
Adversary Resilient Learned Bloom Filters

Allison Bishop1,2[0000−0003−3986−8985] and Hayder Tirmazi1[0009−0008−9360−9662]

1 City College of New York
2 Proof Trading

abishop@ccny.cuny.edu, stirmaz000@citymail.cuny.edu

Abstract. Creating an adversary resilient Learned Bloom filter [1] with provable guarantees
is an open problem [2]. We define a strong adversarial model for the Learned Bloom Filter.
We also construct two adversary resilient variants of the Learned Bloom Filter called the
Uptown Bodega Filter and the Downtown Bodega Filter. Our adversarial model extends an
existing adversarial model designed for the classical (i.e not “learned”) Bloom Filter by Naor
and Yogev [3] and considers computationally bounded adversaries that run in probabilistic
polynomial time (PPT). We show that if pseudo-random permutations exist, then a secure
Learned Bloom Filter may be constructed with λ extra bits of memory and at most one extra
pseudo-random permutation in the critical path. We further show that, if pseudo-random
permutations exist, then a high utility Learned Bloom Filter may be constructed with 2λ
extra bits of memory and at most one extra pseudo-random permutation in the critical path.
Finally, we construct a hybrid adversarial model for the case where a fraction of the workload
is chosen by an adversary. We show realistic scenarios where using the Downtown Bodega
Filter gives better performance guarantees compared to alternative approaches in this model.

Keywords: Pseudorandom permutations · Adversarial Artificial Intelligence · Probabilistic
Data Structures.

1 Introduction

Bloom filters are probabilistic data structures that solve the Approximate Membership Query
Problem. A Bloom filter representing a set S may have false positives (s /∈ S may return true) but
does not have false negatives (s ∈ S is always true). The data structure now known as a “Bloom”
filter was initially proposed as method 2 in the section “Two Hash-Coding Methods with Allowable
Errors” in a 1970 paper by Burton H. Bloom [4][5]. Bloom filters are used in databases, cryptography,
computer networking, social networking [6] and network security [7]. Figure 1 provides a helpful
illustration of a traditional Bloom filter and the insert and check operations we introduce below.

Definition 1 (Bloom filter). A Bloom filter for representing set S with cardinality n is a zero
initialized array of m bits. A Bloom filter requires k independent hash functions hi such that the
range of each hi is the set of integers {1, . . . ,m} [7].

Most mathematical treatments such as Mitzenmacher and Broder [7] make the convenient
assumption that each hi maps each item in the universe to a random number uniformly over the
(integer) range [1,m].

Operation 1 (Insert). For each element x ∈ S, the bits hi(x) are set to 1 for i ∈ [1, k].

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

x1 x2

0 1 0 0 1 1 0 1

y1 y2

Fig. 1: Example of a Bloom filter with m = 8 and k = 2. Initially, all m bits are unset. Each element
xi is hashed k times, and each corresponding bit is set. To check each element yi, the element is
hashed k times. If any corresponding bit is unset, the element yi is not in set S (with probability 1).
If all corresponding bits are set, the element yi is either in set S or the element yi has caused the
Bloom filter to return a false positive

If a bit already set to 1 is set to 1 again, its value remains 1 i.e a double set does not flip the bit
back to 0.

Operation 2 (Check). For an element x, we return true if all hi(x) map to bits that are set to 1.
If there exists an hi(x) that maps to a bit that is 0, we return false.

Fig. 2: Example of a learned Bloom filter with a learned Oracle and a backup Bloom filter that only
checks values that are with high probability negative in the learned Oracle, to ensure a one-sided
error bound (i.e only false positives and no false negatives).

The Learned Bloom filter is a novel data structure proposed by Kraska et al [1] in 2018. A
mathematical model and guarantees for the Learned Bloom filter are provided in Mitzenmacher et
al [8]. Learned Bloom filters use a learned model for the set being represented. They provide better
performance on the false positive rate while maintaining the guarantee of having no false negatives.
We show an example of a Learned Bloom filter adapted from Mitzenmacher et al [8] in figure 2.

2 Motivation

The Bloom Filter and its variants have numerous applications in computing [9] [7]. We borrow
discussion on Bloom Filter applications from the survey by Tarkoma et al [9]. The Bloom Filter

2

may be implemented in kernel space in a Linux network driver for performant filtering of network
packets. Loop detection in network protocols, and multicast forwarding engines may also utilize the
Bloom Filter. Deep Packet Scanners and Packet Classifiers have also found the Bloom Filter helpful
for improving efficiency. Bloom Filters may be used to detect heavy flows in network traffic from the
vantage point of a router. The Bloom Filter has also been used in the OPUS system [9] that stores
a list of words that involve poor password choices encouraging users to select better passwords. The
Bloom Filter has also found success in the detection of hash tampering in network attached disks.
Google’s BigTable system uses the Bloom Filter to minimize disk reads. Apache Hadoop also uses
the Bloom Filter as an optimization in the reduce stage of its map/reduce implementation. Other
applications of the Bloom Filter include uses in the realms of peer-to-peer networking, and caching.

2.1 The Need for Security

A large number of the applications of The Bloom Filter involve critical infrastructure [10]. It is
possible to forge false positives in a naively implemented Bloom Filter [10] allowing an adversary to
make the Bloom Filter deviate from its behavior. Gerbet et al [10] show practical attacks on the
Scrapy web-spider, the Bitly Dablooms spam filter, and the Squid web cache. Naor and Yogev [3]
motivate the need for securing the Bloom Filter by considering a white-list of email addresses for
the purposes of spam filtering. In their scenario, an adversary that can forge false positives may
easily infiltrate the spam filter.

3 Related Work

Section 3.1 provides a thorough overview of prior work on adversarial models and security of the
classical Bloom Filter. Similarly, Section 3.2 discusses prior work on the security of the Learned
Bloom Filter.

3.1 Classical Bloom Filter

Gerbet et al[10] suggest practical attacks on traditional bloom filters and the use of universal hash
functions and message authentication codes (MACs) to mitigate a subset of those attacks. Naor
and Yogev [3] define an adversarial model for the classical Bloom Filter and use it to prove that (1)
for computationally bounded adversaries, non-trivial adversary resilient Bloom filters exist ⇐⇒
one-way functions exist, and (2) for computationally unbounded adversaries, there exists a Bloom
filter that is secure against t queries while using only O(n log 1

ϵ + t) bits of memory. n is the size of
the set and ϵ is the desired error. We borrow their idea of using Pseudorandom Permutations for
the classical Bloom Filter and apply it to the Learned Bloom Filter.

Clayton et al [11] analyze not only the classical Bloom Filter, but also the Counting Bloom
Filter, and the Count-Min Sketch, in an adversarial setting. Clayton et al use a stronger adversarial
model than Naor and Yogev [3], allowing an adversary to perform insertions and giving an adversary
access to the internal state of the classical Bloom Filter. Clayton et al propose the use of salts
and keyed pseudorandom functions for securing the classical Bloom Filter. They do not address
Learned Probabilistic Data Structures including the Learned Bloom Filter. Both Naor and Yogev,
and Clayton et al, perform their analysis in a game-based setting.

Filic et al [12] investigate the adversarial correctness and privacy of the classical Bloom Filter
and an insertion-only variant of the Cuckoo Filter. They use a stronger adversarial model than

3

Naor and Yogev [3] allowing an adversary to insert entries into the Bloom Filter and query for the
internal state of the Bloom Filter. Unlike our work, Filic et al [12] do not address the adversarial
correctness of the Learned Bloom Filter or its variants. Filic et al [12] perform their analysis in a
simulator-based setting.

3.2 Learned Bloom Filter

The authors are only aware of one prior work that addresses the Learned Bloom Filter in an
adversarial setting, Reviriego et al [2]. They propose a practical attack on the Learned Bloom Filter.
They suggest two possible mitigations for their proposed attack: swapping to a classical Bloom
Filter upon detection of the attack, or adding a second backup Bloom Filter. However, they do not
provide any provable guarantees on the performance of the Learned Bloom Filter in the presence of
adversaries. They leave the security of the Learned Bloom Filter as an open problem in their work.

4 Adversarial Model

We highlighted in the Section 1 our proposed outcomes for the problem of securing Learned Bloom
Filters. To reiterate, we proposed (1) defining a strong adversarial model for Learned Bloom filters,
(2) proving guarantees on the performance of Learned Bloom filters under the adversarial model, (3)
exploring new vulnerabilities in Learned Bloom filters, and (4) constructing an adversary resilient
Learned Bloom filter. We consider proposed solutions for outcomes 3 and 4 respectively. To build the
tools necessary for analysing such proposed solutions, we first make some progress towards outcome
1.

We describe the adversarial model of [3] and discuss how it can be extended to create an
adversarial model for Learned Bloom Filters. We refer to the adversarial model defined by Naor
and Yogev [3] as the classical adversarial model. Section 4.1 contains a treatment of the classical
adversarial model. We also introduce a stronger adversary than the one described in Naor and
Yogev’s [3] model that has access to the internal state of the Bloom Filter. Section 4.2 introduces a
definition of the Learned Bloom Filter adapted from [8] and discusses extensions to the classical
adversarial model to make it work with Learned Bloom Filters.

4.1 Classical Adversarial Model

Let S be a finite set of cardinality n in a suitable finite universe U of cardinality u. Let M be a
compressed representation of S. Let r be any random string and MS

r be a compressed representation
of S with r. Let λ be a security parameter. Let A = (AC , AQ) be any propabilistic polynomial time
(PPT) adversary.

Definition 2. We define C to be a setup algorithm such that C(1λ, S) = M . C may be randomized.
We define Cr, the randomized version of C, to be a setup algorithm such that Cr(1

λ, S) = MS
r .

As a running example, consider the set S = x in a classical Bloom Filter that uses 2 hash
functions, h1, h2 and 4 bits such that h1(x) = 1 and h2(x) = 3. A trivial deterministic setup
algorithm, on input S, would then generate the representation MS

r = 1010.

Definition 3. We define Qs to be a query algorithm such that, given element x, Q(M,x) = 1 if
x ∈ S, and Q(M,x) ∈ {0, 1} if x /∈ S. Qs may not be randomized and may not change M .

4

In our running example, a trivial query algorithm returns 1 if and only if all hashes for an
element return indexes that are set. Consider a new element y for which h1(y) = 1 and h2(y) = 2.
With MS

r = 1010, Q(MS
r , x) returns 1 since both indices 1 and 3 are set, however Q(MS

r , y) return
0 as index 2 is not set.

Definition 4. We define Qu to be a query algorithm similar to Qs differing only in that Qu may
be randomized and it may change M after each query.

We now give a precise definition for a classical Bloom Filter in an adversarial setting.

Definition 5. Let a Bloom Filter be a data structure B = (Cr, Q) where Cr obeys Definition 2 and
Q obeys either Definition 3 or Definition 4.

We define a special class of Bloom Filters which were coined “steady” Bloom Filters by Naor
and Yogev [3]. Steady Bloom Filters do not change their internal representation MS

r after the setup
algorithm Cr has executed. In other words, only query algorithms of the type Qs are permitted in
the steady setting and query algorithms of the type Qu are not permitted.

Definition 6. Let a steady (n, ϵ)-Bloom Filter be a Bloom Filter Bs = (Cr, Qs) such that Qs obeys
Definition 3 and ∀x ∈ U , it holds that

1. Completeness: ∀x ∈ S : P [Qs(Cr(S), x) = 1] = 1
2. Soundness: ∀x /∈ S : P [Qs(Cr(S), x) = 1] ≤ ϵ

where the probabilities are taken over Cr.

Now we construct our first adversarial challenge for the classical Bloom Filter in the steady
setting. A probabilistic polynomial time (PPT) adversary A, as defined at the start of this section,
is given a security parameter 1λ+n log(u) and is allowed to construct a set S. The set S is then given
to construction algorithm Cr along with the security parameter to yield representation MS

r . The
adversary is allowed t queries to the query algorithm Qs for which it is provided the results. After
the t queries, the adversary must output an element x∗. If x∗ is a false positive, the adversary wins
the challenge. Otherwise, the adversary is loses the challenge. We define this precisely in Challenge 1

Challenge 1. We denote this challenge as Λ1
A,t(λ).

1. S ← AC(1
λ+n log(u))

2. MS
r ← Cr(1

λ+n log(u), S)

3. x∗ ← A
Qs(M

S
r ,·)

Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Q(MS
r , ·).

4. If x∗ /∈ S ∪ {x1, . . . , xt} and Qs(M
S
r , x

∗) = 1, output 1. Otherwise, output 0.

We now define an adversarial resilient classical Bloom Filter based on the random variable
Λ1

A,t(λ).

Definition 7. Let an (n, t, ϵ)-adversarial resilient steady Bloom Filter be any steady Bloom Filter
for which it holds that, ∀λ > n ∈ N, P [Λ1

A,t(λ) = 1] ≤ ϵ.

Now, we create an extension to Naor and Yogev’s [3] model, introducing a stronger adversary
that has access to the internal state of the Bloom Filter.

5

Definition 8. We define R to be an oracle that returns the compressed representation of S with r,
MS

r , at time t

Now we construct our second adversarial challenge for the classical Bloom Filter in the steady
setting. This challenge is almost identical to the first challenge with the only different being the
adversary is allowed access to oracle R. We define our second challenge more precisely in Challenge 2.

Challenge 2. We denote this challenge as Λ2
A,t(λ).

1. S ← AC(1
λ+n log(u))

2. MS
r ← Cr(1

λ+n log(u), S)
3. AQ is allowed access to oracle R

4. x∗ ← A
Qs(M

S
r ,·)

Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Q(MS
r , ·).

5. If x∗ /∈ S ∪ {x1, . . . , xt} and Qs(M
S
r , x

∗) = 1, output 1. Otherwise, output 0.

Analogous to Definition 7, we now define an adversarial reveal resilient classical Bloom Filter
based on the random variable Λ2

A,t(λ).

Definition 9. Let an (n, t, ϵ)-adversarial reveal resilient steady Bloom Filter be any steady Bloom
Filter for which it holds that, ∀λ > n ∈ N, P [Λ2

A,t(λ) = 1] ≤ ϵ.

4.2 Learned Adversarial Model

In this section, we provide a mathematical model for the Learned Bloom Filter adapted from [8].
Consider a set of elements K ⊂ S and a set of elements U such that ∀u ∈ U , u /∈ S. We form a
dataset D = {(xi, yi = 1)|xi ∈ K} ∪ {(xi, yi = 0)|xi ∈ U}.

Definition 10. Let a Bloom Filter Learning Model, l : U 7→ [0, 1], be any function that maps
elements in a suitable finite universe to a probability.

Let Lr be any construction algorithm for l. We train a Bloom Filter Learning Model, l, by
running algorithm Lr on D. Let l(x) be the probability estimate from the learning model that x is
an element in S. A value τ may be chosen as a threshold. When l(x) ≥ τ then the Learned Bloom
Filter considers x to be an element of S. Otherwise, the Learned Bloom Filter passes x on to the
classical Backup Bloom Filter. Figure 2 provides a helpful illustration.

Definition 11. Let a Learned Bloom Filter, B̃ = (l, τ, Cr, Q) where l obeys Definition 10, τ is a
given threshold for l, Cr obeys Definition 2, and Q obeys either Definition 3 or Definition 4. (Cr, Q)
form a classical Bloom Filter (Definition 5), which we refer to as a Backup Bloom Filter. The
Backup Bloom Filter holds the set {x : x ∈ S|l(x) < τ}.

It is trivial to define a steady Learned Bloom Filter with completeness and soundness properties
analogous to the ones outlined in Definition 6 for a classical Bloom Filter.

Now, we construct an adversarial model for the Learned Bloom Filter. We assume our adversary
A has oracle access to the Bloom Filter Learning Model l, the construction algorithm Cr, and the
query algorithm Q.

Challenge 3. We denote this challenge as Λ1l
A,t(λ).

6

1. S,D ← AC(1
λ+n log(u))

2. MS
r ← Cr(1

λ+n log(u), S)

3. l← Lr(1
λ+n log(u),D)

4. x∗ ← A
Qs(l,M

S
r ,·)

Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Q(MS
r , ·).

5. If x∗ /∈ S ∪ {x1, . . . , xt} and Qs(M
S
r , x

∗) = 1, output 1. Otherwise, output 0.

Note that the adversary may not choose threshold τ . If the adversary is allowed to choose
threshold τ , then Challenge 3 is easily succeeded by choosing τ = 0. We are now ready to formally
define security for steady Learned Bloom Filters.

Definition 12. Let an (n, t, ϵ)-adversarial resilient steady Learned Bloom Filter be any steady
Learned Bloom Filter for which it holds that, ∀λ > n ∈ N, P [Λ1l

A,t(λ) = 1] ≤ ϵ.

We now propose a stronger adversary that has access to the internal state of the Learned Bloom
Filter. Recall the definition of oracle R (Definition 8). We define an analogous oracle for the learning
model.

Definition 13. We define LR to be an oracle that returns the internal state of the learning model l
trained on dataset D with r

Challenge 4. We denote this challenge as Λ2l
A,t(λ).

1. S,D ← AC(1
λ+n log(u))

2. MS
r ← Cr(1

λ+n log(u), S)

3. l← Lr(1
λ+n log(u),D)

4. AQ is allowed access to oracles R and LR

5. x∗ ← A
Qs(l,M

S
r ,·)

Q (1λ+n log(u), S). AQ performs at most t queries x1, . . . , xt to Q(MS
r , ·).

6. If x∗ /∈ S ∪ {x1, . . . , xt} and Qs(M
S
r , x

∗) = 1, output 1. Otherwise, output 0.

Definition 14. Let an (n, t, ϵ)-adversarial reveal resilient steady Learned Bloom Filter be any
steady Learned Bloom Filter for which it holds that, ∀λ > n ∈ N, P [Λ2l

A,t(λ) = 1] ≤ ϵ.

5 Security

We attempt two solutions to the problem of securing the Learned Bloom Filter. Our first solution
combines a Learned Bloom Filter technique called “sandwiching” introduced by [8] and the use of a
pseudo-random permutation on the Bloom Filter input set first proposed by [3]. Our second solution
relies on the (non Sandwiched) Learned Bloom Filter and instead employs the use of pseudo-random
permutations to two Backup Bloom Filters that we introduce as part of the construction.

In Section 5.1, we first provide a review of the setting from Section 4.2. Then we formally define
a Sandwiched Learned Bloom Filter. Finally we provide a brief introduction to pseudo-random
permutations. We introduce the Uptown Bodega Filter in Section 5.2. We then discuss concerns
regarding the utility of hte Uptown Bodega Filter which lead us to the Downtown Bodega Filter,
which we introduce in Section 5.3.

7

5.1 Preliminaries

Setting Review: Consider a set of elements K ⊂ S and a set of elements U such that ∀u ∈ U , u /∈ S.
We form a dataset D = {(xi, yi = 1)|xi ∈ K} ∪ {(xi, yi = 0)|xi ∈ U}. Let Lr be any construction
algorithm for l. We train a Bloom Filter Learning Model, l, by running algorithm Lr on D. Let l(x)
be the probability estimate from the learning model (Definition 10) that x is an element in S. A
value τ may be chosen as a threshold. When l(x) ≥ τ then the Learned Bloom Filter considers x to
be an element of S. Otherwise, the Learned Bloom Filter passes x on to the classical Backup Bloom
Filter.

Definition 15. Let a Sandwiched Learned Bloom Filter, SBr = (ICr, IQ, l, τ, Cr, Q) where l obeys
Definition 10, τ is a given threshold for l, ICr and Cr obey Definition 2, and IQ and Q obey either
Definition 3 or Definition 4. (ICr, IQ) form a classical Bloom Filter (Definition 5), which we referr
to as an Initial Bloom Filter. The Initial Bloom Filter holds the set S. (Cr, Q) also form a classical
Bloom Filter, which we refer to as a Backup Bloom Filter. The Backup Bloom Filter holds the set
{x : x ∈ S|l(x) < τ}.

Fig. 3: A Sandwiched Learned Bloom Filter. The initial filter only allows positives (true positive and
false positive) to reach the Learned Bloom Filter.

Figure 3 shows an example of a Sandwiched Learned Bloom Filter.

Lemma 1. If x is a false positive in a Sandwiched Learned Bloom Filter, SBr, then x is a false
positive in the Initial Bloom Filter (ICr, IQ).

Proof. The proof follows from the definition of a Sandwiched Learned Bloom Filter.

We now introduce pseudorandom permutations, adapted from Chapter 3 of [13].

Definition 16. Let an efficient permutation F be any permutation for which there exists a poly-
nomial time algorithm to compute Fk(x) given k and x, and there also exists a polynomial time
algorithm to compute F−1

k (x) given k and x.

Definition 17. Let F : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗ be an efficient, length-preserving, keyed function.
F is a keyed permutation if ∀k, Fk(·) is one-to-one.

8

Definition 18. Let F : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ be an efficient keyed permutation. F is a
pseudorandom permutation if for all probabilistic polynomial time distinguishers D, there exists a
negiligible function negl, such that |Pr[DFk(·)F−1

k (·)(1n) = 1]− Pr[Dfn(·)f−1
n (·)(1n) = 1]| ≤ negl(n)

Theorem 4.8 of [3] proves that for a classical steady (n, ϵ)-Bloom Filter that uses m bits of
memory, if pseudorandom permutations exist, then there exists a negiligible function negl such
that for security parameter λ there exists a (n, ϵ+ negl(λ))-adversarial resilient Bloom Filter that
uses m

′
= m + λ bits of memory. This secure Bloom Filter can be constructed by running the

initialization algorithm on S
′
= {Fk(x) : x ∈ S} instead of S [3].

5.2 The Uptown Bodega Filter

Now, we introduce a secure Learned Bloom Filter built on top of a Sandwiched Learned Bloom
Filter and a pseudorandom permutation which we call a Uptown Bodega Filter

Definition 19. Let a Uptown Bodega Filter be a data structure BBr,k = (Fk, ICr, IQ, l, τ, Cr, Q)
such that Fk is a pseudorandom permutation and (ICr, IQ, l, τ, Cr, Q) is a Sandwiched Bloom Filter
representing the set S

′
= {Fk(x) : x ∈ S} in the steady setting.

Theorem 1. Let SBr be an (n, ϵ)-Sandwiched Bloom Filter using m bits of memory. If pseudoran-
dom permutations exist, then there exists a negligible function negl(·) such that for security parameter
λ there exists an (n, ϵ+ negl(λ))-adversarial resilient Uptown Bodega filter that uses m

′
= m+ λ

bits of memory.

Our proof follows the same line of reasoning as Theorem 4.8 of [3] which proves that, if
pseudorandom permutations exist, any probabilistic polynomial time adversary cannot distinguish
between the classical Bloom Filter with pseudorandom permutations and Challenge 1 by more than
a negligible advantage. Due to Lemma 1, this result also holds for the Uptown Bodega Filter. The
crux of the proof relies on the fact that running Fk on an adversary’s queries permits us to consider
the queries as random and not chosen adaptively by an adversary, while having no effect on the
correctness of the Uptown Bodega Filter.

Proof. We construct a Uptown Bodega Filter UBk,r from a Sandwiched Bloom Filter SBr as
follows. Choose the first key k ∈ {0, 1}λ from pseudorandom permutation, Fk, over {0, 1}log |U |. Let
Sk = Fk(S) = {Fk(x) : x ∈ S}. We initialize SBR with Sk. For each input x, our query algorithm
outputs SBk,r(Fk(x)). Just like in the classical Bloom Filter construction of [3], the only additional
memory required is to store the key k for Fk, which is λ bits. Similarly, the running time of the
query algorithm of the Uptown Bodega Filter is one pseudo-random permutation more than the
running time of the query algorithm of the Sandwiched Bloom Filter.

The completeness of UBk,r follows from the completeness of SBk,r. If x ∈ S then SBk,r was
initialized with Fk(x) which will return 1 from the completeness of SBr. The resilience of the
construction follows from the following argument: Consider an experiment where FK in the Uptown
Bodega Filter is replaced by a truly random permutation oracle R(·). Since x has not been queried,
we know that R(x) is a truly random element that was not queried before, and we may think of it as
chosen prior to the initialization of SBk,r. From the soundness of SBr we get that the probability
of x being a false positive is at most ϵ.

Now we show that no probabilistic polynomial time (PPT) adversary A can distinguish between
the Uptown Bodega Filter we constructed using R(·) and the Uptown Bodega Filter construction

9

that uses the pseudorandom permutation Fk by more than a negligible advantage. Suppose that
there does exist a polynomial p(λ) such that A can attack UBk,r and find a false positive with
probability ϵ+ 1

p(λ) . We can run A on UBk,r where the oracle is replaced by an oracle that is either
random or pseudorandom. We return 1 if A successfully finds a false positive. This implies that
we may distinguish between a truly random permutation and a pseudorandom permutation with
probability ≥ 1

p(λ) . This contradicts the indistinguishability of pseudorandom permutations.

Utility of the Uptown Bodega Filter While we have shown the existence of (n, ϵ)-adversarial
resilient Uptown Bodega Filters, it is unclear whether there is any utility in using an Uptown Bodega
Filter over a secure classical Bloom Filter. This is due to the fact that we train our learning model on
Fk(x) ∈ S, a pseudorandom permutation of the set S, instead of training it directly on S. Intuitively,
any structure in S that can be “learned” by a Bloom Filter Learning Model is destroyed by taking
the psuedorandom permutation of S. In other words, if pseudorandom permutations exist, then to
any learning model that runs in Probabilistic Polynomial Time (PPT), Fk(x) ∈ S should appear
the same as |S| values sampled from a truly random oracle R(·). A precise proof for this is beyond
the scope of this paper.

5.3 The Downtown Bodega Filter

To address the utility concerns of the Uptown Bodega Filter, we introduce a second secure Learned
Bloom Filter which we call the Downtown Bodega Filter.

Learned
Oracle

Backup
Bloom Filter

Input Negatives

Positives

Negatives

Positives

PRP

Negatives Positives

Backup
Bloom Filter

PRP

Fig. 4: A Downtown Bodega Filter. Both Positives and Negatives results for the Learned Oracle are
routed Backup Bloom Filters secured with Pseudorandom Permutations

Definition 20. Let a Downtown Bodega Filter be a data structure
DBr,kA,kB

= (l, τ, FkA
, ACr, AQ,FkB

, BCr, BQ) such that 1) FkA
and FkB

are pseudorandom per-
mutations, 2) l is a Bloom Filter Learning Model representing the set S with threshold τ , 3)
(ACr, AQ) and (BCr, BQ) are classical Bloom Filters representing the sets AS

′
= {FkA

(x) : x ∈ S}
and BS

′
= {FkB

(x) : x ∈ S} respectively in the steady setting.

For convenience, we will refer to constructions (FkA
, ACr, AQ) and (FkB

, BCr, BQ) as Backup
Bloom Filter A and Backup Bloom Filter B respectively.

10

Lemma 2. Let Br be an (n, ϵ)-Bloom Filter using m bits of memory. If pseudorandom permutations
exist, then there exists a negligible function negl(·) such that for security parameter λ, constructions
(FkA

, ACr, AQ) and (Fk2, BCr, BQ) are (n, ϵ+ negl(λ))-adversarial reveal resilient Bloom Filters
each using m

′
= m+ λ bits of memory.

Lemma 2 is just a rephrasing of Theorem 4.8 of Naor and Yogev [3] and follows directly from
the theorem. We include a self-contained proof here for completeness. We also make it more evident
that the proof holds not just for adversarial resilient Bloom Filters but also for adversarial reveal
resilient Bloom Filter that provide guarantees under a strictly stronger adversarial model.

Proof. Let us consider the first construction Backup Bloom Filter A, (FkA
, ACr, AQ) (the second

construction can be proven in the same way). We first choose a key kA ∈ {0, 1}λ for the pseudorandom
permutation FkA

over {0, 1}log|U |. Let AS
′
= {FkA

(x) : x ∈ S}. Our construction algorithm ACr

merely intializes B with AS
′
. Our query algorithm on input x queries for x

′
= FkA

(x). The only
additional memory required is for storing kA which is λ bits long.

The completeness follows from the completeness of Br. The resilience of the construction follows
from the following argument: consider an experiment where FkA

in Backup Bloom Filter A is
replaced by a truly random oracle R(·). Since x haas not been queries, we know that R(x) is a
truly random element that was not queried before, and we may think of it as chosen prior to the
initialization of Backup Bloom Filter A. From the soundness of Backup Bloom Filter A, we get that
the probability of x being a false positive is at most ϵ.

Now we show that no probabilistic polynomial time (PPT) adversary A can distinguish between
the Backup Bloom Filter A we constructed using R(·) and the Backup Bloom Filter A construction
that uses the pseudorandom permutation FkA

by more than a negiligible advantage. Suppose that
there does exist a polynomial p(λ) such that A can attack Backup Bloom Filter A and find a false
positive with probability ϵ + 1

p(λ) . We can run A on Backup Bloom Filter A where the oracle is
replaced by an oracle that is either random or pseudorandom. We return 1 if A successfully finds
a false positive. This implies that we may distinguish between a truly random permutation and
a pseudorandom permutation with probability ≥ 1

p(λ) . This contradicts the indistinguishability of
pseudorandom permutations.

Theorem 2. Let Br be an (n, ϵ)-Sandwiched Bloom Filter using m bits of memory. If pseudorandom
permutations exist, then there exists a negligible function negl(·) such that for security parameter
λ there exists an (n, ϵ + negl(λ))-adversarial reveal resilient Downtown Bodega filter that uses
m

′
= m+ 2λ bits of memory.

Proof. We construct a Downtown Bodega Filter DBkA,kB ,r from a Sandwiched Bloom Filter SBr

as follows. We use the memory budget of the initial classical Bloom Filter (ICr, IQ) to construct
(ACr, AQ). We use the memory budget of the backup classical Bloom Filter (Cr, Q) to construct
(BCr, BQ). We do not modify the Bloom Filter Learning Model l which remains trained on set S
with threshold τ . We choose keys kA, kB ∈ {0, 1}λ and use 2λ bits of extra memory to store them.

The completeness of DBk,r follows from 1) the completeness of Backup Bloom Filter B and 2)
the fact that any x such that l(x) ≤ τ is declared not in S by the Downtown Bodega Filter if and
only if BQ(M,FkB

(x)) is also 0.
To prove the resilient of the construction, we first show that the security of the Downtown

Bodega Filter construction is reducible to the security of Backup Bloom Filter A and Backup Bloom

11

Filter B. Consider a false positive i.e an x /∈ S for which the Downtown Bodega Filter returns 1.
From the definition of the Downtown Bodega Filter, one of the following two cases must be true

– Case 1: The Learned Oracle returned 1 and Backup Bloom Filter A returned 1, more precisely,
l(x) ≥ τ ∧AQ(FkA

(x)) = 1
– Case 2: The Learned Oracle returned 0 and Backup Bloom Filter B returned 1, more precisely,

l(x) < τ ∧BQ(FkB
(x)) = 1

Therefore, for any probabilistic polynomial time adversary to induce a false positive in the overall
Downtown Bodega Filter construction, they must either induce a false positive in Backup Bloom
Filter A or Backup Bloom Filter B. We have already proven in Lemma 2 that both Backup Bloom
Filter A and Backup Bloom Filter B are (n, ϵ+ negl(λ))-adversarial reveal resilient. It follows that
the entire construction is (n, ϵ+ negl(λ))-adversarial reveal resilient. This concludes our proof.

6 Discussion

In this section, we discuss the only two known attacks on the Learned Bloom Filter, introduced by
Reviriego et al [2]. We refer to Attack 1 from their work as the Blackbox Mutation Attack, and
Attack 2 from their work as the Whitebox Mutation Attack respectively. We discuss the Blackbox
Mutation Attack in Section 6.1, and the Whitebox Mutation Attack in Section 6.2. Both sections
include details on how our Bodega Filter constructions mitigate the attack.

6.1 Blackbox Mutation Attack

The blackbox adversarial model defined by Reviriego et al [2] is slightly weaker but very similar
to the adversarial model we define in Challenge 3 of Section 4.2. Both our adversarial model and
Reviriego et al’s blackbox adversary model allows the adversary access to query the Learned Bloom
Filter. One major difference is that our model allows the adversary to choose the initial set S that is
represented by the Learned Bloom Filter, whereas Reviriego et al’s model does not. In their attack,
Reviriego et al first test elements until a positive (whether a false positive or true positive) is found.
They then mutate the positive by changing a small fraction of the bits in the input in order to
generate more false positives. The attack targets the Learned Oracle (recall Figure 2) by making it
generate false positives without the input reaching the Backup Bloom Filter.

Since, as we mentioned, Reviriego et al’s attack relies on the fact that the adversary can query
the Learned Oracle and make it generate false positives without any involvement of the Backup
Bloom Filter, a Sandwiched Bloom Filter construction is intuitively more resilient against this kind
of mutation attack. Since the Uptown Bodega Filter takes a pseudorandom permutation of the input
x prior to sending it to either the Learned Oracle or the Bloom Filters, the mutation approach
is no longer viable. Unlike in the Uptown Bodega Filter, the Downtown Bodega Filter does give
the adversary the ability to query the Learned Oracle directly. However, the extra (pseudo-random
permuted) Backup Bloom Filter for the case l(x) > τ lowers the probability of mutation-based false
positives from the Learned Oracle ending up as false positives in the overall construction.

6.2 Whitebox Mutation Attack

The whitebox adversarial model defined by Reviriego et al [2] is similar to the adversarial model
we define in Challenge 4 in Section 4.2. With knowledge of the state of the Learned Oracle, the

12

adversary can generate mutations in a more sophisticated way. Reviriego et al provide the example
of a malicious URL dataset where an adversary may begin with a non-malicious URL and make
changes such as removing the “s” in “https” or removing the “www” to generate false positives. Since
we have shown the Downtown Bodega Filter to be (n, t, ϵ)-adversarial reveal resilient in the steady
setting, such mutations will not provide the adversary any advantage over the construction.

7 Hybrid Adversarial Model

Learned
Oracle

Backup Bloom
Filter B

Input Negatives

Positives

Negatives

Positives

PRP

Negatives Positives

Backup Bloom
Filter A

PRP

False positive

Adversarial input

False positive

True negative

False positive

Fig. 5: To generate a false positive in the Downtown Bodega Filter, the adversary must either 1)
generate a false positive in the Learned Oracle and direct their query through Backup Bloom Filter
A or 2) generate a true negative in the Learned Oracle and direct their query through Backup
Bloom Filter B

Consider a streaming workload sent to a Bloom Filter consisting of N queries. An adversary
chooses exactly αN of those queries, where α ∈ [0, 1]. For an adversarial query to generate a false
positive in the Downtown Bodega Filter, one of the following must hold true for a given query (see
Figure 5):

1. The query generates a false positive in the Learned Oracle and a false positive in Backup Bloom
Filter A

2. The query generates a true negative in the Learned Oracle and a false positive in Backup Bloom
Filter B

We first model the false positive probability of the Downtown Bodega Filter as a function of its
memory budget.

7.1 Downtown Bodega Filter

Without loss of generality, let αP of the adversarial queries be such that they generate false positives
in the Learned Oracle and go through Backup Bloom Filter A. Similarly, let αN of the adversarial
queries be such that they generate true negatives and go through Backup Bloom Filter B. Note
that α = αP + αN .

Let FPR(m) be the expected false positive probability of a classical Bloom Filter with memory
budget m. Let FPRL(m) be the expected false positive probability of a Learned Oracle L with
memory budget m. Similarly, let TNRL(m) be the expected true negative probability of a Learned

13

Oracle L with memory budget m. We make the assumption that the correctness probability of
the Learned Oracle is independent of the correctness probability of the Backup Bloom Filters.
In particular, we assume that for any m,m′, FPRL(m) ∩ FPR(m′) = FPRL(m)FPR(m′) and
TNRL(m) ∩ FPR(m′) = TNRL(m)FPR(m′).

Consider a system where the total memory budget is M . Let the memory allocation of a
Downtown Bodega Filter from memory budget M be assigned as follows. Let mL be the number of
bits of memory assigned to a Learned Oracle L. Let mA be the number of bits of memory assigned
to Backup Bloom Filter A. Let mB be the number of bits of memory assigned to Backup Bloom
Filter B. Let λ be the number of bits assigned to the key of the pseudorandom permutations used
prior to Backup Bloom Filter A and Backup Bloom Filter B. Note that to stay within the memory
budget it must hold that M ≥ mL +mA +mB + 2λ.

Theorem 3. The Downtown Bodega Filter provides an expected false positive probability of

FPRDB(M) = FPRL(mL)FPR(mA) + TNRL(mL)FPR(mB)

where the probability is taken over the random coins of the pseudorandom permutations, the
random coins used in the construction of the Learned Oracle, the random coins used in the construction
of Backup Bloom Filters A and B, and the random coins used in the generation of the non-adversarial
queries.

Proof. From the definition of a Downtown Bodega Filter it follows that a false positive in the overall
construction must either be a false positive in Backup Bloom Filter A or a false positive in Backup
Bloom Filter B. If the query is a false positive in Backup Bloom Filter A, it must also be a false
positive in the Learned Oracle. Alternatively, if the query is a false positive in Backup Bloom Filter
B, it must be a true negative in the Learned Oracle. The result follows.

We now derive an expression for the false positive probability of the Downtown Bodega Filter in
the hybrid adversarial setting. Recall that we are assuming that out of N queries, the adversary
makes αP queries that generate a false positive in the Learned Oracle and αN queries that generate
a true negative in the Learned Oracle.

Theorem 4. In the hybrid adversarial setting, the expected false positive probability of the Downtown
Bodega Filter is

αPFPR(mA) + αNFPR(mB) + (1− αP − αN)FPRDB(M)

where the probability is taken over the random coins of the pseudorandom permutations, the
random coins used in the construction of the Learned Oracle, the random coins used in the construction
of Backup Bloom Filters A and B, and the random coins used in the generation of the non-adversarial
queries.

Proof. For each query i among N queries, one of the following cases holds.
Case 1: The query is not an adversary generated query. Therefore as established by Theorem 3,

the False Positive Probability for the query is FPRDB(M). There are (1− αP − αN)N such queries.
Case 2: The query is an adversary generated query such that it generates a false positive in

the Learning Oracle. Since the Learning Oracle generating a false positive and the Learning Oracle
generating a true negative are mutually exclusive events, the False Positive Probability for the query

14

is the False Positive Probability of Backup Bloom Filter A i.e FPR(mA). There are αPN such
queries.

Case 3: The query is an adversary generated query such that it generates a true negative in the
Learning Oracle. Following logic similar to case 2, we can derive the False Positive Probability of
the query to be FPR(mB). There are αNN such queries.

The expected false positive probability of N queries is then 1
N (αPN ·FPR(mA)+αNN ·FPR(mB)+

(1− αP − αN)N · FPRDB(M)). The statement of the theorem follows.

7.2 Secure Classical Bloom Filter

An alternative construction is to simply use a well-tuned (n, t, ϵ)-adversarial reveal resilient classical
Bloom Filter. We will refer to this construction in this section as the Secure Classical Bloom
Filter without causing confusion. The expected false positive probability of the Secure Classical
Bloom Filter is then FPR(mL +mA +mB + λ). The extra λ is due to the fact that the Secure
Classical Bloom Filter requires one less pseudorandom permutation than the Downtown Bodega
Filter. The expected false positive probability of the Secure Classical Bloom Filter is, by definition,
FPR(mL +mA +mB + λ).

We now provide an expression that encapsulates all the cases in the hybrid adversarial setting
where a Downtown Bodega Filter construction provides a lower false positive probability compared
to a secure Classical Bloom Filter construction for the same memory budget.

Theorem 5. For a given memory budget M = mL + mA + mB + 2λ, in the hybrid adversarial
setting with given α = αP + αN , the expected false positive probability of the Downtown Bodega
Filter is lower than the expected false positive probability of the Secure Classical Bloom Filter if the
following holds true:

αPFPR(mA) + αNFPR(mB) + (1− αP − αN)FPRDB(M) < FPR(mL +mA +mB + λ)

where the probability is taken over the random coins of the pseudorandom permutations, the
random coins used in the construction of the Learned Oracle, the random coins used in the construction
of Backup Bloom Filters A and B, the random coins used in the construction of the Secure Classical
Bloom Filter, and the random coins used in the generation of the non-adversarial queries.

Proof. The proof follows directly from the expression derived for the expected false positive proba-
bility of the Downtown Bodega Filter construction in Theorem 4 and the expression for the expected
false positive probability of the Secure Classical Bloom Filter.

7.3 Tradeoffs

From [7], we know that the false positive probability for a Bloom Filter with m bits encoding a set
S of cardinality n, using k hash functions is

FPR(m) = (1− e−kn/m)k

In our analysis, we use the value of the number of hash functions k is always optimally chosen
to be ln 2 · (m/n) [7] and n is constant. We further treat a Learned Oracle as a Bloom Filter with

15

better false positive probability for the same memory budget, consistent with assumptions made by
prior work [1] [8].

FPRL(m) = c(1− e−kn/m)k

where c ≤ 1.
We note that the true negative probability of a Learned Oracle is merely the probability

of a negative entry (which is constant as we are assuming set S is constant) is not marked
as a false positive. Let QN be the fraction of true negative non-adversarial queries. We have
TNRL(m) = (1− FPRL(m))QN = (1− c(1− e−kn/m)k)QN .

To evaluate how much lower the false positive probability of a Learned Oracle needs to be for
the Downtown Bodega Filter to perform better than the Secure Classical Bloom Filter, we may then
use these derivations in Theorem 5.

7.4 Realistic Example

We choose realistic values for our example from prior work on evaluating Learned Bloom Filters [1]
on Google’s transparency report. We pick 2 Megabytes as our memory budget, m, chosen from the
range of values in Figure 10 of [1]. We choose the cardinality of the set we want to encode, n, as 1.7
million based on the number of unique URLs in Google’s transparency report evaluated in [1]. With
a memory budget of 2 Megabytes, [1] demonstrate that a Learned Bloom Filter has 0.25 of the False
Positive Ratio of a Classical Bloom Filter, hence we use that as our value for c (See Section 7.3).

Parameter Explanation Value
M Memory Budget 2 Megabytes
mL Memory budget for Learned Oracle 1 Megabytes
mA Memory budget for Backup Bloom Filter A 0.5 Megabytes
mB Memory budget for Backup Bloom Filter B 0.5 Megabytes
n Cardinality of set to encode 1.7 Million
c FPR of Learned Bloom Filter / FPR of Classical Bloom Filter 0.25
λ Number of bits in secret key 128 bits

Table 1: A summary of the chosen values for our realistic example of the performance tradeoffs of a
Downtown Bodega Filter compared to a Secure Classical Filter in the hybrid adversarial case

We use 128 bits as the size of our security parameter, λ. For the case of the Downtown Bodega
Filter, we let the Learned Oracle take 1 Megabytes, while dividing the remaining 1 Megabytes
equally between Backup Bloom Filters A and B. Lastly, we take α to be a variable ranging from 0
to 0.2 equally divided between αP and αN . Our chosen values are summarized in Table 1. Figure 6
shows the results of our calculations. As can be seen, when the adversary has access to less than
a certain cutoff fraction of the workload, the Downtown Bodega Filter outperforms the Secure
Classical Bloom Filter for the same memory budget.

Acknowledgments. The authors would like to thank Hussain Tirmazi for intitial feedback on the paper

Disclosure of Interests. The authors have no competing interests

16

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Value of

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fa
lse

 P
os

iti
ve

 R
at

e

Downtown Bodega Filter
Classical Secure Bloom Filter

Fig. 6: The False Positive Rate of the Downtown Bodega Filter compared to the Secure Classical
Bloom Filter in the hybrid adversarial setting where the adversary chooses between 0 and 0.2 of the
workload.

17

Bibliography

[1] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for learned index
structures,” in Proceedings of the 2018 International Conference on Management of Data, ser.
SIGMOD ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 489–504.
[Online]. Available: https://doi.org/10.1145/3183713.3196909

[2] P. Reviriego, J. Alberto Hernández, Z. Dai, and A. Shrivastava, “Learned bloom filters in
adversarial environments: A malicious url detection use-case,” in 2021 IEEE 22nd International
Conference on High Performance Switching and Routing (HPSR), 2021, pp. 1–6.

[3] M. Naor and Y. Eylon, “Bloom filters in adversarial environments,” ACM Trans. Algorithms,
vol. 15, no. 3, jun 2019. [Online]. Available: https://doi.org/10.1145/3306193

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM,
vol. 13, no. 7, p. 422–426, jul 1970. [Online]. Available: https://doi.org/10.1145/362686.362692

[5] K. Christensen, A. Roginsky, and M. Jimeno, “A new analysis of the false positive rate of a
bloom filter,” Information processing letters, vol. 110, no. 21, pp. 944–949, 2010.

[6] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and Y. Tang,
“On the false-positive rate of bloom filters,” Information processing letters, vol. 108, no. 4, pp.
210–213, 2008.

[7] M. Mitzenmacher and A. Broder, “Network applications of bloom filters: A survey,” Internet
Mathematics Journal, 2004.

[8] M. Mitzenmacher, “A model for learned bloom filters, and optimizing by sandwiching,” in
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., 2018, p. 462–471.

[9] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice of bloom filters for
distributed systems,” IEEE Communications Surveys & Tutorials, vol. 14, no. 1, pp. 131–155,
2012.

[10] T. Gerbet, A. Kumar, and C. Lauradoux, “The power of evil choices in bloom filters,” in 2015
45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, 2015,
pp. 101–112.

[11] D. Clayton, C. Patton, and T. Shrimpton, “Probabilistic data structures in adversarial
environments,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1317–1334. [Online]. Available: https://doi.org/10.1145/3319535.3354235

[12] M. Filic, K. G. Paterson, A. Unnikrishnan, and F. Virdia, “Adversarial correctness and
privacy for probabilistic data structures,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1037–1050. [Online]. Available:
https://doi.org/10.1145/3548606.3560621

[13] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition, 2nd ed. Chapman
& Hall/CRC, 2014.

https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3306193
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/3319535.3354235
https://doi.org/10.1145/3548606.3560621

	Adversary Resilient Learned Bloom Filters

