
(Strong) aPAKE Revisited: Capturing Multi-User Security and Salting

Dennis Dayanikli
Hasso-Plattner-Institute, University of Potsdam

dennis.dayanikli@hpi.de

Anja Lehmann
Hasso-Plattner-Institute, University of Potsdam

anja.lehmann@hpi.de

Abstract—Asymmetric Password-Authenticated Key Ex-
change (aPAKE) protocols, particularly Strong aPAKE
(saPAKE) have enjoyed significant attention, both from
academia and industry, with the well-known OPAQUE pro-
tocol currently undergoing standardization. In (s)aPAKE, a
client and a server collaboratively establish a high-entropy
key, relying on a previously exchanged password for au-
thentication. A main feature is its resilience against offline
and precomputation (for saPAKE) attacks. OPAQUE, as well
as most other aPAKE protocols, have been designed and
analyzed in a single-user setting, i.e., modelling that only
a single user interacts with the server. By the composition
framework of UC, security for the actual multi-user setting is
then conjectured. As any real-world (s)aPAKE instantiation
will need to cater multiple users, this introduces a dangerous
gap in which developers are tasked to extend the single-user
protocol securely and in a UC-compliant manner.

In this work, we extend the (s)aPAKE definition to di-
rectly model the multi-user setting, and explicitly capture the
impact that a server compromise has across user accounts.
We show that the currently standardized multi-user version
of OPAQUE might not provide the expected security, as it
is insecure against offline attacks as soon as the file for one
user in the system is compromised. This is due to using
shared state among different users, which violates the UC
composition framework. However, we show that another
change introduced in the standardization draft which also
involves a shared state does not compromise security. When
extending the aPAKE security in the multi-client setting, we
notice that the widely used security definition captures sig-
nificantly weaker security guarantees than what is offered by
many protocols. Essentially, the aPAKE definition assumes
that the server stores unsalted password-hashes, whereas
several protocols explicitly use a salt to protect against
precomputation attacks. We therefore propose a definitional
framework that captures different salting approaches – thus
showing that the security gap between aPAKE and saPAKE
can be smaller than expected.

1. Introduction

Asymmetric Password-Authenticated Key Exchange
(aPAKE) allows a server and user to establish a cryp-
tographic session key based on the user’s knowledge of a
low-entropy password. The asymmetry refers to the fact
that the server does not need to store the password in plain,
but creates a password file upon the user’s registration,
which is then used for re-authentication in the actual key
exchange phase. The core feature of aPAKE protocols is

their resilience to offline attacks, i.e., none of the values
transmitted in the protocol allows to recover the pass-
word via brute-force guessing attempts. This feature must
hold as long as the server is not compromised. Several
provably-secure aPAKE protocols exist [5], [11], [13],
[15], [17], [18], [23], [28], [31], with some being widely
deployed to secure applications such as Telegram [33],
Apple Homekit [2], ProtonMail [6], ProtonPass [38] or
1Password [14].

In 2018, Jarecki et al. [23] introduced the concept of
strong aPAKE (saPAKE), which improves upon aPAKE by
requiring that no pre-computation attacks on the users’s
password can be performed before the server gets compro-
mised. OPAQUE [23] was the first protocol to satisfy this
stronger notion, and has inspired a line of work providing
protocols based on alternative building blocks and more
efficient constructions [5], [28]. The OPAQUE protocol
has already enjoyed significant real-world attention: it was
chosen as the (s)aPAKE winner in the standardization
initiative led by the IRTF [30] and is used to protect
encrypted backups in the WhatsApp messenger [10].

Single-User Security Models. In terms of security, the
Universal Composability (UC) [7] framework has emerged
as the de-facto gold standard for modelling and analyzing
(s)aPAKE protocols. The UC framework is particularly
well-suited for password-based protocols because it does
not make any assumptions about password distributions,
models real-world behaviour such as password re-use
and guarantees secure composition with arbitrary other
protocols – or itself.

In fact, the self-composition aspect of UC has been
used to study a simplified setting of (s)aPAKE: the single-
user variant, where only a single user can register with the
server and establish keys. This allows to focus the model,
protocol design and analysis to this simpler setting, and
rely on the composition theorem [9] when the protocol
is used for multiple users. So far, UC-secure (s)aPAKE
protocols have predominantly been designed and analyzed
for such a single-user setting [5], [13], [17], [18], [22],
[23], [24], [28]. Exceptions are the recent works of [11],
[13], [17].

Multi-User Reality. In practice, (s)aPAKE is typically
deployed in a setting where a single server serves up
to millions of users, all running the same protocol for
password-based authentication and key-exchange. Tech-
nically, the self-composition requires the server to run
several and fully independent instances of the single-user
protocol [20] . In particular, the server must not re-use any
shared state, such as secret keys across the instances if it

wants to benefit from the composability guarantees and
provide the same security as the provably secure single-
user version.

This requires application developers to understand the
limitations of the single-user (s)aPAKE protocols and be
able to extend the protocol in a way that is compliant
with the UC framework. Thus, the focus on the single-
user setting leaves a dangerous gap between the provably-
secure protocol variant and the version that would actually
be needed for real-world deployment.

That this ambiguity can lead to debatable design
choices can be seen in the practical adaptation of
OPAQUE: the multi-user variant of OPAQUE that is cur-
rently in the process of standardization, does not adhere
to such a strict state separation as it recommends “The
oprfseed value [which is a crucial server-side value in the
protocol] SHOULD be used for all clients” [4]. In fact,
there has been a discussion in the irtf-cfrg mailing list [26]
whether it is okay to use the same seed for multiple
clients, with the draft authors still stating they believe in
the security of this design choice.

1.1. Multi-User Security for strong aPAKE

We strongly believe that the formal security model
should be as close to the practical setting as possible. To
this end, we propose the first security model for strong
aPAKE that explicitly captures the multi-user setting,
based on similar efforts in recent aPAKE works [11],
[13], [17]. In the case of strong aPAKE, this requires
dedicated care to correctly model the impact that a server-
compromise should have across several user accounts. In
reality, when servers get compromised and leak password
files, the breach often contains data of a subset of the
registered users only [1], [12], [16], [34], [36], and users
not included in the breach are not impacted. Clearly,
strong aPAKE should provide the same guarantee and
our model captures a fine-grained corruption handling,
requiring that a compromise of a server’s file on a user
uid must have no impact on any other uid′ ̸= uid.

We then study the standardization draft of the
OPAQUE protocol in the multi-user setting, and show
that the recommended sharing of the OPRF seed among
multiple users is insecure when the seed is accessible at
every login (as currently demanded by the standard) [4].
We describe an attack on the draft version that exploits
these cross-client dependencies. Roughly, when the pass-
word file of a user’s uid is compromised, an attacker
learns the global seed and can derive the OPRF key of
all users. The key alone cannot be used to breach security
of any other user, but only a single benign interaction with
the server is needed: when the adversary makes a login-
attempt (on a random password) for another user uid′, it
can use the server’s response and OPRF key to offline
attack the password for uid′ too. This is a substantial gap
compared to the expected saPAKE security, which limits
offline attacks to the user whose password file has been
compromised.

Interestingly, we show that another and similar modifi-
cation related to the multi-user setup in the standardization
draft does not undermine security: the draft permits the
server to utilize the same long-term key pair for the
authenticated key exchange building block for all users.

We show that re-using this key pair indeed results in a
secure protocol.

1.2. Stronger Security for aPAKE

When turning our attention to standard aPAKE, i.e.,
the weaker variant that does not provide security against
precomputation attacks, we notice that several real-world
protocols actually do offer better resistance against these
attacks than what is required from the security model. The
better resistance is only apparent when directly studying
and formalizing the multi-user setting, again demonstrat-
ing the need to model the real-world as closely as possible.

According to the security model [15], the adversary
can precompute a list of possible passwords – which
usually translates to precomputing a list of hashes for
guessed passwords – at any time. As soon as the user’s
password file is compromised, the adversary can instantly
determine if a precomputed password matches the file.
Thus, in case of an eventual server compromise, the
aPAKE guarantees are interestingly significantly weaker
than that of conventional password-based authentication,
where the server typically stores a salted hash only (along
with the salt) to thwart such precomputation attacks [29].

In fact, a similar salting approach has already been
used in some UC-secure aPAKE protocols such as
KHAPE [17], AuCPace [18] or SRP-6a [37], as well,
where the password file uses a user-specific salt value in
the hash computation. In contrast to strong aPAKE, this
salt does not remain hidden but is sent in clear to any user
trying to authenticate as uid. When studying the single-
user setting, this extra salt might not appear to add much
extra security – the adversary can learn the salt with a
single login query.

When turning the model to reflect the multi-user set-
ting, where a single server might cater up to million users,
this makes a difference though. In order to start a bulk
precomputation attack targeting all users, the adversary
must now intercept or even start login sessions for all
millions of users. This is still significantly easier than
having to compromise the user’s file on the server (as
demanded by strong aPAKE), but might thwart some
attacker or at least make their attacks more costly and
easier to detect.

Thus, for a more realistic study and comparison of
aPAKE protocols within the aPAKE family – as well
as comparing it to their stronger saPAKE sibling – we
formalize these salting approaches as part of the existing
UC definitions for (s)aPAKE. More precisely, we formal-
ize a framework of salting levels spanning from aPAKE
to saPAKE, and propose newer definitions that are in
between both.
Level 1: No Salt (aPAKE): These aPAKEs have no

user-specific salt, and correspond to the established
security definition of aPAKE.

Level 2: Passively-Revealed Salt: These protocols in-
corporate a salt, which is transmitted to the user
during the login session. The user and any passive
eavesdropper can learn the user-specific salt and start
precomputation attacks on that user’s password after
that.

Level 3: Actively-Revealed Salt: These aPAKEs also
employ a salt but ensure it is protected from eaves-

2

droppers during transmission to the user. Again,
learning the salt will allow precomputation attacks
– but only on that user, and this time requiring an
active login session from the adversary for each user
account it wants to attack via precomputation.

Level 4: Private Salt (strong aPAKE): These are clas-
sified as strong aPAKEs and represent the highest
level of security in the aPAKE framework.

While Level 1 and 4 correspond to aPAKE and strong
aPAKE respectively, we propose modifications to the stan-
dard aPAKE definition to yield Level 2 and 3 security.
We then categorize existing aPAKE protocols into these
security levels, showing that several protocols achieve
stronger security than what was advertised so far. In fact,
we also show that there are easy transformations to lift
any aPAKE that is secure on Level 1 to Level 2 security,
and again lift Level 2 security to Level 3. Overall, while
strong aPAKE is still the strongest of all variants, our work
reveals that the difference between aPAKE and strong
aPAKE – in the multi-user setting – can be smaller than
originally thought.

2. Multi-User Security for saPAKE

In this section, we describe the existing single-user
model for saPAKE which has been used in various
works [5], [23], [28], and show how it can be extended
to explicitly model the real-world setting where multiple
users interact with the same server instance. Our new
model clearly articulates the security users can expect in
such a setting. As a core goal of saPAKE is to provide
security against precomputation attacks before the server
gets compromised, we put dedicated care in modeling
this feature in the strongest (and most realistic) setting
possible.

Universal Composability. We express and study security
in the Universal Composability (UC) model [7], which
has evolved as the gold standard for (s)aPAKE protocols
and has been used in all recent works. In the UC model,
the desired properties of a protocol are represented as an
ideal functionality F and security is achieved if the real-
world protocol π can be indistinguishably mimicked by a
simulator which only interacts with the ideal functionality
F . In this case, π is said to UC-realize functionality
F . UC security is particularly suited for password-based
protocols, as it does not require any idealized assumptions
on the distribution or handling of passwords. One of the
main benefits of UC security is that UC-secure protocols
remain secure under arbitrary composition of protocols
and under concurrent executions – but only when the
composition is done in a manner that is compliant with
the framework.

2.1. Single-User saPAKE Model

The ideal functionality FsaPAKE proposed by Jarecki
et al. [23] models the strong asymmetric password-
authenticated key exchange between two parties – a client
C and a server S. It allows the server to register a client
with a password pw using the StorePwdFile interface.
The original functionality does not include usernames, but
implicitly assumes that the global session identifier sid is

a combination of the user name uid and the identity of the
server. The functionality internally stores a password file
⟨file,S, pw⟩ and from then on allows the client to engage
in a key generation session with the server.

In order to perform a key exchange, the client uses
the CltSession interface of FsaPAKE where she inputs the
password pw′ she wants to use for the session. The client
also has to use the same user-specific sid as input to
the CltSession interface as in the registration, and do
so consistently for every key exchange. The server uses
the SvrSession interface where the functionality will use
the internal file for the password-based authentication. If
there is no active attack, and if the client’s password
pw′ matches the password pw stored in the file, both
parties will output the same session key (provided via the
NewKey interface).

The (s)aPAKE functionality FsaPAKE also models sev-
eral inevitable attacks. The online guessing attack is
modeled through the TestPwd interface which may be
accessed once per session. The attacker further has the
ability to compromise a server which is modeled through
the StealPwdFile interface and which allows the attacker
to learn a user’s password file. Stealing the password file
then allows for impersonation and offline attacks. In the
impersonation attack (modeled by query Impersonate), the
attacker impersonates the server to the client using the
stolen password file, and in the offline attack (modeled
by OfflineTestPwd), the attacker can test passwords offline
against the stolen password file. The advantage of saPAKE
over regular aPAKE, is that queries to OfflineTestPwd are
only possible after server compromise, meaning that no
precomputation attacks on the user is possible before the
adversary compromises the file held by the server.

2.2. Multi-User Security From UC Composition

The original functionality for FsaPAKE is a single-
user functionality, meaning it only models the interaction
between a single user and a single server. However, in
practical real-world applications, aPAKE schemes are typ-
ically deployed in multi-user environments, where up to
millions of users register with the same server.

Composition of Single-User Functionalities. Conveniently,
the modularity of the UC framework [7], allows to ex-
tend the UC security guarantee to the multi-user setting.
Therefore, one can construct a multi-user saPAKE pro-
tocol πMU which runs the single-user FsaPAKE between
each user-server pair as subprotocols. Using the universal
composition theorem of the UC framework [7], all the
ideal FsaPAKE protocols can be subsequently replaced with
their realizations (i.e. saPAKE protocol πSU which UC-
realizes the single-user functionality FsaPAKE), from which
the UC-security of the multi-user protocol follows.

As a caveat though, in the classical UC composition
theorem [7], constructing a multi-user UC-secure protocol
in this way requires all subprotocols to be independent of
each other. That is, the composed protocol instances can-
not share an internal state and all internal random choices
in the different subprotocols have to be independent. In
the self-composition needed for real-world (s)aPAKE, the
same server will run multiple instances with every user
and thus must ensure that no long-term keys or shared

3

Password Registration
– On (StorePwdFile, sid, uid, pw) from S, create record ⟨file,S, uid, pw⟩ marked fresh.
Stealing Password Data
– On (StealPwdFile, sid,S, uid) from A, if there is no record ⟨file,S, uid, pw⟩, return “no password file”. Otherwise

mark this record stolen, and if there is a record ⟨offline,S, uid, pw⟩ then send pw to A.
– On (OfflineTestPwd, sid,S, uid, pw∗) from A, do:

– If ∃ record ⟨file,S, uid, pw⟩ marked stolen, do the following: If pw∗ = pw return “correct guess” to A, else
return “wrong guess”.

– Else, record ⟨offline,S, uid, pw∗⟩.
Password Authentication
– On (CltSession, sid, ssid,S, uid, pw′) from C, if there is no record ⟨ssid,C, . . . ⟩ then record
⟨ssid,C,S, uid, pw′, cl⟩ marked fresh and send (CltSession, sid, ssid,C,S, uid) to A.

– On (SvrSession, sid, ssid,C, uid) from S, if there is no record ⟨ssid,S, . . . ⟩ then retrieve record ⟨file,S, uid, pw⟩,
and if it exists then create record ⟨ssid,S,C, uid, pw, sr⟩ marked fresh and send (SvrSession, sid, ssid,S,C, uid)
to A.

Active Session Attacks
– On (TestPwd, sid, ssid,P, pw∗) from A, if there is a record ⟨ssid,P,P′, uid, pw, role⟩ marked fresh, then do:

If pw∗ = pw then mark it compromised and return “correct guess” to A; else mark it interrupted and return
“wrong guess”.

– On (Impersonate, sid, ssid,C,S, uid) from A, if there is a record ⟨ssid,C,S, uid, pw, cl⟩ marked fresh, then do:
If there is a record ⟨file,S, uid, pw⟩ marked stolen then mark ⟨ssid,C,S, uid, pw, cl⟩ compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess”.

Key Generation and Authentication
– On (NewKey, sid, ssid,P,K∗) from A, if there is a record rec = ⟨ssid,P,P′, uid, pw, role⟩ not marked

completed, then do:
– If rec is compromised set K ← K∗;
– Else if role = cl, rec is fresh, there is a record ⟨ssid,P′,P, uid, pw, sr⟩ s.t. FaPAKE sent (sid, ssid,K ′) to P′

while that record was marked fresh, set K ← K ′;
– Else if role = sr, rec is fresh, there is a record ⟨ssid,P′,P, uid, pw, cl⟩ which is marked fresh, pick K

r←−
{0, 1}λ;

– Else set K ← ⊥.
Finally, mark rec as completed. If K = ⊥, provide public delayed output (sid, ssid,⊥) to P, otherwise provide
private delayed output (sid, ssid,K) to P.

Figure 1: The multi-user ideal functionalities FsaPAKE and FaPAKE (including highlighted text) with explicit authentication where the
server receives the key first. The functionality is tied to a server S, and we assume that S is encoded in sid, e.g. as sid = (S, sid′)
for a unique sid′.

state is used in different subprotocols. Not adhering to this
requirement will void the UC security guarantees provided
by the classical UC composition theorem.

UC with Joint State. To enhance the practical usability
of the composability property, Canetti and Rabin [9]
introduced the notion of Universal Composability with
Joint State (JUC), which allows parties to have a joint
state across different protocols. In the JUC framework, the
composition of protocols which share a subprotocol can be
shown to remain UC-secure. In fact, several aPAKE pro-
tocols have been proven in the JUC framework [18], [20]
for a shared random oracle. However, the JUC framework
is mostly suited when the joint subprotocols are publicly
available functions without secret keys such as a random
oracle, where a secure instantiation mostly has to handle
domain separation only. In keyed subprotocols which also
have to handle key compromise, the JUC framework is
not the most suitable choice.

Server Compromise in the Composed Protocol. In a multi-
user saPAKE protocol which is composed from single-
user saPAKE protocols using one of the methods men-
tioned above, the server compromise is modeled via
StealPwdFile in the single-user functionality FsaPAKE. The
UC security guarantees that this compromise exclusively
impacts the user who resides within this functionality. The
security of all other protocol instances is independent of
the affected protocol instance, ensuring that compromising

the file of a user uid (registered as sid) does not impact
the security of users uid′ ̸= uid in this model.

2.3. Our Multi-User saPAKE Model

Our goal is to model strong aPAKE directly in the
multi-user setting it will be used in, and guarantee the
same security properties that the self-composition of the
single-user protocols would yield. The advantage of the
multi-user variant is that any protocol is explicitly de-
signed for the real-world setting. In contrast to the self-
composition approach, the multi-user variant can re-use
key material and shared state on the server side, as long
as it does not harm the strong security guarantees required
from the protocol. In particular, compromising the pass-
word file of a user uid must have no impact on any other
uid′ ̸= uid,

Multi-User Functionality. The changes to transform the
single-user functionality to the multi-user setting are rather
subtle. In fact, for regular aPAKE, newer works have
turned to the multi-user setting already [11], [13], [17],
and we adopt their handling to the strong aPAKE model.
The detailed functionality for the multi-user setting is
given in Fig. 1 and we explain the main changes and
impact on the server compromise handling below.

In the functionality, the global session identifier sid
now identifies a multi-user functionality, i.e., is no longer
assumed to encode the user name. Instead, a dedicated

4

user-name uid has to be provided to the StorePwdFile in-
terface along the password pw. This registration interface
can now be called multiple times, and the functionality
maintains individual password files ⟨file,S, uid, pw⟩ for all
registered users. The uid then needs to be provided by the
parties as an additional input when initiating a new session
through CltSession or SvrSession queries. Furthermore,
the Impersonate query requires the attacker to indicate
which uid should be targeted. The TestPwd and NewKey
interfaces do not require the uid, as they are only called on
existing sessions which are identified by the combination
of (sub)-session identifiers (sid, ssid) and already linked
to the username uid.

Modeling Server Compromise. Compromising a server in
the single-user setting essentially means compromising the
single user’s password file. When transitioning from the
single-user to the multi-user setting, there are different
options to model server compromise. It could either be
modeled as a full server compromise, which compromises
the files of all users, or individual server compromise
which only targets the files of individual users.

We chose to model the compromise of individual
password files as it gives us a more flexible and fine-
grained security model, which caters for possible cross-
user dependencies. After compromising the file of uid, we
still have security for all users uid′ ̸= uid, and the security
guarantee also extends to new users who want to register
with the server after the password file of some user uid
is compromised, essentially modeling post-compromise
security.

Individual or partial server compromise is a realistic
scenario, as servers usually do not handle all their data
simultaneously, and partial leaks can occur. Consider, for
instance, the login process, where the server retrieves the
password file of a single user. If there is an issue with the
server, such as a software bug or malware, the password
file of that user could be inadvertently exposed, while the
password files of other users may remain secret.

In the functionality, the individual file compromise is
represented by the StealPwdFile interface which takes as
input a username uid and only compromises the file of
uid. The ideal functionality marks the internal password
file ⟨file,S, uid, pw⟩ as stolen. Compromising the file of
user uid should only have contained impact. It should only
enable the inevitable offline password tests on the compro-
mised user uid and it should not downgrade the security
guarantees for any other user uid′ ̸= uid. The functionality
therefore allows OfflineTestPwd queries only for users
whose password file has been marked stolen. The ideal
functionality for the multi-user setting is given in Fig. 1.

3. Multi-User (In)security of Draft-OPAQUE

OPAQUE [23], introduced in 2018, is a strong aPAKE
protocol, that was chosen as the winner of the IETF se-
lection process for aPAKE in 2020 and is presently under-
going standardization by the IRTF [4]. In this section, we
first give an overview of the original OPAQUE protocol
by Jarecki et al. [23]. Following this, we highlight some
changes introduced in the current draft version 12 from
the IRTF. We then show that one of these changes – using
a single-seed OPRF for multiple users – makes the draft

version insecure. We isolate this change for our analysis
in a version we call single-seed OPAQUE (ssOPAQUE).
We detail an attack for this simplified version, and show
how the attack can be mitigated.

3.1. OPAQUE

Jarecki et al. [23] describe two ways of building a
strong aPAKE from an Oblivious Pseudorandom Func-
tion (ORPF). The OPAQUE compiler1 combines the
OPRF with an authenticated key exchange (AKE). We
first describe the building blocks used in OPAQUE. In
contrast to the original description [23], we capture the
OPRF building block through an algorithmic representa-
tion instead of an ideal functionality. This makes it easier
to explain the change made in the standardization draft,
and the attack thereon.

OPRF. An Oblivious Pseudorandom Function (OPRF) is
a protocol run between a client and a server to jointly
compute the pseudorandom function F (k, x) where the
client provides input x and the server provides key k.
A secure OPRF protocol ensures that at the end of the
protocol, the client learns F (k, x) while the server learns
nothing. More formally, we define the OPRF as a tuple of
algorithms (KGen,Blind,BlindEval,Eval,Finalize) where
KGen(1λ)→ k creates the PRF key k.
Blind(x) → (x, r) is run by the client to blind input x.

It returns the blinded input x and randomness r.
BlindEval(k, x) → y is run by the server to blindly

evaluate the OPRF on x using key k. This returns
a blinded evaluation y.

Finalize(x, r, y) → y is run by the client to unblind the
blinded evaluation y to y using randomness r.

Eval(k, x) → y directly generates output y = F (k, x)
from input x and key k.

In the modified OPAQUE version ssOPAQUE, the KGen
algorithm runs deterministic when given randomness rnd.
In this case, we write k := KGen(1λ; rnd).

AKE. The second building block used in OPAQUE is an
authenticated key exchange (AKE) protocol which allows
two parties P and P ′ to exchange a session key over
an insecure communication channel while also ensuring
the authenticity of each other’s identities based on their
long-term public keys. OPAQUE additionally requires the
AKE to achieve key compromise impersonation resistance
(KCI) which ensures that even if an attacker obtains or
compromises the long-term secret key of party P , he
should still be unable to impersonate party P ′ to P . For
simplicity, we model the AKE as a protocol between C
and S in which the parties first create ephemeral key-
pairs and exchange the ephemeral public keys. These
ephemeral keys are combined with the long-term keys
(where each party uses its own secret key part and the
counterparty’s public key part) to derive a key. The key is
derived using a key exchange formula similar as in [23].
The AKE protocol further encompasses key confirmation
messages to verify the authenticity of the counterparty.

1. OPAQUE is actually described as a concrete instantiation of the
compiler using 2HashDH and HMQV. We refer to OPAQUE as the
generic compiler akin to the current draft specification.

5

The construction of the AKE is given in Fig. 5 in the
Appendix and uses the following algorithms:
KGenlt(1

λ) → (sk, pk): generates a party’s long-term
key-pair.

KGeneph(1
λ) → (x,X): generates a party’s ephemeral

key-pair.
KE(skP , pkP ′ , xP , XP ′) → k: key exchange formula

that computes a key k for party P based on its long-
term and ephemeral secret key, and the counterparty
P ′’s long-term and ephemeral public key.

The AKE further uses a pseudorandom function F :
{0, 1}λ × X → Y to perform explicit key confirmation.
The AKE protocols HMQV [25] and 3DH [35] with
additional key confirmation are an instantiation of this 3-
flow protocol.

Authenticated Encryption and PRF. OPAQUE further uses
an authenticated encryption scheme and a pseudorandom
function. The authenticated encryption scheme consists of
algorithms (KGen,AuthEnc,AuthDec) with
KGen(1λ)→ k: creates key k.
AuthEnc(k,m) → c: encrypts message m using key k

to obtain ciphertext c.
AuthDec(k, c)→ m/⊥: decrypts ciphertext c using key

k. Returns either message m or, failure message ⊥
in case decryption fails.

OPAQUE requires that the authenticated encryption
scheme fulfills the standard notions of authenticated en-
cryption – CCA-security and ciphertext integrity. It is
further required to be random-key robust, i.e. a cipher-
text should not decrypt successfully under two different
randomly generated keys. This condition ensures that a
ciphertext will only decrypt successfully under the key it
was created with. Looking ahead, the random-key robust-
ness will be important to our attack, as it provides the
attacker with a way to test passwords correctly.

The OPAQUE Protocol. The core idea of the OPAQUE
compiler is to employ an AKE protocol to establish a
shared key, where the client’s long-term keys are stored on
the server in encrypted form (the so-called envelope). In
the login phase, the server sends the envelope to the client,
and the client can only decrypt the envelope if she uses
the correct password. The encryption key is the output
of the OPRF on the server’s secret key and the users’
password, providing the desired offline attack resistance.
If the client’s decryption is successful, she retrieves her
AKE keys, and both parties can run the AKE protocol.

In more detail, the OPAQUE protocol consists of
two parts – a registration and a login phase. During
registration, the server samples AKE key-pairs for server
(skS, pkS) and client (skC, pkC) as well as an OPRF key
kO. It encrypts (skC, pkC, pkS) under the OPRF evalu-
ation rw = F (k, pw) to create the envelope c where
pw is the client’s password. The file then consists of
file[uid] = (kO, skS, pkS, pkC, c).

In the login phase, both parties first engage in the
OPRF protocol where the client inputs password guess
pw′ and the server the OPRF key kO. At the end of the
OPRF protocol the client learns an envelope decryption
key rw′. The server also sends the envelope c to the
client. If the password guess pw′ was correct, the client
is able to decrypt c with rw′, and the client obtains

her AKE long-term keys and the server’s AKE public
key (skC, pkC, pkS). Both parties further generate AKE
ephemeral key-pairs and exchange the ephemeral public
keys. If the client’s password was correct, both parties
can now derive the shared AKE-key via the KE function.
Both parties further send key confirmation messages t1, t2
in order to achieve explicit authentication. If the check is
successful, both parties will output the shared session key
Ksess. A description of the OPAQUE protocol is given in
Fig. 2.

3.2. Insecurity of Shared OPRF Key

The OPAQUE protocol is presently undergoing stan-
dardization efforts led by the IRTF, with the 12th iteration
of the draft version – henceforth called Draft-OPAQUE
– currently under review [4]. The draft version deviates
from the version proposed by Jarecki et al. [23] in several
aspects. Among the most significant changes, it models the
registration as an interactive protocol, allows the server
to re-use its AKE key-pair and to use a single OPRF
seed to derive per-client OPRF keys. Furthermore, it uses
transportable keys, meaning that the client’s encrypted
key-pair is not directly included in the envelope. Instead,
the envelope contains information which can be used by
the client to deterministically derive her AKE key-pair. An
overview of the changes can be found in [4], and parts of
the protocol have been analyzed in [10], [21].

A formal security analysis of the currently standard-
ized draft version has not been conducted yet, and is a
significant endeavor on its own. In our work, we focus on
two specific modifications aimed at adapting the single-
user protocol into the multi-user setting: re-using the same
OPRF seed for all users, and re-using the server’s AKE
keys. To gain a deeper understanding of the implications
of these changes, we analyze them separately.

We initiate our analysis with the changes to the OPRF
keys. We capture this change by analyzing a version that is
equivalent to the provably-secure OPAQUE protocol, ex-
cept for using the single seed approach of Draft-OPAQUE
and being expressed for multiple clients directly. We then
show that this single-seed OPAQUE (ssOPAQUE) version
does not achieve the expected security guarantees.

ssOPAQUE. The single-seed OPAQUE protocol is identi-
cal to OPAQUE with two main changes: First, it allows
to register multiple-clients with the same server, whereas
OPAQUE was designed for a single client only. To run
a UC-secure multi-user version of OPAQUE, the server
would have to run fully independent instances of the
protocol for each client, as discussed in Section 2.2. In
particular, the server cannot re-use any key material for
different clients.

However, instead of having independent OPRF keys
for different clients, the OPRF keys in ssOPAQUE are
derived from a single seed. To this end, the server first
initializes the seed seedoprf in a setup phase. During
the registration and login phase, whenever the server
requires the OPRF key, it deterministically derives the
OPRF key from seedoprf and user identifier uid as kO :=
OPRF.KGen(1λ;H(seedoprf , uid)) where H(seedoprf , uid)
is the explicit randomness used for the KGen algorithm.
This approach ensures that each client gets a different

6

Building Blocks and Parameters

– Security parameter λ, Hash function H : {0, 1}∗ → {0, 1}λ

– OPRF (KGen,Blind,BlindEval,Finalize,Eval)

– Authenticated Key Exchange (KGenlt,KGeneph,KE)

– Pseudorandom Function F : {0, 1}λ × {0, 1}λ → {0, 1}λ

– Authenticated Encryption Scheme (KGen,AuthEnc,AuthDec)

. .Server Setup. .

Server S

seedoprf
r←− {0, 1}λ

. Registration .

Client C[uid, pw] Server S[seedoprf]]

uid, pw kO
r←− OPRF.KGen(1λ)

kO := OPRF.KGen(1λ;H(seedoprf , uid))

rw := OPRF.Eval(kO, pw)

(skS, pkS)
r←− AKE.KGenlt(1

λ)

(skC, pkC)
r←− AKE.KGenlt(1

λ)

c := AuthEnc(rw, (skC, pkC, pkS))

file[uid] := (kO, skS, pkS, pkC, c)

file[uid] := (seedoprf , skS, pkS, pkC, c)

. Login .

Client C[uid, pw′] Server S[uid, file[uid]]

(pw′, r)← OPRF.Blind(pw′),

(xC, XC)
r←− AKE.KGeneph(1

λ) uid, pw′, XC kO := OPRF.KGen(1λ;H(seedoprf , uid))

(xS, XS)
r←− AKE.KGeneph(1

λ)

rw′ ← OPRF.BlindEval(kO, pw
′)

KS := KE(skS, xS, pkC, XC)

rw′ := OPRF.Finalize(pw′, r, rw′) rw′, XS, c, t1 t1 := F (KS , 1),Ksess := F (KS , 0)

if AuthDec(rw′, c) = ⊥ abort, else
(sk′

C, pk
′
C, pk

′
S) := AuthDec(rw′, c)

KC = KE(sk′
C, xC, pk

′
S, XS)

if F (KC , 1) ̸= t1 abort, else

t2 := F (KC , 2),Ksess := F (KC , 0) t2 if F (KS , 2) = t2

output Ksess output Ksess

Figure 2: The OPAQUE [23] protocol (with boxed text and without grey text) and the ssOPAQUE protocol (with grey text and
without boxed text) reflecting the single seed approach of Draft-OPAQUE. We assume all messages and inputs to the hash functions
are prefixed by the session identifier sid, and all messages specific to the login phase are further prefixed by ssid. We omit these
values as a writing convention.

OPRF key which is a good practice. However, as we will
see, the dependency of the keys can become problematic,
particularly if the seed gets compromised.

Modeling the Password File in Draft-OPAQUE. The draft
is somewhat ambiguous on how a user’s password file
should be interpreted with regards to the OPRF seed. In
theory, the password file for a user uid is interpreted as the
output of the registration process, which the server stores
in his database. During a login session, the server retrieves
this password file and authenticates the user based solely
on the password file.

Draft-OPAQUE differs from this approach in that it
includes a setup phase where long-term keys such as the
seedoprf are established. The output of the registration
process is a record which does not contain the OPRF seed
or the OPRF key (as would be the case for OPAQUE),

instead the draft states that “the values seedoprf and [. . .]
from the server’s setup phase must also be persisted” [4,
Sec. 5].

Furthermore, in the authentication phase, the seedoprf
is an additional input from the server to generate its
response in the login phase [4, APIs 6.2.2 and 6.3.2.2.],
and is thus used to authenticate the user. Since seedoprf
is a long-term value stored by the server, and used to
authenticate the client in every key exchange, it fulfills
our definition of (being part of) a password file and we in-
clude seedoprf in every user’s password file in ssOPAQUE.
As a consequence of this, as soon as a single file gets
compromised, the OPRF seed is leaked to the attacker.
However, since seedoprf is handled by the server in every
key exchange protocol (i.e. hot storage), we believe that
this is a realistic scenario and the possible effects of

7

leaking seedoprf should be analyzed.
For comparison, the secure multi-user OPAQUE and

ssOPAQUE are depicted in Fig. 2.

Insecurity of ssOPAQUE. We show that ssOPAQUE does
not achieve the desired security properties of a strong
aPAKE. The main issue is that in ssOPAQUE, compro-
mising the password file of one client allows an attacker
to perform offline attacks on all other clients who have
registered with the same server.

In order to show the attack, we consider a system
with two honest users, uid and uid′. Both users have
registered with the server, meaning the server has exe-
cuted StorePwdFile(uid, pw) and StorePwdFile(uid′, pw′)
queries where the attacker does not know the passwords
pw and pw′. The attacker then compromises the server’s
file for uid, which immediately destroys all security for
uid. Importantly, this should not impact the security of
user uid′, as the attacker should not be able to test pass-
words offline for other users.

This does not hold for ssOPAQUE, as demonstrated
by the following attack:
Compromise password file of uid: The adversary A is-

sues a StealPwdFile(S, uid) query to obtain the
password file of uid. He receives file[uid] =
(seedoprf , skS, pkS, pkC, c), and thus learns seedoprf .
With this information, the adversary can now conduct
offline password tests for uid, but is not expected to
do anything beyond that.

Compute OPRF key of uid′: A uses the stolen seed
to compute the OPRF key of uid′ as k′O :=
OPRF.Eval(1λ;H0(seedoprf , uid

′)). This information
alone does not allow to break security for uid′ yet,
but only a single benign interaction with the server
is needed to do so.

Retrieve envelope c′ of uid′: A initiates a client session
with the server to obtain the envelope c′ stored
for user uid′. To achieve this, he picks a random
pw, computes (pw, r) ← OPRF.Blind(pw) and
(xC, XC)

r←− AKE.KGen(1λ) as outlined in the pro-
tocol. He sends pw,XC to the server and receives the
server’s answer (rw,XS, c

′, t1). The value c′ is part
of the user’s password file and should not allow for
offline attacks on the password.

Offline Password Guess on uid′: Knowing c′ and the
OPRF key k′O, the attacker can now conduct of-
fline password guesses. Let pw∗ be a password
that the attacker wishes to test. In order to do so,
he computes the potential decryption key rw∗ :=
OPRF.Eval(kO, pw

∗) and attempts to decrypt c′ by
executing m/⊥ ← AuthDec(rw∗, c′). Through the
authenticated encryption and random key-robustness
property, the decryption will only succeed in case the
attacker has guessed the password correctly, giving
the attacker a way to check his password guess. No-
tably, the attacker can verify arbitrary many password
guesses without requiring interaction with the server,
making this an offline attack.

This attack presents a clear contradiction to saPAKE se-
curity. Specifically, saPAKE states that offline password
guesses for client uid′ should be infeasible unless the
password file of uid′ is compromised. Our attack, however,
demonstrates that in ssOPAQUE, as soon as the password

file of a single user within the system is compromised,
offline password guesses become possible for all users.

Mitigating the Attack. The problem that the draft version
of OPAQUE exhibits is that the OPRF keys are not
independent of each other, and knowing a user’s OPRF
key immediately opens up offline attacks. In order to
mitigate the attack, the OPRF keys need to be instantiated
individually and independently for each client. Security of
the protocol then follows from the single-client security of
OPAQUE [23] and the UC composition guarantees [7].

As a middle ground, it might seem tempting to use
a single-seed to derive the different OPRF keys during
registration, but store the resulting OPRF key as part of the
password file instead of the OPRF seed. The OPRF seed
could be stored in some secure enclave where we have
higher protection of it, as suggested in [21]. This version is
then secure as long as the OPRF seed is not compromised.
In order to formally analyze this version though, one
would have to adjust the ideal functionality to capture
these two different types of file and key compromise of the
server. After defining the new functionality, the adapted
protocol must be proven secure in this model. Thus, we
believe that independently creating the OPRF keys is a
better approach.

Implications for Draft-OPAQUE. Even without analyzing
the other changes of Draft-OPAQUE it is clear that the
currently proposed standard is not secure, when the rec-
ommendation of using a shared seed for multiple client is
implemented. For the sake of completeness, we also detail
our attack to the Draft-OPAQUE protocol in Appendix B.
In fact, this change has already led to discussions on the
mailing list [26]. In the response, it was still stated that
storing and re-using seedoprf for each client is believed to
be secure, but it is OK to use multiple seeds if desired.
As shown by our analysis this is not correct, and using
multiple seeds should be the default.

3.3. Security of Shared AKE Key

The Draft-OPAQUE specification also allows the
server to use the same AKE key-pair across multiple
clients [4, Sec. 3.1]. Similar to the treatment of seedoprf ,
we can view the AKE key-pair as part of each user’s
password file. Consequently, if an attacker compromises
a user uid’s password file, he will learn the server’s AKE
key-pair (skS, pkS) used for all clients registered with
the server. This protocol variant is depicted in Fig. 8 in
Appendix C.

Contrary to a shared OPRF seed, sharing AKE keys
for multiple clients (while assuming independent OPRF
keys) may still result in a secure instantiation of OPAQUE.
In Appendix C, we show the security of an instantiation
of OPAQUE with the AKE protocol 3DH proposed in
the IETF Draft [4], which utilizes a single server key-
pair (skS, pkS) for all clients. Our proof uses a simulator
which is very similar to the one described in [23] with
three essential tweaks: (1) the honest server is simulated
with the same AKE key-pair across all clients, (2) the
simulator is adjusted to the multi-user setting by replacing
the sid with (S, uid), and (3) our simulator simulates
the AKE subprotocol 3DH directly, instead of interacting
with a simulator SIMAKE. The analysis of the simulator

8

further needs to encompass that when the password file
file[uid] = (kO, skS, pkS, pkC, c) of user uid is compro-
mised, it will leak the server’s AKE key-pair (skS, pkS)
which is part of the password file of all users uid′ regis-
tered with the server. We briefly sketch here why this does
not compromise the security guarantees for other users
uid′ ̸= uid:
No Additional Offline Attacks: If the adversary com-

promises the password file of uid, offline attacks on
the password of uid become inevitable. Nevertheless,
even though the attacker learns (skS, pkS) which is
also part of file[uid′], this does not open the pos-
sibility of offline attacks on the password of user
uid′. This is due to two key factors: (1) (skS, pkS) is
independent of the password, and (2) to execute an
offline attack on uid′, the attacker needs to know the
OPRF key k′O, which is independent of the OPRF
key kO associated with uid and which is not leaked
if uid′ is not compromised.

No Impersonation of S towards uid′: Compromising
the password file of uid inevitably allows the
adversary to impersonate the server towards uid.
However, he should not be able to impersonate S
towards other users uid′. This is not possible since
the adversary does not know the whole password
file of uid′ which includes the values (k′O, pk

′
C, c

′)
needed for authentication. While the adversary
might attempt to initiate the authentication phase
with different values (k′O, pk

′
C, c

′), the adversary
will only succeed and be able to determine the
key of uid′ if he guesses the password of uid′

correctly. Crucially, this counts as an online attack
which is already possible if the attacker does not
have the keys (skS, pkS) as additional knowledge.
Furthermore, the simulator can detect this online
attack and extract the password of the attacker.

No Impersonation of uid′ towards S: Stealing the
password file of uid does not allow the adversary to
impersonate uid towards S: Even though the attacker
knows (pkC, skS, pkS), he cannot authenticate as
uid due to the KCI resistance of the AKE protocol.
This also extends to uid′: the adversary is unable
to authenticate as uid′ towards S even if the
adversary knows pkS, skS because the adversary
does not know the key-pair (sk′C, pk

′
C) of uid′

which is created independently from the (skC, pkC)
of any other client. Thus, learning the AKE keys
(skC, pkC, skS, pkS) for any other client uid will not
help in the AKE session of uid′. The only way for
the adversary to authenticate as uid′ is by guessing
the password of uid′ correctly.

A full description of the simulator is given in Appendix C.

4. aPAKE Security with Salting

We now take a look at standard aPAKE protocols – the
weaker version of saPAKE which does not offer resistance
against precomputation attacks. As in our analysis of
saPAKE, we consider a multi-user setting that realistically
addresses multiple clients in the system. It becomes appar-
ent in this multi-user setting that existing aPAKE proto-
cols, where password files incorporate a user-specific salt,

such as [11], [13], [18], exhibit better resistance against
precomputation attacks compared to what is required by
the existing aPAKE security model. Consequently, we re-
evaluate the handling of precomputation attacks within
the security model. To this end, we provide a refined
security model capable of capturing protocols that offer
more resistance against precomputation attacks than what
is required from standard aPAKE.

4.1. Existing aPAKE Security Model

aPAKEs have been studied extensively in the past [19]
and the security guarantees for an aPAKE protocol are
identical to that of a saPAKE protocol, with one important
change: aPAKE is not resistant against precomputation
attacks on a user’s password file.

Precomputation Attacks. In a precomputation attack, the
attacker’s objective is to reduce the time it takes to learn
a user’s password after compromising the user’s password
file. To this end, before compromising the server, the
attacker can precompute a table of values based on a
dictionary of passwords. This usually translates to pre-
computing a list of hashes for the most common pass-
words [3]. When the attacker compromises the server at
a later point and obtains the user’s password file, he will
instantly learn the user’s password if it matches one of
the passwords included in the precomputation table. In
the hashed password context, this translates to looking up
whether the password file matches one of the hashes in
the precomputation table.

Ideal Functionality FaPAKE. Much like in the saPAKE
setting, most of the analysis on aPAKE was conducted in
a single-user UC framework [15], with multi-user security
achieved through the composability theorem [7]. However,
a recent development introduced an ideal functionality
which explicitly handles the multi-user setting [11], [13],
[17]. In our analysis, we adopt this multi-user ideal func-
tionality for aPAKE.

The ideal functionality FaPAKE provides the same
interfaces as FsaPAKE, only the handling of the
OfflineTestPwd interface is changed. The attacker can
access this interface at any time with password guess pw∗

for client uid. In case the password file is not stolen, the
password guess is now logged as ⟨offline,S, uid, pw∗⟩.
When the attacker then issues a StealPwdFile query
to compromise the server at a later point, he learns
the password used to create a password file if he has
queried the OfflineTestPwd query on the correct password
before. On a more technical level, upon receiving the
StealPwdFile(sid,S, uid) query, the functionality retrieves
the internal password file ⟨file,S, uid, pw⟩ and checks if
there is a logged offline guess ⟨offline,S, uid, pw∗⟩ with
pw∗ = pw. If this is the case, pw is sent to the attacker.
The aPAKE functionality is given in Fig. 1.

Gap To Real World. Upon a closer examination of the
ideal functionality, we observe that the handling of pre-
computation attacks is too permissive. The functionality
permits an attacker to log an offline password guess – thus
effectively creating a precomputation table – at any time
after the user is registered. This is significantly weaker
than the security guarantees of conventional password-
based authentication [29], where, in an effort to mitigate

9

precomputation attacks, the server creates a high-entropy
random value (the salt) for each user, and stores the salted
hash along with the salt.

Given the fact that there are UC-secure aPAKE pro-
tocols which use similar salting techniques to thwart
precomputation attacks [17], [11], [13], [18], we want
to understand their exact resistance to precomputation
attacks. To this end, we observe that the password file
in every aPAKE protocol contains values (s, v), where
we call s the salt value and v the password verifier, such
that v is computed with a deterministic function f as

v := f(S, uid, pw, s)

This notation allows us to express a precomputation at-
tack. Since f is deterministic, an attacker who knows
(S, uid, s) can precompute a possible table of values
(v1, v2, . . . , vn) where vi = f(S, uid, pwi, s) for password
guesses pwi. Upon compromise, the attacker learns v
and checks whether v = vi for one of the precomputed
values. Clearly, for this precomputation attack to work, the
attacker needs to know S, uid and s. Since we assume S
and uid to be public, precomputation attacks only become
possible if the attacker learns the salt s. A protocol’s resis-
tance against precomputation attacks is therefore mainly
tied to the question: In which moment does the attacker
learn the salt s which allows him to run a precomputation
attack?

Therefore, we propose a framework based on the UC
(s)aPAKE definition to capture different approaches for
aPAKE protocols based on their leakage of the salt. In our
framework, we outline four different salt levels, which we
present in the following. Salt level 1 offers the weakest
security guarantee against precomputation attacks, and salt
level 4 the strongest.

4.2. Level 1: No Salt (aPAKE)

The most basic form of aPAKE is an aPAKE with
no salt, i.e. s = ⊥. In this case, we cannot assume any
resistance against precomputation attacks as the attacker
who knows (S, uid) can perform a precomputation attack,
using f(S, uid, pwi,⊥) for password guesses pwi. The
security for level 1 is expressed with the classic aPAKE
functionality which we outlined in Sec. 4.1, and which
allows precomputation attacks against a user at any time.

It is important to note here, that offline password
guesses in aPAKE are required to be targeted to a spe-
cific user-server pair. This is evident from the func-
tionality which requires (S, uid) to be an input to the
OfflineTestPwd query. This essentially means that pass-
word files need to be tied to a specific user (e.g. by includ-
ing the username in the hash). Having this constraint gives
a better security guarantee than pure dictionary attacks
where the attacker can build a global user-independent
precomputation table and use it to recover the passwords
of multiple users upon compromise.

Weakening aPAKE? Modeling offline password guesses as
targeted to a single user is actually inherent in the single-
user setting for which the aPAKE functionality was first
defined, since there is only a single user per functional-
ity. In our multi-user setting, we do not encounter this
limitation and could formalize a weaker aPAKE model

which allows for scenarios in which the attacker computes
a global user-independent precomputation table to recover
the passwords of multiple users. However, we chose not to
model this because we believe that this is not a desirable
security property. Modeling this property would also not
be as straightforward, as it would additionally require
handling additional leakage in the functionality (i.e. if two
users share the same password this would be leaked to
an adversary, because their password verifier would be
equal).

4.3. Level 2: Passively-Revealed Salt

The level 2 security for aPAKE is inspired by our ob-
servation that existing UC-secure aPAKE protocols such
as KHAPE [17], AuCPace [18], or SRP-6a [11], use
salting, i.e. they create a user-specific salt value in the hash
computation to thwart precomputation attacks. The user’s
password file thus constains a high-entropy salt s, but in
contrast to strong aPAKE, this salt s does not remain hid-
den but is sent in clear to any user trying to authenticate as
uid. Any eavesdropping attacker can therefore learn s and
compute the precomputation table using f(S, uid, pwi, s).
Sending the salt in these protocols, however, is needed,
because in order to execute the protocol the client needs
to be able to reconstruct the salted hash. In the single-
user setting, this extra salt may not seem to provide a
significant security boost, as an attacker can learn the
user’s salt with a single login query and subsequently use
it to build a precomputation table for that user.

However, when transitioning to the multi-user setting,
where a single server may serve millions of users, the
dynamics change. In order for an attacker to have the
same precomputation attack capabilities as in level 1, he
needs to intercept or start login sessions for all million
users.

For level 2 security, we therefore require that the
attacker can build a precomputation table for user uid
only after eavesdropping on a session between uid and
the server or by starting a session with the honest server
where the attacker pretends to be uid.

In our security model, we do not assume authenticated
channels between parties as this would defeat the purpose
of a password-based authentication protocol. In the UC
framework, this is modeled by an attacker who controls
all messages sent between the parties. The attacker can
therefore be seen as a global network adversary who
eavesdrops all messages. In the presence of this attacker,
we can only model the following security guarantee for
level 2: Precomputation attacks on uid are not possible
before the honest server has started a session with uid.

This essentially means that a precomputation table
can be built for any user who has started a session at
least once with the server. While this security guarantee
seems rather weak, it is the strongest security level one
can achieve for a protocol which sends the salt in clear
over an unauthenticated channel such as [11], [13], [17],
[18] (see Sec. 5.2 for a further analysis). We see level
2 therefore more as a stepping stone towards defining
level 3, which offers substantially more resistance against
precomputation attacks.

We model this in the functionality by introducing a
flag for the internal password file ⟨file,S, uid, pw⟩ which

10

is marked fresh upon instantiation. The first SvrSession
for uid will change the status of this flag to unlocked.
The functionality then logs password guesses for queries
(OfflineTestPwd, sid,S, uid, pw∗) only if the status of
⟨file,S, uid, pw⟩ is unlocked. If the server’s password file
gets stolen, the process remains unchanged compared to
the aPAKE functionality: If there has been a correct offline
password guess logged, the attacker learns the password
immediately. The changes to the ideal functionality are
given in Fig. 3.

4.4. Level 3: Actively-Revealed Salt

Level 2 offers only weak protection against a global
network adversary. Therefore, we want to strengthen our
model and protect the salt against eavesdropping adver-
saries. In level 3 protocols, only the user who wishes
to authenticate uid will learn the salt s for user uid,
essentially meaning that the salt is not transmitted in clear
and protected from eavesdroppers. However, an active
attacker who authenticates as uid still learns s and can
run precomputation attacks using f(S, uid, pwi, s).

For level 3 security, we therefore require that in order
to run a precomputation attack, the attacker needs to
actively engage in a session by starting a session on behalf
of uid.

Starting a session on behalf of uid is still an easy task
for an adversary, especially since, due to the password-
only setting, no authentication happens prior to starting a
session. Hence, anyone in the system can start a session
on behalf of uid. However, in the multi-user setting with
millions of users, the attacker would need to start a session
for all millions of users in order to perform precomputa-
tion attacks (on all users). While this is still considerably
easier than compromising a user’s file on the server, as
required by strong aPAKE, it can deter some attackers or,
at the very least, make their attacks more costly and easier
to detect.

To model this security level in the UC function-
ality, we again assume that the internal password file
⟨file,S, uid, pw⟩ has by default a status fresh. We now
change the condition when the file becomes unlocked.
Therefore, we first have to change the CltSession interface
to be accessible by either the client or the adversary.
This allows us to express whether an honest client runs
a session, or an adversary pretending to be the client.
In case the adversary starts a CltSession, and there is a
corresponding SvrSession initiated by the honest server,
the file is marked unlocked. The OfflineTestPwd password
guesses are only logged if the password file is marked
unlocked. The changes to the ideal functionality are given
in Fig. 4

4.5. Level 4: Private Salt (saPAKE)

Interestingly, the strong aPAKE security guarantee can
also be expressed in the salting framework. In an saPAKE
protocol, the password file contains a salt s, where s is
never transmitted in the protocol. It is only available upon
compromising the password file. Therefore no precompu-
tation attack on uid should be possible before the password
file of uid is compromised. This level corresponds to the

strong aPAKE security level which we already discussed
in Sec. 2 with the functionality given in Fig. 1.

5. Categorizing Existing aPAKE Protocols

In this section, we categorize the existing aPAKE
solutions into the different security levels. We only con-
sider aPAKE protocols that have been proven secure in
the UC framework. Table 1 gives an overview of the
security levels achieved. We first argue how protocols
which are instantiated in the single-user setting can be
translated to our multi-user setting, before we inspect why
the protocols are categorized as they are. For the analyzed
level 4 protocols, their categorization follows directly from
security in the saPAKE framework, and we do not include
them in our discussion.

Multi-User Security. Most of the protocols we analyzed
have been proven in the single-user UC framework. To
adapt these protocols to our multi-user scenario, we out-
line the process of combining multiple single-user aPAKE
protocols to achieve a secure multi-user aPAKE.

To create a secure multi-user protocol π, we combine
independent copies of the single-user aPAKE protocols
where the session identifier of the individual copies are
(S, uid). Since the combination of (S, uid) yields a unique
identifier for the single-user session, the security of this
approach follows from the universal composability the-
orem [7], [8], [9]. Importantly, for the composability
theorem to hold, this requires all protocol instances to
be independent of each other. In the aPAKE context, this
especially refers to the password files stored by the server.
Looking at the password files used in aPAKE protocols,
they include things such as salts, hashes, (O)PRF keys,
AKE keys or encryption keys. We have to assume that
all of these values which are created by the server in
different copies of the protocol are independent of each
other. Furthermore, it is important to note that the session
identifiers of the individual copies are (S, uid), which
means that all queries to hash functions stemming from
this copy need to be prefixed by (S, uid), thus including
the user identifier in the hash functions.

5.1. Level 1 Protocols

Since level 1 corresponds to the classic aPAKE secu-
rity definition, it is no surprise that most of the existing
UC-secure aPAKEs fall into this category [15], [22], [24],
[27], [31].

Construction. The common theme to all of the level 1
protocols is that the password file includes a hash of the
password together with the client-server specific values
(S, uid). As an example, in KC-SPAKE2+ [31] the pass-
word file is constructed as

file[uid] := (H0(S, uid, pw), g
H1(S,uid,pw))

Precomputation Attacks. In all of the protocols, precom-
putation attacks on user uid are possible as soon as uid
is registered with the server since we assume that the
attacker knows the values S and uid. The precomputation
attack itself is straightforward, the attacker just computes

11

Salt Level 2
Stealing Password Data
– On (OfflineTestPwd, sid,S, uid, pw∗) from A, do:

– If ∃ record ⟨file,S, uid, pw⟩ marked stolen, do the following: If pw∗ = pw return “correct guess” to A, else
return “wrong guess”.

– Else, if ∃ record ⟨file,S, uid, pw⟩ marked unlocked, record ⟨offline,S, uid, pw∗⟩.
Password Authentication
– On (SvrSession, sid, ssid,C, uid) from S, if there is no record ⟨ssid,S, . . . ⟩ then retrieve record ⟨file,S, uid, pw⟩,

and if it exists then create record ⟨ssid,S,C, uid, pw, sr⟩ marked fresh and send (SvrSession, sid, ssid,S,C, uid)
to A. Additionally, if rec. ⟨file,S, uid, pw⟩ is marked fresh, mark it unlocked.

Figure 3: The changes in the ideal functionality FaPAKE for level 2 (changes relative to level 1).

Salt Level 3
Stealing Password Data
– On (OfflineTestPwd, sid,S, uid, pw∗) from A, do:

– Else, if ∃ record ⟨file,S, uid, pw⟩ marked stolen, do the following: If pw∗ = pw return “correct guess” to A,
else return “wrong guess”.

– Else, if ∃ record ⟨file,S, uid, pw⟩ marked unlocked, record ⟨offline,S, uid, pw∗⟩.
Password Authentication

– On (CltSession, sid, ssid,S, uid, pw′) from P ∈ {C,A}, if there is no record ⟨ssid,C, . . . ⟩ then record
⟨ssid,C,S, uid, pw′, cl⟩ marked fresh and send (CltSession, sid, ssid,C,S, uid) to A. If P = A, ∃ record
⟨ssid,S,C, uid, pw, sr⟩ and if ∃ rec. ⟨file,S, uid, pw⟩ marked fresh, mark it unlocked.

– On (SvrSession, sid, ssid,C, uid) from S, if there is no record ⟨ssid,S, . . . ⟩ then retrieve record ⟨file,S, uid, pw⟩,
and if it exists then create record ⟨ssid,S,C, uid, pw, sr⟩ marked fresh and send (SvrSession, sid, ssid,S,C, uid)
to A. If ∃ record ⟨ssid,C,S, uid, pw, cl⟩ with C = A and if rec. ⟨file,S, uid, pw⟩ is marked fresh, mark it
unlocked.

Figure 4: The changes in the ideal functionality FaPAKE for level 3 (changes relative to level 2).

H0(S, uid, pw
∗) for password guesses pw∗. Upon compro-

mising the server, the attacker can compare the password
file with his list of hashed passwords and recover the
password immediately. These protocols offer therefore no
resistance against precomputation attacks.

5.2. Level 2 Protocols

Four of the UC-secure protocols we analyzed fall
into the level 2 category which allows precomputation
attacks for user uid only after there was a session be-
tween an honest server and someone claiming to be uid.
Three of these protocols, SRP-6a [11], OKAPE [13] and
AuCPace[18], use the salted hash approach in the creation
of their password files. That is, upon registration, a random
high-entropy salt s is chosen, and stored in the password
file together with values derived from the salted hash
H(s, pw) of the password. In these protocols, the salt is
sent to the client during a login session, such that the
client can recompute the salted hash.

OKAPE-HMQV. We sketch the OKAPE-HMQV protocol
as a representative of these protocols. The precomputation
attack in the other protocols is similar. OKAPE uses AKE
as building block where the client derives her AKE long-
term key deterministically from the password, and receives
the server’s (client-specific) long term key encrypted under
a salted password hash.

During registration, the server picks a random salt s r←−
{0, 1}λ, and creates an AKE long-term key-pair (a, ga)
and an encryption key h from H(pw, s), i.e. (h, a) :=
H(pw, s). The password file then consists of

file[uid] = (ga, h, s)

In the login session, the server creates a client-specific
AKE long-term key-pair (b, B) and sends the public key
B encrypted under h to C, along with the salt s, i.e. the
client receives (Enc(h,B), s). It is important that the salt s
is sent to the client, because the client uses s to recompute
(h, a) := H(s, pw). She then computes an ephemeral
key pair (x,X), and derives the AKE key using her own
private keys a, x and the server’s public key B. She sends
X to the server along with a key confirmation message.
The server also derives the AKE key using its private key
b and the client’s public keys A,X . If the key confirmation
message verifies, both parties will output the session key.
Precomputation Attacks. In OKAPE, an attacker is able
to build a precomputation table upon seeing the salt s,
which is part of the first message sent from the server
to the client. This salt is available to an attacker who
eavesdrops in an honest session or engages with S on
behalf of uid. After learning the salt s, the attacker can
compute (h∗, a∗) ← H(s, pw∗) for password guess pw∗

and store h∗. Upon compromise, the attacker can see
immediately whether the h value from the password file
file[uid] = (ga, h, s) matches one of the stored values h∗,
in which case he learns the password.
KHAPE. The fourth UC-secure level 3 protocol is
KHAPE [17] which uses the encrypted envelope structure
for the password file (similar to OPAQUE). In KHAPE,
the server registers a client by creating two AKE key-
pairs, one for the server (b, B) and one for the client
(a,A). The server then encrypts (a,B) under the user’s
password, i.e. e := Enc(pw, (a,B)), and stores this en-
cryption together with his private key b and the client’s
public key A in the password file:

file[uid] = (e, b, A)

12

Table 1: Overview of the security guarantees achieved by existing UC-secure aPAKEs. We list the parts of the password file which
are precomputable and which values are a prerequisite for the attacker in order to perform a precomputation attack. For a better
comparison, in protocols with ∗ we have translated the sid from the single-user setting to its corresponding equivalent (S, uid) in the
multi-user setting.

Scheme file[uid] = Precomputable Prerequisite Salt Level

Sigma-Method∗ [15]
(
H(S, uid, pw), pk, c := Enc(pw, sk)

)
H(S, uid, pw) S, uid (public) 1

Hwang et al.∗ [22]
(
H1(S, uid, pw), gH0(S,uid,pw)

)
H1(S, uid, pw) S, uid (public) 1

KC-SPAKE2+ [31]
(
H0(S, uid, pw), gH1(S,uid,pw)

)
H0(pw,S, uid) S, uid (public) 1

2DH-aEKE [27]
(
h, gv1 , gv2

)
with (h, v1, v2) ←

H(S, uid, pw)

H(S, uid, pw) S, uid (public) 1

Jutla-Roy [24]
(
gH(S,uid,pw)

)
gH(S,uid,pw) S, uid (public) 1

SRP-6a [11] (s, gH(s,uid,pw)) H(s, uid, pw) uid (public) and s (passively-revealed) 2

OKAPE-HMQV∗ [13]
(
ga, h, s

)
with s

r←− {0, 1}λ and
(h, a)← H(pw, s)

H(pw, s) s (passively-revealed) 2

KHAPE-HMQV∗ [17]
(
e, (b, A)

)
with AKE key-pairs (a,A),

(b, B) and e := Enc(pw, (a,B))

Dec(pw, e) e (passively-revealed) 2

AuCPace [18]
(
s, gH(pw,uid,s)

)
gH(pw,uid,s) uid (public) and s (passively-revealed) 2

CKEM-saPAKE∗ [5]
(
s, fs(H(S, uid, pw)

)
where fs is a salted

tight one-way function
– – 4

OPAQUE-HMQV [23]
(
kO, skS, pkS, pkC, c

)
with c :=

AuthEnc(F (kO, pw), (skC, pkC, pkS))

– – 4

MX-Compilers∗ [28]
(
gs, (gs)H(S,uid,pw)

)
– – 4

In a login session, the first message from the server to the
client consists of the ciphertext e. The client decrypts e
using her password, and both parties run the AKE with
long-term keys (a,A) and (b, B).

Precomputation Attacks. In KHAPE, the client can run
precomputation attacks for uid after seeing the ciphertext
e of uid. To run a dictionary attack, the attacker decrypts
the envelope e with password guess pw∗ and obtains
some message (x, Y) := Dec(pw, e). Note that unlike
OPAQUE, KHAPE does not use authenticated encryption,
and the AKE possesses a key-hiding property which en-
sures that the validity of guesses can only be checked
upon compromising the server for uid. Compromising the
server, the attacker will learn (e, b, A). Since (b, A) are
the public-private counterparts of the values encrypted in
e, the attacker can verify whether one of the decrypted
ciphertexts are the counterparts of values (b, A).

Adjusting the security proofs for level 2 protocols. The
security of these protocols has only been shown using
the regular FaPAKE functionality which achieves level 1.
We therefore need to argue why these protocols actually
achieve level 2. Thus, we sketch how the proofs need to
be adjusted to show security as a level 2 protocol.

The only change in the functionalities between level 1
and level 2 protocols is that password guesses to
OfflineTestPwd are not logged by the functionality unless
the password file of the user is marked unlocked, and a file
becomes unlocked with the first query to SvrSession from
the honest server. In order to show that these protocols
achieve level 2, we therefore need to show that the attacker
cannot make a precomputation attack before unlocking the
file. We thus need to show that in the proof, the simulator
does not query OfflineTestPwd before a session with the
honest server has been started.

We first take a look at the protocols which use the
salted password file approach (SRP-6a,OKAPE and AuC-

Pace). The proof for all of these protocols is in the random
oracle model, and the handling of offline password guesses
is identical . In order to simulate the handling of password
files, the simulator creates a random salt s

r←− {0, 1}λ
for user uid. One of the challenges of the simulator is
that he has to detect an offline password guess from the
attacker, and extract the tested password. In the random
oracle model, this is an easy task for the simulator as he
can control the in- and outputs of all queries to the random
oracle H . Since password guesses for uid must contain
the user-specific salt s, the simulator can detect that any
query to the random oracle consisting of (s, uid, pw)
corresponds to an offline password guess by the attacker.
After extracting the password, the simulator can pass it to
the functionality using the OfflineTestPwd interface.

Crucially, in order to show that the proofs achieve level
2 security, we need to show that the probability that an
attacker queries (s, uid, ·) before the first session for uid
with an honest server is established, is negligible. The
proofs consist of a series of game hops and we can show
level 2 security by including the following game hop at
any point throughout the security proofs:

Additional Game Hop for Level 2: If there is a query
to the random oracle H of the form (s, uid, ·) where
s is identical to the salt value chosen for uid, before
the first call to (SvrSession, ssid,C, uid) by S, abort.

For the indistinguishability of the game hop, we need
to show that the probability of an abort is negligible. Since
the salt is a random value from {0, 1}λ, independent from
all other salts in the system, and the simulator only keeps
this value internally if there is no query to SvrSession or
StealPwdFile, the probability that the adversary queries
the random oracle on (s, uid,⊥) is bounded by q/2λ,
where q is the number of queries to H and λ is the
security parameter of the system. Since q/2λ is negli-
gible, the probability of an abort is negligible. In case

13

there is no abort, we have not changed anything in the
simulation, but we are sure that the attacker never issues
an OfflineTestPwd query before the first honest server
session. The rest of the proof remains the same, yielding
level 2 security.

In the case of KHAPE, a similar argument holds, only
that the attacker’s password guesses are now extracted
from queries to the ideal cipher decryption oracle. The
attacker learns the user’s envelope e only after a session
is started. Before there is a session with an honest server,
e is only kept internally, random and independent from all
other values due to the ideal cipher model. The attacker
can therefore query the ideal cipher on e before a session
starts only with negligible probability. Formally, we can
introduce a game hop where the simulation aborts if
e is queried to the ideal cipher oracle before the first
SvrSession with the honest server has been started. Oth-
erwise, the proof again proceeds as before, and level 2
security of KHAPE follows.

Compiler Level 1 → Level 2. Level 2 security can also be
achieved by lifting a level 1 protocol to level 2. To do so,
one can use the following approach suggested by [13]:

Let π be a level 1 aPAKE protocol. In the modified
protocol π′, the server registers the user by picking a
random salt s r←− {0, 1}λ and running the registration of π
with modified password pw′ = pw|s. In the login phase,
the server then sends s to C as the first message, and both
parties can run the level 1 aPAKE protocol π on modified
password pw′ = pw|s. Since s is not leaked before the
first session between uid and S, this yields level 2 security.

5.3. Level 3 Protocols

None of the aPAKE protocols we analyzed are level 3
protocols because they either use no salt or send the salt in
clear. However, we argue that any level 2 protocol can be
transformed to a level 3 protocol in a generic and simple
way by encrypting the salt. One way to encrypt the salt
is by assuming confidential channels, e.g. through a TLS
connection. Then the salt would be protected from eaves-
droppers. However, we do not want to rely on a confiden-
tial channel outside of the aPAKE protocol as this leaves
a gap for security issues in the coordination of aPAKE
and the implementation of the confidential channel. In
fact, there are protocols which combine TLS with aPAKE
protocols such as TLS-SRP [32] and TLS-OPAQUE [21].
While OPAQUE is already a strong aPAKE and does not
need confidential channels to protect its salt, one would
hope that TLS-SRP raises the security of SRP to level 3
through the TLS channel. However, this is not the case,
as the aPAKE messages are transmitted before the TLS
handshake, eventually leaking the salt to eavesdroppers.

Compiler Level 2 → Level 3. In light of this, we want to
design a protocol which includes the encryption as part of
the aPAKE protocol. Let π be a level 2 aPAKE protocol.
We assume that the client sends the first message m1 in
the protocol and the server’s response m2 includes the salt
while no other protocol value leaks information about the
salt. In order to protect the salt in π from eavesdropping
adversaries, the client first generates an encryption key-
pair (sk, pk) and sends pk to the server along with m1.
The server then sends c := Enc(pk,m2) to the client. The

rest of the protocol remains the same. This way, only the
client can decrypt the server’s message m2 containing the
salt, and the salt is protected from eavesdroppers. This
yields level 3 security.

The attacker can still get the salt of user uid by
pretending to be uid towards the server. In this case, the
attacker will create a key-pair herself and send the public
key to the server, where the salt value will be encrypted
under the attacker’s public key.

Lower Risk of Shared Seeds in Level 2 and 3? The
multi-user variant of Draft-OPAQUE lost crucial security
guarantees, because it relies on a single-seed to derive the
OPRF keys (which can be seen as salt) for multiple clients.
When discussing the multi-user aPAKE variants in this
section, we assumed that they are securely composed from
their single-user protocols. Interestingly though, the level
2 and 3 protocols seem less vulnerable if a seed re-use
for the salt is done analogously to Draft-OPAQUE. Also
here, application developers could be tempted to derive
the users salt deterministically as s := PRF (sseed, uid)
relying on a long-term key sseed that needs to be acces-
sible at every login. Even if sseed is leaked as part of
a user file for uid, the only consequence is that it will
allow precomputation attacks against all users, essentially
downgrading to level 1 security. It particularly does not
allow offline attacks on uid′ as in (ss)OPAQUE. The
reason is that the leaked seed would only allow to re-
compute s := PRF (sseed, uid

′) for uid′, which is what
the adversary can learn from a single benign login-query
with the honest server anyway. Thus, the impact of such a
single-seed is much less severe than in a level 4 protocol
that crucially relies on the secrecy of the user-specific
salts.

6. Conclusion

In our work, we revisited the security definitions for
both standard aPAKE and strong aPAKE within a multi-
user setting. Concerning strong aPAKE, our investigation
revealed that the currently standardized draft version of
OPAQUE may result in insecure implementations in the
multi-user context due to a shared state.

Regarding standard aPAKE, we observed that the con-
cept of salting was not accurately represented in the orig-
inal aPAKE security definition. Our examination showed
that real-world protocols employing salting methods ex-
hibit better resistance against precomputation attacks com-
pared to the requirements outlined in the security defini-
tion. To address this, we refined the security definitions
of aPAKE to properly capture the security assurances
provided by different salting approaches. Additionally,
we classified existing schemes within our framework.
Ultimately, we presented a straightforward method to
transform a regular aPAKE protocol into an aPAKE which
achieves better security guarantees.

References

[1] 2012 Linkedin Breach had 117 Million Emails
and Passwords Stolen, Not 6.5M. https://www.
trendmicro.com/vinfo/us/security/news/cyber-attacks/
2012-linkedin-breach-117-million-emails-and-passwords-stolen-not-6-5m,
May 2016.

14

[2] Apple. HomeKit communication security. https://support.apple.
com/guide/security/communication-security-sec3a881ccb1/web,
May 2022.

[3] Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the
economics of offline password cracking. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 853–871. IEEE, 2018.

[4] Daniel Bourdrez, Dr. Hugo Krawczyk, Kevin Lewi, and Christo-
pher A. Wood. The OPAQUE Asymmetric PAKE Protocol.
Internet-Draft draft-irtf-cfrg-opaque-12, Internet Engineering Task
Force, October 2023. Work in Progress.

[5] Tatiana Bradley, Stanislaw Jarecki, and Jiayu Xu. Strong asymmet-
ric pake based on trapdoor CKEM. In Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part
III 39, pages 798–825. Springer, 2019.

[6] Bart Butler. Improved authentication for email encryp-
tion and security. https://protonmail.com/blog/encrypted email
authentication/, Aug 2021.

[7] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pages 136–145. IEEE, 2001.

[8] Ran Canetti and Hugo Krawczyk. Universally composable notions
of key exchange and secure channels. In Advances in Cryptol-
ogy—EUROCRYPT 2002: International Conference on the Theory
and Applications of Cryptographic Techniques Amsterdam, The
Netherlands, April 28–May 2, 2002 Proceedings 21, pages 337–
351. Springer, 2002.

[9] Ran Canetti and Tal Rabin. Universal composition with joint state.
In Advances in Cryptology-CRYPTO 2003: 23rd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003. Proceedings 23, pages 265–281. Springer,
2003.

[10] Gareth T Davies, Sebastian Faller, Kai Gellert, Tobias Handirk,
Julia Hesse, Máté Horváth, and Tibor Jager. Security analysis of
the Whatsapp end-to-end encrypted backup protocol. In Annual
International Cryptology Conference, pages 330–361. Springer,
2023.

[11] Dennis Dayanikli and Anja Lehmann. Provable security analysis of
the secure remote password protocol. Cryptology ePrint Archive,
2023.

[12] Bojana Dobran. 1.6 million PayPal customer details
stolen in Major Data Breach. https://phoenixnap.com/blog/
paypal-customer-details-stolen, Jan 2022.

[13] Bruno Freitas Dos Santos, Yanqi Gu, Stanislaw Jarecki, and Hugo
Krawczyk. Asymmetric PAKE with low computation and com-
munication. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 127–156.
Springer, 2022.

[14] Rick Fillion. Developers: How we use SRP, and
you can too: 1Password. https://blog.1password.com/
developers-how-we-use-srp-and-you-can-too/, Feb 2018.

[15] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method
for making password-based key exchange resilient to server com-
promise. In Annual International Cryptology Conference, pages
142–159. Springer, 2006.

[16] Jonathan Greig. Nvidia says employee credentials, proprietary
information stolen during cyberattack, Mar 2022.

[17] Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. KHAPE:
asymmetric pake from key-hiding key exchange. In Advances in
Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part IV 41, pages 701–730. Springer, 2021.

[18] Björn Haase and Benoı̂t Labrique. Aucpace: Efficient verifier-based
pake protocol tailored for the iiot. Cryptology ePrint Archive, 2018.

[19] Feng Hao and Paul C van Oorschot. Sok: Password-authenticated
key exchange–theory, practice, standardization and real-world
lessons. In Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, pages 697–711, 2022.

[20] Julia Hesse. Separating symmetric and asymmetric password-
authenticated key exchange. In International Conference on Se-
curity and Cryptography for Networks, pages 579–599. Springer,
2020.

[21] Julia Hesse, Stanislaw Jarecki, Hugo Krawczyk, and Christo-
pher Wood. Password-authenticated TLS via OPAQUE and post-
handshake authentication. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages
98–127. Springer, 2023.

[22] Jung Yeon Hwang, Stanislaw Jarecki, Taekyoung Kwon, Joohee
Lee, Ji Sun Shin, and Jiayu Xu. Round-reduced modular con-
struction of asymmetric password-authenticated key exchange. In
Security and Cryptography for Networks: 11th International Con-
ference, SCN 2018, Amalfi, Italy, September 5–7, 2018, Proceed-
ings 11, pages 485–504. Springer, 2018.

[23] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE:
an asymmetric pake protocol secure against pre-computation at-
tacks. In Advances in Cryptology–EUROCRYPT 2018: 37th An-
nual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018
Proceedings, Part III 37, pages 456–486. Springer, 2018.

[24] Charanjit S Jutla and Arnab Roy. Smooth NIZK arguments.
In Theory of Cryptography: 16th International Conference, TCC
2018, Panaji, India, November 11–14, 2018, Proceedings, Part I
16, pages 235–262. Springer, 2018.

[25] Hugo Krawczyk. HMQV: A high-performance secure diffie-
hellman protocol. In Annual international cryptology conference,
pages 546–566. Springer, 2005.

[26] Kevin Lewi. Re: [cfrg] [crypto-panel] request for review:
OPAQUE, September 19 2023. Message to the CFRG mailing
list.

[27] Xiangyu Liu, Shengli Liu, Shuai Han, and Dawu Gu. EKE meets
tight security in the universally composable framework. In IACR
International Conference on Public-Key Cryptography, pages 685–
713. Springer, 2023.

[28] Ian McQuoid and Jiayu Xu. An efficient strong asymmetric
PAKE compiler instantiable from group actions. Cryptology ePrint
Archive, 2023.

[29] Abhijit Menon-Sen, Alexey Melnikov, Nicolás Williams, and Chris
Newman. Salted Challenge Response Authentication Mechanism
(SCRAM) SASL and GSS-API Mechanisms. RFC 5802, July
2010.

[30] Joern-Marc Schmidt. Requirements for Password-Authenticated
Key Agreement (PAKE) Schemes. RFC 8125, April 2017.

[31] Victor Shoup. Security analysis of SPAKE2+. In Theory of
Cryptography Conference, pages 31–60. Springer, 2020.

[32] David Taylor, Trevor Perrin, Thomas Wu, and Nikos Mavro-
giannopoulos. Using the secure remote password (SRP) protocol
for TLS authentication. RFC 5054, November 2007.

[33] Telegram. Two-factor authentication. https://core.telegram.org/api/
srp, April 2023.

[34] Karim Toubba. Notice of Recent Security Incident. https://
blog.lastpass.com/2022/12/notice-of-recent-security-incident/, Dec
2022.

[35] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo
Krawczyk. On the cryptographic deniability of the Signal protocol.
In Applied Cryptography and Network Security: 18th International
Conference, ACNS 2020, Rome, Italy, October 19–22, 2020, Pro-
ceedings, Part II 18, pages 188–209. Springer, 2020.

[36] Martyn Williams. Inside the Russian hack of Yahoo:
How they did it. https://www.csoonline.com/article/3180762/
inside-the-russian-hack-of-yahoo-how-they-did-it.html, Oct 2017.

[37] T. Wu. SRP-6: Improvements and refinements to the secure remote
password protocol. http://srp. stanford. edu/srp6.ps, 2002.

[38] Andy Yen. Proton pass is now in beta. https://proton.me/blog/
proton-pass-beta, April 2023.

15

. Setup (over secure channel) .

Client C Server

(skC, pkC)
r←− KGenlt(1

λ) pkC (skS, pkS)
r←− KGenlt(1

λ)

pkS

. AKE Phase .

ClientC[skC, pkS] Server [skS, pkC]

(xC, XC)
r←− KGeneph(1

λ) XC (xS, XS)
r←− KGeneph(1

λ)S

kC ← KE(skS, xS, pkC, XC)

kS ← KE(skC, xC, pkS, XS)
XS, t1 t1 := F (KS , 1),Ksess := F (KS , 0)

if F (KC , 1) ̸= t1 abort, else

t2 := F (KC , 2),Ksess := F (KC , 0) t2 if F (KS , 2) = t2

output Ksess output Ksess

Figure 5: The 3-flow AKE protocol used in our description of ssOPAQUE.

A. Draft-OPAQUE

In this section, we present the attack on Draft-
OPAQUE [4]. The Draft-OPAQUE protocol is given in
Fig. 6 and 7. We highlight the most notable changes
between Draft-OPAQUE and OPAQUE [23]

• While all the keys established during registration in
OPAQUE are client-specific, Draft-OPAQUE allows
the server to re-use keys: He can use the same
AKE key-pair (skS, pkS) for multiple clients and
he can derive the per-client OPRF keys from an
OPRF seed shared for multiple clients. In fact, the
draft states that “the OPRF seed value SHOULD be
used for all clients”. In our description, we model
this with a setup phase, where the server initializes
the AKE key-pair and the OPRF seed. The values
(skS, pkS, seedoprf) then become part of the state of
the server which will be an additional input when
registering a client.

• The registration phase in Draft-OPAQUE is inter-
active. OPAQUE considers a non-interactive regis-
tration phase where the server learns the client’s
password and performs all registration steps by
himself. This is a standard approach in most UC
aPAKE papers [15], [23]. In a real-world application
however, an interactive registration phase where the
server never learns the password, is preferred. Hesse
et al. [21] recently considered the integration of
OPAQUE into TLS where they model the registration
in an interactive way, albeit not for the FsaPAKE

functionality but to the related FPHA functionality.
• The protocol outputs an export key for the client

in addition to the session key. The export key can
be used for application-specific purposes. This key
is independent of all other protocol values and has
no influence on the security analysis as it can be
simulated with a random output.

• The Draft-OPAQUE protocol uses transportable keys

as described in [21]. Transportable keys means that
the envelope does not contain the encrypted client
key-pair, but contains information which can be used
to derive the AKE key by the client. More formally,
the envelope contains an envelope nonce nE , from
which together with the OPRF-output rw the client-
key pair can be derived deterministically.

• In Draft-OPAQUE, envelopes are masked with a per-
client masking key kmask derived from rw. The main
motivation behind this is to prevent against client-
enumeration attacks, where an attacker tries to learn
whether a certain client is registered with the server.
Draft-OPAQUE recommends storing a fake creden-
tial on the server which is accessible in similar time
as a real credential. Draft-OPAQUE derives a One-
Time-Pad key from the masking key and a masking
nonce and encrypts the envelope with this key. The
server sends the masking nonce to the client who
can reconstruct the OTP key if he inputs the correct
password and learns rw. Otherwise, the response of
the server is indistinguishable and the attacker does
not learn whether the client is registered.

• In Draft-OPAQUE, the parties exchange nonces
nC, nS and bind all protocol values to these nonces,
mainly to prevent replay attacks. In OPAQUE, se-
curity against replay attacks is covered by binding
protocol values to the unique session identifiers ssid
which are necessary in the UC framework [7].

A more exhaustive list of changes can be found in the
draft version itself [4].

B. Attacking Draft-OPAQUE

We now give a concrete attack on Draft-OPAQUE
following our attack approach to ssOPAQUE. We again
consider two honest users uid and uid′ who have reg-
istered with the server, i.e. the server has executed
StorePwdFile(uid, pw) and StorePwdFile(uid′, pw′) and

16

the attacker does not know passwords pw and pw′. The
attack then proceeds as follows:
Compromise password file of uid: The attacker A is-

sues StealPwdFile(S, uid) to learn the password file
of uid:

file[uid] = (pkC, kmask, tauth, nE , skS, pkS, seedoprf)

Compute OPRF key of uid′: Use the stolen seedoprf to
compute the OPRF key of uid′:

kO := OPRF.KGen(1λ;H0(seedoprf∥uid′))

Retrieve envelope of uid′: The attacker now engages in
a session with the server trying to impersonate uid′.
He therefore chooses a random pw, and creates the
first protocol message, i.e. he blinds the password to
pw, chooses a nonce nC and an ephemeral key-pair
(xC, XC) as outlined in the protocol. The attacker
sends uid, pw, nC, XC to the server and receives the
server’s response ((rw, nM , resmask), (nS, XS, tS)).

Offline Password Guess on uid′: This is all the infor-
mation the attacker needs in order to perform offline
guesses on the password: For a password guess pw∗,
the attacker computes rw∗ := OPRF.Eval(kO, pw),
and computes the subsequent steps of the client
in the protocol using rw∗. Crucially, if the check
Vf(k2, H(pa), tS) = 1 verifies, the attacker learns
whether the password is correct, otherwise it is in-
correct. Since the attacker never compromised the
password file of uid′, this is a contradiction to the
strong aPAKE security guarantees.

C. OPAQUE with Shared AKE Keys

We have seen that sharing the seedoprf in OPAQUE
is insecure. In this section, we show that for the 3DH
instantiation of OPAQUE, sharing the server’s AKE key
for multiple users remains secure. Therefore, we consider
the OPAQUE protocol instantiated with 3DH, where the
server uses the same AKE key-pair (skS, pkS) for all
users. The protocol is given in Fig. 8 and a UC-compliant
description is given in Fig. 9.

Weakened Functionality. The OPAQUE protocol has ac-
tually only been shown to realize a weaker functionality
F−

saPAKE [23], whose multi-user adoption we describe in
Fig. 10. Our proof also uses this functionality, and we
briefly outline the two main relaxations:
Allowing Compromise of all Open Server Sessions:

F−
saPAKE does not guarantee the security of sessions

in which the attacker actively interferes and which
are not completed when the attacker learns the
password. This is modeled by introducing a flag
flag[sid, uid] which is marked uncompromised upon
initialization, and which is set to compromised, if
the password of uid is guessed correctly, either in
an online (modeled by TestPwd interface) or offline
way (modeled by StealPwdFile and OfflineTestPwd
interface). If this is the case, then the attacker can
determine the session key of all open sessions of the
server with uid in which the attacker interfered, i.e.
all sessions marked compromised or interrupted.

Delayed Extraction for Server Session: The second re-
laxation allows for late password tests, meaning the

adversary’s password guess can occur even after the
session completes, i.e. after a NewKey query. In this
scenario, the attacker learns whether the password
guess is correct, but cannot influence the session key.
This is modeled in F−

saPAKE by adding a new query
Interrupt, which models an active attack against an S
session in which the adversary does not immediately
provide password guess pw∗. A session (S, ssid)
subject to this attack is flagged with dPT(ssid) := 1,
which allows the adversary to make a delayed pass-
word test on this session.

On Not Proving a Generic Compiler from Multi-User
AKE. The OPAQUE protocol is a generic compiler from
any AKE with the KCI property to a strong aPAKE.
OPAQUE therefore uses an AKE subprotocol in a black
box way and is secure if the underlying AKE realizes
some functionality FAKE−KCI. Since the original OPAQUE
protocol was in the single-user setting, also the func-
tionality FAKE−KCI is a single-user AKE functionality
which is only accessed by one client C and one server
S. When translating to the multi-user setting where the
AKE building block has a shared state among multiple
instantiations between different users, we would therefore
need to develop a multi-user functionality for the AKE
building block, show that the existing AKE protocols
achieve this notion, and adjust the OPAQUE proof to work
with the multi-user AKE functionality.

Instead, we opted for a more direct approach, and
show security of the shared AKE-key OPAQUE when
instantiated with the concrete 3DH protocol as AKE. The
3DH protocol is also one of the AKE protocol recom-
mended in the IRTF draft. Our proof also has the benefit
of giving a less abstract security proof for the OPAQUE
protocol.

Building Blocks: 3DH and FOPRF. In our protocol, we
instantiate the AKE protocol with 3DH which works in a
group G of prime oder q with generator g and uses the
following algorithms:
KGenlt(1

λ): Pick sk
r←− Zq, set pk := gsk. Output

(sk, pk)
KGeneph(1

λ): Pick x
r←− Zq, set X := gx. Output (x,X).

KE(skP , pkP ′ , xP , XP ′): If P = C compute k :=
H(XP , XP ′ , (pkP ′)xP , (XP ′)skP , (XP ′)xP), else
k := H(XP ′ , XP , (XP ′)skP , (pkP ′)xP , (XP ′)xP).

Our proof is further conducted in the FOPRF-hybrid world,
which means that parties have access to an ideal func-
tionality FOPRF which instantiates the OPRF protocol.
We take the FOPRF functionality from [23] which uses a
ticketing system to keep track of executions of the OPRF
and only allows as many online evaluations for a client as
there are sessions started by the server. The functionality
further uses prefixes which allows to determine which
sessions are actively interfered (if their prefixes do not
match), and which are executed honestly.

Authenticated Encryption Properties. We recall the two
security properties of the authenticated encryption scheme
– random-key robustness and encryption equivocability–
which were introduced in [23] to prove security of
OPAQUE.
Random-key Robustness [23]: An authenticated

encryption scheme Π = (KGen,AuthEnc,AuthDec)

17

Building Blocks and Parameters

– Security parameter λ,Hash functionsH0 : {0, 1}∗ → {0, 1}λ, H1 : {0, 1}∗ → {0, 1}λ

– OPRF (KGen,Blind,BlindEval,Finalize,Eval)

– Authenticated Key Exchange (KGenlt,KGeneph,KE)

– MAC (KGen,Mac,Vf)

. .Server Setup. .

Server S

(skS, pkS)
r←− AKE.KGenlt(1

λ)

seedoprf
r←− {0, 1}λ

. Registration .

Client C[uid, pw] Server S[skS, pkS, seedoprf]

(pw, r)← OPRF.Blind(pw) uid, pw

kO := OPRF.KGen(1λ;H0(seedoprf∥uid))
rw ← OPRF.BlindEval(kO, pw)

rw, pkS

rw ← OPRF.Finalize(pw, r, rw)

nE
r←− {0, 1}λ

kmask := H1(rw)

kauth := H1(rw∥nE∥1)
kexp := H1(rw∥nE∥2)
(skC, pkC) := AKE.KGenlt(1

λ;H2(rw∥nE))

tauth := Mac(kauth, (nE∥pkS∥pkC∥S∥uid))

file′[uid] := (pkC, kmask, tauth, nE) file′[uid]

output kexp Store file[uid] := (file′[uid], skS, pkS, seedoprf)

Figure 6: Setup and Registration Phase for Draft-OPAQUE

is called random-key robust, if for all efficient
adversaries A, the probability

Pr[c← A(k1, k2) s.t. AuthDec(k1, c) ̸= ⊥
∧ AuthDec(k2, c) ̸= ⊥]

where k1
r←− KGen(1λ), k2

r←− KGen(1λ), is negligi-
ble in the security parameter λ.

Encryption Equivocability [23]: An authenticated en-
cryption scheme Π = (KGen,AuthEnc,AuthDec) is
called equivocable if for any efficient adversary A,
there is an efficient stateful simulator SIMEQV such
that the distinguishing advantage of A’s view in the
following two worlds is a negligible function of λ:
• The real world: A sends out a message m, and

computes its final output given (c, k) produced as
k

r←− KGen(1λ) and c := AuthEnc(k,m).
• The ideal world: A sends out a message m, and

computes its final output given (c, k) produced as
c← SIMEQV(|m|) and k ← SIMEQV(m).

Given these properties, we are now able to formalize
the security of the shared AKE key OPAQUE variant, and
provide the proof sketch.

Theorem 1. The Shared AKE Key OPAQUE protocol
with 3DH securely realizes functionality F−

saPAKE in
the FOPRF-hybrid model, if the Authenticated Encryp-
tion scheme is random-key robust and equivocable, if
the Gap DH assumption holds in G, and if F is a
pseudorandom function.

Proof Sketch. Since we combine the OPAQUE protocol
with the 3DH instantiation, our proof closely follows the
proof of the OPAQUE protocol with individual keys in
the single-user setting from [23], and the proof that 3DH
is a secure AKE [17]. We give a high-level description
of the simulation strategy. The detailed description of the
simulator can be found in Fig. 12 and 13.

Recall that in a UC proof, the goal is to show that any
attack that is possible in the real-world can be simulated
indistinguishably by an adversary only interacting with the
ideal functionality. The goal is thus to describe a simulator
SIM only interacting with the ideal functionality F−

saPAKE
(henceforth also referred to as just F) which mimicks
all aspects of the protocol’s execution in a way that it is
indistinguishable from the real-world execution of the pro-
tocol. Crucially, in the real-world, parties run the protocol
on private inputs (i.e. the password/password file) while in
the ideal world the simulator has to mimick the execution
without access to these inputs. The simulation itself can
be divided into three parts: (1) simulating the handling
of password files and their compromise, (2) simulating
the behaviour of an honest client and (3) simulating the
behaviour of an honest server.

Password File Storage. First, we describe how the pass-
word file is simulated. Therein, the simulator SIM picks
the server’s global 3DH key-pair skS

r←− Zq, pkS :=
gskS , and for each user uid generates a virtual OPRF
instance with sidO = (sid∥uid), instead of computing
rw = FS(pw). Recall here that we use the multi-user
setting with independent OPRF keys for each user which

18

Client C[uid, pw′] Server S[uid, file[uid]]

(pw′, r)← OPRF.Blind(pw′), nC
r←− {0, 1}λ file[uid] = (pkC, kmask, tauth, nE , skS, pkS, seedoprf)

(xC, XC)
r←− AKE.KGeneph(1

λ) uid, pw′, nC, XC

kO := OPRF.KGen(1λ;H0(seedoprf∥uid))
rw′ ← OPRF.BlindEval(kO, pw

′), nM
r←− {0, 1}λ

crpad := H3(kmask∥nM)

resmask := (pkS∥tauth∥nE)⊕ crpad

nS
r←− {0, 1}λ, (xS, XS)

r←− AKE.KGeneph(1
λ)

(k2, k3,Ksess)← KE(skS, xS, pkC, XC)

pa := (idC, (pw
′, nC, XC), S, nS, XS)

tS = Mac(k2, H(pa))

rw′ ← OPRF.Finalize(pw′, r, rw′) ((rw′, nM , resmask), (nS, XS, tS))

kmask := H1(rw
′)

crpad := H3(kmask∥nM)

(pkS∥tauth∥nE) := resmask ⊕ crpad

kauth := H1(rw
′∥nE∥1)

kexp := H1(rw
′∥nE∥2)

(skC, pkC)
r←− AKE.KGenlt(1

λ;H2(rw
′∥nE))

pa := (idC, (pw
′, nC, XC), S, nS, XS)

if Vf(kauth, (nE∥pkS∥pkC∥S∥uid), tauth) = 0,

return ⊥
else (k2, k3,Ksess)← KE(skC, xC, pkS, XS)

if Vf(k2, H(pa), tS) = 0, return ⊥
else tC := Mac(k3, H(pa∥tS))

output Ksess, kexp tC if Vf(k3, H(pa∥tS), tC) = 0, output ⊥

else output Ksess

Figure 7: Login-Phase for Draft-OPAQUE

is modeled by instantiating the OPRF functionality FOPRF

with a different sidO for each user uid. The simulator
further generates the ciphertext c using the simulator
SIMuid

EQV given by the equivocability of the authenticated
encryption scheme. If the adversary later compromises
the password file of a user uid stored at the server by
issuing a (StealPwdFile, sid, uid) query, the simulator has
to send file[sid, uid] to A such that the adversary can-
not distinguish this from the password file created in
the real execution of the protocol where the password
file is defined as file[sid, uid] = (skS, pkS, pkC, c) with
c = AuthEnc(rw, (skC, pkC, pkS)) for rw = FS(pw).
Therefore, the simulator creates a 3DH key-pair for the
client as skC

r←− Zq, pkC := gskC and sends the password
file file[sid, uid] = (skC, pkC, pkS, c) to the adversary
while also granting the adversary access to offline evalua-
tion queries to FOPRF for sidO. This allows the adversary
to perform offline dictionary attacks on the password
file, by sending (OfflineEval, sidO, x) queries to FOPRF.
The simulator can detect these queries and send a corre-
sponding (OfflineTestPwd, sid, x) query to F−

saPAKE. If the
functionality responds with “wrong guess”, SIM answers
the OfflineEval query with a random FS(x)

r←− {0, 1}λ.
Otherwise, if FsaPAKE replies with “correct guess”, then
SIM learns that the adversary’s password guess x is equal
to the password pw for which this uid was initialized, and
in this case SIM “backpatches” c s.t. it matches to the
password, i.e. it uses SIMuid

EQV to compute a randomized
password rw s.t. c = AuthEnc(rw, (skC, pkC, pkS)) and

“programs” F s.t. FS(x) = pw. By the OPRF security
and the equivocability of the encryption scheme, the ad-
versary’s view of this interaction is identical to the real
protocol. The simulator’s handling of initialization and
offline attacks is given in Fig. 12.

Login Phase. Regarding the login phase, we follow the
notation of [23] and let i∗ denote the function pointer used
by the adversary A in (RcvComplete, sidO, ssid,C, i

∗) for
an honest C’s OPRF session, and (X∗

S , c
∗, t∗1) to denote the

message which A passes to C after OPRF evaluation. The
details of the simulation procedure regarding the online
phase are divided between Fig. 12, where we show how
SIM simulates the FOPRF functionality towards A, and
the first message from C and S, and Fig. 13, where we
show how SIM simulates the second messages from C and
S and the random oracle H . However, the main ideas of
the simulation can be explained by considering the two
cases of the simulator: (1) simulate the behaviour of an
honest client against an adversarial server (or a man-in-
the-middle attacker who replaces protocol messages) and
(2) simulate the behaviour of an honest server against an
adversarial client (or a man-in-the-middle attacker who
replaces protocol messages). In the following, we describe
how SIM handles these two cases.

Simulating Honest Client. When simulating the honest
client, the key observation is that C outputs (ssid,⊥)
with overwhelming probability, except for either of the
following three cases (corresponding to cases 1a), 1b) and

19

Building Blocks and Parameters

– Security parameter λ, Hash function H : {0, 1}∗ → {0, 1}λ

– OPRF (KGen,Blind,BlindEval,Finalize,Eval)

– Group G of prime order q with generator g

– Pseudorandom Function F : {0, 1}λ × {0, 1}λ → {0, 1}λ

– Authenticated Encryption Scheme (KGen,AuthEnc,AuthDec)

. Server Setup .

Server S

skS
r←− Zq; pkS := gskS

. .Registration .

Client C[uid, pw] Server S[skS, pkS]

uid, pw kO
r←− OPRF.KGen(1λ)

rw := OPRF.Eval(kO, pw)

skC
r←− Zq; pkC := gskC

c := AuthEnc(rw, (skC, pkC, pkS))

file[uid] := (kO, skS, pkS, pkC, c)

. Login .

Client C[uid, pw′] Server S[uid, file[uid]]

(pw′, r)← OPRF.Blind(pw′),

xC
r←− Zq;XC := gxC uid, pw′, XC xS

r←− Zq;XS := gxS

rw′ ← OPRF.BlindEval(kO, pw
′)

KS := H(XC, XS, X
skS
C , pk

xS
C , X

xS
C)

rw′ := OPRF.Finalize(pw′, r, rw′) rw′, XS, c, t1 t1 := F (KS , 1),Ksess := F (KS , 0)

if AuthDec(rw′, c) = ⊥ abort, else
(sk′

C, pk
′
C, pk

′
S) := AuthDec(rw′, c)

KC := H(XC, XS, pk
xC
S , X

skC
S , X

xC
S)

if F (KC , 1) ̸= t1 abort, else

t2 := F (KC , 2),Ksess := F (KC , 0) t2 if F (KS , 2) = t2

output Ksess output Ksess

Figure 8: The multi-user OPAQUE [23] protocol with a shared server AKE key and with AKE protocol 3DH (changes highlighted
in grey). We assume all messages and inputs to the hash functions are prefixed by the session identifier sid, and all messages specific
to the login phase are further prefixed by ssid. We omit these values as a writing convention.

1c)) of the simulation of the second messages from C and
S:

a) If A remains passive, meaning the simulator emu-
lates both S and C, and the adversary simply re-
lays the message (ssid, XS, c, t1) from honest S to
C without interfering in the OPRF execution (thus
ensuring both parties possess the same prfx), then C
will output a key if the passwords of both parties
match (pw′ = pw). The simulator can verify this
by issuing a NewKey query to F , which, in case
of mismatching passwords, yields a public delayed
output of (ssid,⊥). If the passwords match, the sim-
ulator can substitute the 3DH-related messages with
random ones. The security holds due to the GapDH
assumption, as the attacker remains passive. This
assumption is also used in the proof of 3DH to argue
security against eavesdropping attacks.

In case A actively interferes, there are two possibilities
which lead to C not outputting (ssid,⊥) at the end.

b) In the first scenario, the adversary may have compro-
mised the user’s password file on the server and uses
it to impersonate the server against C. The simulator

can detect this situation, as he can detect whether
c∗ = c for the stolen password file, and in this
case he knows that file[sid, uid] = (skS, pkS, pkC, c)
and he additionally knows the secret key skC corre-
sponding to pkC since he created the password file.
This enables the simulator to check whether t1 is
constructed correctly for this password file. There-
fore he verifies whether t1 = F (KC, 1) holds true,
where KC = H(sid, uid, ssid, prfx, pkxC

S , XskC

S , XxC

S).
Notably, the simulator, having also created xC and
XC for the client, can compute all these values. If this
is the case, the simulator can issue an Impersonate
query to F and in case of “correct guess” simulate the
rest of the protocol using the correct KC. It is impor-
tant to note here that the compromise of the password
file of a user uid′ does not allow impersonating the
server to user uid even though the server uses the
same AKE key-pair for all users. This is because the
attacker who only knows (skS, pkS) and may have
obtained the ciphertext c for uid by eavesdropping,
does not know the AKE key-pair (skC, pkC) to which
the ciphertext c decrypts. Therefore the attacker can-

20

Public Components
– Random-key robust and equivocable authenticated encryption scheme (AuthEnc,AuthDec) with (2λ)-bit keys;
– Functionality FOPRF with output length parameter ℓ = 2λ.
– Hash function H : {0, 1}∗ → {0, 1}λ
– Group G of prime order q with generator g
– Pseudorandom Function F : {0, 1}λ × {0, 1}λ → {0, 1}λ
Server Setup
– On the first command (StorePwdFile, sid, ·, ·), S generates skS

r←− Zq, sets pkS := gskS , and stores
(ServerState, sid,S, skS, pkS).

Password Registration
1) On input (StorePwdFile, sid, uid, pw), S retrieves (ServerState, sid,S, skS, pkS), generates skC

r←− Zq, sets
pkC := gskC , sidO := (sid∥uid) and sends (Init, sidO) and (OfflineEval, sidO,S, pw) to FOPRF.

2) On FOPRF’s response (OfflineEval, sidO, rw), compute c := AuthEnc(rw, (skC, pkC, pkS)) and record
file[sid, uid] := (skS, pkS, pkC, c).

Server Compromise
– On (StealPwdFile, sid,S, uid) from A, S retrieves file[sid, uid] and sends it to A.
Password Authentication and Key Generation

1) On (CltSession, sid, ssid,S, uid, pw′), C sets sidO := (sid∥uid), sends (Eval, sidO, ssid,S, pw
′) to FOPRF and

records FOPRF’s response (Prefix, ssid, prfx). C also generates xC
r←− Zq, sets XC := gxC and sends (ssid, XC)

to S.
2) On (SvrSession, sid, ssid,C, uid) and upon receiving (ssid, XC) from C, S parses file[sid, uid] =

(skS, pkS, pkC, c), sets sidO := (sid∥uid) and sends (SndrComplete, sidO, ssid) to FOPRF. On
FOPRF’s response (Prefix, ssid, prfx′), S generates xS

r←− Zq, sets XS := gxS , computes KS :=
H(sid, uid, ssid, prfx′, XskS

C , pkxS

C , XxS

C), records (ssid,KS), computes t1 := F (KS, 1) and sends
(ssid, XS, c, t1) to C.

3) On (Eval, sidO, ssid, rw
′) from FOPRF and (ssid, XS, c, t1) from S, C decrypts m := AuthDec(rw′, c).

If m can be parsed as (sk′C, pk
′
C, pk

′
S), then C retrieves (Prefix, ssid, prfx), computes KC :=

H(sid, uid, ssid, prfx, pkxC

S , XskC

S , XxC

S), and if t1 = F (KC, 1), sets t2 := F (KC, 2), sends (ssid, t2) to S,
computes Ksess := F (KC, 0) and outputs (ssid,Ksess). Else outputs (ssid,⊥).

4) On (ssid, t2) from C, S retrieves (ssid,KS). If t2 = F (KS, 2), S computes Ksess := F (KS, 0) and outputs
(ssid,Ksess), else outputs (ssid,⊥).

Figure 9: The shared AKE key OPAQUE variant in the UC-compliant notation where the AKE building block is instantiated with
the AKE protocol 3DH.

not compute the correct t1 which is necessary to
impersonate the server to uid.

c) If A actively interferes without using a stolen pass-
word file (in which case it holds that c∗ ̸= c), then
C will only output a session key, if c∗ decrypts to
some (sk′C, pk

′
C, pk

′
S) under key rw′ = Fi∗(pw

′)
such that t1 is computed correctly w.r.t. these values.
In other words, t1 = F (KC, 1) should hold, where
KC = H(sid, uid, ssid, prfx, pk′xC

S , X
sk′

C

S , XxC

S).
But in this case, the adversary must have com-
puted rw′ = Fi∗(pw

′) through three possible
methods: (i) in an online OPRF instance between
A and S if i∗ = S, (ii) via offline computa-
tion (OfflineEval, sidO, i

∗, pw′) if i∗ = S and S
is compromised or corrupted, or (iii) via offline
computation (OfflineEval, sidO, i

∗, pw′) if i∗ ̸= S.
In all of these cases the adversary can choose
(sk∗C, pk

∗
C, pk

∗
S) and set the ciphertext c∗ :=

AuthEnc(rw′, (sk∗C, pk
∗
C, pk

∗
S)). However, SIM, who

manages the OPRF functionality sees the adversary’s
OPRF queries, and will learn the same information
as well. Thus, it can check if there was a query x
such that c∗ decrypts to a valid client-key pair which
results in a correct t1. Thus, the simulator can extract
the password and test it against the client’s. If the
guess is correct, the simulator proceeds to simulate
the protocol accordingly using the correct KC. The
random-key robustness of authenticated encryption is
crucial in this context, ensuring that c∗ decrypts to
a valid message m ̸= ⊥ for at most one key (with

overwhelming probability), ensuring that the server
is limited to one password guess per interaction.

Simulating Honest Server. When simulating the server
towards a client, the server always uses the same ci-
phertext c initialized for uid, but instead of deriving t1
from the real KS, a random KS

r←− {0, 1}λ is chosen.
Nevertheless, this KS can later be backpatched to match
the client’s computation of KC if both parties use the same
password. This can be done using the simulator’s power
of programming the random oracle. Thus, the simulator
checks when answering a query to H whether the client
instance has been compromised (in which case the adver-
sary knows the client’s keys (skC, pkC, pkS)) and whether
these keys are used in computing the 3DH pre-secret
(XskS

C , pkxS

C , XxS

C) which is also an input to the random
oracle. The simulator can check this with his knowledge
of (skS, pkS, pkC, xS, XC). If this is the case, the random
oracle is backpatched to match KS chosen by the server,
otherwise a random KS is chosen as output.

A client instance uid can become compromised in
two ways: (1) Through online evaluations to FOPRF with
the correct password or (2) through offline evaluations
to FOPRF with the correct password, if the password file
of uid is stolen. The simulator can detect these queries
by managing the FOPRF functionality, and test the pass-
word against the server’s either via a TestPwd query
(in case 1) or via an OfflineTestPwd query (in case 2).
Both of these queries will, in case of success, trigger
F to mark the file as compromised, which allows the
simulator to determine the session key for all compro-

21

Password Registration
– On (StorePwdFile, sid, uid, pw) from S, create record ⟨file,S, uid, pw⟩ marked fresh, set

flag[sid, uid] := uncompromised.
Stealing Password Data
– On (StealPwdFile, sid,S, uid) from A, if there is no record ⟨file,S, uid, pw⟩, return “no password file”. Otherwise

mark this record stolen.
– On (OfflineTestPwd, sid,S, uid, pw∗) from A, do:

– If ∃ record ⟨file,S, uid, pw⟩ marked stolen, do the following: If pw∗ = pw return “correct guess” to A and
set flag[sid, uid] := compromised, else return “wrong guess”.

Password Authentication
– On (CltSession, sid, ssid,S, uid, pw′) from C, if there is no record ⟨ssid,C, . . . ⟩ then record
⟨ssid,C,S, uid, pw′, cl⟩ marked fresh and send (CltSession, sid, ssid,C,S, uid) to A.

– On (SvrSession, sid, ssid,C, uid) from S, if there is no record ⟨ssid,S, . . . ⟩ then retrieve record ⟨file,S, uid, pw⟩,
and if it exists then create record ⟨ssid,S,C, uid, pw, sr⟩ marked fresh and send (SvrSession, sid, ssid,S,C, uid)
to A.

Active Session Attacks
– On (Interrupt, sid, ssid,S), if there is a record (ssid,S,C, uid, pw, sr) marked fresh, mark it interrupted and set

dPT(ssid) := 1.
– On (TestPwd, sid, ssid,P, pw∗) from A, if there is a record ⟨ssid,P,P′, uid, pw, role⟩ then do:

– If the record is fresh, then do: If pw∗ = pw then mark it compromised and return “correct guess” to A; else
mark it interrupted and return “wrong guess”.

– If P = S and dPT(ssid) = 1, then set dPT(ssid) := 0 and if pw∗ = pw then return “correct guess” to A,
else return “wrong guess”.

In either case, if P = S and pw∗ = pw, set flag[sid, uid] := compromised.
– On (Impersonate, sid, ssid,C,S, uid) from A, if there is a record ⟨ssid,C,S, uid, pw, cl⟩ marked fresh, then do:

If there is a record ⟨file,S, uid, pw⟩ marked stolen then mark ⟨ssid,C,S, uid, pw, cl⟩ compromised and return
“correct guess” to A; else mark it interrupted and return “wrong guess”.

Key Generation and Authentication
– On (NewKey, sid, ssid,P,K∗) from A, if there is a record rec = ⟨ssid,P,P′, uid, pw, role⟩ not marked

completed, then do:
– If rec is compromised, or (P = S, rec is interrupted and flag[sid, uid] = compromised) set K ← K∗;
– Else if role = cl, rec is fresh, there is a record ⟨ssid,P′,P, uid, pw, sr⟩ s.t. FaPAKE sent (sid, ssid,K ′) to P′

while that record was marked fresh, set K ← K ′;
– Else if role = sr, rec is fresh, there is a record ⟨ssid,P′,P, uid, pw, cl⟩ which is marked fresh, pick K

r←−
{0, 1}λ;

– Else set K ← ⊥.
Finally, mark rec as completed. If K = ⊥, provide public delayed output (sid, ssid,⊥) to P, otherwise provide
private delayed output (sid, ssid,K) to P.

Figure 10: The relaxed multi-user ideal functionality F−
saPAKE (additions to FsaPAKE highlighted) used for the proof of security of

OPAQUE [23].

mised or interrupted sessions for uid. Therefore, when
receiving message (ssid, t∗2), the simulator checks whether
t∗2 = F (KS, 2) and sends a NewKey query to F either
with Ksess := F (KS, 0) or with ⊥. In case the server’s
password matches the client’s in any subsession started
by the uid, and if the client has computed t∗2 correctly,
this will output the correct Ksess to the server ensured by
the programming of the random oracle.

22

Public Parameters: PRF output length ℓ, polynomial in security parameter λ.
Conventions: For every i, x value Fsid,i(x) is initially undefined, and if undefined value Fsid,i(x) is referenced
then FOPRF assigns Fsid,i(x)

r←− {0, 1}ℓ.
Initialization:
On message (Init, sid) from party S, if this is the first Init message for sid , set tx = 0 and send (Init, sid, S) to
A. From now on use tag “S” to denote the unique entity which sent the Init message for the session identifier
sid. (Ignore all subsequent Init messages for sid.)
Server Compromise:
On (Compromise, sid,S) from A, declare server S as compromised. (If S is corrupted then it is declared
compromised from the beginning.)
Note: Message (Compromise, sid,S) requires permission from the environment.
Offline Evaluation:
On (OfflineEval, sid, i, x) from P ∈ {S,A}, send (OfflineEval, sid, Fsid,i(x)) to P if any of the following hold: (i)
S is corrupted, (ii) P = S and i = S, (iii) P = A and i ̸= S, (iv) P = A and S is compromised.
Online Evaluation:

• On (Eval, sid, ssid,S′, x) from P ∈ {C,A}, send (Eval, sid, ssid,P,S′) to A. On prfx from A, ignore this
message if prfx was used before. Else record ⟨ssid,P, x, prfx⟩ and send (Prefix, sid, ssid, prfx) to P.

• On (SndrComplete, sid, ssid′) from S, send (SndrComplete, sid, ssid′,S) to A. On prfx′ from A, send
(Prefix, sid, ssid′, prfx′) to S. If there is a record ⟨ssid,P, x, prfx⟩ for P ̸= A and prfx = prfx′, change it
to ⟨ssid,P, x,OK⟩, else set tx++.

• On (RcvComplete, sid, ssid,P, i) from A, ignore this message if there is no record ⟨ssid,P, x, prfx⟩ or if
(i = S, tx = 0, and prfx ̸= OK). Else send (Eval, sid, ssid, Fsid,i(x)) to P, and if (i = S and prfx ̸= OK)
then set tx−−.

Figure 11: Functionality FOPRF with adaptive compromise from [23].

23

Initialization
Set tx := 0. Initialize empty table TH to manage hash queries. Initialize function family {Fi} s.t. for all (i, x),
including i = S, Fi(x) is undefined. Whenever SIM references undefined value Fi(x) below, set Fi(x)

r←−
{0, 1}λ. Pick skS

r←− Zq, set pkS := gskS . For the first SvrSession or StealPwdFile query for uid, set c ←
SIMuid

EQV(kpr + 2kpb), where kpr = |Zq|, kpb = |G| are the lengths of private/public keys in 3DH, and record
file[sid, uid] := (skS, pkS,⊥, c).
Stealing Password Data and Offline Queries

1) On (Compromise, sidO) aimed at FOPRF with sidO = (sid∥uid), and (StealPwdFile, sid,S, uid) aimed at S
from A (we assume A sends these commands together), send (StealPwdFile, sid,S, uid) to F . If F returns
“no password file”, pass this message to A on behalf of S. Otherwise declare file[sid, uid] as stolen, pick
skC

r←− Zq, set pkC := gskC , reset file[sid, uid] := (skS, pkS, pkC, c) and send it to A on behalf of S. Keep
record (stolen, sid, uid, skC, pkC).

2) On (OfflineEval, sidO, i
∗, x) from A aimed at FOPRF with sidO = (sid∥uid), do the following:

• If i∗ = S and file[sid, uid] is not marked stolen, ignore this message.
• If i∗ = S and file[sid, uid] is marked stolen, send (OfflineTestPwd, sid,S, uid, x) to F . If F returns “correct

guess”, retrieve (stolen, sid, uid, skC, pkC) and set rw ← SIMuid
EQV(skC, pkC, pkS) and FS(x) := rw. Keep

record (compromised, sid, uid, skC, pkC, pw).
Finally, send (OfflineEval, sidO, Fi∗(x)) to A on behalf of FOPRF.

OPRF Evaluation + First Message from C and S

1) On (CltSession, sid, ssid,C,S, uid) from F , set sidO := (sid∥uid), send (Eval, sidO, ssid,C,S) to A on behalf
of FOPRF. On prfx from A, record (uid, ssid,C, prfx) if prfx is new, else reject. Pick xC

r←− Zq, set XC := gxC ,
send (ssid, XC) to S on behalf of C and keep record (hbsC,C, uid, ssid, prfx, xC, XC) (needed for AKE
simulation).

2) On (SvrSession, sid, ssid,S,C, uid) from F , and upon S receiving (ssid, XC) from A, retrieve file[sid, uid] =
(skS, pkS, ·, c), set sidO := (sid∥uid), send (SndrComplete, sidO, ssid,S) to A on behalf of FOPRF, and given
A’s response prfx′ do the following in order:

a) If there is record (uid, ssid,C, prfx′), then replace it with (uid, ssid,C, OK); Else record (uid, ssid, act),
set tx++, send (Interrupt, sid, ssid,S) to F .

b) Pick xS
r←− Zq, set XS := gxS , pick KS

r←− {0, 1}λ, set t1 := F (KS, 1), send (ssid, XS, c, t1) to A on
behalf of S and record (hbsS,S, uid, ssid, prfx′, XC, xS,KS, XS, c, t1).

3) On (RcvComplete, sidO, ssid,C, i
∗) from A aimed at FOPRF, retrieve (uid, ssid,C, prfx) (ignore the message

if such record not found) and do in order:
a) If i∗ = S, file[sid, uid] is not stolen, and there is no record (uid, ssid,C, OK), then do: Ignore this message

if tx = 0, else set tx−−.
b) Augment record (uid, ssid,C, prfx) to (uid, ssid,C, prfx, i∗).

4) On (Eval, sidO, ssid,S, x) followed by (RcvComplete, sidO, ssid,A, i∗) from A to FOPRF (string prfx chosen
by A for this Eval can be ignored), send (Eval, sidO, ssid,A,S) to A on behalf of FOPRF and do in order:

a) If i∗ ̸= S, then send (Eval, sidO, ssid, Fi∗(x)) to A.
b) If i∗ = S and tx > 0, but there is no record (uid, ssid′, act) then output halt.
c) If i∗ = S and there are some records (uid, ssid′, act) then do in order:

i) If there is record (uid, ssid′, act) which is not marked completed then choose ssid′ of any such record,
but if all records (uid, ssid′, act) are marked completed then choose ssid′ of any of those.

ii) Ignore this message if tx = 0, else set tx−− and send (TestPwd, sid, ssid′,S, x) to F .
iii) If F returns “correct guess”: retrieve (stolen, sid, uid, skC, pkC) if it exists, otherwise generate

skC
r←− Zq and set pkC := gskC . Set rw ← SIMEQV(skC, pkC, pkS) and FS(x) := rw. Keep record

(compromised, sid, uid, skC, pkC, pw).
iv) Send (Eval, sidO, ssid, FS(x)) to A on behalf of FOPRF, and modify the chosen record (uid, ssid′, act)

into (uid, ssid′, used).

Figure 12: Simulator SIM showing that multi-user shared 3DH key UC-realizes F = F−
saPAKE, part 1: Initialization, Offline Attacks,

OPRF Evaluation and First Message from C and S.

24

Second Message from C and S

1) For any ssid, as soon as (uid, ssid,C, prfx) is augmented to (uid, ssid,C, prfx, i∗) and A sends (ssid, X∗
S , c

∗, t∗1)
to C, retrieve (hbsC,C, uid, ssid, prfx, xC, XC) and do one of the following:

a) If there is a record (hbsS,S, uid, ssid, prfx, XC, xS,KS, XS, c, t1) with (X∗
S , c

∗, t∗1, i
∗) = (Xs, c, t1,S), then

send (NewKey, sid, ssid,C,⊤) to F . If F sends public delayed output (ssid,⊥), deliver it to C and set
t2 := ⊥. Else, set t2 := F (KS, 2) and send (ssid, t2) to A on behalf of C.

b) Otherwise if file[sid, uid] = (skS, pkS, ·, c) is marked stolen, c∗ = c, there is record
(stolen, sid, uid, skC, pkC) and t1 = F (KC, 1) for KC = H(sid, uid, ssid, prfx, pkxC

S , XskC

S , XxC

S)
then send (Impersonate, sid, ssid,C,S, uid) to F . Upon answer “correct guess”, set (Ksess, t2) :=
(F (KC, 0), F (KC, 2)), else set (Ksess, t2) := (⊥,⊥). In both cases, send (NewKey, sid, ssid,C,Ksess)
to F and (ssid, t2) to A on behalf of C.

c) Otherwise for every x s.t. y = Fi∗(x) is defined, check if AuthDec(y, c∗) output parses as (sk′C, pk
′
C, pk

′
S)

such that t1 = F (KC, 1) for KC = H(sid, uid, ssid, prfx, (pk′S)
xC , (X∗

S)
sk′

C , (X∗
S)

xC), and do one of the
following:
i) If there is no such x, send (TestPwd, sid, ssid,C,⊥) followed by (NewKey, sid, ssid,C,⊥) to F , set

t2 := ⊥ and send (ssid, t2) to A on behalf of C.
ii) If there are more than one such x’s, output halt and abort.

iii) If there is a unique such x, send (TestPwd, sid, ssid, C, x) to F .
- If F replies “wrong guess”, send (NewKey, sid, ssid,C,⊥) to F , set t2 := ⊥ and send (ssid, t2) to
A on behalf of C.

- If F replies “correct guess”, set (Ksess, t2) := (F (KC, 0), F (KC, 2)). Send
(NewKey, sid, ssid,C,Ksess) to F and (ssid, t2) to A on behalf of C.

2) When A sends (ssid, t∗2) to S, retrieve (hbsS,S, uid, ssid, prfx, XC, xS,KS, XS, c, t1) and set Ksess :=
F (KS, 0). If t∗2 = F (KS, 2), send (NewKey, sid, ssid,S,Ksess) to F , else send (NewKey, sid, ssid,S,⊥).

Simulation of random oracle H
On input (sid, uid, ssid, prfx, A,B,C) to H: If there exists record (TH , sid, uid, ssid, prfx, A,B,C,K), respond
with K. Else do:

- if there exist records (hbsS,S, uid, ssid, prfx, XC, xS,KS, XS, c, t1) and (compromised, sid, uid, skC, pkC, pw),
check if A = (XC)

skS , B = (pkC)
xS and C = (XC)

xS . If this is the case, set h := KS. Otherwise, pick
h

r←− {0, 1}λ \ {KS}.
If there is a record (TH , sid, ·, ·, ·, ·, ·, ·, h), abort; else respond with h and record
(TH , sid, uid, ssid, prfx, A,B,C, h).

Figure 13: Simulator SIM showing that multi-user shared 3DH key UC-realizes F = F−
saPAKE, part 2: AKE Simulation.

25

