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Abstract. Recent years have witnessed a significant development for functional encryption (FE) in
the multi-user setting, particularly with multi-client functional encryption (MCFE). The challenge
becomes more important when combined with access control, such as attribute-based encryption
(ABE), which was actually not covered by the FE and MCFE frameworks. On the other hand, as for
complex primitives, many works have studied the admissibility of adversaries to ensure that the
security model encompasses all real threats of attacks.

In this paper, adding a public input to FE/MCFE, we cover many previous primitives, notably
attribute-based function classes. Furthermore, with the strongest admissibility for inner-product
functionality, our framework is quite versatile, as it encrypts multiple sub-vectors, allows repetitions
and corruptions, and eventually also encompasses public-key FE and classical ABE, bridging the
private setting of MCFE with the public setting of FE and ABE.

Finally, we propose an MCFE with public inputs with the class of functions that combines inner-
products (on private inputs) and attribute-based access-control (on public inputs) for LSSS policies.
We achieve the first AB-MCFE for inner-products with strong admissibility and with adaptive
security. This also leads to MIFE for inner products, public-key single-input inner-product FE
with LSSS key-policy and KP-ABE for LSSS, with adaptive security while the previous AB-MCFE
construction of Agrawal et al. from CRYPTO ’23 considers a slightly larger functionality of average
weighted sum but with selective security only.

1 Introduction and Motivation

Functional Encryption (FE). To overcome the all-or-nothing limitation of traditional encryption,
Functional Encryption [15] has been introduced to allow the sender to control access to their
encrypted data in a fine-grained manner through functional decryption keys. It was considered
as a generalization of Attribute-Based Encryption (ABE) and Identity-Based Encryption (IBE),
when the evaluated function is the identity function under some conditions. But as the inputs
are all encrypted in the ciphertext, this does not really cover ABE and IBE.

Multi-User Settings. In practice, the number of useful functions may not be so large, and they
can even be known in advance: Public Key Encryption (PKE) can then be transformed into FE
by encrypting the evaluations of each function under different keys. But this covers the so-called
single-input setting where one player knows the whole input at encryption time. Functional
Encryption becomes more interesting in multi-user/input settings. Multi-Input Functional
Encryption (MIFE) and Multi-Client Functional Encryption (MCFE) have thus been introduced
in [24, 25], where the function evaluates on a list of inputs. In the former setting, a single
user encrypts the various inputs at different times, while in the latter setting, multiple users
(called clients) independently encrypt their inputs. Evaluation of the function performed on
the joint-inputs, in an encrypted way using a functional decryption key generated by a trusted
authority. Another remark is that the public-key setting only makes sense for single-input FE.
When considering multi-client or multi-input settings, because of possible combinations of the
inputs, security requires secret-key encryption. However, our first contribution is to show that
MCFE with the strong admissibility notion [30] also covers public-key single-input FE. Secondly,
defining FE and MCFE with public inputs, we additionally cover ABE and IBE, where the
attributes and identities can be public. Last but far from the least, adding public inputs to MCFE
is complementary to their existing advantages, notably towards the conversion from MCFE to
MIFE: guaranteeing security against repetitions on private inputs is sufficient for our notion of
MCFE to imply MIFE. The following paragraph elaborates more about this relationship.
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On the unreconciliation between MCFE and MIFE. At first glance, MIFE appears to be just
MCFE with a constant label. However, the distinction is more significant because in MIFE, there
is only one encryptor, while in MCFE, there are multiple encryptors (clients). Therefore, whereas
there is no corruption of users in MIFE, dealing with corruptions in MCFE is a main concern. In
summary, there are two advantages of MCFE over MIFE:

» with a label associated to each encrypted input, one can limit the combinations of the inputs
for each evaluation

« as inputs can be encrypted by different clients, multiple independent secrets are involved, for
each client, then one can deal with corruption of individual keys in MCFE, whereas in MIFE
there is a unique encryptor and no corruption can be allowed.

At this point, it seems that MCFE is strictly stronger than MIFE. However, again, the situation is
more complicated because, as pointed out by [18], in the original definition of MCFE [24, 17], the
clients were assumed not to encrypt two messages under the same label. Under this restriction,
one cannot turn a MCFE to a MIFE. In short, MIFE, when augmented with labels, can be seen
as an MCFE with repetitions but without corruption.

But the story is not at the end yet, especially when one wants to combine MCFE and MIFE
with other functionalities, such as attribute-based access-control [29, 10], where the conversion
MCFE to MIFE is highly non-trivial as mentioned in [10]. As a final remark, our context of
multi-client /multi-input setting for FE with access control is different from the setting of multi-
authority ABE, e.g. as studied in [21], where in our case there is always only one authority
generating the functional decryption keys.

From Secret-key MCFE to Public-key FE. We now consider a viewpoint that is independent
of the multi-user setting. Following the first formalization in [17], many follow-up studies on
MCFE, for instance [2, 1, 28, 19, 7], set down an admissibility condition in order to exclude
trivial attacks: for any corrupted client ¢ and challenge message-pair (xio), l’;l)) for 4, it requires
that xgo) = xgl). This is indeed the right condition if the encryption is deterministic, which was
considered on the first period of development of MCFE, as with the corruption of the encryption
key ek;, the adversary could re-encrypt xio) and compare with the challenge ciphertext. However,
if the encryption is probabilistic, this condition is not well justified and appears too restrictive.
Indeed, we observe that it is this condition where for all ¢ € C all challenge pairs x§0> = argl) that
prevents to go from the secret-key MCFE to the public-key FE. To obtain a public-key FE from
a secret-key MCFE, the natural approach is to instantiate the MCFE with n = 1 client, then
to publish the only client’s encryption key ek as the public key. Under the early admissibility
condition as per [17] of the underlying MCFE, in order to base the security of the public-key
FE on the security of the MCFE, the only queries that the reduction can forward to its MCFE
challenger are the trivial one from the FE adversary where 2@ = z®, and this is far weaker
than the standard CPA-security of public-key FE. It is now clear that a less restrictive notion
of admissibility, equivalently a stronger notion of security, is needed to capture the security of
public-key FE from the security of MCFE.

Final Syntactical Point: Public Inputs. When reviewing the existing initial definitions of FE [15],
MCFE [17], and MIFE [24], we observe that the syntax of encryption in these definitions themselves
a priori does not allow parts of the plaintext to be public. When denoting encryption keys ek;
(in the secret-key MCFE/MIFE setting) or public key pk (in the public-key single-client FE),
specifically the MIFE syntax in [24, Section 2.1] is written c¢<—Enc(ek;, z) given the i-th plaintext
x, the MCFE syntax in [17, Definition 1] is written ¢+« Enc(ek;, x,tag) given the i-th plaintext
x and the tag tag, and the FE syntax in [15, Definition 2] is written ¢+ Enc(pk, x) given the
plaintext x.

First of all, having the encryption as they are listed above, the IND-CPA security alone
implies that no partial information about the plaintext is leaked. This applies to the case



x = (m,S) where m is the contents of the message and S is some index/attribute in the context
of KP-ABE or IBE. As such, without further specifications, how to derive non-attribute/index-
hiding KP-ABE/IBE from the existing definitions of FE, MCFE, and MIFE is not clear. It then
necessarily requires more properties on the function class so as to capture the non-attribute-
hiding property. We emphasize that this is also the approach that was taken in [15], where the
authors introduced the notion of empty key that defines a function such that “anyone can |...]
obtain all the information about z that intentionally leaks from ¢” [15, Page 3]. This empty-key
function is indeed what we need to capture the non-attribute-hiding property when expressing
KP-ABE/IBE in the syntax of FE. With respect to [15], when describing how to capture KP-ABE
or Ciphertext-Policy ABE [15, Page 5], the empty-key funciton however is not made clear in the
key space of all poly-sized boolean formula in the former, nor in the key space of all poly-long
bitstrings of variables in the latter. In the multi-user setting of MCFE/MIFE, no such property
of empty-key function is mentioned in the introduced definitions [24, 17].

1.1 This Paper

A Simple Extension of MCFE to also Cover MIFE, public-key FE and ABE. From the above
discussion, a crucial question arises:

How can we extend MCFE in a minimal way to encompass all the settings, from MIFE to
public-key FE and ABE?

Hence, the motivation behind proposing MCFE with public inputs, wherein we simply augment
the ciphertexts of the MCFE with a public inputs. This part of public inputs is taken care by the
function evaluation. However, in order to cover public-key FE, we need to consider the stronger
notion of admissibility with the possibility to handle sub-vectors.

Conceptual Contribution. In a nutshell, we propose a simple extension of MCFE with
not only private but also public data to be input to the function evaluation. Combining with
the consideration of a stronger admissibility for adversary and sub-vectors in encryption, we
cover previous primitives such as MCFE, MIFE, public-key single-input FE and ABE. When
only private inputs are considered, if the function involves attributes for access-control, this is
necessarily with the attribute-hiding property, while this is not always required. Hence, we will
show this is quite relevant for MCFE and MIFE with attribute-based access-control. We also
describe, and achieve, a very high security notion that, while considering the multi-client setting
with secret-key encryption, also covers public-key attribute-based encryption.

Strong Admissibility and Public-Key Setting. Recently, a stronger and optimal notion of the
admissibility of an attack was introduced [30], without the above restriction. Intuitively, to
recall, when there is a unique client, with the initial admissibility from [17, 2, 1, 28, 19, 7],
when the encryption key of this single user is corrupted, the only queries that the reduction can
forward are the trivial one from the FE adversary where z® = z®, hence it is not sufficient to
capture the reduction from MCFE to FE with meaningful CPA-security. With strong admissibility
from [30], i.e. without the requirement that xEO) = :L'El) for corrupted i € C, we show that the
reduction can capture the security of the public-key FE by making public the encryption key. In
particular, within the function class to compute inner products, addressing strong admissibility
also necessitates the ability to manage sub-vectors in encryption, a technically relevant issue
since under this stronger admissibility, moving to public-key FE gives the usual functionality of
inner products, and not just scalar products.

Our work extends the work from [30], and we will develop more the conceptual implications
in the next paragraph, as well as the concrete case in Concrete Constructions below. A
discussion on our strong admissiblity is given in paragraph Discussion on admissibility after
the formal definition in Definition 4. The aforementioned implications can be summarized with
the following simplified diagram (more details are given in Theorem 7), where



MCFErPPYv ____ MIFE

|

FE"P® — KP-ABE

« MCFE™PP" is our new notion of MCFE, with strong admissibility and public inputs, but
repetitions are only allowed on the private inputs (multiple encryption queries with the same
tag must be with the same public input);

« MIFE is the usual definition, with private inputs only, with repetitions, without tags nor
corruptions. The implication comes from the allowed repetitions on private inputs in our
MCFE;

« FEWPY js the classical public-key single-input FE definition enhanced with public inputs.
Implication comes from the strong-admissibility that allows to deal with public-key encryption
when there is a unique client;

» KP-ABE denotes the usual definition of key-policy ABE. The implication comes from the
public inputs in FEYP"?_ that can be used to encode the attributes in a non-hiding way.

It is very interesting that MCFE with the strong admissibility from [30] leads to public-key
single-input FE, when there is a unique client, and even to Key-Policy ABE when allowing public
inputs (to provide the attributes in the ciphertext).

Concrete Constructions. These implications depend on the actual classes of functions. As
a constructive result, we propose an MCFE with the class of functions that combines inner-
products (on private inputs) and attribute-based access-control (on public inputs) for LSSS
policies. It achieves the strong admissibility notion, in the adaptive setting (whereas [10] only
provides selective security), with repetitions on the private inputs and static corruptions. It
also deals with sub-vectors (whereas [29, 30] only consider scalars). As a consequence, removing
the tags, the corruptions and the public inputs, we obtain an MIFE for inner products, with
strong admissibility and adaptive security; limiting to one client, one gets public-key single-input
inner-product FE and KP-ABE for LSSS, with adaptive security. Our construction uses pairings,
and we note that there exists other approaches to tackle IPFE with access control using lattices,
e.g. [26, 35], though they are only single-client to our knowledge.

We would like to emphasize that strong admissibility is not only theoretical (as it allows us
to cover public-key single-input inner-product FE) but also more intuitive: the only restriction
we impose on the adversary is to prevent them from choosing challenge messages in such a
way that, with their corrupted keys and the function evaluation, they cannot trivially win the
game by evaluating the function on chosen messages. Requiring the adversary to use the same
message for corrupted users as in the previous admissibility now seems somewhat artificial to
us. Achieving strong admissibility is also more challenging as it requires the encryption to be
probabilistic and any deterministic encryption cannot meet strong admissibity as we already
explained. Consequently, the only two existing AB-MCFE schemes [29, 10] are not secure when
considering strong admissibility as the encryptions in these schemes are deterministic. Of course,
we do not claim to break the schemes [29, 10], because we consider a stronger security level. We
would propose that strong admissibility should be considered in the multi-user setting of FE.

In summary, we propose the first AB-IP-MCFE with strong admissibility and with adaptive
security for inner-product functionality while [10] considers a slightly larger functionality of
average weighted sum but with selective security on the challenge messages. In term of efficiency,
we have the same asymptotic efficiency as [10]: each client sends a ciphertext of linear size in the
size of its subvector message, independent of the total number of clients.

Relation with Multi-Party Functional Encryption. Our MCFE with Public Input can be seen
as a special case of Multi-Party Functional Encryption (MPFE) [7]. However, our goal is not
to define yet another new and more general primitive, but only to add the minimal extension



to an existing well-studied primitive to reconcile with other primitives. By simply considering
public inputs for MCFE with a stronger admissibility notion, we cover not only attribute-based
access-control, but also public-key single-input FE. While MPFE is very general, it only considers
the secret-key encryption setting and does not cover public-key single-input FE. Up to the notions
of MCFE, our results complete the picture of unifying MCFE/MIFE/FE/ABE, by considering the
public inputs and the strong admissibility notion. The strong admissibility is necessary following
our discussion in the paragraph From Secret-key MCFE to Public-key FE above, in order to
capture the security of public-key FE from the security of MCFE, and is then proven sufficient in
our Theorem 7. The public inputs are necessary to capture the non-attribute-hiding property of
KP-ABE/IBE in the syntax of FE, as discussed in the paragraph Final Syntactical Point: Public
Inputs above, inherits the same spirit of empty-key function in [15], and is cleanly demonstrated
in our Theorem 7. Finally, our concret final AB-IP-MCFE in Corollary 13 is the first to achieve
adaptive security for inner-product functionality in the multi-client setting, with public inputs,
and with strong admissibility.

1.2 Technical Overview

Given the above conceptual overview, we now highlight the technical points for our concrete
construction of MCFE to compute inner products under access control in Section 4.2. The
functionality of interests is fs'sbvqu x LSSS and ’Fslsbvec,B contains Fy, v, : Hie[n} (Zévi) — ZLyg
that is defined as Fy, .y, (X1,...,Xpn) == Y i1 (X, ¥i), where for all 4, max(||X;|oc, [|¥illoc) < B,
where B = poly(\) € N is a polynomial. For the ease of notation, we can assume the subvectors
are of length N = max;(NN;). The access control is given by Rel : LSSS x ([]i; 24%) — {0, 1},
where Rel(A, (S;);) =[], A(S:), the class LSSS contains Linear Secret Sharing Schemes over Att,
and 27t denotes the superset of an attribute space Att C Lyq.

First Technical Obstacle: Admissibility with vectors and probabilistic encryption.
Our goal is to handle the less restrictive admissibility condition w.r.t the function calculating
Fy oy (X1, Xy) = > (X4, ¥i), under access control from Rel. Each of the n clients in our
MCFE scheme are encrypting a vector x;, together with a tag tag and their set of attributes S;.
The fact that we are working with vectors is generalizing first and foremost the construction by
Nguyen et al. [29] that only supports scalar inputs x; € Z,. Moreover, under the new admissibility
that is studied in [30], conditions for the challenge ciphertexts in terms of corrupted clients
i become less restrictive. To recall, the admissibility in [29] is inherited from the orginal one
introduced in [17] and will require that for any corrupted i € C, it holds that xgo) = xgl). Following
the motivation that is put forth in [30] so as to relax the foregoing condition, in the case of
scalars where inputs to clients ¢ have dimension 1, the stronger admissibility condition is that for
any corrupted ¢ € C, for any key queries with y; as the i-th parameter for inner products, it must
hold (3:7(;0) — a:gl)) -y; = 0. In our case, having the goal of generalizing [29] to encrypt vectors under
the stronger admissibility, the condition becomes: for any corrupted i € C, for any key queries
with y; as the i-th parameter for inner products, it must hold <X§0) — X;l), yi) = 0. This opens up
much more liberty to the adversary in terms of what they can challenge. That is, as soon as
the dimension of the vectors (XEO), xgl), yi) is at least 2, the adversary can choose (XEO),XED) such
that xgo) — xgl) is orthogonal to y;, where both x§0> — x?) # 0,y; # 0. In retrospective, the scalar
version of [30] implies already that either (;rio) — ZL’;I)) =0 or y; = 0, which is a special case of the
vector version. Last but not least, regarding honest i € H := [n]\ C, it must hold that for all key
queries with (y;)ie as the parameters corresponding to honest slots, D ;4 (xgo) - xil), yi) = 0.
Particularly, the condition (x” —x{",y;) = 0 for any i € C and any (i,x,", x.",tag) to LoR
already implies that encryption of our MCFE must be necessarily probabilistic, because the
adversary is allowed to makes challenge queries XEO) — xgl) # 0. This is highlighted in paragraph

Strong Admissibility and Public-Key Setting of our introduction.



Solution to the First Obstacle: Probabilistic Vectorization of the Scheme of [29]. Our
starting point is the scalar construction of [29], in the bilinear setting (G1, G2, Gy, 91, 92, Gt, €, q)
and Gi, G, Gy are all written additively. The crux of our vectorization is to use the dual pairing
vector spaces (DPVSes) to encode the vectors x; and y;. In particular, each client encrypt their
vector x; by c-vectors in G, and the functional key for y; is encoded in k*-vectors in Gy. The
importance is randomness must be added to the c-vectors individually by each 4, which cannot
be founded on RO or pseudorandom functions as in previous works [29, 10]. To implement such
randomness and ensure that correctness is preserved, we make use of the concrete fact of DPVS
that it provides linear combinations of vectors in G; and G». This can be verified when viewing
a DPVS as a Zg-algebra, sastisfying Z,-linearity and being equipped with an product operation
that is provided by the bilinear map e. We refer to Section 4.2 for more details and Algorithm 2
to see how the decryption is done. The probabilistic vectorization is also used to handle the
repetitions of challenge ciphertexts, as we will see in the below paragraph.

Second Technical Obstacle: Repetitions and Access Control. We have mentioned in the
introduction that tolerating repetitions of challenge messages XEO) , xf) is a crucial requirement for
MCFE, in order for MCFE to imply MIFE in terms of provably secure cryptographic primitives. In
our setting with both private and public inputs, the challenge ciphertexts given private (XEO),XED)
are encrypted with public parts comprising of a tag and the set of attributes S;. This means that
repetitions are now must be vis-d-vis the public parts, in particular S;. The latter complicates
significantly the situation, which is already observed in a very recent work by Agrawal et al. [10].
Indeed on one hand, for a specific slot ¢ € [n] and tag, full repetitions of (xio’j“,xgl’j")) and SY?
mean that the MCFE should be resilient against attacks that try combining different attribute
set SY? £ SYV at slot i, where A(SY") # A(SY”). On the other hand, in terms of the inner
product calculation, allowing repetitions on the private inputs XEO) , Xél) for a fixed (i,tag) needs
being taken into account by the admissibility: for all repetitions j;

Sy = 0 )
1€EH

This implies for each i € H, over all repetitions j;, the term <x§0’j” — Xgl’”), yi) is constant. At

the same time, for all ¢ € C that are corrupted, under repetitions j;, it must be

0 ) =0 ®

This makes sense even in the case of static corruption, since we do not prohibit such queries
even after the set C is fixed. Finally, condition (2) does not need to cover private inputs of
corrupted ¢ € C that are not queried to the oracle LoR because there exists no challenge bit
b in those self-crafted ciphertexts using (i € C, ek;, tag) on some z;, and derypting jointly with
others challenge ciphertexts under some key dkA,(yi)ie[n] always gives the same i-th component
(zi,y;) regardless of b.

Solution to the Second Obstacle: Masking with (Private-only) Repetitions. In this
work we restrain our focus to the case where the repetitions are only allowed for the private
inputs (XE()), xf)). That is, the adversary is allowed to query multiple (XEO’“), xi-l’ji)), indexed by 7;,
for a fixed (i,tag,S;). Dealing with private-input repetitions is handled by our generalization of
the masking lemma from [29]. The formal statement of the lemma can be found in Lemma 1. At
a high level, the setting of Lemma 1 contains a set of c-vectors in which attributes j are encoded,
and a set of k*-vectors that encode a policy A by secret shares (a;) cList-Att(a) W-r-t the policy
A. The lemma proves that for any given repetitive 2" and y € Z,, where rep € [J], we can
randomize the c-vectors by random z; ¢ Zy, at the same time encoding (a’;/2;) jeList-Att(a) D
the k-vectors. Particularly (a}/2;)jcListAtt(a) 1S @ decorrelated set of shares (a})jeListAte(a) W-T-t

the policy A to share q & Zg4. In the proof of the MCFE, we alllow repetitions of the challenge



ciphertexts while fixing (i, tag,S;). After applying Lemma 1°, as soon as A(S;) = 0, there is an
attribute j whose z; & Zy never appears in the c-vectors returned to the adversary, thanks to
the fact that (i,tag,S;) is fixed once for all repetitions of private inputs at i. That implies the
decorrelated (a;'/zj)jeList—Att(A) cannot be related together, in an information theoretical sense,
to recover (a;) jeList-Att(A) and reconstruct the shared value. We are then allowed to switch ag
into a uniformly random value for further steps in the MCFE proof. Finally, as demonstrated in
Theorem 7, even in this setting of private-only repetitions, our MCFE with public inputs still
cover MIFE, and the concrete scheme for inner products with access control in Section 4.2 gives
MIFE for inner products.

Third Technical Obstacle: Adaptive Security. Another technical hurdle with which

we successfully deal in our MCFE is the adaptive security of the challenge queries x99 x ()

) by’
indexed by repetitions j; along with public inputs (7, tag, S;). Existing comparable schemes either

achieves selective security [10], or considers the simpler scalar case [29].

Solution to the Third Obstacle: Adaptive Security via Perfect Indistinguishability
and Complexity Leveraging. Aiming at adaptive security w.r.t (Xgo’“),xgl‘ji)) with public
inputs (7,tag,S;), we employ a complexity leveraging technique that is based on formal basis
changes in the dual pairing vector spaces. More specifically, in order to prove two hybrids
G;, Gij1 i for some fixed K, are indistinguishable in the adaptive security proof, we define an
event E that happens with fixed probability and whose probability space depends on the data
that can be adaptively chosen by the adversary. Then, condition on F we move to the selective

version Gj, Gf,q,..., G}, k. If we can prove the sequence of perfect indistinguishability involving

{Gi | B} ={Gi1|E} =--- ={Gjyx | E}

where E happens with fixed probability and is independent of the view of the adversary during
the reductions {Gj,, | E} = {G},,,,|F} in the sequence, for all ¢ € [K — 1], then a probabilistic
argument concludes that {G;} = {G;41} = -+ = {G;1+x}. The formal basis changes are used to
achieve perfect indistinguishability between these selective versions {GJ,, | E'} of the game. In the
MCFE adaptive proof, the adaptive data include (XEO"“), xgl"”)) indexed by multiple repetitions j;.
We extensively use admissibility conditions (1) as well as (2) to define the basis changes. Details
can be found in the proof of Theorem 11, as well as its Proof Strategy that precedes, the final

probabilistic calculation for complexity leveraging can be examined in (10), for instance.

2 Preliminaries

We write [n] to denote the set {1,2,...,n} for an integer n. For any ¢ > 2, we let Z; denote
the ring of integers with addition and multiplication modulo ¢q. For a prime ¢ and an integer
N, we denote by GLn(Z,) the general linear group of of degree N over Z,. We write vectors as
row-vectors, unless stated otherwise. For a vector x of dimension n, the notation x[i] indicates
the i-th coordinate of x, for ¢ € [n], and we write 1x € {0,1}" to denote the indicator vector of
x. For two vectors x,y of the same length, we write the Hadamard product x oy := (x[i]y][i]):
to denote the component-wise product of x and y. We will follow the implicit notation in [23]
and use [a] to denote g* in a cyclic group G of prime order ¢ generated by g, given a € Z,. This
implicit notation extends to matrices and vectors having entries in Z,. We use the shorthand
ppt for “probabilistic polynomial time”.

3 The randomness that is needed for the masking also comes from our above probabilistic vectorization, wherever
we need individual randomness.



Hardness Assumptions. We need some the Decisional Diffie-Hellman (DDH) assumption
in a cyclic group G of prime order ¢. In a cyclic group G of prime order ¢, the (DDH) assumption
in G assumes that no ppt adversary can distinguish the distributions {([1], [a], [0], [ab])}
and {([1],[a], 8], [c])} for a,b,c <> Z,. In the bilinear setting (G1, G2, Gy, g1, g2, gr, €, q), the
Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH assumption in
both G1 and Go.

Dual Pairing Vector Spaces. Formal definitions can be found in Appendix A.2. Details
of basis changes are recalled in the appendix A.6. We use prime-order bilinear group setting
(G1,G2,Gt, 91,92, 9t,€,q) and Gi1,Gy, Gy are all written additively. Let us fix N € N and
consider G having N copies of G1. Any x = [(z1,...,2n)]; € GY is identified as the vector
(1,...,2N) € ZY. The 0-vector is 0 = [(0,...,0)];. The addition of two vectors, and Zg-scalar
multiplication, in G{V are defined by coordinate-wise addition. Viewing Zf]\[ as a vector space of
dimension N over Z, with the notions of bases, we can obtain naturally a similar notion of bases
for GJlV . More specifically, any invertible matrix B € GLn(Z,) identifies a basis B of G{V , whose
i-th row b; is [B (i)]] |» Where B is the i-th row of B. Naturally we can extend basis changes in
GLnN(Zg) to changes of bases of GY by the fact that Gy is cyclic. Treating G2 similarly, we can

furthermore define a product of two vectors x = [(z1,...,2x)]; € GV, y = [(y1, ..., yn)], € GY

by x Xy = Hi\;1 e(x[i],y[i]) = [{(z1,...,2N), (Y1, ---,y~n))];- Given a basis B = (b;);c[n) of

GY, we define B* to be a basis of G by first defining B’ := (B1)T and the i-th row b
of B* is [B'¥],. It holds that B(B')" = Iy the identity matrix and b; x b? = [8; ], for
every i,j € [N], where ¢; ; = 1 if and only if i = j. We call the pair (B,B*) a pair of dual
orthogonal bases of (GIY,GY). If B is constructed by a random invertible matrix B <> GLy(Z,),
we call the resulting (B, B*) a pair of random dual bases. A DPVS is a bilinear group setting
(G1, G2, Gy, 91,92, 9t,€,q, N) with dual orthogonal bases.

Access Structure and Linear Secret Sharing Schemes. We recall the definitions of access
structures and linear secret sharing schemes in Appendix A.3. In short, an access structure
A C 2%\ [z} over an attribute space Att is a family of sets S of attributes. A secret sharing
scheme for an access structure A over the attributes Att = {atty, atto, ..., att,,} allows sharing a
secret s among the m attributes att; for 1 < j <m, such that: (1) Any authorized set S in A
can be used to reconstruct s from the shares of its elements; (2) Given any unauthorized set
and its shares, the secret s is statistically identical to a uniform random value. A linear secret
sharing scheme (LSSS) is a way to linearly share a secret. More specifically, let K be a field,
d, f € N, and Att be a finite universe of attributes. A Linear Secret Sharing Scheme LSSS over
K for an access structure A over Att is specified by a share-generating matrix A € K%/ such
that for any I C [d], there exists a vector ¢ € K% with support I and ¢c- A = (1,0,...,0) if and
only if {att; | ¢ € I} € A. Finally, let y € Z, where ¢ is prime and for the sake of simplicity, let
Att C Z4 be a set of attributes. Let A be a monotone access structure over Att realizable by an
LSSS over Zy. A random labeling procedure A, (A) is a secret sharing of y using LSSS:

Ay(A) = (y,v2,v3,...,v5) - AT € Zle (3)

where A € ngf is the share-generating matrix and vg, vs, ..., vy & L.

The Masking Lemma with Repetitions. We state a technical lemma that is employed
throughout our proofs. This is a generalized version of [29, Lemma 4], where the masks can be
introduced even when repetitions of c-vectors over j and root are allowed. A detailed proof can
be found in Appendix B.

Lemma 1. Let A be an LSSS-realizable over a set of attributes Att C Z,. We denote by
List-Att(A) the list of attributes appearing in A and by P the cardinality of List-Att(A). Let
S C Att be a set of attributes. Let (H, H*) and (F,F*) be two random dual bases of (G3,G3)
and (G%,G3), respectively. The vectors (hy,fi,f2,f3) are public, while all other vectors are
secret. Suppose we have two random labelings (a;)jcListAtt(a) < Aao(A) and (a;)j — A% (A)
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for ag, ay, & Zq. Let J denote the mazimum number of repetitions at each j € S for c; or
for croot- Then, under the SXDH assumption in (G1,G2), the following two distributions are
computationally indistinguishable:

(), y @),y

e [ Rl i
* . — (4 . 2 . 2
ijListhtt(A) = (m; - (4, 1), ajz, 05) = ; k;EList-Att(A) = (7;(5,1), ajz, 0% a;‘y/zj7 0%)p=
( (
( (

rep d)(rep)7 O)H Cﬁ;egt) _ w(rep)7 (P )H

aopz, 0)pr+ K aoz, )H*

root
for any x y € Z,, where rep € [J], and zj, 05, 7,0, T, 2,7 <= Zy.

k*

root

3 Multi-Client Functional Encryption with Public Inputs

In this section we refine the definition of multi-client functional encryption in which at the time
of encryption, each client can specify their own public data, while the function class contains
functions that evaluate both the combined private and public data of clients. In Section 3.2 we
prove that this general notion covers the original MCFE notion with and without fine-grained
access control, and even more, e.g. the notion of public-attributes ABE. Interestingly, the syntax
of previous formal definitions of FE, either in single-client [15] or multi-client [24, 17], allows
no public data and let public-attributes ABE escape their scope. More specifically, we discuss
in Theorem 7 how our formal definition of MCFE with public inputs can be related to other
existing primitives.

3.1 Definitions

Definition 2 (Functions with public inputs). Let \,n € N and let Dy ; and Ry be domains
and ranges indexed by A in some ensembles {Dy ;}» where i € [n], {Rx}x, respectively. A function
class F = {F) n}an with public inputs (2 ;)ic[n), where 2y ; = {0, 1}1’0@(”, is defined to contain
Fyn: TTimy (Dai x 254) = Ra.

In the following the index n is a function in A and we omit it for clarity.

Definition 3 (Multi-client functional encryption with public inputs). A multi-client
functional encryption (MCFE) scheme with public inputs, for the class F with public inputs
(Z7i)iem) where Zy; = Tag x gk,i for some set Tag = {0, 1}7’013”(”, consists of four algorithms
(Setup, Extract, Enc, Dec):

Setup(1*,1™): Given as inputs 1* for a security parameter X, and a number of clients n, output
a master secret key msk and n encryption keys (ek;)ic[n)-

Extract(msk, F): Given a function description Fy : [[;—, (Dx; X Zx;) — Ry in F, and the
master secret key msk, output a decryption key dkp, .

Enc(ek;, 24, 2;): Given as inputs public data z; = (tag, Z;) € Zx; that contains some tag, an
encryption key ek;, a message x; € Dy ;, output a ciphertext (ctiag, 2i). For a specific client
i, the sets Dy, and Zy; are indexed by X in some ensembles {Dy ;}x, {Zxri}tr-

Dec(dkr,,c): Given the decryption key dkp, and a vector of ciphertexts ¢ = (ctiag,i, 2i)i of length
n, output an element in Ry.

Our syntax can be seen as a particular case of the general primitive Multi-Party Functional
Encryption (MPFE) [8] in which we consider the particular case of multi-client while the key
generation stays centralized. The main difference is in terms of security where ours is less
restrictive (see Definition 4), which is sufficient to for establishing connection to other primitives
as we will see in Section 3.2. Regarding the concrete class calculating inner products with access
control, we will revisit the connection from MIFE to MCFE in Section 4.



Correctness. For sufficiently large A € N, for all (msk, (ek;)c)) <+ Setup(1?), all functions
Fyn : I1; (Dai x 2x4) — Ry and dkp, ,, < Extract(msk, F) ), for all tag € Tag and (z;)j_; €
Z)\’l X - X Z)\,nv for all («Tz)ze[n] S 'D)\’l X - X D)\,na if F)\((.CCZ‘,ZZ')Z‘) 7é 1 and z; = (tag, 5,‘) € Z;
for all ¢, the following holds with overwhelming probability:

Dec (dkFM (Enc(eki, Xy, zl))ze[n]) = F>\7n((l‘i, Zl)z)

where the probability is taken over the random coins of the algorithms.

Security. First of all we define admissible adversaries A against an MCFE £. We use the recent
formulation of admissibility in [30].

Definition 4 (Admissible adversaries with public inputs). Let A be a ppt adversary and

let £ = (Setup, Extract, Enc, Dec) be an MCFE scheme with public inputs for the function class

F with public inputs Zy ; = Tag x 2 ;. In the security game given in Figure 1 for A considering

E, let the sets (C, Q,H) be the sets of corrupted clients, functional key queries, and honest clients,

in that order. We say that A is NOT admissible w.r.t (C, Q,H) if the following condition holds:

i .2, (tag, 5") e
is queried to LoR, with public inputs Elgcm) € 2y, and there exist vectors (t©@,t0, vhb)

so that Vi € H : t®[i] = ¥ and v [i] = ééj(};';l) [i] satisfying

There exist tag € Tag, a function F' € F is queried to Extract, challenges (x

F((ti], (tag, v[i]))iepm) # F((tV[], (tag, v[i]))iepm) - (4)

Otherwise, we say that A is admissible w.r.t (C, Q,H).

Discussion on admissibility. We develop below some discussion on the admissibility notion
in Definition 4:

* (Repetitions) In comparison to the original security of MCFE in [17], an adversary is still
admissible if they query multiple times to the challenge oracle for a fixed (i,tag), whereas
an admissible adversary as per [17] is allowed to query at most once for each (i,tag). This
aspect of repetitions in the admissibility was first studied in [18] and later generalized in [19].
It is important that when repetitions are allowed for ciphertexts, the security model of
MCFE automatically encompasses that of MIFE by replacing tags with a constant value, as
confirmed in recent works [11]. Lastly, in our notion of MCFE with public inputs, we can
also consider restricted repetitions only on the private parts (acg)), :cgl)) (see the weaker notion
rep-priv in the following) and not on the public parts zécm”) to the challenge oracle. This
form of restricted repetitions gives a weaker notion of security, but it still covers the security
of classical MIFE without public inputs, as studied in [24, 12, 5, 20, 3, 37, 6, 9].

o (Weaker constraints) Regarding the corrupted ¢ € C in general, the admissibility check is
done in Finalise at the end of the security experiment, and Definition 4 per se allows the
adversary to query the challenge oracle LoR, whether the corruption is static or not, on

i a9, 0, (tag", 5)
where x§0) #* xgl). The adversary stays admissible as long as the condition (4) is not satisfied,
i.e. the foregoing $§o) #* l’;l) of corrupted i € C does not make F differ with respect to
the challenge bit b <~ {0,1}. The original security of MCFE in [17] does not allow attacks
where there exists ¢ € C such that xEO) %+ :Ui-l). By allowing a such query, we apparently allow
more attacks than the original security model of MCFE in [17]. The work [30] examines the
legitimacy of this condition in the plain (Decentralized) MCFE (DMCFE) setting and proposes
a stronger security model that does allow a;io) % a:f) of corrupted ¢ € C (thus considers more
attacks admissible).
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 (Corrupted ciphertexts) In terms of usage of the corrupted ek;, for the admissible conditions 4
we do not put any quantifier on the ciphertexts that can be crafted by the adversary using a
corrutped ek; for i € C, because when decrypting jointly a such ciphertext ct; < Enc(ek;, Z;, Z;)
with other challenge ciphertext components (up to repetitions) vis-a-vis a function F' will
provide

F((t]5], (tag, v[i])jzis (2, Z), ($C[5'], (tag, v[5'])) jr2i)

that always has the same ¢-th argument and cannot change the output of F. The same
reasoning applies when the adversary crafts themselves multiple corrupted ciphertexts.

* (Checking admissibility) The admissiblity in Definition 4 for general function class may not
be efficiently decidable. As we will see later in Section 4.2, within the scope of this paper,
the class of functions is restricted to computing inner products with access control, and the
admissibility can be decided efficiently using conditions 1 and 2.

In Theorem 7 we discuss how an MCFE that is provably secure under the admissibility in
Definition 4 will imply a provably secure MIFE, and more. For the concrete class of computing
inner products with access control which is the main subject of Section 4, we refer to Remark 14.

Definition 5 (IND-security with repetitions for MCFE with public inputs). An
MCFE scheme with public inputs £ = (Setup, Extract, Enc, Dec) for the function class F with
public inputs is IND-secure if for all ppt adversaries A, and for all sufficiently large A € N, the
following probability is negligible

AdV?7‘C7__—\:\IArep(1>\) = PF[EXpr?VC]_._i;j_Cpa(lk) _ 1] o 5

The security game Expr?c}_-i'j{pa(ﬂ) is depicted in Figure 1. The probability is taken over the
random coins of A and the algorithms.

In a more relaxed notion, the scheme & is selectively IND-secure with the security game

Expr?cj}sji"d{pa(ﬂ), where the challenges are chosen before the setup.

Weaker notions. We can relax the admissibility notion from Definition 4, with more exclusions,
to obtain weaker security notions considered in literature. They are simpler to achieve, and some
generic conversions allow to lift from a weaker to a stronger scheme.

* In previous works, one can consider a weaker notion of security for MCFE in which either
all or none of honest components in the challenge are queried. In this case, we say that the
MCFE scheme is secure against complete queries only and add the following exclusion to the
admissibility:

©

There exist a tag tag and i, j € H such that ¢ # j, there exists a query (i, 2", 2", (tag, *))

to LoR but there exist no query (j, :c}o), xy), (tag,*)) to LoR.

We denote the corresponding experiment with this weaker notion in admissibility, .e. which

is called pos-security in the literature, with the flag pos in the name of the experiment.
 One can also keep the original security notion from [17] by imposing the same challenge

components for corrupted ¢ € C. We then add the exclusion to the admissibility:

There exists ¢ € C such that xéo) #* xél).

We denote the corresponding experiment with this weaker notion in admissibility, with the
flag wk.
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Initialise(lk) LoR (4, x§0)7 951('1)’ (tag”, gzgu;mm))
b {0,1} Enc(ek;, z)”, (tag™, Z"*")) = et ,
(msk, (eki)ic(n)) < Setup(1*) Return ctt(:g*,i
Q=g, C=0g, H:=[n|

Enc(i, z;, (tag, Z;)) Corrupt(7)

Return Enc(ek;, z;, (tag, Zi)) C=CU{i}
H o=\ {i}
Return ek;

Finalise(b') Extract(F)

If Ais NOT admissible w.r.t (C, Q,H): Q:=QU{F}
return 0 ] dkp < Extract(msk, F")
Else return (b' = b) Return dkg

mc-ind-cpa

Fig. 1: The security game Exprg 74 - (1*) for Definition 5

* We also define a notion of security where only one challenge tag tag* is allowed, with the
following exclusion to the admissibility:

There exist two tags tag # tag’ and queries (x, , *, (tag, *)), (*, x, *, (tag’, x)) to LoR.

That is, the scheme £ is one-time IND-secure, with the flag 1lchal in the name of the
experiment.

 Finally, if we allow only repetitions on the private parts (:):go),xﬁl)) and not on the public
parts th“l) to LoR (or z; and not on z; to Enc), we denote the corresponding experiment

with this weaker notion with the flag rep-priv, with the additional exclusion:

There exist a tag tag, an index i and two public values z # 2/, with queries
(i, %, %, (tag, z)) to LoR or (i,%,(tag,z)) to Enc, and (i,x, x, (tag,2’)) to LoR or
(i, %, (tag, 2’)) to Enc.

All these flags pos, wk, 1chal, rep-priv can be combined and added to the experiments presented
in Figure 1.

Lemma 6 allows us to concentrate on the notion of one-time IND-security for our construction.
The proof is a standard hybrid argument, thanks to the Enc-oracle access (in the case of secret-key
encryption), in addition to the LoR. oracle.

Lemma 6. Let & = (Setup, Extract, Enc, Dec) for the function class F be an MCFE scheme with
public inputs. If € is one-time IND-secure, then &£ is IND-secure.

3.2 Implications between Notions: MCFE, MIFE, and more

Since its introduction in [24], a long line of works [12, 5, 20, 3, 37, 6, 9] considers MIFE having only
one encryptor who can use a master secret key to encrypt independent components of a message.
Our definition of MCFE from Definition 3 can capture this widely studied (one-encryptor) notion
of MIFE, with and without access control, and in the latter case with public attributes. Generally,
Theorem 7 demonstrates that given a secure MCFE as per Definition 5 for a strong enough
function class with public inputs, we can obtain secure instantiations of standard existing
MIFE/MCFE notions in the secret-key setting as well as (single-client) FE/KP-ABE notions in
the public-key setting. Relevant notions are recalled in Appendix A.4.
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Theorem 7. Let F be a function class with public inputs (2 ;)icin) where Zy; = Tag X EE)\J
for some tag space Tag = {0, 1}1’0[9()‘). The elements of F are Fxp, : [1iy (Dasi X 2x:) = Ra.
Suppose that F contains the identity function F;\‘fn where for all (x;, z;);, F)'\dn((xz, zi)i) = (zi, 2i)i.
We suppose further that Fy , can encode a policy class Pol whose attributes are contained in
Att C ZVM for alli € [n]. We have the following commutative diagram:

rep-priv

MCFExxx—cpa—rep—priv [f, (ZA,i)ie [n]] M FEXXx-cpa []:]

adml (Def. 4)
pub. input

XXX AW 2 XXX-Cpa
FEX* P2 F, (2 1)icn] v KP-ABE %" [Pol, Att]

where

e Each arrow “—=7 preserves the security level xxx € {sel,adp,stat} of challenge-selective,
challenge-adaptive, static corruption security respectively. The label of the arrow indicates
the necessary property for it to hold, detailed in the proof.

o MIFEX*P3[F] denotes an MIFE following Definition 22, that can be adapted to capture MIFE
for calculations in F without access control as defined in [12, 5, 20, 3, 37, 6, 9].

« FE®P2F (Z))ien)) following Definition 20, that can be adapted to capture FE with access
control as in [4, 29], or without access control [15].

. KP—ABE;;(;_Cpa[PoI, Att] denotes a KP-ABE for the policy class Pol with public attributes. The
notion follows Definition 18.

Proof. We perform the reductions below. Let MCFE™**P?[F (Z) ;)icin] be a secure MCFE
following Definition 5. We denote by (Setup™¢, Extract™, Enc™¢, Dec™) the algorithms of the
MCFE.

From MCFE to MIFE. Following Definition 21, we consider the notion of MIFE having only one
encryptor who can use a master secret key to encrypt independent components of a message.
The function class is F containing F) ,, : H?:l (D < Z5,i) = Rx. There is no public inputs
as we are concentrating on the classic MIFE as per [24]. The obtained MIFE is defined by the
algorithms:

Setup™(1*,1™): Run Setup™(1*,1%) — (msk™®, (ek™);). Sample a tag tag <~ Tag and output
msk := msk™°, (ek; := (ek]"“, tag));.

Extract™ (msk, F)): Run Extract™(msk™, F)) — dkg, and output dkg, .

Enc™ (ek;, z;): Parse ek; := (ek™, tag). Run Enc™(ek™, z;, (tag, €)) — ct; as there is no public
inputs in classical MIFE, then output ct;.

Decmi(dkFA, (ct;);): Run and output Dec™(dkp,, (ct;);).

Correctness follows from the correctness of the MCFE. In terms of security, let A be an
adversary against the MIFE as per Definition 22. We construct an adversary B breaking
MCFE0occpa-rep-priv| 7 (Zx,i)ieln)] using A.

The adversary B simulates the MIFE game by (7) first querying its MCFE challenger on
(1*,1™) to obtain the public parameters (if any) then forwards to A ; (i) simulating the MIFE’s
encryption/challenge queries by fixing a tag tag for all encryption (respectively challenge)
ciphertexts and forwarding the encryption (that is, (i, z;, (tag, €))) (respectively challenge (that
is, (i,2”, 2", (tag,€)))) queries given (i,z;) or (i,z}”,2\") by A against the MIFE; (iii) the
key-extraction queries are forwarded to the MCFE challenger in a straightforward manner. In the
end B outputs the same as A. If A wins the MIFE game, then B wins the MCFE game. We remark
that when A makes repetitions over the encryption queries (i.e. same ¢ but different messages),
the forwarded queries to the MCFE challenger are repetitions over the private inputs as well,

while the public inputs stay (tag, €) for both Enc and LoR). In particular if 4 is admissible
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following Definition 22, all queries by B to its challenger are admissible as per Definition 4, in
the private-only repetitions, because the conditions of MIFE security imposes more restricting
conditions, due to the fact that there are more possibilities to combine ciphertexts®.

From MCFE to (single client, public key) FE. The function class is F containing F : Dy x Z) —
Ry. Following Definition 19, the obtained FE is defined by algorithms:

SetupP*(1*): Run Setup™(1*,1') — (msk™, ek™). Output msk := msk™, pk := (ek™®).

ExtractP*(msk, Fy): Run Extract™(msk™, Fy) — dkp, and output dkp, .

EncPX(pk, x, 2): Parse pk := (ek™) and z := (¢, ) as there is no tag in single client and public
key FE. Sample tag < Tag and run Enc™(ek™, z, (tag, Z)) — ct. Finally output ct.

DecP*(dkg, ,ct): Run and output Dec™(dkp, , ct).

Correctness follows from the correctness of the MCFE. If the function class captures access
control, then the FE is for the same class having access control as well. In terms of security, let
A be an adversary against the FE as per Definition 20. We construct an adversary B breaking
MCFE ocepareppriv| I (2x,i)ien)]> With static corruptions, using A. The adversary B simulates
the FE game by (4) first querying its MCFE challenger on (1*,1) to obtain the public parameters
pp (if any) then queries Corrupt(1), gets ek, and forwards pk := ek together with pp to .A. We
note that the corrupted client is known from the beginning; (i7) simulating the FE’s challenge
queries by forwarding the challenge queries (i.e. sample tag < Tag and define the challenge to be

(1,29 2™ (tag, 2¢"*"))) to its MCFE challenger given ((1:@, (e, 2(0’“”))), (:L’(l), (e, Z<Ch“l)))> by A

; (191) the key extraction queries are forwarded to the MCFE challenger in a straightforward man-
ner. If the FE adversary A is admissible, i.e. @ # x® but F(z©, (¢, 2¢"*))) = F(2®, (e, z<"V))
for all F' queried to Extract, then the challenge query (1,2, 2™, (tag, 2¢"*")) is on a pair of
inputs (2@, (tag, (")) # (2@, (tag, 2"*V)) conforming to the admissibility. This implies that
B is also admissible following Definition 4. Moreover, the fact that every encryption query is
defined on a freshly sampled tag tag implies that there is no repetitions for any pair (1,tag)
registered to the MCFE challenger. This allows us to allow encrypting different public inputs
even though the MCFE is for private inputs repetitions only. Therefore, if A wins the FE game,
then B wins the MCFE game.

Implication to KP-ABE. The implication to KP-ABE follows from the (single client, public key)
FE case for F containing F) : Dy X Z5, — Rx. Moreover, the identity function is in F and
allows the all-or-nothing decryption of KP-ABE, without any evaluation on the plaintext. In
particular, thanks to the hypothesis that the function class F can encode a policy class Pol, and
the attribute space Att is contained in Z). A reduction from FE to KP-ABE can be obtained
with ease. Once again, even though the MCFE is set up for one slot, each time an encryption
is created, a fresh tag is sampled therefore not leading to a fully repetitive on both private
and public inputs. This thus allows encrypting on different attribute sets while there is no full
repetitions for any pair (1,tag) registered to the MCFE challenger. Finally, an adversary breaking
the KP-ABE allows breaking the MCFE. ad

Remark 8. (From secret key to public key) We emphasize that the crucial point allowing us to
go from the secret key setting of MCFE to the public key setting of FE is the admissibility in
Definition 4. More specifically, Definition 4 allows the reduction to forward the challenge queries
of its (public key) FE to the MCFE challenger, for the only client as n = 1,

(x?, (tag, 2")) # (a, (tag, "))

* In the one-encryptor setting there is no corruption oracle in the MIFE game, e.g. see the original in [24].
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as long as F(z©, (e, 2¢hD)) = F(z®, (e, 2¢"*D)) for all F queried to Extract. The only secret
encryption key ek is corrupted up front and known to the FE adversary as a public key pk.
Comparing to existing admissibility notions in [17], which excludes attacks where there exists
i € C such that xio) #* :UEI), the only queries that the reduction can forward are the trivial
one from the FE adversary where z® = . Hence, existing admissibility notions in [17] and
subsequent works are not sufficient to capture the reduction from MCFE to FE with meaningful
CPA-security. Furthermore KP-ABE is made possible (without attribute-hiding) thanks to the
public inputs.

Remark 9. (Concrete instantiations) Another key observation of Theorem 7 is that starting
from any provably MCFE, we obtain an MIFE for the same function class by fixing one public
tag for all ciphertexts. The security of the resulted MIFE comes from the fact that the security
of the underlying MCFE allows repetitions at each position ¢, under the fixed tag, thanks to the
admissibility in Definition 4. In this paper, our final construction for MCFE with access-control
(see Corollary 13) satisfies this security with repetitions along with other favorable properties
to be lifted to an MIFE with access-control. We consider the functionality F." g x LSSS and

subvec,
FIP e that contains Fy, .y, : i) (ZY+) = Z4 defined as

subvec
n
Fy1:--~7yn (le <o ’Xn) = Z<Xia Yi> )
i=1
which receives as inputs and parameters where for all i, max(||x;|/co, ||¥illco) < B, with B =
poly(A) € N being a polynomial. The access control is given by Rel : LSSS x (T}, 24%) — {0, 1}
as

Rel(A, (S;)i) = HA(S» :

The class LSSS contains Linear Secret Sharing Schemes over Att, and 2% denotes the superset
of an attribute space Att C Z,. Applying Theorem 7 to our MCFE in Section 4.2 gives concrete
instantiations of the corresponding primitives.

4 MCFE for Inner Products with Access Control: Encrypting Vectors with
Security against Repetitions

First of all, we specialize the general notion of MCFE with public inputs so as to define and give
the model of security for multi-client functional encryption with fine-grained access control in
Section 4.1. Our main goal is to improve the MCFE construction in [29], which supports only
encrypting scalars and does not tolerate repetitions of challenge ciphertexts. Section 4.2 gives an
extension to encrypt subvectors, in a security model where the admissibility allows repetitions at
positions under a challenge tag. Towards Corollary 13, we remove all one-challenge and complete
challenge queries, and the resulted MCFE can be made MIFE by fixing a public tag. This clarifies
the conversion from MCFE to MIFE in [29, Remark 16]. A subtlety is that the fixed public tag
is processed by hashing, leading to a MIFE that inherits all security properties of the MCFE
but without tags and without corruption. Hence, putting forward the fact that our MCFE does
not allow repetitions on the attributes per client but only repetitions their private inputs, the
obtained MIFE is secure only against repetitions on private inputs, i.e. potentially repetitive
private x; and no repetitions on the attributes S; of each i. We discuss further our construction
and revisit the MIFE regime for comparison with [4, 29] in Remark 14.

4.1 Definitions

We specialize the notion of MCFE with public inputs in Definition 3 to define the notion of
multi-client functional encryption with fine-grained access control, key-policy and with public
attributes.

15



Specialized function class with access control. Let A € N be a security parameter and
we denote by n the number of clients in the system, which is fixed at set up time. We describe
the function class F x AC-K for the multi-client functional encryption with fine-grained access
control below:

» The public attributes of each client ¢ come from Z) ; = Tag x AC-Ct; for some set AC-Ct;
and a tag space Tag = {0, 1}P°v(N),

 The access control is defined via a relation Rel : AC-K x AC-Ct; x --- x AC-Ct,, — {0, 1}, for
some set AC-K.

* The function class F x AC-K contains (F),ac-k) having public inputs (Z);)icn-

A plaintext for client i consists of z; € D, ;, where D, ; denotes the domain from which each
client ¢ gets their inputs. The corresponding ciphertext can be decrypted to F)(z) using the
functional key skp, ac.k for ac-k € AC-K if and only if Rel(ac-k, (ac-ct;);) = 1. Given the above
specialization, the syntax of MCFE with access control can be derived from the general syntax of
MCFE with public inputs in Definition 3. For the sake of analysis of our scheme later on, we give
below only the correctness and security definitions for the specialized function class F x AC-K.
Correctness. For sufficiently large A € N, for all (msk, (ek;);c[n)) < Setup(1*), (F),ac-k) €
F x AC-K and dkp, ack < Extract(msk, F),ac-k), for all tag and (ac-ct;);, for all (z;);c|n) €
Dy 1 X -+ X Dy p, the following holds with overwhelming probability: if Rel(ac-k, (ac-ct;);) =1
and F)\(a}h e ,xn) 75 L

Dec <dkFA,ac_k, (Enc(ek, z;, z; == (tag, ac—cti)))ie[n] ,tag) = F\(1,...,2p)

where F : Dy1 x --- x Dy, — Ry and the probability is taken over the coins of algorithm. We
notice that the same tag must be used necessarily in Enc and Dec.

Security. The security game is depicted in Figure 1, where the functionality class is F x AC-K,
the set of public data for each client ¢ is Z); = Tag x AC-Ct;. We recall that our general
admissibility in Definition 10 allows an adversary to query multiple times to the challenge oracle
for a fixed (i,tag). In particular, we consider also attacks where multiple X;rep) are queried for
the same (i,tag) to the oracle LoR, namely with repetitions at position ¢ under the challenge
tag tag. The formal definition, which is concretely interpreted for the class F x AC-K based on

the general Definition 10 of MCFE with public inputs, is given below.

Definition 10 (Admissible adversaries with fine-grained access control). Let A be
a ppt adversary and let € = (Setup, Extract, Enc, Dec) be an MCFE scheme with fine-grained
access control for the functionality class F x AC-K. In the security game given in Figure 1 for
A considering &, let the sets (C,Q,H) be the sets of corrupted clients, functional key queries,
and honest clients, in that order. We say that A is NOT admissible w.r.t (C, Q,H) if any of the

following conditions holds:
There exist tag € Tag, a function (F,ac-k) € Q is queried to Extract, two challenges
(acg)),x;l), (tag,ac-ct;))ic[n) are queried to LoR, with public inputs acct; € AC-Cty;, a
pair (£©,t0, v 5o that for b € {0,1}, Vi € H : tO[i] = 2\’ and v[i] = ac-ct;,
and

« The policy passes’: Rel(ac-k, v"*)) = 1.

e The function evaluation differs:

F(t9) £ F (t©) . (5)
Otherwise, we say that A is admissible w.r.t (C, Q,H).

We recall the weaker notion considering only complete queries, while facing repetitions, for this
concrete F x AC-K.

5 This is up to attributes replacement in the corrupted slots i € C, therefore we only required v"*" to coincide
with only with the honest attributes (ac-ct;)icn and leave free the corrupted part.
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Weaker notions. We can relax Definition 10 to obtain weaker notions, in a similar manner
which we use to relax Definition 4. The selective, private-input only repetitions, complete, and
one-time security relaxations are straightforward.

4.2 Extension to Sub-vectors

In this section we present an MCFE scheme with fine-graine access control whose i-th ciphertext
can encrypt subvectors of length N;. In Remark 14 we discuss how to turn our final MCFE
for inner products with access control, into an MIFE in the standard model, for computing
inner products without access control. The bilinear group is (Gi, G, G, g1, g2, 9t,€,q). The
functionality of interests is ]-"S'Ebvqu x LSSS and ]-"S'Ebvqu contains Fy, .y, : [Ticp) (Zflvi) — Zq
that is defined as Fy, .y, (X1,...,Xp) = > 1 (X,yi), which receives as inputs and parameters
where for all 4, max(||X;||oc, ||¥illoo) < B, where B = poly(A) € N is a polynomial. For the ease of
notation, we can assume the subvectors are of length N = max;(V;). The access control is given

by Rel : LSSS x ([T, 24%) — {0,1}, where Rel(A, (S;);) = [T; A(S;), the class LSSS contains

7
Linear Secret Sharing Schemes over Att, and 2% denotes the superset of an attribute space

Att C Zq.

Construction. The details are given below:

Setup(1*): Choose n + 1 pairs of dual orthogonal bases (H;, Hf,B;,B}) for i € [n] and
(F,F*, G, G*)where (H;,H!) is a pair of dual bases for (G%N+4,G§N+4), (Bi,B}) is a
pair of dual bases for (G GY ™), (F,F*) is a pair of dual bases for (G2N+6 G2aN*+0),
(G, G*) is a pair of dual bases for (GV 16 G2V70) 6. Sample u <> Zy,S,U, ST, (Z;)N
and write S = (s1,...,8,), U= (uy,...,u,). Perform an n-out-of-n secret sharing on 1, that
is, choose p; € Z, such that 1 = p; + - -+ + p,. Then, for each i € [n], sample N random
values 0; 1, & Zg4. Output the master secret key and the encryption keys as

msk = (S, U, (0ik)icivikenys (BF preveay 75 15, 15,

* * * * * * * N
g1, 89, 83, ( 1,10 g 29 z’,sv(hi,N+3+k)k=1)i€[n})

ek; = (Su w, (B )kein+a), bin+s, fi, £, £,

¢

1 2
g1, 82, 83, Pi- Hi( ), Di - Hz( ), h; 3, (9i,khi,N+3+k)ng:1>

where H i(k), B;k) denotes the k-th row of H;, B; respectively.
Extract(msk, (yi)icn) € [1iz1 Zév ,ac-k := A): Let A be an LSSS-realizable monotone access struc-

ture over a set of attributes Att C Z,. First, sample a; o & Z4 and Tun the labeling algorithm
Aq; o (A) (see Definition 12) to obtain the labels (a;j); where j runs over the attributes in Att.
In the end, it holds that a;o = Z]EA ¢j - a;; where j runs over some authorized set A; € A
and ¢; = (c¢; j); is the reconstruction vector from LSSS w.r.t A;. We denote by List-Att(A)
the list of attributes appearing in A, with possible repetitions. For each i € [n], each k € [N],
sample dp ; i & Zq such that Y7 Z]kvzl 0; kda ik = 0. For each i € [n], compute

n
m; = <Yiazai,07 mdz‘,070>
B

1=1
m; ;= (7 - (4, 1), aij, 0N, 0, 0V, 0, 0)g« for j € List-Att(A)
k= (mi; - (j,1), aij-z, 0N, 0, 0V, 0, 0)p for j € List-Att(A)
n n
ki ipfe = (Z(SiaYi>7Z<ui)Yi>a aig-z, OV, (dA,i,k)g:pmdi,ipfe)
=1 =1 H:‘

6 We denote the basis changing matrices for (F,F*),(B;,B}),(H;,H}) as (F,F' = (F)7),(B;, B, =
(ByYT), (Hy, H, := (H;')T) respectively (see the appendix A.6 for basis changes in DPVS).

k3
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where z,m; j, rnd;, rnd; ipfe & Zg. Output dky y = ((km-, ﬁli,j)i’j , (mi,ki’ipfe)ie[n]>.
Enc(ek;,x; € Zév,zi = (tag,S;)): Parse

ek; = (Sz', ui, (B pev+a), bings, fi, fo, 5,

1 2
g1, 82, 83, szz( ) i Hl( ), h; 3, (Gi,khi,N+3+k)ch=1>

and S; C Att C Z, as the set of attributes, compute H(tag) = ([w]; , [&'];) € G%. Use piHZ-(l)
and piHi(Q) to compute

piHM [, +piHE - [W], = pi- (wHi(l) g+ H? 91) =p; - (whi1 +w'h;2) .

For each j € S;, sample 1, v; <~ Z4 and compute

ti»j = (E%] : (17_])> Vi, ONa Oa ON7 07 O)G
Cij = Oiyj - f1 _j " 04,5 " f2 + 77/)1 : f3 = (Ul',j : (11 _])7 %7 ON» 07 0N7 07 O)F

~ $ .
where 0; j, 04 ; + Zq. Finally, compute

ti= > ([wly-silk]- BY + [, - wlk] - B + [xi[k]];) + vi - bing1 + pi - bives
ke[N]

/
=(w-s; +w v +x,14,0,pi)B,
N

Ciipfe = pi - (w-hj1 +w -hio)+ ;- his+ Z 0; khi N34k
k=1

- (wpia W/pi, 7/12‘7 0N7 (Oi,k);gvzla O)HZ

and output Ctiag,i == <<Ci’j,ftvi7j> Lt Ci,ipfe) .
J
Dec(dka .y, € i= (Cttag,i), aux-d := tag): Parse

Cliag,i = <(Ci,j7¥,]) tucupfe) and dkyy = ((ki,jaﬁli,j)i,j ; (miaki,ipfe)ie[n])

For each i € [n], if there exists A; € S; and A; € A, then compute the reconstruction vector
(¢i,5); of for A; and perform Algorithm 2. Finally, compute the discrete logarithm and output
the small value out € [-nNB* nNB? CZ, .

We now state the security theorem. For simplicity, this theorem proves the one-challenge
security, against only complete challenge queries, while authorizing repetitions on private inputs
following Definition 10. In the subsequent lemmas we will show how to remove most of the above
constraints.

Theorem 11. Let £ = (Setup, Extract, Enc, Dec) be a multi-client IPFE scheme with fine-grained
access control via LSSS for the functionality class ]:ubvecB x LSSS, given in Section 4.2 in
a bilinear group setting (G1, G2, Gy, 91,92, gt,€,q). Then, £ is one-time statically IND-secure
against complete challenge queries with private-inputs only repetitions (as per Definition 10),
under the SXDH in G1 and G».

7 we represent Z, as the ring of integers with addition and multiplication modulo g, containing the representatives
in the interval (—q/2, q/2).
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Input: ctrag,; = ((cl J,tl J) ,ti, ¢ |pfe) and dky y = <(kz j, My, J)z Ir , (myg, ki,ipfe)ie[n])7 as well as the reconstruction

vector (c;,5); of the LSSS for a reconstruction set A; for each 4

1. For each j in the reconstruction set A, compute

to; = > ti; =G0, (1,—3), ZVu ) , 0, 0)g
i

~ ~ . . ~ 8
where Go,; = Y, 7;,; being a uniformly random value as &;,; < Zq.
2. For each i compute

= Z FE(],]' Cz J mz ] |]:(ZVZ (Z Ci,j* ai:j):u

JEA; JEA;

= |[(Z Vi) - ai,o]l

Y= > cig X (ci-kij) = [$i-aio- 2],

JEA;

and in the end summing all X; to obtain mask =", X; = [, ) - (&, ai,O)]]t
3. Compute

W=> tixm;= |[Z (w- (siyi) + o' - (Wi, ya) + (xiy3) + O vi) - (Zai,o)ﬂ
i i i i t
as well as
Z =" (Cipte X Kiipfe — Yi) = |[w Y sinyi) W Z(WJ&H
i i t
thanks to Y1 1Zk 10ikda iy =0and >, p; = 1.
4. Finally, compute
out =W — Z — mask = |[Z<xi,yi>]l
t

i

and then a discrete log of out in base gi to obtain Y, (x;, y;)-

Fig. 2: The final computation of decryption for the MCFE in Section 4.2, whose correctness can
be verified according to construction.

Concrete Interpretation of Admissibility. Before going into the proof, we present specific
conditions for admissible attacks in the case of one-challenge, complete, with repetitions on
private inputs with repect to Definition 4:

1. For all vectors (:sc(.o’“),x<1 9 (tag,S;)) that is queried to LoR, for all ((yi)iepn), A) € Q, let

7
H be the set of honest clients and b <> {0,1} be the challenge bit. Then fof any j; € [J;], if
I, A(S;) =1 then

Z<X(b,ji) (1 i) YZ> -0
3 )
1€H
which implies (xgb’”) ,¥i) is constant for any j; € [J;]. We recall that we are in the
private-inputs only repetitions and therefore there are no repetitions over (tag,S;).
2. For all vectors (x{"", x{"""  (tag,S;)) that is queried to LoR, for all ((¥i)ien), A) € Q. Let

C == [n] \ H be the set of corrupted clients. Then, for all ¢ € C, all j; € [J]

(6,35) (1 Ji)

<X7j Ay 7yl>:O .

_ X(l 233)

We recall that these conditions are for the one-challenge, complete, with repetitions on private
inputs case and are checked in Finalise procedure at the end of the security experiment.
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Particularly, condition 2 is checked for all corrupted clients ¢ € C and all j; € [J], given any
queries that are made to the oracle LoR for i € C by the adversary. This makes sense even
in the case of static corruption, since we do not prohibit such queries even after the set C is
fixed. Finally, condition 2 does not need to cover private inputs of corrupted ¢ € C that are not
queried to the oracle LoR because there exists no challenge bit b in those self-crafted ciphertexts
Cttag,i < Enc(ek;, z;, (tag, S;)). Decrypting ctiag; jointly with others challenge ciphertexts ctia)gyﬁél
under some key dkAy(yi)ie[n] always gives the same i-th component (z;,y;) regardless of b.
Proof Strategy. Before presenting the details of the proof, we give an overview of the strategy,
in which the high level objective of each step is described:

Go: We start from the first game Gy which is the security experiment for one-time statically
IND-security against complete challenge queries with private-inputs only repetitions. For
simplicity, we add a constraint that the challenge tag tag is not queried to Enc. This incurs
a multiplicative loss factor in advantage up to an inverse of polynomial in A, where we can
reduce to the normal lchal by guessing the challenge tag among the tags for encryption, and
responding all of its Enc queries (i, x;, (tag, ac-ct;)) by LoR(z, x;, x;, (tag, ac-ct;)).

Gog — Gy: To go to G1, we perform a sequence of hybrids over the key queries, which are indexed
by £ € [K]. The main goal is to introduce Ax; < x\"’¥ —x{""* for each client i € H (known
in advance by static corruption) and repetition j; € [J;] in one (block of) coordinates of the
challenge components c(m The corresponding (block of) coordinates in the key component

k(e] will be modified accordmgly to contain a random copy of R-y; for some random R < Lyg.
The details of the reductions are given in the below proof, we highlight here the fact that
the correctness is necessarily preserved thanks to the admissiblity. When the key allows
decryption, Summing up over all honest clients ¢ € H contains

R- Z(Axia YZ> =R- Z<X§b’ji> ('1 Jl)) yz> =0. (6)
i€H 1€H

Condition 1 ensures first that x{"’¥ — x{"" is constant for all j; € [J;]°® and the sum over
index i € H is well defined. Fmally this sum leads to (6) which is 0 and does not intervene
the corrrect decryption”.

Gy; — Gg: After the hybrids Gy — Gy, we proceeed to Go to rewrite the adversary’s view of the
challenge ciphertext component on the aggregation of the honest ¢ for E%)

TG TG
tog =Dt -

1€H

Thanks to static corruption, the set H is known in advance and tg” is well defined. This is a
completely formal rewriting that conforms to the calculations in the decryption algorithm
(Algorithm 2) and hence preserves correctness.

G2 — Gs: In the next step, we proceed to Gz by applying the masking lemma (Lemma 1), over

the each key ((kf], e}) ,(m”, kéé?pfe)ie[n]> that is indexed by ¢ € [K]. This masking
i\j

application introduces Ax; X(b 9D _ Xil’j") for each client i € H (known in advance by

static corruption) and repetition j; € [J;] in one (block of) coordinates of the challenge
components t(“) while the corresponding (block of) coordinates in the key component m“
will be modlﬁed accordingly to contain R -y;. We remark that this pair of masks are the
same as what are introduce in the step Gy — Gy, which is feasible under Lemma 1, and are
needed for later steps in the proof. The correctness is preserved thanks to a similar argument
as in the previous step.

8 This term Ax; = 0 the vector of all 0 when b = 1 and can be non-zero when b = 0.
9 There is a step in this transition we already use complezity leveraging, for a common explanation we refer to
G3 — G4 below.
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Gs — G4: We move to the complexity leveraging argument. As already briefly introduced in
paragraph Solution to the Third Obstacle of Section 1, the complexity leveraging
argument is a technique that unfolds as follows:

1. We define an event E that happens with fixed probability and whose probability space
depends on the data that can be adaptively chosen by the adversary. Then, condition on
E we move to the selective version G}, G, q,..., G} f.

2. Next, we want to prove the sequence of perfect indistinguishability involving

{Gi | B} ={Gi.|E} =---={G},x | E} (7)

where E happens with fixed probability and is independent of the view of the adversary
during the reductions {Gj,, | £} = {Gj,,;|E} in the sequence, for all t € [K — 1].

3. We go back to the orginal adaptive games, without resorting to event E, a proba-
bilistic argument concludes that {G;} = {G;+1} = -+ = {Gi1+x}. The main idea is
given any ppt adaptive adversary, we can construct a simulator of the adaptive games
{Gi, Git1,---,Girx} can (i) first guess the adaptively chosen data for event FE, (ii) in-
teract with its selective challenger, while (7ii) using the afterwards selective challenger’s
responses to interact with the adaptive adversary, and (v) in the end, only when E holds,
forward the adaptive adversary’s final result to the selective challenger.

In the reduction of step 3, the guess at (i) is done by the simulator and following the check
at (iv), it incurs the simulator’s advantage against the selective games being equal to a fixed
loss factor Pr[E] mutiplied to the advantage of the adaptive adversary. However, thanks
to the perfect indistinguishability (7), between the selective games for all simulators the
advantage is 0. Therefore, for the particular above simulator the advantage is also 0 and
that implies the arbitrary adaptive adversary’s advantage is 0. It remains constructing the
selective games {G}, G}, ,..., G, ¢} and proving the perfect indistinguishability (7). To this
end, we make use of formal basis changes in DPVS (see examples 1, 2, 3). In a simplified
notation the (block of) coordinares in ciphertexts and keys are changed as follows:

C, infe '77"'1Ax17m"'H
(Formal quotient) { o )

Kije = (o [B (Axi oy )|, (B - di); R ) mps

tz('“) o )Bi
om0
(Formal switch) =4q /)
Ci,ipfe
(£) N
ki,ipfe k=1)p" """ )H:<

{cijlib)fe = ( 77 (01 k)ljcv 1) )

(Redo formal quotient) =
k(z) z( (dx)z k rndz |pfe H*

,ipfe
where R, R’ < Lq, AX; +— X, is constant for ¢ € H over repetitions. We refer to
the definition of the event for guesses in (11), which ensures that under those formal basis
changes correctness is preserved necessarily and we obtain the desired effects on vectors.

(5:34) X;l’ji)

G4 — Gs: The remaining step is to clean auxiliary coordinates we have modified in the previous
steps.

Proof (Of Theorem 11). The sequence of games can be found in Figure 3, 4, and 5. The
full-domain hash function H : Tag x 2Att — G? is modeled as a random oracle and we denote by
@ the number of random oracle queries by the adversary. The changes that make the transitions
between games are highlighted in [boxed]. The advantage of an adversary A in a game G; is
denoted by

Adv(G;) = | Pr[G; = 1] — 1/2]

where the probability is taken over the random choices of A and coins of G;.
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Game Go : H(tag) = ([wiagl » [wiag],)> H(tag") = ([xeag'], » [Xtagr ]] , (for Enc queries H on tag’ are noted by x
and x') ; £ € [K] indexes key queries

([) & ZLq, (‘11;) j EList- Att(A)<_A <1’) (A), 200, dg)z Wik =0
LoRc“;’ (of?-(1,=j)| 7 |ololo]o]o)r
LoR t/) ( o’ (L,—j) | v’ [0][0][0|0]|0 )a
Enc c(;) ( ol,-(,=i) | ¥’ |olo|o|o|o0)e
O w0 G a2 100/0]0]0 )
ab (28 G | a9 |o]o]o]o]0 e

LoR tiyz) ( wesi+w w4+ x(b +34) V;Jl) 0 0 pih)

Enc tij” ( x-si+x w+ xgh i(m 0 0 ﬁim o,
) y . .
l'l’LE ) ( yi ) Z? N ai E) 0 rndi ) 0 )B:‘
LoR ci7f;fe ( Pitrag Pitiag 77 Lo (ir)ns, 0 )H,
Ga) i k- g
Enc C1J|Lpfe ( DiXtag! DiXtog’ Py 0| (0ix)ay | rnd fpfe ),
() @) 10) © _ @ ~ L
kl ipfe ( Z <SL’ Yi > Z <u“ Yi > ai,Oz< ) 0 (dA ,%, k)k:1 rndv ,ipfe )HZ

Game G : z; & Ly, Ax; x(b I _ xil 9% (Masking Application - Lemma 1, hybrids over each key query (y;

using the DPVS basis changes from Appendix A.6, i.e. formal ones (1, 2, 3) and computational ones (1, 2))

(O] )

(3

where £ € [K] and K is the maximum number of key queries. We are in the setting of private-input only

S $ ’
repetitions aj o < Zg, (ain )jEList—Att(A) HAa/i o (A)

LoR ¢V ( oY (1,—j)| »f” |o]o 0lo)r
ki ( “) (1) |al =900 000 )
LoR ti“) ( w~si+w’~ui+x§b"ji) ufm 0 0 ?1) )B;
(4 {4 (4 {4
m’ ol o] ma |0 s
LoR Cijllp)fe ( Pittag Piwt’ag wg‘li) (oi,k)]kvzl 0 )Hi
{4 {4 {4 {4 (4 (4
i€ Mk ( Xsnv) | Diw,y?) | alfz® 4 ORsy | i Da

‘R&E Zq, Ax; + x;
corruption, use formal basis ch(mges)

bodi) x;l’ji)(Randomiza‘cion7 the honest ‘H and corrupted C are known due to static

@s) (L (€5
LoR c¢;’s ( o7 -(1,— b’ 00 010 )
K ( <@> (j,l) al’ 20 0|0 0|0 )p-
LoR c/l ( piwrag Pitlag p 0 m,
§EH K (i) | T winv?) | ol “ s e

‘R&E ZLq, AX; < xgb’ji) — xil’j’) (Reverse Masking Application - Lemma 1, only mask R - yE remains in k(¥

,ipfe
for i € H)
LoR c{¥ ( g{?;) (1,-75) w;f” o|lol[0]]o]o )
LoRt<“ (o (=) | v Jololo|0]0)e
“(), ( Tr“é G | a2 0] 0|@]0]0 e
m (- (,1) ai’; olo|o|o]0)e-
LoR cfi. ( Pitiag PiWiag PUv Ax; i), 0 m,
PeHK D, ( Silsny?) | Siuiy®) | alz® @0 0N | G m;

G1 == Go.k.3, where £ € [K]| and K is the maximum number of key queries.

Fig. 3: Games Gq, G; for Theorem 11.

Game Gg: This is the adaptive security game, where the private-input repetitions at each
position i € [n] are indexed by rep € [J;] where J; is the maximum repetitions queried for
position i. We note that for different ¢, the bound J; can be different. The challenge ciphertext
encrypts subvectors X(b ) ¢ ZN For simplicity, we add a constraint that the challenge tag
tag is not queried to Enc. ThlS incurs a multiplicative loss factor in advantage up to an
inverse of polynomial in A, where we can reduce to the normal 1chal by guessing the challenge
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Game Gy : R & Zq, AX; < x(b i) ihu) (

Rewriting game’s description, summing of Ei? over ¢ € ‘H known
statically, not affecting corrcctncss)

LoRer ()| w fofofofofo)
LoR £ = Yicr, 103 ( 0l (1, =) | Sicpe 0| 0] 0] 010 )
kg‘j(,, ( %Gy | a2 [0[0[0]|0|0 e
) ( 750G ay’) 0/0[0[0|0 g~
LoR tY" ( w-si+w -u; +x"7? v 0 0 P B,
mio ( yiz) S a% 0 rndiz) 0 )B;
LoR cijl’pfe ( Piltag Diliag P Ax; (0s k) R=1 0 )m,
4 (3 (4 £ £ {4 {4
ieH ki |>pfe (> <sl,yf)> >oi{u 7Yf)> 52)2 R- y() (d(A?i,lc)ivvzl rndi |)pfe )H,f

Game G3: R & Zq, AX; x(b’“) El’m (

similar to G; — G2)

LoR t(h) Zleﬁt(ll) ( ”ih) (1 —]) ‘ ZLEH s

Masking Application - Lemma 1, hybrids over each key query (y?);

2]

0‘0‘@‘0‘0

) ( Gy |l
LoR tY? ( w-si+w -ui+ xéb‘“} yov 0 oY g,
| o ol 0| 0 o
LoR c/i. ( Pilrag Diiag P Ax; | (Oi0)hy 0
ieH k1(,ll>pfe ( Z <S’Hyz(a> Z <u’tvy£2)> “%Z R- y([) (dx,)i,k);c\/:l rndl ,ipfe )Hf

Fig. 4: Games Gg, G3 for Theorem 11.

Game G4 : R, R + Zg, Ax; < xi.b’m - xgl ) (Switching x( ) 4o x( 0 using complezity leveraging, the
invariant coordinates are grouped as “---”)

m (Formal Quotient, using Ax; is constant for ¢ € H over repetitions, Hadamard product is denoted “o”, see
example 2 on DPVS basis changes)

(€]

LoR tim ( w-sitw u;+ x(b 34 v; Ax; 0 pi]’ )B;
‘ ‘ G G ‘
m;” ( vy’ Tiia R-y? md” | 0 )p:
@Gq)
LoR c/l‘pfe ( . rleL H;
: (£) (2) ()
ieM kz ,ipfe x oY, 7 k- dA 7, k rndz ,ipfe )Hf

(Switching, updating secret shares of 0, Hadamard product is denoted “o”, see example 3 on DPVS basis
changes)

LoR ti‘m (w-si+tw- ul+n (“ Ax; 0 pi“) )B;
£ {4 £ {4 4
m 0 Sty [ i | 0 o
LoR c/i. ( (' —r) 0 u;
. o) © N ()
€M ke ( Oik - dy s )= | | ™9y e JELE

(Formal Quotient, using Ax; is constant for ¢ € H over repetitions, see example 2 on DPVS basis changes)

LoR tiji) ( w-si+w -u+ x(l’”) Z('“) Ax; 0 pé‘m )B;
mil) ( Vi ZL La (Z) R - (Z) rndy) 0 )Bf
LoR cijfpfe ( PiWtag DiWiag w?” 0 )H;
{4 £ £ {4 {4
ieH ke ( Tisoy”) | Titwiy”) | afyz md{ e e
Game G5 : (Cleaning)
LoR tija,) ( w - sl+w w +X(1']’> I/E“) @ 0 pgu) )Bi
(€ £) £) 4
m” vi Yisiaiy [0 md® | 0 s
LoR ¢t ( piwg Piiag P | [0 0 )n,
£ (0 (£) (£)
ieH ke ( Xi(0yi%) | Xi(uiyi?) | a2 [ [0 md® r;

Fig. 5: Games Gy, G5 for Theorem 11.
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tag among the tags for encryption, and responding all of its Enc queries (i, x;, (tag, ac-ct;))
by LoR(i,x;,x;, (tag, ac-ct;)).

Game G;: We perform a sequence of hybrids over the key queries (y|”); for ¢ € [K]. We denote
Go.¢ the hybrid where all the < (¢ — 1)-th key is programmed

LoR. tiji) ( w-s; Fw w4 x(b 234) I/,L-(ji> 0 0 Eji) )Bi
<e—1 <e-1 <0—1 <e—1
=Y y= Tran Y md="Y | 0 g
LoR Cijllpfe ( piwtag PiW{ag wim Ax; (65,1)0 0 )H;
<t—1 <e—1 <e—1 <e—1 _ <t—1 <e—1 <e—1
KED (o) Sty | afg st | Ry ) | @ | i o

while other ciphertext components from Enc are kept in normal form. It holds that Gy = G ¢.

For ¢ € [K], the transition from to is as follows: is the same as .
is the same as except that we apply Lemma 1 to introduce a set of masks in
the ciphertexts : Ax; < x(b ) _ ;.1’“). The proof of Lemma 1 can be found in Appendix B.

We remark that Ax; is a vector of differences of the challenge ciphertexts at position 1,
being constants at each i over all repetitions j;, under the admissibility. Moreover, the strong
admissibility also ensures that:

ZZ€H<AX7/7 (£>> = 0
(Ax;, y{"y =0ViecC

corresponding to any inner product function of (y;); (together with an LSSS). The ¢-th
key components are programmed to also accomodate newly independent values: afw & Ly,

(a ’7])j€|_ist Ate(a) < Ao (A) 2j & Zy. We emphasize that the random values introduced in

key components are randomlzed secret shares (a; J/ z;) - yi in which ] ;.; are shares of al o by
the attributes in List-Att(A). Thus, over all honest i € H, due to the simulated vectors at
decryption will cancel the masks, while for corrupted i € C, the masks are already 0 after
performing the product between the i-th ciphertext component and the i-th key component

<ZjAXi,a{£,j/ijz('l)> <AX17 ;Jy(5)> <AX’M (Z>> 0.

Moreover, because we are dealing with vectors Ax;, yl@, the Lemma 1 is applied by compo-
nents, which is possible due to the appropriate dimension of c-components and k-components,
as well as the proof of the Lemma 1 itself (see Appendix B).
We randomize the values a;,o in the key components by adding a independent fixed
random mask R. First of all, we remark that for i € H where A(S;) = 0, where A is the
LSSS associated to the ¢-th key query, the change is even perfectly indistinguishable. This is
because of the facts that
 the randomized shares ag’ j /#; are uniformly random and independent thanks to z;,
* even with repetitions at a position ¢, for a challenge tag tag, the shares z; are independent
for different repetitions given the private-only repetitions.
« more importantly, when A(S;) = 0, it holds that z; never appears in any of the ciphertexts
returned to the adversary
 as a consequence, the shares a;j /#; is information theoretically hidden and making a;O
information theoretically hidden for the adversary.
In the end, in this case for i € H where A(S;) = 0, what we do is just rewriting an information
theoretically hidden value a;, to another information theoretically hidden value a; , + R,
and this change goes perfectly indistinguishable. However, there can be the case where some
i € H it holds A(S;) = 1. This case can be treated by formal basis changes together with a
complezity leveraging argument.
The main idea is to consider the selective version Gf,,, for ¢t € {1,2,3,4}, where the
(1.3) (0.5) <e>)j¢€[Ji]

values (x; 7, x; i)

i Y are guessed in advance. We then use formal argument for the
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transitions G§ ,, ; = G{ ;4 to obtain for j € [3],
Pr[GS.z.j =1]= PT[GS.E.jH =1] . (8)

In the end, we use a complezity leveraging argument to conclude that thanks to (8), we have
Pr[Go.e1 = Gor11 =1] = Pr[Go.r2 = Go.e1.4 = 1]. 4
For the sequence Gg 1.1 — Ggr.1.4, we make a guess for the values (x&l’“), xg)’“), y))zf[k]]l],

choose R & Zy, random secret sharings (O - dX) ; k),iv 1 of 0 where 0; ;, # 0. We define the

event E that the guess is correct on (x{"7? x{"¥% y! )Zlee[r[{]]] and for all k € [N]
O+ dy; = —R- Axi[kly " [K] . (9)

We describe the selective games below, starting from G ,; = Gg,;,, where event E is

assumed true:
* * . .
Game G, ; = G, ;+ The vectors have form:

bolt Ci(;;;))fe ( piwmg(f) pi""tag (0) 2/2;5“) i () (ffzjk)iVZI (()2) )HL
teH kz ,ipfe ( Z <S’my > Z (ul,y ) ai,oz(a a;,O Y (dA,i,k)IIevzl rndl |pfe )H:

Game G, ; ,: We perform a formal basis change to the key components, for i € H to change
(H;, HY) following matrices: for r,r’ & Zy,

1 if row = col <3
m if 3z € [N] st. row =col =3+ 2 N Ax[z] #0 T
H;[row,col] = {1 if 3z € [N] s.t. row = col =3+ 2z A Axylz] =0; H] == (Hl'l)
9’;/2 if 3z € [N] s.t. row =col =N +3+z
| otherwise

We remark that the matrix does not have to check non-zeroness of ¢; ., as it is guaranteed
by the event E. The vectors have form: we denote the Hadamard product by “o”, and 1,
is the vector of 1’s at the positions where Ax; is non-zero

LoR C(J:pfe ( 7'- r - [1] 0 H,

ieEH ki?pfe ( (sz oy“)) (03, 'dx,)i,k){cvzl ”‘dz |)pfe Ju:
Game G, ; 52 We perform a formal ba81s change to the key components, for ¢ € H to change

(H;, H) following matrices: for r, 7’ & Ly, (for ease of presenting basis changes we write
the transposed matrix H,")

1 ifrow=col ¢ {4+ N,...,34+2N}

1 if row=col € {44+ N,...,3+2N} N Ax;[row — N —3] #0 T
7 ifrow=col € {4+ N,....3+2N} N Ax;frow — N —3] =0; HZI = (H;l)
-1 if3ze[N]st.row=3+N+2z A coll=3+=z

0 otherwise

'

H/ [row, col] =

We note that on the diagonal Z := row = col € {4+ N,3+ 2N} N Ax;[Z— N —3] =0,

because coordinate cff;fe[é — N] =0 as Ax;[Z — N — 3] = 0, the moving by H,' [3+ N +

2~ N —3,3+%— N — 3] has no effect on ¢ ||:)>fe[ ?]. Thus H;![row, col] multiplies a factor

(r" +7)/r"1% to the coordinate c(”) .|Z] to make sure that after the basis change it becomes
7" + 7. Dually the coordinate k' .pfeﬂ =0;- dA%k stays correctly thanks to the relation (9)

and we pay attention that Ax;[Z — N — 3] = 0. The vectors have form: we denote the
Hadamard product by “o”

LoR c£7|1pfe ( o - 1Ax,;

teH kigl)pfe ¢ - ‘(‘12,0 + R) - (Ax; 0 yz(-l))‘

(r+7)-1

4@ \N
(Guk dA,i,k k=1

0 )H;

(&)
rndz ,ipfe )H:

’

10 Therefore the corresponding position on the diagonal of H," [2,2] = #

25



using the hypothesis that event E happens along with the relation (9) specifically. Conse-
quently, we just update one secret share of 0 by another. The randomness 7’ is updated to
r’ + r, indentically distributed.

Game” G{ ,, ,:+ We undo the formal basis changes G ,; ; — G{ ;1 5, where the division by
1/7,1/(r + ') can be done with overwhelming probability since r, /¢ Zy at the beginning
of the game to define the matrices. This gives

LoR /i ( pissiag piclag | w7 Ax; 6],
te€H kiz.)pfe (> (Suyy)> > (uuyy)> aé%z(z) (aj ot Ry (dx)z,k)N 1

The above games demonstrate relation (8). We now employ the complexity leveraging

argument. Let us fix j € {1,2,3}. For u € {0.£.1.5,0.0.1.5 4+ 1} let Adv,(A) = |Pr[G,(A) =
1] — 1/2| denote the advantage of a ppt adversary A in game G,. We build a ppt adversary

B* playing against G} such that its advantage Adv;,(B*) = |Pr[G}(B*) = 1] — 1/2| equals

v - Adv,(A) for u € {t,t + 1}, for some constant .

The adversary B* first guesses the values (xf’j“, © “),yg))ff[k}]] choose R < Ly, random

secret sharings (6; k dﬁ_\i) k);cvzl of 0. Then B* defines the event E that the guess is correct on
(x990 @y HEUT and for all k € [N], 0; 1, - df&k = —R- Ax;[k]y"[k]. When B* guesses

i ze[n
successfully and F Lappens7 then the simulation of A’s view in Gt is perfect. Otherwise,

B* aborts the simulation and outputs a random bit . Since E happens with some fixed

0 m,

rndz ,ipfe )Hf

probability v and is independent from the view of A, we have'':
1
Adv} (B*) = |Pr[G(B*) = 1] — 2’
— |priz - PGy () =1 B+ D ;’
1—~v—-1
~ |-Gy =1 4
*) _ 1 _
=7 Pr[Gu(A) - ” - 5 =7 Aqu(A) (10)

where (x) comes from the fact that conditioned on F, B simulates perfectly G, for A, therefore
Pr[G,(A) =1 | E] = Pr[G},(B*) = 1 | E], then we apply the independence between E and
Gy (A) = 1. Together with relation (8), this concludes that Pr[Gg¢1,; = 1] = Pr[Go.r1. 41 = 1]
for any fixed j € {1,2,3}, in particular Pr[Ggs1 = Gor1.1 = 1] = Pr[Gor2 = Gor1.4 = 1].
Union bounds on A(S;) = 0 (perfect indistinguishability by information-theoretic argument
on z; and a; /%) and A(S;) =1 (perfect indistinguishability by complexity leveraging) give
the conclusion that the game hop is perfectly indistinguishable.

Reverse Masking Application - Lemma 1, so that only mask Ry; remains for i € H,
in k() Once again, the mask R will be canceled by the admissibility condition:

i,ipfe”
D =Xy =0
ieH

We arrive at Gy after Gg g 3.

Game Gy: We rewrite the game’s description to program the vectors ;(n) = ien E];) The goal

is to consider tg’; in the subsequent games, i.e. we look at the Vectors t(“) instead of the

given tf;) returned to the adversary. The rewriting is totally formal as it follows exactly what

is described in Figure 2.
Game G3: We apply similarly Lemma 1 as in G; — Go, by a sequence of hybrids over the ¢-th
functional key, one after another. We remark that the random factor R < Zg4 is the same as

' This calculation (10) to relate Advy(B*) to Adv.(A) is the core of our complexity levaraging argument, being
built upon the previous information-theoretic game transtions and the probability of event E.
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that one introduced in G; — Gg, this simplifies one guess during the complexity leveraging
argument. The formal basis changes resembles those in G; — G2 and in the end, the game
hop is perfectly indistinguishable.

Game G4: We use a complexity leveraging argument, that depends only on formal basis changes.

The goal is to switch from x( 7 %o x(.l’ji) for ¢ € ‘H. The details of the selective underlying
(i) 1 (0,35) <e>)ji6[Ji]

) g ’J g ze[n] 9

choose R & Zy, random secret sharings (i - dy A k) w1 of 0 where 0; ;, # 0. We define the

games are given in Figure 5. First of all, we make a guess for the values (x;

event F that the guess is correct on (x", x{*/" yE@)Z’E[T[L]i] and for all k € [N]

Ok dmk:_ﬂxz[k} k] (11)

so as to make sure 6; , - d( ik 1S a secret sharing of 0 conditioned on F'. We give the matrices’
definitions as follows to demonstrate how the calculation is performed:
Game G; ; = G3: The vectors have form:
LoR Cijfpfe ( Dirag Piliag Ax; 0560y 0 )H,
ieH K, ( X0y) | Tiuiy®) Ry | (@ )0 | mdie ns
Game G; ,: We perform a formal basis change to the key components, for ¢« € H to change

(H;, H) following matrices: for r, 7/ < Zy,

d’f’j”
) e
u’i,OZ( )

1 if row = col <3

e 3z € [N]st. row=col =3+ 2z AN Ax;[z] #0

1 if 3z € [N] s.t. row = col =3+ 2z A Ax[z] =0 1\ "
Hi[row,col] =<, 1 2 € [N] s.t. row = co te xil?] ;HZ( = (Hll)

B if 3z € [N] st. row=col =N +3+z

1 if 3j € [J],z € [N] s.t. row = col = N + 3 + z

0 otherwise

We remark that the matrix does not have to check non-zeroness of §; ., as it is guaranteed
by the event F'. The vectors have form: we denote the Hadamard product by “o”, and 1x;,
is the vector of 1’s at the positions Where Ax; is non-zero

LoR cyfpfe ( [1ax, r -[1] 0 )H,
(&) (e) (€) (2)
i€ Hk; ipfe ( R- (Ax oy; ) (05 dA f k)k: 1 rndi,ipfe )H;.*

Game G; 3: We perform a formal basis change to the key components, for ¢« € H to change
(B, B}), (H;, H}) following matrices: for r,r’ & Zy, (for ease of presenting basis changes
we write the transposed matrix H,' and B; )

1 if row=col ¢ {44+mn,...,34+2N}
1 ifrow=col € {4+n,...,34+2N} N Ax;[row— N —3]#0
/ . X _ _ T
HT [row, col] e tf70wfcole{4+n7...,3+2N} A Axifrow — N —3] =0 L= (H1-1>
-1 if 3z € [N]s.t.

row=3+z N col=3+ N +z

0 otherwise
1 if row = col
—1 if 3z € [N] s.t. T
Bgl[row,col] = if 32 € [N] s ; BZ{ = <B;1)
row=14+N+2z A col =z
0 otherwise

Following the matrices
« The formal changes of (B;, BY) switch x\"’ to x\"’ for i € H, where for z € [N] under
B;', the coordinate t/ 2] is updated to

t97[2] = Ax;[2] = w-si[z]Fw w;[2]4x 7 [2]4x0 [2] P [2] = wesi[2] g [2] X [2]

3 3

While dually in m{”[1 + N + 2] the matrix BiT_ introduces R'y® = (R+1) -y, staying
regroupable with the corresponding Ax; in tg“) 1+ N+ z].
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 The changes of (H;, H}) are also to correct R to R’ in the key components, thanks
to (11) of the games that we recall under this selective sequence, so that the decryption’s
correctness is preserved. We note that the diagonal of H, T also takes care of the case
where Ax;[z] = 0 for z € [N], in the same manner as we have done for Gf 15 = Gi 15

previously.

The vectors have form: we denote the Hadamard product by “o”

(34)

LoR tim (w-si+w -y + ;“) Ax; 0 p; )B;
¢ { { ¢ ¢
(P ol )| i | 0
(r'+r)-1 0 )H;

LoR Cijfpfe ( - r-1ax,
ieH kill)pfe ( R - (Ax oy(&) (0,5 'dx,)i,k)ivzl
using the hypothesis that event F' happens along with the relation (11) specifically. Conse-
quently, we just update one secret share of 0 by another. The randomness 7’ is updated to

r'+r, indentically distributed.
Game”* Gj ,: We undo the formal basis changes G5 ; — G}, and obtain

(0)
rndi,ipfe )H:

LOR CEJ:pfe (piwtag piwéag wiji) sz (91 Ic)szl 0 )HL
14 (4 13 14 13
i€ MK (Tilsiy!™)| Titui,yl?) | alyz© (A Ry | md (e Ve

Game G5: We clean the masks so that the adversary’s View is independent of the challenge b.
The bit b does not appear in the responses to the adversary anymore, completing the proof. O

We can apply a layer of All-or-Nothing Encapsulation (AoNE) so as to remove the tradeoff
with respect to incomplete challenge ciphertexts (i.e. remove pos-condition, that is, only complete
queries, in Definition 10) in case of (tag,S;) for different S;. More specifically, we apply the
generic transformation from [31, Lemma 16], that turns any dynamic decentralized functional
encryption (DDFE) schemes whose security holds only for complete challenge queries, i.e. which
is called pos-security in the litterature, into a DDFE that is secure again incomplete challenge
queries using a secure AoNE. The transformation can be made independent of the functionality
of the DDFE. Therefore, we can treat the case of MCFE with access control as a special case in
the above lemma so as to remove pos-condition. The formal statement is state below.

Lemma 12 (Incomplete Security with Private-Only Repetitions). Assume there exist

(1) a one-challenge MCFE scheme EP°S for the function class f(lp)pdlyq Lsss = ]'—('P Ny X LSSS that

is secure against complete queries, i.e. satisfying pos-security and (2) an AoNE scheme £3°¢
whose message space contains the ciphertext space of EP°. Then there exists a one-challenge
MCFE scheme & for the same function class f('P Ny X LSSS that is even secure against incomplete

queries. More precisely, for any ppt adversary A, there exist ppt algorithms B1 and Bo such that

Ad mc-w-rep-xxx-1chal- cpa(l)\) <12. Adv mc-w-rep-pos-xxx-1chal- cpa(l)\) +12 - Adv mc-w-rep-xxx-1chal-cpa (1)\)

IP,poly pos IP,poly aone_ IP;poly
€ ]:(N )” 1,4,LSSS’ € ]:(N )" 1:9 LSSS’B € ]:(N )" 1» q,LSSS’B2

where xxx C {stat, sel }.

We refer to the proof of the more general lemma in [31, Lemma 16], with repetitions on the
private inputs x;. Finally, by combining with Lemma 6 to allow multiple challenge tags, where
the only restriction remains solely for private inputs, and not the public attributes per client,
will be allowed repetitions we have the following Corollary:

Corollary 13. We consider the bilinear group setting (G1, G2, Gy, g1, 92, g, €,q) and the func-
tionality is ]:('R,)n x LSSS. Then, there exists a multi-client IPFE scheme with fine-grained

access control via LSSS that is statically IND-secure in the ROM, against multiple incomplete
challenge queries with repetitions on private inputs, under the SXDH assumption in G1 and Go.

Remark 14. (Towards MIFE for inner products) Corollary 13 presents an MCFE for sub-
vectors with fine-grained access control so that its security adapted to the case of subvectors
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(see Definition 5), with multiple (with possible repetitions on private inputs) , under a given
challenge tag and against incomplete queries. We can obtain an MIFE for inner products in the
standard model by fixing one tag for every ciphertext, i.e. the random oracle can be removed
by publishing a random fixed value corresponding to H(tag) for encryption. The security of the
resulted MIFE is implied from the security of our MCFE in Corollary 13 thanks to the fact that
the adversary can make multiple challenge queries to LoR for each slot i € [n], following the
admissiblity in Definition 10. In particular, security with possible repetitions on private inputs of
the MCFE implies security of the obtained MIFE when repetitive private x; are used for the same
i. In particular, we obtain an MIFE for inner-products with adaptive security in the standard
model, whose keys can be control by LSSS restraining no repetitions on attributes per client.

Allowing Repetitions on Attributes. As mentioned at the beginning of this section, the
above Lemma 12 deals with incomplete challenge queries, but only with respect to the private
input x; of each client 7. It cannot lift our restriction that we do not allow repetitions on the public
attributes S;. This explains why this constraint persists in our final MCFE from Corollary 13.
The fact that AoNE cannot deal with repetitions on public attributes is also mentioned in recent
works [10] and we leave it as potential extension to remove this constraint.
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A Additional Definitions

A.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 15. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

Do = {([1], [a] , [61, [ab])} Dy = {([11, [a], [6], [eD)}-

fora, b, c & Zg. The DDH assumption in G assumes that no ppt adversary can solve the DDH
problem with non-negligible probability.

Definition 16. In the bilinear setting (G1, G2, Gy, g1, g2, g1, €,q), the Symmetric eXternal
Diffie-Hellman (SXDH) assumption makes the DDH assumption in both G1 and Go».

A.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in prime-order
bilinear group setting (G1, Gz, Gy, g1, g2, gt, €, q) and G1, Go, G are all written additively. The
DPVS technique dates back to the seminal work by Okamoto-Takashima [32, 33, 34] aiming
at adaptive security for ABE as well as IBE, together with the dual system methodology
introduced by Waters [38]. In [27], the setting for dual systems is composite-order bilinear
groups. Continuing on this line of works, Chen et al. [16] used prime-order bilinear groups
under the SXDH assumption. Let us fix N € N and consider G} having N copies of G;. Any
x = [(z1,...,2n)]; € GY is identified as the vector (z1,...,zn) € Z)'. There is no ambiguity
because G is a cyclic group of order ¢ prime. The 0-vector is 0 = [(0,...,0)],. The addition of
two vectors in GV is defined by coordinate-wise addition. The scalar multiplication of a vector
is defined by t - x := [t- (z1,...,2n)];, where t € Z; and x = [(21,...,2n)];. The additive
inverse of x € GV is defined to be —x := [(—1,...,—xy)],. Viewing Zév as a vector space of
dimension N over Z, with the notions of bases, we can obtain naturally a similar notion of bases
for G¥. More specifically, any invertible matrix B € GLy(Z,) identifies a basis B of G}, whose
i-th row b; is [[B(i)]] 1» Where B is the i-th row of B. The canonical basis A of G]lv consists
of a; == [(1,0...,0)]; ,a2 == [(0,1,0...,0)];,...,an == [(0,...,0,1)];. It is straightforward
that we can write B = B - A for any basis B of G corresponding to an invertible matrix
B € GLN(Zq). We write x = (1, ...,2n)B to indicate the representation of x in the basis B,
le x = le\il x; - b;. By convention the writing x = (x1,...,zxy) concerns the canonical basis A.

Treating G similarly, we can furthermore define a product of x = [(x1,...,zy)], € GY,y =
[(vi,--,yn)], € GY by x x y = Hfil e(x[i],yli]) = [{(z1,...,2N), (W1, --,y~n)) ] Given a
basis B = (b;);e(n] of Gi', we define B* to be a basis of G3' by first defining B’ = (BH)T
and the i-th row b} of B* is [[B’(i)]]Q. It holds that B - (B’)T = Iy the identity matrix and
b; x b} = [4; 5], for every i,j € [N], where ¢; ; = 1 if and only if i = j. We call the pair (B, B*)
a pair of dual orthogonal bases of (G, GY). If B is constructed by a random invertible matrix
B <& GLN(Z,), we call the resulting (B, B*) a pair of random dual bases. A DPVS is a bilinear
group setting (G1, Go, Gy, g1, 92, g1, €, ¢, N) with dual orthogonal bases. In this work, we also use
extensively basis changes over dual orthogonal bases of a DPVS to argue the steps of switching
key as well as ciphertext vectors to semi-functional mode in our proofs. The details of such basis
changes are recalled in the appendix A.6.
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A.3 Access Structure and Linear Secret Sharing Schemes

We recall below the vocabularies of access structures and linear secret sharing schemes that will
be used in this work. Let Att = {atty, atto, ..., att,,} be a finite universe of attributes. An access
structure over Att is a family A C 2A%\ {@}. A set in A is said to be authorized; otherwise it
is unauthorized. An access structure A is monotone if Sy C So C Att and S; € A imply So € A.
Given a set of attributes S C Att, we write A(S) = 1 if and only if there exists A C S such
that A is authorized. A secret sharing scheme for an access structure A over the attributes
Att = {atty, atty, ..., att,, } allows sharing a secret s among the m attributes att; for 1 < j < m,
such that: (1) Any authorized set in A can be used to reconstruct s from the shares of its
elements; (2) Given any unauthorized set and its shares, the secret s is statistically identical to
a uniform random value. We will use linear secret sharing schemes (LSSS), which is recalled
below:

Definition 17 (LSSS [13]). Let K be a field, d, f € N, and Att be a finite universe of attributes.
A Linear Secret Sharing Scheme LSSS over K for an access structure A over Att is specified by
a share-generating matriz A € K such that for any I C [d], there exists a vector ¢ € K% with
support I and c¢- A = (1,0,...,0) if and only if {att; | i € I} € A.

In order to share s using an LSSS over K, one first picks uniformly random values vg, vs, ..., vs &
K and the share for an attribute att; is the i-th coordinate s[i] of the share vector s =
(8,v2,v3,...,v7) - AT. Then, only an authorized set {att; | i € I} € A for some I C [d] can
recover ¢ to reconstruct s from the shares by: ¢-s' =c- (A - (s,v2,v3,...,v¢) ") = 5. Some
canonical examples of LSSS include Shamir’s secret sharing scheme for any f-out-of-d threshold
gate [36] or Benaloh and Leichter’s scheme for any monotone formula [14]. An access structure
A is said to be LSSS-realizable if there exists a linear secret sharing scheme implementing A.

Let y € Zq where g is prime and for the sake of simplicity, let Att C Z, be a set of attributes.
Let A be a monotone access structure over Att realizable by an LSSS over Z,. A random labeling
procedure A,(A) is a secret sharing of y using LSSS:

Ay(A) = (y,v2,v3,...,v5) AT € Zf]l (12)

where A € ngf is the share-generating matrix and vg, vs, ..., vy & L.

A.4 More Cryptographic Primitives

We recall necessary cryptographic primitives used in this work.

Key-policy Attribute-Based Encryption (KP-ABE). A key-policy attribute-based encryp-
tion scheme is defined by a tuple of algorithms (Setup, KeyGen, Enc, Dec). The Setup algorithm
takes as input a security parameter 1* and outputs a public key pk and a master secret key
msk. The KeyGen algorithm takes as input a master secret key msk, a policy A, and outputs
a secret key skp. The Enc algorithm takes as input a public key pk, a message m in some
message space M, and a set of attributes S, and outputs a ciphertext cts. The Dec algorithm
takes as input a secret key sky and a ciphertext cts, and outputs a message m. A KP-ABE is
correct if for all A € N, all (pk, msk) +Setup(1), all A € Pol, all S C Att, all m € M, and all
sk < Keygen(msk, A), if Pol accepts S, it holds that Dec(skg, Enc(pk,m,S)) = m.

The security of a KP-ABE is defined below.

Definition 18. A KP-ABE scheme £ with respect to a class of policies Pol having attribute
space Att is CPA-secure if for every ppt adversary A, the following probability is negligible in \:

kpab coab )
Advgli e a(1%) = [Pr[Expregi it 4(14) = 1] — 2

where the experiment Expr:;’;?bAettA(lA) is defined as follows:
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1. The challenger runs Setup(1*) to obtain (pk, msk) and outputs pk to A. In the following the
adversary A can make queries adaptively in any order before Finalize.

2. (Key queries) The adversary A adaptively outputs a policy A. The challenger runs sky <+
Keygen(msk, A) and returns sk to A.

3. (Challenge) The adversary A outputs a pair of messages (mg,m1) and a set of attributes S*.
The challenger chooses a bit b € {0,1} and runs ctg« < Enc(pk, mp, S*).

4. (Finalize) The adversary A outputs a guess b. If there exists a policy A such that S* satisfies
A, then the expriment outputs 0. Otherwise, the experiment outputs b=b.

We can define similar weaker notions of selective challenge message and/or selective challenges
attributes.

Functional Encryption (FE). Below is a recall of the syntax and security of (public key)
single client FE.

Definition 19. A functional encryption scheme for a class F is defined by a tuple of algorithms
(Setup, Extract, Enc, Dec). The Setup algorithm takes as input a security parameter 1* and outputs
a public key pk and a master secret key msk. The Extract algorithm takes as input a master
secret key msk and a function description Fy : My — Ry, and outputs a secret key skp. The
Enc algorithm takes as input a public key pk, a message m in some message space M, outputs a
ciphertext ct. The Dec algorithm takes as input a secret key skgp and a ciphertext ct, and outputs
an element in R. An FE for a class F is correct if for all A € N, all (pk, msk) < Setup(1?), all
F\ e F, allm € M, and all skp < Keygen(F), msk), it holds that Dec(skg, Enc(pk,m)) = Fx(m).

The security of an FE scheme is defined below.

Definition 20. A FE scheme & with respect to a class of functions F is CPA-secure if for every
ppt adversary A, the following probability is negligible in A:

e e 1
AVE 7 4(1%) = |PrExprs 7 4(1%) = 1] — B

where the experiment Expr?7F7A(1A) 1s defined as follows:

1. The challenger runs Setup(1*) to obtain (pk, msk) and outputs pk to A. In the following the
adversary A can make queries adaptively in any order before Finalize.

2. (Key queries) The adversary A adaptively outputs a function description F. The challenger
runs skp < Extract(Fy, msk) and returns skp to A.

3. (Challenge) The adversary A outputs a pair of messages (mg,m1). The challenger chooses a
bit b € {0,1} and runs ct* < Enc(pk, mp).

4. (Finalize) The adversary A outputs a guess b. If there exists a function description F such
that F(mg) # F(my), then the expriment outputs 0. Otherwise, the experiment outputs b=b.

We can define similar weaker notions of selective challenge message and/or selective functional
decryptionkey queries. The notion of FE with access control can be captured by considering the
class F that does not only include the calulating function F), but also the access control policies
A given any member (Fy,A) in F (see Section 4.1 for a formal treatment in the case of MCFE).
The correctness is adapted that the decryption key skp s can only decrypt the ciphertexts ct to
F(m) if the access control policy A accepts the attributes S of the ciphertext ct< Enc(pk,m,S).
The notion of security is defined similarly as Definition 20, except that the syntax is adapted to
the FE with access control.
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Multi-Input Functional Encryption (MIFE). We recall in the following the syntax and
security of multi-input functional encryption, following [24].

Definition 21. A multi-input functional encryption scheme is defined by a tuple of algorithms
(Setup, Extract, Enc, Dec). The Setup algorithm takes as input a security parameter 1* and a
number of slots n, and outputs a public parameter pp, a master secret key msk, and n encryption
keys ek;. The Extract algorithm takes as input a function description F) : H?Zl Dy; — Ry and
the master secret key msk, and outputs a decryption key dkg. The Enc algorithm takes as input
an encryption key ek; and a message m; in some message space Dy ;, and outputs a ciphertext ct;.
The Dec algorithm takes as input a decryption key dkg and a vector of ciphertexts ct; of length
n, and outputs an element in Ry or L. An MIFE for a class F is correct if for all A € N, all
(pp, msk, (eki)ie[n])%Setup(l’\, 1™), all F\ € F, allm; € Dy ;, and all dkp < Extract(Fy, msk), it
holds that DeC(dkF)\, (Enc(eki, mz))ze[n]) = F/\(ml)ﬁe[n} .

The security of an MIFE is defined below.

Definition 22. An MIFE scheme & with respect to a class of functions F is secure if for every
ppt adversary A, the following probability is negligible in A:

Adv']“riii(l)‘) Pr[Exprm'fe(l )=1]— 3

where the experiment Exprm'fe( M) is defined as follows:

1. The challenger runs Setup(1*,17) to obtain (pp, msk, (eki)icn)) and outputs pp to A. In the
following the adversary A can make queries adaptively in any order before Finalize.

2. (Corruption) In the works of [4, 9], the adversary against the MIFE is futhermore allowed
to corrupt ek; for some i € [n|. This notion of security for MIFE with corruption allows one
more oracle for the adversary to corrupt ek; for any slot i € [n] of their choices.

3. (Key queries) The adversary A adaptively outputs a function description F. The challenger
runs dkp <— Extract(F), msk) and returns dkp to A.

4. (Challenge) The adversary A outputs a query (i,m{”,m\") for some i € [n]. The challenger
chooses a bit b € {0,1} and encrypts m&b) to obtain ctﬁ—Enc(ekl,mi ). The ciphertext ct; is
returned to A.

5. (Encryption) The adversary A outputs a query (i,m;) for some i € [n]. The challenger
encrypts m; to obtain ct; < Enc(ek;, m;). The ciphertext ct; is returned to A.

6. (Finalize) The adversary A outputs a guess b. If the following condition is satisfied, the

)

experiment outputs b= b: let I C [n] be the set of corrupted indices, for b € {0,1} we define
X® = {a: v esmy ti_q to be the queried challenges
(a) The pam“ X0 X ol satisfies that for all F queried by A, all I' = {i1,...,i;} CTUD, all

{w, .2l }, all ji,. .. jn—e € [q] we have

©) (0) / /
F (order (xil,jl’ RREY SN WL PPy x“>)
_ 1) 1) ! /
=F (order (ZL’ihjl, RRE AN NN SRR x“»

(b) The set {F} queried by A satisfies that for all X© X® challenges, all I' = {i1,... it} C
Tuw, al{«] w, }, all g1, ..., jnt € [q] we have

) (0) / /
F <order (xil,jlv RERE SN RIY /AR 1:“>)
_ (1) (€] / /
=F (order (xihjl’ e T T x“>)

such that the £-input receives its correspond value by the permutation order(-). Otherwise, the
experiment outputs 0.

Zl,...,
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We can define similar weaker notions of selective challenge message and/or selective functional
decryption key queries. The notion of MIFE with access control can be done in the same manner
as we do for FE with access control in the previous paragraph. The correctness is adapted that
the decryption key skpa can only decrypt the ciphertexts (ct;); to F'((m;);) if the access control
policy A accepts the attributes S; of the ciphertext ct; < Enc(pk,m;,S;) for all slots i € [n].

A.5 Decisional Separation Diffie-Hellman (DSDH) Assumption

Definition 23. In a cyclic group G of prime order q, the Decisional Separation Diffie-
Hellman (DSDH) problem is to distinguish the distributions

Dy = {('%yv [[1]] ) [[aﬂ ) [[b]] ) [[ab + .%'ﬂ)} Dy = {Hf, Y, ([[1]] ) [[a]] ) [[b]] ) IIGb + 3/]])}

for any x,y € Zg, and a,b & Zgq. The DSDH assumption in G assumes that no ppt adversary
can solve the DSDH problem with non-negligible probability.

A.6 Dual Pairing Vector Spaces

Basis Changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use G}’ as a running example. Let (A, A*) be the dual canonical bases of
(GY,GY). Let (U = (w;);, U* = (u});) be a pair of dual bases of (GI',G3'), corresponding to an
invertible matrix U € Zév XN Given an invertible matrix B € Zév XN the basis change from U
w.r.t B is defined to be B := B - U, which means:

N
(:L‘l,...,xN)B:inbi:(:Ul,...,:vN)-B:(xl,...,xN)-B-U
i=1

1
= (y1,...,yn)u where (y1,...,yn) = (21,...,2N) B .

Under a basis change B = B - U, we have
(w1, an)m = (@ von) - By (0 y)u = (o) - BY) . (13)
The computation is extended to the dual basis change B* = B’ - U*, where B’ = (B‘l)T:

(z1,..,zn)B = ((21,...,2n) - B) s (W1, yn)us = ((yh---,yN) : BT>B* - (14)

It can be checked that (B, B*) remains a pair of dual orthogonal bases. When we consider a basis
change B = B - U, if B = (b; ;); ; affects only a subset J C [N] of indices in the representation
w.r.t basis U, we will write B as the square block containing (b; ;); ; for 7,5 € J and implicitly
the entries of B outside this block are taken from the identity matrix Iy.

The basis changes are particularly useful in our security proofs. Intuitively these changes
constitute a transition from a hybrid G having vectors expressed in (U, U*) to the next hybrid
Gnext having vectors expressed in (B, B*). We focus on two types of basis changes, which are
elaborated below. For simplicity, we consider dimension N = 2:

Formal Basis Changes: We change (U, U*) into (B, B*) using

=] vy =[]
1,2 0 1,2

B=B-U B*=B-U".

We use this type in situations such as: in G we have vectors all of the form (z1,0)u, (y1,0)u=,
and we want to go to Gpex: having vectors all of the form (x1,0)B, (y1,[y1])B+. The simulator
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writes all vectors (x1,0)y, (y1,0)u= in (U, U*) and under this basis change they are written
into

(z1, O)u = (1 =0, 0)B = (21, 0)B; (¥1, O)ur = (¥1, O+ y1)B* = (Y1, Y1)B*

following the calculations in (13) and (14). The products between two dual vectors are
invariant, all vectors are formally written from (U, U*) (corresponding to G) to (B,B*)
(corresponding to Gpext ), the adversary’s view over the vectors is thus identical from G to Gpext.
In particular, this is a kind of information-theoretic property of DPVS by basis changing that
we exploit to have identical hybrids’ hop in the security proof. We list some formal basis
changes that are extensively used in this work:

1. (Duplication) This is the above example, vectors bg, b} are secret:

B = E (1)] B = (B = [1 _11}
1,2 0 1,2
B=B-U B* =B . U" .

and {(z1,0)u, (y1,0)u~} = {(21,0)B, (y1,[F1)B" }-

2. (Quotient, by randomness r & Z;) The matrices, vector b; is secret, are:

B = [T (1)] B = (B = [1/’“ ﬂ
01}, 0 1,2
B=B-U B* =B U".

and {(z1,0)u, (11,0)u-} = { @7} 0)s, (1 - 1/7}, 0)- }.

3. (Formal Switch) this is the same as (Duplication), but the starting coordinates are not 0:
5= 1Y) o= = [1]
1,2 1,2
B=B-U B*=PB-U".

and {(z1,22)u, (y1,92)u } = { (21 =22}, 2)B, (y1,[y2 + y1))B~ }-

Computational Basis Change: Given an instance of a computational problem, e.g. [(a, b, ¢)], of

DDH in G; where ¢ — ab = 0 or § < Z,, we change (U, U*) into (B, B*) using

Bl =) =[]
@lli9 1,2
B=B-U B*=pB.U* .
One situation where this type of basis change can be useful is: in G we have some target

vectors of the form (0, rnd)y, where rnd < Zq is a random scalar, together with other (21, z2)u,

and all the dual is of the form (0, y2)uy=. We want to go to Gpext having (7 rnd)p masked
by some randomness rnd <- Zq, while keeping (0, y2)B=. Because [a]; is given, the simulator
can simulate vectors (21, 22)u directly in B using [a]; as well as the known coordinates z1, zo.
The basis change will be employed for the simulation of target vectors:

(¢, b)u+(0,rnd)g = (¢ —a-b, rnd + b)B;
0, y2)ux = (0, y2+a-0)g- = (0, y2)B~

where all vectors in B* must be written first in U*, since we do not have [a],, to see how
the basis change affects them. Using the basis change we simulate those target vectors by
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(c—a-b, rnd+b)g with rnd implicitly being updated to rnd 4 b, the uninterested (21, 22)B are
simulated correctly in B, meanwhile the dual vectors (0, y2)p+ stays the same. Depending on
the DDH instance, if ¢ —ab = 0 the target vectors are in fact (0, rnd)g and we are simulating
G,elsec—ab=9 & Zq the target vectors are simulated for Gpext and rd == 6. Hence, under
the hardness of DDH in Gy, a computationally bounded adversary cannot distinguish its
views in the hybrids’ hop from G to Gpext. Under the SXDH assumption in the DPVS setting,
we list some computational basis changes that are extensively used in this work:

1. (Subspace) Given the DDH instance [(a,b,c)] in the group w.r.t B, this is the above

example, the matrices, vectors bg, b} are secret, are:

Bl =) =[]
allyo 1,2
B=B-U B*=RB . -U*.

and {(1, %), (0,md)u, (0, 1)} ~e { (21, 22), (], md)s, (0, ) }-

2. (Swap) Given the DDH instance [(a,b,c)] in the group w.r.t B, the matrices, vectors
bz, b7, b3 are secret, are:

100 . [10a
B:=1]010 B':=(B") =|01-a

—aal 123 00 1 123
B=DB-U B*=DBU* .

and {(Zl, 22, Z3)B> ($7 07 y)U7 (T7 T T/)U*} ~c (Zla 22, Z3)B7 (07 Tl y)Ba (’I", T, T/)B* }

We remark that the basis changes will modify basis vectors and for the indistinguishability to
hold, perfectly in formal change and computationally in computational changes, all impacted
basis vectors must not be revealed to the adversary.

Additional Notations. Any x = [(m1,...,my)]; € G} is identified as (my,...,my) € Z .
There is no ambiguity because Gi is a cyclic group of order g prime. The 0-vector is 0 =
[(0,...,0)];. The addition of two vectors in G’ is defined by coordinate-wise addition. The

scalar multiplication of a vector is defined by t - x = [t (m1,...,mn)];, where t € Z, and
x = [(m1,...,mn)];. The additive inverse of x € G is defined to be —x = [(—my, ..., —mn)];.
The canonical basis A of G} consists of a; == [(1,0...,0)],,a2 == [(0,1,0...,0)];,...,ay =
[(0,...,0,1)];. By convention the writing x = (m1,...,my) concerns the canonical basis A.

B Deferred Proofs - Proof of Lemma 1

Lemma 1. Let A be an LSSS-realizable over a set of attributes Att C Z,. We denote by
List-Att(A) the list of attributes appearing in A and by P the cardinality of List-Att(A). Let
S C Att be a set of attributes. Let (H,H*) and (F,F*) be two random dual bases of (G3,G3)
and (G$,G3Y), respectively. The vectors (hy,f1,f2,f3) are public, while all other vectors are
secret. Suppose we have two random labelings (a;)jcList-Ate(a) < Aag(A) and (a); Agr (A)

for agp, aj & Zq. Let J denote the mazimum number of repetitions at each j € S for c; or
for croot- Then, under the SXDH assumption in (G1,Gz), the following two distributions are
computationally indistinguishable:

(), y (@), y

< =g, v, e | (B =), v , 0%)r
K ctnnny = (T G0 1)y a5z, 0)pe 458 Kictanqay = (1301, 052, 0%, |ajy/25), 0%

clon = (@, O cion = @), [rat])y

Koot = (aoz, ) Ko = (a2, [agy)u-

for any "y € Z,, where rep € [J], and zj,0;, 7,0, T, 2,7, & Zy.
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Game Gy :

Cérep) ( U;rep) . (17 _]) w(rep) ololololo )F
Croot ( ¢<rep) 0 )H
k::oot ( aoz 0 )H*

Game G : 7+ Z4
i (o™ - (1,—)

(rep)
] . P
ki (om0

aj -z

0

729 [o]olo]o)s

e (| ]

k;koot ( aopz 0 )H*
Game Gy : 7, 25 & Zq
c;rep) ( O_j(rep) . (17 _,]) ,w(rep) Tx(rep) 0 TZj - m(rep) olo )F
K (om0 Ja-z| 0|0 0 0[]0 )
e (¢ | rat
kroot ( apz 0 )H*
Game G3 : 7, z; & Zq,ay & Zq, (a;)jejeAab(A)
C;rep) ( O,](_rep) . (17 _,7) d)(rep) . x(rep) 0 T2 - m(rep) olo )F
K, ( m-(G) |ai-z| ay |0 0 00 )p
@ (9 |72
kl)'koot ( aopz (16 ) )H*
Game Gy : T, Zj (i Zq,d{) (i qu (a;)jej <_Aa6(A)
c;'rep) ( U]er) (=) | P | 2t 0| 722" [ 0|0 )F
k; ( Wj'(j71) aj -z 0 0 a;'y/z]- 01]0 )F*

o (v
k?oot ( aoz

7ozt )y
aé-y )H*

Fig. 6: Games Gy, Ga, G3, G4 for the proof of Lemma 1. The index j runs over the list List-Att(A)
for the k-vectors and runs over the attributes in S for the c-vectors.
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Proof (Of Lemma 1). The proof is done through a sequence of games, starting from Gy where
the adversary receives D and ending in G4 where the adversary receives Do. The games are
depicted in Figure 6.

The changes that make the transitions between games are highlighted in [gray’. The advantage
of an adversary A in a game G; is denoted by

Game Gq: The vectors cj, Croor and k}'f, k;.o: are taken from Dj:

VjieS: ¢ = (o (1,—j), ¥, 0, 0, 0, 0, 0)p

Vj € ListAtt(A) : ki = (m;-(j,1), a;-2, 0, 0, 0, 0, 0)p-
E’éz’t ¥, 0)n

koot = (a0 - 2, 0)m

(rep)
root

(rep)

Game Gi: We introduce a mask 7 & Zg4 in the vectors c; and ¢

VjeSs: ('ep
Vj € List-Att(A) :

O.feP) (1 _j) w(rep)’ T'm(rep)v 07 Oa 07 O)F
- (4,1), aj-2, 0, 0, 0, 0, 0)p=
v, [

root_ agp - 2, O)H*

(rep)
Croot =

= (
= (
= (
(

Initially, let (T, T*), (W, W*) be pairs of random dual bases. In the reduction from a DDH
instance ([a], , [0];, [c];) Where ¢ = ab+ T with 7 = 0 or 7 <> Z,, the bases will be changed

as follows:
F = [1 a] F = (F"1>T = [ 1 0}
01 3.4 —al 34
F=F W; F*=F . -W*
H = [1 a] H = <H'1)T = [ 1 0}
01 12 —al 12
H=H T, H*=H -T*

Note that we can compute all the basis vectors except h} and f; but currently they are not
needed because their coordinates are 0 in all the keys. The simulator can virtually set

Croor = (b- 2", ¢ 2")p
=0 2" 7 2)u

c;,'ep) = (gé.'eP) -(1,—5), b2 c-2" 0, 0)w for j €S
= (0% . (1,—j), b-z", 7.2 0, 0)p for j €S

and ¢ = b-z. If 7 = 0 then above vectors are computed as in Gg, otherwise we are in
Gi. Therefore the difference in advantage is |Adv(Gy) — Adv(Gy)| < AdvngH(l)‘), where
AdvDDH(l’\) denotes the advantage against the DDH problem in G; set up with parameter .

Game Gy: In this game we introduce further a mask 7z; where z; & Z4 into each vector c;-'ep):

Vjes: c;.'e% o™ (1, —j), Y0P, 72t 0, (725 @ 0, 0)p

Ty - (]7 1)7 aj -z, 07 Oa Oa 07 O)F*



Given a DDH instance ([a],, [b], , [¢],) where ¢ = ab + ¢ with ¢ = 0 or ¢ < Z,, the bases
(F,F*) will be changed as follows:

10 a . 100
Fe=101-a F’::(F-l) —lo010
00 1 126 —aal 12,6

Under this basis change, we can compute all basis vectors except f;, which is not a problem
because the coordinate of ff in the keys are 0 (and thus their representations do not alter
under this basis change).

For j € S, the simulator can sample o, 3; & Zg, compute (in the exponent) b; = ;- b+ ;
and ¢; = a; - ¢+ B - a. We use the random self-reducibility of DDH, then virtually set

i = (b - 2" - (1,—5), ¥, 7, 0, ¢; - (1+4) -2, 0, O)w
(b x(rep) (L_])a w(rep) T, (CJ (1+])—CL b a'bj'j)'w(rep)a 07 O)F
= (bjz"™ - (1,—j), ", 7, 0, (¢j —a-b;)- (1 +j) -z, 0, O)p
= (ba™ - (1,—j), ¥, 7, 0, ( —aj-ab)- (1+4) -2, 0, O)p
— (bjx(rep) . (17_]')’ w(rep)’ T, 0 (rep) 07 O)F

where z; = (1 + j)(/7. The repetition-related randomness a}'ep) = b; - 2 is under affect

of 2 as expected. If ( = 0 then c; is computed as in Gy, else we are in the current game.
Consequently, the difference in advantages of an adversary against Gp and G; is bounded by

|Adv(G2) — Adv(Gy)| < Adv@PH(14) .

Game G3: In this game, we start to change the vectors k7 and ki,o,. We sample ag & Zq and
perform a random labeling of a to obtain (a); < A4 (A). The vectors are masked as follows:

Vje S - (rep)
Vj € List-Att(A) : k* =

(O-;"EP) (17_j)7 Y, T'$(rep)7 0, TZj 'x(rep)a 0, O)F
(77,7 ' (.]a 1)a aj - 2, a‘lj Y, Oa Oa 07 O)F*

— (', )y

(a0 -2, [ag -y )u

Given a DDH instance ([a],, [0],, [c],) where ¢ = ab+ p with p = 0 or p < Z,, the bases
(F,F*), (H,H") will be changed by matrices:

-
F = [ 1 ﬂ F' = <F1> = [1 ﬂ
—all3y 01];,

-
H = [ 1 ﬂ H = <H1> = [1 clz]
IR 01},

From the basis changes w.r.t F and H, we can compute all vectors in those two bases except
hy and f3, but we can express those c-vectors in T and W. More precisely, the simulator can
virtually set:

¢(rep , T x(rep))

= (" a7 2, 7. )

Uj(rep) (1,—3), ™, 7.2 0, TZj - 2 0, 0)w for j €S

UJ(rep) (1,—75), " +ar -z, 7.2 0, 72;- 2P, 0, O)p for j €S .
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More generally, if we treat a vector x™ that is stored in multiple coordinates of the c-vectors,
the above basis change can be generalized so that the repetition-related randomness is instead
updated to ¥ +a7 - 37, x"P[k], individually by each coordinate of x". Let (d})jeList-Att(a)
be a random labeling obtained from A;(A), i.e. we perform a secret sharing of 1 using the
LSSS realizing A. We simulate the vectors

k;koot = (a()Z, O)H* + (b "y, C- y)T*
= (aoz+b-y, p-y)m-
k;k = (7T] : (j7 1)7 a; - z, 07 07 07 07 O)F*
+ (07 07 bd; Y, Cd; Y, 07 07 07 O)W
=(m-(45,1), a;-24+b-y- d,;-, P d;- -y, 0, 0, 0, 0)p-Vj € List-Att(A) .
When p = 0 we are in the previous game, where ¢ + a7 - 2*? is used instead of ¥ "® and
the labeling is updated to:
ap+b-y/z
For each j € List-Att(A) a; +b-y-dj/z .

Otherwise, we are in the current game having additionally

Gy =p
that corresponds to the labels a} =p- d} for j € List-Att(A). The difference in advantages is
|Adv(Gs) — Adv(Gs)| < AdvePH(17).
Game Gy4: In this game, we swap a; -y from the 4-th coordinate to the 6-th coordinate, while
multiplying it with 1/z;:
VjeS: (rep)
Vj € List-Att(A) :

el
root -

(0_ (rep) (1 _j) ,l/}(rep)7 T.x(rep), 07 7-2;j.x(rep>7 07 0>F
= (m- (5 1), a;- 2 W0, O, j@gegfag, O, O)p-
(w(rep , T x(rep))

root (ao 2, aO y)H*

This transition is discussed separately in Lemma 24, which show the indistinguishability.
The proof is concluded. a

Lemma 24. Assuming the SXDH assumption for G1 and Go, the difference between advantages
|Adv(G4) — Adv(Gs)| in the proof of Lemma 1 is negligible.

Proof. The idea is that we consider the swapping of a;-y to a;-y /#; by each component in the list
List-Att(A) of the attributes in A and analyse a sequence of games indexed by those attributes.

The goal is to randomized, for each j € List-Att(A), the label a;- into a}/ zj that is i.1.d uniformly
random among j, not being a set of shares from labeling of af, anymore. More precisely, the game
Gs.im is indexed by m € {0, ..., P}, where P is the number of attributes in List-Att(A) and :

For j §mk;f = (m;-(4,1), aj-2, 0, 0, a ~y/zj, 0, 0)p=
For j >m kj = (m;- (j,1), aj- 2, a;-y, 0, 0, 0, O)p= .
This leads to G3g = Gz and G3 p = G4. The current form of other vectors is:
Vies: <rep) — (0! (1, —7), Y0, 72 0, 722", 0, 0)p
Vj#m e ListAtt(A) : ki = (- (4,1), aj -z, daj-y, 0, 0, 0, 0)p~
o= 4, 75
= (

root ap - 2, aO y)H*
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where 7, z; < Z, are chosen uniformly at random. The labels ag, a, (a;) jeListAte(A) and (a}) jeList-Att(a)
satisfy (a;); < Aqo(A) and (af); < Ay (A).

We first observe that the family of labelings, when viewed as a vector space over Zjg, is
closed under linear operations. In other words, a linear combination of vectors of labels gives a
vector of labels. Hence, following the idea from [22], we can “factor out” the current attribute-
related parts of a;- in k-vectors, then manipulate the remaining appropriate random linear factor
for obtaining the desired new labels (multiplicatively). This requires some rewriting. For two
labelings a := (o, () jeListAte(a)) < Aao(A) and (ag, (a})jeListar(a)) < Aqy (A), together with

uniformly random scalars p, § < Zy we rewrite the vectors as follows
kit = (aoz, 0)m~ + af)’ (02, py)m~
k; = (H] : (]7 1)7 a’] 2 07 07 07 07 O)F*
+a’ - (7j-(4,1), 6- 2, py, 0, 0, 0, 0)p~ for j € List-Att(A)

J
and thus we have
!/ " ~ "
ag = p - ag; ap = ap + 9 - ay
r . o~ L
a; = p-aj; aj =a;+0-a;
"~
mj =1+ aj - 7; (15)

We can concentrate solely on the changes of the vectors k;‘-. We can define

h} = (7;-(j,1), 62, py, 0, 0, 0, 0)~ for j € List-Att(A)

and as a result we concentrate on the changes of the vectors hi. We note that changing
multiplicatively the vectors h} means changing multiplicatively the factor p. Thanks to the
relations in (15), this means we are changing multiplicatively af and (a;) jeListAtt(A) as required
for introducing 1/2; in a.

First, we fix an ordering of the attributes in the list List-Att(A), which is of size P. Given
m € {1,..., P}, we write j = m if h;-‘ is the m-th vector component among h;f and the notation
extends to j < m and j > m. We now give a sequence of games for the transition from Gs ;1
to G3.,. This sequence of games can be found in Figure 7. We start from G3,,—1.0 = G3.m_1:

Game G3,,,_1.0: The vectors are specified as follows:
C;rep) — (aérep) . (1,—j>, w(rep)’ Tx(rew’ 0, 7-zjx(rep), 0, O)F

(7}] : (]7 1)7 5'27 07 07 py/zja Oa O)F* lf] <m
(7?] ' (]7 1)7 5'27 PY, 07 07 07 O)F* lf] >m

h} =

Game Gs,,—1.1: In this game we do a formal basis change to duplicate the 5-th component
into the 6-th one of the c-vectors:

C;‘rep) = (U;rep) : (1a _j)v ¢(rep)a T'z(rep)v Tw(rep) ) Tm(rep)zjv Oa O)F

The basis change is done following these matrices:

_ T
P=lo ] F=(r) =]
45 45

F=F W; F* = F/ - W*
and the simulator can set
(rep) __ (rep) N re re re
c;” = (0% (1,—j), PP Tzt 0, 7Pz, 0, 0)w

= ((;—;'ep) -(1,=7), PP rgpler) ) T:c('ep)zj, 0, O)p .
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$
Game Gg_m_l_o L2 < Zq

C(yrep) ( U](fEP) . (17 7]) w(rep) T2t | 0 szx(rep) 0lo )F
h; ( #7;-(5,1) 0z 0 0| py/z; |0|0 )p=ifj<m
h; ( #;-(5,1) 6z | py |0 0 0|0 )p=ifj>m
Game Gg.,_1.1 : 2; & Z, (Formal Duplication)
™ (o (1,—j) | v | |2 | rze [0]0 e
h; ( 7-0G,1 62 0 0 py/z; |00 )p=ifj<m
hi (  7-(5,1) §-2| py 0 0 0|0 )p+ifj=m
hi ( @-(,1) |d-2| py 0 0 0|0 )p=ifj>m
Game G3.m—1.2 : 25 Sz (Computational Swapping)
c§rep) ( o.](fﬁP) . (17 _]) w(rep) T | rp(rer) szx(rep) 010 )F
hi ( #-(,1) 6z 0 0 py/zi |00 )p=ifj<m
h; (  #;-(5,1) 0z 0 Py 0 0|0 )p=ifj=m
hi ( 75-(51) 5z | py 0 0 0|0 )p=ifj>m
Game G3Am_1_3 L Zj (i Z
c; (oj-(1,=5)| ¥ |1x| 722i/2m | TZijxz |0 |0 )F
h ( #;-(4,1) [6-2| 0 0 py/z; |00 Jpx if j <m
hi ( 7;-(5,1) |d-2| 0 Py 0 0|0 )p«ifj=m
hi ( #;-(5,1) | -2 | py 0 0 0|0 )p=ifj>m
Game Gg,m71,4 L Zj (i Zq
¢;j (oj-(L=g)| ¢ |7mx| 0 | 7Tz [0[0 )r
hj (7.1 [0-2[ 0| 0 | py/z |00 )p-ifj<m
hi ( 7-(3,1) |6-2] 0 |[ay|| py/zm |0|0 )pif j=m
hi ( #;-(j,1) |d-2z|py| O 0 00 )p=ifj>m
Game GSAm—lAS L Zj (i Zq
¢ ( Ug (L,—4) | ¥ |7x| 0| 7z |0|0 )F
h} ( i) |82 0|0 py/z; |0]0 )p~ifj<m
h} ( (], 1) |6-2] 0 |0 py/zm |0]0 )p=if j=m
h} ( -(4,1) |d-z|py| O 0 010 )pxifj>m

Fig. 7: Games for Lemma 24. The changes are made for the m-th key component h’, (with an
ordering on j € List-Att(A)). See (15) for the rewriting of kj into h7. The hybrids to go from
G3.m—1.2 to G3gn_1.3 can be found in Figure 8.
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We note that this affect all c-vectors, for all j € S, accross all repetitions w.r.t z.
This changes the vectors f; and {7 but since they are all hidden from the adversary and
the facing coordinates in k-vectors are 0, the transition is perfectly indistinguishable and
Adv(G3.m—1.1) = Adv(G3.m—1.0)-

Game Gg3,,_1.9: We do a swap between 4-th and 5-th components w.r.t the m-th attribute-wise
key components:

(75 (4,1), 6-2, 0, 0, py/zj, 0, O)p~ if j <m
hj = (7j-(43,1), 6-2, 0, [py, 0, 0, O)p~ if j =m
(ﬂ—j : (jal)a 6"27 PY, 07 07 07 O)F* lf] >m

Given a DSDH instance ([a],, [b]5,[c]y), where ¢ = ab+ 6 for § = 0 or § = p, the basis
change is performed following the matrices:

100

T 1—-aa
/ -1
F:=1|a10 F::(F):Olo
—a01 245 001 245
F=F W, F*=F W*

The c-vectors can be expressed in the bases (W, W*):

e — (a(.re")-(l, 7), TR A B N 'e")z 0, O)w

J J
— ( (rep) ] r‘?P) _ ax(rep)T + ax(rep 7p(rep) 7_‘,L,(rep) 7_:L,(rep) T rep)z O 0)

:( (rep) j (reP)’ 1/)7 7_Jc(rep)j 7-x(rep)7 7-x(rep) 0 0)
On the other hand, the simulator can set the k-vectors as below: if j = m

hj = (7} - (j,1), 62, py, 0, 0, 0, 0)p-
+ (by (.j71>7 0, —cy, cy, O)W
(7}; ’ (.77 1)1 6-z, py, 0,0, 0, O)F*
+ by (]71)3 0, _(C_ab)y7 (C_ab)y7 O)F*
= (7} +by) - (4,1), 6 2, py — Oy, By, 0, 0, 0)p~

The other vector components stay as in the previous game. More generally, if we treat a vector
x) instead of scalars, the above basis change can be adapted with more coordinates in the c-
vectors and h*-vectors. When 6 = 0, we are in G3,,,—1.1, otherwise we are in the current game
and the difference between advantages is |[Adv(Gs.,—1.2) — Adv(G3m—1.1)| < 2 - Adv DDH(l)‘).
Game G3,,,—1.3: We now change the c-vector component such that for every j = m, the 5-th
coordinate, which is 72 from the duplication in Gg.,,—1.1, will be changed to Tzz;/zp:

) (J](-rep) (1, =7), Y, x| ratzi/z, Tatz;, 0, 0)p if j #m
! (o5 - (1,=4), 9, 720, 70 0Pz 0, 0)p if j =m
We apply Lemma 25 to consider the transition from Gs,,—1.2 to Gsg,,—1.3. We do a sequence
of hybrids indexed by m’ € List-Att(A) \ {m}. The coordinates affected are (1,2,5,7,8) of
(F,F*). We note that during each application of the lemma for an index m’, only the vectors
¢ and k¥, are taken into account and affected by the basis changes (w.r.t the gray boxes ).
The main reason that we have to do index by index, for m’ € List-Att(A)\ {m}, to change c,,
is the fact that we use formal basis changes to randomize the (7, 8) coordinates, which in turn
provide randomness to change the 5-th coordinate of c,,/. Indeed, if we change more than 2
vectors c,,s at the same time, there will be more than 2 linear relations in a linear system
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binding the (7,8) coordinates. The solution of this system uses the fact that m’ —m # 0
and 1/(m’ —m) is well-defined, see the arithmetics (16). The more relations it has, the more
restrictive it becomes and in the end our formal basis change cannot be well-defined, i.e. we
cannot obtain an invertible matrix. The setting with repetitions also put more constraints on
the formal basis change, see (17) that is needed to be satisfied for the formal basis change to
be well-defined. Thus, we can only deal with 1 vector c,,/, where m’ € List-Att(A) \ {m}. For
other vectors, the concerning coordinates can be written directly in the target bases because
they are all 0. We proceed by a sequence of games depicted in Figure 8. The changes that
make the transitions between games are highlighted in |gray .

Game Gs,,—1.4: The goal of this game is to introduce p/z,, in the 6-th coordinate of the m-th
h-vector component, and at the same time to clean the 7 in the 6-th coordinate of the
c-vector components. After Gsz,,_1.3, the vectors are of the form:

(o) (aj(-'ep) (1, =g), U, TP 7250 [z, T2 25, 0, O)p if j #m
( ), U Tt e gtz 0, O)p if j =m

1), 6-2,0, 0, py/z;, 0, 0)p= if j <m
hj=¢ (7 (j,1), -2, 0, py, 0, 0, O)p- if j =m
i, 1), d-2z, py, 0, 0, 0, O)p= if j > m

We now change the basis w.r.t (F, F*) using the following matrices:

Fi= [10;2 i (1)] y Fl= (F—l)T _ [péa —p/ (fma)] )

F=F W; F*=F W* .

Note that this basis change will affect only the h-vector of attribute m € List-Att(A), because
by construction the other components have coordinate 0 for f5 and have the same writing
before and after the basis change. Moreover, the basis change can be applied before the
simulator sees the vectors along with A and S, by first sampling a value z <~ Zgq and use z in
the basis change. Afterwards, when all attributes are declared, z would be the mask at the
attribute m corresponding to the current hybrid. Last but not least, we target specifically
the h-vector of attribute m and the matrix is well-defined without relating to repetitions.
We have

cler) — { (O.;rem ’ (17 _j)7 w(rep)7 Tx(rep>7 szx(rep)/zmﬂ T‘T(rep)zﬁ 0, O)W if j 7é m

g (o7 - (1,—4), ¥, 720, 720 7Pz 0, 0)w if j =m

= (oj-(1,-4), ¥, T2, 0, T2z, 0, 0)F for all j
hf = (7;- (4,1), 6-2, 0, py, 0, 0, O)w= if j =m
= (ﬁ-m ’ (m’]-)a 5'27 O’ ay, py/zm7 O’ O)F*

and because f5, fg, 7', 7 are hidden from the adversary, this change is a formal basis change.
For other j # m, h} does not use £, which is affected, then we can write directly:

hi = (7;-(j,1), 6-2, *, 0, %, 0, O)p+ if j #£m .

The transition is perfectly indistinguishable. In the end, the difference in advantage is
AdV(G3_m_1_3) = AdV(G3.m_1_4).

Game G3,,,—15: The goal of this game is to put the m-th attribute-wise h-vector component
in to the form required by Gs,y,, i.e. remove the random value ay in the 5-th coordinate.
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$
Game G3.,m_1.2.m/—1.0 : 2j & Zq

(vep) ( 0_(*!9) . (17 _]) w(rEP) TP Tx(rep)zj /Zm szm(rep) olo )F if m 7& 7 < m’
('e") ( a';'ep) (1, —5) | Pt | T2l Tt T2;x | 0|0 )pifm#j>m
h;f ( #&-G,1 |6-2z] 0 0 py/zi |00 e« ifj<m
hi, ( 7m-(m,1) |d-2 0 Py 0 00 )p=ifj=
hi ( #-(,1) §-z | py 0 0 0 O)F*lf]>m
Game G3 ,—1.2.m/—1.1 : %5 & Z4 (Application Lemma 25 - first game hop)
c;vep) ( O_;VEP) . (17 _]) w('EP) TP | popper) 2 /Zm szx<fep) 0 0 )F if m 7& 7 < m’
c;'ep) ( cr;'e”) (1, —5) | P | T2l Tt 1220 0 0 )pifm#j>m
h; (70,1 5z 0 0 py/ % 0 0 Jp-ifj<m
hy, ( #m-(m,1) |d-2 0 Py 0 j0; | 6; )r-ifj=m
h; ( 7 (4, 1) d-z | py 0 0 0 0 Je-ifj>m

Game G3 ., 12.m/—1.2: 25 il Zq (Application Lemma 25 - second game hop, masking with ,u('e”))

c;.'e") ( a;'e” (1, =7) | | 72 | 72002, /2 | 72520 0 0 Y if m#j5<m
C;_few ( o_;_rep) . (1’ 7‘7) w(rep) 7P 7P 7.ij(rem #g’ep) ]N;rep) )F ifm#£j=
c;'ep) ( a;-'ep) (1, —5) | | TP T T2 0 0 e if m#5>m'
hi ( #;-(5,1) 0z 0 0 py/z; 0 0 Jr- if j <m

hy, ( 7m-(m,1 6.z 0 Py 0 mOm Om Jex if j=m

W A&-G) |6z | py 0 0 0 0 Je-ifj>m

Game G3 ,,—1.2.m/-1.3 © Zj & Zq (Application Lemma 25 - randomization by formal basis change, same technique
as explained w.r.t conditions (17))

e (ol (1, =) [ | 7 | 7oz o | 722 |0 | 0 pifmj<m
c;vep) ( O_;rep) . (17 —J) w(rep) e e szm(rep) ugrep) Mgep) )F it m 7& j= m
c;vep) ( O_;rep) (17 —J) w(rep) e o (reP) szm(rep) 0 0 )F it m 7& j> m
by ( #-(,1) |d-2| O 0 Py/ 2 0 0 Je-ifj<m
hy, ( 7m-(m,1 0z 0 Y 0 01 0 r-ifj=m
h; ( 75 (4,1) -z Py 0 0 0 0 e-ifj>m

Game Gz, 1.2.m/—1.4 : 2j < Zq (Application Lemma 25 - use the previously randomized coordinates ,u('ep) ,u(;"))

c ( U;@P) (1, —7) | " | 720 | 7202 /20, | 72520 0 0 J)pifm#j<m
C;_rep) ( O_(_rep) (1’ 7.]) ,l/)(rep) Tx(rep) Tm(rep) 2 /Zm szx(rep) H(lrep) ugep) )F if m 75 ] _ m/
C‘(irep) ( U;rep) (1,—5) | & | 7t P Tz 0 0 Jeifm#j>m
h; ( @Gl |[d-2] O 0 py/z | 0 0 )eeifj<m
hy, ( #m-(m1) |46 -2 0 Py 0 01 02 Jrxifj=m
hy ;- (4, 1) 0z Y 0 0 0 0 Je<ifj>m

$ .
Game G3.im—1.2.m'—1.5 = Ga.m—1.2.m’ : 2j < Zq (Cleaning)

(rep) (rep)

( (1, =) | 9P | Tzt | rat 2z, | 22 | 0|0 )F i m#£ G <m
('e") ( ;’eP) (1,—5) | ™ | 7z T T2 | 0| 0 )pifm#j>m
h* ( 7-(,1) |6-2] 0 0 oy/z; | 010 J)p-ifj<m
h* ( Fm-(m,1) |6 -2 0 Y 0 0|0 ) ifj=
hi (  #-(,1) §-z | py 0 0 0|0 )p= 1f]>m

Fig.8: The hybrids to go from Gz,,—12.m'—1.0 t0 G3m—_12.m'—1.5=3.m—1.2.m’ 1S coming from
Lemma 25, on coordinates (1,2,5,7,8), while taking h’, as the k-vector and changing c,,,» where
m’ # m in the application of the lemma. The changes are made for the m-th key component h’,
(with an ordering on j € List-Att(A)). See (15) for the rewriting of k into hj.
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After Gg,,_1.4, the vectors are of the form:

(rep) __ (rep) . re| re re .
c;” = (077 (1,—)), PP 7zt 0, 7Pz, 0, 0)p for all j

(7 - (4, 1), 8-z, 0, 0, py/zj, 0, O)p= if j <m
hi=< (7;-(j,1), 62 0, ay, py/zj, 0, 0)p- if j =m
(75 - (4,1), -2, py, 0, 0, 0, O)p= if j >m

where a <> Z,. Given an instance ([a]y, [b],, [c],) Where ¢ = ab + a and either & = 0 or
a & Zg, the simulator performs a basis change following the matrices:

-
F = [ 1 ﬂ F = <F1> = [1 Cll]
—allys 01,5

F=F W; F*=F W* .

We cannot compute f5 but this is not problematic because all the 5-th coordinates of the
c-vector components are 0. In addition, the vectors h} for j # m can be written directly in
(F,F*) thanks to the fact that their coordinates in f¥ are 0. The simulator can then virtually
set for j = m,

h;k = (by : (]71)7 d- 2, 07 ¢y, py/zmv 07 O)W*
= (by (]71)3 5'27 07 ay, py/zmv 07 O)F*

and when o < Zgq, we are in the previous game, otherwise we are in the current game that is
identical to Adv(Gs.,).

The proof is concluded. O

Lemma 25. Let (F,F*) be the dual bases of G} and G3 respectively. Suppose that the vectors
(f1,f2,£3) are public, while all others are kept secret. Let j # m and 8,a" ) € Z, are
chosen constants, where rep are index for repetitions of the c-vectors. Then, under the SXDH
assumption, the following two distributions are computationally indistinguishable, where c-vectors
are repetitive over the same j with independent randommness:

pe o [ €= (0 (1, =), 7, 0, 0)p
PR = (- (m1), B, 0, 0)pe

and

Do C(rep) — (O.(TEP) . (17_]), a(rep)’ 0’ O)F
2=k = (- (m, 1), B, 0, O)p-

where o' 1 < 7, are unknown and random, and o' are independent among different rep.
Proof. The advantage of an adversary A in a game G; is denoted by
Adv(G;) == Pr[G; = 1]
where the probability is taken over the random choices of A and coins of G;.
Game Gq: In this game, the adversary receives from the distribution D;:

C(rep) — (O_(rep) . (1’ —])7 ,y(rep)’ 0, O)F
k* = (7T : (mv 1)7 57 0, O)F* :
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Game Gj: In this game, we duplicate the first two coordinates of k* into the 4-th and 5-th
coordinates:

o = (5 (1,j), 7, 0, O
k*:(ﬂ-'(m71)v B, [pnt, p)F* :
Let (W, W*) be the canonical bases of G} and G3. Given a DDH instance ([a],, [b], [c],)

where p := ¢ — ab is either 0 or uniformly random, we use the following basis changing
matrices (F, F'):

1 000 10a0
_ 10 100 /(1" |010a
F= —a 010 F_<F) - 10010
0 —a01 12,45 0001 12,45
F=F W; F*=F W*

We cannot compute the basis vectors f; and f5 but they are not used in c¢. The vector k* can
be simulated as follows:

k* = (b (ma 1)7 ﬁa c-m, C)W*
= (
= (

If p = 0 we are in G, otherwise we are in Gj. The difference in advantages is |Adv(G;) —
Adv(Go)| < AdvgP™(1%).

Game Gq:In this game, we duplicate the first two coordinates of ¢ into the 4-th and 5-th
coordinates:

S

-(m,1), B, c-m —ab-m, c— ab)p~

: (mv 1)’ Bv p-m, ﬂ)F*

S

cler) — (o-(rep) . (1’ _j)7 ,y(rep)v 7 (rep) , _jT(reP) )F

K* = (r-(m,1), B, pm, pe- -

The masks 7P are depending on the repetitions index rep, for which we use the random
self-reducibility of the DDH assumption. Let (W, W*) be the canonical bases of G} and G3.
Given a DDH instance ([a], , [b]; , [c];) where ¢ — ab is either 0 or uniformly random, we use
the following basis changing matrices (F, F’):

10a0 1 000
_|010a ;. (~1\" _ |0 100
F= 0010 F_(F> |=a 010
0001 12,45 0 —a01 12,45
F=F W, F*=F .- W*

The vector ¢ can be simulated as follows. First, we randomize independently ([a], , [b]; , [c];)
into ([a]; , [6*];, [¢"P],) so that c*® — ab® is uniformly random or 0 following ¢ — ab.
We then compute

rep)7 c(rep>7 —j . c(rep))W
rev)7 clrer) ab(rep)7 —j . clrep —j . ab(rep))F

() pon) ey

e = (4 - (1)),
= (0" (1,—j), v
= (b(rep) : (17 _.j)a 0

simulating o := b while 70 = ) — gh® We cannot compute the basis F* but
the vector k* can be written in W™* and then we observe how it is affected under this basis

(
(
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change:

k' = (7‘- : (’I?’L, 1)7 ﬁa p-m, p)W*
= ((ﬂ- + a’p) : (ma 1)5 57 p-m, P)F*

and 7 is updated to m + ap. The important point is that our basis changing matrix depends
only on a, that is not randomized in the randomly self-reduced DDH instances and thus
independent from rep.
If P — gb™® = () we are in Gy, otherwise we are in Gy. The difference in advantages is
|Adv(G2) — Adv(Gy)| < AdvePH(17).
Game G3: We randomise the last two coordinates in ¢ and k*, which were changed from the
previous games:

cler) — (O-<rep) . (1’ —j), ,},(rep)y ﬂ(lfep) 7 ngp) )F

k' = (x- (m.1), 8, B [B3)e-

where 61, 09 & Zq are chosen uniformly at random.
We consider the basis changing matrices (F, F'):

el )|

F=F W; F*=F . W*

21 22
<3 24

Z4 —RZ3
—Zz2 21

}4,5

where 21, 22, 23, 24 € Zg are chosen such that z;z4 — 2223 = 1. The basis change affects the
hidden vectors (fy, f5, £, £2).
The two vectors ¢ and k* can be written directly in W and W* respectively:

C(rep) — (O-(rep) . (1’ 7‘7')’ v(rep)’ 7-(rep)’ 7]'7-(rep))w
= (0" - (1,=5), ¥, 702y + 7P jz3, =7 P 2y — 7P 21 )p
k* = (7T : (m7 1)7 ﬁ7 pm, ﬂ)W*
= (m-(m,1), B, pmz1 + z2p, pmzz + z4p)p= .

(rep) | (re

Let py™, pg

TP (24 + j23) = pi®
(rep)

—7P (29 + jiz1) = pg
p(mzy + z2) = 04
p(mzs + z4) = 03

01,09 < Zq and we consider the following system to solve for (z1, 22, 23, 24):

(24 + g = pi™ /7P
mz3 + z4 = b2/p

2+ ja1 = —ps™ [0
mz1 + z2 = 01/p

(/- re re|
(7 —m)zs = py™ /7 — 02 /p
mzg + z4 = 62/p

16
(G = m)21 =~ /7 01 /p 1o

(21 + 22 = 01/p

The system has a solution if and only if j # m, which is already our hypothesis. We note that
since p1, p2, 01,02 are uniformly random chosen values and fixed to determine (z1, 22, 23, 24),

we can always perform normalization using 1
change. Moreover, it is important that in the
are chosen such that

(rep)

251
- (rep)

= const; and

, 2, 01, 05 to ensure z124 — 2223 = 1 for the basis

current setting of repetitions, (,u(l'ep) P 61,6)

(re

7:“2

(rep)

Ho
- (rep)

= consty (17)
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are constants consty, consty € Z, over different rep. Otherwise the basis change matrix is not
well defined because its entries (21, 22, 23, 24) expresed by (u1, p2,01,62) depend on rep. In
other words, at the time of defining the basis change matrix, const, consts are fixed and
independent of rep, then (u{*, 15 7<) are chosen during simulation of ¢ following (17).
The basis change defined by (z1, 22, 23, 24) is totally formal and the difference in advantages
is Adv(G3) = Adv(Ga).

Game Gy: In this game, we change the constant v in ¢ to another constant a/:

= (o' - (1,—j), @, u{?, u5)p
k* = (7-(m,1), B, b1, 62)p- .

Let (W, W*) be the canonical bases of G} and G3. The security loss of this game hop
depends on the maximum number of repetitions over c-vectors that the adversary can query.
Given a DSDH instance ([a], , [b]; , [c],) where ¢ — ab is either 1 or the constant 0, we use
the following basis changing matrices (F, F”):

T _
F = [1 (1)] F = <F1> = [1 la}
allsy 0 3.4

F=F W; F*=F W* .

This basis change affects the vector f; and £, which are both kept secret from the adversary.
The vector ¢ can be simulated as follows:

e = (¢ (1, =), 7, W, 15
+ (07 0, c- (,Y(rem _ a(rep))’ b- (a(rep) _ V(rep))’ O)W

— (U(rep) . (1, —j), fy<rep> + (c _ ab) . (a(rep) _ ,Y(rep))j b- (a(rep) _ ,y(rep))’ N(Qrep))F

Even though we cannot compute the basis vector £, the vector k* can be written directly in
W* to see how it will change:

k' = (’ﬂ" (m71)7 ﬂ? 917 QQ)W*
= (W'(m,l), 67 91+CLB, H2)F*

and 6 is updated to 01 +ag. It follows form previous game that the last two coordinates of the
k-vectors do not depend on repetitions of ¢, which is impossible anyway, and th basis changing
uses only a from the DDH instance. If c—ab = 0 we are in the previous game, otherwise we are
in the current game. The difference in advantages is |Adv(Gy) — Adv(Gs)| < 2- Adv(ngH(l)‘).
Game Gs: In this game we clean the masks M(I'ep), ,ugep), 01,05 by doing the reverse transition

from Gz back to Gg.

The proof of the lemma, is concluded. O
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