT = (c1, c2,η1,η2) and TD = (ε,pkS =

AS).
2) Calculate a number d = c2 − ε⊤c1 ∈ Zq . If∣∣d− ⌊ q2⌋∣∣ < ⌊ q4⌋, set b′ = 1. Otherwise, set b′ = 0.

3) Check ∥η2∥
?
≤ 2σ

√
m and η1

?
= H2(Aη2 −

ASη1, c1, b
′). If these two conditions are satisfied,

output 1. Otherwise, output 0.

5.2 Parameters Setting and Correctness Analysis

The involved parameters of our BAEKS scheme is set as
follows to fulfill the security requirements.

• m ≥ ⌈5n log q⌉ for the TrapGen lemma.
• σ ≥ km · ω(log km) for SamplePre and GenSamplePre

lemmas.
• L ≥ O(m1.5) · ω(log km) for SampleBasis lemma.
• αq > 2

√
n for LWE hardness.

• qασ(l+1)mω(
√
log[(l + 1)m])+O(σ(l+1)m) < q

5 for
the correctness.

Based on the above parameter settings, we analyze the
correctness of our BAEKS. We set that the data sender owns
its the public & secret keys (pkS := AS , skS := (TAS

,S)),
a keyword ck ∈ W , and its ciphertext CT = (c1, c2, η1, η2).
Moreover, the data receiver γ owns its public keys and secret
keys (pkR,γ := AR,γ , skR,γ := TAR,γ

), and the searched
keyword tk ∈ W , and corresponding search trapdoor TD =
(ε,pkS).

On the one hand, for the condition
∣∣d− ⌊ q2⌋∣∣ < ⌊ q4⌋ in

Test algorithm.
• If ck = tk, we have:

d = c2 − ε⊤c1

= u⊤v + x+ b · ⌊q
2
⌋ − ε⊤(A⊤

ckv + (x⊤
0 | x⊤

1 )
⊤)

= u⊤v + x+ b · ⌊q
2
⌋ − ε⊤(A⊤

tkv + (x⊤
0 | x⊤

1 )
⊤)

= u⊤v + x+ b · ⌊q
2
⌋ − u⊤v − ((x⊤

0 | x⊤
1 )εi)

⊤

= b · ⌊q
2
⌋+ x− ε⊤i (x

⊤
0 | x⊤

1 )
⊤,

where x − ε⊤i (x
⊤
0 | x⊤

1 )
⊤ is an error term, and it is

bounded by:

|x− ε⊤i (x
⊤
0 | x⊤

1 )
⊤| ≤ |x|+ |(x⊤

0 | x⊤
1 )

⊤|

≤ qασ(l + 1)mω(
√
log[(l + 1)m]) +O(σ(l + 1)m).

To recover b correctly, |x−ε⊤i (x
⊤
0 | x⊤

1 )
⊤| < q

5 needs to
be fulfilled [41]. Then, we can obtain b′ = 1.

• If ck ̸= tk, we can obtain b′ = 1 with negligible
probability.

On the other hand, for the condition η1
?
= H2(Aη2 −

ASη1, c1, b
′), we have:

Aη2 −ASη1 = A(Sη1 + y)−ASη1

= ASη1 +Ay −ASη1 = Ay mod q.

Then, when b′ = 1, we can obtain:

η1 = H2(Ay mod q, c1, b
′) = H2(Aη2 −ASη1, c1, b

′).
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To sum up, our BAEKS scheme satisfies correctness,
where Test algorithm has the ability to match the keyword
ciphertext CT with the search trapdoor TD successfully.
Then, the cloud server sends the data ciphertext correspond-
ing to CT to the data receiver γ as the search result. After
receiving it, the data receiver decrypts it, and generates the
data plaintext corresponding to the keyword tk.

5.3 Security Analysis

We demonstrate that BAEKS scheme is security in the afore-
mentioned security model, i.e. IND-CKA and UF-IKGA.

Theorem 1. Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based BAEKS scheme satisfies IND-
CKA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme with a
non-negligible advantage ϵ1, then we can construct a
PPT challenger C to solve the LWEn,m,q,χ hardness with
a non-negligible probability.

Proof If a PPT adversary A who has the ability to break
the IND-CKA security with a non-negligible advantage, we
can construct a challenger C who can solve the LWEn,m,q,χ

hardness. The following procedures show the interaction
between A and C.

Setup: To begin with, the challenger C obtains several
LWE instances (bj ,aj) ∈ Zq × Zn

q for j = 0, 1, · · · , (l+ 1)m,
such that all bj are chosen randomly or equal to a⊤j v + xj ,

where v ∈ Zn and xj
$← χ. Then, C invokes the

Setup(1λ) algorithm to obtain a public parameter pp =
(A,u, H1, H2), where A ∈ Zn×m, H1 : {0, 1}k → Zn×m

q ,
H2 : Zn

q × Zlm
q × {0, 1} → {−1, 0, 1}m and u = a0.

In addition, C executes (A∗
S ,T

∗
AS

) ← TrapGen(n,m, q) to
obtain the challenge public key pk∗

S = A∗
S of data sender.

For A∗
S = (a∗S,1,a

∗
S,2, · · · ,a∗S,m) and i = [m], C invokes

s∗i ← SamplePre(A,TA,aS,i, σ) to obtain s∗i . After that,
C obtains S∗ = (s∗1, s

∗
2, · · · , s∗m) ∈ Zm×m. Moreover, for

i = [l], C executes (A∗
R,i,T

∗
AR,i

) ← TrapGen(n,m, q), and
sets the challenge receivers’ public key pk∗

R,i = A∗
R,i =

(a1+(i−1)m,a2+(i−1)m, · · · ,am+(i−1)m). Finally, C returns
pp, pk∗

S , {pk∗
R,1,pk

∗
R,2, · · · ,pk

∗
R,l} to A.

Phase 1: A executes these following queries adaptively:
• Hash Queries OH1

: In this phase, A issues H1 queries
at most qH1

. Firstly, the challenger C creates a empty
list LH1

, and selects j∗ ∈ [qH1
] as a challenge query.

For the j-th query, if ckj has been queried, C re-
turns H1(ckj) in LH1

to A. Otherwise, if j∗ ̸= j,
C selects a random matrix in Zn×m

q as H1(ckj),
and lets LH1

= LH1
∪ {ckj , H1(ckj)}. Otherwise, C

sets H1(ckj) = (alm+1,alm+2, · · · ,a(l+1)m), and lets
LH1

= LH1
∪ {ctj , H1(ckj)}.

• Ciphertext Queries OCT: A inputs the keyword
ck ∈ W and {pkR,1,pkR,2, · · · ,pkR,l} =
{AR,1,AR,2, · · · ,AR,l}. The challenger C
calculates Ack = (AR | H1(ck)) where
AR = (AR,1 | AR,2 | · · · | AR,l). Then, C selects
a random vector v $← Zn

q , a random number b ∈ {0, 1},
two noise vectors x0

$← χlm, x1
$← χm, and a noise

number x
$← χ, computes c1 = A⊤

ckv + (x⊤
0 | x⊤

1 )
⊤

and c2 = u⊤v + x + b · ⌊ q2⌋. Furthermore, C

selects a vector y
$← Zm

q in Dm
σ , and computes

η1 = H2(Ay mod q, c1, b) and η2 = S∗η1 + y with
the probability min(

Dm
σ

M ·Dm
Sη1,σ

, 1). Finally, C returns the

ciphertext CT = (c1, c2,η1,η2) to A.
• Trapdoor Queries OTD: For a chosen data receiver
γ ∈ [l], A inputs the keyword tk ∈ W , pk∗

R,γ = A∗
R,γ ,

pkS = AS . The challenger C calculates Atk,γ =
(AR,γ∗ | H1(tk)) and Atk = (A∗

R,1 | · · · |
A∗

R,l | H1(tk)) ∈ Zn×(l+1)m, and obtains TAtk,γ
←

SampleBasis(Atk,γ ,T
∗
AR,γ

, {1}, L). Then, C samples
ε ← GenSamplePre(Atk,TAtk,γ

, {γ, l + 1},u, σ), such
that Atkε = u mod q. Finally, C returns the trapdoor
TD = (ε,pkS) to A.

Challenge: A chooses ck0, ck1 ∈ W which have not
been queried in Phase 1, and transmits it to the chal-
lenger C. Then, C selects ξ ∈ {0, 1}, and calculates a
challenge ciphertext (c1,ξ, c2,ξ) ∈ Z(l+1)m × Zq , where:
c1,ξ = (b1, · · · , bm, · · · , blm+1, · · · , b(l+1)m)⊤, and c2,ξ =
b0 + b⌊ q2⌋, b ∈ {0, 1}. After that, C calculates η1 =
H2(Ay mod q, c1, b) ∈ {−1, 0, 1}m and η2 = S∗η1 + y ∈
Zm
q with the probability min(

Dm
σ

M ·Dm
Sη1,σ

, 1), and then returns

CTξ = (c1, c2,η1,η2) to A.
Phase 2: A executes these queries as above, and

promises neither ck0 nor ck1 can be queried.
Guess:A outputs a random bit ξ

′ ∈ {0, 1} after receiving
CTξ . If ξ

′
= ξ, A wins this game, and the challenger C

outputs 1 meaning (bj ,aj) is sampled from the LWE oracle.
Otherwise, C outputs 0 meaning (bj ,aj) is sampled from
the uniform distribution Zq × Zn

q .
Analysis: If ξ

′
= ξ, for j = [(l + 1)m], the

challenger C outputs 1 meaning (bj ,aj) is sampled
from the LWE oracle, then CTξ is valid. Let x =
(x1, · · · , xm, xm+1, · · · , x(l+1)m)⊤, we have:

c1,ξ = (b1, · · · , bm, bm+1, · · · , b2m, · · · , blm+1, · · · , b(l+1)m)⊤

= (a1, · · · ,am | am+1, · · · ,a2m | · · · | alm+1,

· · · ,a(l+1)m)⊤v + (x1, · · · , xm, · · · , x(l+1)m)⊤

= (AR,1 | AR,2 | · · · | AR,l | H1(ckξ))
⊤v + x

= (AR | H1(ckξ))
⊤v + x

= A⊤
ckv + x.

c2,ξ = b0 + b⌊q
2
⌋ = a⊤0 v + x0 + b⌊q

2
⌋ = u⊤v + x0 + b⌊q

2
⌋.

In this case, A has the advantage ϵ1 to solve LWE
hardness, thus Pr[ξ

′
= ξ] = 1

2 + ϵ1. Otherwise, C outputs 0
meaning (bj ,aj) is obtained from the uniform distribution
over Zq × Zn

q , we can get Pr[ξ
′
= ξ] = 1

2 . The challenger C
has advantage ϵ1

2 to solve the LWEn,m,q,χ hardness. □

Theorem 2. Assume that the SISn,m,q,β hardness holds, our
proposed lattice-based BAEKS primitive satisfies UF-
IKGA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme, then we
can construct a PPT challenger C to solve the SISn,m,q,β

hardness.

Proof If there exists an adversary A who can break the
UF-IKGA security, then we has the ability to construct a
challenger C who can find a solution of SISn,m,q,β hardness.
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Fig. 3. The binary tree utilized to secret key update for data receivers, and the number of level τ = 4.

The following procedures show the interaction between A
and C.

Setup: Firstly, a challenge keyword ck∗ is selected by
the adversary A. Then, the challenger C invokes Setup(1λ)
to calculate the public parameter pp = (H1, H2,u), where
H1 : {0, 1}k → Zn×m

q , H2 : Zlm
q × {0, 1} → Zm

q , and u
$←

Zn
q . In addition, C executes (A∗

S ,T
∗
AS

) ← TrapGen(n,m, q)
to set the challenge public key pk∗

S = A∗
S of data sender.

For A∗
S = (a∗S,1,a

∗
S,2, · · · ,a∗S,m) and i = [m], C invokes

s∗i ← SamplePre(A,TA,aS,i, σ) to obtain s∗i . Moreover, for
i = [l], C executes (A∗

R,i,T
∗
AR,i

) ← TrapGen(n,m, q) to
calculate the challenge receivers’ public key pk∗

R,i = A∗
R,i.

Finally, C returns pp, pk∗
S , {pk∗

R,1,pk
∗
R,2, · · · ,pk

∗
R,l} to A.

Phase 1: A executes these following queries adaptively:

• Hash Queries OH2
: In this phase, A issues H2 queries

at most qH2
. Firstly, the challenger C creates an empty

list LH2
, and selects j∗ ∈ [qH2

] as challenge query. For
the j-th query, if (c1,j , bj) has been queried, C returns
H2(Ayj mod q, c1,j , bj) in LH2

to A. Otherwise, if
j∗ ̸= j, C selects yj ∈ Zm from a uniform distribution
on Zm, and sends H2(Ayj mod q, c1,j , bj) to A and
lets LH2

= LH2
∪ {c1,j , bj , H2(Ayj mod q, c1,j , bj)}.

Otherwise, C selects y∗ ∈ Zm, and sets c∗1 = c1,
b∗ = b, which is a part of the forged ciphertext. Fi-
nally, C returns H2(Ay∗ mod q, c∗1, b

∗) to A, and lets
LH2

= LH2
∪ {c∗1, b∗, H2(Ay∗ mod q, c∗1, b

∗)}.
• Ciphertext Queries OCT: A inputs the keyword
ck ∈ W and {pkR,1,pkR,2, · · · ,pkR,l} =
{AR,1,AR,2, · · · ,AR,l}. C calculates Ack = (AR |
H1(ck)), where AR = (AR,1 | AR,2 | · · · | AR,l).
Then, C selects a random vector v

$← Zn
q , a

random number b ∈ {0, 1}, two noise vectors
x0

$← χlm, x1
$← χm, and a noise number x

$← χ,
and computes c1 = A⊤

ckv + (x⊤
0 | x⊤

1 )
⊤ and

c2 = u⊤v + x + b · ⌊ q2⌋, and checks whether (c1, b)
has been queried in list LH2

. If not, C selects y ∈ Zm

randomly, and calculates H2(Ay mod q, c1, b) and
sets LH2

= LH2
∪ {c1, b,H2(Ay mod q, c1, b)}. After

that, C sets η1 = H2(Ay mod q, c1, b), and calculates
η2 = S∗η1 + y with the probability min(

Dm
σ

M ·Dm
Sη1,σ

, 1).

Finally, C returns the ciphertext CT = (c1, c2,η1,η2)

to A.
• Trapdoor Queries OTD: For a chosen data receiver
γ ∈ [l], A inputs the keyword tk ∈ W , pk∗

R,γ =
A∗

R,γ , pkS = AS . C calculates Atk,γ = (AR,γ∗ |
H1(tk)) and Atk = (A∗

R,1 | · · · | A∗
R,l |

H1(tk)) ∈ Zn×(l+1)m, and obtains TAtk,γ
←

SampleBasis(Atk,γ ,T
∗
AR,γ

, {1}, L). Then, C samples
ε ← GenSamplePre(Atk,TAtk,γ

, {γ, l + 1},u, σ), such
that Atkε = u mod q. Finally, C returns the trapdoor
TD = (ε,pkS) to A.

Forgery: A selects γ ∈ [l] and transmits it to C,
C invokes the Trapdoor(pp, ck∗,pk∗

S , {pk
∗
R,1,pk

∗
R,2, · · · ,

pk∗
R,l}, sk

∗
R,γ) algorithm to obtain TD∗, and sends it to

A. Then, A calculates CT∗ = (c∗1, c
∗
2,η

∗
1 ,η

′
2) as a forged

ciphertext corresponding to ck∗, and wins this game if the
Test(CT∗,TD∗) algorithm inputs 1.

Analysis: Since CT∗ = (c∗1, c
∗
2,η

∗
1 ,η

′
2) is a valid cipher-

text, we can obtain (c∗1, b
∗, H2(Ay∗ mod q, c∗1, b

∗)) in LH2

such that η∗
1 = H2(Ay∗ mod q, c∗1, b

∗), η∗
2 = S∗η∗

1 + y.
In this way, we have H2(Aη∗

2 −ASη
∗
1 , c

∗
1, b

∗) = H2(Aη′
2 −

ASη
∗
1 , c

∗
1, b

∗). If Aη∗
2−ASη

∗
1 ̸= Aη′

2−ASη
∗
1 , it reflects that

A obtains a pre-image of hash function H2. Otherwise, we
get Aη∗

2 −ASη
∗
1 = Aη′

2−ASη
∗
1 , thereby: A(η′

2−η∗
2) = 0.

In addition, we notice that η′
2 − η∗

2 ̸= 0 and ∥η′
2∥ ≤ 2σ

√
m,

∥η∗
2∥ ≤ 2σ

√
m, we can calculate: ∥η′

2 − η∗
2∥ ≤ 4σ

√
m., and

η′
2 − η∗

2 is a solution of SISq,n,m,β hardness. □

6 OUR PROPOSED FS-BAEKS SCHEME

In this section, our FS-BAEKS scheme is proposed as an
enhanced version of our BAEKS described in Section 5.

6.1 Concrete Construction

• Setup(1λ): A security parameter 1λ is inputted by the
KGC, and then the public parameter pp is outputted
according to the following procedures.

1) Set the system parameters n, m, q, L, σ, k, and l.
2) Initialize all nodes in the binary tree, set τ as the

depth of binary tree, and T = 2τ , as in Fig. 3 (A
example at τ = 4).
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3) For the root node, invoke (A,TA) ←
TrapGen(n,m, q) to generate a uniformly matrix
A ∈ Zn×m

q and a basis TA ∈ Zm×m for Λ⊥
q (A).

4) Choose a vector u $← Zn
q uniformly.

5) Define two hash functions H1 : {0, 1}k → Zn×m
q and

H2 : Zn
q × Z(l+τ+1)m

q × {0, 1} → {−1, 0, 1}m.
6) Output pp := (n,m, q, L, σ, k, l, τ,A,u, H1, H2) as

the public parameter.
• KeyGenS(pp,TA): The KGC inputs a public parameter
pp and a basis TA and then returns the public &
secret keys (pkS , skS) to a data sender according to
the following procedures.

1) Invoke (AS ,TAS
) ← TrapGen(n,m, q) to obtain a

uniformly matrix AS ∈ Zn×m
q and a basis TAS

∈
Zm×m for Λ⊥

q (AS).
2) Parse the matrix AS = (aS,1,aS,2, · · · ,aS,m), which

each vector aS,i ∈ Zn for i = [m].
3) For i = [m], sample a vector si ∈ Zm

q as
si ← SamplePre(A,TA,aS,i, σ), where si s.t. Asi =
aS,i mod q and si is statistically distributed in
Dm

Λ
aS,i
q (A),σ

.

4) Let a matrix S = (s1, s2, · · · , sm) ∈ Zm×m, where
AS = As mod q.

5) Output pkS := AS and skS := (TAS
,S) as the

public & secret keys of the data sender.
• KeyGenR(pp): For i = [l], the KGC inputs a public

parameter pp and then returns the public & initial secret
key (pkR,i, skR,i) to data receivers i according to the
following procedures.

1) Invoke (AR,i,0,TAR,i,0
) ← TrapGen(n,m, q) to gen-

erate a uniformly matrix AR,i,0 ∈ Zn×m
q and a basis

TAR,i,0
∈ Zm×m for Λ⊥

q (AR,i,0).
2) Output pkR,i := AR,i,0 and skR,i,0 := TAR,i,0

as a
public & initial secret key of the data receiver.

• KeyUpdateR(pp,pkR,i, skR,i,t): For i = [l], the KGC
inputs a public parameter pp, a public key pkR,i and
secret key skR,i,t of data receiver with time period t,
then returns its secret key skR,i,t+1 with time period
t+1 to this data receiver according to the following pro-
cedures, where t ∈ {0, 1, · · · , T − 1}. We set bin(t) as
the τ bits binary representation of t, Node(bin(t)) as the
minimal cover set of leaf node bin(t), which denotes
the smallest set that includes an common ancestor node
of each leaf node in {bin(t),bin(t + 1), · · · ,bin(T −
1)}, and does not include any ancestor nodes of each
leaf node in {bin(0),bin(1), · · · ,bin(t − 1)}. For ex-
ample, in Fig. 3, Node(0010) = {001, 01, 1}.

1) Parse bin(t) = (t1, t2, · · · , tτ ) ∈ {0, 1}τ .
2) Select several matrices A

(0)
R,i,1, A

(1)
R,i,1, · · · , A

(0)
R,i,τ ,

A
(1)
R,i,τ ∈ Zn×m

q .
3) Set the secret key skR,i,0 = TAR,i,0

with time period 0, and skR,i,1 =
{TAR,i,0001

,TAR,i,001
,TAR,i,01

,TAR,i,1
} with time

period 1, due to Node(bin(1)) = Node(0001) =
{0001, 001, 01, 1}.

4) Update the secret key skR,i,t to skR,i,t+1 according
to the following procedures:
a) Calculate the minimal cover set with time period

Node(bin(t)) and Node(bin(t+ 1)),
b) Obtain the basis of the node in set Node(bin(t +

1)) \ Node(bin(t)), and remove the basis of the
node in set Node(bin(t)) \ Node(bin(t+ 1)).

5) Invoke TAR,i,Θj
← ExtBasis(AR,i,Θj

,TAR,i,0
) or

TAR,i,Θj
← ExtBasis(AR,i,Θj

,TAR,i,Θζ
) to gen-

erate the aforementioned basis TAR,i,Θj
, where

Θj = (θ1, · · · , θζ , · · · , θj) ∈ {0, 1}j as the nodes
at j-th level, j ∈ [τ ], ζ < j, AR,i,Θj =

(AR,i,0|A(θ1)
R,i,1| · · · |A

(θj)
R,i,j) ∈ Zn×(j+1)m

q and Θζ =

(θ1, · · · , θζ) ∈ {0, 1}ζ .
6) Return skR,i,t+1 as the secret key of data receiver i

with time period t+ 1.
• BAEKS(pp, ck, skS , {pkR,1,pkR,2, · · · ,pkR,l}, t): A

data sender inputs a public parameter pp, a keyword
ck ∈ W , a sender’s secret key skS , a set of receivers’
public keys {pkR1

,pkR2
, · · · ,pkRl

}, a time period t,
and then performs the following procedures.

1) Let a matrix AR = (AR,1 | AR,2 | · · · | AR,l) ∈
Zn×lm
q , and At = (A

(t1)
1 | A(t2)

2 | · · · | A(tτ )
τ ) ∈

Zn×τm
q .

2) Calculate a matrix Ack,t = (AR | At | H1(ck)) ∈
Zn×(l+τ+1)m.

3) Select a random vector v $← Zn
q uniformly, a random

number b ∈ {0, 1}, two noise vectors x0
$← χlm,

x1
$← χτm, x2

$← χm, and a noise number x $← χ.
4) Calculate a vector c1 = A⊤

ck,tv + (x⊤
0 | x⊤

1 | x⊤
2 )

⊤ ∈
Z(l+τ+1)m
q , and a number c2 = u⊤v+x+b·⌊ q2⌋ ∈ Zq .

5) Select a vector y $← Zm
q in Dm

σ uniformly.
6) Calculate a vector η1 = H2(Ay mod q, c1, b) ∈
{−1, 0, 1}m and another vector η2 = Sη1 + y ∈ Zm

q

with the probability min(
Dm

σ

M ·Dm
Sη1,σ

, 1).

7) Output CTt := (c1, c2,η1,η2) as the ciphertext cor-
responding to the keyword ck with time period t.

• Trapdoor(pp, tk,pkS , {pkR,1,pkR,2, · · · ,pkR,l}, skR,γ,t):
A data receiver γ ∈ [l] inputs a public parameter pp, a
keyword tk ∈ W , a public key pkS of data sender, a
set of receivers’ public keys {pkR,1,pkR,2, · · · ,pkR,l},
and secret keys skR,γ,t with receiver γ and time period
t, and then performs the following procedures.

1) Let a matrix At = (A
(t1)
1 | A(t2)

2 | · · · | A(tτ )
τ ) ∈

Zn×τm
q .

2) Calculate two matrices Atk,γ,t = (AR,γ | At |
H1(tk)) ∈ Zn×(τ+2)m

q and Atk,t = (AR,1 | · · · |
AR,l | At | H1(tk)) ∈ Zn×(l+τ+1)m.

3) If skR,γ,t does not contain TAR,γ,t
, invoke TAR,γ,t

←
ExtBasis(AR,γ | At,TAR,γ,Θj

) to obtain a basis
TAR,γ,t

in Z(τ+2)m×(τ+2)m for Λ⊥
q (AR,γ | At),

where Θj is an ancestor node of bin(t) and j < τ .
4) Invoke TAtk,γ,t

← SampleBasis(Atk,γ,t,TAR,γ,t
, {1}, L)

to obtain a basis TAtk,γ,t
∈ Z(τ+2)m×(τ+2)m for

Λ⊥
q (Atk,γ,t).

5) Sample a vector εt ∈ Z(l+τ+1)m as εt ←
GenSamplePre(Atk,t,TAtk,γ,t

, {i, l+1, · · · , l+ τ, l+
τ + 1},u, σ), where εt s.t. Atk,tεt = u mod q and εt
is statistically distributed in D(l+τ+1)m

Λu
q (Atk,t)

.
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6) Output TDt := (εt,pkS) as the trapdoor corre-
sponding to the keyword tk.

• Test(CTt,TDi,t): The cloud server inputs the cipher-
text CTt together with the trapdoor TDt, and then
processes the following procedures.

1) Parse CTt = (c1, c2,η1,η2) and TDt = (εt,pkS =
AS).

2) Calculate a number d = c2 − ε⊤t c1 ∈ Zq . If∣∣d− ⌊ q2⌋∣∣ < ⌊ q4⌋, set b′ = 1. Otherwise, set b′ = 0.

3) Check ∥η2∥
?
≤ 2σ

√
m and η1

?
= H2(Aη2 −

ASη1, c1, b
′). If two conditions are satisfied, output

1. Otherwise, output 0.

6.2 Correctness Analysis

Our FS-BAEKS scheme needs to additionally satisfy qασ(l+
τ + 1)mω(

√
log[(l + τ + 1)m]) + O(σ(l + τ + 1)m) < q

5
for parameter settings. The correctness analysis between our
BAEKS and FS-BAEKS are high symmetric, where the only
difference is the condition |d− ⌊ q2⌋| < ⌊

q
4⌋. We demonstrate

the detail as follows:
• If ck = tk, we have:

d = c2 − ε⊤t c1

= u⊤v + x+ b · ⌊q
2
⌋ − ε⊤t (A

⊤
ck,tv + (x⊤

0 | x⊤
1 | x⊤

2 )
⊤)

= u⊤v + x+ b · ⌊q
2
⌋ − ε⊤t (A

⊤
tk,tv + (x⊤

0 | x⊤
1 | x⊤

2 )
⊤)

= u⊤v + x+ b · ⌊q
2
⌋ − u⊤v − ((x⊤

0 | x⊤
1 | x⊤

2 )εt)
⊤

= b · ⌊q
2
⌋+ x− ε⊤t (x

⊤
0 | x⊤

1 | x⊤
2 )

⊤,

where x − ε⊤t (x
⊤
0 | x⊤

1 | x⊤
1 )

⊤ is an error term,
and it is bounded by: |x − ε⊤t (x

⊤
0 | x⊤

1 | x⊤
2 )

⊤| ≤
|x| + |(x − ε⊤t (x

⊤
0 | x⊤

1 | x⊤
2 )

⊤| ≤ qασ(l + τ +
1)mω(

√
log[(l + τ + 1)m]) +O(σ(l + τ + 1)m). To re-

cover b correctly, |x − ε⊤t (x
⊤
0 | x⊤

1 | x⊤
2 )

⊤| < q
5 needs

to be fulfilled [41]. Then, we can obtain b′ = 1.
• If ck ̸= tk, we can obtain b′ = 1 with negligible

probability.
The other proof is omitted by us since it is similar to

Section 5.2.

6.3 Security Analysis

Theorem 3. Assume that the LWEn,m,q,χ hardness holds,
our proposed lattice-based FS-BAEKS primitive satisfies
IND-CKA security in the random oracle model. For any
PPT adversary A, if A can compromise our scheme with
a non-negligible advantage ϵ2, then we can construct a
PPT challenger C to solve the LWEn,m,q,χ hardness with
a non-negligible probability.

Proof The constructions between our BAEKS and FS-
BAEKS are high symmetric, which only additionally intro-
duced the time period t. Thus, this proof is omitted by us
since it is similar to Theorem 1. □

Theorem 4. Assume that the SISn,m,q,β hardness holds, our
proposed lattice-based FS-BAEKS primitive satisfies UF-
IKGA security in the random oracle model. For any PPT
adversary A, if A can compromise our scheme, then we

can construct a PPT challenger C to solve the SISn,m,q,β

hardness.

Proof The constructions between our BAEKS and FS-
BAEKS are high symmetric which only additionally intro-
duced the time period t. Thus, this proof is omitted by us
since it is similar to Theorem 2. □

7 PERFORMANCE EVALUATION AND COMPARISON
WITH PRIOR ARTS

We conduct a comparative analysis of the proposed BAEKS
& FS-BAEKS schemes with other state-of-the-art BAEKS
primitives in terms of computational and communication
overhead. Our BAEKS and FS-BAEKS schemes were imple-
mented in Python language with Numpy library, and all
simulation experiments are accomplished on a laptop with
12-th Gen Intel(R) Core(TM) i7-12800HX CPU with 16 GB
RAM under Windows 10. We set the parameters of our
BAEKS and FS-BAEKS schemes as described in Section 5.2
and 6.2, respectively. For our BAEKS & FS-BAEKS schemes,
we set q = 4096, k = 1000. When n = 128, we set m = 7680.
When n = 256, we set m = 15360. Moreover, for schemes
[21] and [22], the bilinear pairing is initialized by Type A
elliptic curves: y2 = x3 + x, and the parameter p = 512.

7.1 Computational overhead

As depicted in Fig. 4, we evaluate the computational over-
head of our BAEKS & FS-BAEKS schemes compared to
the current state-of-the-art BAEKS schemes [21], [22] at
BAEKS, Trapdoor and Test algorithms. In Fig. 4(a), the
computational overhead of our BAEKS algorithm is more
efficient than prior arts [21], [22]. In detail, when l = 6,
our BAEKS scheme requires only 69.55ms to encrypt the
keywords, while the others require 437ms and 860ms, re-
spectively. Therefore, our BAEKS scheme is approximately
6× and 12× faster than [21] and [22]. Additionally, as the
number of data receivers increases, our advantage will be
further extended. Furthermore, the computational overhead
of BAEKS algorithm in our BAEKS & FS-BAEKS schemes
is directly proportional to the number of data receivers
and has a very moderate growth rate. This growth rate is
sufficient to support search operations with a large number
of data receivers in cloud storage systems. As for Fig. 4(b),
the computational overhead of Trapdoor algorithm in our
BAEKS & FS-BAEKS schemes is slightly higher than that
of [21] due to the sampling algorithm in lattice. However,
our schemes offers a significant advantage over [22] as
the number of data receivers increases. For instance, when
l = 20, our BAEKS scheme only requires 248.99ms to
generate a search trapdoor, which is approximately 2×
quicker than [22]. In Fig. 4(c), the computational overhead
of Test algorithm in our BAEKS & FS-BAEKS schemes
remains relatively constant as the number of data receivers
l increases. To be more specific, when l = 20, the execution
time in our BAEKS and FS-BAEKS schemes are only 2.68ms
and 4.12ms respectively, which is approximately 120× and
402× quicker than prior arts [21], [22]. It is evident that our
solutions significantly increases performance for the search
operations with large amounts of cloud data.
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(a) BAEKS algorithm
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Fig. 4. Computational overhead comparison between our BAEKS & FS-BAEKS schemes and other BAEKS schemes [21], [22].
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Fig. 5. Computational overhead evaluation of our BAEKS & FS-BAEKS schemes with the number of data receivers l and security parameter n.

TABLE 3
Computational overhead evaluation

Schemes BAEKS (s) Trapdoor (s) Test (ms)

n = 128 n = 256 n = 128 n = 256 n = 128 n = 256

Our BAEKS 0.091 2.921 0.248 1.568 2.68 43.51
Our FS-BAEKS 0.122 3.027 0.324 1.140 4.12 42.27

Subsequently, we evaluate the computational overhead
of our BAEKS & FS-BAEKS schemes with different security
parameters n in Fig. 5. It can be found that the computa-
tional overhead of BAEKS, Trapdoor, and Test algorithms
reasonably increases as n changes from 128 to 256. Specif-
ically, the computational overhead at l = 20 is presented
in Table 3, which remains in the magnitude of milliseconds.
Although the increase in the security parameter n may lead
to a decrease in the efficiency, our BAEKS & FS-BAEKS
schemes still maintain a significant advantage over [21] and
[22] in terms of the BAEKS and Test algorithms. Moreover,
the post-quantum security strength of our schemes is further
enhanced, which is crucial for protecting the data privacy in
cloud storage systems.

Notably, since the Setup, KeyGenS , and KeyGenR al-
gorithms are executed less frequently than the BAEKS,
Trapdoor, and Test algorithms in real-world applications,
which have little relevance to the search efficiency in
cloud storage systems. Consequently, we only consider the
BAEKS, Trapdoor, and Test algorithms for evaluation and
comparison.

TABLE 4
Communication overhead comparison

Schemes BAEKS Trapdoor

Liu et al. [21] |Zp|+ (t+ 2)|G1| |Zp|
Mukherjee [22] (l + 1)(k + 1)|G1|+ l|GT | 2(k + 1)|G2|
Our BAEKS [(l + 2)m+ 1]|Zq |+ 2m (l + n+ 1)m|Zq |
Our FS-BAEKS [(l + τ + 2)m+ 1]|Zq |+ 2m (l + τ + n+ 1)m|Zq |

7.2 Communication overhead

For a BAEKS scheme, the transmission of keyword cipher-
texts and search trapdoors among data senders, data re-
ceivers, and cloud server contributes to the communication
overhead. This overhead relies on the size of the ciphertexts
and trapdoors. In this way, we provide a theoretical com-
parison analysis of the communication overhead between
our BAEKS & FS-BAEKS schemes and other state-of-the-art
schemes [21] and [22] in Table 4, where |G1|, |G2|, |GT |, |Zp|,
and |Zq| represent the bit length of elements in G1, G2, GT ,
Zp, and Zq , respectively.

Our scheme is based on lattice hardness, involving sam-
pling operations on high-dimensional matrices, which is
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Fig. 6. Communication overhead evaluation of our BAEKS & FS-BAEKS schemes with the number of data receivers l and security parameter n.
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Fig. 7. Communication overhead evaluation of our FS-BAEKS with the time period t and security parameter n.

TABLE 5
Communication overhead evaluation

Schemes BAEKS (MB) Trapdoor (MB)
n = 128 n = 256 n = 128 n = 256

Our BAEKS 0.24 0.49 1.64 6.09
Our FS-BAEKS 0.27 0.53 1.66 6.13

different from the underlying constructions based on DL
hardness. In this way, the size of our ciphertexts and trap-
doors is larger than that of traditional DL-based schemes,
which is a common issue. Therefore, as an acceptable trade-
off for enhancing the security level to resist quantum com-
puting attacks and secret key leakage attacks, the commu-
nication overhead of our BAEKS & FS-BAEKS schemes is
higher compared to [21] and [22]. However, in cloud storage
systems, BAEKS entities typically prioritize two aspects.
Firstly, BAEKS scheme enjoys quantum-safety. Secondly, the
computational operations involved in ciphertext generation,
trapdoor generation, and search processes are efficient. Ac-
cordingly, it can be observed that our schemes introduce an
acceptable communication overhead while ensuring post-
quantum security and computational efficiency.

Fig. 6 illustrates the communication overhead of BAEKS
and Trapdoor algorithms regarding to the security parame-
ters n = 128 and n = 256, corresponding to the ciphertext
and trapdoor size, respectively. The communication over-

head of these two algorithms rises linearly as l is aug-
mented. Moreover, the increment of the security parameter
n does not produce an order-of-magnitude increase in the
communication overhead, indicating that our BAEKS & FS-
BAEKS schemes are scalable. As for Table 5, we give a spe-
cific communication overhead of our BAEKS & FS-BAEKS
schemes at l = 20 and τ = 2, e.g., when n = 256, the com-
munication overhead of BAEKS algorithm in our FS-BAEKS
scheme is [(20+2+2)×15360+1]×12+2×15360 ≈ 0.53MB.

For our FS-BAEKS scheme, the communication overhead
of BAEKS and Trapdoor algorithms with τ is shown in
Fig. 7 with setting the number of data receivers l = 20.
Although the communication overhead is raised as t is
increased, our FS-BAEKS scheme achieves forward security,
has the ability to solve the secret key leakage attacks in cloud
storage systems, and is more oriented to practicality. On
the other hand, more larger security parameter n leads to
a more pronounced trend in the communication overhead
with time period t. It is acceptable for boosting the post-
quantum security strength of our FS-BAEKS scheme.

8 CONCLUSION

In this paper, we propose a lattice-based broadcast authen-
ticated encryption with keyword search (BAEKS) scheme.
This scheme is designed to provide secure and efficient
ciphertext search in multi-receiver model for cloud storage
systems. To further enhance its security, we a forward-
secure version of BAEKS called FS-BAEKS, which has the
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ability to mitigate secret key leakage problems. Our rigious
security analysis demonstrates that both BAEKS and FS-
BAEKS achieve IND-CKA and UF-IKGA security in the
ROM. The comprehensive experimental evaluations also
indicate that our proposed BAEKS & FS-BAEKS schemes
offer significant advantages at computational efficiency of
BAEKS and Test algorithms. In particular, when the number
of data receivers is six, the best computational overhead
of these two algorithms in our BAEKS scheme delivers
up approximately 12-x and 402-x faster over current state-
of-the-art BAEKS schemes, respectively. However, we ac-
knowledge that further work is required to enhance the
security level from the ROM to the standard model.
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