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Abstract

Quantum information can be used to achieve novel cryptographic primitives that are impossible
to achieve classically. A recent work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses
on equipping the dual-Regev encryption scheme, introduced by Gentry, Peikert, Vaikuntanathan
(STOC 2008), with key revocation capabilities using quantum information. They further showed
that the key-revocable dual-Regev scheme implies the existence of fully homomorphic encryption
and pseudorandom functions, with both of them also equipped with key revocation capabilities.
Unfortunately, they were only able to prove the security of their schemes based on new conjec-
tures and left open the problem of basing the security of key revocable dual-Regev encryption
on well-studied assumptions.

In this work, we resolve this open problem. Assuming polynomial hardness of learning with
errors (over sub-exponential modulus), we show that key-revocable dual-Regev encryption is
secure. As a consequence, for the first time, we achieve the following results:

• Key-revocable public-key encryption and key-revocable fully-homomorphic encryption sat-
isfying classical revocation security and based on polynomial hardness of learning with
errors. Prior works either did not achieve classical revocation or were based on sub-
exponential hardness of learning with errors.

• Key-revocable pseudorandom functions satisfying classical revocation from the polynomial
hardness of learning with errors. Prior works relied upon unproven conjectures.

1 Introduction

Leveraging fundamental principles of quantum information to achieve cryptographic notions, that
are otherwise impossible to achieve classically, is an exciting research direction. In the past few
years, a dizzying variety of quantum cryptographic primitives, termed as unclonable primitives, have
been studied. Underlying the unclonable primitives is the no-cloning principle of quantum mechan-
ics [WZ82, Die82] which states that quantum states, unlike classical strings, cannot be copied. The
recent surge in the development of unclonable primitives has resulted in innovative approaches to
tackle many real-world security challenges, including protection against anti-piracy [Aar09], privacy
concerns in blockchain technology [AGKZ20], and provable deletion of cryptographic data from the
web [BI20, BL20].

We focus on the task of securely leasing or revoking cryptographic keys using the tools of quan-
tum information. Before precisely stating the problem that we set out to address, let us consider
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two scenarios: (a) Imagine a manager needing to temporarily delegate their duties, including access
to sensitive encrypted data, to their subordinate by sharing cryptographic keys. The challenge is
ensuring the subordinate’s access is revoked upon the manager’s return, a task that is impossible
to achieve with classical keys, (b) If a cryptographic key is stolen from a device, unless the attacker
has left a trace, it becomes challenging to detect such an attack and report it.

Quantum information presents a unique approach of tackling both of the above aforementioned
problems.

Our Focus. A major focus of our work is on protecting decryption keys. Specifically, we fo-
cus on the popular dual-Regev public-key encryption scheme of [GPV08] (also, referred to as the
GPV encryption scheme), which has inspired the design of many lattice-based cryptographic prim-
itives [BGG+14, Mah18, BDGM20, Qua20]. A key-revocable dual-Regev public-key encryption
scheme, first introduced in [APV23], is the same as the dual-Regev scheme except that we have the
additional guarantee that the decryption keys can alternately be represented as quantum states.
Any user in possession of the quantum decryption key can decrypt ciphertexts just the way he
would have been able to do if he had a classical decryption key. The security guarantee stipulates
that once the user returns the quantum decryption key, they will lose the ability to decrypt cipher-
texts and in particular, we require that the semantic security of dual-Regev encryption still hold.
We refer the reader to Section 1.1 for a more detailed description of the key-revocable dual Regev
public-key encryption scheme.

Key-Revocable Security of Dual-Regev: Motivation. Proving the security of key-revocable
dual-Regev encryption could lead to adding key revocation capabilities to other cryptographic prim-
itives. Indeed, [APV23] showed that key-revocable dual-Regev encryption can be leveraged to prove
the existence of fully homomorphic encryption and pseudorandom functions equipped with key re-
vocation capabilities. The structure of dual-Regev encryption was crucially exploited in these
applications.

There is also an aesthetic reason behind studying this problem. Dual-Regev public-key encryp-
tion is an elegant construction that is taught in most graduate classes on lattice-based cryptography.
Understanding whether it satisfies key-revocable security is a natural theoretical question.

The work of [APV23] attempted to prove the key-revocable security of dual-Regev encryption.
Unfortunately, they were only able to prove the security of this construction based on a new
unfounded conjecture. They leave the problem of proving the key-revocable security of dual Regev
encryption on concrete computational assumptions as an important open problem. In this same
work, inspired by the literature on certified deletion [BI20, HMNY21, BK22], they define a stronger
property called classical revocation: instead of the user being asked to return the state, they are
only asked to return a classical string that certifies that the quantum decryption key has been
deleted. After the state has been deleted, as before, we require the semantic security of dual-Regev
encryption to still hold. [APV23] relied upon yet another new conjecture to show that dual-Regev
encryption satisfied classical key-revocation security. The reliance on both these conjectures makes
the current state of affairs rather unsatisfactory. [APV23] left open the problem of basing key-
revocation security of dual-Regev encryption on well-studied cryptographic assumptions.

Main Result. In this work, we resolve this open problem. We show the following:

Theorem 1.1. Assuming polynomial hardness of learning with errors over sub-exponential modu-
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lus1, dual Regev encryption is key-revocable. Moreover, this scheme satisfies the classical revocation
property.

Applications. By combining the above theorem with the applications of key-revocable dual-
Regev encryption in [APV23], we obtain the following results:

Main Application: We present the first result of key-revocable pseudorandom functions based on
the polynomial hardness of learning with errors and also simultaneously satisfies classical revoca-
tion property. Prior work by [APV23] relied upon unproven conjectures.

Other Applications: We also achieve other applications that are in some aspects better than
the previous works.

1. We present the first result of key-revocable public-key encryption that is based on polynomial
hardness of learning with errors and simultaneously satisfies classical revocation property.
Prior works by [AKN+23, CGJL23] satisfied one but not the other.

2. We present the first result of key-revocable fully homomorphic encryption that is based on
polynomial hardness of learning with errors and simultaneously satisfies classical revocation
property. Prior work by [CGJL23] achieved this result from sub-exponential hardness of
learning with errors.

Main Technical Contribution: At the heart of our result is a new search-to-decision reduction
that reduces a quantum distinguisher that breaks the semantic security of dual-Regev encryption
into a quantum adversary that can solve an inhomogeneous short integer solution (ISIS) problem.
Our search-to-decision reduction is qualitatively different from [APV23] who rely upon Goldreich-
Levin reduction over large finite fields. In addition to the fact that [APV23] relies upon a conjecture,
their reduction necessarily2 incurs a loss that is inversely proportional to q, where q is the size of
the field. Since they need to set q to be sub-exponential in the security parameter, this means that
their reduction suffers from sub-exponential loss. On the other hand, our ISIS solver only incurs
inverse polynomial loss, independent of q.

Related Works: It would be remiss not to discuss two other related prior works.
Chardouvelis, Goyal, Jain, Liu [CGJL23] present instantiations of key-revocable public-key

encryption and fully homomorphic encryption. Moreover, their schemes satisfy classical key-
revocation security3. There are two advantages of our work over theirs:

• They do not have any results on pseudorandom functions,
• They assume sub-exponential hardness of learning with errors whereas we only assume poly-
nomial hardness of learning with errors.

1By aggressively setting the parameters, it would suffice to just assume polynomial hardness of learning with errors
over quasi-polynomial modulus.

2Their starting point is the classical Goldreich Levin reduction over finite fields by Dodis et al. [DGT+10]. This
reduction already suffers from a loss that is inversely proportional to q.

3In fact, they satisfy a much stronger property where the communication with the user can be completely classical.
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Agrawal, Kitagawa, Nishimaki, Yamada, Yamakawa [AKN+23] present an instantiation of key-
revocable public-key encryption based on the existence of any post-quantum secure public-key
encryption scheme. They also present other key-revocable notions, such as functional encryption,
that are not covered in this work. There are two advantages of our work over theirs:

• They do not prove the classical key revocation security of their scheme,
• They also do not provide any positive results on either fully homomorphic encryption or
pseudorandom functions.

Both the works, [CGJL23] and [AKN+23], come up with arguably more involved constructions
of key-revocable public-key encryption which make it unwieldy to extend their techniques to get
new applications.

1.1 Technical Overview

In this section, we give an overview of the main ideas and techniques underlying our proofs.

Key-Revocable Dual-Regev Public-Key Encryption. We first recall the key-revocable dual-
Regev constructions from [APV23]. This part has been reproduced verbatim from their work.

• KeyGen(1λ): Sample a matrix A ∈ Zn×mq and a short trapdoor basis tdA for it. The (quan-
tum) decryption key is a Gaussian superposition of ISIS solutions, which is generated by the
following procedure: Create a Gaussian superposition of short vectors x, compute the image
A · x (mod q) in the second register to get

|ψ⟩ =
∑
x∈Zm

q

ρσ(x) |x⟩ ⊗ |A · x (mod q)⟩

where ρσ(x) = exp(−π∥x∥2/σ2) is the Gaussian measure, for some σ > 0, and measure the
second register to the Gaussian coset state

|ψy⟩ =
∑
x∈Zm

q

Ax=y (mod q)

ρσ(x) |x⟩

for some measurement outcome y ∈ Znq .
Finally we set PK = (A,y), MSK = tdA and ρSK = |ψy⟩.

• Enc(PK, µ): To encrypt a bit µ ∈ {0, 1}, sample a random string s $←−Znq together with discrete
Gaussian errors e ∈ Zm and e′ ∈ Z, and output a classical ciphertext CT given by

CT =
(
s⊺A+ e⊺, s⊺y + e′ + µ · ⌊q

2
⌋
)
∈ Zmq × Zq.

• Dec(ρSK,CT): First apply the unitary U : |x⟩ |0⟩ → |x⟩ |CT · (−x, 1)⊺⟩ on input ρSK ⊗ |0⟩⟨0|,
and then measure the second register in the computational basis. Because ρSK is supposed to
be the Gaussian coset state |ψy⟩, which is a superposition of short vector x subject A ·x = y,
we obtain an approximation of µ · ⌊ q2⌋ from which we can recover µ.
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• Revoke(PK,MSK, ρ) : Apply the projective measurement {|ψy⟩ ⟨ψy| , I − |ψy⟩ ⟨ψy|} onto ρ
using the master secret key tdA

4. Output Valid if the measurement succeeds, and output
Invalid, otherwise.

Consider an efficient adversary A. It receives as input a state |ψy⟩ from the challenger and computes
a state ρR,Aux on two registers R and Aux. Subsequently, the adversary returns system R to the
challenger, while retaining system Aux as quantum advice for subsequent steps. Informally speak-
ing, we say that the above scheme is secure if A wins both of the following events simultaneously
only with negligible probability:

• Revoke on the system R outputs Valid.

• Using Aux, A can distinguish
(
s⊺A+ e⊺, s⊺y + e′ + ⌊ q2⌋

)
versus (s⊺A+ e⊺, s⊺y + e′)

Starting Point. Inspired by [APV23], we undertake the following approach. Suppose there did
exist an efficient adversary A that is successful in violating the security of the above construction.
We reduce A into an SIS solver B, which is described as follows: it first runs A on input (A,y, |ψy⟩)
to obtain a state ρ on two registers R and Aux. Then, B needs to be cleverly designed in such
a way that it recovers a short vector x0 from R and a short vector x1 from Aux satisfying the
following properties:

• Ax0 = y, Ax1 = y and,

• x0 ̸= x1.

Once both the vectors x0 and x1 are recovered then it simply sets the SIS solution to be x0 − x1.
While [APV23] set out on this route, they only managed to show such a reduction based on

a new conjecture. The core reason behind this is the fact that it is challenging to be able to
simultaneously recover two distinct short solutions from two potentially entangled registers R and
AUX. An attempt to recover x0 from R could invariably disturb the part of the state on Aux such
that it is no longer possible to recover x1. Any approach we undertake should tackle this challenge.

Our Approach. We propose a three-step approach to prove the security of key-revocable dual-
Regev encryption based on learning with errors.

• Step 1. In the first step, we transform the intermediate state ρ (on R and Aux) produced
by A into a “good state” ρgood. This step doesn’t need to always succeed. We require
two guarantees here: (a) this step aborts with probability bounded away from 1 and, (b)
conditioned on not abort, the output of this step is a good state ρgood such that the revocation
on R succeeds with non-negligible probability and Step 2 works.

• Step 2. Suppose the output of Step 1 is ρgood. We require that as long as ρgood is a good
state then, from Aux, we should be able to recover a short vector x1 such that Ax1 = y.
More importantly, we should be able to recover x1 with overwhelming probability.

• Step 3. We recover a short vector x0 from the register R such that Ax0 = y. Our hope is
that x0 and x1 are distinct and if this is the case then x0 − x1 is a non-trivial short solution
in the kernel of A.

4[APV23] showed how to implement this projective measurement efficiently with the trapdoor tdA.
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The easiest step to realize is Step 3. Suppose we have the guarantee that we can recover x1 from
Aux with overwhelming probability. By invoking almost as good as new lemma (Lemma 2.1),
we can show that the state ρ after Step 2 is not disturbed by much. This means that Revoke still
succeeds on R with inverse polynomial probability. This further implies that measuring the register
R yields a short vector x0. Then using a simplified analysis of [APV23], we can argue that x0 ̸= x1,
completing the proof.

We focus our attention on implementing Steps 1 and 2. Our main technical contribution will
lie in Step 2.

Implementing Step 1: To implement Step 1, we rely upon the threshold implementation tech-
nique introduced by Zhandry [Zha20]. Threshold implementation is a technique employed to get an
estimate of the success probability of a POVM on a state. In our context, we employ this technique
to test whether the adversary acting upon AUX register of ρ is successful in violating the security
of key-revocable dual-Regev encryption scheme. Formally, we define the threshold implementation
operator TI 1

2
+γ , where γ is some inverse polynomial, with the following properties:

1. TI 1
2
+γ is akin to a projector-like operator, collapsing the state to a γ-good state ρgood capable

of distinguishing between (s⊺A+ e⊺, s⊺y + e′) and (u, r) for u, r being sampled uniformly
randomly with probability 2γ (referred to as a “γ-good state”) when TI 1

2
+γ outputs 1, or to

some other state when TI 1
2
+γ outputs 0.

2. For a successful adversary, applying TI 1
2
+γ with an inverse polynomial γ on ρAux results in

an output of 1 with noticeable probability.

3. Upon applying TI 1
2
+γ again on a γ-good state, it yields an output of 1 with probability 1.

To summarize, as long as A is a successful adversary, TI 1
2
+γ collapses ρ into a good state ρgood with

inverse polynomial probability.

Implementing Step 2: As mentioned earlier, implementing Step 2 is our main technical contri-
bution.

It was already shown by [APV23] that x1 can be extracted from AUX. However, the success
probability of their extraction mechanism was only inverse polynomial which is insufficient for our
purpose. Instead, we completely depart from [APV23] and propose a novel extraction method.
This high-level approach is inspired by [CGJL23] although they study for a completely different
construction.

At a high level, our extractor proceeds by guessing each entry of x1, where x1 is a short solution
mapping A to y, one coordinate at a time. For each coordinate, we try all possible values and
using the distinguisher, test which of our guesses was correct. Recall that there are exponentially
many short vectors that map A to y. But once we apply the Gaussian collapsing lemma [Por22,
LMZ23], we can replace the state |ψy⟩ with |x1⟩. While recovering, say, the ith coordinate of x1,
we use the distinguisher on Aux to figure out whether the guess for the ith coordinate was correct
or not. However, this has to be handled with care. Since the distinguisher has quantum auxiliary
advice, we cannot keep hoping to run the distinguisher again and again. After the first run, the
state of the distinguisher could be damaged making it useless for future iterations. So we need to
come up with a mechanism to check if a guess is correct or not while maintaining the quantum
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state. Making crucial use of threshold implementation along with techniques from lattice-based
cryptography, we show how to implement this.

Our extractor is described as follows:

1. Initialize x = 0 as the output register.

2. For each position i ∈ [m] and each guess gi, we test whether the i-th entry x1 is gi by:

(a) Applying TI 1
2
+γ′(i, gi) on system Aux, where TI 1

2
+γ′(i, gi) is a threshold implementation

that ‘tests’ whether the state is γ′-good at distinguishing between
(
s⊺A+ e⊺ + c · î, s⊺y + c · gi + e′

)
(where c $←−Zq and î is the unit vector on the i-th dimension) and (u, r) (where u $←−Zmq , r $←−Zq).

(b) If the output is 1, set xi = gi.

(c) If the output is 0, skip to the next iteration.

3. Output x.

We argue that our extractor outputs x1 with nearly perfect probability if TI 1
2
+γ on ρAux outputs

1. Zhandry [Zha20] demonstrates that for two threshold implementations concerning computation-
ally indistinguishable tasks (e.g., distinguishing (s⊺A+ e⊺, s⊺y + e′) from (u, r), and distinguishing
(u,u⊺x1 + e′) from (u, r)), their outputs are closely related. Now, considering each guess gi for
position i:

• If the guess is correct (i.e., the i-th entry of x1 is gi), the distribution
(
s⊺A+ e⊺ + c · î, s⊺y + c · gi + e′

)
is computationally indistinguishable from the distribution (u,u⊺x1 + e′), and thus also from
(s⊺A+ e⊺, s⊺y + e′). Given ρ′Aux is a γ-good state, TI 1

2
+γ′(i, gi) outputs 1 with 1−negl prob-

ability if all other threshold implementations are ignored (i.e., applied TI 1
2
+γ′(i, gi) just after

TI 1
2
+γ).

• If the guess is incorrect, the distribution
(
s⊺A+ e⊺ + c · î, s⊺y + c · gi + e′

)
is computationally

indistinguishable from (u, r). Consequently, any state provides no advantage as advice, and
TI 1

2
+γ′ outputs 1 with negl probability.

Finally, we apply the quantum union bound to all measurements to demonstrate that the probability
of no error occurring during our testing procedure is 1− negl.

In the above proof, we omitted a major issue. Recall that in Step 1, we implement thresh-
old implementation to project the state ρ onto a good state ρgood. Moreover, this threshold
implementation is designed to check if the adversary can distinguish between the distributions
(s⊺A+ e⊺, s⊺y + e′) and (u, r). As discussed above, at some point, in the intermediate hybrids we
need to change these distributions. Once we switch the distributions, the threshold implementation
might only work with negligible probability. Our hope, in some cases invoking learning with errors,
is to argue that this does not happen. However, it is not clear how to carry out this reduction.
After all, the threshold implementation as defined by [Zha20] operates on a superposition of expo-
nentially many samples from a distribution and so, given just one sample from a distribution, it is
not possible to perform threshold implementation. We present a useful lemma (in Section 5) where
we argue that operationally, the guarantees of threshold implementation (including the output and
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the residual state) are not affected when one distribution is replaced with another computationally
indistinguishable distribution.

Technical Sections: To maintain the clarity of presentation in the technical sections, we present
the proof of security in a different order than the one discussed in the overview, although the main
ideas of the proof have been conveyed above.

• Steps 1, 2 and 3 are not presented in order. Section 5 and Section 6 are concerned with
implementing Step 2. Section 7 is concerned with implementing Steps 1 and 3.

• Regarding Step 2, we present the useful lemma related to threshold implementation in Sec-
tion 5. We then discuss the mechanism to extract x1 from Aux in Section 6.

2 Preliminaries

We denote the security parameter by λ. In this work, when we add/multiply two elements from Zq,
we mean the addition/multiplication in Zq by default (i.e. for a, b ∈ Zq, a+ b means a+ b (mod q)
and ab means ab (mod q) by default).

2.1 Quantum Computing

We recall some important lemmas from quantum information theory.

Lemma 2.1 (“Almost As Good As New” Lemma, [Aar16]). Let ρ ∈ D(H) be a density matrix over
a Hilbert space H. Let U be an arbitrary unitary and let (Π0,Π1 = I −Π0) be projectors acting
on H ⊗ Haux. We interpret (U,Π0,Π1) as a measurement performed by appending an ancillary
system in the state |0⟩⟨0|aux, applying the unitary U and subsequently performing the two-outcome
measurement {Π0,Π1} on the larger system. Suppose that the outcome corresponding to Π0 occurs
with probability 1− ε, for some ε ∈ [0, 1]. In other words, it holds that Tr[Π0(Uρ⊗ |0⟩⟨0|aux U †)] =
1− ε. Then,

TD(ρ, ρ̃) ≤
√
ε,

where ρ̃ is the state after performing the measurement and applying U †, and after tracing out Haux:

ρ̃ = Traux

[
U †
(
Π0U(ρ⊗ |0⟩⟨0|aux)U

†Π0 +Π1U(ρ⊗ |0⟩⟨0|aux)U
†Π1

)
U
]
.

Lemma 2.2 (Quantum Union Bound, [Gao15]). Let ρ ∈ D(H) be a state and let Π1, . . . ,Πn ≥ 0
be sequence of (orthogonal) projections acting on H. Suppose that, for every i ∈ [n], it holds that
Tr[Πiρ] = 1 − εi, for εi ∈ [0, 1]. Then, if we sequentially measure ρ with projective measurements
{Π1, I−Π1}, . . . , {Πn, I−Πn}, the probability that all measurements succeed is at least

Tr[Πn · · ·Π1ρΠ1 · · ·Πn] ≥ 1− 4
n∑
i=1

εi.
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2.2 Lattices and Cryptography

We adapt notations from [APV23] and keep it same as much as we can. The following subsection
is copied verbatim from [APV23]. Let n,m, p, q ∈ N be positive integers. The rounding operation
for q ≥ p ≥ 2 is the function

⌊·⌋p : Zq → Zp : x 7→ ⌊(p/q) · x⌋ (mod p).

A lattice Λ ⊂ Rm is a discrete subgroup of Rm. Given a lattice Λ ⊂ Rm and a vector t ∈ Rm, we
define the coset with respect to vector t as the lattice shift Λ − t = {x ∈ Rm : x + t ∈ Λ}. Note
that many different shifts t can define the same coset.

In this work, we mainly consider q-ary lattices Λ that that satisfy qZm ⊆ Λ ⊆ Zm, for some
integer modulus q ≥ 2. Specifically, we consider the lattice generated by a matrix A ∈ Zn×mq for
some n,m ∈ N that consists of all vectors which are perpendicular to the rows of A, namely

Λ⊥q (A) = {x ∈ Zm : A · x = 0 (mod q)}.

For any syndrome y ∈ Znq in the column span of A, we also consider the coset Λy
q (A) given by

Λy
q (A) = {x ∈ Zm : A · x = y (mod q)} = Λ⊥q (A) + c,

where c ∈ Zm is an arbitrary integer solution to the equation Ac = y (mod q).

Gaussian Distribution. The Gaussian measure ρσ with parameter σ > 0 is defined as

ρσ(x) = exp(−π∥x∥2/σ2), ∀x ∈ Rm.

Let Λ ⊂ Rm be a lattice and let t ∈ Rm. We define the Gaussian mass of Λ− t as the quantity

ρσ(Λ− t) =
∑
y∈Λ

ρσ(y − t).

The discrete Gaussian distribution DΛ−t,σ assigns probability proportional to e−π∥x∥
2/σ2

to
every vector x ∈ Λ− t. In other words, we have

DΛ−t,σ(x) =
ρσ(x)

ρσ(Λ− t)
, ∀x ∈ Λ− t.

In particular, for any coset Λy
q (A) with y ∈ Znq , the discrete GaussianDΛy

q (A),σ (centered around the

origin) assigns probability proportional to e−π∥x∥
2/σ2

to every vector x ∈ Λy
q (A), and 0 otherwise.

Let Bm(0, r) = {x ∈ Rm : ∥x∥ ≤ r} denote the m-dimensional ball of radius r > 0. We use of
the following tail bound for the Gaussian mass of a lattice [Ban93, Lemma 1.5 (ii)].

Lemma 2.3. For any m-dimensional lattice Λ, shift t ∈ Rm, σ > 0 and c ≥ (2π)−
1
2 it holds that

ρσ
(
(Λ− t) \ Bm(0, c

√
mσ)

)
≤ (2πec2)

m
2 e−πc

2mρσ(Λ).

A consequence of Lemma 2.3 is that the Gaussian distribution DZm,σ is essentially only sup-
ported on the finite set {x ∈ Zm : ∥x∥ ≤ σ

√
m}, which suggests the use of truncation.

9



Definition 2.4 (Truncated discrete Gaussian distribution). Let m ∈ N, q ≥ 2 be an integer modulus
and let σ > 0 be a parameter. Then, the truncated discrete Gaussian distribution DZm

q ,σ with finite

support {x ∈ Zm ∩ (− q
2 ,

q
2 ]
m : ∥x∥ ≤ σ

√
m} is defined as the density

DZm
q ,σ(x) =

ρσ(x)∑
y∈Zm

q ,∥y∥≤σ
√
m

ρσ(y)
.

Finally, we recall the following noise smudging property.

Lemma 2.5 (Noise smudging, [DGT+10]). Let y, σ > 0. Then, the statistical distance between the
distribution DZ,σ and DZ,σ+y is at most y/σ.

We use the following technical lemma on the min-entropy of the truncated discrete Gaussian
distribution, which we prove below.

Lemma 2.6 (min-entropy of the truncated discrete Gaussian, [APV23], Lemma 2.10). Let n ∈ N
and let q be a prime with m ≥ 2n log q. Let A ∈ Zn×mq be a matrix whose columns generate Znq .
Then, for any σ ≥ ω(

√
logm), there exists a negligible ε(m) such that

max
y∈Zn

q

max
x∈Zm

q , ∥x∥≤σ
√
m

Ax=y (mod q)


ρσ(x)∑

z∈Zm
q ,∥z∥≤σ

√
m

Az=y (mod q)

ρσ(z)


≤ 2−m+1 · 1 + ε

1− ε
.

The Short Integer Solution problem. The Short Integer Solution (SIS) problem was intro-
duced by Ajtai [Ajt96] in his seminal work on average-case lattice problems.

Definition 2.7 (Short Integer Solution problem, [Ajt96]). Let n,m ∈ N, q ≥ 2 be a modulus and
let β > 0 be a parameter. The Short Integer Solution problem (SISmn,q,β) problem is to find a short

solution x ∈ Zm with ∥x∥ ≤ β such that A · x = 0 (mod q) given as input a matrix A $←−Zn×mq .

Micciancio and Regev [MR07] showed that the SIS problem is, on the average, as hard as ap-
proximating worst-case lattice problems to within small factors. Subsequently, Gentry, Peikert and
Vaikuntanathan [GPV07] gave an improved reduction showing that, for parameters m = poly(n),
β = poly(n) and prime q ≥ β · ω(

√
n log q), the average-case SISmn,q,β problem is as hard as ap-

proximating the shortest independent vector problem (SIVP) problem in the worst case to within
a factor γ = β · Õ(

√
n). We assume that SISmn,q,β, for m = Ω(n log q), β = 2o(n) and q = 2o(n), is

hard against quantum adversaries running in time poly(q) with success probability poly(1/q).

The Learning with Errors problem. The Learning with Errors problem was introduced by
Regev [Reg05] and serves as the primary basis of hardness of post-quantum cryptosystems. The
problem is defined as follows.
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Definition 2.8 (Learning with Errors problem, [Reg05]). Let n,m ∈ N be integers, let q ≥ 2 be
a modulus and let α ∈ (0, 1) be a noise ratio parameter. The (decisional) Learning with Errors
(LWEmn,q,αq) problem is to distinguish between the following samples

(A $←−Zn×mq , s⊺A+ e⊺ (mod q)) and (A $←−Zn×mq ,u $←−Zmq ),

where s $←−Znq is a uniformly random vector and where e ∼ DZm,αq is a discrete Gaussian error
vector. We rely on the quantum LWEmn,q,αq assumption which states that the samples above are
computationally indistinguishable for any QPT algorithm.

As shown in [Reg05], the LWEmn,q,αq problem with parameter αq ≥ 2
√
n is at least as hard as

approximating the shortest independent vector problem (SIVP) to within a factor of γ = Õ(n/α) in
worst case lattices of dimension n. In this work we assume the subexponential hardness of LWEmn,q,αq
which relies on the worst case hardness of approximating short vector problems in lattices to within
a subexponential factor. We assume that the LWEmn,q,αq problem, for m = Ω(n log q), q = 2o(n),

α = 1/2o(n), is hard against quantum adversaries running in time poly(q). We note that this
parameter regime implies SISmn,q,β [SSTX09].

Trapdoors for lattices. We use the following trapdoor property for the LWE problem.

Theorem 2.9 ([MP11], Theorem 5.1). Let n,m ∈ N and q ∈ N be a prime with m = Ω(n log q).
There exists a randomized algorithms with the following properties:

• GenTrap(1n, 1m, q): on input 1n, 1m and q, returns a matrix A ∈ Zn×mq and a trapdoor tdA
such that the distribution of A is negligibly (in the parameter n) close to uniform.

• Invert(A, tdA,b): on input A, tdA and b = s⊺ ·A+e⊺ (mod q), where ∥e∥ ≤ q/(CT
√
n log q)

and CT > 0 is a universal constant, returns s and e with overwhelming probability over
(A, tdA)← GenTrap(1n, 1m, q).

We use ≈c to denote two distributions or two quantum states are computationally indistin-
guishable. We use ≈s to denote two distributions or two quantum states are statistically indistin-
guishable.

2.3 Gaussian Coset States

In Algorithm 1 ([APV23], Algorithm 1), they give a procedure called GenGauss that, on input
A ∈ Zn×mq and σ > 0, generates a Gaussian superposition state of the form

|ψy⟩ =
∑

x∈Zm
q :

Ax=y (mod q)

ρσ(x) |x⟩ .

It is computationally hard to distinguish whether a Gaussian Coset State is measured in the
computational basis or not.
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Algorithm 1: GenGauss(A, σ)

Input : Matrix A ∈ Zn×mq and parameter σ = Ω(
√
m).

Output: Gaussian state |ψy⟩ and y ∈ Znq .
1 Prepare a Gaussian superposition in system X with parameter σ > 0:

|ψ⟩XY =
∑
x∈Zm

q

ρσ(x) |x⟩X ⊗ |0⟩Y .

2 Apply the unitary UA : |x⟩ |0⟩ → |x⟩ |A · x mod q⟩ on system X and Y :

|ψ⟩XY =
∑
x∈Zm

q

ρσ(x) |x⟩X ⊗ |A · x mod q⟩Y .

3 Measure system Y in the computational basis, resulting in the state

|ψy⟩XY =
∑
x∈Zm

q

Ax=y mod q

ρσ(x) |x⟩X ⊗ |y⟩Y .

4 Output the state |ψy⟩ in system X and the outcome y ∈ Znq in system Y .

Theorem 2.10 (Gaussian-collapsing property, [Por22], Theorem 4). Let n ∈ N and q be a prime
with m ≥ 2n log q, each parameterized by λ ∈ N. Let

√
8m < σ < q/

√
8m. Then, the following sam-

ples are computationally indistinguishable assuming the quantum hardness of decisional LWEmn,q,αq,

for any noise ratio α ∈ (0, 1) with relative noise magnitude 1/α = σ · 2o(n) :(
A $←−Zn×mq , |ψy⟩ =

∑
x∈Zm

q

Ax=y

ρσ(x) |x⟩ , y ∈ Znq

)
≈c

(
A $←−Zn×mq , |x0⟩ , A · x0 ∈ Znq

)

where (|ψy⟩ ,y)← GenGauss(A, σ) and where x0 ∼ DZm
q ,

σ√
2
is a discrete Gaussian error.

The algorithm GenGauss can generate a Gaussian coset state |ψy⟩ for random y. To generate a
Gaussian coset state |ψy⟩ for a specific y, we need a trapdoor tdA for matrix A.

Theorem 2.11 (Quantum Discrete Gaussian Sampler, [APV23], Theorem 3.3). Let n ∈ N, q
be a prime with m ≥ 2n log q and

√
8m < σ < q/

√
8m. Let (A, tdA) ← GenTrap(1n, 1m, q) be

sampled as in Theorem 2.9 and let y ∈ Znq be arbitrary. Then, there exists a QPT algorithm
QSampGauss(A, tdA,y, σ) that given A,y and a trapdoor of A outputs a state which is within
negligible trace distance of the (normalized variant of the) state

|ψy⟩ =
∑
x∈Zm

q

Ax=y (mod q)

ρσ(x) |x⟩

with overwhelming probability.
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2.4 Threshold Implementation and its Approximate Version

In the subsection, we review some techniques called Threshold Implementation [ALL+21], which is
a simple extension of Projective Implementation [Zha20]. It allows us to test whether the success
probability of a quantum algorithm exceeds some threshold.

Theorem 2.12 (Threshold implementation, [ALL+21]). Let γ ∈ (0, 1) be a parameter and let
P = (P,Q) be a two-outcome POVM, where P has an eigenbasis {|ψi⟩} with associated eigenvalues
{λi}. Then, there exists a projective threshold implementation (TIγ(P), I− TIγ(P)) such that

• TIγ(P) projects a quantum state into the subspace spanned by {|ψi⟩} whose eigenvalues λi
satisfy the property λi ≤ γ.

• I−TIγ(P) projects a quantum state into the subspace spanned by {|ψi⟩} whose eigenvalues λi
satisfy the property λi > γ.

Unfortunately, the threshold implementation can, in general, not be efficiently computable.
However, inspired by the work of Marriott and Watrous [MW05], Zhandry [Zha20] showed that
the approximate version of the threshold implementation can be implemented efficiently as long as
the POVM is a mixture of projective measurements. We first review the definition of mixture of
projective measurements.

Definition 2.13 (Mixture of projective measurements). Let P = {Pi}i∈I be a collection of binary
outcome projective measurements Pi = (Pi, Qi) over the same Hilbert space H, and suppose that Pi
corresponds to outcome 1 and Qi corresponds to outcome 0. Let D be a distribution over the the
index set I. Then, PD = (PD, QD) is the following mixture of projective measurements:

PD =
∑
i∈I

Pr[i← D]Pi and QD =
∑
i∈I

Pr[i← D]Qi.

In other words, PD is the same as first sampling i according to the distribution D, and then
applying the projective measurements Pi.

For any mixture of projective measurements PD, the approximate threshold implementation
satisfies the following properties.

Lemma 2.14 (Approximate threshold implementation, Theorem 6.2 in [Zha20] and Corollary 1
in [ALL+21]). Let PD = (PD, QD) be a binary outcome POVM over Hilbert space H that is a
mixture of projective measurements over some distribution D. Let ε, δ, γ ∈ (0, 1). Then, there

exists an efficient binary-outcome quantum algorithm ATIε,δP,D,γ, interpreted as the POVM element
corresponding to outcome 1, such that the following holds:

• For all quantum states ρ, Tr[ATIε,δP,D,γ−ε ρ] ≥ Tr[TIγ(PD) ρ]− δ.

• For all quantum states ρ, it holds that Tr[TIγ−2ε(PD) ρ′] ≥ 1 − 2δ, where ρ′ is the post-

measurement state which results from applying the measurement ATIε,δP,D,γ to ρ and obtaining
outcome 1.

• The expected running time to implement ATIε,δP,D,γ is proportional to poly(1/ε, log(1/δ)), the
time it takes to implement PD, and the time it takes to sample from D.
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3 Definition: Key-Revocable Public-Key Encryption

A key-revocable public-key encryption is a type of public-key encryption. Consider the case where
the secret key holder wishes to temporarily give the secret key to an third party and later wants
to take it back while maintaining the security i.e. the third party upon taken its key away, can’t
decrypt any message later. This is impossible in the classical case since the third party can always
copy the secret key locally. But we may achieve this functionality by representing the secret key as
a quantum state.

Definition 3.1 (Key-Revocable Public-Key Encryption [APV23]). A key-revocable public-key en-
cryption scheme consists of efficient algorithms (KeyGen,Enc,Dec,Revoke), where Enc is a PPT
algorithm and KeyGen,Dec,Revoke are QPT algorithms defined as follows:

• KeyGen(1λ): given as input a security parameter λ, output a public key PK, a master secret
key MSK and a quantum decryption key ρSK.

• Enc(PK, µ): given a public key PK and plaintext µ ∈ {0, 1}, output a ciphertext CT.

• Dec(ρSK,CT): given a decryption key ρSK and ciphertext CT, output a message y.

• Revoke(PK,MSK, σ): given as input a master secret key MSK, a public key PK and quantum
state σ, output Valid or Invalid.

Correctness of Decryption. For µ ∈ {0, 1}, the following holds:

Pr
[
µ← Dec(ρSK,CT) :

(PK,MSK,ρSK)←KeyGen(1λ)
CT←Enc(PK,µ)

]
≥ 1− negl.

Correctness of Revocation. The following holds:

Pr
[
Valid← Revoke(PK,MSK, ρSK) : (PK,MSK, ρSK)← KeyGen(1λ)

]
≥ 1− negl.

3.1 Security Definition

The security captures the case where the adversary is given the key and later taken back. After
that, if the key passes the revocation check the adversary is asked to play a CPA like game that it
is given either the ciphertext of a chosen message or a random message. The adversary wins if it
can distinguish between these two cases.

Definition 3.2. A key-revocable public-key encryption scheme Σ = (KeyGen,Enc,Dec,Revoke) is
(ϵ, δ)-secure if, for every QPT adversary A with

Pr
[
Invalid← ExptΣ,A(1λ, b)

]
≤ δ(λ)

for b ∈ {0, 1}, it holds that∣∣∣Pr [1← ExptΣ,A(1λ, 0)
]
− Pr

[
1← ExptΣ,A(1λ, 1)

]∣∣∣ ≤ ϵ(λ),
where ExptΣ,A(1λ, b) is defined as Figure 1. If δ(λ) = 1− 1

poly(λ) and ϵ(λ) = negl(λ), we simply say
the key-revocable encryption scheme is secure.

14



ExptΣ,A(1λ, b) :

Initialization Phase:

• The challenger runs (PK,MSK, ρSK)← KeyGen(1λ) and sends (PK, ρSK) to A.

Revocation Phase:

• The challenger sends the message REVOKE to A.

• The adversary A returns a state σ.

• The challenger aborts if Revoke(MSK,PK, σ) outputs Invalid.

Guessing Phase:

• A submits a plaintext µ ∈ {0, 1} to the challenger.

• If b = 0: The challenger sends CT← Enc(PK, µ) to A. Else, if b = 1, the challenger sends
CT← C, where C is the ciphertext space of ℓ bit messages.

• Output bA if the output of A is bA.

Figure 1: Security Experiment

4 Construction: Key Revocable Dual-Regev Encryption

The construction is exactly the same as the construction in [APV23]. We include the construction
here for completeness.

Construction 4.1 (Key Revocable Dual-Regev Encryption [APV23]). Let n ∈ N be the security
parameter and m ∈ N. Let q ≥ 2 be a prime and let α, β, σ > 0 be parameters. The key-revocable
public key scheme RevDual = (KeyGen,Enc,Dec,Revoke) consists of the following QPT algorithms:

• KeyGen(1λ)→ (PK, ρSK,MSK): Sample (A ∈ Zn×mq , tdA)← GenTrap(1n, 1m, q) where GenTrap
is the algorithm that generates the LWE matrix with its trapdoor. Then generate a Gaussian
superposition (|ψy⟩ ,y)← GenGauss(A, σ) for some y ∈ Znq . Output PK = (A,y), ρSK = |ψy⟩
and MSK = tdA.

• Enc(PK, µ) → CT: to encrypt a bit µ ∈ {0, 1}, sample a random vector s ← Znq and errors
e ∼ DZm,αq and e′ ∼ DZ,βq and output the ciphertext pair

CT =
(
s⊺A+ e⊺ (mod q), s⊺y + e′ + µ · ⌊q

2
⌋ (mod q)

)
∈ Zmq × Zq.

• Dec(ρSK,CT) → {0, 1} : to decrypt CT, apply the unitary U : |x⟩ |0⟩ → |x⟩ |CT · (−x, 1)⊺⟩ on
input |ψy⟩ |0⟩, where ρSK = |ψy⟩, and measure the second register in the computational basis.
Output 0, if the measurement outcome is closer to 0 than to ⌊ q2⌋, and output 1, otherwise.
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• Revoke(MSK,PK, ρ) → {⊤,⊥} : on input tdA ← MSK and (A,y) ← PK, apply the measure-
ment {|ψy⟩ ⟨ψy| , I − |ψy⟩ ⟨ψy|} onto the state ρ using the procedure QSampGauss(A, tdA,y, σ).
Output ⊤ if the measurement is successful, and ⊥ otherwise.

From [APV23], this construction satisfies the correctness of decryption and the correctness of
revocation. In this work, we will focus on showing the construction is in fact secure.

Theorem 4.2. Let n ∈ N and q be a prime modulus with q = 2o(n) and m ≥ 2n log q, each
parameterized by security parameter λ ∈ N. Let

√
8m < σ < q/

√
8m and let α, β ∈ (0, 1) be noise

ratios chosen such that β/α = 2o(n) and 1/α = 2o(n) · σ. Then, assuming the polynomial hardness
of LWEmn,q,αq with sub-exponential modulus, the scheme RevDual = (KeyGen,Enc,Dec,Revoke) in
Construction 4.1 is a secure key-revocable public-key encryption scheme according to Definition 3.2.

We organize the proof of Theorem 4.2 in the following way:

• In Section 5, we prove an important property for approximate threshold implementation,
which allows us to do hybrid arguments between approximate threshold implementation on
computationally indistinguishable distributions.

• In Section 6, we present our construction for the almost perfect preimage extractor that lies
in the heart of our result.

• In Section 7, we complete our proof of the above theorem.

5 Indistinguishability on Approximate Threshold Implementation

Zhandry [Zha20] analyzed the relationship between the output distribution of TIγ0(PD0) and
TIγ1(PD1) (and ATIP,D0,γ0 and ATIP,D1,γ1) for some thresholds γ0 and γ1 on the same state for
two computationally indistinguishable distributions D0 and D1. However, in our work, we also
care about the residual state after applying the procedures. So we give a more precise analysis
below.

In this section, we show how to leverage a (possibly not efficiently constructible) quantum
state ρ on which ATIP,D0,γ and ATIP,D1,γ behave differently to construct a quantum distinguishing
algorithm (with auxiliary state ρ) for D0 and D1. This can be viewed as an extension of Theorem
6.5 and Corollary 6.9 in [Zha20].

This result allows us to do hybrid arguments between ATIP,D0,γ and ATIP,D1,γ with exactly the
same threshold parameter γ for computationally indistinguishable distributions D0 and D1 even
when there are some efficient quantum procedure on the residual state after applying ATI. Notably,
it applies even when we need some classical advice to sample from D0 and D1, in which case, our
quantum distinguishing algorithm additionally takes the same classical advice and distinguishes D0

and D1.

Lemma 5.1. Let P be a collection of projective measurements indexed by some set I. Suppose
P can be implemented by a quantum circuit of size |P|. Let D0, D1 be two efficiently sampleable

distributions over I. For any state ρ ∈ D(H), denote (b, ρ′) ← ATIε,δP,D,γ(ρ) be the procedure

that runs ATIε,δP,D,γ on state ρ, and gets an output b and the post-measurement state ρ′. For any
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polynomial µ, any quantum state ρ and any (possibly quantum) predicate h : {0, 1}×D(H)→ {0, 1}
with circuit size |h|, if∣∣∣Pr [h(b, ρ′) = 1

∣∣∣(b, ρ′)← ATIϵ,δP,D0,γ
(ρ)
]
− Pr

[
h(b, ρ′) = 1

∣∣∣(b, ρ′)← ATIϵ,δP,D1,γ
(ρ)
]∣∣∣ ≥ 1

µ(λ)
.

Then there exists a quantum circuit C of size poly(λ, 1/ϵ, log(1/δ), µ, |P| , |h|) (which only use the
quantum circuits to implement P, h and to sample D0, D1 as a black box)∣∣∣∣Pr [C(ρ, x) = b : b

$←− {0,1}
x∼Db

]
− 1

2

∣∣∣∣ ≥ 1

(µ(λ))3 · poly(λ, 1/ϵ, log(1/δ))

which is an inverse polynomial if µ is a polynomial.

Proof. The proof follows the same idea as the proof for Theorem 6.5 in [Zha20]. Roughly speaking,

the output of ATIϵ,δP,D,γ can be approximated up to inverse polynomial additive error given only
polynomial samples from D. We refer the reader to Appendix A for the full proof.

ATI may change the input state in an essential way even when it outputs 1 with overwhelming
probability because ATI is not a projector. For example, let a pure quantum state ρ be a super-
position of eigenvectors (of PD) |ψi⟩ whose eigenvalues λi satisfy the property λi ≥ γ + 10ϵ. If we

apply ATIϵ,δP,D,γ on ρ, we will get outcome 1 with almost certainty, but the residual state ρ′ may
lose coherence and become closer to a mixture of |ψi⟩.

When we know the ATI outputs 0 or 1 with overwhelming probability, it is a good idea to
minimize the disturbance by purifying ATI and performing uncompututation, just like the famous
gentle measurements. To be more precise, we consider the projective version of ATIϵ,δP,D,γ . Formally,

ATIϵ,δP,D,γ can be written as introducing poly(1/ϵ, log(1/δ)) ancillas initialized as |0⟩, applying a
unitary U on the state, and then applying a projective measurement (|0⟩⟨0|, |1⟩⟨1|) on the out-
put register of state to get the output. We will denote the binary-outcome projective measure-

ment (U †|0⟩⟨0|U,U †|1⟩⟨1|U) as ATI
ϵ,δ
P,D,γ , the projective version of ATIϵ,δP,D,γ , which also has size

poly(1/ϵ, log(1/δ)). By definition, for any quantum state ρ, the output distribution of running ATI
on ρ along with enough fresh ancillas is the same as the output distribution of running ATI on ρ
(but the residual states are different).

Roughly speaking, ATI
ϵ,δ
P,D,γ does the same thing as ATIϵ,δP,D,γ except that it uncomputes in-

termediate results. Notice that a quantum query to function f is implemented as Uf : |x⟩ |y⟩ →
|x⟩ |y ⊕ f(x)⟩, whose inverse is exactly Uf . We can use the same proof technique in Lemma 5.1

to show that ATI
ϵ,δ
P,D,γ can also be approximated by polynomial classical samples from D up to

inverse polynomial precision and thus we can also apply hybrid arguments between ATIP,D0,γ and
ATIP,D1,γ for computationally indistinguishable distributions D0 and D1. Formally,

Lemma 5.2. Let P be a collection of projective measurements indexed by some set I. Suppose
P can be implemented by a quantum circuit of size |P|. Let D0, D1 be two efficiently sampleable

distributions over I. For any state ρ ∈ D(H1), denote (b, ρ′) ← ATI
ε,δ
P,D,γ(ρ) be the procedure that

runs ATI
ε,δ
P,D,γ on state ρ along with enough fresh ancillas initialized to |0⟩, and gets an output b
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and the post-measurement state ρ′. For any polynomial µ, any quantum state ρ and any (possibly
quantum) predicate h : {0, 1} × D(H2)→ {0, 1} with circuit size |h|, if∣∣∣Pr [h(b, ρ′) = 1

∣∣∣(b, ρ′)← ATI
ϵ,δ
P,D0,γ(ρ)

]
− Pr

[
h(b, ρ′) = 1

∣∣∣(b, ρ′)← ATI
ϵ,δ
P,D1,γ(ρ)

]∣∣∣ ≥ 1

µ(λ)
.

Then there exists a quantum circuit C of size poly(λ, 1/ϵ, log(1/δ), µ, |P| , |h|) (which only use the
quantum circuits to implement P, h and to sample D0, D1 as a black box)∣∣∣∣Pr [C(ρ, x) = b : b

$←− {0,1}
x∼Db

]
− 1

2

∣∣∣∣ ≥ 1

(µ(λ))3 · poly(λ, 1/ϵ, log(1/δ))

which is an inverse polynomial if µ is a polynomial.

Proof. As the proof is almost the same as the proof of Lemma 5.1, we omit the proof.

6 Almost Perfect Extraction of Preimages

In this section, we show how to extract a short preimage of y with overwhelming probability, given
a good (quantum) distinguisher between the distribution of a ciphertext of message µ and a uniform
distribution. Our main contribution is an extraction algorithm that is guaranteed to work with
overwhelming probability, in contrast to the extraction algorithm in [APV23] that only works with
probability inversely proportional to the field size.

Since a general quantum distinguisher can be a superposition of a good distinguisher and a
useless distinguisher, we use (Approximate) Threshold Implementation to (approximately) test
whether a given quantum distinguisher is good before we apply the extraction algorithm. We need
the following notations before we formally define what is a good quantum distinguisher.

Threshold Implementation on a Quantum Distinguisher For a quantum algorithm A with
auxiliary quantum states ρ, let two-outcome projective measurements {PAx = (PAx , Q

A
x )} correspond

to running A on x and the auxiliary state ρ. Suppose that PAx corresponds to outcome 1 and QAx
corresponds to outcome 0.

For two distributionsD0 andD1, denote (D0, D1) to be the distribution of (b, x) where b $←−{0, 1}
and x ∼ Db. We say that (A, ρ) is a γ-good quantum distinguisher for distributions D0 and D1

with support X if and only if ρ passes the projector TI1/2+γ(PA(D0,D1)
). Here, we abuse the notation

to define the POVM PA(D0,D1)
= (PA(D0,D1)

, QA(D0,D1)
)5 such that

PA(D0,D1)
=
PAD1

+QAD0

2
=

∑
x∈X Pr [x← D1]P

A
x +

∑
x∈X Pr [x← D0]Q

A
x

2
,

QA(D0,D1)
= I − PA(D0,D1)

.

In other words, PA(D0,D1)
= (PA(D0,D1)

, QA(D0,D1)
) is the POVM measurement (where PA(D0,D1)

corresponds to output 1 and QA(D0,D1)
corresponds to output 0) that on any input quantum state

ρ,

5PA
(D0,D1)

is actually a mixture of projective measurements for the distribution (D0, D1) and a collection of binary

outcome projective measurements Pb,x = (QA
x , PA

x ) if b = 0 and Pb,x = (PA
x , QA

x ) if b = 1.
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• Sample (b, x) ∼ (D0, D1).

• Feed x and the input quantum state ρ into the algorithm A, which outputs a guess b′.

• Output 1 if b′ = b; 0 otherwise.

We denote the approximate version of TI1/2+γ(PA(D0,D1)
) as ATIϵ,δPA,(D0,D1),1/2+γ

. Roughly speak-

ing, ATIϵ,δPA,(D0,D1),1/2+γ
can efficiently estimate whether the algorithm A, along with the input

quantum state as auxiliary, can distinguish D0 and D1 with advantage at least γ. We denote the

projective version of ATIϵ,δPA,(D0,D1),1/2+γ
as ATI

ϵ,δ
PA,(D0,D1),1/2+γ

.

Some Important Distributions The threshold implementation will be used to test whether a
quantum distinguisher works well on the following distributions. The prime modulus q, the noise
ratios α, β ∈ (0, 1) and n,m ∈ N are all fixed parameters that will be soon clear from the context.
For matrix A ∈ Zn×mq , and vectors y ∈ Znq ,x ∈ Zmq ,

• Denote DA,y
lwe to be the distribution of (A,y, s⊺A + e⊺, s⊺y + e′) where s $←−Znq , e ∼ DZm

q ,αq

and e′ ∼ DZq ,βq.

• Denote DA,y
unif to be the distribution of (A,y,u⊺, u′) where u $←−Zmq and u′ $←−Zq.

• Denote D̄A,x
lwe to be the distribution of (A,Ax,u⊺,u⊺x + e′) where e′ ∼ DZq ,βq and u⊺ =

s⊺A+ e⊺ for s $←−Znq , e ∼ DZm
q ,αq.

• Denote DA,x
gl to be the distribution of (A,Ax,u⊺,u⊺x+ e′) where e′ ∼ DZq ,βq and u $←−Zmq .

For each of the above distribution D, we denote D(i, gi) to be the distribution of (v1,v2,v3 +
c · î⊺, v4 + c · gi) where î is the unit vector with its ith coordinate being 1, c is sampled uniformly
at random from Zq, and (v1,v2,v3, v4) is sampled from D. It is easy to generate a sample from
D(i, gi) given i, gi and a sample from D. Thus if we can efficiently distinguish between D0(i, gi)
and D1(i, gi), then on input (i, gi), we can efficiently distinguish between D0 and D1.

We show the following result.

Theorem 6.1 (Almost Optimal Search-to-Decision Reduction with Quantum Auxiliary Input).
Let n ∈ N and q be a prime modulus with q = 2o(n) and let m ≥ 2n log q, each parameterized by
the security parameter λ ∈ N such that m ≤ poly(λ). Let

√
8m < σ < q/

√
8m and let α, β ∈

(0, 1) be noise ratios with β/α = 2o(n), 2−o(n) ≤ ασ ≤ negl(λ) and ασ/β ≤ negl(λ). Let A =
{(Aλ,A,y, νλ)}λ∈N be any non-uniform quantum algorithm consisting of a family of polynomial-
sized quantum circuits and polynomial-sized advice states νλ ∈ D(HBλ

) which are independent of
A.

Assume the decisional LWEmn,q,αq cannot be solved by a quantum algorithm running in time
poly(λ, σ) with distinguishing advantage 1/poly(λ, σ). If there exist functions ε(λ) = 1/poly(λ),
γ(λ) = 1/poly(λ), δ(λ) = 2−Θ(λ) and a QPT distinguisher D such that

Pr
[
1← SearchToDecisionExptA,D(1λ)

]
= ε(λ).
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SearchToDecisionExptA,D
(
1λ
)
:

1. Sample A $←−Zn×mq .

2. Generate (|ψy⟩ ,y)← GenGauss(A, σ).

3. Generate ρR,Aux ← Aλ,A,y(|ψy⟩⟨ψy| ⊗ νλ).

4. Let two-outcome projective measurements {PDx } correspond to
running D on samples x and the auxiliary state in Aux. We
approximately test whether (D, ρAux) is a γ-good quantum dis-
tinguisher between the distributions DA,y

lwe and DA,y
unif by running

ATI
γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
on ρAux and output the result.

Figure 2: The experiment SearchToDecisionExptA,D
(
1λ
)
.

Then, there exists a quantum extractor E that takes as input A, y and system Aux of the state
ρR,Aux and outputs a short vector in the coset Λy

q (A) in time poly(λ, σ, 1/γ) such that

Pr

x ∈ Λy
q (A)∩Bm(0,σ

√
m/2) :

A
$←− Zn×m

q

(|ψy⟩,y)←GenGauss(A,σ)
ρR,Aux←Aλ,A,y(|ψy⟩⟨ψy|⊗νλ)

1←ATI
γ/6,δ

PD ,(D
A,y
lwe

,D
A,y
unif

),1/2+γ
(ρAux)

x←E(A,y,Aux)

 ≥ 1− negl(λ).

In other words,

Pr

b=1 ∧ x /∈ Λy
q (A)∩Bm(0,σ

√
m/2) :

A
$←− Zn×m

q

(|ψy⟩,y)←GenGauss(A,σ)
ρR,Aux←Aλ,A,y(|ψy⟩⟨ψy|⊗νλ)

b←ATI
γ/6,δ

PD ,(D
A,y
lwe

,D
A,y
unif

),1/2+γ
(ρAux)

x←E(A,y,Aux)

 ≤ negl(λ).

6.1 Construction of the Extractor

In the subsection, we formally define our quantum extractor E . E takes A,y and the quantum
state in Aux as input, and does the following:
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E(A,y,Aux):

1. Set x = 0, ϵ = γ/6, γ′ = γ − 3ϵ = γ/2.

2. For each i = 1, 2, · · · ,m:

For each gi ∈ [−σ
√
m/2, · · · , σ

√
m/2]:

i. Let Aux store the current state of the quantum distin-
guisher.

ii. Run ATI
ϵ,δ

PD,(DA,y
lwe (i,gi),D

A,y
unif ),1/2+γ′

on the residual state in

register Aux along with enough fresh ancillas initialized
to |0⟩.

iii. If it outputs 1, set xi = gi, and move on to the next
guess.

iv. If it outputs 0, move on to the next guess.

3. Output x.

Figure 3: The quantum extractor E(A,y,Aux).

By construction, the extractor runs in time poly(λ, σ,m, 1/ϵ, log 1
δ ) = poly(λ, σ, 1/γ).

6.2 Analysis of the Extractor

Before we analyze the success probability of our extractor, we make crucial observations on the
distributions DA,y

lwe , DA,y
unif , D̄

A,x
lwe and DA,x

gl .

Lemma 6.2. For any x ∈ Bm(0, σ
√
m/2), the statistical distance between D̄A,x

lwe and DA,Ax
lwe is at

most negl(λ).

Proof. For any x ∈ Bm(0, σ
√
m/2), by noise smudging (Lemma 2.5), the statistical distance be-

tween the distribution DA,Ax
lwe and the distribution of (A,Ax, s⊺A + e⊺, s⊺Ax + e⊺x + e′) where

s $←−Znq , e ∼ DZm
q ,αq and e′ ∼ DZq ,βq is at most ασm/β + 2−Ω(λ) because |e⊺x| ≥ αqσm with at

most 2−Ω(λ) probability over the choice of e (from Lemma 2.3).
By our choice of parameters, ασm/β + 2−Ω(λ) ≤ negl(λ).

Lemma 6.3. For integer i ∈ [m] and gi = xi, D
A,x
gl (i, gi) = DA,x

gl .

For integer i ∈ [m] and gi ̸= xi, D
A,x
gl (i, gi) = DA,Ax

unif .

Proof. This follows directly from definition and the fact that the distribution of DA,x
gl (i, gi) is the

distribution of

(A,Ax,u⊺ + c · î⊺,u⊺x+ e′ + c · gi) = (A,Ax,u⊺ + c · î⊺, (u⊺ + c · î⊺)x+ e′ + c · (gi − xi))
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where î is the unit vector with its ith coordinate being 1, u $←−Zmq , e′ ∼ DZq ,βq and c is sampled
uniformly at random from Zq.

Recall that q is a prime modulus, when gi ̸= xi, c · (gi − xi) is a uniformly random element in
Zq when c $←−Zq.

Now we are ready to prove Theorem 6.1.

Proof. To prove Theorem 6.1, it suffices to prove that

Pr
[
1← GameA,D0

(
1λ
)]
≤ negl(λ)

where GameA,D0 is shown in Figure 4.

GameA,D0

(
1λ
)
:

1. Sample A $←−Zn×mq .

2. Generate (|ψy⟩ ,y)← GenGauss(A, σ).

3. Generate ρR,Aux ← Aλ,A,y(|ψy⟩⟨ψy| ⊗ νλ).

4. Compute b← ATI
γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x← E(A,y,Aux).

6. Output 1 if x /∈ Λy
q (A) ∩ Bm(0, σ

√
m/2); Otherwise, output 0.

Figure 4: The game GameA,D0

(
1λ
)
.

Let’s consider the following sequence of hybrid distributions.

H0: This is the same as the game GameA,D0

(
1λ
)
defined in Figure 4.

H1: This is the following distribution:

1. Sample A $←−Zn×mq .

2. Sample a Gaussian vector x′ ∼ DZm
q ,σ/

√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′⟩⟨x′| ⊗ νλ).

4. Compute b← ATI
γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x← E(A,y,Aux).

6. Output 1 if x /∈ Λy
q (A) ∩ Bm(0, σ

√
m/2); Otherwise, output 0.

H2: This is the following distribution:
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1. Sample A $←−Zn×mq .

2. Sample a Gaussian vector x′ ∼ DZm
q ,σ/

√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′⟩⟨x′| ⊗ νλ).

4. Compute b← ATI
γ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x← E(A,y,Aux).

6. Output 1 if x /∈ Λy
q (A) ∩ Bm(0, σ

√
m/2); Otherwise, output 0.

H3,k: This is the following distribution (recall the description of E defined in Figure 3). It is

replacing ATI
ϵ,δ

PD,(DA,y
lwe (i,gi),D

A,y
unif ),1/2+γ′

in E with ATI
ϵ,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′

one by one.

1. Sample A $←−Zn×mq .

2. Sample a Gaussian vector x′ ∼ DZm
q ,σ/

√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′⟩⟨x′| ⊗ νλ).

4. Compute b← ATI
γ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Set x = 0, ϵ = γ/6, γ′ = γ − 3ϵ = γ/2, t = 0.

6. For each i = 1, 2, · · · ,m:

For each gi ∈ [−σ
√
m/2, · · · , σ

√
m/2]:

i. Let Aux store the current state of the quantum distinguisher. t← t+ 1.

ii. If t ≤ k, run ATI
ϵ,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′

on the residual state in register Aux

along with enough fresh ancillas initialized to |0⟩. Otherwise, run ATI
ϵ,δ

PD,(DA,y
lwe (i,gi),D

A,y
unif ),1/2+γ′

on the residual state in register Aux along with enough fresh ancillas initialized
to |0⟩ .

iii. If it outputs 1, set xi = gi, and move on to the next guess.

iv. If it outputs 0, move on to the next guess.

7. Output 1 if x /∈ Λy
q (A) ∩ Bm(0, σ

√
m/2); Otherwise, output 0.

We now show the following:

Lemma 6.4. Assuming the quantum hardness of LWEmn,q,αq, the hybrids H0 and H1 are computa-
tionally indistinguishable,

H0 ≈c H1.

Proof. This follows directly from the Gaussian-collapsing property (Theorem 2.10).
By the Gaussian-collapsing property, assume the quantum hardness of LWEmn,q,αq,(

A $←−Zn×mq , |ψy⟩ =
∑
x∈Zm

q

Ax=y

ρσ(x) |x⟩ , y ∈ Znq

)
≈c

(
A $←−Zn×mq , |x′⟩ , A · x′ ∈ Znq

)

where (|ψy⟩ ,y)← GenGauss(A, σ) and x′ ∼ DZm
q ,σ/

√
2.
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Thus for the non-uniform quantum algorithm A,

Aλ,A,y(|ψy⟩⟨ψy| ⊗ νλ) ≈c Aλ,A,y(|x′⟩⟨x′| ⊗ νλ)

Lemma 6.5. Assuming the quantum hardness of LWEmn,q,αq, the hybrids H1 and H2 are computa-
tionally indistinguishable,

H1 ≈c H2.

Proof. We prove the claim by contradiction.
Suppose H1 and H2 can be distinguished by a QPT algorithm B with advantage at least 1/λc

for a constant c > 0 and infinitely many λ. Fix one such λ.
By standard averaging argument, for at least 1

2λc fraction of (A,x′) sampled according to

A $←−Zn×mq and x′ ∼ DZm
q ,σ/

√
2, B can distinguish the result of running step 3-6 of H1 on (A,x′),

and the result of running step 3-6 of H2 on (A,x′) with advantage at least 1
2λc . Let’s call those

(A,x′) good. Then from Lemma 5.1, there exists a quantum circuit C of size poly(λ, 1/ϵ, log(1/δ))

such that for each good (A,x′), C(ρAux,A,x
′, ·) can distinguish samples from

(
DA,x′

gl , DA,y
unif

)
and

samples from
(
DA,y

lwe , D
A,y
unif

)
with advantage at least 1

poly(λ,1/ϵ,log(1/δ)) .

As we can sample DA,y
unif by ourselves and DA,y

lwe ≈s D̄
A,x′

lwe (from Lemma 6.2 and the choice of
parameters), there exists a polynomial size quantum circuit C′ such that for each good (A,x′),

C′(ρAux,A,x
′, ·) can distinguish samples from DA,x′

gl and samples from D̄A,x′

lwe with advantage at

least 1/λd for some constant d > 0.

Recall that the only difference in DA,x′

gl and D̄A,x′

lwe is whether u is sampled according to LWE
or sampled uniformly. Now let’s show how to leverage the fact to break LWEmn,q,αq using this C′
(Algorithm 2). Notice that for all the good (A,x′), line 3 passes with noticeable probability (by
averaging arguments over the eigenspaces) and the residual state after running ATI and obtaining
outcome 1 is still a good distinguisher (by Lemma 2.14). So Algorithm 2 breaks decisional LWEmn,q,αq
efficiently if Lemma 6.5 doesn’t hold.

Algorithm 2: An algorithm to break decisional LWEmn,q,αq if Lemma 6.5 doesn’t hold

Input : Matrix A ∈ Zn×mq and vector u ∈ Znq (and quantum advice νλ).
Output: 0 or 1 (guess whether u is sampled from uniform or according to LWEmn,q,αq)

1 Sample a vector x′ ∼ DZm
q ,σ/

√
2 and let y = A · x′ mod q. If ∥x′∥ ≥ σ

√
m/2, output 0 or 1

uniformly at random and abort.
2 Generate ρR,Aux ← Aλ,A,y(|x′⟩⟨x′| ⊗ νλ).
3 Test whether C′(ρAux,A,x

′, ·) can be used to distinguish samples from DA,x′

gl and samples

from D̄A,x′

lwe with advantage at least 1/λd by running ATI1/λ
d+1,δ on it with threshold

1/2 + 1
4λd

. If the ATI outputs 0 (it is not a good distinguisher), output 0 or 1 uniformly at
random and abort.

4 Denote the residual state (if not abort) in register Aux as ρ′Aux.
5 Sample e′ ∼ DZq ,βq.Let v := (A,Ax′,u⊺,u⊺x′ + e′).
6 Run C′(ρ′Aux,A,x

′,v) and output the result.
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This ends our proof of the claim.

Lemma 6.6. Assume that the decisional LWEmn,q,αq cannot be solved by a quantum algorithm run-
ning in time poly(λ, σ) with distinguishing advantage 1/poly(λ, σ).

The probability that hybrid H3,k outputs 1 and the probability that hybrid H3,k+1 outputs 1 are
negl(λ)/σ close. Formally, for 0 ≤ k ≤

√
2σm3/2 − 1,

|Pr [H3,k+1 = 1]− Pr [H3,k = 1]| ≤ negl(λ)/σ

Proof. The proof is the same with the proof of Lemma 6.5 except that we apply Lemma 5.2 instead
of Lemma 5.1 and that we set the parameter µ in Lemma 5.2 as 1/poly(λ, σ) instead of 1/poly(λ).
We omit the proof details.

Lemma 6.7. H3,
√
2σm3/2 outputs 1 with negligible probability.

Proof. We first define GameA,D1

(
1λ
)
in Figure 5. It is the same as H3,

√
2σm3/2 except that it will

output 1 if x ̸= x′ (which is implied by x /∈ Λy
q (A) ∩ Bm(0, σ

√
m/2)), so to prove Lemma 6.7, it

suffices to prove that GameA,D1

(
1λ
)
outputs 1 with negligible probability.

Notice that in step 6, we just apply a sequence of projective measurements ATI and set each
coordinate of x′ based on the measurement outcomes. By Quantum Union Bound (Lemma 2.2),

Pr
[
1← GameA,D1

(
1λ
)]

can be bounded by a union of events that for x′ sampled according to

DZm
q ,σ/

√
2, SubGameA,D

(
1λ, i, gi,x

′) outputs 1:
Pr
[
1← GameA,D1

(
1λ
)]

≤4
m∑
i=1

σ
√
m/2∑

gi=−σ
√
m/2

Pr
[
1← SubGameA,D

(
1λ, i, gi,x

′
)
: x′ ∼ DZm

q ,σ/
√
2

]

where SubGameA,D
(
1λ, i, gi,x

′) is defined in Figure 6.
Now let’s show for any fixed i, gi,x

′,

Pr
[
1← SubGameA,D

(
1λ, i, gi,x

′
)]
≤ negl(λ)/σ (1)

Case 1: gi = x′i Consider the residual state ρ′Aux of running step 3 and obtaining b = 1. From

Lemma 2.14, running ATIϵ,δ
PD,

(
DA,x′

gl ,DA,y
unif

)
,1/2+γ′

on ρ′Aux, we will obtain 1 with probability at least

1− 3δ.
From Lemma 6.3, when gi = x′i, D

A,x′

gl (i, gi) = DA,x′

gl . Thus the output distribution of run-

ning ATIϵ,δ
PD,

(
DA,x′

gl ,DA,y
unif

)
,1/2+γ′

on ρ′Aux is exactly the same as the output distribution of running

ATI
ϵ,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′

on ρ′Aux. Therefore,

Pr
[
1← SubGameA,D

(
1λ, i, gi,x

′
)]
≤ 3δ ≤ negl(λ)/σ.
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GameA,D1

(
1λ
)
:

1. Sample A $←−Zn×mq .

2. Sample a Gaussian vector x′ ∼ DZm
q ,σ/

√
2 and let y = A ·x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′⟩⟨x′| ⊗ νλ).

4. Compute b← ATI
γ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Set x = 0, ϵ = γ/6, γ′ = γ − 3ϵ = γ/2.

6. For each i = 1, 2, · · · ,m:

For each gi ∈ [−σ
√
m/2, · · · , σ

√
m/2]:

i. Let Aux store the current state of the quantum distin-
guisher.

ii. Run ATI
ϵ,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′

on the residual state in

register Aux along with enough fresh ancillas initialized
to |0⟩.

iii. If it outputs 1, set xi = gi, and move on to the next
guess.

iv. If it outputs 0, move on to the next guess.

7. Output 1 if x ̸= x′; Otherwise, output 0.

Figure 5: The game GameA,D1

(
1λ
)
.

Case 2: gi ̸= x′i Again consider the residual state ρ′Aux of running step 3 and obtaining

b = 1. From Lemma 6.3, when gi ̸= x′i, D
A,x′

gl (i, gi) = DA,Ax′

unif = DA,y
unif . Thus when running

ATIϵ,δ
PD,(DA,y

unif ,D
A,y
unif ),1/2+γ′

on ρ′Aux, we will obtain 1 with probability exactly Pr
[
1← SubGameA,D

(
1λ, i, gi,x

′)].
As PD

(DA,y
unif ,D

A,y
unif )

only has eigenvalue 1/2 < 1/2+γ′− ϵ (any distinguisher cannot do better than

guessing a random bit when facing DA,y
unif and DA,y

unif ), running ATIϵ,δ
PD,(DA,y

unif ,D
A,y
unif ),1/2+γ′

on any state,

we cannot get 1 with probability greater than δ, which implies that

Pr
[
1← SubGameA,D

(
1λ, i, gi,x

′
)]
≤ δ ≤ negl(λ)/σ.
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SubGameA,D
(
1λ, i, gi,x

′):
1. Sample A $←−Zn×mq . Let y = A · x′ mod q.

2. Generate ρR,Aux ← Aλ,A,y(|x′⟩⟨x′| ⊗ νλ).

3. Compute b← ATI
γ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

4. Set x = 0, ϵ = γ/6, γ′ = γ − 3ϵ = γ/2.

5. Run ATI
ϵ,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′

on the residual state in register

Aux along with enough fresh ancillas initialized to |0⟩.

6. Output 1 if
(
gi ̸= x′i and ATI outputs 1

)
or(

gi = x′i and ATI outputs 0
)
; otherwise, output 0.

Figure 6: The game SubGameA,D
(
1λ, i, gi,x

′).
Summing up Equation (1) and averaging over x′, we can get that

Pr
[
1← GameA,D1

(
1λ
)]

≤4
m∑
i=1

σ
√
m/2∑

gi=−σ
√
m/2

Pr
[
1← SubGameA,D

(
1λ, i, gi,x

′
)
: x′ ∼ DZm

q ,σ/
√
2

]
≤negl(λ),

which ends the proof.

Recall that H0 is the same as the game GameA,D0

(
1λ
)
, Theorem 6.1 follows directly from

Lemma 6.4, Lemma 6.5, Lemma 6.6 over Θ(σm3/2) pairs of consecutive hybrids, Lemma 6.7 and
the observation that H2 = H3,0.

7 Proof of Theorem 4.2

We prove by contradiction. Let A be a QPT adversary and suppose that∣∣∣Pr [1← ExptΣ,A(1λ, 0)
]
− Pr

[
1← ExptΣ,A(1λ, 1)

]∣∣∣ = ϵ(λ),
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where ϵ(λ) is inverse polynomial, ExptΣ,A(1λ, b) is defined as Figure 1 and Σ = (KeyGen,Enc,Dec,Revoke).
Without loss of generality, we assume that

Pr
[
1← ExptΣ,A(1λ, 1)

]
− Pr

[
1← ExptΣ,A(1λ, 0)

]
= ϵ(λ).

Without loss of generality, we assume that the adversary submits µ = 0. We decompose the
adversary into two QPT algorithms A,D where A takes the Gaussian coset state |ψy⟩ ⟨ψy| and
generates the state ρR,Aux. After returning system R to the challenger, D takes ρAux and responds
to the challenge. Then A,D satisfies

Pr
[
1← SecurityExptA,D(1λ, 1)

]
− Pr

[
1← SecurityExptA,D(1λ, 0)

]
= ϵ(λ)

where SecurityExptA,D is the experiment shown in Figure 7, because the inefficient revocation
implements Revoke(MSK,PK, σ).
Now we apply approximate threshold implementation on the residual state ρAux.

SecurityExptA,D
(
1λ, b

)
:

1. Sample A $←−Zn×mq .

2. Generate (|ψy⟩ ,y)← GenGauss(A, σ).

3. Generate ρR,Aux ← Aλ,A,y(|ψy⟩⟨ψy| ⊗ νλ).

4. Apply inefficient revocation on system R, if it fails, output Invalid.

5. If b = 0, sample (A,y,u⊺, u′) ∼ DA,y
lwe . If b = 1, sample

(A,y,u⊺, u′) ∼ DA,y
unif .

6. Run b′ ← D(A,y,u⊺, u′,Aux) and output b′.

Figure 7: The experiment SecurityExptA,D
(
1λ, b

)
.

Lemma 7.1. For adversary A,D that satisfies

Pr
[
1← SecurityExptA,D(1λ, 1)

]
− Pr

[
1← SecurityExptA,D(1λ, 0)

]
= ϵ(λ),

it also satisfies

Pr
[
1← ATISecurityExptA,D,γ(1λ)

]
≥ ϵ(λ)

4
− negl.

for γ = 3ϵ
14 where ATISecurityExptA,D is shown in Figure 8.
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ATISecurityExptA,D,γ
(
1λ, b

)
:

1. Sample A $←−Zn×mq .

2. Generate (|ψy⟩ ,y)← GenGauss(A, σ).

3. Generate ρR,Aux ← Aλ,A,y(|ψy⟩⟨ψy| ⊗ νλ).

4. Apply inefficient revocation on system R, if it fails, output Invalid.

5. Run ATI
γ
6
,δ

PD,(DA,y
lwe ,DA,y

unif ),
1
2
+γ

where δ = 2−Θ(λ) on system Aux and

output the result.

Figure 8: The experiment ATISecurityExptA,D,ε
(
1λ, b

)
.

Proof. Suppose that revocation succeeds with probability p. The residual state ρAux satisfies

E
[
Tr

[
PD
(DA,y

lwe ,DA,y
unif )

ρAux

]∣∣∣∣Revocation succeeds on R

]
≥ 1

2
+

ϵ

2p
.

By averaging argument and the definition of threshold implementation Theorem 2.12,

E
[
Tr

[
TI 1

2
+ ϵ

4

(
PD
(DA,y

lwe ,DA,y
unif )

)
ρAux

]∣∣∣∣Revocation succeeds on R

]
≥ ϵ

4p
.

By Lemma 2.14, if we set δ = 2−Θ(λ) we have,

Pr

[
ATI

γ
6
,δ

PD,(DA,y
lwe ,DA,y

unif ),
1
2
+γ

(ρAux) = 1

∣∣∣∣Revocation succeeds on R

]
=E

[
Tr

[
ATI

γ
6
,δ

PD,(DA,y
lwe ,DA,y

unif ),
1
2
+γ
ρAux

]∣∣∣∣Revocation succeeds on R

]
≥E

[
Tr

[
TI 1

2
+ ϵ

4

(
PD
(DA,y

lwe ,DA,y
unif )

)
ρAux

]∣∣∣∣Revocation succeeds on R

]
− δ

≥ ϵ

4p
− negl.

Using the above lemma we can construct algorithm 3 for solving SISm
n,q,σ

√
2m

problem using the

adversary A,D. As for our choice of parameters, the hardness of LWEmn,q,αq implies the hardness
of SISm

n,q,σ
√
2m

, Theorem 4.2 follows directly from the correctness of algorithm 3, which we show in
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the following claim.

Algorithm 3: SIS Solver(A)

Input: Matrix A ∈ Zn×mq .
Output: Vector x ∈ Zm.

1 Generate a Gaussian state (|ψy⟩ ,y)← GenGauss(A, σ) with

|ψy⟩ =
∑
x∈Zm

q

Ax=y (mod q)

ρσ(x) |x⟩

for some vector y ∈ Znq .
2 Run A to generate a bipartite state ρR,Aux in systems HR ⊗Haux with HR = Hmq .
3 Measure system R in the computational basis, and let x0 ∈ Znq denote the outcome.

4 Run ATI
γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
on system Aux, abort if the output is 0.

5 Run the extractor E(A,y,Aux) from Theorem 6.1, and let x1 ∈ Znq denote the outcome.

6 Output the vector x = x1 − x0.

Claim 7.2. Algorithm 3 solves SISm
n,q,σ

√
2m

with inverse polynomial probability when A,D is a

successful adversary.

SimultExtractionExptA,D
(
1λ
)
:

1. Sample A $←−Zn×mq .

2. Generate (|ψy⟩ ,y)← GenGauss(A, σ).

3. Generate ρR,Aux ← Aλ,A,y(|ψy⟩⟨ψy| ⊗ νλ).

4. Apply inefficient revocation on system R, if it fails, output Invalid.

5. Run ATI
γ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
on system Aux, abort if the output

is 0.

6. Run the extractor E(A,y,Aux) from Theorem 6.1, and let x1 ∈ Znq
denote the outcome.

7. Output 1 if x1 ∈ Λy
q (A) ∩ Bm(0, σ

√
m/2); Otherwise, output 0.

Figure 9: The experiment SimultExtractionExptA,D
(
1λ
)
.

Proof. Suppose A,D is a successful adversary. To show that algorithm 3 can obtain an short
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solution x we prove the following two statements:

• The probability that on system Aux the extractor E extracts a short preimage x1 of y and
revocation succeeds on R is inverse polynomial

Pr
[
SimultExtractionExptA,D(1λ) = 1

]
=

1

poly(λ)
.

• Suppose that revocation succeeds with probability ε(λ) conditioned on the extraction being
successful. Then instead of running revocation on R, if we measure register R in compu-
tational basis and obtain result x0, the probability that x0 is a short preimage of y that is
different from x1 is ε(λ)− negl(λ) conditioned on the extraction being successful.

If we have both statements to be true, by standard probability arguments we prove the claim.
The first statement follows from Lemma 7.1 and Theorem 6.1. Consider the experiment SimulExtradctionExpt
shown in Figure 9. Let GoodDecryptor denote the event that we pass the ATI test on step 5. Let
RevocationSuc denote the event that the inefficient revocation succeeds on system R on step 4. Let
ExtractionSuc denote the event that x1 is a short preimage of y on step 7. By Lemma 7.1,

Pr [RevocationSuc ∧ GoodDecryptor] =
1

poly(λ)
.

By Theorem 6.1,
Pr [ExtractionSuc |GoodDecryptor] ≥ 1− negl(λ).

By basic probability calculation,

Pr [RevocationSuc ∧ ExtractionSuc] =
1

poly(λ)
.

Now we prove the second statement. We show that given a specific short preimage x1 of y and
a state ρR such that revocation succeeds on R with probability ε(λ), if we measure R under
computational basis, we obtain a short preimage x0 of y that is different from x1 with probability
ε(λ)− negl(λ). Define the set of short preimages S =

{
x
∣∣Ax = y, ∥x∥ ≤ σ

√
m
2

}
and

|ψ′y⟩ =

(∑
x∈S

ρ σ√
2
(x)

)− 1
2 ∑
x∈S

ρσ(x) |x⟩

be a ‘truncated’ Gaussian coset state. Consider the following projectors

• Π0 =
∑

x∈S,x ̸=x1
|x⟩ ⟨x| is a projector that projects onto all short preimages we want.

• Π1 = |ψ′y⟩ ⟨ψ′y| is the approximate revocation projector. The trace distance between Π1 and
the actual revocation projector |ψy⟩ ⟨ψy| is negligible by Lemma 2.3.

Suppose that A is a full-rank matrix, if Tr[|ψy⟩ ⟨ψy| ρR] = ε we have

Tr[Π0ρR] ≥Tr[Π1Π0ρR]

≥Tr[Π1ρR]− negl(λ)

≥Tr[|ψy⟩ ⟨ψy| ρR]− negl(λ)

=ε− negl(λ).

where the second inequality follows from Lemma 2.6. Note that A is full-rank with 1 − negl(λ)
probability. Combine all arguments above, we proof this claim.
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8 Applications

Combining our result with [APV23], we obtain constructions for

• Public-Key Encryption with Classical Key Revocation.

• Key-Revocable Fully Homomorphic Encryption.

• Revocable Pseudorandom Functions.

8.1 Public-Key Encryption with Classical Key Revocation

A public-key encryption with classical key-revocation is a public-key encryption such that whenever
we want to perform key revocation:

• The lessee runs Delete on its quantum secret key ρSK and produce a classical certificate π.

• The lessor runs Revoke on input π and output Valid if it is a valid certificate.

The security of such scheme captures the idea that if an adversary produces a certificate π that
passes the revocation then the remaining adversary cannot distinguish between a ciphertext of
chosen message from a random ciphertext. In [APV23], they built a public-key encryption with
classical key-revocation assuming the security of key-revocable Dual-Regev encryption. Combine
with our result, we obtain the following theorem.

Theorem 8.1. Assuming the polynomial hardness of LWE with sub-exponential modulus. The
scheme CRevDual = (KeyGen,Enc,Dec,Delete,Revoke) (Construction 2,[APV23]) is a secure public-
key encryption with classical key-revocation (Definition 7.1,7.2, [APV23]).

8.2 Key-Revocable Fully Homomorphic Encryption

A key-revocable fully homomorphic encryption is a fully homomorphic encryption with quantum
key revocation just like the key-revocable Dual-Regev Encryption. In [APV23], they built a key-
revocable fully homomorphic encryption assuming the security of key-revocable Dual-Regev encryp-
tion. Meanwhile, this construction can be adapted to feature classical revocation via techniques
used in public-key encryption with classical key-revocation mentioned above. Combine with our
result, we obtain the following theorem.

Theorem 8.2. Assuming the polynomial hardness of LWE and SIS with sub-exponential modulus.
The scheme RevDualGSW = (KeyGen,Enc,Dec,Eval,Revoke) (Construction 3,[APV23]) is a secure
key-revocable fully homomorphic encryption (Definition 5.3, [APV23]). Meanwhile, this construc-
tion can be adapted to feature classical revocation via (Construction 2,[APV23]).

8.3 Revocable Pseudorandom Functions

A key-revocable (or simply, called revocable) pseudorandom function is a weak pseudorandom
function with its evaluation key revocable. The µ-security of such scheme captures the idea that
if the revocation succeeds, the remaining adversary cannot distinguish between µ images y1 =
PRF(x1), y2 = PRF(x2), · · · , yµ = PRF(yµ) from µ random preimages x1, x2, · · · , xµ and uniform
random values y1, y2, · · · , yµ. Meanwhile, this construction can also be adapted to feature classical
revocation. Combine with our result, we obtain the following theorem.
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Theorem 8.3. Assuming the polynomial hardness of LWE and SIS with sub-exponential modu-
lus. The scheme (Gen,PRF,Eval,Revoke) (Construction 5,[APV23]) is a poly-secure revocable PRF
scheme (Definition 9.2, 9.3, [APV23]). Meanwhile, this construction can be adapted to feature
classical revocation via (Construction 2,[APV23]).
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A Proof of Lemma 5.1

Proof. Consider the following hybrid argument.

H0. Consider the probability

p0 = Pr
[
h(b, ρ′) = 1

∣∣∣(b, ρ′)← ATIϵ,δP,D0,γ
(ρ)
]
,

H1. Since D0 is efficiently sampleable, we abuse the notation and view it as a sampling procedure
that takes a uniform random seed from R and outputs an index in I. We may set the size of R to
be 2Ω(λ) which is exponential. Then PD0 can be rewritten in the following form,

PD0 =
1

|R|
∑
r∈R

PD0(r)

Let Π be the set of permutations mapping R to itself. Let π ∈ Π be a random permutation. For
any function f mapping R to itself, define Df

0 (r) = D0(f(r)). Consider the probability

p1 = Pr

[
h(b, ρ′) = 1

∣∣∣∣ π
$←−Π

(b,ρ′)←ATIϵ,δP,Dπ
0 ,γ

(ρ)

]
,

we have p0 = p1 since Dπ
0 and D0(π(r)) are identical distributions.

H2. Now we change the random permutation π ∈ Π to small-range functions σ ∈ Σ of Zhandry
[Zha12a]. Let G be the set of functions mapping R to [s] and F be the set of functions mapping
[s] to R where s is a parameter to be set later (it is a polynomial if µ is a polynomial). Define

Σ = F ◦G = {f ◦ g|f ∈ F, g ∈ G}

be the set of small-range functions. Consider the probability

p2 = Pr

[
h(b, ρ′) = 1

∣∣∣∣ σ
$←−Σ

(b,ρ′)←ATIϵ,δP,Dσ
0 ,γ

(ρ)

]
,

Let Φ be the set of random functions mapping R to itself. Yuen and Zhandry show the following:

Theorem A.1 ([Yue14, Zha15]). For any quantum algorithm B making Q quantum oracle queries
to π ∈ Π and ϕ ∈ Φ. We have∣∣∣Pr [Bπ() = 1

∣∣∣π $←−Π
]
− Pr

[
Bϕ() = 1

∣∣∣ϕ $←−Φ
]∣∣∣ ≤ O(Q3/ |R|).
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Theorem A.2 ([Zha12a]). For any quantum algorithm B making Q quantum oracle queries to
ϕ ∈ Φ and σ ∈ Σ. We have∣∣∣Pr [Bϕ() = 1

∣∣∣ϕ $←−Φ
]
− Pr

[
Bσ() = 1

∣∣∣σ $←−Σ
]∣∣∣ ≤ O(Q3/s).

Theorem A.1 and Theorem A.2 imply that |p1 − p2| ≤ O(Q3/s) where Q = poly (1/ε, log(1/δ))
is the number of oracle queries for ATIϵ,δ.

H3. Let E be a 2Q-wise independent set of functions. Let Σ′ = F ◦ E, consider the probability

p3 = Pr

[
h(b, ρ′) = 1

∣∣∣∣ σ′ $←−Σ′

(b,ρ′)←ATIϵ,δ
P,Dσ′

0 ,γ
(ρ)

]
,

Since ATIϵ,δ only makes Q queries, the following theorem implies that |p2 − p3| ≤ O(Q3/ |R|)

Theorem A.3 ([Zha12b]). For any quantum algorithm B making Q quantum oracle queries to
g ∈ G and e ∈ E. We have∣∣∣Pr [Be() = 1

∣∣∣e $←−E
]
− Pr

[
Bg() = 1

∣∣∣g $←−G
]∣∣∣ ≤ O(Q3/R).

H4. We change D0 to D1. Consider the probability

p4 = Pr

[
h(b, ρ′) = 1

∣∣∣∣ σ
$←−Σ

(b,ρ′)←ATIϵ,δP,Dσ
1 ,γ

(ρ)

]
,

First note that H3 and H4 are efficient hybrids since D0(f(i)) for i ∈ [s] over f $←−F is just a ‘list’
of s independent samples.

H4- H7. For i ∈ {0, 1, 2, 3}, H4+i is just H3−i except for replacing D0 with D1.

Thus, for any polynomial s, |p0 − p3| ≤ O(Q3/s) and |p4 − p7| ≤ O(Q3/s). By our assumption that
|p0 − p7| = 1/µ(λ) we have |p3 − p4| ≥ 1/µ(λ) − O(Q3/s) for any polynomial s. Then we apply
hybrid argument on the each element of the ‘list’ f ∈ F . Let H3,i for i = 0, 1, 2, · · · , s be the hybrid
that is the same as H3 except that we change D0(f(e(r))) to

D′(r) =

{
D0(f(e(r))) (e(r) ≤ i)
D1(f(e(r))) (e(r) > i)

Since H3 is identical to H3,0 and H4 is identical to H3,s, there must exists i such that the gap
between H3,i and H3,i+1 is at least 1/(µ(λ)s) − O(Q3/s2). Using the distinguisher obtain by
this two hybrids, we can set s = Θ(Q4(µ(λ))2) and obtain a distinguisher that distinguish be-

tween D0 and D1 with probability Θ
(

1
µ(λ))3Q4

)
. Moreover, this distinguisher has circuit size

poly(λ,Q, s, 1/ϵ, log(1/δ), |P| , |h|) = poly(λ, µ, 1/ϵ, log(1/δ), |P| , |h|).
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