
Secure Multiparty Computation in the Presence of Covert
Adaptive Adversaries

Isheeta Nargis and Anwar Hasan

University of Waterloo
Waterloo, Ontario, Canada

isheeta@gmail.com, ahasan@uwaterloo.ca

Abstract. We design a new MPC protocol for arithmetic circuits secure against erasure-free covert
adaptive adversaries with deterrence 1

2
. The new MPC protocol has the same asymptotic communication

cost, the number of PKE operations and the number of exponentiation operations as the most efficient
MPC protocol for arithmetic circuits secure against covert static adversaries. That means, the new MPC
protocol improves security from covert static security to covert adaptive adversary almost for free. For
MPC problems where the number of parties n is much larger than the number of multiplication gates
M , the new MPC protocol asymptotically improves communication complexity over the most efficient
MPC protocol for arithmetic circuits secure against erasure-free active adaptive adversaries.
Keywords: Covert Adversary, Covert Adaptive Adversary, Threshold Encryption, Lossy Encryption,
Public Key Encryption, Homomorphic Encryption.

1 Introduction

In a secure multiparty computation (MPC) problem, a group of mutually distrusting parties compute a
possibly randomized function of their inputs in such a way that the privacy of inputs is maintained and
the computed output follows the distribution of the function definition. MPC is a very strong primitive in
cryptography since almost all cryptographic problems can be solved, in principle, by a general secure MPC
protocol. There are many applications of secure MPC such as financial analysis, secure auction, privacy-
preserving biometric identification, secure computation on gene sequences, private information retrieval,
private set intersection and privacy-preserving machine learning.

The problems and risks associated with an MPC problem are modeled by an entity called the adversary.
The adversary tries to control parties. A party which is controlled by the adversary is called a corrupted party.
A party which is not controlled by the adversary is called an honest party. Depending on the assumption on the
computational power of the adversary and the communication channel, there are two types of security models.
In cryptographic model of security, it is assumed that the adversary can see all the communication between
any pair of parties and the adversary is a probabilistic polynomial-time Turing machine. In information-
theoretic model of security, it is assumed that the adversary cannot see the communication between any pair
of honest parties and the computational power of the adversary is unlimited. An adversary that corrupts at
most t parties is called a t-limited adversary or a threshold adversary. In that case, the number t is called
the threshold.

Depending on the assumption of honest majority, two different security models for multiparty computation
problems are defined. Let n denote the number of parties and t denote the threshold. In multiparty model
with honest majority, it is assumed that the adversary can corrupt at most t < n

2 parties. In multiparty model
without honest majority, it is assumed that the adversary can corrupt at most t < n parties.

In order to simplify the analysis, the efficiency of protocols is generally measured in terms of a special
parameter called the security parameter. All parties and the adversary get the security parameter as an
input. The efficiency of MPC protocols are measured by some metrics. One round of an MPC protocol is
a sequence of steps of the MPC protocol such that each party sends one message to each other party in
that sequence. The round complexity of an MPC protocol is the number of rounds needed for executing
that protocol. The communication complexity of an MPC protocol is the total communication (in bits)

2

among the parties during the execution of that MPC protocol. The computational complexity of an MPC
protocol is the asymptotic computational complexity needed for executing that protocol. Sometimes some
other parameters are also used to get an estimate of the computational complexity of an MPC protocol. Many
MPC protocols use public key encryption (PKE) scheme as its building blocks. Usually the PKE operations
constitute the main bottleneck in the time consumed by an MPC protocol. For this reason, the number of
PKE operations performed by each party gives a good measure of the computational complexity of MPC
protocols. The number of exponentiation operations performed by each party is another performance metric
of MPC protocols since the exponentiation operations take a big amount of time.

In passive adversary model, it is assumed that the corrupted parties collaborate together to learn more
about the inputs and outputs of the honest parties but the corrupted parties still follow the protocol. In
active adversary model, the corrupted parties can behave in any possible way, including the violation of the
protocol. Active adversary model portrays the real world scenario better than passive adversary model. Active
adversary notion is more secure than passive adversary notion. Usually the protocols for passive adversary
model are simpler and more efficient than protocols for active adversary model. In static adversary model,
it is assumed that the adversary selects the parties to corrupt before the protocol starts and the set of
corrupted parties remain fixed throughout the execution of the protocol. In adaptive adversary model, the
adversary can corrupt a party at any time, even after the the execution of the protocol is finished. Adaptive
adversary model is more realistic that static adversary model. Adaptive adversary model is a stronger security
model than static adversary model. It is possible to design simpler and more efficient protocols for static
adversary model than the protocols for adaptive adversary model. Depending on the assumption of erasure,
there are two types of adaptive adversary model. In adaptive adversary model with erasure, it is assumed
that the parties can erase some local data. In erasure-free adaptive adversary model, it is assumed that the
adversary learns the full history of a party when it corrupts that party. Assuming erasure is unrealistic as
complete erasure is sometimes impossible to achieve. Moreover, erasure is a property that cannot be verified
by another party. For these reasons, erasure-free adaptive adversary model is more realistic than adaptive
adversary model with erasure. The protocols for adaptive adversary model with erasure are simpler than the
protocols for erasure-free adaptive adversaries.

The one-sided adaptive adversary model for two-party computation (2PC) [HP14] assumes that the adver-
sary is adaptive and it can corrupt at most one party. This is a relaxation from the standard or fully adaptive
adversary model for 2PC where the adversary can corrupt both parties. Protocols for one-sided adaptive
adversaries are significantly more efficient than protocols for fully adaptive adversaries [HP14,Nar17,?,?].

Aumann and Lindell [AL10] defined a new type of adversaries called the covert adversaries. In covert
adversary model [AL10], the corrupted parties can behave in any possible way like active adversaries, but
any party that attempts to cheat is guaranteed to get caught by the honest parties with a minimum fixed
probability. That probability is called the deterrence factor of covert adversary model. This definition is
suitable in many application settings including business, financial, political and diplomatic setting where
getting caught cheating results in a loss of reputation, embarrassment or negative press. Security-wise,
covert adversary is stronger than passive adversary and weaker than active adversary [AL10]. It is more
realistic than passive adversary model. Protocols for covert adversaries are significantly more efficient than
protocols for active adversaries [AL10].

Aumann and Lindell [AL10] defined covert adversary model only for static corruption. Adaptive adversary
model is more realistic and more secure than static adversaries.

Nargis [NH24] defined a new adversary model, the covert adaptive adversary model, by generalizing the
definition of covert adversary model for the more realistic adaptive corruption. Since the original covert
adversary model defined by Aumann and Lindell is only defined for static corruption, the covert adver-
sary model of Aumann and Lindell can be called the covert static adverasry model. Nargis [NH24] proved
that covert adaptive security implies passive adaptive security and active adapative security implies covert
adaptive security. Nargis [NH24] proved that covert adaptive security is strictly stronger than covert static
security. Nargis [NH24] proved the sequential composition theorem for the new adversary model which is
necessary to allow modular design of protocols for this new adversary model.

3

Let n denote the number of parties and M denote the number of multiplication gates in the arithmetic cir-
cuit representing the functionality to be computed. Damg̊ard and Nielsen [DN03] designed the most efficient
MPC protocol secure against erasure-free active adaptive adversaries. Their protocol needs O(Mn2s+ n3s)
communication cost.

Nargis [NME13] designed an MPC protocol for arithmetic circuits secure against covert static adversaries.
Her protocol is designed for the multiparty model with dishonest majority. Her protocol uses cut-and-choose
techniques to additive sharing of the inputs and intermediate values, and a lossy additive homomorphic
public key encryption (PKE) scheme. In all stages of the computation her protocol maintains the following
invariant: each party holds an additive share, an associated randomness and an encrypted share of other
parties for each wire that has been evaluated so far. Parties evaluate the multiplication gates by splitting their
shares into subshares, broadcasting encryptions of subshares and performing homomorphic multiplication by
their own subshares to these encryptions while a randomly selected portion of the computations are opened
for verification. After evaluating all the gates in the circuit, each party sends its share and randomness
calculated for the output wire of each other party. The receiving party holds the encryption of the shares of
the remaining parties for this wire and uses this encryption to check the consistency of the received share
and randomness. In this way, the encryption acts as a commitment to ensure that a party trying to send an
invalid share gets caught. Due to the binding property of a traditional encryption scheme, a simulation-based
proof of the above idea is not possible. At the end, the simulator has to generate shares and randomness
on behalf of the honest parties, in a way that is consistent with the actual outputs of the corrupted parties
(based on the actual inputs of the honest parties) and the messages transmitted so far (based on dummy
inputs of the honest parties). This task is not possible given a traditional encryption scheme. Nargis [NME13]
used lossy PKE encryption scheme to achieve that goal. In a lossy PKE scheme, a ciphertext generated using
a lossy key can be opened as an encryption of any message of choice if the secret key is known. But this
creates another security problem. A corrupted party can try to cheat by using a lossy key in the protocol.
To prevent such an attack, a cut-and-choose verification of the key generation is also incorporated in the
protocol.

The MPC protocol of [NME13] needs O(Mn2s) communication cost, O(Mn3) PKE operations and
O(Mn3) exponenetiation operations for deterrence factor 1

2 .

We design an MPC protocol for arithmetic circuits secure against the new covert adaptive adversaries
with deterrence 1

2 . We design the new MPC protocol by modifying the MPC protocol of [NME13] in the
following way. The MPC protocol of [NME13] uses a lossy PKE scheme. The new MPC protocol uses a
PKE scheme that is a combination of a lossy PKE scheme and threshold PKE scheme that is secure against
erasure-free active adaptive adversaries.

The new MPC protocol needs O(Mn2s) communication cost, O(Mn3) PKE operations and O(Mn3)
exponenetiation operations for deterrence factor 1

2 . The new MPC protocol has the same asymptotic com-
munication cost, the number of PKE operations and the number of exponentiation operations as the MPC
protocol of Nargis [NME13]. That means, the new MPC protocol improves security from covert static security
to covert adaptive adversary almost for free.

For MPC problems where the number of parties n is much larger than the number of multiplication gates
M , the new MPC protocol asymptotically improves communication complexity over the most efficient MPC
protocol (the protocol of Damg̊ard and Nielsen [DN03]) for arithmetic circuits secure against erasure-free
active adaptive adversaries.

2 Background

2.1 Preliminary Definitions

For a set R, let r
$← R denote that r is obtained by sampling uniformly at random from R. For a probabilistic

polynomial-time algorithm A, let Coins(A) denote the distribution of the internal randomness of A. The
notation y = A(x, r) means that y has been computed by running A on input x and randomness r. The

4

notation y ← A(x) means that y should be computed by running A on input x and randomness r where

r
$← Coins(A). For a binary string x, let |x| denote the length of x.

Definition 1. The security parameter is an additional integer valued parameter used to specify the guaran-
teed “level of security”. All the parties and the adversary receive the security parameter as an input. The
security parameter is denoted by s. All complexity characteristics (or the efficiency parameters) are measured
in terms of the security parameter.

An MPC problem is defined by a functionality.

Definition 2 ([Gol09]). Let n denote the number of parties. An n-party functionality, denoted f : ({0, 1}∗)n →
({0, 1}∗)n is a random process that maps sequences of the form x = {x1, . . . , xn} into sequences of random
variables f(x) = (f1(x), . . . , fn(x)). For each i ∈ {1, . . . , n}, the i-th party, Pi, has input xi and wishes to
obtain the i-th element in f(x1, . . . , xn), denoted
fi(x1, . . . , xn). Functions mapping n inputs to n outputs are a special case of functionality. Functionalities
are randomized extensions of functions.

There are two types of functionalities – non-reactive functionalities and reactive functionalities.

Definition 3. In a standard functionality or non-reactive functionality, each party has a single input and a
single output. The output of each party is a probabilistic function of the inputs of all the parties. This is also
called secure function evaluation which is a widely used term.

Definition 4 ([Gol09]). In a reactive functionality, parties perform some computations for multiple itera-
tions. There exists a global state that is updated in each iteration. The global state may not be known by any
individual party. It is shared among the parties. Initially, the global state is an empty state. Each iteration
proceeds in the following way.

1. Each party receives an input for current iteration.
2. Parties compute the outputs for current iteration. The outputs of parties in current iteration depend

on the inputs of the parties in current iteration and the global state in current iteration.
3. Parties update the global state for the next iteration based on the inputs of the parties in current

iteration and the global state in current iteration.

Interactive Turing machines are an extension of classical Turing machines in the sense that they allow
interaction among the machines. For more details on their definition, see [GMR85] and [Gol06], page 191.
In an MPC problem, each party is modeled by an Interactive Turing machine.

Parties use a protocol to solve an MPC problem.

Definition 5 ([Can01]). A protocol is an algorithm written for a distributed system. A protocol describes
how the parties communicate among themselves to compute a given functionality. An n-party protocol is
represented as a system of n interactive Turing machines where each interactive Turing machine represents
the program to be run within a different party. Conventionally, the Turing machine representing the i-th
party is called Pi.

The notion of balanced vectors are used in the security definitions of MPC protocols. A vector x =
{x1, . . . , xn} such that xi ∈ {0, 1}∗ for 1 ≤ i ≤ n, is called balanced, if, for every i, j such that 1 ≤ i, j,≤ n,
|xi| = |xj |.

The notion of distribution ensembles are used in the security definition of MPC protocols.

Definition 6 ([Can00]). A distribution ensemble, X = {X(s, a)}s∈N,a∈{0,1}∗ , is an infinite sequence of
probability distributions, where a distribution X(s, a) is associated with each value of s ∈ N and a ∈ {0, 1}∗.

5

Distribution ensembles are used to represent the outputs of computation where the parameter s denotes the
security parameter and the parameter a represents the input of the computation.

The notion of computational indistinguishability is used in the security definition of MPC protocols.
Intuitively, two given distribution ensembles are computationally indistinguishable if no efficient (polynomial-
time) machine can differentiate between them.

Definition 7 ([Can00]). Let δ : N→ [0, 1]. Two distribution ensembles
X = {X(s, a)}s∈N,a∈{0,1}∗ and Y = {Y (s, a)}s∈N,a∈{0,1}∗ have computational distance at most δ if, for every
algorithm D that is probabilistic polynomial-time in its first input, for all sufficiently large s, all a ∈ {0, 1}∗,
and all auxiliary information w ∈ {0, 1}∗, the following holds:

|Pr[D(1s, a, w, x) = 1]− Pr[D(1s, a, w, y) = 1]| < δ,

where x is chosen from distribution X(s, a), y is chosen from distribution Y (s, a), and the probabilities are
taken over the choices of x, y, and the random choices of D.

Two distribution ensembles X = {X(s, a)}s∈N,a∈{0,1}∗ and Y = {Y (s, a)}s∈N,a∈{0,1}∗ are defined to be

computationally indistinguishable, denoted X
c≡ Y , if X and Y have computational distance at most s−c for

all c > 0.

2.2 Threshold Cryptosystem

Definition 8. Threshold Cryptosystem [FPS00]
A threshold cryptosystem (G,E, SD, SC) consists of the four following components.

– A key generation algorithm G takes as input a security parameter κ, the number n of decryption servers,
the threshold parameter t and a random string ω. G outputs a public key PK, a list {SK1, . . . , SKn} of
private keys and a list {V K, V K1, . . . , V Kn} of verification keys.

– An encryption algorithm E takes as input the public key PK, a plaintext m, and a random string ω. E
outputs a ciphertext c.

– A share decryption algorithm SD takes as input the public key PK, an index i such that 1 ≤ i ≤ n, the
private key SKi and a ciphertext c. SD outputs a decryption share ci and a proof of its validity proofi.

– A share combining algorithm SC takes as input the public key PK, a ciphertext c, a list {c1, . . . , cn}
of decryption shares, the list {V K, V K1, . . . , V Kn} of verification keys and a list proof1, . . . , proofn of
validity proofs. SC outputs a cleartext m or a symbol ⊥ denoting failure to decrypt.

Semantic security of a threshold cryptosystem is defined through the game described in Figure 1.

1. The attacker chooses to corrupt t servers. She learns all their secret information and she actively controls
their behavior.

2. The key generation algorithm G is invoked – then the public keys are publicized, each server receives its
secret keys and the attacker learns the secrets of the corrupted players.

3. The attacker chooses a message m and a partial decryption oracle gives her valid decryption shares of the
encryption of m, along with proofs of validity. This step is repeated as many times as the attacker wishes.

4. The attacker issues two messages m0 and m1 and sends them to an encryption oracle who randomly chooses
a bit b and sends back an encryption c of Mb to the attacker.

5. The attacker repeats step 3, asking for decryption shares of encryptions of chosen messages.
6. The attacker outputs a bit b′.

Fig. 1: The game for static threshold semantic security.

6

Definition 9. Semantic Security of a Threshold Cryptosystem [FPS00]
A threshold encryption scheme is said to be semantically secure against active static adversaries if for any
polynomial time attacker, b = b′ with probability only negligibly greater than 1/2.

2.3 Lossy Encryption

Bellare et al. defined Lossy Encryption in [BHY09], extending the definition of Dual-Mode Encryption of
[PVW08] and Meaningful/Meaningless Encryption of [?]. In a lossy encryption scheme, there are two modes
of operations. In the injective mode, encryption is an injective function of the plaintext. In the lossy mode,
the ciphertexts generated are independent of the plaintext.

Let κ denote the security parameter. For a probabilistic polynomial time Turing machine A, let a
$← A(x)

denote that a is obtained by running A on input x where a is distributed according to the internal randomness

of A. Let coins(A) denote the distribution of the internal randomness of A. For a set R, let r
$← R denote

that r is obtained by sampling uniformly from R. Let Epk(m, r) denote the result of encryption of plaintext
m using encryption key pk and randomness r. Let Dsk(c) denote the result of decryption of ciphertext c
using decryption key sk.

Definition 10. (Lossy Public Key Encryption Scheme [BHY09])
A lossy public-key encryption scheme is a tuple (G,E,D) of probabilistic polynomial time algorithms such
that

– keys generated by G(1κ, inj) are called injective keys.
– keys generated by G(1κ, lossy) are called lossy keys.

The algorithms must satisfy the following properties.

1. Correctness on injective keys.
For all plaintexts x ∈ X,

Pr
[
(pk, sk)

$← G(1κ, inj); r
$← coins(E) : Dsk(Epk(x, r)) = x

]
= 1.

2. Indistinguishability of keys.
The public keys in lossy mode are computationally indistinguishable from the public keys in the injective
mode.

3. Lossiness of lossy keys.

If (pklossy, sklossy)
$← G(1κ, lossy), then for all x0, x1 ∈ X, the distributions Epklossy (x0, R) and Epklossy (x1, R)

are statistically indistinguishable.
4. Openability.

If (pklossy, sklossy)
$← G(1κ, lossy) and r

$← coins(E), then for all x0, x1 ∈ X with overwhelming proba-
bility, theres exists r′ ∈ coins(E) such that

Epklossy (x0, r) = Epklossy (x1, r
′).

That is, there exists a (possibly inefficient) algorithm opener that can open a lossy ciphertext to any
arbitrary plaintext with all but negligible probability.

The semantic security of a lossy encryption scheme is implied by definition, as follows. For any x0, x1 ∈ X,

Eproj(G(1κ,inj))(x0, R)
c≡ Eproj(G(1κ,lossy))(x0, R)

s≡ Eproj(G(1κ,lossy))(x1, R)
c≡ Eproj(G(1κ,inj))(x1, R).

Definition 11. (Key Pair Detection)
A lossy encryption scheme (G,E,D) is said to satisfy key pair detection, if it holds that it can be decided
in polynomial time whether a given pair (PKi, SKi) of keys generated by invoking G is a lossy pair or an
injective pair.

7

In our protocol, we use a public key encryption scheme that satisfies the following properties.

1. additive homomorphic,
2. lossy encryption with an efficient (polynomial time) Opener algorithm, and
3. key pair detection.

Hemenway et al. [?] designed a lossy encryption scheme based on Paillier’s encryption scheme. This scheme
satisfies all these required properties.

2.4 Lossy Threshold Public Key Encryption Scheme

Simply stated, a lossy threshold PKE scheme is the combination of a lossy PKE scheme and a threshold
PKE scheme.

Definition 12. A lossy threshold PKE scheme secure against erasure-free t-limited active adaptive adver-
saries is a threshold PKE scheme
(K,KG,E,ΠDEC) , with the following modifications.

Key Generation: The input of the key generation algorithm KG is (1s,mode). Here, s is the security
parameter, and mode ∈ {0, 1} denotes the mode of the key generated, for a lossy PKE scheme.

Lossy Encryption Properties: The encryption scheme is a lossy PKE scheme.

2.5 The Decisional Composite Residuosity Assumption

For two non-negative integers x, y, let gcd(x, y) denote the greatest common divisor of x and y. For any
integer N > 1, define Z∗N to be the set Z∗N = {a ∈ {1, . . . , N − 1}|gcd(a,N) = 1}. Z∗N is a group with
multiplication modulo N as the group operation. Let N = pq be a product of two large primes p and q.
First, the definition of N -th residue is presented.

Definition 13 ([Pai99]). A number z is said to be a N -th residue modulo N2, if there exists a number
y ∈ Z∗N2 such that z = yN mod N2.

Next, the problem of deciding N -th residue is defined.

Definition 14 ([Pai99]). The problem of deciding N -th residuosity is defined to be the problem of distin-
guishing N -th residues from the non-N -th residues.

The decisional composite residuosity assumption is defined below.

Definition 15 ([Pai99]). The decisional composite residuosity assumption states that there exists no poly-
nomial time algorithm for deciding N -th residuosity.

2.6 Security Definition of MPC Protocols Secure against Covert Adaptive Adversaries

In this section we present the security definition of MPC protocols in the presence of covert adaptive adver-
saries following Nargis [NH24].

The Ideal World in Covert Adaptive Adversary Model
Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, where f = (f1, . . . , fn). There exists an
incorruptible trusted party in the ideal world. Let P1, . . . , Pn denote the parties. Party Pi has input
xi ∈ {0, 1}∗ – no random input is required. Let x = {x1, . . . , xn}. Parties want to evaluate f(x) =

8

{f1(x), . . . , fn(x)}. Let A denote an adaptive ideal world adversary that is a non-uniform interactive
probabilistic polynomial time Turing machine with random input r0 and security parameter s. Let Z
denote the environment that is a non-uniform interactive probabilistic polynomial time Turing machine
with input z, random input rz and security parameter s. Let ε : N→ [0, 1] be a function.

The execution in the ideal world with ε proceeds as follows.

Inputs:

Each party obtains an input. Let xi denote the input of Pi.

First Corruption Stage:

The adversary A receives auxiliary information from Z. Then A proceeds in iterations. In each
iteration, A may decide to corrupt some party, depending on A’s random input and the information
collected so far. When a party is corrupted, the adversary A gets its input, the environment Z learns
the identity of the corrupted party and sends some extra auxiliary information to A. This information
represents the internal history of the newly corrupted party in other protocol executions. Let I1 denote
the set of corrupted parties at the end of this stage.

Computation Stage:

Send inputs to the Trusted Party:

Each honest party Pj sends its received input xj to the trusted party. The corrupted parties, con-
trolled by A, may either send their received input, or send some other input of the same length to
the trusted party. This decision is made by A and may depend on the information gathered so far.
Let w = {w1, . . . , wn} denote the vector of inputs sent to the trusted party.

Abort Options:

If a corrupted party sends wi = aborti to the trusted party as its input, then the trusted party sends
aborti to all of the honest parties and halts. If a corrupted party sends wi = corruptedi to the trusted
party as its input, then the trusted party sends corruptedi to all of the honest parties and halts. If
multiple parties send aborti (respectively, corruptedi), then the trusted party relates only to one of
them (say, the one with the smallest i). If both corruptedi and abortj messages are sent, then the
trusted party ignores the corruptedi message.

Attempted Cheat Option:

If a corrupted party sends wi = cheati to the trusted party as its input, then the trusted party works
as follows:

1. With probability ε, the trusted party sends corruptedi to the adversary and all of the honest
parties.

2. With probability (1 − ε), the trusted party sends undetected to the adversary along with the
honest parties’ inputs {xj}j∈[n]\I1 . Following this, the adversary sends the trusted party output
values {yj}j∈[n]\I1 of its choice for the honest parties. Then, for every j ∈ [n] \ I1, the trusted
party sends yj to Pj .

The ideal execution then ends here.

If no wi equals aborti, corruptedi or cheati, then the ideal execution continues below.

Trusted Party Answers Adversary:

The trusted party computes (f1(w), . . . , fn(w)) and sends fi(w) to A, for all i ∈ I1.

Second Corruption Stage:

After learning the outputs of the corrupted parties, A proceeds in another sequence of iterations.
In each iteration, A may decide to corrupt some party, where the decision of A depends on the
information obtained so far. When a party is corrupted, the adversaryA gets its input and output, the
environment Z learns the identity of the corrupted party and sends some extra auxiliary information
to A. This information represents the internal history of the newly corrupted party in other protocol
executions. Let I2 denote the set of corrupted parties at the end of this stage.

Trusted Party Answers Honest Parties:

After the second corruption stage, the adversary sends either aborti for some i ∈ I2, or continue to
the trusted party.

If the trusted party receives aborti for some i ∈ I2, then it sends aborti to all honest parties and
halts.

If the trusted party receives continue, then it sends fj(w) to party Pj , for each j ∈ [n] \ I2.

9

Outputs:
An honest party always outputs the message it obtained from the trusted party. The corrupted parties
output nothing. The adversary A outputs any arbitrary (probabilistic polynomial-time computable)
function of the information gathered during the computation in the ideal world. The environment Z
learns all outputs.

Post-Execution Corruption Stage:
The environment Z and the adversary A interacts in rounds. In each round, Z generates a “Corrupt
Pi” request for some Pi to A. After receiving this request, A sends Z some arbitrary information. This
information represents the internal history of Pi pertaining to the evaluation of f . For this purpose,
A may corrupt more parties as described in the second corruption stage. The interaction continues
until Z halts, with some output. Without loss of generality, the output of Z can be defined as the
entire view of Z during its interaction with A and the parties. Let I3 denote the set of corrupted
parties at the end of this stage. The global output is defined to be the output of Z. The output of
Z may include the outputs of all parties and the output of the adversary A.

Definition 16. Let IDEALCAεf,A,Z (s, x, z, r) denote the output of the environment Z after parties
P1, . . . , Pn performing an evaluation of f with deterrence ε in the ideal world of covert adaptive adversary
model in the presence of adversary A where party Pi has input xi, the adversary A has random input r0,
the environment Z has input z and random input rz, the input vector is x = {x1, . . . , xn}, the vector of
random inputs is r = {rz, r0}, and s is the security parameter. Let IDEALCAεf,A,Z (s, x, z) denote the
random variable describing the distribution of IDEALCAεf,A,Z (s, x, z, r) where r is selected uniformly
at random from its domain.

The Real World in Covert Adaptive Adversary Model
The real world in the covert adaptive adversary model is the same as the real world in the active adaptive
adversary model. For completeness, we describe the real world here.
Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality, where f = (f1, . . . , fn). Let Π be an n-party
protocol that evaluates f . There is no trusted party. The adversary A sends all messages in place of
the corrupted parties and may follow an arbitrary polynomial-time strategy. The honest parties follow
the instructions of Π. Each party Pi has input xi ∈ {0, 1}∗, random input ri ∈ {0, 1}∗ and the security
parameter s. Let x = {x1, . . . , xn}. Let A denote an adaptive real world adversary that is a non-uniform
interactive probabilistic polynomial time Turing machine with random input r0 and security parameter
s. Let Z denote the environment that is a non-uniform interactive probabilistic polynomial time Turing
machine with input z, random input rz and security parameter s.
At first the adversary A receives some auxiliary information from the environment Z. The computation
proceeds in rounds. Each round proceeds in a series of mini-rounds. At the start of each mini-round, the
adversary A may corrupt parties one by one in an adaptive way, depending on the information gathered
so far. Then A selects an honest party Pi that has not been activated in this round, and activates it.
When activated, Pi receives the messages sent to it in the previous round and generates its messages for
this round – then the mini-round ends. A learns all messages sent by Pi to the corrupted parties. When
all the honest parties have been activated, A generates the messages to be sent by the corrupted parties
that were not activated in this round, and the next round begins.
When a party is corrupted, A learns the party’s input, random input, and the entire history of the
messages sent and received by the party. Z learns the identity of the corrupted party and sends some
additional auxiliary information to A. This information represents the party’s internal data from other
protocol executions. From this point on A learns all the messages received by the party and the party
behaves according to the instruction of A.
At the end of the protocol execution, the honest parties output whatever is specified by the protocol.
The corrupted parties output nothing. The adversary A outputs some arbitrary (probabilistic polynomial
time computable) function computed from its view. The environment Z learns all outputs.
Then a “Post-Execution Corruption Stage” begins. In this stage, Z and A interacts in rounds. In each
round, Z generates a “Corrupt Pi” request to A. Then A sends Z some arbitrary information. This
information represents the internal data of Pi during the execution of protocol Π. The interaction
continues until Z halts, with some output. The output of Z is defined to be its entire view during its
interaction with A. The global output is defined to be the output of Z.

10

Below we describe the definition of the execution in the real world of the active adaptive adversary model
which we obtain by plugging in the active adversary model in the generic definition of the execution in
the real world of the adaptive adversary model.

Definition 17. Let REALΠ,A,Z (s, x, z, r) denote the output of the environment Z after parties P1, . . . , Pn
running protocol Π in the real world of active adaptive adversary model in the presence of adversary A
where party Pi has input xi and random input ri, the adversary A has random input r0, the environment
Z has input z and random input rz, the input vector is x = {x1, . . . , xn}, the vector of random inputs
is r = {rz, r0, r1, . . . , rn}, and s is the security parameter. Let REALΠ,A,Z (s, x, z) denote the random
variable describing the distribution of REALΠ,A,Z (s, x, z, r) where r is selected uniformly at random
from its domain.

Security of MPC protocols in the presence of covert adaptive adversaries with deterrence ε is defined as
follows.

Definition 18. (Security in the presence of Covert Adaptive Adversaries

A protocol Π is said to securely compute f in the presence of covert adaptive adversaries with deterrence
ε if for any non-uniform probabilistic polynomial-time adaptive adversary A for the real world and any
environment Z, there exists a non-uniform probabilistic polynomial-time adaptive adversary S for the ideal
world such that the following holds for every balanced vector x{

IDEALCAεf,S,Z(s, x, z)
}
x,z∈({0,1}∗)n+1;s∈N

c≡ {REALΠ,A,Z(s, x, z)}x,z∈({0,1}∗)n+1;s∈N .

2.7 Security Relationship of the New Covert Adaptive Adversary Model with Existing
Adversary Models

In this section, we describe the security relations of the new covert adaptive adversary model with active
adaptive adversary model, passive adaptive adversary model and covert static adversary model following
Nargis [NH24].

Nargis [NH24] proved that active adaptive security implies covert adptive security.

Proposition 1 ([NH24]). Let Π be a protocol that securely computes some functionality f with abort in
the presence of active adaptive adversaries. Then, Π securely computes f in the presence of covert adaptive
adversaries with deterrence ε for every ε such that 0 ≤ ε ≤ 1.

Definition 19. A passive adaptive adversary that is allowed to modify its input before the execution of the
protocol begins is called an augmented passive adaptive adversary.

Nargis [NH24] proved that covert adaptive security implies passive adptive security.

Proposition 2. Let Π be a protocol that securely computes some functionality f in the presence of covert
adaptive adversaries with deterrence ε and for ε(s) ≥ 1/poly(s). Then, Π securely computes f in the presence
of augmented passive adaptive adversaries.

We first define a transformation.

Definition 20 ([NH24]). Let Π be a protocol that securely computes some functionality f in the presence
of covert adaptive adversaries with deterrence ε. Let ToActive() denote the transformation of Π to a protocol
Π ′ such that if an honest party is supposed to output corruptedi in Π, then it outputs aborti in Π ′.

Proposition 3 ([NH24]). Let Π be a protocol and µ(s) be a negligible function of s. Let Π ′ = ToActive(Π).
Then Π securely computes some functionality f in the presence of covert adaptive adversaries with deterrence
ε(s) = 1−µ(s) if and only if Π ′ securely computes f with abort in the presence of active adaptive adversaries.

11

Nargis [NH24] proved that covert adaptive security implies covert static security and covert adaptive
security is strictly stronger than covert static security.

Proposition 4 ([NH24]). Let Π be a protocol that securely computes functionality f in the presence of
covert adaptive adversaries with deterrence ε. Then, Π securely computes f in the presence of covert static
adversaries with deterrence ε. Furthermore, assuming the presence of homomorphic public key encryption
schemes, there exists protocols that are secure in the presence of covert static adversaries, but not secure in
the presence of covert adaptive adversaries.

2.8 Sequential Composition Theorem for Covert Adaptive Adversaries

Nargis [NH24] proved sequential composition theorem for covert adaptive adversary model.

The Hybrid World.
We first define the hybrid world where the parties run an n-party protocol Π that contains ideal eval-
uations of some n-party functionalities f1, . . . , fp(s). To evaluate these ideal functionalities, parties have
access to a trusted party. The trusted party is called in special rounds, determined by protocol Π. In
each such round, a functionality fi (out of f1, . . . , fp(s)) is specified. The trusted party computing fi
acts as the trusted party in the ideal world of the covert adaptive adversary model with deterrence εi.
First the adversary adaptively corrupts parties, and learns the internal data of corrupted parties. For
each newly corrupted party, the adversary receives information from the environment. Then each honest
party Pj sends its input for fi to the trusted party. The input of an honest party Pj for functionality
fi depends on protocol Π. The adversary sends the inputs of the corrupted parties for fi to the trusted
party. The honest parties all send their inputs for fi to the trusted party in the same round. The honest
parties do not communicate among themselves until they receive their output of fi from the trusted
party. The reason for this is that we are considering sequential composition where the ideal evaluation of
a functionality fi is fully finished before the start of the next ideal evaluation of functionality fi+1. The
trusted party computes functionality fi on the received inputs and then sends the respective outputs
of fi to each party. Then the adversary can again adaptively corrupt more parties. After receiving the
outputs for fi from the trusted party, the parties resume the execution of protocol Π. Such a hybrid
world is called the (f1, ε1), . . . , (fp(s), εp(s))-hybrid world.

Definition 21. Let HY BRID
(f1,ε1),...,(fp(s),εp(s))
Π,A,Z (s, x, z, r) denote the output of the environment Z after

parties P1, . . . , Pn performing an execution of protocol Π in the
(f1, ε1), . . . , (fp(s), εp(s))-hybrid world in the presence of adversary A where party Pi has input xi and
random input ri, the adversary A has random input r0, the environment Z has input z and random input
rz, the input vector is x = {x1, . . . , xn}, the vector of random inputs is r = {rz, r0, r1, . . . , rn}, and s is

the security parameter. Let HY BRID
(f1,ε1),...,(fp(s),εp(s))
Π,A,Z (s, x, z, r) denote the random variable describing

the distribution of HY BRID
(f1,ε1),...,(fp(s),εp(s))
Π,A,Z (s, x, z, r) where r is selected uniformly at random from

its domain.

Replacing an ideal evaluation with a subroutine call.
Now we describe how to replace an ideal evaluation of a functionality fi with a protocol ρi within the
execution of protocol Π. Let `i denote the round at which protocol ρi is invoked within protocol Π.
At the start of round `i, each party Pj saves its internal state relevant to protocol Π in a special tape.
Let σj,i denote this state. The call to the trusted party for evaluation of fi is replaced by the execution
of protocol ρi. Let xj,i denote the input of Pj for functionality fi according to protocol Π. Pj sets its
input for execution of ρi to xj,i and sets its random input for ρi to a uniform random element of the
appropriate domain. No honest party resumes execution of protocol Π before the execution of ρi is
finished. All honest parties finish the execution of ρi at the same round. When Pj completes execution of
protocol ρi with output yj,i, Pi resumes the execution of Π starting from state σj,i as if yj,i is the value
that Pj received as its output for fi from the trusted party. If Pj gets corruptedk as its output from
the execution of ρi, then Pj acts as per the instruction of protocol Π. Let Πρ1,...,ρp(s) denote protocol

12

Π (which is initially designed for the (f1, . . . , fp(s)-hybrid world) where each ideal evaluation call to fi
is replaced by a subroutine call to protocol ρi.

Lemma 1 ([NH24]). Let f be an n-party functionality. Let Π be an n-party protocol to compute f . Define
h to be the reactive functionality such that h acts like the trusted party computing f with deterrence ε in
the covert adaptive adversary model. Then Π securely computes f with deterrence ε in the covert adaptive
adversary model if and only if Π securely computes h in the active adaptive adversary model.

Theorem 1 (Sequential Composition Theorem for Covert Adaptive Adversary Model.). [[NH24]]
Let p(s) be a polynomial. Let f1, . . . , fp(s) be n-party probabilistic polynomial-time functionalities. Let ρ1, . . . , ρp(s)
be protocols that securely compute functionalities f1, . . . , fp(s) in the presence of covert adaptive adversaries
with deterrence ε1, . . . , εp(s), respectively. Let g be an n-party functionality. Let Π be a protocol that securely
computes g in the (f1, ε1), . . . , (fp(s), εp(s))-hybrid world (using a single call to each fi in such a way that
no more than one ideal evaluation of a functionality is made at each round) in the presence of covert adap-
tive adversaries with deterrence ε. Then Πρ1,...,ρp(s) securely computes g in the presence of covert adaptive
adversaries with deterrence ε.

3 Lossy Threshold Public Key Encryption Scheme

Nargis [Nar] designed a two-party lossy threshold PKE scheme based on the DCRA assumption secure
against erasure-free one-sided active adaptive adversaries. In this section, we describe a multiparty version
of the two-party lossy threshold PKE scheme of [Nar] secure againt erasure-free t-limited active adaptive
adversaries.

Let REQ be the relation denoting equality of discrete logarithm. Here, the common input is
(
x1, x2, y1, y2

)
,

and P knows a witness w ∈ Znλ such that x1 = (y1)
w

mod N2, and x2 = (y2)
w

mod N2. Let QRN2 denote
the group of squares modulo N2. For this relation it must hold that x1, y1, x2, y2 all are elements of the
group QRN2 , and y2 is a generator of QRN2 . Note that λ is unknown to all parties. Then, REQ is defined as

REQ =

{(
(x1, x2, y1, y2), w

)
: x1 ≡ (y1)

w
mod N2, x2 ≡ (y2)

w
mod N2

}
.

Key Generation. The key generation algorithm KG is presented below.

Algorithm KG.

– Inputs: Security parameter s, and mode ∈ {0, 1}. Here, mode = 1 denotes injective mode, and
mode = 0 denotes lossy mode.

Outputs:

– Public Outputs: The public key pk, the set of verification keys
{vk, vk1, vk2}, and a commitment key ck.

– Secret Output of Pi: Secret key share ski.

1. Select two s
2 bit primes p, q such that p = 2p′ + 1, q = 2q′ + 1, where p′, q′ are also primes, N = pq, and

gcd(N,φ(N)) = 1.

2. Set λ = 2p′q′. Select β
$← Z∗N .

3. Select sk1
$← ZNλ. Set sk2 ∈ ZNλ such that sk1 + sk2 = βλ mod Nλ.

4. Select (a, b)
$← Z∗N . Set g = (1 +N)a · bN mod N2. Set θ = aβλ mod N .

5. Select ck
$← Zp.

6. Select rq
$← Z∗N . Set Q = gmode · (rq)N mod N2.

7. Set pk = (N, g, θ,Q).

8. Choose a random square v from Z∗N2 . Set vk = v. For each i ∈ {1, 2}, set vki = (vk)
(ski).

9. For each i ∈ {1, 2}, send (pk, {vk, vk1, vk2}, ck, ski) to Pi as its output.

13

Encryption. The encryption algorithm E, on input public key pk = (N, g, θ,Q), plaintext m ∈ ZN , and
randomness r ∈ Z∗N , returns c = Qm · rN mod N2. Since N is the product of two s

2 -bit primes, N can be
represented using s bits. A ciphertext c ∈ Z∗N2 , so the size of a ciphertext is 2s bits.

Threshold Decryption Protocol. The threshold decryption protocol ΠDEC is the same as the thresh-
old decryption protocol of threshold Paillier PKE scheme of [LP01]. L is a function whose domain is the set
SN = {u < N : u mod N = 1}. The function L is defined as L(u) = u−1

N . Protocol ΠDEC is presented below.

Protocol ΠDEC .

1. Each party Pi sends dsi = cski mod N2.

2. Each party Pi proves that logc2
(

(dsi)
2
)

= logvk(vki), using a multiparty zero-knowledge proof for

relationREQ secure against erasure-free adaptive adversaries. If Pi fails, then each other party Pj , j 6= i
aborts.

3. Each party Pi computes

m =
L
(∏

i∈[n] ci

)
θ

.

The verification key vki of Pi was set to (vk)
ski in Algorithm KG. Each party Pi proves that it correctly

computed its decryption share by using a zero-knowledge proof for REQ that is secure against erasure-free
adaptive adversaries. Damg̊ard et al. [DJN10] designed a Σ-protocol for relation REQ. The zero-knowledge
proofs in ΠDEC are obtained by converting the non-erasure Σ-protocol for REQ using the conversion method
of Damg̊ard [Dam00]. The proof for REQ for the encryption scheme of [Nar] requires that all the common

inputs are elements of the group QRN2 . For this reason, the prover Pi has to prove that logc2
(

(dsi)
2
)

=

logvk (vki). If the computation of dsi is correctly performed, then this relation holds.

Private Threshold Decryption to One Party Pj. The private threshold decryption protocol ΠPDEC

is presented below.

Protocol ΠPDEC .

1. Each party Pi, i 6= j sends dsi = cski mod N2 to Pj .

2. Each party Pi, i 6= j proves to Pi that logc2
(

(dsi)
2
)

= logvk(vki), using a zero-knowledge proof for

relation REQ secure against erasure-free adaptive adversaries. If any Pi, i 6= j fails, then Pj aborts.
3. Pj computes dsj = c(skj) mod N2. Pj outputs

m =
L
(∏

i∈[n] ci

)
θ

.

Additive Homomorphic Properties and Blindability. Let c1 = Epk(m1, r1) and c2 = Epk(m2, r2) be
two ciphertexts. Homomorphic addition of c1 and c2 is done by computing c = c1 ·c2 mod N2. Homomorphic
multiplication of a ciphertext c1 by a plaintext m2 is done by computing c2 = (c1)

m2 mod N2. The Blind
algorithm, on input ciphertext c1 = Epk(m1, r1) works as follows:

It selects r
$← Z∗N , then returns c3 = c1 · (r)N mod N2.

4 New MPC Protocol Secure Against Covert Adaptive Adversaries

In this section we present the new MPC protocol secure against erasure-free covert adaptive adversaries. The
new MPC protocol is designed for the multiparty model with honest majority.

We design the new MPC protocol by modifying the MPC protocol of [NME13] in the following way. The
MPC protocol of [NME13] uses a lossy PKE scheme. The new MPC protocol uses a PKE scheme that is
a combination of a lossy PKE scheme and threshold PKE scheme that is secure against erasure-free active
adaptive adversaries. The new MPC protocol has the same asymptotic communication cost and number of

14

exponentiation operations as the MPC protocol of Nargis [NME13]. That means, the new MPC protocol
improves security from covert static security to covert adaptive adversary almost for free.

Let wk be a wire in C. Let Sk,i denote the share of Pi for the wire wk. Let rsk,i denote the randomness
of Pi for the wire wk. For each j ∈ [n] \ {i}, let ESk,i,j denote the encrypted share of Pj that Pi holds for
the wire wk.

We designed a protocol Circuit for computing functionality f in the presence of covert adaptive adver-
saries. The main stages of protocol Circuit are presented in Fig. 2. Each stage is presented in a separate
figure later. Unless otherwise specified, we describe the action of each party Pi, i ∈ [n], in the protocol.

Protocol Circuit.
Common Inputs:

1. An arithmetic circuit C describing f : Fn → Fn = {f1, . . . , fn},
2. A topological ordering (g1, . . . , gθ) of gates in C, and
3. An ordering (w1, . . . , wρ) of wires in C such that the input wires of each gate in C has smaller indices

than the index of its output wire.
Input of Pi : xi ∈ F.
Output of Pi : yi = fi(x1, . . . , xn) ∈ F.

In some steps of the protocol, each party is supposed to broadcast some message. If some party Pj does not
broadcast any message in one of these steps, then Pi aborts.
1. CRS Generation Stage.

Parties generate a common reference string.
2. Key Generation Stage.

Parties generate keys for the lossy threshold PKE scheme.
3. Input Sharing Stage.

Each party distributes additive shares of its input and the encryptions of these shares to other parties.
4. Computation Stage.

Parties evaluate the circuit gate-by-gate.
5. Output Generation Stage.

Parties evaluate their outputs.

Fig. 2: Protocol Circuit.

Protocol Circuit works in stages. Next we present the stages of Circuit and give an idea how it works

In the CRS generation stage (see Fig. 3), parties generate a common reference string σ. σ is used as the
common reference string in commitment and opening subprotocols used during the rest of the protocol.

Parties generate a common reference string σ of length p1(s) using the protocol CoinF lipPublic. Here p1(κ) is
a polynomial of κ.

Fig. 3: The CRS generation stage.

In the key generation stage (see Fig. 4), parties generate a key pair (PK,SK) for the threshold public-key
encryption scheme.

In the input sharing stage (see Fig. 5), each party distributes two sets of additive shares of its input and
their encryptions to other parties. One set is randomly selected for verification and the unopened shares are
used in the computation. 1 Then we say that the input wires w1, . . . , wn of C have been evaluated. By saying

1 This verification is only making sure that the encryptions of the shares are done correctly.

15

that a wire wk has been evaluated we mean that the share Sk,i, randomness rsk,i of each party Pi for wk
and the encrypted share ESk,i,j that each party Pi holds for each other party Pj for wk, have been fixed.2

1. Parties generate challenge.
Parties generate a challenge mkey ∈ {1, 2} using the protocol CommittedCoinF lipPublicσ in the CRS
model.

2. Parties broadcast injective public keys.
Pi generates two pairs of keys in injective mode, that is, Pi generates (Ui,j , Vi,j) = G(1κ, inj), for each
j ∈ {1, 2}.
Pi broadcasts the public keys Ui,1 and Ui,2.

3. Parties open the challenge.
Parties open the challenge mkey, using the protocol OpenComσ in the CRS model.

4. Parties respond to challenge.
Pi broadcasts the private key Vi,mkey .

5. Parties verify the responses.
For each j ∈ [n] \ {i}, Pi verifies that the key pair (Uj,mkey , Vj,mkey) is a valid injective pair of keys for the
lossy encryption scheme being used. If this is not the case, then Pi broadcasts corruptedj and aborts.

6. Parties fix their keys.
Pi performs the following steps.
(a) Pi sets (PKi, SKi) to (Ui,3−mkey , Vi,3−mkey),
(b) For each j ∈ [n] \ {i}, Pi sets PKj to Uj,3−mkey .

Fig. 4: The key generation stage.

In the computation stage (see Fig. 6), parties evaluate the circuit gate-by-gate, in the order (g1, . . . , gθ).
When the evaluation of gate gδ is finished, we say that the output wire wzδ of gδ has been evaluated. At
each point of computation the following holds for each wire wk of C that has been evaluated so far: each
party Pi holds an additive share Sk,i, an associated randomness rsk,i and an encrypted share ESk,i,j of each
other party Pj for the wire wk.

If gδ is an addition gate, each party Pi sets its share Szδ,i for the output wire of gδ to the sum of the
shares of Pi for the input wires of gδ. Each party Pi computes its randomness rszδ,i for the output wire of
gδ such that EPKi(Szδ,i , rszδ,i) equals the result of homomorphic addition of the ciphertexts (ESuδ,j,i and
ESvδ,j,i, j 6= i) that other parties hold for the input wires of gδ for Pi. Each party Pi computes the encrypted
share ESzδ,i,j of each other party Pj for the output wire of gδ locally, by performing homomorphic addition
of the encrypted shares of Pj that Pi holds for the input wires of gδ.

If gδ is a multiplication-by-constant gate, each party Pi sets its share Szδ,i for the output wire of gδ to
the product of the share of Pi for the input wire of gδ and qδ where qδ is the known constant multiplicand for
gate gδ. This constant qδ is part of the description of C and known to all parties. Each party Pi computes
its randomness rszδ,i for the output wire of gδ such that EPKi(Szδ,i , rszδ,i) equals the result of homomorphic
addition of the ciphertexts (ESuδ,j,i and ESvδ,j,i, j 6= i) that other parties hold for the input wires of gδ for
Pi. Each party Pi computes the encrypted share ESzδ,i,j of each other party Pj for the output wire of gδ
locally, by performing homomorphic multiplication by qδ to the encrypted share of Pj that Pi holds for the
input wire of gδ.

If gδ is a multiplication gate, then each party Pi first generates two sets of random shares and broadcasts
their encryptions. One set is randomly selected for verification and the unopened set will be used as the
set {Ci,j}j∈[n]\{i} during the evaluation of gδ. Each party Pi splits its shares Ai = Suδ,i and Bi = Svδ,i
(for the input wires of gδ) into two additive subshares (Ai,1 + Ai,2 = Ai and Bi,1 + Bi,2 = Bi), then
broadcasts the encryptions of these subshares. Each party Pi splits its random share Ci,j into four additive
subshares (Hi,j,1,1, Hi,j,1,2, Hi,j,2,1, and Hi,j,2,2) and broadcasts their encryptions, for each j ∈ [n] \ {i}.

2 ESk,i,j is supposed to be EPKj (Sk,j , rsk,j).

16

1. Parties generate challenge.
Parties generate a challenge min ∈ {1, 2} using the protocol CommittedCoinF lipPublicσ in the CRS model.

2. Parties broadcast encrypted shares.
Pi randomly selects two sets of shares {B1,i,j}j∈[n] and {B2,i,j}j∈[n] such that∑

j∈[n]

B1,i,j =
∑
j∈[n]

B2,i,j = xi.

Pi randomly selects two sets of strings {b1,i,j}j∈[n] and {b2,i,j}j∈[n].
For each ` ∈ {1, 2} and each j ∈ [n], Pi broadcasts

Y`,i,j = EPK(B`,i,j , b`,i,j).

3. Parties send share and randomness to the designated parties.
For each j ∈ [n] \ {i}, Pi sends {B1,i,j , B2,i,j , b1,i,j , b2,i,j} to Pj .

4. Parties open the challenge.
Parties open the challenge min using the protocol OpenComσ in the CRS model.

5. Parties respond to challenge.
Pi broadcasts the sets {Bmin,i,j}j∈[n]\{i} and {bmin,i,j}j∈[n]\{i}.

6. Parties verify the responses.
For each j ∈ [n] \ {i} and each k ∈ [n] \ {j}, Pi verifies that

Ymin,j,k = EPK(Bmin,j,k, bmin,j,k).

If any of the equalities does not hold, then Pi broadcasts corruptedj and aborts.
7. Parties fix their shares, randomness and encrypted shares of other parties. For each k ∈ [n], Pi

sets the followings for the input wire wk of C.
(a) Pi sets Sk,i to B3−min,k,i,
(b) Pi sets rsk,i to b3−min,k,i, and
(c) For each j ∈ [n] \ {i}, Pi sets ESk,i,j to Y3−min,k,j .

Fig. 5: The input sharing stage.

17

Each party Pi performs homomorphic multiplication by its own subshare Ai,k to the encryption Yi,` of its
own subshare Bi,`, then adds a random encryption of zero and broadcasts the resulting ciphertext Li,k,`,
for each k, ` ∈ {1, 2}2. Each party Pi performs homomorphic multiplication by its own subshare Ai,k to
the encryption Yj,` of the subshare Bj,` of each other party Pj , then adds a random ciphertext of Hi,j,k,`

and broadcasts the resulting ciphertext Ki,j,k,`, for each k, ` ∈ {1, 2}2. After receiving the results of these
calculations from other parties, each party Pi decrypts the ciphertexts {Kj,i,k,`}j∈[n]\{i},k,`∈{1,2}2 under its
own key PKi, sums the results of decryptions up, then subtracts its own randomness ({Ci,j}j∈[n]\{i}) to
get its share Szδ,i of the product. Each party Pi sets its randomness rszδ,i for the output wire of gδ to a
string such that encrypting Szδ,i under PKi using this string as randomness would result in the ciphertext
(ESzδ,j,i, j 6= i) that the other parties would hold as the encryption of the share of Pi for the output wire
of gδ. Each party Pi computes the encryption ESzδ,i,j of the share of each other party Pj for the output
wire of gδ, by performing the corresponding homomorphic additions to the corresponding ciphertexts as all
the ciphertexts (including the results after calculations) are available to all parties. Exactly half of all the
calculations (splitting into subshares, encryption of subshares, homomorphic multiplication by own subshares
to own encrypted subshares, and homomorphic multiplication by own subshares to other parties’ encrypted
subshares) are randomly selected for verification, ensuring that a party attempting to cheat gets caught with
probability at least 1

2 . It is also verified that the homomorphic encryptions of the additive subshares (e.g. the
encryptions Xi,1 and Xi,2 of subshares Ai,1 and Ai,2) and an encryption of zero (e.g. EPKi(0, ai,0)) results
in the encryption of the original share (e.g. EAj,i = ESuδ,j,i, j 6= i, the encryption of Ai that Pj holds, that
is, the encryption of the share of Pi that Pj holds for the input wire uδ of gδ) – the splitting party Pi has
to broadcast the string to be used as randomness to encrypt zero (e.g. ai,0) to prove this equality. A party
attempting to cheat gets caught with probability 1 in this case.

In the output generation stage (see Fig. 7), each party Pi sends its share Sγ+k,i and randomness rsγ+k,i for
the output wire wγ+k to each other party Pk. The receiving party Pk holds the encryption ESγ+k,k,i of each
other party Pi for its output wire wγ+k,i. The receiving party Pk checks the consistency of the received input
and randomness with the corresponding ciphertexts (Pk checks whether ESγ+k,k,i = EPKi(Sγ+k,i, rsγ+k,i)
or not).

5 Correctness of protocol Circuit

We can prove correctness of the protocol Circuit by induction on the wires of the circuit C. The induction
claim is that the shares of each wire sum up to the correct value of the wire.

We prove the base case on the input wires of C. If all parties send correct encryption of their shares in
the input sharing stage, then the following holds for each k ∈ [n]:
The value xk of the input wire wk is shared as (Sk,1, . . . , Sk,n) where Sk,1, . . . , Sk,n ∈ F, party Pj holds the
share Sk,j and ∑

j∈[n]

Sk,j = xk.

Let δ ∈ [θ]. For the induction case, we consider the computation of the gate gδ. Let Huδ and Hvδ denote
the correct value of wires wuδ and wvδ , respectively. Then,∑

i∈[n]

Suδ,i = Huδ

and ∑
i∈[n]

Svδ,i = Hvδ .

Next we describe the situation depending on the type of gate gδ.

Case 1: gδ is an addition gate.
In this case, each party Pi, i ∈ [n], sets

Szδ,i = Suδ,i + Svδ,i.

18

For each δ ∈ [θ], parties perform the following actions, depending on the type of gate gδ.
Case 1: gδ is an addition gate.

1. Pi sets
Szδ,i = Suδ,i + Svδ,i.

2. Pi computes rszδ,i such that the following equality holds.

EPK(Szδ,i, rszδ,i) = EPK(Suδ,i, rauδ,i) +h EPK(Svδ,i, ravδ,i).

3. For each j ∈ [n] \ {i}, Pi sets
ESzδ,i,j = ESuδ,i,j +h ESvδ,i,j .

Case 2: gδ is a multiplication-by-constant gate.
Let qδ ∈ F be the constant with which the multiplication will be done.
1. Pi sets

Szδ,i = qδ · Suδ,i.
2. Pi computes rszδ,i such that the following equality holds.

EPK(Szδ,i, rszδ,i) = qδ ×h EPK(Suδ,i, rsuδ,i).

3. For each j ∈ [n] \ {i}, Pi sets
ESzδ,i,j = qδ ×h ESuδ,i,j .

Case 3: gδ is a multiplication gate.
For each i ∈ [n], let A

(δ)
i , B

(δ)
i , ra

(δ)
i and rb

(δ)
i denote Suδ,i, Svδ,i, rsuδ,i, and rsvδ,i, respectively. For each

i ∈ [n] and each j ∈ [n] \ {i}, let EA
(δ)
i,j and EB

(δ)
i,j denote ESuδ,i,j and ESvδ,i,j , respectively.

1. Parties generate random shares.
(a) Parties generate challenge.

Parties generate challenge mr ∈ {1, 2} using the protocol CommittedCoinF lipPublicσ in the CRS
model.

(b) Parties generate random shares.
Pi randomly selects two sets of shares {Q1,i,j}j∈[n]\{i} and {Q2,i,j}j∈[n]\{i} and two sets of strings
{rq1,i,j}j∈[n]\{i} and {rq2,i,j}j∈[n]\{i}.

(c) Parties broadcast encrypted shares.
For each ` ∈ {1, 2} and each j ∈ [n] \ {i}, Pi broadcasts

Y`,i,j = EPK(Q`,i,j , rq`,i,j).

(d) Parties open the challenge.
Parties open the challenge mr using the protocol OpenComσ in the CRS model.

(e) Parties respond to challenge.
Pi broadcasts Qmr,i,j and rqmr,i,j for each j ∈ [n] \ {i}.

Fig. 6: The computation stage.

19

For each δ ∈ [θ], parties perform the following actions, depending on the type of gate gδ.
Case 3: gδ is a multiplication gate.

1. Parties generate random shares.
(f) Parties verify the responses.

For each j ∈ [n] \ {i} and each k ∈ [n] \ {j}, Pi verifies that

Ymr,j,k = EPK(Qmr,j,k, rqmr,j,k).

If any of these equalities does not hold for party Pj , then Pi broadcasts corruptedj and aborts.
(g) Parties fix their randomness.

Pi performs the following steps.
i. For each j ∈ [n] \ {i}, Pi sets C

(δ)
i,j to Q3−mr,i,j and rc

(δ)
i,j to rq3−mr,i,j .

ii. For each j ∈ [n] \ {i} and each k ∈ [n] \ {j}, Pi sets EC
(δ)
i,j,k to Y3−mr,j,k.

2. Parties generate challenge.
Parties generate a challenge m(δ) ∈ {1, 2} using the protocol CommittedCoinF lipPublicσ in the CRS
model.

3. Parties split their shares into subshares.
(a) Pi chooses A

(δ)
i,1 and B

(δ)
i,1 uniformly at random from F.

(b) Pi sets

A
(δ)
i,2 = A

(δ)
i −A

(δ)
i,1 , and

B
(δ)
i,2 = B

(δ)
i −B

(δ)
i,1 .

(c) Pi generates four random strings a
(δ)
i,1 , a

(δ)
i,2 , b

(δ)
i,1 and b

(δ)
i,2 .

(d) For each j ∈ {1, 2}, Pi broadcasts

X
(δ)
i,j = EPK

(
A

(δ)
i,j , a

(δ)
i,j

)
, and

Y
(δ)
i,j = EPK

(
B

(δ)
i,j , b

(δ)
i,j

)
.

(e) For each j ∈ [n] \ {i}, and each k, ` ∈ {1, 2}2, Pi chooses H
(δ)
i,j,k,` uniformly at random from F such

that ∑
k,`∈{1,2}2

H
(δ)
i,j,k,` = C

(δ)
i,j .

(f) For each j ∈ [n] \ {i}, and each k, ` ∈ {1, 2}2, Pi chooses a random string h
(δ)
i,j,k,` and broadcasts

G
(δ)
i,j,k,` = EPK

(
H

(δ)
i,j,k,`, h

(δ)
i,j,k,`

)
.

Fig. 6: The computation stage (continued from previous page).

20

Case 3: gδ is a multiplication gate.
4. Parties prove their sums.

(a) Pi computes two strings aa
(δ)
i,0 and bb

(δ)
i,0 such that

EPK
(

0, aa
(δ)
i,0

)
= EPK

(
A

(δ)
i , ra

(δ)
i

)
−h X(δ)

i,1 −h X
(δ)
i,2 , and

EPK
(

0, bb
(δ)
i,0

)
= EPK

(
B

(δ)
i , rb

(δ)
i

)
−h Y (δ)

i,1 −h Y
(δ)
i,2 .

(b) Pi broadcasts aa
(δ)
i,0 and bb

(δ)
i,0 .

(c) For each j ∈ [n] \ {i}, Pi performs the following two actions.

i. Pi computes a string cc
(δ)
i,j,0 such that

EPK
(

0, cc
(δ)
i,j,0

)
= EPK

(
C

(δ)
i,j , rc

(δ)
i,j

)
−h G(δ)

i,j,1,1 −h G
(δ)
i,j,1,2 −h G

(δ)
i,j,2,1 −h G

(δ)
i,j,2,2.

ii. Pi broadcasts cc
(δ)
i,j,0.

5. Parties send output parts that depend only on their own subshares.
For each k, ` ∈ {1, 2}2, Pi selects a random string vv

(δ)
i,k,`, then broadcasts

L
(δ)
i,k,` = A

(δ)
i,k ×h Y

(δ)
i,` +h EPK

(
0, vv

(δ)
i,k,`

)
.

6. Parties perform computations on other parties’ encrypted subshares.
For each k, ` ∈ {1, 2}2 and each j ∈ [n] \ {i}, Pi selects a random string hh

(δ)
i,j,k,`, performs the following

computation on the encrypted inputs of Pj , then broadcasts

K
(δ)
i,j,k,` = A

(δ)
i,k ×h Y

(δ)
j,` +h EPK

(
H

(δ)
i,j,k,`, hh

(δ)
i,j,k,`

)
.

7. Parties open the challenge.
Parties open the challenge m(δ) using the protocol OpenComσ in the CRS model.

8. Parties respond to challenge.
(a) Pi broadcasts A

(δ)

i,m(δ) , B
(δ)

i,m(δ) , a
(δ)

i,m(δ) , b
(δ)

i,m(δ) , vv
(δ)

i,m(δ),1
and vv

(δ)

i,m(δ),2
.

(b) For each j ∈ [n] \ {i}, and each ` ∈ {1, 2}, Pi broadcasts H
(δ)

i,j,m(δ),`
, h

(δ)

i,j,m(δ),`
and hh

(δ)

i,j,m(δ),`
.

9. Parties verify the responses.
Pi verifies the following for each party Pj , j ∈ [n] \ {i}:
(a) Pj’s encryption sums.

i.
EPK

(
0, aa

(δ)
j,0

)
= EA

(δ)
i,j −h X

(δ)
j,1 −h X

(δ)
j,2 .

ii.
EPK

(
0, bb

(δ)
j,0

)
= EB

(δ)
i,j −h Y

(δ)
j,1 −h Y

(δ)
j,2 .

iii. For each k ∈ [n] \ {j},

EPK
(

0, cc
(δ)
j,k,0

)
= EC

(δ)
i,j,k −h G

(δ)
j,k,1,1 −h G

(δ)
j,k,1,2 −h G

(δ)
j,k,2,1 −h G

(δ)
j,k,2,2.

Fig. 6: The computation stage (continued from previous page).

21

Case 3: gδ is a multiplication gate.
9. Parties verify the responses.

Pi verifies the following for each party Pj , j ∈ [n] \ {i}:
(b) Pj knows its encrypted data.

i.
X

(δ)

j,m(δ) = EPK
(
A

(δ)

j,m(δ) , a
(δ)

j,m(δ)

)
.

ii.
Y

(δ)

j,m(δ) = EPK
(
B

(δ)

j,m(δ) , b
(δ)

j,m(δ)

)
.

iii. For each k ∈ [n] \ {j} and each ` ∈ {1, 2},

G
(δ)

j,k,m(δ),`
= EPK

(
H

(δ)

j,k,m(δ),`
, h

(δ)

j,k,m(δ),`

)
.

(c) The computations performed by Pj on its own subshares are correct.
For each ` ∈ {1, 2},

L
(δ)

j,m(δ),`
= A

(δ)

j,m(δ) ×h Y
(δ)
j,` +h EPK

(
0, vv

(δ)

j,m(δ),`

)
.

(d) The computations performed by Pj on other parties’ subshares are correct.
For each k ∈ [n] \ {j}, and for each ` ∈ {1, 2},

K
(δ)

j,k,m(δ),`
= A

(δ)

j,m(δ) ×h Y
(δ)
k,` +h EPK

(
H

(δ)

j,k,m(δ),`
, hh

(δ)

j,k,m(δ),`

)
.

If Pj fails in any of the verifications, then Pi broadcasts corruptedj and aborts.
10. Parties compute encryption of the shares of other parties.

For each j ∈ [n] \ {i}, Pi computes the encrypted share ESzδ,i,j of Pj as follows.

ESzδ,i,j =
∑
k,`

L
(δ)
j,k,` +h

∑
k∈[n]\{j}

∑
`1,`2∈{1,2}2

K
(δ)
k,j,`1,`2

−h
∑

k∈[n]\{j}

EC
(δ)
i,j,k.

Fig. 6: The computation stage (continued from previous page).

22

Case 3: gδ is a multiplication gate.
11. Parties decrypt shares to the corresponding parties.

For each j ∈ [n], parties perform the following steps.
(a) For each i ∈ [n] \ {j}, the following actions take place.

i. Pi sends decryptions share to Pj.
Pi sends

ci,j = (ESzδ,i,j)
si mod N2

to Pj .
ii. Pi proves validity of decryptions share.

Pi proves to Pj through a Σ-protocol that the discrete log of (ci,j)
2 in base (ESzδ,i,j)

2 is equal
to the discrete log of vi in base v.

iii. Parties reconstruct secret shares of misbehaving parties.
If Pi fails in the above proof, then the following actions take place.

A. Pj broadcasts corruptedi.
B. Each party Pk, k ∈ [n] \ {i, j}, broadcasts fk(i) and rk,i.
C. Pj sets Goodj = ∅.
D. For each k ∈ [n] \ {i}, Pj performs the following steps. Pj checks whether

wk,i = Commitki (fk(i), rk,i)

or not. If this equality holds, then Pj sets

Goodj = Goodj ∪ {Pk}.

E. Pj computes ∆si by interpolating {fk(i)}Pk∈Goodj and then computes si.

F. Pj computes
ci,j = (ESzδ,i,j)

si mod N2.

(b) Pj computes its share.
Pj computes

Szδ,j =
L
(∏

i∈[n] ci,j
)

θ
.

12. Parties compute their randomness.
Pi computes its randomness rszδ,i such that the following equality holds.

EPK (Szδ,i, rszδ,i)

=
∑
k,`

L
(δ)
i,k,` +h

∑
k∈[n]\{i}

∑
`1,`2∈{1,2}2

K
(δ)
k,i,`1,`2

−h
∑

k∈[n]\{i}

EPK
(
C

(δ)
i,k , rc

(δ)
i,k

)
.

Fig. 6: The computation stage (continued from previous page).

23

Note that the wire wγ+k is supposed to carry the output yk of party Pk.
1. For each k ∈ [n], the parties perform the following steps.

(a) Parties send their shares and randomness for the wire wγ+k to Pk.
Pi, i ∈ [n] \ {k}, sends Sγ+k,i and rsγ+k,i to Pk.
If some Pj does not send these to Pk in this step, then Pk aborts.

(b) Pk verifies the responses.
For each i ∈ [n] \ {k}, Pk compares EPK(Sγ+k,i, rsγ+k,i) with the ciphertext ESγ+k,k,i that Pk holds as
the encryption of the share of Pi for the wire wγ+k.
If the ciphertexts do not match, then Pk broadcasts corruptedi and aborts.

(c) Pk computes its output.
Pk computes

Lk =
∑
i∈[n]

Sγ+k,i.

(d) If Pk broadcasts corruptedj for some j during step 1(b) of this stage, then Pi, i ∈ [n] \ {k}, aborts.
2. Pi, i ∈ [n], outputs Li.

Fig. 7: The output generation stage.
The value of the output wire wzδ is

Hzδ =
∑
i∈[n]

Szδ,i

=
∑
i∈[n]

(Suδ,i + Svδ,i)

=
∑
i∈[n]

Suδ,i +
∑
i∈[n]

Svδ,i

= Huδ +Hvδ ,

as required.

Case 2: gδ is a multiplication-by-constant gate.
In this case, each party Pi, i ∈ [n], sets

Szδ,i = qδ · Suδ,i.

The value of the output wire wzδ is

Hzδ =
∑
i∈[n]

Szδ,i

=
∑
i∈[n]

qδ · Suδ,i

= qδ ·
∑
i∈[n]

Suδ,i

= qδ ·Huδ ,

as required.

24

Case 3: gδ is a multiplication gate.
At step 4(j), Pi computes the following for each j ∈ [n] \ {i}.

Wj,i = DSKi (Vj,i)

= DSKi

 ∑
k,`∈{1,2}2

Kj,i,k,`


= DSKi

 ∑
k,`∈{1,2}2

Aj,k ×h Yi,` +h EPKi(Hj,i,k,`, uj,i,k,`)


= DSKi

 ∑
k,`∈{1,2}2

Aj,k ×h EPKi(Bi,`, ri,`) +h EPKi(Hj,i,k,`, uj,i,k,`)


= DSKi

 ∑
k,`∈{1,2}2

EPKi((Aj,k ·Bi,`), r1j,i,k,`)) +h EPKi(Hj,i,k,`, uj,i,k,`)


[by the homomorphic property of the encryption scheme]

= DSKi

 ∑
k,`∈{1,2}2

EPKi((Aj,k ·Bi,` +Hj,i,k,`), r2j,i,k,`)


[by the homomorphic property of the encryption scheme]

= DSKi

EPKi
 ∑

k,`∈{1,2}2
(Aj,k ·Bi,` +Hj,i,k,`)

 , r3j,i


[by the homomorphic property of the encryption scheme]

=
∑

k,`∈{1,2}2
(Aj,k ·Bi,` +Hj,i,k,`)

[by the correctness of the encryption scheme]

=
∑

k,`∈{1,2}2
Aj,k ·Bi,` +

∑
k,`∈{1,2}2

Hj,i,k,`

= AjBi + Cj,i.

Then, Pi computes its share

Szδ,i = AiBi +
∑

j∈[n]\{i}

Wj,i −
∑

j∈[n]\{i}

Ci,j

= AiBi +
∑

j∈[n]\{i}

(AjBi + Cj,i)−
∑

j∈[n]\{i}

Ci,j

=

∑
j∈[n]

Aj

 ·Bi +
∑

j∈[n]\{i}

Cj,i −
∑

j∈[n]\{i}

Ci,j

=

∑
j∈[n]

Suδ,i

 ·Bi +
∑

j∈[n]\{i}

Cj,i −
∑

j∈[n]\{i}

Ci,j

= Huδ ·Bi +
∑

j∈[n]\{i}

Cj,i −
∑

j∈[n]\{i}

Ci,j

25

Then it follows that

Hzδ =
∑
i∈[n]

Szδ,i

=
∑
i∈[n]

HuδBi +
∑

j∈[n]\{i}

Cj,i −
∑

j∈[n]\{i}

Ci,j


= Huδ ·

∑
i∈[n]

Bi +
∑
i∈[n]

∑
j∈[n]\{i}

Cj,i −
∑
i∈[n]

∑
j∈[n]\{i}

Ci,j

= Huδ

∑
j∈[n]

Svδ,i

+
∑
i∈[n]

∑
j∈[n]

Cj,i −
∑
i∈[n]

Ci,i −
∑
i∈[n]

∑
j∈[n]

Ci,j +
∑
i∈[n]

Ci,i

= HuδHvδ +
∑
i∈[n]

∑
j∈[n]

Ci,j −
∑
i∈[n]

∑
j∈[n]

Ci,j

= HuδHvδ ,

as required.

In this way, we prove that the shares of each wire sum up to the correct value of the wire up to all wires
including the output wires wγ+1, . . . , wγ+n.

In the output generation stage, for each k ∈ [n], the following holds:
if all parties send their correct shares and randomness for the output wire wγ+k to Pk, then Pk can compute
its output Lk correctly.

This completes the correctness proof of protocol Circuit.

6 Security of protocol Circuit

In [?] it is proved that a protocol that securely computes some functionality f1 with abort in the presence
of active adversaries, securely computes f1 in the presence of covert adversaries with ε-deterrent for every
ε such that 0 ≤ ε ≤ 1. Then we can consider the secure protocols for the active adversary models for
functionality fCF , fCC and fOC to be secure protocols with deterrent 1 for the corresponding functionalities
in the presence of a covert adversary.

We will prove the security of protocol Circuit in the ((fCF , 1) , (fCC , 1) , (fOC , 1))-hybrid world.

We have the following Theorem on the security of protocol Circuit.

Theorem 2. Assuming the existence of lossy additive homomorphic public key encryption schemes with
efficient Opener algorithm and secure coin tossing protocols in the presence of a malicious adversary, protocol
Circuit securely computes functionality f with deterrent 1

2 in the
((fCF , 1) , (fCC , 1) , (fOC , 1))-hybrid world in the presence of a static covert adversary that can corrupt up to
(n− 1) parties.

Let M denote the number of multiplication gates in the arithmetic circuit representing f . Protocol Circuit
runs in O(M log n) rounds and needs O(Mn2s) communication among the parties where s is the security
parameter.

LetAh be a static covert adversary that interacts with parties running protocol Circuit in the ((fCF , 1) , (fCC , 1) , (fOC , 1))-
hybrid world. We will construct an ideal-world adversary or simulator S that runs in time polynomial of the
running time of Ah and such that the following holds for each I ⊂ [n]:{

IDEALεf,S(z),I(x, s)
}
x,z∈({0,1}∗)n+1;s∈N

C≡
{
HY BRID

(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,Ah(z),I (x, s)

}
x,z∈({0,1}∗)n+1;s∈N

(1)

26

where x is a balanced vector.

Here we describe the main intuition behind the security of protocol Circuit.

In the key generation stage, for each honest party, the simulator generates one lossy pair and one injective
pair and rewinds until the injective pair is opened for verification. By the “key indistinguishability” property
of the lossy encryption scheme, public keys of a lossy pair and public key of an injective pair are compu-
tationally indistinguishable. By the “key detection” property of the lossy encryption scheme, a corrupted
party attempting to cheat by using lossy keys gets caught with probability at least 1

2 .

In the input sharing stage, the simulator uses zero as the inputs of the honest parties. By the semantic
security of the lossy encryption scheme, the ciphertexts are indistinguishable in the hybrid world and the
ideal world.

During the computation of a multiplication gate, exactly half of the subshares are opened for verification
– the distribution of half of the subshares are identical in two worlds. Since exactly half of the calculations are
checked for verification, a party attempting cheat in any calculation during the multiplication gets caught
with probability at least 1

2 . In each stage of protocol Circuit, the simulator checks the responses of the
adversary for both values of the challenge, by rewinding the challenge generation step. If the adversary
cheats for both values of the challenge, then the simulator simulates catching the cheating party. If the
adversary cheats for exactly one value of the challenge and that value is selected for verification, then the
simulator simulates catching the cheating party. If the adversary cheats for exactly one value of the challenge
and that value is not selected for verification, then the simulation continues to the next stage. If the adversary
does not cheat for both values of the challenge, then simulator proceeds to the next stage. In case of input
sharing stage where the adversary does not cheat for both values of the challenge, the simulator extracts the
replaced input of the corrupted parties from the responses of the adversary.

At the output generation stage, the simulator sends the inputs of the corrupted parties to the trusted
party and receives the actual outputs of the corrupted parties. Then the simulator selects a set of shares
for the honest parties satisfying these outputs and the shares of the corrupted parties for the output wires
carrying outputs of the corrupted parties. For each such wire and each honest party, the simulator uses the
(polynomial time) Opener algorithm to compute fake randomness such that encrypting the share of that
honest party for that wire using the fake randomness results to the ciphertext held by the adversary for that
party for that wire. In any stage of protocol, a party attempting cheat gets caught with probability at least
1
2 .

6.1 A simulator for protocol Circuit.

The simulator S gets the following as its inputs.

1. The set I of corrupted parties,
2. the auxiliary input z,
3. the set of inputs {xi}i∈I of the corrupted parties, and
4. the set of outputs {yi}i∈I of the corrupted parties.

S invokes Ah on input {
s, I, {xi}i∈I , {yi}i∈I , z

}
.

If the input xi of Pi is aborti, then S sends aborti to the trusted party and halts.

If the input xi of Pi is corruptedi, then S sends corruptedi to the trusted party and halts.

If the input xi of Pi is cheati, then S sends cheati to the trusted party. If the trusted party replies
with corruptedi to S and all the honest parties, then S halts. Observe that the trusted party replies with
corruptedi with probability ε = 1

2 according to the definition. If the trusted party replies with undetected
and the set {xi}i∈[n]:Pi is honest of inputs of the honest parties for f to S, then S sends undetected and the
set {xi}i∈[n]:Pi is honest to Ah. According to the definition, the trusted party replies with corruptedi and

27

the inputs of the honest parties with probability 1 − ε = 1
2 . Then S receives a vector {y′i}i∈[n]:Pi is honest of

outputs for the honest parties of the adversary’s choice from Ah. S sends this vector {y′i}i∈[n]:Pi is honest to
the trusted party and halts.

If no input xi is aborti, corruptedi or cheati, then S proceeds as follows. In some steps, S is supposed to
get some message for each corrupted party Pi, from Ah. In those steps, if S does not receive any message
from Ah on behalf of a corrupted party Pi, then S sends aborti to the trusted party and halts.

We design the simulator S in such a way that the view of any party except a single party in the simulation
is guaranteed to be computationally indistinguishable to its view in the real world. The identity of the single
inconsistent party is generated uniformly at random at the start of the simulation. We call this step the SIP
(single inconsistent party) Fixation step.

SIP Fixation step: The simulator S generates s, the identity of the SIP, uniformly at random from [n].
During the simulation, if the adversary generates a request to corrupt Ps, then S rewinds to this step and
generates a new random index s′ uniformly at random from [n] and proceeds again. Since the adversary is
t-limited where t < (n− 1)/2, it holds that the probability of a randomly selected party Ps being corrupted
is at most 1

2 . So the expected number of rewinds of the simulator is at most two and the simulation can be
performed in expected polynomial time. To bound the running time of the simulator S to strictly polynomial
time, we can continue running upto κ`1 steps where `1 is a predetermined constant. If S does not halt within
κ`1 steps, then S fails. The probability of faliure of S is negligible.

In the simulation, after each step we describe a special step denoted as the modification upon corruption
– this step describes how the simulator modifies some of its already calculated values if an honest party
gets corrupted after completing the corresponding step. We separately describe with this tagging to clarify
the description of the simulation. In most cases, the modification steps performed at an earlier step is also
performed as part of the modification steps in a later step. For easier referencing, we tag the modification
steps after each step.

Simulating the CRS generation stage

1. For each corrupted party Pi, iS receives the input uci of Pi for this stage from Ah. If uci = aborti, then
S sends aborti to the trusted party and halts.

2. S generates a string σκ of length p1(κ) along with its trapdoor so that S can control the outcome of the
commitment protocol CommittedCoinF lipσ in later stages of protocol Circuit.

3. For each corrupted party Pi,S sends σκ as the output of Pi for this stage to Ah.

Simulating the key generation stage

1. S generates a key pair

(PKp, SKp) = ((g1, N), λ)← KeyGenPaillier(1κ)

where KeyGenPaillier denotes the key generation algorithm of (non-threshold) Paillier encryption
scheme.

2. S selects rq
$← Z∗N .

3. S sets b = 0 (for lossy mode, b = 0).
4. S computes

Q = gb1r
N
q mod N2

= g01r
N
q mod N2

= rNq mod N2.

5. S invokes the simulator SKG of key generation of lossy threshold Paillier encryption scheme on input
(g1, N,Q, s), with one minor modification in the code of SKG. The modification is that SKG also returns
the trapdoor ctj of the commitment key ckj of each party Pj , to S.

28

6. S receives(
(g,N, θ,Q), {sj}j∈[n], v, {vi}i∈[n], {cki}i∈[n], {cti}i∈[n], {fi(j)}i,j∈[n], {wi,j}i,j∈[n], {ri,j}i,j∈[n]

)
from SKG.

7. For each corrupted party Pj ,S sends

keyj =
(
(g,N, θ,Q), sj , v, {vi}i∈[n], {cki}i∈[n], {fi(j)}i∈[n], {wi,`}i,`∈[n], {ri,j}i∈[n]

)
as the output of Pj for this stage, to A.

8. S computes the secret key,

SK = βλ =
∑
j∈[n]

sj .

9. S sets PK to (g,N, θ,Q).

Simulating the input sharing stage

1. Simulating the challenge generation step of input sharing stage.
(a) If the input of a party Pi is aborti for this step, then S sends aborti to the trusted party and halts.
(b) S runs the simulator SCommittedCoinFlipPublicσ for the CommittedCoinF lipPublicσ protocol, using

σκ as the common input and 0 as the input of each honest parties.
If a party Pi aborts during the execution of CommittedCoinF lipPublicσ, then S sends aborti to
the trusted party and halts. If SCommittedCoinFlipPublicσ catches a cheating party Pi, then S sends
corruptedi to the trusted party and halts.
If no party aborts or gets caught, then S extracts the committed values of the corrupted parties from
SCommittedCoinFlipPublicσ .

2. Simulating the share broadcasting step.
(a) For each honest party Pi,S performs the following steps.

i. S randomly selects two sets {B1,i,j}j∈[n] and {B2,i,j}j∈[n]satisfying∑
j∈[n]

B1,i,j =
∑
j∈[n]

B2,i,j = 0.

ii. S randomly selects two sets of strings {b1,i,j}j∈[n] and {b2,i,j}j∈[n].
iii. For each ` ∈ {1, 2} and each j ∈ [n],S sends

Y`,i,j = EPK (B`,i,j , b`,i,j)

to Ah.
Modification upon corruption: If Pi gets corrupted after this step, then S performs the
following steps.
A. S corrupts Pi in the ideal world and receives its input xi from Z.
B. S computes

B1,i,i = xi −
∑

j∈[n]\{i}

B1,i,j ,

and
B2,i,i = xi −

∑
j∈[n]\{i}

B2,i,j .

C. S computes
b1,i,i = Opener(PK,SK,B1,i,i, Y1,i,i)

and
b2,i,i = Opener(PK,SK,B2,i,i, Y2,i,i).

(b) For each corrupted party Pi, each ` ∈ {1, 2} and each j ∈ [n],S receives Y`,i,j from Ah.
3. Simulating the share sending step.

29

(a) For each honest party Pi and each corrupted party Pj ,S sends the set {B1,i,j , B2,i,j , b1,i,j , b2,i,j} to
Ah.

(b) For each corrupted party Pi and each honest party Pj ,S receives the set
{B1,i,j , B2,i,j , b1,i,j , b2,i,j} from Ah.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S performs
the same steps listed as the modifications upon corruption at step 2(a)(iii).

4. Simulating the challenge opening step of input sharing stage.
S runs the simulator SOpenComσ of OpenComσ, opening the commitments of the honest parties to zero.
If a party Pi aborts during the execution of OpenComσ, then S sends aborti to the trusted party and
halts. If SOpenComσ catches a cheating party Pi, then S sends corruptedi to the trusted party and halts.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S performs
the same steps listed as the modifications upon corruption at step 2(a)(iii).

5. Simulating the challenge response step of input sharing stage.

(a) For each honest party Pi,S sends the sets {Bmin,i,j}j∈[n]\{i} and {bmin,i,j}j∈[n]\{i} to Ah.

(b) For each corrupted party Pi, S receives the sets {Bmin,i,j}j∈[n]\{i} and {bmin,i,j}j∈[n]\{i} from Ah.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S performs
the same steps listed as the modifications upon corruption at step 2(a)(iii).

6. Simulating the verification step of input sharing stage.
S verifies the responses of the corrupted parties.
Then S rewinds back to step 1 and instructs the simulator SCommittedCoinFlipPublicσ so that the challenge
takes on the value (3−min)(which is the other possible value of the challenge). For this new challenge,
S performs steps 2− 5 and verifies the responses of the corrupted parties.
S then performs the following actions depending on the responses, as described below.

Case 1: No violation occurs during any of the simulations.
For each corrupted party Pi,S performs the following steps.

(a) S computes

B1,i,i = DSK(Y1,i,i) = Dβλ(Y1,i,i) =
L
(

(Y1,i,i)
βλ
)

θ
mod N

and

B2,i,i = DSK(Y2,i,i) = Dβλ(Y2,i,i) =
L
(

(Y2,i,i)
βλ
)

θ
mod N.

(b) S computes

x′i =
∑
j∈[n]

B3−min,i,j .

Case 2: There is some violation in exactly one simulation.
Let Pi be some party for which Ah provided invalid response in the simulation corresponding to the
challenge mci where mci ∈ {1, 2}.
If mci = min, then S sends corruptedi to the trusted party and halts.
If mci 6= min, then S first computes x′ as in case 1, then proceeds to the next step (step 7).

Case 3: There is some violation in both of the simulations.
Let Pi be some party for which Ah provided invalid responses. Then S sends corruptedi to the
trusted party and halts.

7. Simulating the share fixation step of input sharing stage.
For each k ∈ [n] and each i ∈ [n],S performs the following steps.

(a) S sets Sk,i to B3−min,k,i.
(b) S sets rsk,i to b3−min,k,i.
(c) For each j ∈ [n] \ {i},S sets ESk,i,j to Y3−min,k,i.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 2(a)(iii), then sets Si,i and rsi,i to the
modified value of B3−min,i,i and b3−min,i,i, resepectively.

30

Simulating the computation stage.

Before describing the simulation of this stage, we first describe the following sub-routine called patching.
In the computation stgae, parties evaluate the gates in the order (g1, . . . , gθ). If an honest party Pi gets
corrupted at any step during the evaluation of gate gδ, then S first performs the modification upon corruption
steps listed in step 7 of the input sharing stage. Then, S have to patch the gates evaluated so far to the
actual input of Pi. For convenience of description, we list the actions performed by S for patching the states
for already evaluated gates (g1, . . . , gδ−1) in this subroutine.

Patching:

For each µ ∈ {1, . . . , δ − 1},S performs the following steps.

Case 1: gµ is an addition gate.

1. S sets
Szµ,i = Suµ,i + Svµ,i.

2. S sets
rszµ,i = Opener(PK,SK, Szµ,i, ESzµ,`,i)

where ` ∈ [n] \ {i}.
Case 2: gµ is a multiplication-by-constant gate.

1. S sets
Szµ,i = qµ × Suµ,i.

2. S sets
rszµ,i = Opener(PK,SK, Szµ,i, ESzµ,`,i)

where ` ∈ [n] \ {i}.
Case 3: gµ is a multiplication gate.

1. S sets
A

(µ)

i,3−m(µ) = Suµ,i −A
(µ)

i,m(µ) ,

a
(µ)

i,3−m(µ) = Opener
(
PK,SK,A

(µ)

i,3−m(µ) , X
(µ)

i,3−m(µ)

)
,

B
(µ)

i,3−m(µ) = Svµ,i −B
(µ)

i,m(µ) ,

b
(µ)

i,3−m(µ) = Opener
(
PK,SK,B

(µ)

i,3−m(µ) , Y
(µ)

i,3−m(µ)

)
.

2. For each ` ∈ {1, 2},S sets

vv
(µ)

i,3−m(µ),`
= Opener

(
PK,SK, 0,

(
L
(µ)

i,3−m(µ),`
−h A(µ)

i,3−m(µ) ×h Y
(µ)
i,`

))
.

3. For each j ∈ [n] \ {i} and each ` ∈ {1, 2},S sets

hh
(µ)

i,j,3−m(µ),`
= Opener

(
PK,SK,H

(µ)

i,j,3−m(µ),`
,
(
K

(µ)

i,j,3−m(µ),`
−h A(µ)

i,3−m(µ) ×h Y
(µ)
j,`

))
.

4. S computes

valµ =

∑
j∈[n]

Suµ,j

 ·
∑
j∈[n]

Svµ,j

 .

5. S computes

Szµ,i = valµ −
∑

j∈[n]\{i}

Szµ,j .

31

6. S computes

rszµ,i = Opener
(
PK,SK, Szµ,j , ESzµ,`,i

)
where ` ∈ [n] \ {i}.

Now we describe the action of S for simulating the corruption stage.

For each δ ∈ {1, . . . , θ},S performs the following actions, depending on the type of gate gδ.

Case 1: gδ is an addition gate.
For each i ∈ [n],S performs the following actions.

1. S sets

Szδ,i = Suδ,i + Svδ,i.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching. Then S sets

Szδ,i = Suδ,i + Svδ,i.

2. S computes rszδ,i such that the following equality holds.

EPK (Suδ,i, rsuδ,i) +h EPK (Svδ,i, rsvδ,i) = EPK ((Suδ,i + Svδ,i) , rszδ,i) .

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching. Then S sets

Szδ,i = Suδ,i + Svδ,i,

and S computes rszδ,i such that the following equality holds.

EPK (Suδ,i, rsuδ,i) +h EPK (Svδ,i, rsvδ,i) = EPK ((Suδ,i + Svδ,i) , rszδ,i) .

3. For each j ∈ [n] \ {i}, S sets

ESuδ,i,j = ESuδ,i,j +h ESvδ,i,j .

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching. Then S sets

Szδ,i = Suδ,i + Svδ,i,

and S computes rszδ,i such that the following equality holds.

EPK (Suδ,i, rsuδ,i) +h EPK (Svδ,i, rsvδ,i) = EPK ((Suδ,i + Svδ,i) , rszδ,i) .

Case 2: gδ is a multiplication-by-constant gate.
Let qδ ∈ F be the constant with which the multiplication needs to be done.
For each i ∈ [n],S performs the following actions.

1. S sets

Szδ,i = qδ · Suδ,i.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching. Then S sets

Szδ,i = qδ · Suδ,i.

32

2. S computes rszδ,i such that the following equality holds.

qδ ×h EPK (Suδ,i, rsuδ,i) = EPK ((qδ · Suδ,i) , rszδ,i) .

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching. Then S sets

Szδ,i = qδ · Suδ,i,

and S computes rszδ,i such that the following equality holds.

qδ ×h EPK (Suδ,i, rsuδ,i) = EPK ((qδ · Suδ,i) , rszδ,i) .

3. For each j ∈ [n] \ {i}, S sets

ESuδ,i,j = qδ · ESuδ,i,j .

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching. Then S sets

Szδ,i = qδ · Suδ,i,

and S computes rszδ,i such that the following equality holds.

qδ ×h EPK (Suδ,i, rsuδ,i) = EPK ((qδ · Suδ,i) , rszδ,i) .

Case 3: gδ is a multiplication gate.

1. (a) i. If the input of a party Pi is aborti for this step, then S sends aborti to the trusted party and
halts.

ii. S runs the simulator SCommittedCoinFlipPublicσ for the CommittedCoinF lipPublicσ protocol,
using σκ as the common input and 0 as the input of each honest parties.
If a party Pi aborts during the execution of CommittedCoinF lipPublicσ, then S sends aborti
to the trusted party and halts. If SCommittedCoinFlipPublicσ catches a cheating party Pi, then
S sends corruptedi to the trusted party and halts.
If no party aborts or gets caught, then S extracts the committed values of the corrupted
parties from SCommittedCoinFlipPublicσ .

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
first performs the modification upon corruption steps listed in step 7 of input sharing stage. Then
S performs the actions listed in Patching.

(b) For each honest party Pi,S randomly selects two sets of shares
{Q1,i,j}j∈[n]\{i}, {Q2,i,j}j∈[n]\{i} and two sets of strings
{rq1,i,j}j∈[n]\{i}, {rq2,i,j}j∈[n]\{i}.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
first performs the modification upon corruption steps listed in step 7 of input sharing stage. Then
S performs the actions listed in Patching.

(c) i. For each honest party Pi, each ` ∈ {1, 2} and each j ∈ [n] \ {i},S sends

Y`,i,j = EPK(Q`,i,j , rq`,i,j)

to Ah.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then
S first performs the modification upon corruption steps listed in step 7 of input sharing stage.
Then S performs the actions listed in Patching.

ii. For each corrupted party Pi, each ` ∈ {1, 2} and each j ∈ [n] \ {i},S receives Y`,i,j from Ah.

33

(d) S runs the simulator SOpenComσ of OpenComσ, opening the commitments of the honest parties
to zero. If a party Pi aborts during the execution of OpenComσ, then S sends aborti to the
trusted party and halts. If SOpenComσ catches a cheating party Pi, then S sends corruptedi to
the trusted party and halts.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
first performs the modification upon corruption steps listed in step 7 of input sharing stage. Then
S performs the actions listed in Patching.

(e) i. For each honest party Pi and each j ∈ [n] \ {i}, S sends Qmr,i,j and rqmr,i,j to Ah.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then
S first performs the modification upon corruption steps listed in step 7 of input sharing stage.
Then S performs the actions listed in Patching.

ii. For each corrupted party Pi and each j ∈ [n] \ {i}, S receives Qmr,i,j and rqmr,i,j from Ah.
(f) S verifies the responses of the corrupted parties.

Then S rewinds back to step 1(a) and instructs the simulator
SCommittedCoinFlipPublicσ so that the challenge takes on the value (3 − mr)(which is the other
possible value of the challenge). For this new challenge, S performs steps 1(a)− 1(e) and verifies
the responses of the corrupted parties.
S then performs the following actions depending on the responses, as described below.

Case 1: No violation occurs during any of the simulations.
S proceeds to the next step (step 1(g)).

Case 2: There is some violation in exactly one simulation.
Let Pi be some party for which Ah provided invalid response in the simulation corresponding
to the challenge mcr where mcr ∈ {1, 2}.
If mcr = mr, then S sends corruptedi to the trusted party and halts.
If mcr 6= mr, then S proceeds to the next step (step 1(g)).

Case 3: There is some violation in both of the simulations.
Let Pi be some party for which Ah provided invalid responses. Then S sends corruptedi to
the trusted party and halts.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
first performs the modification upon corruption steps listed in step 7 of input sharing stage. Then
S performs the actions listed in Patching.

(g) For each i ∈ [n] and each j ∈ [n] \ {i},S performs the following steps.

i. S sets C
(δ)
i,j to Q3−mr,i,j and rc

(δ)
i,j to rq3−mr,i,j .

ii. For each k ∈ [n] \ {j},S sets EC
(δ)
i,j,k to Y3−mr,j,k.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching.

2. S runs the simulator SCommittedCoinFlipPublicσ for the CommittedCoinF lipPublicσ protocol, using
0 as the inputs of the honest parties.

If a party Pi aborts during the execution of CommittedCoinF lipPublicσ, then S sends aborti to
the trusted party and halts. If SCommittedCoinFlipPublicσ catches a cheating party Pi, then S sends
corruptedi to the trusted party and halts.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S first
performs the modification upon corruption steps listed in step 7 of input sharing stage. Then S
performs the actions listed in Patching.

3. (a) i. S randomly selects d ∈ {1, 2}.
ii. For each honest party Pi,S chooses random field elements A

(δ)
i,d , B

(δ)
i,d ∈ F.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then
S first performs the modification upon corruption steps listed in step 7 of input sharing stage.
Then S performs the actions listed in Patching.

(b) S performs nothing.

(c) For each honest party Pi,S chooses random strings a
(δ)
i,d , b

(δ)
i,d , aa

(δ)
i,0 and bb

(δ)
i,0 .

34

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
first performs the modification upon corruption steps listed in step 7 of input sharing stage. Then
S performs the actions listed in Patching.

(d) i. For each honest party Pi,S computes and sends the following to Ah.

X
(δ)
i,d = EPK

(
A

(δ)
i,d , a

(δ)
i,d

)
,

X
(δ)
i,3−d = EA

(δ)
`,i −h X

(δ)
i,d −h EPK

(
0, aa

(δ)
i,0

)
where ` ∈ [n] \ {i}.

Y
(δ)
i,d = EPK

(
B

(δ)
i,d , b

(δ)
i,d

)
,

Y
(δ)
i,3−d = EB

(δ)
`,i −h Y

(δ)
i,d −h EPK

(
0, bb

(δ)
i,0

)
where ` ∈ [n] \ {i}.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then
S first performs the modification upon corruption steps listed in step 7 of input sharing stage.
Then S performs the actions listed in Patching.
Then S sets

A
(δ)
i,3−d = Suδ,i −A

(δ)
i,d ,

a
(δ)
i,3−d = Opener

(
PK,SK,A

(δ)
i,3−d, X

(δ)
i,3−d

)
,

B
(δ)
i,3−d = Svδ,i −B

(δ)
i,d ,

b
(δ)
i,3−d = Opener

(
PK,SK,B

(δ)
i,3−d, Y

(δ)
i,3−d

)
.

ii. For each corrupted party Pi, S receives
{
X

(δ)
i,j , Y

(δ)
i,j

}
j∈{1,2}

from Ah.

(e) i. For each honest party Pi and each j ∈ [n] \ {i},S performs the following steps.

– For each k, ` ∈ {1, 2}2, S chooses a random field element H
(δ)
i,j,k,`, a random string h

(δ)
i,j,k,`,

then computes and sends the following to Ah.

G
(δ)
i,j,k,` = EPK

(
H

(δ)
i,j,k,`, h

(δ)
i,j,k,`

)
.

– Pi computes a string cc
(δ)
i,j,0 such that

EPK

(
0, cc

(δ)
i,j,0

)
= EPK

(
C

(δ)
i,j , rc

(δ)
i,j

)
−h G(δ)

i,j,1,1 −h G
(δ)
i,j,1,2 −h G

(δ)
i,j,2,1 −h G

(δ)
i,j,2,2.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then
S performs the modification upon corruption steps listed in step 3(d).

ii. For each corrupted party Pi, S receives
{
G

(δ)
i,j,k,`

}
j∈[n]\{i},(k,`)∈{1,2}2

from Ah.

4. (a) For each honest party Pi,S sends the strings aa
(δ)
i,0 , bb

(δ)
i,0 selected earlier and the set

{
cc

(δ)
i,j,0

}
j∈[n]\{i}

computed above, to Ah.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 3(d).

(b) For each corrupted party Pi,S receives the strings aa
(δ)
i,0 , bb

(δ)
i,0 and the set

{
cc

(δ)
i,j,0

}
j∈[n]\{i}

of

strings, from Ah.

5. (a) For each honest party Pi and each (k, `) ∈ {1, 2}2,S honestly computes and sends L
(δ)
i,k,` to Ah.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 3(d). Then S sets

vv
(δ)
i,3−d,` = Opener

(
PK,SK, 0,

(
L
(δ)
i,3−d,` −h A

(δ)
i,3−d ×h Y

(δ)
i,`

))
for each ` ∈ {1, 2}.

35

(b) For each corrupted party Pi and each (k, `) ∈ {1, 2}2,S receives L
(δ)
i,k,` from Ah.

6. (a) For each honest party Pi, each j ∈ [n] \ {i} and each (k, `) ∈ {1, 2}2,S honestly computes and

sends K
(δ)
i,j,k,` to Ah.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 5. Then S sets

hh
(δ)
i,j,3−d,` = Opener

(
PK,SK,H

(δ)
i,j,3−d,`,

(
K

(δ)
i,j,3−d,` −h A

(δ)
i,3−d ×h Y

(δ)
j,`

))
for each j ∈ [n] \ {i} and each ` ∈ {1, 2}.

(b) For each corrupted party Pi, each j ∈ [n] \ {i} and each (k, `) ∈ {1, 2}2,S receives K
(δ)
i,j,k,` from

Ah.
7. S runs the simulator SOpenComσ of OpenComσ, opening the commitments of the honest parties to

zero. If a party Pi aborts during the execution of OpenComσ, then S sends aborti to the trusted
party and halts. If SOpenComσ catches a cheating party Pi, then S sends corruptedi to the trusted
party and halts.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 6.

8. If d = m(δ), then, for each honest party Pi, S sends{
A

(δ)

i,m(δ) , B
(δ)

i,m(δ) , a
(δ)

i,m(δ) , b
(δ)

i,m(δ) , vv
(δ)

i,m(δ),1
, vv

(δ)

i,m(δ),2
,
{
H

(δ)

i,j,m(δ),`
, h

(δ)

i,j,m(δ),`
, hh

(δ)

i,j,m(δ),`

}
j∈[n]\{i},`∈{1,2}

}
,

to Ah.
If d 6= m(δ), then S rewinds back to step 3 and performs steps 3-8 again.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 6.

9. S verifies the responses of the corrupted parties.
Then S rewinds back to step 2 and instructs the simulator SCommittedCoinFlipPublicσ so that the
outcome of step 2 (the challenge generation step) takes on the value (3 −m(δ))(which is the other
possible value of the challenge). For this new challenge S performs steps 2 − 8 and verifies the
responses of the corrupted parties.
S then performs the following actions depending on the responses, as described below.
Case 1: No violation occurs during any of the simulations.
S proceeds to the next step (step 10).

Case 2: There is some violation in exactly one simulation.
Let Pi be some party for which Ah sent invalid response in the simulation corresponding to the
challenge mcm where mcm ∈ {1, 2}.
If mcm = m(δ), then S sends corruptedi to the trusted party and halts.
If mcm 6= m(δ), then S proceeds to the next step (step 10).

Case 3: There is some violation in both of the simulations.
Let Pi be some party for which Ah provided invalid response in both simulations. S sends
corruptedi to the trusted party.
Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 6.

10. For each honest party Pi and each j ∈ [n] \ {i},S computes

ESzδ,i,j =
∑
k,`

L
(δ)
j,k,` +h

∑
k∈[n]\{j}

∑
`1,`2∈{1,2}2

K
(δ)
k,j,`1,`2

−h
∑

k∈[n]\{j}

EC
(δ)
i,j,k.

Modification upon corruption: If an honest party Pi gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 6.

11. For each j ∈ [n],S performs the following two steps.
– S computes

cipδ,j =
∑
k,`

L
(δ)
j,k,` +h

∑
k∈[n]\{j}

∑
`1,`2∈{1,2}2

K
(δ)
k,j,`1,`2

−h
∑

k∈[n]\{j}

EC
(δ)
i,j,k

where i ∈ [n] \ {j}.

36

– S computes

msgδ,j = DSK (cipδ,j) = Dβλ (cipδ,j) =
L
(

(cipδ,j)
βλ
)

θ
mod N.

For each j ∈ [n],S performs the following steps.
(a) If Pj is corrupted, then S performs the following steps.

– S invokes the simulator SD on input(
{si}i∈[n], {vi}i∈[n], {ai,`}i,`∈[n], {wi,`}i,`∈[n], {cki}i∈[n], g,N, θ,Q, v, cipδ,j ,msgδ,j , s, cts,A′

)
where A′ denote the current state of adversary A.

– S stores the output received from SD.
If Pj is corrupted, then S performs the following steps for each honest party Pi.

i. S sends ci returned by SD to A.
ii. S acts as the prover with A in the Σ-protocol.
iii. S performs nothing (Pi will not fail in the above Σ-protocol, so this step will not be executed).
If Pj is honest, then S performs the following steps for each corrupted party Pi.

i. S receives ci,j from A.
ii. S acts as the verifier with A in the Σ-protocol.
iii. If Pi fails the proof, then S performs the following steps.

A. S broadcasts corruptedi.
B. For each honest party Pk, k 6= j,S sends fk(i) and rk,i to A.

(b) S sets
Szδ,j = msgδ,j .

Modification upon corruption: If Pj gets corrupted after this step, then S performs the
modification upon corruption steps listed in step 6, for Pj . Then S computes

valδ =

∑
k∈[n]

Suδ,k

 ·
∑
k∈[n]

Svδ,k

 .

Then, S sets

Szδ,j = valδ −
∑

k∈[n]\{j}

msgδ,k.

12. For each j ∈ [n],S computes

rszδ,j = Opener (PK,SK, Szδ,j , cipδ,j) .

Modification upon corruption: If Pj gets corrupted after this step, then S performs the modifi-
cation upon corruption steps listed in step 11, for Pj . Then S sets

rszδ,j = Opener (PK,SK, Szδ,j , cipδ,j) .

Simulating the output generation stage
Let

xIi =

{
x′i if Pi is corrupted,
xi if Pi is honest.

S sends the set {xIi}i∈[n]:Pi is corrupted as the set of inputs of the corrupted parties to the trusted party. Then
S receives back the set

{yOi}i∈[n]:Pi is corrupted = {fi (xI1, . . . , xIn)}i∈[n]:Pi is corrupted

of the outputs of the corrupted parties from the trusted party.

1. For each k ∈ [n],S performs the following actions.

37

Case 1: Pk is honest.
(a) Simulating the share receiving of Pk.
S receives S′γ+k,i and rs′γ+k,i from Ah, for each corrupted party Pi.
Modification upon corruption: If an honest party Pj gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 12 of computation stage, for Pj .

(b) Simulating the verification step of output generation stage.
For each corrupted party Pi,S does the consistency check as an honest Pk would. If Pi fails the
consistency test, then S sends corruptedi to the trusted party and halts.
Modification upon corruption: If an honest party Pj gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 12 of computation stage, for Pj .

(c) Simulating the output computation step.
This step is a local computation step of Pk, so S does nothing.
Modification upon corruption: If an honest party Pj gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 12 of computation stage, for Pj .

Case 2: Pk is corrupted.
(a) Simulating the share sending to Pk.

i. S randomly selects the set
{
S′γ+k,j

}
j∈[n]:Pj is honest

satisfying

∑
j∈[n]:Pj is honest

S′γ+k,j = yOk −
∑

i∈[n]:Pi is corrupted

Sγ+k,i.

Modification upon corruption: If an honest party Pj gets corrupted after this step, then
S performs the modification upon corruption steps listed in step 12 of computation stage,
for Pj .

ii. For each honest party Pi,S performs the following steps.
– S computes

rs′γ+k,i = Opener(PK,S′γ+k,i, ESγ+k,k,i).

– S sends S′γ+k,i as the share of Pi and rs′γ+k,i as the randomness of Pi to Ah.
Modification upon corruption: If an honest party Pj gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 12 of computation stage, for Pj .

(b) Simulating the verification step of output generation stage.
If Pk broadcasts corruptedi, then S sends corruptedi to the trusted party and halts.
Modification upon corruption: If an honest party Pj gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 12 of computation stage, for Pj .

(c) Simulating the output computation step.
This step is a local computation step of Pk, so S does nothing.
Modification upon corruption: If an honest party Pj gets corrupted after this step, then S
performs the modification upon corruption steps listed in step 12 of computation stage, for Pj .

S outputs whatever Ah outputs.

6.2 The Detailed Proof

An execution of a protocol (either in the ideal world or in the hybrid world) is the process of running the
protocol with a given adversary on given inputs, random inputs, and auxiliary input for the adversary. In
the hybrid world an execution also depends on some extra inputs – the random choices of the trusted parties
for evaluating the functionalities corresponding to the subprotocols.

Let the internal history of a party Pi at round ` be the concatenation of all the internal states from
the beginning of the execution through round `. The global state at round ` is defined as the concatenation
of the internal histories of all the honest parties, the internal state of the adversary and the local state of
the environment at round `. This convention is used so that the global state of an execution at any round
uniquely determines the continuation of the execution until its completion.

38

The global state is extended to rounds after the execution of the protocol has been completed, until the
environment halts.

Proof. Let x be a balanced vector. Let I ⊂ [n] denote the set of corrupted parties.

The view of the adversary at a given round of the execution is defined as the messages that the adversary
receives at that round.

Let ADVHCircuit,Ah,I(`, s, x, z) denote the probability distribution of the view of the adversary Ah at
round ` given the outputs of the honest parties, in the execution of protocol Circuit in the hybrid world on
input x = x1, . . . , xn, security parameter s, auxiliary input z and corruption set I where the random inputs
of the parties, the random input of the adversary and the random inputs of the trusted parties of the ideal
functionalities are chosen uniformly at random from the corresponding domains.

Let ADV If,S,I(`, s, x, z) denote the probability distribution of the view of the simulated adversary S at
round ` given the outputs of the honest parties, in the evaluation of functionality f in the ideal world on
input x = x1, . . . , xn, security parameter s, auxiliary input z and corruption set I where the random inputs
of the parties, the random input of the adversary and the random inputs of the simulator S for simulating
the evaluations of the ideal functionalities are chosen uniformly at random from the corresponding domains.

First we describe the case where the input xi of Pi for f is aborti. The honest parties abort in the hybrid
world in this case. In the ideal world, S sends aborti to the trusted party and halts. The trusted party sends
aborti to all honest parties and halts. The honest parties abort. The output or view of the adversary is empty
string in both worlds in this case, so (??) holds.

Then we describe the case where the input xi of Pi for f is corruptedi. The honest parties abort in the
hybrid world in this case. In the ideal world, S sends corruptedi to the trusted party and halts. The trusted
party sends corruptedi to all honest parties and halts. The honest parties abort. The view of the adversary
is empty string in both worlds in this case, so (??) holds.

Next we describe the case where the input xi of Pi for f is cheati. In the ideal world, S sends cheati to
the trusted party.

If the trusted party replies with corruptedi to S, then S halts. The honest parties abort. In this case, the
view of the adversary is empty string.

If the trusted party replies with undetected and the set {xi}i∈[n]\I of inputs of the honest parties for f
to S, then S sends undetected and the set {xi}i∈[n]\I to Ah. Then S receives a vector {y′i}i∈[n]\I of outputs
for the honest parties of the adversary’s choice from Ah. S sends this vector {y′i}i∈[n]\I to the trusted party
and halts. For each honest party Pi, the trusted party sends y′i as its output to Pi. In this case, the view of
the adversary is the set {xi}i∈[n]\I .

In the hybrid world, the trusted party receives the input xi = cheati from Ah.

If the trusted party replies with corruptedi to the honest parties and halts, then the honest parties abort.
In this case, the view of the adversary is empty string.

If the trusted party replies with undetected and the set {xi}i∈[n]\I of inputs of the honest parties for f
to Ah, then Ah sends the same vector {y′i}i∈[n]\I of outputs for the honest parties of the adversary’s choice
to the trusted party. For each honest party Pi, the trusted party sends y′i as its output to Pi. In this case,
the view of the adversary is the set {xi}i∈[n]\I .

In both worlds, the view of the adversary is an empty string with probability ε = 1
2 and the set {xi}i∈[n]\I

with probability 1−ε = 1
2 . So the output of the adversary, given the outputs of the honest parties, is identically

distributed in two worlds in this case.

Next we describe the case where S sends aborti to the trusted party at some step of the simulation. S
does this only if one of the following two situations arises.

1. the input of Pi for fCF or fCC or fOC is aborti.

39

2. S does not receive any message from Ah on behalf of a corrupted party Pi in some step although Pi is
supposed to send some message in that step.

According to protocol Circuit, the honest parties abort in the hybrid world in both cases. In the ideal world,
S sends aborti to the trusted party and halts. The trusted party sends aborti to all honest parties and halts.
The honest parties abort. The output of Ah is the partial view of Ah up to the point of abort. Below we will
prove that the distribution of the internal state of adversary Ah up to the end of the simulation, given the
outputs of the honest parties in two worlds are computationally indistinguishable. Therefore, the distribution
of the partial view of Ah up to the point of abort given the outputs of the honest parties in two worlds are
also computationally indistinguishable. Then (??) holds for this case.

Next we consider the case where a party Pi gets caught cheating during the evaluation of fCF or fCC or
fOC . In this case, the cheating party gets caught in both worlds. The honest parties abort in both worlds.
Similar to the case of abort, the output of Ah is the partial view of Ah up to the point Pi gets caught and
we can prove that (??) holds.

For the remaining cases, we compare the view of the adversary given the outputs of the honest parties
in two worlds, step by step as described below.

Step I: The CRS Generation Stage.
At round 1, parties call the trusted party TCF of fCF in the hybrid world.
In the hybrid world, TCF of fCF returns a string σ of length p1(κ). Here σ is distributed uniformly in the
set of strings of length p1(s). In the ideal world, S sends a string σκ of length p1(κ) to Ah. Distribution
of σ and σκ are computationally indistinguishable.
Then we have

ADV If,S,I (1, s, x, z)
c≡ ADVHCircuit,Ah,I (1, s, x, z) . (2)

Step II: The Key Generation Stage.
Let `KeyGen and `KeyGenEnd denote the round at which the parties start and end the key generation
stage, respectively.
At step 2(d) of the simulation, S checks whether dkey = mkey. If dkey 6= mkey, then S rewinds back to
step 2(b) of the simulation. Since dkey is selected uniformly at random from {1, 2}, the expected number
of rewinds until dkey = mkey is at most 2. That means the execution of steps 2(b)-2(d) of S needs
expected constant time. To bound the running time of these steps within a polynomial of the security
parameter s, we can continue rewinding S at most s` times where ` ∈ N. If dkey 6= mkey after s` rewinds,
then S fails. The probability of failure of S is negligible.
We consider the three cases described in step 2(e). In any of the cases, S has to send vi,mkey to Ah for
each honest party Pi, only after v generates dkey that equals the challenge mkey. S computes the key
pair (ui,dkey , vi,dkey) in the injective mode, so none of the honest parties will be caught cheating in step
2(e).

Case 1: Ah does not send any lossy key in any of the simulations.
The message that Ah receives during the key generation stage, given the outputs of the honest
parties, consists of the following elements.
1. The set of public keys {ui,1, ui,2}i∈[n]\I that Ah receives at step 2(b).

In the hybrid world, each honest party Pi sends two injective public keys.
In the ideal world, for each honest party Pi, S sends one injective public key ui,dkey and one lossy
public key ui,3−dkey . By “the indistinguishability of keys” property of a lossy encryption scheme,
a lossy public key and an injective public key are computationally indistinguishable.
Therefore the distributions of these public keys in two worlds are computationally indistinguish-
able.

2. The set of private keys {vi,mkey}i∈[n]\I that Ah receives at step 2(d).
Note that S reaches this point of simulation only when dkey = mkey. Since the key pair
(ui,mkey , vi,mkey) is generated in the injective mode in both worlds for each honest party Pi,
the distributions of {vi,mkey}i∈[n]\I are identical in two worlds.

40

Case 2: Ah sends lossy keys for a party Pi in exactly one of the simulations (corresponding to challenge
mck).
If mck = mkey, then the lossy pair is opened for verification. mck = mkey with probability 1

2 . In the
hybrid world, the honest parties abort. In the ideal world, S sends corruptedi to the trusted party
and later the honest parties abort. The output of Ah is its partial view up to the point the protocol
terminates and we can prove indistinguishablity.

If mck 6= mkey, then the injective key is opened. mck 6= mkey with probability 1
2 . So Pi does not

get caught in both worlds. The key pair (PKi, SKi) is a lossy pair of keys. The execution continues
to the next step in this case. In this case, the messages that the adversary receives in this stage is
distributed identically to case 1.

Case 3: Ah sends lossy keys for a party Pi in both simulations.
In the hybrid world, the honest parties catches cheating Pi with probability 1 in this case since
whatever the challenge be, Pi gets caught. The honest parties can detect cheating by the “key pair
detection” property of the encryption scheme. The honest parties abort.

In the ideal world, S sends corruptedi to the trusted party. The honest parties abort. In particular,
this means that the simulator S can catch a cheating party Pi with probability 1 when Ah sends a
lossy pair of keys on behalf of Pi in both simulations. This holds by the “key pair detection” property
of the encryption scheme.

The output of Ah is its partial view up to the point the protocol terminates. We can prove indistin-
guishablity by case 1.

From (2) and the analysis presented above, we can say that the following holds:

ADV If,S,I (`KeyGenEnd, s, x, z)
c≡ ADVHCircuit,Ah,I (`KeyGen, s, x, z) . (3)

Step III: The Input Sharing Stage.
Let `InShare and `InShareEnd denote the round at which the parties start and end the input sharing
stage, respectively.

We consider the three cases described in step 3(f). S computes the enryptions honestly, so none of the
honest parties will be caught cheating in step 3(f).

Case 1: Ah does not send any invalid response in any of the simulations.
In the ideal world, for each i ∈ I,S computes the shares B1,i,i and B2,i,i of Pi in two simulations, by
decrypting Y1,i,i and Y2,i,i.

S computes x′i where x′i is the substituted input of Pi by Ah.

The message that Ah receives during the input sharing stage, given the outputs of the honest parties,
consists of the following elements.

1. The set of ciphertexts {Y`,i,j}i∈[n]\I,`∈{1,2},j∈[n] that Ah receives at step 3(b).

In the hybrid world, each honest party Pi sends encryptions of shares of its actual input xi.
In the ideal world, S sends encryptions of shares of zero.
Note that Ah knows the private keys of the corrupted parties. So Ah can decrypt the cipher-
texts generated under the public keys of the corrupted parties and thereby compute the set
{B`,i,j}i∈[n]\I,`∈{1,2},j∈I of the shares of the corrupted parties. Since there is at least one honest

party and the input xi of Pi is unknown to Ah, the set of decrypted shares of the corrupted
parties in two worlds are identically distributed.
Ah does not know the private keys of the honest parties. By the semantic security of the en-
cryption scheme, for each i ∈ [n] \ I, the ciphertexts generated under the public key PKi in two
worlds are computationally indistinguishable.

2. The set of shares {B1,i,j , B2,i,j}i∈[n]\I,`∈{1,2},j∈I that Ah receives at step 3(c).

In the hybrid world, each honest party Pi sends the shares of its actual input xi.
In the ideal world, S sends the shares of zero.
Since there is at least one honest party and the input xi of Pi is unknown to Ah, it holds that
the set of shares of the corrupted parties in two worlds are identically distributed.

3. The set of randomness {b1,i,j , b2,i,j}i∈[n]\I,`∈{1,2},j∈I that Ah receives at step 3(c).

These strings are generated uniformly at random in both worlds.

41

4. The set of shares {Bmin,i,j}i∈[n]\I,j∈[n]\{i} that Ah receives at step 3(e).

In the hybrid world, each honest party Pi sends (n− 1) shares of its actual input xi.
In the ideal world, S sends (n− 1) shares of zero.
Since the input xi of Pi is unknown to Ah and there are n additive shares, the set of these (n−1)
shares in two worlds are identically distributed.

5. The set of randomness {bmin,i,j}i∈[n]\I,j∈[n]\{i} that Ah receives at step 3(e).

These strings are generated uniformly at random in both worlds.
Case 2: Ah sends invalid response in exactly one of the simulations (corresponding to the challenge
mci).
If mci = min, then Pi gets caught in both worlds. mci = min with probability 1

2 . In the hybrid world,
the honest parties abort. In the ideal world, S sends corruptedi to the trusted party and later the
honest parties abort. The output of Ah is its partial view up to the point the protocol terminates.
So we can prove indistinguishability by case 1.
If mci 6= min, then Pi does not get caught in both worlds. mci 6= min with probability 1

2 . The
execution continues to the next step in this case. Indistinguishability can be proved similar to case
1.

Case 3: Ah sends invalid responses for a party Pi in both simulations.
In the hybrid world, the honest parties catch cheating Pi with probability 1 in this case since whatever
the challenge be, Pi gets caught. The honest parties abort.
In the ideal world, S sends corruptedi to the trusted party. The honest parties abort.
The output of Ah is its partial view up to the point the protocol terminates and we can prove
indistinguishability by case 1.

From (3) and the above analysis, we have

ADV If,S,I (`InShareEnd, s, x, z)
c≡ ADVHCircuit,Ah,I (`InShareEnd, s, x, z) . (4)

Step IV: The Computation Stage.
In the computation stage, only the multiplication gates need interaction among the parties. The local
computations for gates other than multiplication gates can be performed in the same round at which a
multiplication gate is evaluated. To simplify our analysis, we assume that the computation of each gate
is performed in a separate round.
Let `δ denote the round at which parties start the evaluation of gate gδ. Then `δ+1− 1 denote the round
at which the evaluation of gate gδ is finished.
The evaluation of addition gates and multiplication-by-constant gates are deterministic process and do
not need any interaction among parties.The process of the simulation of the evaluation of these two types
of gates by S is also deterministic.
We will prove the following by induction on δ.

ADV If,S,I (`δ+1 − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`δ+1 − 1, s, x, z) .

The proof for the base case and the induction case is similar – we describe only the induction case.
We assume that the induction hypothesis holds for the evaluation of gate gδ′ for any δ′ < δ.
First we describe the comparison of the views of the adversary in two worlds, at the round at which the
shares were evaluated for the input wires of gate gδ.
Let `uδ and `vδ denotes the round at which the shares associated with the input wire uδ and vδ of gate
gδ were evaluated, respectively.
The evaluation of shares associated with the wire wuδ may have been done

1. either in the input sharing stage. This happens if uδ ≤ n, that is, if wuδ is an input wire of C. In
this case, `uδ = `InShareEnd. By stage III, we have

ADV If,S,I (`uδ , s, x, z)
c≡ ADVHCircuit,Ah,I (`uδ , s, x, z) .

2. or in the computation stage. This happens if uδ > n , that is, if wuδ is the output wire of another
gate gδ1 . In this case, `uδ = `δ1+1−1. Since the gates of C are evaluated according to the topological

42

ordering g1, . . . , gθ, it holds that δ1 < δ. Then the induction hypothesis holds for the evaluation of
gate gδ1 . So we have

ADV If,S,I (`δ1+1 − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`δ1+1 − 1, s, x, z)

⇔ ADV If,S,I (`uδ , s, x, z)
c≡ ADVHCircuit,Ah,I (`uδ , s, x, z) .

Similarly, for the input wire vδ we have

ADV If,S,I (`vδ , s, x, z)
c≡ ADVHCircuit,Ah,I (`vδ , s, x, z) .

There are three possible cases according to the type of gate gδ, as follows.
Case 1: gδ is an addition gate.

In the hybrid world, each party is supposed to set its shares Szδ,i, rszδ,i and {ESzδ,i,j}j∈[n]\{i}
associated with the output wire wzδ as a deterministic function of its shares associated with the
input wires wuδ and wvδ .
In the ideal world, for each party Pi, the simulator S computes the shares of Pi for the output wire
wzδ just as an honest Pi would.
The view of adversary at round (`δ+1 − 1) is a deterministic function of its view at round `uδ and
round `vδ . From the analysis of views in two worlds at round `uδ and at round `vδ , we can say that the
view of the adversary at round (`δ+1 − 1) given the outputs of the honest parties are computationally
indistinguishable in two worlds, that is,

ADV If,S,I (`δ+1 − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`δ+1 − 1, s, x, z) .

Case 2: gδ is a multiplication-by-constant gate.
The analysis is similar to case 1 – the only difference is that we have a single input in this type of
gates.

Case 3: gδ is a multiplication gate.
In this case, the parties evaluate the multiplication gate by perfroming a series of steps.
At step 4(h) of the simulation, S checks whether d = m. If d 6= m, then S rewinds back to step 4(c)
of the simulation. Like the key generation stage, we can prove that steps 4(c)-4(h) can be performed
in polynomial time with a negligible probability of failure.
S has to send{

Ai,m, Bi,m, ri,m, vi,m,1, vi,m,2, {Hi,j,m,`, gi,j,m,`, ui,j,m,`}j∈[n]\{i},`∈{1,2}
}

to Ah, for each honest party Pi, only after S generates d that equals the challenge m. S computes
these values as an honest Pi would, so none of the honest parties will be caught cheating in step 4(i).
Now we consider the three cases described in step 4(i).
Case 1 : Ah does not send any invalid response in any of the simulations.

The view of Ah, given the outputs of the honest parties, consists of the following elements.
1. The set of ciphertexts {Xi,m, Yi,m}i∈[n]\I that Ah receives in step 4(c)(D).

In both worlds, these ciphertexts are generated according to the protocol specification. In
particular, the plaintexts are selected uniformly at random and then encrypted.
Ah does not know the private keys of the honest parties. By the semantic security of the
encryption scheme, for each honest party Pi it holds that the ciphertexts under PKi in two
worlds are computationlly indistinguishable.

2. The set of ciphertexts {Xi,3−m, Yi,3−m}i∈[n]\I that Ah receives in step 4(c)(D).

In the hybrid world, each honest party Pi computes these ciphertexts according to the pro-
tocol.
In the ideal world, for each honest party Pi, S computes Xi,3−m, Yi,3−m as follows.

Xi,3−m = EAq,i −h Xi,m −h EPKi(0, ai,0) where q ∈ I.

Yi,3−m = EBq,i −h Yi,m −h EPKi(0, bi,0) where q ∈ I.

43

For each honest party Pi, Xi,3−m and Yi,3−m are encryptions under PKi.
Ah does not know the private keys of the honest parties. By the semantic security of the
encryption scheme, for each honest party Pi it holds that the ciphertexts under PKi in
the ideal world are computationlly indistinguishable from the ciphertexts under PKi in the
hybrid world.

3. The set of ciphertexts {Gi,j,m,`}i∈[n]\I,j∈[n]\{i},`∈{1,2} that Ah receives in step 4(c)(F).

In both worlds, these ciphertexts are generated according to the protocol specification. In
particular, the plaintexts are selected uniformly at random and then encrypted.
Ah does not know the private keys of the honest parties. By the semantic security of the
encryption scheme, for each honest party Pi it holds that the ciphertexts under PKi in two
worlds are computationlly indistinguishable.

4. The set of ciphertexts {Gi,j,3−m,`}i∈[n]\I,j∈[n]\{i},`∈{1,2} that Ah receives in step 4(c)(F).

In the hybrid world, each honest party Pi computes these ciphertexts according to the pro-
tocol.
In the ideal world, for each honest party Pi, S chooses a random field element Hi,j,3−m,1,
two random strings gi,j,3−m,1, ci,j,0, then computes and sends the following to Ah.

Gi,j,3−m,1 = EPKi(Hi,j,3−m,1, gi,j,3−m,1)

Gi,j,3−m,2 = ECq,i,j −h
∑

`∈{1,2}

Gi,j,m,` −h Gi,j,3−m,1 −h EPKi(0, ci,j,0) where q ∈ I.

For each honest party Pi, the ciphertexts {Gi,j,3−m,1, Gi,j,3−m,2}j∈[n]\{i} are encryptions

under PKi.
Ah does not know the private keys of the honest parties. By the semantic security of the
encryption scheme, for each honest party Pi it holds that the ciphertexts under PKi in
the ideal world are computationlly indistinguishable from the ciphertexts under PKi in the
hybrid world.

5. The set of random strings
{
ai,0, bi,0, {ci,j,0}j∈[n]\{i}

}
i∈[n]\I

that Ah receives at step 4(d).

In the hybrid world, each honest party Pi computes these strings according to the protocol.
In the ideal world, S chooses these strings uniformly at random.
In the hybrid world, the string ai,0 is computed by the following equation.

EPKi(0, ai,0) = EPKi(Ai, rai)−h Xi,1 −h Xi,2

= EPKi(Ai, rai)−h EPKi(Ai,1, ri,1)−h EPKi(Ai,2, ri,2).

The value of ai,0 depends on EPki(Ai, rai), EPKi(Ai,1, ri,1) and EPKi(Ai,2, ri,2). Ah only
knows the ciphertext EAq,i which is supposed to be EPKi (Ai, rai). So the distributions of
the strings ai,0 in two worlds are computationally indistinguishable. We can show similar
result for the distributions of the strings bi,0 and {ci,j,0}j∈[n]\{i}.

6. The set of ciphertexts {Li,k,`}i∈[n]\I,(k,`)∈{1,2}2 that Ah receives at step 4(e).

In the hybrid world, each honest party Pi computes these ciphertexts based on its actual
shares Ai and Bi.
In the ideal world, for each honest party Pi, S computes these ciphertexts based on fake
shares of Pi that are obtained by using zero as the inputs for the honest parties.
Ah does not know the private keys of the honest parties. By the semantic security of the
encryption scheme, for each honest party Pi it holds that the ciphertexts under PKi in
the ideal world are computationlly indistinguishable from the ciphertexts under PKi in the
hybrid world.

7. The set of ciphertexts {Ki,j,k,`}i∈[n]\I,j∈[n]\{i},(k,`)∈{1,2}2 that Ah receives at step 2(f).

In the hybrid world, each honest party Pi computes these ciphertexts based on its actual
share Ai.
In the ideal world, for each honest party Pi, S computes these ciphertexts based on fake
shares of Pi that are obtained by using zero as the inputs for the honest parties.

44

Ah does not know the private keys of the honest parties. By the semantic security of the
encryption scheme, for each honest party Pi it holds that the ciphertexts under PKi in
the ideal world are computationlly indistinguishable from the ciphertexts under PKi in the
hybrid world.

8. The message received by Ah at step 4(h), which consists of{
Ai,m, Bi,m, ri,m, vi,m,1, vi,m,2, {Hi,j,m,`, gi,j,m,`, ui,j,m,`}j∈[n]\{i},`∈{1,2}

}
i∈[n]\I

.

For each honest party Pi, it holds that exactly one subshare (namely, Ai,m and Bi,m) out of
the two additive subshares of its shares Ai and Bi are sent to Ah. So the distributions of the
opened shares are uniform in both worlds.
For each honest party Pi and each Ci,j where j ∈ [n]\{i}, it holds that exactly two subshares
(namely, {Hi,j,m,`}`∈{1,2}) out of four additive subshares of Ci,j are sent to Ah. Therefore

the distributions of the opened shares are uniform in both worlds.
For each honest party Pi, the strings ri,m, vi,m,1, vi,m,2, {gi,j,m,`, ui,j,m,`}j∈[n]\{i},`∈{1,2} are

generated uniformly at random in both worlds.
Therefore the message sent to Ah at step 4(h) are distributed identically in two worlds.

Case 2 : Ah sends invalid response in exactly one of the simulations (corresponding to the challenge
mcm).
If mcm = m, then Pi gets caught in both worlds. mcm = m with probability 1

2 . In the hybrid
world, the honest parties abort. In the ideal world, S sends corruptedi to the trusted party and
later the honest parties abort. The output of Ah is its partial view up to the point the protocol
terminates. By case 1, we can prove indistinguishability.
If mci 6= min, then Pi does not get caught in both worlds. mcm 6= m with probability 1

2 . The
execution continues to the next step in this case.

Case 3 : Ah sends invalid responses for a party Pi in both simulations.
In the ideal world, S sends corruptedi to the trusted party. The honest parties abort.
In the real world, the honest parties would output corruptedi with probability 1 in this case since
whatever the challenge be, Pi would get caught. The honest parties abort.
The output of Ah is its partial view up to the point the protocol terminates. By case 1, we can
prove indistinguishability.

So we have

ADV If,S,I (`δ+1 − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`δ+1 − 1, s, x, z) . (5)

From (5) for δ = θ, we have

ADV If,S,I (`θ+1 − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`θ+1 − 1, s, x, z) . (6)

Step V: The Output Generation Stage.
Let `Out denote the round at which the parties start the output generation stage in the hybrid world.
We see that one round is needed to coomunicate message for evaluating one output wire of the circuit.
Then `Out + k − 1 denotes the round at which the parties send message to Pk.
We will prove the following by induction on k.

ADV If,S,I (`Out + k − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`Out + k − 1, s, x, z) . (7)

The proof for the base case and the induction case is similar – we describe only the induction case. For
the base case, from (6), we have

ADV If,S,I (`Out − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`Out − 1, s, x, z) . (8)

as `Out = `θ+1. We assume that the induction hypothesis holds for the k′-th evaluation of fOut for any
k′ < k. From k′ = k − 1, we have

ADV If,S,I (`Out + k − 2, s, x, z)
c≡ ADVHCircuit,Ah,I (`Out + k − 2, s, x, z) . (9)

45

Observe that

xIi =

{
x′i if i ∈ I
xi if i /∈ I.

where x′i denotes the replaced input of the corrupted party Pi.
yOk is the output of Pk obtained from the trusted party, after S sends the vector {xIi}i∈I as the inputs
of the corrupted parties to the trusted party. Each honest party Pi sends its actual input xi to the trusted
party, so it follows that

yOk = fk (xI1, . . . , xIn) .

Case 1: Pk is honest.
S does not send any message to Ah in this case.
If Ah does not send any message for some corrupted party Pi at step 5(a)(i), then S sends aborti to the
trusted party. The trusted party sends aborti to all honest parties and halts. The honest parties abort.
In the hybrid world, honest Pk broadcasts aborti and aborts. The remaining honest parties abort. The
view of adversary is its view up to round (`Out + k − 2). By (8) and (9), the view of the adversary given
the outputs of the honest parties are computationally indistinguishable in two worlds. The simulation
ends here in this case.
In the case where no party aborts, there are two possible cases, as described below.

Case 1: Ah sends the correct share and randomness for each corrupted party in step 5(a)(i).
In this case, there has been no cheating from the corrupted parties. In the ideal world, honest Pk
computes its output Lk correctly.
In the hybrid world, Pk gets the correct shares and randomness from all parties at step 5(a)(i). No
party gets caught during verification at step 5(a)(ii). Since Pk is honest, it computes Lk correctly by
summing the shares of all parties.

Case 2: Ah sends inconsistent share and randomness for some corrupted party Pi in step 5(a)(i).
Here we describe the situation where Ah sends inconsistent share and randomness for a single cor-
rupted party Pi in step 5(a)(i). A similar analysis can be performed for the scenario where Ah sends
inconsistent share and randomness for more than one corrupted parties in step 5(a)(i).
There are two possible outcomes, as described below.
Case 2(a): The key pair (PKi, SKi) of Pi is a lossy pair of keys.

This event can happen with probability at most 1
2 . Recall that one out of two pairs of keys of

each party are checked during the key generation stage. Since Pi was not caught during that
stage, it holds that Pi used one lossy pair and one injective pair in the key generation stage
and the lossy pair was not opened. Since the challenge mkey ∈ {1, 2} is generated uniformly at
random, this situation can arise with probability at most 1

2 . In that case, Pi can send a different
pair (S′γ+k,i, rs

′
γ+k, i) of share and randomness for the wire wγ+k to Pk, but the cheating by Pi

cannot be detected. This is due to the openability property of the lossy encryption scheme.
In the ideal world, the simulation continues as in case 1. Honest Pk computes an incorrect output

L′k = Lk − Sγ+k,i + S′γ+k,i.

In the hybrid world, honest Pk cannot catch the cheating party Pi in the verification of step
5(a)(ii). Pk computes the incorrect output L′k.

Case 2(b): The key pair (PKi, SKi) of Pi is an injective pair of keys.
The probability of this event is at most 1

2 .
In this case, Pi gets caught in both worlds. In the ideal world, S checks consistency of inputs
at step 5(a)(ii) and catches cheating Pi. Then S sends corruptedi to the trusted party and the
trusted party sends corruptedi to all honest parties and halts. The honest parties abort.
In the hybrid world, honest Pk catches cheating Pi during verification of step 5(a)(ii). Then Pk
broadcasts corruptedi and aborts. The honest parties abort.

Case 2: Pk is corrupted.
Observe that, in the key generation stage, at step 2(f), S sets

(PKi, SKi) =
(
ui,3−mkey , vi,3−mkey

)
for each i ∈ [n].

46

This implies that

(PKi, SKi) ∈ G(1s, lossy)

for each i ∈ [n] \ I, in the ideal world.

By the existence of an efficient Opener algorithm, S can compute rs′γ+k,i for each honest party Pi in
polynomial time in step 5(a)(ii). The probability of failure to compute such an rs′i is negligible. By the
openability property of a lossy encryption scheme,

EPKi(S
′
γ+k,i, rs

′
γ+k,i) = ESγ+k,k,i

for each honest party Pi. So no honest party will get caught cheating during the verification of step
5(a)(ii).

The honest parties output empty strings in both worlds.

In the hybrid world, each honest party Pi sends its actual share Sγ+k,i and its actual randomness rsγ+k,i
for wire wγ+k,i to Pk at step 5(a)(i).

In the ideal world, S randomly selects the set of shares
{
S′γ+k,i

}
i∈[n]\I

satisfying

∑
i∈[n]\I

S′γ+k,i = Y Ok −
∑
j∈I

Sγ+k,j .

Since both of these sets sum to
(
Y Ok −

∑
j∈I Sγ+k,j

)
, it holds that the set of shares {Sγ+k,i}i∈[n]\I and

{S′γ+k,i}i∈[n]\I in two worlds are identically distributed.

Observe that the adversary knows the set {ESγ+k,k,i}i∈[n]\I of encrypted shares of the honest parties
for wire wγ+k,i, as part of the inputs of the corrupted party Pk.

In the ideal world, S sends the computed fake string rs′γ+k,i for each honest party Pi such that

EPKi(S
′
γ+k,i, rs

′
γ+k,i) = ESγ+k,k,i.

Since the ciphertexts match, the adversary does not detect any inconsistency for any of the honest parties.

rs′γ+k,i is computed as follows.

rs′γ+k,i = Opener(PKi, S
′
γ+k,i, ESγ+k,k,i).

The value of the string rs′γ+k,i depends on PKi, ESγ+k,k,i and S′γ+k,k,i. PKi and ESγ+k,k,i is known to
Ah but S′γ+k,i is selected at random by S. Therefore the distributions of the strings {rsγ+k,i}i∈[n]\I in
the hybrid world and {rs′γ+k,i}i∈[n]\I in the ideal world are computationally indistinguishable.

In any case, we have proved that

ADV If,S,I (`Out + k − 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`Out + k − 1, s, x, z) . (10)

From (10) for k = n, we have

ADV If,S,I (`Out + n− 1, s, x, z)
c≡ ADVHCircuit,Ah,I (`Out + n− 1, s, x, z) . (11)

From (11), we have {
IDAf,S(z),I(x, s)|IDHf,S(z),I(x, s)

}
x,z∈({0,1}∗)n+1;s∈N

c≡
{
HY A

(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,Ah(z),I (x, s)|HYH(fCF ,1),(fCC ,1),(fOC ,1)

Circuit,Ah(z),I (x, s)
}
x,z∈({0,1}∗)n+1;s∈N

47

6.3 Proof of Theorem 2

Proof. Let ε = 1
2 . Let Ah be a static covert adversary that interacts with parties running protocol Circuit

in the ((fCF , 1) , (fCC , 1) , (fOC , 1))-hybrid world.

Let x be a balanced vector. Let I ⊂ [n] denote the set of corrupted parties.

By Lemma ??,{
IDHf,S(z),I(x, s)

}
x,z∈({0,1}∗)n+1;s∈N =

{
HYH

(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,Ah(z),I (x, s)

}
x,z∈({0,1}∗)n+1;s∈N

(12)

By Lemma ??, {
IDAf,S(z),I(x, s)|IDHf,S(z),I(x, s)

}
x,z∈({0,1}∗)n+1;s∈N

c≡
{
HY A

(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,Ah(z),I (x, s)|HYH(fCF ,1),(fCC ,1),(fOC ,1)

Circuit,Ah(z),I (x, s)
}
x,z∈({0,1}∗)n+1;s∈N

(13)

From (12) and (13), we have{
IDHf,S(z),I(x, s), IDAf,S(z),I(x, s)

}
x,z∈({0,1}∗)n+1;s∈N

c≡
{
HYH

(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,Ah(z),I (x, s), HY A

(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,Ah(z),I (x, s)

}
x,z∈({0,1}∗)n+1;s∈N

,

that is, {
IDEALεf,S(z),I(x, s)

}
x,z∈({0,1}∗)n+1;s∈N

c≡ HY BRID(fCF ,1),(fCC ,1),(fOC ,1)
Circuit,A(z),I (x, s).

References

AL10. Yonatan Aumann and Yehuda Lindell. Security Against Covert Adversaries: Efficient Protocols for Realistic
Adversaries. Journal of Cryptology, 23(2):281–343, 2010.

BHY09. Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and Impossibility Results for Encryption and
Commitment Secure under Selective Opening. In Proceedings, Advances in Cryptology — EUROCRYPT
2009, volume 5479 of Lecture Notes in Computer Science, pages 1–35, Berlin, Heidelberg, 2009. Springer.

Can00. Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology,
13(1):143–202, 2000.

Can01. Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proceed-
ings, 42nd IEEE Symposium on Foundations of Computer Science — FOCS ’01, pages 136–145, Washing-
ton, DC, USA, 2001. IEEE Computer Society. Full version available at http://eprint.iacr.org/2000/067.

Dam00. Ivan Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In Proceedings, Ad-
vances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
418–430, Berlin, Heidelberg, 2000. Springer.

DJN10. Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. A Generalization of Paillier’s Public-key System with
Applications to Electronic Voting. International Journal of Information Security, 9(6):371–385, 2010.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally Composable Efficient Multiparty Computation from
Threshold Homomorphic Encryption. In Proceedings, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 247–264. Springer, Berlin,Heidelberg, 2003.

FPS00. Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing Decryption in the Context of Voting
or Lotteries. In Proceedings, Financial Cryptography — FC 2000, volume 1962 of Lecture Notes in Computer
Science, pages 90–104, Berlin, Heidelberg, 2000. Springer.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof-
Systems. In Proceedings, 17th Annual ACM Symposium on Theory of Computing — STOC ’85, pages
291–304, New York, NY, USA, 1985. ACM.

Gol06. Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Techniques. Cambridge University Press,
New York, NY, USA, 2006.

48

Gol09. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press,
New York, NY, USA, 1st edition, 2009.

HP14. Carmit Hazay and Arpita Patra. One-Sided Adaptively Secure Two-Party Computation. In Proceedings,
Theory of Cryptography — TCC 2014, volume 8349 of Lecture Notes in Computer Science, pages 368–393,
Berlin, Heidelberg, 2014. Springer.

LP01. Anna Lysyanskaya and Chris Peikert. Adaptive Security in the Threshold Setting: From Cryptosystems to
Signature Schemes. In Proceedings, Advances in Cryptology — ASIACRYPT 2001, volume 2248 of Lecture
Notes in Computer Science, pages 331–350, Berlin, Heidelberg, 2001. Springer.

Nar. Isheeta Nargis. Efficient Oblivious Transfer for One-Sided Active Adaptive Adversaries. Accepted for
publication in AFRICACRYPT 2014.

Nar17. Isheeta Nargis. Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption. In Proceedings,
Progress in Cryptology — AFRICACRYPT 2017, volume 10239 of Lecture Notes in Computer Science, pages
165–183, Cham, 2017. Springer.

NH24. Isheeta Nargis and Anwar Hasan. Covert Adaptive Adversary Model: A New Adversary Model for Multi-
party Computation. Cryptology ePrint Archive, Paper 2024/729, 2024. https://eprint.iacr.org/2024/

729.
NME13. Isheeta Nargis, Payman Mohassel, and Wayne Eberly. Efficient Multiparty Computation for Arithmetic

Circuits against a Covert Majority. In Proceedings, Progress in Cryptology — AFRICACRYPT 2013,
volume 7918 of Lecture Notes in Computer Science, pages 260–278, Berlin, Heidelberg, 2013. Springer.

Pai99. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings,
Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238, Berlin, Heidelberg, 1999. Springer.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Framework for Efficient and Composable
Oblivious Transfer. In Proceedings, Advances in Cryptology — CRYPTO ’08, volume 5157 of Lecture Notes
in Computer Science, pages 554–571, Berlin, Heidelberg, 2008. Springer.

https://eprint.iacr.org/2024/729
https://eprint.iacr.org/2024/729

	Secure Multiparty Computation in the Presence of Covert Adaptive Adversaries

