
Client-Efficient Online-Offline Private Information Retrieval

Hoang-Dung Nguyen
Virginia Tech

Jorge Guajardo
Robert Bosch LLC – RTC

Thang Hoang
Virginia Tech

Abstract
Private Information Retrieval (PIR) permits clients to query
entries from a public database hosted on untrusted servers in
a privacy-preserving manner. Traditional PIR model suffers
from high computation and/or bandwidth cost due to entire
database processing for privacy. Recently, Online-Offline PIR
(OO-PIR) has been suggested to improve the practicality of
PIR, where query-independent materials are precomputed
beforehand to accelerate online access. While state-of-the-art
OO-PIR schemes (e.g., S&P’24, CRYPTO’23) successfully
reduce the online processing overhead to sublinear, they still
impose substantial bandwidth and storage burdens on the
client, especially when operating on large databases.

In this paper, we propose Pirex, a new OO-PIR scheme with
eminent client performance while maintaining the sublinear
server processing efficiency. Specifically, Pirex offers clients
with sublinear processing, minimal inbound bandwidth, and
low storage requirements. Our Pirex design is fairly simple yet
efficient, where the majority of operations are naturally low-
cost and streamlined (e.g., XOR, PRF, modular arithmetic).
We have fully implemented Pirex and evaluated its real-world
performance using commodity hardware. Our experimental
results demonstrated that Pirex outperforms existing OO-PIR
schemes by at least two orders of magnitude. Concretely, with
a 1 TB database, Pirex only takes 0.8s to query a 256-KB
entry, compared with 30-220s by the state-of-the-art.

1 INTRODUCTION

Public databases provide users with seamless access to data
resources across diverse domains: social (e.g., news media),
entertainment (e.g., audio/video archives), economical (e.g.,
stock market), healthcare (e.g., medical, pharmaceutical data),
geospatial services (e.g., locations, directions). These public
databases not only eliminate the need for local storage, but
also enables users to retrieve the latest information remotely
at their convenience. Despite their usefulness, using public
database services may create privacy concerns. While these

databases are not considered sensitive, the users’ queries on
them can still, inadvertently reveal sensitive or personally
identifiable information, such as their personal preferences,
current location, health conditions, or revenue streams [46,
47]. A malicious database server can misuse the users’ query
behaviors (i.e. user locations [41], search frequency [58]) and
expose them to malicious activities such as price and search
discrimination [29, 48].

To protect user privacy, Chor et. al [17] proposed Private
Information Retrieval (PIR), a cryptographic primitive that
permits users to retrieve a public data entry without revealing
to the adversarial server what entry has been accessed. Despite
its strong privacy guarantee, PIR can be expensive in terms of
bandwidth and processing overhead. Various attempts have
successfully reduced the PIR bandwidth cost in centralized
[8, 14, 16, 25, 33, 37, 39] and distributed database settings
[7,10–12,23,24,26,59], but the high processing cost remains
a barrier to making PIR practical. Beimel et al. [12] proved
that, under the standard computation model, any secure PIR
scheme must incur a lower bound of linear server processing
(w.r.t the database size). Sion et al. [55] showed that, in certain
conditions, streaming the database is more efficient than such
a linear processing.

To be more computationally efficient, PIR has been studied
in different computation models such as preprocessing [12,
13, 15, 19, 20] or batching [8, 12, 31, 38, 44]. Patel et al. [49]
recently proposed an eminent preprocessing paradigm called
Online-Offline PIR (OO-PIR), where the client can privately
precompute query-independent hints beforehand to accelerate
online access. Corrigan-Gibbs et al. [20] designed the first
OO-PIR scheme that achieved sublinear server computation
for the online query. Several works were later proposed to
improve the OO-PIR efficiency [32, 35, 60] or optimality [34,
54, 61] and achieve promising results.

Although OO-PIR achieves a sublinear server processing
cost, it poses a critical bandwidth and storage burden to the
client. Specifically, most OO-PIR schemes [19, 20, 32, 34, 35,
54, 60, 61] require a client to store a considerable amount of

1

Table 1: Our proposed Pirex/Pirex+ schemes vs. prior OO-PIR schemes.

Scheme
Client Online B/W Online Computation ‡ Client Total Client Offline Computation‡

In Out Client Server Storage Offline B/W Client Server
CK20 (PRF) [20] O(λB)

Õ(λ2) O(λB)⊕+ Õ(λN)p O(λB
√

N)⊕+O(λ
√

N)p Õ(λB
√

N) Õ(λB
√

N) Õ(λ
√

N)p Õ(λBN)⊕+ Õ(λN)pCK20 (PRP) [20] Õ(λ
√

N) O(λB)⊕+ Õ(λ
√

N)p O(λB
√

N)⊕
Shi et al. [54] O(λB) Õ(λ2) O(λB)⊕+ Õ(λ

√
N)p Õ(λB

√
N)⊕+ Õ(λ

√
N)p Õ(λB

√
N) Õ(λB

√
N) Õ(λ

√
N)p Õ(λBN)⊕+ Õ(λN)p

Checklist [32] O(B) Õ(λ) O(B)⊕+O(N)p O(B
√

N)⊕+O(
√

N)p O(λB
√

N) O(λB
√

N) O(λ
√

N)p O(λBN)⊕+O(λN)p

TreePIR [35] O(B
√

N) Õ(λ) O(B)⊕+ Õ(λ
√

N)p O(B
√

N)⊕+O(
√

N)p O(λB
√

N) O(λB
√

N) O(λ
√

N)p O(λBN)⊕+O(λN)p

Piano [60] O(B
√

N) Õ(
√

N) O(B)⊕+O(λ
√

N)p O(B
√

N)⊕ O(λB
√

N) O(BN) O(λBN)⊕ + O(λN)p —

Pirex O(B) Õ(
√

N)
O(B)⊕+O(λ

√
N)p O(B

√
N)⊕ O(λB

√
N)

O(λB
√

N)
O(λ
√

N)p O(λBN)⊕+O(λN)p

Pirex+ O(B)F/G+O(λ
√

N)p O(B
√

N)F+O(Bλ
√

N)⊕ O(λ2
√

N) O(λB
√

N)G + O(λ
√

N)p O(λBN)F+O(λN)p

‡ ⊕ denotes bitwise XOR operations, F denotes finite field arithmetic operations, p denotes PRF/PRP operations, G denotes group operations. For simplicity, we use the
notation Õ(·) to hide the multiplicative polylog(N) terms in the asymptotic complexity.

the pre-computed hints. For a database with N entries each
of size B, the total client storage is at least Ω(λB

√
N) (where

λ is the security parameter). More importantly, to privately
read a database entry, the client is required to download from
O(λ) to O(

√
N) extra entries. This cost can be significant

in real data platforms (e.g., Amazon EBS [1], Azure Blob
Storage [2], PostgreSQL [4], and content distribution systems
(e.g., [27, 28, 52]), where the entry size granularity is large
(e.g., 64 KB-1 MB). For example, the most efficient OO-PIR
scheme to date [60] takes the client approximately 11.5 GB
storage and 512 MB bandwidth to read a 256-KB entry from
a 1 TB Azure Storage.

Given the above limitations in client metrics of existing
OO-PIR designs, we ask the following research question:

Can we design an OO-PIR scheme that features low client
bandwidth and storage for large databases while retaining
sublinear client and server processing complexity?

1.1 Our Contributions

We answer the question affirmatively by presenting a highly
efficient OO-PIR framework called Pirex, which stands for
Private Information Retrieval with Client Expedience. To our
knowledge, Pirex is the first OO-PIR scheme that offers O(1)
client inbound bandwidth blowup, and low client storage with
sublinear client and server processing time. In particular, our
Pirex offers specific desirable properties as follows:
• Minimal client (inbound) bandwidth: The most critical

and desirable property of Pirex is that it offers a minimal
client inbound bandwidth overhead, which is independent
of the remote database entry size. Specifically, to privately
read an entry, Pirex only requires the client to download an
amount of data that is equal to eight database entries. This
cost is asymptotically (and concretely) much lower than
most state-of-the-art OO-PIR schemes (e.g., [35,60], which
transmits a square-root number of entries. The total client
bandwidth cost of Pirex is only O(B+

√
N logN) compared

to O(
√

N(λ+B)) in other schemes [35,60], with N, B, and
λ are the number of database entries, the entry size, and the
security parameter, respectively.

• Low client storage overhead: We introduce Pirex+, an ex-
tended Pirex scheme that features minimal client storage. In
Pirex+, the client only stores O(λ2

√
N)bits of precomputed

data that is independent of the entry size. Thus, it requires
much lower client storage than prior OO-PIR schemes that
require either O(λB

√
N) or O(λB

√
N logN). Concretely,

for 1 TB database with 256 KB entries, Pirex+ requires
709 KB client storage, compared with 11.5 GB-1.3 TB in
prior OO-PIR schemes [20, 35, 60] (i.e., four to six orders
of magnitude smaller). Therefore, Pirex+ is desirable for
clients with limited storage (e.g., mobile).

• Sublinear computational complexity: Pirex retains the
sublinear computation efficiency as in state-of-the-art OO-
PIR schemes. The server only performs O(B

√
N) low-cost

operations (e.g., XOR, modular addition). Also, the client
computation is efficient, where it only invokes a sublinear
number of PRF evaluations and some XOR operations.

• Extremely low end-to-end delay: Thanks to the asymp-
totic communication and computation properties it achieves,
Pirex offers a concretely low end-to-end delay for public
database access. The Pirex design is also simple, where it
only requires simple cryptographic operations (e.g., XOR,
PRF invocations, modular arithmetics). Under real-world
settings, Pirex is up to two orders of magnitudes faster,
where it only takes 0.8s to privately read a 256-KB entry
in 1 TB database compared with 30s-200s in other schemes
(see §6 for more comprehensive experiments).

• Technique: Private Partition Retrieval. An important
building block of Pirex is the design of a Private Partition
Retrieval (PPR) protocol, which permits private retrieval of
an arbitrary entry in a partitioned database in sublinear time.
We developed a concrete PPR instantiation and formally
proved that it achieves the desired security.

Table 1 summarize the performance of our Pirex framework
compared to state-of-the-art OO-PIR schemes. We analyzed
the security of our proposed techniques and rigorously prove
that they satisfy the standard PIR security definition. We fully
implemented all the schemes in our framework and intensively
evaluated their performance on commodity hardware. Experi-
mental results showed that our proposed schemes significantly

2

outperforms state-of-the-art approaches in all online metrics,
especially in the context of large databases with large entry
sizes. Our implementation source code is publicly available
at https://anonymous.4open.science/r/pirex.

1.2 Technical Highlights

Pirex relies on an elegant OO-PIR design blueprint proposed
by Corrigan-Gibbs et al. in [20] (we call it CK20 for brevity).
We briefly present the high-level idea of their scheme, along
with some follow-up attempts (i.e., TreePIR [35]) to improve
the OO-PIR performance. We then outline the limitations of
these works and present our ideas to address such drawbacks.

CK20 [20]. It operates on two non-colluding servers, Left
and Right, with two phases: offline and online. Each server
maintains a replica of a public database DB with N entries.

In the offline phase, the client precomputes M = Õ(
√

N)
hints H = (h1, . . . ,hM), where each hint hi=(Si,ρi) contains
a set of indices Si = (s(i)0 , . . . ,s(i)√

N−1
), s(i)j

$← [N] and an offline
parity ρi =

⊕√N−1
j=0 DB[s(i)j] that is computed by sending the

set Si to the Left server. However, storing H takes O(N log2N)
in space as it takes O(

√
N logN) per set. To reduce this cost,

each Si is represented by a λ-bit PRF/PRP key ski, resulting in
O(M(λ+B)), with B is the entry size. The offline bandwidth
cost is O(M(λ+B)) as M keys are sent to receive M parities.

To retrieve a desired entry DB[x] in the online access, the
idea is to recover DB[x] from (Si,ρi), with x ∈ Si. To do this,
the client sends a punctured set Ŝ = Si \ {x} to the Right
server, which in turn, replies ρ̂ =

⊕√N−2
j=0 DB[ŝ j], with ŝ j ∈ Ŝ.

To recover DB[x], the client computes DB[x] = ρ̂
⊕

ρi. Since
Si is partially exposed to both servers, the hint hi needs to be
replaced with new hint h′ = (S ′,ρ′) using a refresh operation.
The client samples S ′ with x ∈ S ′ using bias sampling. A new
offline parity ρ′ = DB[x]⊕ ρ̂′ is then computed by sending
Ŝ′ = S ′ \{x} to the Left server to obtain ρ̂′ =

⊕√N−2
j=0 DB[ŝ′j].

Notice that Ŝ or Ŝ′ is always created by puncturing out the
desired index x. By receiving Ŝ or Ŝ′, the servers certainly
learn that the entry being privately retrieved by the client is not
the one in Ŝ or Ŝ′, thereby violating PIR security. Therefore,
the client performs a probabilistic puncture where a random
index x′ ̸= x is removed with probability (

√
N−1)
N , which results

in non-negligible failure probability. To ensure correctness,
the client executes O(λ) protocol instances in parallel. Note
that there exists a trade-off in this online protocol, where the
client overhead depends on if the sets are represented by PRF
or PRP keys. For PRF keys, since the PRF outputs are random
in [N], it takes O(M

√
N) to find a set containing index x, but

the outbound bandwidth is reduced to O(λ logN) by sending
a punctured PRF key. For PRP keys, the client lookup time is
reduced to O(M logN), at the cost of O(

√
N logN) outbound

bandwidth since PRP is not puncturable.

TreePIR [35]. To reduce the client outbound bandwidth and
lookup time to O(λ logN) and O(M), respectively, Lazzaretti

and Papamanthou proposed a partition technique combined
with puncturable PRF. DB is divided into

√
N partitions Pj,

j ∈ [
√

N] and Pj covers the range (j
√

N, . . . ,(j+1)
√

N−1).
Each set of indices Si = (s(i)0 , . . . ,s(i)√

N−1
) is generated by PRF

on the output domain [
√

N]. The idea is to sample one index
per partition using a random offset returned by PRF, so that
when checking for an index, the client only needs to look at a
specific partition. To do this, the client creates each Si using an
offset vector ∆∆∆i = (δ

(i)
0 , . . . ,δ

(i)√
N−1

), with δ
(i)
j ← PRF(ski, j),

to compute s(i)j = j
√

N +δ
(i)
j . The offline parity ρi is obtained

by sending ski to the Left server, where ρi =
⊕√N−1

j=0 DB[s(i)j].
In the online, to find which Si contains index x in O(M), the
client computes k =

⌊ x√
N

⌋
, and uses the key ski to check if

x= k
√

N+PRF(ski,k). To recoverDB[x], the client needs the
parity of Si \{x}, which is obtained by sending a punctured
vector ∆∆∆ = (δ0, . . . ,δ√N−2) to the Right server, represented by
a punctured key of size O(λ logN) derived from ski. Since ∆∆∆

has
√

N−1 offsets, there are
√

N possible partitions of x each
corresponding to ∆∆∆ j∗ = (δ0, . . . ,δ j−1,⊥,δ j+1, . . . ,δ√N−1).
The Right server computes ρ̂ j∗ =

⊕√N−1
j ̸= j∗ DB[j

√
N +δ j], for

each possible j∗∈ [
√

N], where ρ̂k is the punctured parity the
client needs to recover DB[x] = ρ̂k⊕ρi. To privately retrieve
ρ̂k, the client can download all

√
N values, or execute another

single-server PIR instance on them (which can be costly). To
refresh the hint, the client samples a new sk′ where x−k

√
N =

PRF(sk′,k), then sends the punctured key to the Left server
to obtain ρ̂′k and compute a new offline parity ρ′ = DB[x]⊕
ρ̂′k. Note that query privacy is guaranteed because the two
servers, by observing a vector ∆∆∆ of

√
N−1 random offsets,

only know the partition of x with 1√
N

probability. Thus, the
scheme only needs one-time execution, instead of O(λ) times
as CK20. However, the client’s inbound bandwidth increases
to O(B

√
N) due to

√
N parities transmission.

Idea 1: Patch the punctured set with a random offset.
To reduce the client’s inbound bandwidth while retaining
the efficient lookup time, we propose a novel patching trick
to support the punctured set and partition composition. We
observe that although partition offers efficient lookup, it incurs
high client bandwidth because the punctured set removes one
offset from a hidden partition, which requires transmitting√

N possible cases to hide that partition. Thus, our idea is to
patch the punctured set with a random offset selected for the
hidden partition as ∆∆∆ = (δ0, . . . ,δk−1,δ

′,δk+1, . . . ,δ√N−1), in
which δ′

$←{0, . . . ,
√

N−1}. Let z← k
√

N +δ′ be the index
correspond to δ′. In this case, the client only needs to obtain
a single patched parity ρ̄ =

(⊕
j ̸=k DB[j

√
N +δ j]

)
⊕DB[z].

While this strategy reduces the client bandwidth to O(1), it
also impacts the reconstruction correctness because the client
will obtain ρ̄⊕ρi = DB[x]⊕DB[z], instead of DB[x].

Idea 2: Retrieve the random patching entry via private
partition retrieval. To address the reconstruction correctness
issue due to patching, we need to somehow privately read
DB[z] to compute ρ̄⊕ ρ̂i⊕DB[z] = DB[x]. As there are only

3

https://anonymous.4open.science/r/pirex

√
N partitions and the offset value δ′ of z in ∆∆∆ is not important

(as long as it is random since it is only used to hide the index
of the punctured partition), we can treat

√
N partitions as

a (logical) database of size
√

N and then employ a standard
XOR-PIR protocol (e.g., [17]) to privately access (an arbitrary
entry in) the punctured partition. Intuitively, suppose the index
of the punctured partition is k and it is represented by a unit
vector e ∈ {0,1}

√
N s.t. e[k] = 1. Let v0,v1 be two random

binary vectors so that v0⊕v1 = e. The client sends a set of
indices Tl = { j

√
N +δ′ : vl [j] = 1, j ∈ [

√
N]} to each server

Sl and receives a corresponding response wl =
⊕

γ∈Tl
DB[γ],

thereby obtaining DB[z] = w0⊕w1. Note that we simplified
how the queries Tl are created to highlight the key idea of
using standard XOR-PIR to privately obtain DB[s]. In fact, Tl
must be created more carefully in a way that when combined
with the query ∆∆∆ in Idea 1, it should not leak any information
about the punctured partition, thereby violating PIR security
(see §4.3 for detail analysis). As standard XOR-PIR incurs
linear processing (w.r.t the database of size

√
N in this case),

the additional server cost is O(
√

N), and hence, this strategy
does not asymptotically increase the complexity of OO-PIR’s
online query protocol overall. Note that the refresh procedure
in OO-PIR follows the similar idea to reduce the inbound
bandwidth, since it also involves sending a punctured set,
which can make uses of our patching technique.

Idea 3: Remote parities storage via oblivious write and
additive homomorphic encryption. OO-PIR paradigm (e.g.,
[19, 20, 32, 34, 35, 54, 60, 61]) requires the client to maintain
at least Ω(λ

√
N) parities ρi computed in offline, where each

ρi has an equal size to the database entry. To reduce client
storage, we propose to store ρi (under IND-CPA encrypted)
remotely on the database server. Since the number of ρi is
sublinear, we can utilize a standard XOR-PIR protocol [17] to
privately read it when needed without worsening the overall
complexity much (see the cost of our Pirex+ in Table 1). The
challenge arises when we refresh the parities given that each
parity can be used only once due to the OO-PIR paradigm.
To refresh securely, we develop an oblivious refresh buffer
based on [51], which temporarily stores refresh parities and
obliviously merges them with the original parities over time.
Another challenge when maintaining the parities remotely is
that they have to be updated when there is a change in the
public database. While private database update is not captured
in PIR security model, the parities must be updated privately
because they are individually formed by aggregating a set
of random database entries together. If an entry changes and
the affected parities are updated insecurely, the server will
learn the index distribution per set, thereby compromising the
privacy of future client’s online queries. To obliviously update
parities, we use Additive Homomorphic Encryption (AHE) to
create an encrypted updated vector (i.e., a binary vector with
elements 1 at update positions), and then delegate the secure
update task to the servers via additive homomorphic property.

Putting it all together. By combining the first two ideas, we
can see that the client’s inbound bandwidth now only contains
a single patched parity ρ̄ and a random patching entry DB[s]
from the punctured partition, obtained by using standard XOR-
PIR, and therefore, the cost is minimal. At the high level, we
can also see that our OO-PIR design is extremely simple
and computationally efficient, where it only incurs simple
XOR operations. We present two OO-PIR schemes. The first
scheme (called Pirex) combines the first two ideas, while the
second scheme (called Pirex+) is an extension that combines
all three ideas together. Compared with Pirex, Pirex+ reduces
the client storage cost from O(λB

√
N) to O(λ2

√
N) at the

cost of having slightly heavier server computation (arithmetic
operations instead of XOR, and an extra of λ factor in the
complexity due to the number of offline parity).

2 PRELIMINARIES & MODELS

Notation. [n] denotes {0,1, . . . ,n− 1}. λ denotes security
parameters and negl(·) refers to negligible functions. x $← [n]
indicates that x is chosen randomly from [n]. PPT refers to
Probabilistic Polynomial Time. We denote ⊕ as the bit-wise
XOR operation between two binary strings a and b of size n,
such that ci = ai⊕ bi for i ∈ [n]. We denote the negation of
bit b as ¬b. We denote Zn as the cyclic group formed by a set
of integers modulo n under the addition. We denote G as an
arbitrary cyclic group with the prime order p, where ⟨1⟩ ∈G
is a random generator and ⟨x⟩ ∈G is a group element that has
a discrete logarithm x ∈ Zp with base ⟨1⟩.
Pseudorandom function. We denote PRF : K × [n]→ [n]
as the pseudorandom function (PRF), where y← PRF(sk,s)
outputs a pseudorandom bit string y ∈ [n] given a PRF key
sk ∈K and a seed s ∈ [n]. A PRF is secure if given security
parameter λ and K ← {0,1}λ, the outputs value y ∈ [n] is
computationally indistinguishable from y′ $← [n].

System model. Our system consists of a client and two
servers S0 and S1. Each server maintains a replica of the
database DB of N entries, each of size B. The servers allow
the client to access an arbitrary entry in DB. Our system is a
two-server OO-PIR scheme defined as follows.

Definition 1. A 2-server OO-PIR scheme is a tuple of PPT
algorithms OO-PIR= (Prep,Query,Answer,Recover):
• H ← Prep(DB,N): Given a database DB and the number

of entries N, it outputs a private hint H .
• (Q0,Q1,H ∗)← Query(x,H): Given an entry index x and

the hint H , it outputs two online queries Q0,Q1 for server
S0, and S1, respecitvely and an updated hint H ∗.

• R i← Answer(Qi,DB): Given an online query Qi and the
database DB, it outputs a response R i.

• (bx,H ′)← Recover(R 0,R 1,H ∗): Given the hint H ∗ and
two responses R 0 and R 1, it outputs the desired data entry
bx and an updated hint H ′.

4

Definition 2 (OO-PIR Correctness). A two-server OO-PIR
scheme is correct if for any DB and hint H ← Prep(DB),
given security parameter λ and an unbound number of prior
queries, there exists a negligible function negl(λ) for any
index x ∈ [N] such that:

Pr

bx ̸= DB[x]

∣∣∣∣∣∣∣∣
(Q0,Q1,H ∗)← Query(x,H)

R 0← Answer(Q0,DB)
R 1← Answer(Q1,DB)

(bx,H ′)← Recover(R 0,R 1,H ∗)

≤ negl(λ)

Threat model. In our system, the client is trusted and the two
servers are semi-honest, meaning that they follow the protocol
but are curious about which database entry is being retrieved
by the client. We assume the two servers do not collude. We
consider static corruption, where an adversary A can corrupt
either server S0 or S1 but can not adaptively switch between
two servers during protocol execution.

Security model. We define the security of our system using
the Ideal/Real simulation paradigm, such that an adversary A
statically corrupting one server learns nothing about the entry
being retrieved. Let F be an ideal functionality that answers
the client’s query honestly. Let S be an ideal simulator that
emulates the views of the real-world adversary. Let Z be the
environment that provides inputs for all entities and receives
corresponding outputs. Z can also get any adversarial views
at any time. We define the Ideal and Real world as follows:

• Ideal: In the offline, on receiving input (DB,N), F notifies
S about the size and content of DB. S then emulates the
adversarial view of offline execution and replies to F with
either ok or ⊥. In the online, on receiving each query index
x, if x ∈ [N], F notifies S about the query event (but not x).
S then emulates the adversarial view of online execution
and replies to F with either ok or ⊥. If S says ok, then F
returns the entry DB[x].

• Real: In the offline, on receiving input (DB,N), the client
honestly executes H ← Prep(DB,N) with the two servers
to obtain a private hint H . In the online, on receiving each
query index x, the client honestly executes (Q0,Q1,H ′)←
Query(x,H) then sends Q0 to server S0 and Q1 to server
S1. Each server Si executes R i ← Answer(Qi,DB) and
returns the response R i. The client executes (bx,H ′)←
Recover(R 0,R 1,H) and obtains the output bx.

Definition 3 (OO-PIR Security). An OO-PIR scheme ΠF is
secure in realizing F if for every PPT real-world adversary A ,
there exists a PPT ideal-world simulator S, such that for all
non-uniform, polynomial-time environment Z, the following
distributions are computationally indistinguishable:

|Pr[REALΠF ,A ,Z(λ)= 1]−Pr[IDEALF ,S,Z(λ)= 1]| ≤ negl(λ)

3 PRIVATE PARTITION RETRIEVAL

We present Private Partition Retrieval (PPR), a technique that
allows the client to privately read (an arbitrary data entry from)
a partition containing m entries in a n-partitioned database
DB, without revealing which partition is of interest.

Definition 4 (Private Partition Retrieval). A 2-server PPR
scheme is a tuple of PPT algorithms PPR= (Gen,Ret,Rec):
• (z,T0,T1)← Gen(m,n,k): Given partition size m, number

of partition n, and partition index k ∈ [n], it outputs two
partition queries T0, T1, and a random chosen index z.

• ri← Ret(Ti,DB): Given a query Ti and the partitioned
database DB, it outputs a response ri.

• bz← Rec(r0,r1): Given two responses r0 and r1, it outputs
the data entry bz at random index z from partition k.

We define the PPR security using the Ideal/Real simulation
paradigm such that an adversary A statically corrupting one
server learns nothing about the partition being accessed. Let
FP be the ideal functionality that honestly return an arbitrary
data entry from the client-chosen partition. Let SP be an ideal
simulator that emulates the views of the real-world adversary.
Let Z be the environment that provides inputs for all entities
and receives the corresponding outputs. Z can also get any
adversarial views at any time. We define the Ideal and Real
world as follows:
• Ideal: In the setup, on receiving input (DB,N) and partition

parameters (m,n), FP notifies SP about the content of DB
and its partition size. SP then replies to FP with either ok or
⊥. For each read access, on receiving a partition index k, FP
notifies SP about the event (but not the partition range). SP
then emulates the adversarial view of execution and replies
to FP with either ok or ⊥. If SP says ok, then FP returns an
arbitrary entry DB[z] from partition k.

• Real: In the setup, on receiving input (DB,N) and partition
parameters (m,n), the servers divide DB into n partitions,
each covers m indices. For each read access, on receiving a
partition index k, the client honestly executes (z,T0,T1)←
Gen(m,n,k) then sends T0 to server S0 and T1 to server S1.
Server Si executes ri← Ret(Ti,DB) and return response ri.
The client executes bz← Rec(r0,r1) to obtain an arbitrary
data entry bz from partition k.

Definition 5 (PPR Security). A PPR scheme ΠFP is secure in
realizing FP if for every PPT real-world adversary A , there
exists a PPT ideal-world simulator SP, such that for all non-
uniform, polynomial-time environment Z, the following dis-
tributions are computationally indistinguishable:

|Pr[REALΠFP ,A ,Z(λ)= 1]−Pr[IDEALFP,SP,Z(λ)= 1]| ≤ negl(λ)

We present a concrete PPR scheme in Figure 1.

Lemma 1. PPR scheme (Figure 1) is secure by Definition 5.

Proof. See Appendix Appendix A.

5

• (z,T0,T1)← PPR.Gen(m,n,k):

1: (δ0, ...,δn−1)
$← [m]n

2: (e0, ...,en−1)
$←{0,1}n

3: (e′0, ...,e
′
n−1)← (e1, ...,en), e′k = ek⊕1

4: z← k ·m+δk
5: T0←{ei · (i ·m+δi) ∀ i ∈ [n]}
6: T1←{e′i · (i ·m+δi) ∀ i ∈ [n]}
7: return (z,T0,T1)

• ri← PPR.Ret(Ti,DB):

1: parse Ti = {p(i)1 , . . . , p(i)n′ }
2: return ri←

⊕ n′
j=1 DB[p(i)j]

• bz← PPR.Rec(r0,r1):
1: return bz← r0⊕ r1

Figure 1: Private Partition Retrieval

4 THE PROPOSED SCHEME

4.1 Data Structures

Our scheme includes a database DB, and a buffer hint H :
• The database DB is an array of N entries and is divided into

n partitions. Each partition Pj covers m indices in range
[j ·m . . .(j+1) ·m−1], for j ∈ [n]. DB is replicated to 2
servers. For simplicity, we assume m = n =

√
N.

• The buffer H consists of M entries to store the precomputed
hints. Each hint hi is a tuple (ℓi,ski,ρi), where ski ∈ {0,1}λ

is a PRF key represents a set of indices Si = {s0, . . . ,sn−1},
ρi =

⊕n−1
j=0 DB[s j] is an offline parity, and ℓi ∈ {0,1} is the

identifier of the server that computed ρi.

4.2 Offline Phase

• H ← Prep(DB,N):
1: for i = 1 to M do
2: ℓi

$←{0,1} and ski←{0,1}λ

3: Si←{(j ·m)+PRF(ski, j) ∀ j ∈ [n]}
4: ρi←

⊕ n−1
j=0 DB[s j] for all s j ∈ Si

5: hi← (ℓi,ski,ρi)
6: return H ← (h1, . . . ,hM)

Figure 2: Pirex - Offline Phase

Executed by Server Sℓi

Figure 2 illustrates how the offline phase works. Given a
database DB of size N, the client runs a one-time setup with
server S0 and S1 to prepare a set H of M hints. The idea is
to have each hint hi ∈H contain a key ski representing a set
Si of n indices that has a corresponding offline parity ρi. To
do this, the client samples M PRF keys (sk1, . . . ,skM), then
sends each key ski to a random server Sℓi ∈ {S0,S1}. This
is because in our online phase, the client sends two queries
to two servers to privately retrieve a data entry, where one
server receives a real query, while the other server receives

a dummy query (if it is the one that created the offline hint
for that desired online entry previously). Thus, selecting a
random server to compute the hint in the offline phase ensures
each server can not distinguish whether it receives the real
or dummy query in the online phase. Upon receiving each
key ski, server Sℓi generates the set Si = {s0, . . . ,sn−1}, where
each index s j is in partition Pj and s j = (j ·m)+PRF(ski, j)
(line 3). Given the set Si, server Sℓi computes and returns
an offline parity ρi←

⊕n−1
j=0 DB[s j] (line 4). On receiving M

offline parities, the client finalizes the set of hints H , where
hint hi = (ℓi,ski,ρi) reflects that server Sℓi used the key ski to
compute the offline parity ρi (lines 5-6).

4.3 Online Phase

• (Q0,Q1,H ∗)←Query(x,H):

1: parse H = (h1, . . . ,hM)
2: Let partition index k←

⌊ x
m

⌋
3: Search hi = (ℓi,ski,ρi) where x = (k ·m)+PRF(ski,k)
4: Si←{(j ·m)+PRF(ski, j) ∀ j ∈ [n]}
5: (Q̂0, Q̂1)← SubQuery(x, ℓi,Si)
6: Sample new server identifier ℓ′ $←{0,1}
7: Sample sk′ $←{0,1}λ where x = (k ·m)+PRF(sk′,k)
8: S ′←{(j ·m)+PRF(sk′, j) ∀ j ∈ [n]}
9: (Q̂′0, Q̂

′
1)← SubQuery(x,¬ℓ′,S ′)

10: Q0← (Q̂0, Q̂′0), Q1← (Q̂1, Q̂′1)
11: H ∗← (h1, . . . ,hi, . . . ,hM ,h′) where h′← (ℓ′,sk′,⊥)
12: return (Q0,Q1,H ∗)

• (Q̂0, Q̂1)← SubQuery(x, ℓ,S):
1: (z,T0,T1)← PPR.Gen(m,n,k) where k←

⌊ x
m

⌋
2: Let S̄← S \{x}∪{z}
3: if z ∈ T0 then
4: T (z)← T0 and T ← T1
5: else
6: T (z)← T1 and T ← T0

7: Sample (δ0, ...,δn−1)
$← [m]n

8: Let S̃ ←{(i ·m)+δi ∀ i ∈ [n]}
9: Let Q̂ℓ← (S̃ ,T (z)) and Q̂¬ℓ← (S̄,T)

10: return (Q̂0, Q̂1)

Figure 3: Pirex - Online Phase: Query

To privately retrieve a data entry DB[x], the client invokes
the Query algorithm that uses the hint H to create queries
Q0 and Q1 to server S0 and S1. The algorithm performs two
actions. It first creates two data queries Q̂0 and Q̂1 such that
when combining the responses with a particular hint hi ∈H ,
DB[x] will be recovered (lines 3-5). It then creates two refresh
queries Q̂′0 and Q̂′1 that permits the client to refresh hi by
creating a new hint h′ in place of hi (lines 6-9). This is because
after hi is used to recover DB[x], it cannot be reused for the
security of future queries.

To search for the hint hi = (ℓi,ski,ρi), the client computes
the partition k =

⌊ x
m

⌋
and checks if x = (k ·m)+PRF(ski,k).

To recover DB[x], the client needs a punctured parity ρ̂i so
that DB[x] = ρi ⊕ ρ̂i. Since ρi =

⊕n
j=1DB[s j], for s j ∈ Si

6

generated by ski, this only holds if ρ̂i =
⊕n−1

j=1 DB[ŝ j], with
ŝ j ∈ Ŝ and Ŝ = Si \{x}. However, sending the punctured set
Ŝ of (n−1) indices leaks the partition Pk, which permits the
adversary to learn the range of x. To prevent this leakage, our
idea is to patch Ŝ with a random index z ∈ Pk, such that the
client can still obtain the punctured parity ρ̂i. This results in
a patched set S̄ = {s̄1, . . . , s̄n}= Ŝ∪{z} which has a patched
parity ρ̄ =

⊕n
j=1DB[s̄ j] = ρ̂i⊕DB[z]. To obtain ρ̂i, the client

needs the random patch DB[z]. We will incorporate our PPR
protocol to randomly sample z ∈ Pk and privately read DB[z]
without leaking the partition Pk.

To patch Ŝ so that ρ̄ and DB[z] can be securely obtained, the
client invokes SubQuery algorithm. The client first generates
a random index z ∈ Pk and two corresponding PPR queries
by invoking (z,T0,T1)← PPR.Gen(m,n,k) (line 1). By PPR
correctness, sending T0 and T1 to the servers permits private
retrieval of DB[z]. Note that to obtain ρ̄, the client also needs
to send the patched set S̄ = Ŝ ∪ {z} to a server. Thus, we
need to analyze the possible leakages when distributing three
sets T0,T1 and S̄ to two servers. Let T (z) ∈ {T0,T1} be the
PPR query that z ∈ T (z) and T be the remaining PPR query
where z /∈ T . Remark that for hint hi, the identifier ℓi ∈ {0,1}
reflects that server Sℓi knew the set Si that was used to create
the offline parity ρi. For security, the client must send the
patched set S̄ to the other server S¬ℓi . Since z ∈ S̄, it is vital
to ensure S¬ℓi will not receive T (z) since there is a common
z in S̄ and T (z). In this case, server S¬ℓi receives (S̄,T) and
server Sℓi receives T (z). However, a server can distinguish if it
receives (S̄,T) or T (z). In either case, the servers learn a set of
partitions that are certainly not client interest, which violates
PIR security. To fix this, we create an arbitrary random set
S̃ to send along with T (z), which makes (S̄,T) and (S̃ ,T (z))
indistinguishable. To this end, the queries to servers S¬ℓi and
Sℓi are Q̂¬ℓi = (S̄,T) and Q̂ℓi = (S̃ ,T (z)), respectively.

To create the new hint h′, the client samples a new PRF
key sk′ such that x ∈ S ′, with S ′ = (s′1, . . . ,s

′
n) is generated

by the key sk′. This is to preserve the distribution of the set
H , since hi was consumed subject to recovering DB[x]. To
create a new offline parity ρ′ =

⊕n
j=1DB[s

′
j], the client needs

a punctured parity ρ̂′ so that ρ′ = ρ̂′⊕DB[x]. Since DB[x] will
be obtained from the data queries (Q̂ℓi and Q̂¬ℓi), the above
only holds if ρ̂′ =

⊕n
j=1DB[ŝ

′
j] with ŝ′j ∈ Ŝ′ and Ŝ′ = S ′ \{x}.

To obtain ρ̂′, the client needs to send the punctured set Ŝ′ to
the server. Since this is similar to sending Ŝ above, the client
invokes SubQuery. It creates two refresh queries that contain
a patched set S̄′ and two partition sets, which permits the
client to obtain ρ̂′. Remark that similar to the offline phase,
the set S̄′ must be sent to a random server Sℓ′ ∈ {S0,S1} when
computing the new hint. Thus, the refresh queries are Q̂′ℓ′ and
Q̂′¬ℓ′ such that S̄′ ∈ Q̂′ℓ′ . To this end, the client distributes the
data queries Q̂ℓi , Q̂¬ℓi and the refresh queries Q̂′ℓ′ , Q̂′¬ℓ′ to the
corresponding server.

On receiving a query Qi = ((S ,T),(S ′,T ′)), each server

• R i← Answer(Qi,DB):

1: parse Qi = ((S ,T),(S ′,T ′))
2: ρ̄ ←

⊕ n
j=1 DB[s j] for all s j ∈ S

3: ρ̄′←
⊕ n

j=1 DB[s′j] for all s′j ∈ S ′
4: w ← PPR.Ret(T ,DB)
5: w′← PPR.Ret(T ′,DB)
6: return R i← ((ρ̄,w),(ρ̄′,w′))

Figure 4: Pirex - Online Phase: Answer

Si ∈ {S0,S1} parses the sets S and S ′ to compute the patched
parity ρ̄ and ρ̄′ respectively (lines 1-3). For partition sets
T and T ′, server Si computes w← PPR.Ret(T ,DB) and
w′ ← PPR.Ret(T ′,DB) (lines 4-5). Server Si then returns
the final answer R i = ((ρ̄,w),(ρ̄′,w′)) (line 5).

• (bx,H ′)← Recover(R 0,R 1,H ∗):
1: parse R 0 = ((ρ̄0,w0),(ρ̄

′
0,w
′
0)), R 1 = ((ρ̄1,w1),(ρ̄

′
1,w
′
1))

2: parse H ∗ = (h1, . . . ,hi, . . . ,hM ,h′)
3: parse hi = (ℓi,ski,ρi)
4: bx← bz⊕ρi⊕ ρ̄¬ℓi where bz← PPR.Rec(w0,w1)
5: parse h′ = (ℓ′,sk′,⊥)
6: ρ′← b′z⊕bx⊕ ρ̄′ℓ′ where b′z← PPR.Rec(w′0,w

′
1)

7: h′ ← (ℓ′,sk′,ρ′)
8: H ′← (h1, . . . ,hi−1,h′,hi+1, . . . ,hM)
9: return (bx,H ′)

Figure 5: Pirex - Online Phase: Recover

On receiving responses R 0 and R 1, the client can recover
DB[x] using the tuples (ρ̄0,w0) and (ρ̄1,w1). The client first
computes bz←PPR.Rec(w0,w1). Using hint hi = (ℓi,ski,ρi),
the client knows the punctured parity ρ̂i must be derived
from the patched parity ρ̄¬ℓi ∈ R ¬ℓi (since ρi was created by
server Sℓi). The client computes ρ̂i = ρ̄¬ℓi ⊕bz, and retrieves
DB[x] = ρi⊕ ρ̂i. Similarly, to get a new offline parity ρ′, the
client uses the remaining tuples (ρ̄′0,w

′
0) and (ρ̄′1,w

′
1) from

the responses. The client obtains another b′z = w′0⊕w′1. Since
h′ contains the identifier ℓ′ that reflects the patched parity
ρ̄′ℓ′ was created by server Sℓ′ , the client uses ρ̄′ℓ′ to derive
ρ′ =DB[x]⊕b′z⊕ ρ̄′ℓ′ . The client forms (ℓ′,sk′,ρ′) as the new
hint h′ in place of the consumed hi.

4.4 Analysis

We state the correctness and security of Pirex as follows.

Theorem 1. By setting the hint size M = O(α
√

N), with α =
min(λ, logN), Pirex achieves the correctness by Definition 2.

Proof (sketch). To ensure correctness, the offline hints must
cover all N database entries. Each offline hint is created by
aggregating

√
N random entries sampled from

√
N partitions

(one entry per partition). That means to cover all N entries, the
offline hints must cover all

√
N offsets in each partition of the

database. Since all partitions are independent, we can apply
the classic Coupon Collector Problem [42] to each partition to

7

prove that the expected sampling number is O(
√

N log
√

N)
to cover

√
N offsets within the partition (Lemma 2.10 in [42]).

Therefore, in general, it suffices to set the number of hints as
M = O(

√
N logN) to cover all offsets in all partitions, thereby

N database entries. Lazzaretti et al. (Section 4.2 of [35])
proved that for large N, M = O(λ

√
N) suffices to cover all N

database entries except with negligible failure probability.

Theorem 2. Pirex is secure by Definition 3.

Proof. See Appendix Appendix B

Complexity. We analyze the complexity of Pirex with the
parameters including the number of database entries (N), the
entry size (B), and the security parameter (λ). We consider
M = O(λ

√
N) for arbitrarily large N.

• Offline cost: For communication, the client sends λ
√

N
PRF keys to the servers for PRF representation and receives
λ
√

N parities correspondingly. As each PRF key is of size
λ-bit and the parity size equals the data entry size, the client
inbound (resp. outbound) bandwidth cost is O(Bλ

√
N) (resp.

O(λ2
√

N)). The total bandwidth is O(λ
√

N(λ+B)).
For computation, the client performs a total of O(λ

√
N)

PRF invocations to generate the PRF keys. For each PRS,
the server performs O(

√
N) PRF evaluations and O(

√
N)

XOR operations on O(
√

N) B-bit data entries. Since there
are O(λ

√
N) PRS, the total server offline computation cost is

O(λN) PRF evaluations and O(BλN) XOR operations.
• Online cost: For each online retrieval, the client sends

two queries (data and refresh) to each server. Each query
contains a vector of

√
N offsets and a set of O(

√
N) partition

indices. As each offset/index can be represented by O(logN)
bits, the client outbound bandwidth is O(

√
N logN). Each

server responds to each client query with two aggregated
results, each of size B-bit. Thus, the client inbound bandwidth
cost is O(B). The total bandwidth is O(

√
N logN +B).

For computation, the client performs at most O(λ
√

N) PRF
evaluations, since there are O(λ

√
N) hints and each hint hi

needs O(1) PRF evaluation and O(1) comparison to check if
hi contains the desired entry index. To refresh, it also takes
the client O(1) PRF invocation to generate a new PRF key in
place of the consumed one. To recover the desired entry (or
refresh a new parity), the client incurs O(1) XOR operation
on three B-bit entries. Thus, the total client computation is
O(λ
√

N) PRF evaluations and O(1) XOR operations.
On the server side, each data or refresh query (consisting

of
√

N offsets and O(
√

N) partition indices) incurs O(
√

N)
XOR operations on B-bit data entries to obtain two aggregated
results. Therefore, the server computation is O(B

√
N).

• Storage cost: Each server takes no extra cost besides the
database storage, so the server storage is O(NB). The client
stores λ

√
N precomputed hints, where each hint contains a

λ-bit PRF key, a server indicator variable, and an offline B-bit
parity. Thus, the total client storage is O(λ

√
N(λ+B)).

5 REDUCING CLIENT STORAGE

Although our Pirex offers an efficient bandwidth overhead
that is independent of the data entry size, its client storage
still depends on the entry size and, therefore, is significant.
Specifically, the client storage cost is O(λ

√
N(λ+B)) since

there are M = O(λ
√

N) hint entries, each contains a λ-bit
PRS key and a B-bit parity. In this section, we propose Pirex+,
an extended scheme based on Pirex that reduces the client
storage cost with a slight impact on the overall complexity.

Remote parity storage. To reduce client storage, our idea is
to maintain the offline parity components (ρi) on the server.
In this case, we encrypt the parities with an IND-CPA encryp-
tion scheme to prevent the server from learning the private
pseudorandom set from the parities in advance. Since there
are only O(λ

√
N) offline parities, the standard 2-server XOR-

PIR can be used to privately read the desired parity during the
online phase without incurring much extra overhead. Remark
that the consumed hint also needs to be refreshed to maintain
the distribution of the pseudorandom sets for future requests.
Given part of the hints (parity) is stored remotely, the refresh
operation must be performed obliviously for security.

Oblivious refresh. To perform oblivious refresh, we make
use of oblivious write in [51]. Thus, we make the following
changes to the data structures of the client and server in the
Pirex scheme to support private remote parity maintenance:
• Server: Apart from the database DB as in Pirex, each

server maintains a replica of a 2M-sized parity buffer
P = (Pleft,Pright), where Pleft is used to store M offline
parities and Pright can temporarily store up to M refresh
parities obtained in the online phase.

• Client: The client maintains a hint buffer H = (h1, . . . ,hM)
as in Pirex. However, each hint hi = (ℓi,ski,πi) contains
a new component π∈ [2M], denoting the location of the
corresponding offline parity in the buffer P at the servers.

Let H = (h1, . . . ,hM) be the client hint buffer and P be the
parity buffer that the server maintains after offline processing.
Each offline parity ρi corresponding to hi is stored at P[hi.π] =
Pleft[i] for i ∈ [M]. In the online phase, suppose that a parity
ρi ∈ Pleft[i] corresponding to hi = (ℓi,ski,πi) is consumed to
recover a desired data entry. Let ρ′ be the refresh parity. To
replace ρi, the idea is to have the client perform deterministic
write operations on the two regions (Pleft, Pright) of the buffer
P. Suppose the current refresh is the c-th refresh operation
(mod M). The client writes ρ′ to the c-th location in Pright as
Pright[c]← ρ′, and stores its temporary location πi := c+M.

Due to the round-robin schedule, Pright can be full after M
refreshes, which makes the next refresh operation overwrite
some hints that were previously stored in Pright. To overcome
this issue, we let the client perform another deterministic write
on Pleft, which obliviously transfers parities from Pright to Pleft.
Specifically, at the c-th refresh round, the client also writes to
Pleft[c] a parity corresponds to the hint hc = (ℓc,skc,πc). Such

8

parity is located at either Pleft[c] or P[πc] = Pright[πc−M].
Thus, the client performs a standard 2-server XOR-PIR to
privately read the parity in P[πc] without revealing its location
and then write it to Pleft[c]. To this end, the client updates its
new location to πc := c.

The above strategy ensures that, for every position in Pright,
the refresh parity will be moved to Pleft before it is overwritten.
This is because it will take M additional refresh operations to
revisit the same position in Pright again, which, by that time,
all M positions in the Pleft have already been updated with
the new parities. Thus, for any consumed parity ρi ∈ Pleft[i],
it will eventually be replaced by a new one ρ′ after M rounds.

Supporting database update. In real-world scenarios, the
public database can be updated. Although private database
update is not captured in the PIR security, it is necessary
to update the precomputed hints in OO-PIR to maintain the
correctness. In Pirex+, since the parity components of the hints
are stored at the server, the update must be done obliviously.
Otherwise, the server learns which parities are associated with
the updated entry. After several updates, the server will learn
the index distribution of each private pseudorandom set that
was used to construct the offline parities, thereby violating the
security of OO-PIR, which only holds if the pseudorandom
sets are revealed once to each server in the online phase.

To privately update the parities according to the database
update, a simple method is to incorporate standard XOR-PIR
and oblivious write similar to the oblivious refresh discussed
above. However, unlike the refresh operation which updates
only a single parity, a database update can require multiple
parities to be updated since each data entry contributes in O(λ)
offline hints. Thus, this method will incur high computation
and communication costs (i.e., O(Bλ2

√
N) XOR operations

and O(Bλ) bandwidth). To reduce this overhead, our solution
is to incorporate Additive Homomorphic Encryption (AHE),
in which the client can delegate oblivious update to the server.

Building block: Additive Homomorphic Encryption. AHE
[21] permits the messages to be encrypted in a way that their
ciphertexts can be homomorphically evaluated. Given a cyclic
group G of order p, an AHE scheme over G contains the
following PPT algorithms:
• (pk,sk)← AHE.Gen(1λ): Given a security parameter λ, it

outputs a pair of public and private keys (pk,sk).
• ⟨m⟩ ← AHE.Enc(sk,m): Given a message m ∈ Zp and a

public key pk, it outputs a ciphertext ⟨m⟩.
• m← AHE.Dec(sk,⟨m⟩): Given a ciphertext ⟨m⟩ and the

private key sk, it outputs a plaintext m ∈ Zp.
Let ⊞ and � be the group addition and scalar multiplication

over the cyclic group G. Given m,m′ ∈ Zp, AHE offers the
following additive homomorphic properties:

AHE.Enc(pk,m)⊞AHE.Enc(pk,m′) = AHE.Enc(pk,m+m′)
AHE.Enc(pk,m)� m′ = AHE.Enc(pk,m ·m′)

In Pirex+, we employ additive homomorphism in AHE

to update the parities stored in the buffer P w.r.t database
update as follows. Suppose the x-th entry DB[x] is being
updated. As the buffer P is of size 2M, the client first creates
a binary vector e ∈ {0,1}2M , where e[i] = 1 if DB[x] ∈ P[i],
otherwise e[i] = 0. The client encrypts vector e with AHE
as ⟨e⟩ ← AHE.Enc(pk,e), where pk is its public key. Let
⟨p⟩= (⟨ρ1⟩, . . . ,⟨ρ2M⟩) be the vector that contains encrypted
parities from the buffer, with ⟨ρi⟩ ← AHE.Enc(pk,P[i]). The
client sends the encrypted vector ⟨e⟩ to the server. Let b be
the new data payload and ε = b−DB[x]. The server updates
the parity buffer by evaluating the homomorphic addition and
scalar multiplication as

⟨p′⟩ := ⟨p⟩⊞ ⟨e⟩� ε

Since ⟨e⟩ contains 2M group elements, it is easy to see that
the total bandwidth cost is O(λ2

√
N), which is independent

of the entry size. The server computation overhead includes
O(λ
√

N) group additions and scalar multiplications.
Note that to fully incorporate AHE into Pirex+, we also

make necessary changes to the algebraic operations when
computing the offline parities (e.g., XOR to modular addition).
Due to space constraints, we present the detailed algorithm of
Pirex+ in Appendix C. Concretely, we instantiate Pirex+ with
an efficient AHE scheme, e.g., exponential ElGamal [21]. As
exponential ElGamal uses a discrete log solver for decryption,
it only permits a small size of plaintext (e.g., |q|= 16 or 32
bits). This can be adapted by splitting a parity ρi into |q|-
bit chunks and separately encrypting each chunk. Therefore,
each XOR operation on B-bit data entry (when computing the
parity in Pirex) will be substituted with B

q modular additions
on |q|-bit data chunks. To encrypt a B-bit parity, it also takes
B
q AHE encryption invocations.

Complexity. We analyze the complexity of Pirex+, where
the chunk size q is assumed to be constant. In the offline, the
server incurs O(λN) PRS evaluations and O(B

q λN) modular
additions (instead of XOR as in Pirex). The client invokes
O(B

q λ
√

N) additional AHE encryptions to encrypt the parity
buffer P. In total, the client incurs O(λ

√
N) PRS generation

and O(Bλ
√

N) AHE encryption. As P is maintained at the
server, the client incurs O(λ

√
N(λ+B)) bandwidth to send

the PRS keys and upload the parity buffer to the server.
In the online phase, the server in Pirex+ incurs O(B

q

√
N)

modular additions on |q|-bit parity chunks (instead of B-bit
XOR operations as in Pirex). In addition, the server performs
O(λ
√

N) XOR operations due to the 2-server XOR-PIR for
offline parity retrieval. In total, the server performs O(B

√
N)

modular additions and O(Bλ
√

N) XOR operations. Mean-
while, the client executes O(λ

√
N) random bit generation,

O(λ
√

N) PRS evaluations, and O(B
q) AHE decryptions plus

O(B
q) modular additions (instead of XOR as in Pirex) for data

entry recovery. The client bandwidth is O(B) since only eight
extra parities are transmitted (four received/sent).

For a database update, the client incurs O(λ2
√

N) outbound

9

bandwidth for the AHE-encrypted binary vector. To update
P, the server performs O(B

q λ
√

N) scalar multiplications and
group additions on |q|-bit parity chunks. Thus, the server cost
per database item update is O(Bλ

√
N).

Security. We state the security of Pirex+ as follows.

Theorem 3. Pirex+ is secure by Definition 3.

Proof. See Appendix Appendix D.

6 EXPERIMENTAL EVALUATION

6.1 Implementation

We fully implemented all our proposed schemes in rust. We
used libraries from the crates.io registry to implement the
following functionalities: For PRF, we used aes crate, which
supports AES-NI instruction set for low-level AES parallel
block processing. To optimize bitwise operations, we used
packed_simd crate, which uses SIMD instruction to load a
data chunk of 256 bytes onto the register per single XOR.
For efficient memory access in the server database and client
storage, we used memmap crate, which allows us to map the
entire data files directly into the OS memory. For network
communication between the client and the servers, we used
TcpStream from the standard std::net module. For Pirex+,
we implemented exponential ElGamal using libsecp256k1
[3], which has secp256k1 crate as the standard rust wrapper.
For exponential ElGamal decryption, we used Shank’s Baby-
Step Giant-Step [53] to implement the discrete log solver.
Our code is anonymously available at https://anonymous.
4open.science/r/pirex.

6.2 Configuration

Hardware & network setting. For the client side, we used a
2023 MacBook Pro with Apple M2 @ 3.5 GHz, 32 GB RAM.
For the server side, we created two virtual servers on a Dell
PowerEdge R750 with 48-core Intel Xeon 8360Y @ 2.4 GHz,
1 TB RAM, 1.5 TB SSD. Note that we only use a few physical
cores for each virtual server. The network bandwidth between
the client and servers is around 40 Mbps with 7ms round-trip.

Database. To measure the performance, we used databases
with different sizes ranging from 1GB to 1TB. We chose three
different entry sizes including 4 KB, 64 KB, and 256 KB. The
number of database entries N varies from 212 to 228 depending
on the total size of the benchmarked database.

Multi-threading parallelization. We used up to 8 threads in
the server for the offline phase to match the implementation
of our counterpart (i.e. Piano [60]). In the online phase, all
the server computation was processed by a single thread.

Counterpart comparison. We compare the performance
of Pirex and Pirex+ with state-of-the-art OO-PIRs including

CK20 [20], TreePIR [35], and Piano [60]. We selected the
parameters for each scheme as follows.
• Pirex/Pirex+ : For our PRS, we used 128-bit PRF keys. For

correctness, we set M =
√

N logN as the number of offline
hints by Theorem 1. For Pirex+, we selected standard param-
eters for secp256k1 curve including 256-bit prime order and
the base field p = 2256−232−977. We divided each offline
parity into 16-bit chunks for homomorphic encryption.

• CK20 [20]: We used 128-bit PRF keys for its PRS building
block. We consider λ = 128 parallel executions of protocol
instance and the number of offline hints to be M =

√
N logN

for correctness as originally suggested.
• TreePIR [35]: We used 128-bit keys for puncturable PRF

and set the number of hints M =
√

N logN for correctness.
• Piano [60]: We used 128-bit PRF keys. Unlike TreePIR,

CK20, or Pirex, Piano requires rebuilding offline hints after
Q =

√
N lnN online phases. We follow its suggestion to

set the number of primary hints M1 =
√

N(ln(2)κ+ ln(Q)),
the number of backup hints M2 = 3

√
N lnN, where κ = 40

is the chosen statistical security parameter for negligible
failure probability. We measure its online performance with
the amortized rebuild cost.

6.3 Results

Online bandwidth. Figure 6 illustrates the client online
bandwidth cost of our schemes compared with other works.
Pirex achieves the lowest bandwidth among all, where it is
around 164×−542× times smaller than Piano and TreePIR
when performing on a 1TB database, depending on the chosen
entry sizes. This is because our online bandwidth overhead is
independent of database size. The client downloads a constant
of eight parities, which is equivalent to 32/512/2048-KB to
access a 4/64/256-KB entry, respectively. Meanwhile, Piano
(resp. TreePIR) requires O(

√
N) parities to be downloaded,

which costs from 69MB (resp. 131MB) to 558 MB (resp.
1 GB) of bandwidth for a 1TB database depending on the
entry size. Thus, when comparing with Piano and TreePIR in
terms of larger databases with larger entry sizes (218 to 224

entries of 64KB, for example), Pirex saves the client more than
98% of the inbound bandwidth. In CK20, although the client
downloads a constant of 256 parities per online query (due to
128 online instances executing in parallel), its concrete cost
is about 35× larger than Pirex for all test cases. For databases
with large entry sizes (218 to 224 entries of 64KB, and more),
Pirex reduces around 96% of the client’s inbound bandwidth.

Pirex+ incurs slightly higher client bandwidth than Pirex.
This is because the client needs to privately read two offline
parities with XOR-PIR (i.e., one for online access, one for
preventing buffer overflow) and rewrite a refresh parity to
the parity buffer P. Compared with Pirex, Pirex+ requires
transmitting eight extra parities. Similar to Pirex, the inbound
bandwidth cost of Pirex+ does not depend on the number of

10

https://anonymous.4open.science/r/pirex
https://anonymous.4open.science/r/pirex

218 220 222 224 226 228

102

103

104

105

106

107

DB entries (4 KB)

B
an

dw
id

th
(K

B
)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

214 216 218 220 222 224
102

103

104

105

106

107

DB entries (64 KB)

B
an

dw
id

th
(K

B
)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

212 214 216 218 220 222
103

104

105

106

107

DB entries (256 KB)

B
an

dw
id

th
(K

B
)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

Figure 6: Client online bandwidth overhead.

218 220 222 224 226 228
101

102

103

104

105

106

DB entries (4 KB)

D
el

ay
(m

s)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

214 216 218 220 222 224

102

103

104

105

106

107

DB entries (64 KB)

D
el

ay
(m

s)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

212 214 216 218 220 222

103

104

105

106

107

DB entries (256 KB)

D
el

ay
(m

s)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

Figure 7: Online end-to-end delay.

4 8 16 32 64 128 256
102

103

104

105

106

107

Entry size (KB)

B
an

dw
id

th
(K

B
)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

Figure 8: Online bandwidth (w/ fixed 224 entries).

database entries, and thus, is significantly lower than other
schemes. We report the client bandwidth of all schemes in
Figure 8 with varied entry sizes on a database with 224 entries.

Online end-to-end delay. Figure 7 illustrates the concrete
end-to-end delay of Pirex and Pirex+ compared with CK20,
TreePIR, and Piano. We can see that Pirex incurs a minimal
delay with varied database and entry sizes. Specifically, it
takes only 804ms for Pirex to access a 256 KB entry on a
DB with 222 records. This is approximately 116×, 273×, and
41× times faster than Piano, TreePIR, and CK20, respectively,
which can take from 30s (CK20) to more than 90s (Piano,
TreePIR) to access an entry. The high delay of Piano and
TreePIR is mainly due to the cost of downloading O(

√
N)

entries (compared with O(1) in Pirex and Pirex+). Meanwhile,
CK20 requires executing 128 protocol instances in parallel,
which incurs high bandwidth and computation at both client

and server. For example, with a 1 TB database with 222 entries
of size 256 KB, our client and server computation is only
around 7.5ms and 353ms, respectively. Meanwhile, this takes
about 1s of client times and more than 30s of server times for
CK20. On average, the client computation in Pirex is about
100×-150× faster than CK20, and the server computation is
about 20×-30× faster than CK20.

The end-to-end delay of Pirex+ is at most 17× higher than
Pirex yet it is 3×, 32×, 60× (e.g. on 64 KB entry size database
with 224 entries) lower than CK20, Piano, and TreePIR, re-
spectively. For increasing database size, the gap between
Pirex+ and Piano/TreePIR will be more significant. Note that
the differences in delay between Pirex+ and Pirex are due
to the extra operations, which include retrieving the offline
parities and decrypting them by solving the discrete logs.
However, since each parity is encrypted with 16-bit chunks,
the cost to solve discrete log with baby-step giant-step is not
significant, where it takes under 1s (for decrypting a 256 KB
parity) (see cost breakdown below). Thus, the main difference
mostly stems from the extra four encrypted parities being
downloaded (by using XOR-PIR) and the XOR computation
that the servers perform on O(N logN) encrypted parities.

Cost breakdown. We dissect the delay of Pirex and Pirex+ to
investigate what factors impact the most to the performance.
• Pirex: Figure 9 illustrates the detailed cost of Pirex for

1 GB-1 TB databases with 4 KB, 64 KB, and 256 KB entry
sizes, respectively. There are three main factors contributing
to the delay of Pirex including the client computation, the
server processing, and the communication latency. The client

11

218 220 222 224 226 228
0

50

100

150

DB entries (4 KB)

D
el

ay
(m

s)

Client computation Server computation Communication

214 216 218 220 222 224
0

100

200

300

DB entries (64 KB)

212 214 216 218 220 222
0

200

450

700

DB entries (256 KB)

Figure 9: Cost breakdown of Pirex (online phase).

overhead in Pirex is negligible, taking up merely 35 ms, thus,
only contributing 1%-16% to the total delay (which therefore
is hard to observe in Figure 9). The client performs three main
operations: (i) looking up a hint, (2) creating an online query,
and (3) recovering the database entry. Looking up a hint is
fast as the client only performs one PRF evaluation for each
PRF key, and there are

√
N logN keys in total. Recovering

the entry (and refreshing hint) only incurs XOR processing
on eight parities responded from the server.

The server computation in Pirex is efficient, where it only
takes 200ms to 350ms in large databases (224 entries of 64 KB
and 222 entries of 256 KB, respectively), thus contributing up
to approximately 45% in average of the online delay. The
server cost mainly stems from performing XOR operations
on
√

N data entries. In Pirex, each query contains patched
sets and partition sets, for which the set sizes are at most

√
N.

Therefore, the amount of XOR operations performed by the
server is sublinear to the database size and linear to the entry
size. For a database with 228 entries of size 4KB, Pirex takes
only 84ms for end-to-end server computation.

Communication is the most dominating factor in the delay.
However, as Pirex features constant bandwidth, this latency
remains constant for each setting of entry sizes. With 40 Mbps
network bandwidth configuration, Pirex takes around 105ms
and 440ms to get eight parities of sizes 64 KB and 256 KB,
respectively. For the databases with a small entry size (4 KB),
the query size can outweigh the parity transmission size. With
228 entries, the client needs to send 214 offsets to get a parity,
where the concrete size of the offsets is approximately 30 KB.
Therefore, the communication latency incurs approximately
from 10ms to 60ms (respectively for databases with 218 to
228 entries) when the entry size is small (e.g. 4 KB).
• Pirex+: Figure 10 illustrates the detailed cost of Pirex+.

Unlike Pirex, the client cost in Pirex+ is noticeable for large
entry sizes (64 KB or 256 KB). This cost is mostly attributed
to the re-encryption of two offline parities, which takes about
555ms for 64 KB parities and 2s for 256 KB parities. The
server processing is the most dominating factor, where it takes
from 100ms to 5s, attributing 20%-60% of the total delay.
This is because the two servers perform an extra oblivious
refresh on the offline hints. The computation involves XOR
operations on the encrypted parity buffer of size

√
N logN,

218 220 222 224 226 228
0

1

3

5

DB entries (4 KB)

D
el

ay
(s

ec
)

Client computation Server computation Communication

214 216 218 220 222 224
0
1

3

5

7

DB entries (64 KB)

212 214 216 218 220 222
0

3

6

9

12

DB entries (256 KB)

Figure 10: Cost breakdown of Pirex+ (online phase).

212 214 216 218 220 222

103

106

109

DB entries
A

m
ou

nt
(K

B
)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

Figure 11: Client storage cost (B = 256KB).

where each entry is 16× larger than a database entry size due
to AHE ciphertext expansion. Thus, the amount of data to be
processed is 16logN× larger than Pirex. However, this gap
is constant as illustrated by a growth with a small slope.

Storage. We report the client storage cost of Pirex /Pirex+ and
counterparts in Figure 11. Pirex+ permits extremely low client
storage compared with other schemes. With 256 KB entries,
Pirex+ incurs four to six orders of magnitudes smaller client
storage than Pirex, TreePIR, Piano, and CK20. Concretely,
the client in Pirex+ only stores about 12 KB-700 KB sizes of
PRF keys (for 222 256-KB DB entries) compared with 11 GB-
1.3 TB in other schemes due to PRF keys and offline parities.
Due to ciphertext expansion and oblivious write buffer, the
extra server storage to maintain the encrypted offline parities
in Pirex+ is approximately 369 GB for 1 TB DB.

Offline cost. Figure 12 reports the offline cost of Pirex and
Pirex+ with other counterparts. Pirex features a comparable
overhead to TreePIR, taking 7s-2600s to preprocess up to
1 TB database (with varied entry sizes). Piano requires entire
database streaming to compute the offline hints and, therefore,
its offline delay is 78×-571× higher than Pirex and TreePIR.
CK20 requires 128 instances in parallel so its preprocessing
is 128× slower than Pirex and TreePIR. On the other hand,
Pirex+ incurs 20×-30× higher offline delay than Pirex. This
gap is mainly due to the AHE encryption and the network
delay when sending encrypted offline parities to the server.

Database update. We report the cost to privately update the
offline parities stored on the server in Pirex+ when a database
entry is updated. Pirex+ takes from 4ms to 3s to update an

12

218 220 222 224 226 228

105

107

109

DB entries (4 KB)

D
el

ay
(m

s)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

214 216 218 220 222 224

105

107

109

DB entries (64 KB)

D
el

ay
(m

s)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

212 214 216 218 220 222

105

107

109

DB entries (256 KB)

D
el

ay
(m

s)

Pirex Pirex+

TreePIR [35] CK20 [20]

Piano [60]

Figure 12: Offline end-to-end delay.

entry chunk in databases with 212 to 228 entries. In other
schemes (e.g., Pirex, Piano, TreePIR), the client stores the
offline parities and thus, the update cost is negligible.

7 Related Work

Standard PIR. Chor et al. were the first to introduce PIR
[17]. Their standard 2-server XOR-PIR achieves information-
theoretic security with O(N) bandwidth cost. To reduce the
bandwidth cost to O(N

1
3), they proposed a variant based on

covering codes. To enable single-server, Kushilevitz et al.
[33] proposed an AHE-based PIR scheme with computational
security and achieves O(Nε) bandwidth (ε > 0). While later
refinements reduced the bandwidth to sublinear [14,16,25,37],
Sion et al. [55] showed that evaluating AHE is more expensive
than streaming the database itself. To reduce computation
overhead, some PIR schemes using lattice-based fully HE
(FHE) were proposed [5, 6, 8, 22, 30, 39, 40, 43]. However, all
these schemes suffer a Ω(N) computation lower bound [12]
in the standard PIR model. Thus, other settings have been
explored to make PIR more efficient.

Global preprocessing PIR. Beimel et al. [12] showed that
by preprocessing an O(N)-sized database to an encoded form
of size O(N3.2), the server time and communication cost in
a 2-server PIR can be reduced to O(N0.6). Several single-
server PIR schemes were designed based on secretly permuted
Reed-Muller codes [13, 15] which require superlinear server
storage to store the encoded database per designated group
of clients that holds a secret key. Boyle et al. [13] showed
how to upgrade the secret-key scheme to a public-key variant
using ideal obfuscation, where the key can be used by any
client to execute the retrieval protocol. All these schemes do
not rely on known standard assumptions. Lin et al. [36] thus
presented a scheme based on standard Ring-LWE, where the
server time and communication cost are polylogarithmic.

Client preprocessing PIR. Patel et al. [49] proposed PSIR,
an OO-PIR model, where a precomputed offline private hint is
used to accelerate online queries that involve linear PRF and
sublinear public-key operations. Corrigan-Gibbs et al. [20]
later proposed a two-server OO-PIR scheme with Õ(λ

√
N)

online server cost, and a single-server variant using FHE. The

scheme was improved in [19] to support
√

N queries with
Õ(
√

N) bandwidth and O(N3/4) server time by using linearly
HE. To reduce client query bandwidth cost to polylog(N),
other works leveraged privately puncturable/programmable
PRF [34, 54, 61]. The main bottleneck in these schemes is the
λ parallel protocol instance executions for correctness. Thus,
Kogan et al. [32] showed a trick to remove the λ repetitions.
It, however, requires O(N) storage or O(N) online time from
the client for using non-private puncturable PRF. Lazzaretti et
al. [35] suggested a novel partition paradigm for OO-PIR to
obtain polylog(N) query size in O(λ

√
N) client time. Their

scheme, however, incurs O(
√

N) parities to be transmitted.
Zhou et al. [60] adapts the scheme [35] to a single server
setting but requires database streaming per O(

√
N) queries

to rebuild the private offline hint. Mughees et al. [45] have
recently proposed a concurrent and independent work that
uses a different approach to create the offline hints to achieve
the same objective as Pirex (i.e., small client bandwidth).

Batched PIR. Pioneered by [31], batched PIR permits the
server to process a batch of Q queries at a time. Using batch
codes, the server time is linear to the number of codewords but
will be smaller than executing a PIR protocol Q times. As the
number of buckets in existing batch codes [9,31,50,56] incurs
a significant response overhead, Angel et al. [8] proposed a
method that costs O(N) server time for a large batch of size
Q but incurs only O(Q) ciphertext responses. Mughees et
al. [44] later proposed a vectorized batch PIR that can fit as
many database entries as a single ciphertext can hold. Some
batched PIR schemes [12, 38] support multiple clients using
efficient matrix multiplication techniques [18, 57].

13

References

[1] Amazon Elastic Block Store - Block Size.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/volume_constraints.html#block_
size.

[2] Azure Blob Storage - Blob Size.
https://learn.microsoft.com/en-us/azure/
storage/blobs/scalability-targets.

[3] Bitcoin Core Secp256k1.
https://github.com/bitcoin-core/secp256k1.

[4] PostgreSQL - Block / Page Size Optimization.
https://www.postgresql.org/message-id/
3c840f8b-73f0-aae7-6bcf-e22d2a0a6a40%
40gusw.net.

[5] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal,
Amr El Abbadi, and Trinabh Gupta. Addra: Metadata-
Private Voice Communication Over Fully Untrusted In-
frastructure. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), 2021.

[6] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana
Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-Computation Trade-offs in PIR.
In 30th USENIX Security Symposium (USENIX Security
21), pages 1811–1828, 2021.

[7] Andris Ambainis. Upper Bound on The Communica-
tion Complexity of Private Information Retrieval. In
International Colloquium on Automata, Languages, and
Programming, pages 401–407. Springer, 1997.

[8] Sebastian Angel, Hao Chen, Kim Laine, and Srinath
Setty. PIR with Compressed Queries and Amortized
Query Processing. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 962–979. IEEE, 2018.

[9] Sebastian Angel and Srinath Setty. Unobservable Com-
munication Over Fully Untrusted Infrastructure. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551–569, 2016.

[10] Amos Beimel and Yuval Ishai. Information-Theoretic
Private Information Retrieval: A Unified Construction.
In Automata, Languages and Programming: 28th Inter-
national Colloquium, ICALP 2001 Crete, Greece, July
8–12, 2001 Proceedings 28, pages 912–926. Springer,
2001.

[11] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and J-
F Raymond. Breaking The O(n1/(2k−1)) Barrier for
Information-theoretic Private Information Retrieval. In
The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings., pages 261–270.
IEEE, 2002.

[12] Amos Beimel, Yuval Ishai, and Tal Malkin. Reduc-
ing The Servers Computation In Private Information
Retrieval: PIR with Preprocessing. In Advances in
Cryptology—CRYPTO 2000: 20th Annual International
Cryptology Conference Santa Barbara, California, USA,
August 20–24, 2000 Proceedings 20, pages 55–73.
Springer, 2000.

[13] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Woot-
ters. Can We Access a Database both Locally and Pri-
vately? In Theory of Cryptography: 15th International
Conference, TCC 2017, Baltimore, MD, USA, November
12-15, 2017, Proceedings, Part II 15, pages 662–693.
Springer, 2017.

[14] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally Private Information Retrieval with
Polylogarithmic Communication. In Advances in Cryp-
tology—EUROCRYPT’99: International Conference on
the Theory and Application of Cryptographic Tech-
niques Prague, Czech Republic, May 2–6, 1999 Pro-
ceedings 18, pages 402–414. Springer, 1999.

[15] Ran Canetti, Justin Holmgren, and Silas Richelson. To-
wards Doubly Efficient Private Information Retrieval. In
Theory of Cryptography: 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part II 15, pages 694–726. Springer, 2017.

[16] Yan-Cheng Chang. Single Database Private Information
Retrieval with Logarithmic Communication. In Informa-
tion Security and Privacy: 9th Australasian Conference,
ACISP 2004, Sydney, Australia, July 13-15, 2004. Pro-
ceedings 9, pages 50–61. Springer, 2004.

[17] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and
Madhu Sudan. Private Information Retrieval. Journal
of the ACM (JACM), 45(6):965–981, 1998.

[18] Don Coppersmith and Shmuel Winograd. Matrix Multi-
plication via Arithmetic Progressions. In Proceedings
of the nineteenth annual ACM symposium on Theory of
computing, pages 1–6, 1987.

[19] Henry Corrigan-Gibbs, Alexandra Henzinger, and
Dmitry Kogan. Single-Server Private Information Re-
trieval with Sublinear Amortized Time. In Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, pages 3–33. Springer, 2022.

[20] Henry Corrigan-Gibbs and Dmitry Kogan. Private In-
formation Retrieval with Sublinear Online Time. In
Advances in Cryptology–EUROCRYPT 2020: 39th An-
nual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia,
May 10–14, 2020, Proceedings, Part I 39, pages 44–75.
Springer, 2020.

14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_constraints.html#block_size
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_constraints.html#block_size
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_constraints.html#block_size
 https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
 https://learn.microsoft.com/en-us/azure/storage/blobs/scalability-targets
https://github.com/bitcoin-core/secp256k1
https://www.postgresql.org/message-id/3c840f8b-73f0-aae7-6bcf-e22d2a0a6a40%40gusw.net
https://www.postgresql.org/message-id/3c840f8b-73f0-aae7-6bcf-e22d2a0a6a40%40gusw.net
https://www.postgresql.org/message-id/3c840f8b-73f0-aae7-6bcf-e22d2a0a6a40%40gusw.net

[21] Ronald Cramer, Rosario Gennaro, and Berry Schoen-
makers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. European Transactions
on Telecommunications, 8(5):481–490, 1997.

[22] Alex Davidson, Gonçalo Pestana, and Sofía Celi.
Frodopir: Simple, scalable, single-server private infor-
mation retrieval. Proceedings on Privacy Enhancing
Technologies, 1:365–383, 2023.

[23] Zeev Dvir and Sivakanth Gopi. 2-Server PIR With
Subpolynomial Communication. Journal of the ACM
(JACM), 63(4):1–15, 2016.

[24] Klim Efremenko. 3-Query Locally Decodable Codes of
Subexponential Length. In Proceedings of The Forty-
first Annual ACM symposium on Theory of Computing,
pages 39–44, 2009.

[25] Craig Gentry and Zulfikar Ramzan. Single-Database
Private Information Retrieval with Constant Communi-
cation Rate. In International Colloquium on Automata,
Languages, and Programming, pages 803–815. Springer,
2005.

[26] Niv Gilboa and Yuval Ishai. Distributed Point Functions
and Their Applications. In Advances in Cryptology–
EUROCRYPT 2014: 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings 33, pages 640–658. Springer, 2014.

[27] Matthew Green, Watson Ladd, and Ian Miers. A Proto-
col For Privately Reporting Ad Impressions At Scale. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1591–
1601, 2016.

[28] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-
nath Setty, Lorenzo Alvisi, and Michael Walfish. Scal-
able and Private Media Consumption with Popcorn. In
13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 91–107, 2016.

[29] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove,
and Christo Wilson. Measuring Price Discrimination
and Steering on E-Commerce Web Sites. In Proceed-
ings of the 2014 conference on internet measurement
conference, pages 305–318, 2014.

[30] Alexandra Henzinger, Matthew M Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-
tanathan. One Server For The Price of Two: Simple
and Fast Single-Server Private Information Petrieval. In
Usenix Security, volume 23, 2023.

[31] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. Batch Codes and Their Applications. In
Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, pages 262–271, 2004.

[32] Dmitry Kogan and Henry Corrigan-Gibbs. Private
Blocklist Lookups With Checklist. In 30th USENIX
Security Symposium (USENIX Security 21), pages 875–
892, 2021.

[33] Eyal Kushilevitz and Rafail Ostrovsky. Replication Is
Not Needed: Single Database, Computationally-Private
Information Retrieval. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages
364–373. IEEE, 1997.

[34] Arthur Lazzaretti and Charalampos Papamanthou. Near-
Optimal Private Information Retrieval with Preprocess-
ing. In Theory of Cryptography Conference, pages 406–
435. Springer, 2023.

[35] Arthur Lazzaretti and Charalampos Papamanthou.
TreePIR: Sublinear-Time and Polylog-Bandwidth Pri-
vate Information Retrieval from DDH. In Helena Hand-
schuh and Anna Lysyanskaya, editors, Advances in Cryp-
tology – CRYPTO 2023, pages 284–314, Cham, 2023.
Springer Nature Switzerland.

[36] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly
Efficient Private Information Retrieval and Fully Ho-
momorphic RAM Computation From Ring LWE. In
Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pages 595–608, 2023.

[37] Helger Lipmaa. An Oblivious Transfer Protocol with
Log-Squared Communication. In Information Secu-
rity: 8th International Conference, ISC 2005, Singapore,
September 20-23, 2005. Proceedings 8, pages 314–328.
Springer, 2005.

[38] Wouter Lueks and Ian Goldberg. Sublinear Scaling for
Multi-Client Private Information Retrieval. In Financial
Cryptography and Data Security: 19th International
Conference, FC 2015, San Juan, Puerto Rico, January
26-30, 2015, Revised Selected Papers 19, pages 168–186.
Springer, 2015.

[39] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR: Private Information
Retrieval for Everyone. Proceedings on Privacy En-
hancing Technologies, pages 155–174, 2016.

[40] Samir Jordan Menon and David J Wu. Spiral: Fast,
High-Rate Single-Server PIR via FHE Composition. In
2022 IEEE Symposium on Security and Privacy (SP),
pages 930–947. IEEE, 2022.

15

[41] Jakub Mikians, László Gyarmati, Vijay Erramilli, and
Nikolaos Laoutaris. Detecting price and search discrim-
ination on the internet. In Proceedings of the 11th ACM
workshop on hot topics in networks, pages 79–84, 2012.

[42] Michael Mitzenmacher and Eli Upfal. Probability
and Computing: Randomization and Probabilistic Tech-
niques in Algorithms and Data Analysis. Cambridge
University Press, 2017.

[43] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
OnionPIR: Response Efficient Single-Server PIR. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 2292–
2306, 2021.

[44] Muhammad Haris Mughees and Ling Ren. Vectorized
Batch Private Information Retrieval. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 437–
452. IEEE, 2023.

[45] Muhammad Haris Mughees, I Sun, and Ling Ren. Sim-
ple and Practical Amortized Sublinear Private Informa-
tion Retrieval. Cryptology ePrint Archive, 2023.

[46] Arvind Narayanan and Vitaly Shmatikov. Robust De-
Anonymization of Large Sparse Datasets. In 2008 IEEE
Symposium on Security and Privacy (SP 2008), pages
111–125. IEEE, 2008.

[47] Arvind Narayanan and Vitaly Shmatikov. Myths and
Fallacies of Personally Identifiable Fnformation. Com-
munications of the ACM, 53(6):24–26, 2010.

[48] Andrew Odlyzko. Privacy, Economics, and Price Dis-
crimination on The Internet. In Proceedings of the 5th
international conference on Electronic commerce, pages
355–366, 2003.

[49] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Pri-
vate Stateful Information Retrieval. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1002–1019, 2018.

[50] Ankit Singh Rawat, Zhao Song, Alexandros G Dimakis,
and Anna Gál. Batch Codes Through Dense Graphs
Without Short Cycles. IEEE Transactions on Informa-
tion Theory, 62(4):1592–1604, 2016.

[51] Daniel S Roche, Adam Aviv, Seung Geol Choi, and
Travis Mayberry. Deterministic, Stash-Free Write-Only
ORAM. In Proceedings of The 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 507–521, 2017.

[52] Sacha Servan-Schreiber, Kyle Hogan, and Srinivas De-
vadas. AdVeil: A Private Targeted Advertising Ecosys-
tem. Cryptology ePrint Archive, 2021.

[53] Daniel Shanks. Class Number, A Theory of Factoriza-
tion, and Genera. In Proc. Symp. Math. Soc., 1971,
volume 20, pages 415–440, 1971.

[54] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran,
and Bruce Maggs. Puncturable Pseudorandom Sets and
Private Information Retrieval with Near-Optimal On-
line Bandwidth and Time. In Advances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part IV 41, pages 641–669. Springer,
2021.

[55] Radu Sion and Bogdan Carbunar. On The Computa-
tional Practicality of Private Information Retrieval. In
Proceedings of The Network and Distributed Systems
Security Symposium, pages 2006–06. Internet Society
Geneva, Switzerland, 2007.

[56] Douglas R Stinson, Ruizhong Wei, and Maura B Pater-
son. Combinatorial Batch Codes. Advances in Mathe-
matics of Communications, 3(1):13–27, 2009.

[57] Volker Strassen et al. Gaussian Elimination Is Not Opti-
mal. Numerische mathematik, 13(4):354–356, 1969.

[58] Thomas Vissers, Nick Nikiforakis, Nataliia Bielova, and
Wouter Joosen. Crying Wolf? On The Price Discrimina-
tion of Online Airline Tickets. In 7th Workshop on Hot
Topics in Privacy Enhancing Technologies (HotPETs
2014), 2014.

[59] Sergey Yekhanin. Towards 3-Query Locally Decodable
Codes of Subexponential Length. Journal of the ACM
(JACM), 55(1):1–16, 2008.

[60] M. Zhou, A. Park, W. Zheng, and E. Shi. PIANO:
Extremely Simple, Single-Server PIR with Sublinear
Server Computation. In 2024 IEEE Symposium on Secu-
rity and Privacy (SP), pages 55–55, Los Alamitos, CA,
USA, may 2024. IEEE Computer Society.

[61] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and
Elaine Shi. Optimal single-server private information
retrieval. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 395–425. Springer, 2023.

16

A PPR Security Proof (Lemma 1)

Proof. We will construct the simulator SP such that all PPT
environment Z cannot distinguish between its view in the
Ideal and Real. Note that Z can statically corrupt one server
and examine the execution transcript.

On receiving the notification from ideal functionality FP,
the simulator S functions as follows:

1. SP samples (δ0, ...,δn−1)
$← [m]n, q $←{0,1}n

2. SP outputs T ←{q[i] · (i ·m+δi) ∀ i ∈ [n]∧q[i] ̸= 0}

In Ideal, the simulator SP randomly samples a selection
bit string to simulate a list of partition accesses (to arbitrary
indices). For the PPR protocol (Figure 1) described in Real,
the environment Z can infer the bit selection when viewing
the partition query T0 (or T1), since each index belongs to a
partition. Since bit flipping does not distort the distribution of
random bit string, the partition access (by using bit selection),
is uniformly random for both execution under the view of Z.
Note that for security, privately accessing a partition does not
require the returned data item to be located at a random index.
It is rather a functionality that we want to achieve.

B Pirex Security Proof (Theorem 2)

Proof. We construct a simulator S in the Ideal such that a PPT
environment Z cannot distinguish between its view in Ideal
and Real. Note that Z can statically corrupt one server to get
the view of the transcript, which is either from the simulation
by S in Ideal, or from the protocol execution in Real. We
denote the distribution Dn← [m]n as sampling a random set,
which draws one random index from each partition Pk for
k ∈ [n]. The simulator S functions as follows:

Offline: On receiving input (DB,N):

1. S samples a random bit string {0,1}M , where M0 counts
the bits zero (or one), denoting the number of random
sets it needs to simulate the adversarial view.

2. S outputs M0 dummy sets (S1, ...,SM0)
$←DM0

n .

Online: On receiving query notification:

1. S outputs S∗ $←Dn and S ′ $←Dn.
2. S outputs two partition sets T and T ′, by invoking SP

from the Ideal world of PPR, two times.

In Ideal, everything is random. S∗, S ′, T , T ′ are independent
from each other and also independent from {S1, ...,SM0}.

We now define a sequence of hybrid experiments Hybi. The
differences between Hybi and Hybi+1 are highlighted in red.
We show that the Real and Ideal are indistinguishable:
|Pr[REALΠF ,A ,Z(λ)= 1]−Pr[IDEALF ,S,Z(λ)= 1]| ≤ negl(λ)

Offline: The servers receive a database DB as input from Z:
1. The client samples M identifier bits (ℓ1, . . . , ℓM)

$←{0,1}M

2. The client samples M PRF keys (sk1, . . . ,skM)
3. On receiving an arbitrary PRF key ski

Server Sℓi computes ρi←
⊕ n−1

j=0 DB[s j] for s j ∈ Si
where Si←{(j ·m)+PRF(ski, j) ∀ j ∈ [n]}

4. The client receives parity ρi from server Sℓi

Online: On receiving an index x ∈ Pk from Z, the client executes:
5. Search hi = (ℓi,ski,ρi) where x = (k ·m)+PRF(ski,k)
6. Get Si←{(j ·m)+PRF(ski, j) ∀ j ∈ [n]}
7. Get (Q̂0, Q̂1)← SubQuery(x, ℓi,Si)
8. Sample new server identifier ℓ′ $←{0,1}
9. Sample sk′ $←{0,1}λ where x = (k ·m)+PRF(sk′,k)

10. Get S ′←{(j ·m)+PRF(sk′, j) ∀ j ∈ [n]}
11. Get (Q̂′0, Q̂

′
1)← SubQuery(x,¬ℓ′,S ′)

12. Send Q0← (Q̂0, Q̂′0) to server S0 and receive R 0

13. Send Q1← (Q̂1, Q̂′1) to server S1 and receive R 1
14. Obtain data item DB[x] using R 0, R 1, and parity ρi
15. Obtain new parity ρ′ using R 0, R 1, and data DB[x]
16. Replace hi with new hint h′ = (ℓ′,sk′,ρ′)

Figure 13: Hyb0 Experiment

Offline: The servers receive a database DB as input from Z:
1. The client samples M identifier bits (ℓ1, . . . , ℓM)

$←{0,1}M

2. The client samples M sets of indices (S1, . . . ,SM)
$←DM

n
3. On receiving an arbitrary set Si

Server Sℓi computes ρi←
⊕ n−1

j=0 DB[s j] for s j ∈ Si
4. The client receives parity ρi from server Sℓi

Online: On receiving an index x ∈ Pk from Z, the client executes:
5. Search hi = (ℓi,Si,ρi) where x ∈ Si
6. Get (Q̂0, Q̂1)← SubQuery(x, ℓi,Si)
7. Sample new server identifier ℓ′ $←{0,1}
8. Sample S ′ $←Dn where x ∈ S ′
9. Get (Q̂′0, Q̂

′
1)← SubQuery(x,¬ℓ′,S ′)

10. Send Q0← (Q̂0, Q̂′0) to server S0 and receive R 0

11. Send Q1← (Q̂1, Q̂′1) to server S1 and receive R 1
12. Obtain data item DB[x] using R 0, R 1, and parity ρi
13. Obtain new parity ρ′ using R 0, R 1, and data DB[x]
14. Replace hi with new hint h′ = (ℓ′,S ′,ρ′)

Figure 14: Hyb1 Experiment

Hybrid 0. We define Hyb0 experiment as REALΠF ,A ,Z with
an adversarial A and an environment Z. We rewrite the real
protocol of Pirex as in Figure 13.

Hybrid 1. Let Hyb1 experiment be as in Figure 14. In Hyb1,
the difference is that the client samples each set S j from Dn
in the offline, instead of using a PRF key. The client stores all
sets of indices in plain, so there is no more PRF operation.

We argue that the view of Z for the offline and online in
Hyb1 and Hyb0 are computationally indistinguishable. This
is because the distribution of online queries created by any
Si sampled from either PRF or Dn would have a negligible
difference under the view of Z.

Hybrid 2. Let Hyb2 experiment be as in Figure 15. In Hyb2,
the main difference is that in the online, the client finds the
hint hi = (ℓi,Si,ρi) but does not use Si as the input to create
the data queries as in Hyb0. The client instead uses a newly

17

Offline: The servers receive a database DB as input from Z:
1. The client samples M identifier bits (ℓ1, . . . , ℓM)

$←{0,1}M

2. The client samples M sets of indices (S1, . . . ,SM)
$←DM

n
3. On receiving an arbitrary set Si

Server Sℓi computes ρi←
⊕ n−1

j=0 DB[s j] for s j ∈ Si
4. The client receives parity ρi from server Sℓi

Online: On receiving an index x ∈ Pk from Z, the client executes:
5. Search hi = (ℓi,Si,ρi) where x ∈ Si
6. Sample S∗ $←Dn where x ∈ S∗
7. Get (Q̂0, Q̂1)← SubQuery(x, ℓi,S∗)
8. Sample new server identifier ℓ′ $←{0,1}
9. Sample S ′ $←Dn where x ∈ S ′

10. Get (Q̂′0, Q̂
′
1)← SubQuery(x,¬ℓ′,S ′)

11. Send Q0← (Q̂0, Q̂′0) to server S0 and receive R 0

12. Send Q1← (Q̂1, Q̂′1) to server S1 and receive R 1
13. Get DB[x] using the ideal functionality F

Figure 15: Hyb2 Experiment

sampled set S∗←Dn, with x ∈ S∗. Since S∗ is not related to
any precomputed offline parity, the client cannot recover the
data item DB[x]. Thus, we introduce the ideal functionality F ,
which can return the correct answer based on the query input
x from Z. Note that in Hyb2, we do not need to obtain the
new parity (from using the responses) for hint replacement,
since no precomputed hint is consumed in the online phase.

We argue that the view of Z for the offline and online in
Hyb2 has the same distribution as in Hyb1. In the offline,
the operations are identical. In the online, using a new set
S∗ yields the same distribution of data queries as using Si.
By Lemma 2, for each online query in Hyb1, the selected set
Si is always guaranteed to be in the distribution Dn. Since
the newly sampled set S∗ and the hint set Si (that was not
previously revealed to the corrupted server in the offline) are
indistinguishable, the resulting data queries will have the same
distribution under the view of Z as in Hyb1.

Lemma 2. For every online query x, even conditioned on
Z’s view over the previous queries, the local sets are still
identically distributed as {S1, ...,SM}

$←DM
n . Thus the set Si,

with x ∈ Si, satisfied Si
$←Dn.

Proof. We refer to the proof of Lemma 3.3 in [60].

Hybrid 3. Let Hyb3 experiment be as in Figure 16. In Hyb3,
the difference is that in the offline, the client only requests
server Sℓi to compute the parity ρi (by sending the set Si) but
does not store the returned result. In the online, the client
samples a new server identifier ℓ∗ $← {0,1} when sampling
the new set S∗, instead of using ℓi from the hint hi.

We argue that the view of Z for the offline and online in
Hyb3 has the same distribution as in Hyb2. In the offline, the
corrupted server (in Z’s view) receives the same distribution
of random sets as in Hyb2. In the online, replacing ℓi with
ℓ∗ only affects in how the data queries Q̂0 or Q̂1 (derived
from S∗) is distributed to which server, where Q̂0 and Q̂1 are

Offline: The servers receive a database DB as input from Z:
1. The client samples M identifier bits (ℓ1, . . . , ℓM)

$←{0,1}M

2. The client samples M sets of indices (S1, . . . ,SM)
$←DM

n
3. On receiving an arbitrary set Si

Server Sℓi computes ρi←
⊕ n−1

j=0 DB[s j] for s j ∈ Si

Online: On receiving an index x ∈ Pk from Z, the client executes:
4. Sample S∗ $←Dn where x ∈ S∗ and ℓ∗

$←{0,1}
5. Get (Q̂0, Q̂1)← SubQuery(x, ℓ∗,S∗)
6. Sample new server identifier ℓ′ $←{0,1}
7. Sample S ′ $←Dn where x ∈ S ′
8. Get (Q̂′0, Q̂

′
1)← SubQuery(x,¬ℓ′,S ′)

9. Send Q0← (Q̂0, Q̂′0) to server S0 and receive R 0

10. Send Q1← (Q̂1, Q̂′1) to server S1 and receive R 1
11. Get DB[x] using the ideal functionality F

Figure 16: Hyb3 Experiment

Offline: The servers receive a database DB as input from Z:
1. The client samples M identifier bits (ℓ1, . . . , ℓM)

$←{0,1}M

2. The client samples M sets of indices (S1, . . . ,SM)
$←DM

n
3. On receiving an arbitrary set Si

Server Sℓi computes ρi←
⊕ n−1

j=0 DB[s j] for s j ∈ Si

Online: On receiving an index x ∈ Pk from Z, the client executes:
4. Sample S∗0

$←Dn and S∗1
$←Dn

5. Sample (T0,T1)← PPR.Gen(k)
6. Sample S ′0

$←Dn and S ′1
$←Dn

7. Sample (T ′0 ,T ′1)← PPR.Gen(k)
8. Send Q0← ((S∗0 ,T0),(S ′0,T ′0)) to server S0
9. Send Q1← ((S∗1 ,T1),(S ′1,T ′1)) to server S1

10. Get DB[x] using the ideal functionality F

Figure 17: Hyb4 Experiment

indistinguishable and independent from Si. This is because
both server S0 and S1 have no prior knowledge about the set
S∗, which has no correlation to (ℓi,Si) ∈ hi. Thus, sampling a
random server identifier ℓ∗ is just for the input requirement
of SubQuery, rather than for the security of the data queries.

Hybrid 4. Let Hyb4 experiment be as in Figure 17. In Hyb4,
the main difference is that in the online, the client directly
samples a random set S∗0 (or S∗1) as the patch sets to be sent
to the servers, instead of sampling a new set S∗ ⊃ {x} and a
new server identifier to create and distribute the data queries
using SubQuery algorithm.

We argue that the view of Z for the offline and online in
Hyb4 has the same distribution as in Hyb3. In the offline,
the operations are identical. In the online, S∗0 (or S∗1) has the
same distribution as the query sets (included in Q̂0 and Q̂1
respectively) returned by SubQuery. This is because x ∈ S∗ is
replaced by a random z from the same partition, which yields
S̄ ← S∗\ {x}∩ {z} that matches the distribution Dn, where
each element is independently and uniformly sampled within
its partition. For the remaining query set S̃ , it is also randomly
sampled from Dn. Thus, S∗0 and S∗1 have the same distribution
as S̄ and S̃ in Hyb3. Since both server S0 and S1 have no prior
knowledge about S∗0 and S∗1 , there is no need to specify any
server identifier (as shown in Hyb3) for the security when
distributing the online queries.

18

Offline: The servers receive a database DB as input from Z:
1. The client samples M identifier bits (ℓ1, . . . , ℓM)

$←{0,1}M

2. The client samples M sets of indices (S1, . . . ,SM)
$←DM

n
3. On receiving an arbitrary set Si

Server Sℓi computes ρi←
⊕ n−1

j=0 DB[s j] for s j ∈ Si

Online: On receiving an index x ∈ Pk from Z, the client executes:
4. Sample S∗0

$←Dn and S∗1
$←Dn

5. Sample T0, T1 by invoking SP from PPR
6. Sample S ′0

$←Dn and S ′1
$←Dn

7. Sample T ′0 , T ′1 by invoking SP from PPR
8. Send Q0← ((S∗0 ,T0),(S ′0,T ′0)) to server S0
9. Send Q1← ((S∗1 ,T1),(S ′1,T ′1)) to server S1

10. Get DB[x] using the ideal functionality F

Figure 18: Hyb5 Experiment

Hybrid 5. Let Hyb5 experiment be as in Figure 18. In Hyb5
the only difference is that the client create the partition sets
(T0, T1) and (T ′0 , T ′1) using simulator SP from PRR, instead
of using the real PPR protocol. In the view of Z, this yields
the same distribution of partition sets as in Hyb4, according
to the PPR security proof in Lemma 1.

Note that Hyb5 is identical to the simulator S in the Ideal,
which completes our proof to show that Ideal and Real are
computationally indistinguishable.

C Pirex+ Detailed Algorithm

• (H ,P)← Prep(DB,N):
1: for i = 1 to M do
2: ℓi

$←{0,1} and ski
$←{0,1}λ

3: Si←{(j ·m)+PRF(ski, j) ∀ j ∈ [n]}
4: ρi← ∑

n
j=1 DB[s j] (mod p) for all s j ∈ Si

5: P[i]← AHE.Enc(pk,ρi)
6: hi← (ℓi,ski, i)
7: return (H ← (h1, . . . ,hM), P)

Figure 19: Pirex+ Offline Phase

Executed by Server Sℓi

We present the detailed algorithm of Pirex+ in Figure 19,
Figure 20, Figure 21, Figure 22, Figure 23, Figure 24. To
enable partial remote offline hint storage, Pirex+ has slightly
different interfaces (marked as blue) over Pirex as follows:
• (H ,P)← Prep(DB,N): Given a database DB of N entries,

it outputs a hint H and an encrypted parity buffer P to be
stored at the servers.

• (Q0,Q1,H ∗)← Query(x,H): Given an entry index x and
the hint H , it outputs two online queries Q0,Q1 for server
S0, and S1, respecitvely and an updated hint H ∗.

• R i← Answer(Qi,DB,P): Given a query Qi, the database
DB and the parity buffer P, it outputs a response R i.

• (bx,⟨ρ′⟩,H ′)← Recover(R 0,R 1,H ∗): Given the hint H ∗
and two responses R 0, R 1, it outputs the desired data entry
bx, an encrypted refresh parity ⟨ρ′⟩ and an updated hint H ′.

• (Q0,Q1,H ∗)←Query(x,H):

1: parse H = (h1, . . . ,hM)
2: Let partition index k←

⌊ x
m

⌋
3: Search hi = (ℓi,ski,πi) where x = (k ·m)+PRF(ski,k)
4: Let (q0,q1)← XOR-PIR.Gen(πi)
5: Let Si←{(j ·m)+PRF(ski, j) ∀ j ∈ [n]}
6: (Q̂0, Q̂1)← SubQuery(x, ℓi,Si)
7: Sample new server identifier ℓ′ $←{0,1}
8: Sample sk′ $←{0,1}λ where x = (k ·m)+PRF(sk′,k)
9: Let S ′←{(j ·m)+PRF(sk′, j) ∀ j ∈ [n]}

10: (Q̂′0, Q̂
′
1)← SubQuery(x,¬ℓ′,S ′)

11: Q0← (Q̂0, Q̂′0,q0), Q1← (Q̂1, Q̂′1,q1)
12: H ∗← (h1, . . . ,hi, . . . ,hM ,h′) where h′← (ℓ′,sk′,⊥)
13: return (Q0,Q1,H ∗)

• (Q̂0, Q̂1)← SubQuery(x, ℓ,S):
1: (z,T0,T1)← PPR.Gen(m,n,k) where k←

⌊ x
m

⌋
2: Let S̄← S \{x}∪{z}
3: if z ∈ T0 then
4: T (z)← T0 and T ← T1
5: else
6: T (z)← T1 and T ← T0

7: Sample (δ0, ...,δn−1)
$← [m]n

8: Let S̃ ←{(i ·m)+δi ∀ i ∈ [n]}
9: Let Q̂ℓ← (S̃ ,T (z)) and Q̂¬ℓ← (S̄,T)

10: return (Q̂0, Q̂1)

Figure 20: Pirex+ Online Phase: Query

• R i← Answer(Qi,DB,P):
1: parse Qi = ((S ,T),(S ′,T ′),q)
2: ρ̄ ← ∑

n
j=1 DB[s j] for all s j ∈ S

3: ρ̄′← ∑
n
j=1 DB[s′j] for all s′j ∈ S ′

4: w ← PPR.Ret(T ,DB)
5: w′← PPR.Ret(T ′,DB)
6: r← XOR-PIR.Ret(q,P)
7: return R i← ((ρ̄,w),(ρ̄′,w′),r)

Figure 21: Pirex+ Online Phase: Answer

Additionally, Pirex+ has new interfaces to enable remote
offline parities updates due to refresh and database updates:
• (H ′,P′)← Rewrite(⟨ρ′⟩,H ,P): Given the new encrypted

refresh parity ⟨ρ′⟩, the hint H and the parity buffer P, it
outputs a new P such that ⟨ρ′⟩ is written into P, and a
correspondingly updated hint H ′.

• P′← Update(x,b′x,P): Given an index x of the entry to be
updated, the new entry content b′x, and the parity buffer P,
it outputs a new parity buffer P′.
We highlight the difference between Pirex+ and Pirex in

blue. Pirex+ makes use of the following standard 2-server
XOR-PIR scheme [17] on the parity buffer P of size 2M:
• (q0,q1)← XOR-PIR.Gen(x): Given an index x ∈ [2M], it

samples q0,q1←{0,1}2M such that q0⊕q1 = e, where e
is a unit vector with e[x] = 1.

• ri← XOR-PIR.Ret(ql ,P): Given query ql and buffer P, it
outputs r =

⊕
j∈J P[j] where J = { j : ql [j] = 1}.

• bx← XOR-PIR.Rec(r0,r1): Given two responses r0,r1, it
outputs bx = r0⊕ r1.

19

• (bx,⟨ρ′⟩,H ′)← Recover(R 0,R 1,H):

1: parse R 0 = ((ρ̄0,w0),(ρ̄
′
0,w
′
0),r0)

2: parse R 1 = ((ρ̄1,w1),(ρ̄
′
1,w
′
1),r1)

3: parse H ∗ = (h1, . . . ,hi, . . . ,hM ,h′)
4: parse hi = (ℓi,ski,πi)
5: bz← PPR.Rec(w0,w1)
6: ⟨ρ⟩ ← XOR-PIR.Rec(r0,r1)
7: ρ← AHE.Dec(sk,⟨ρ⟩)
8: bx← bz +ρ− ρ̄¬ℓi (mod p)
9: parse h′ = (ℓ′,sk′,⊥)

10: b′z← PPR.Rec(w′0,w
′
1)

11: ρ′← bx−b′z + ρ̄′ℓ′ (mod p)
12: ⟨ρ′⟩ ← AHE.Enc(pk,ρ′)
13: h′ ← (ℓ′,sk′,π′) with π′← c+M
14: H ′← (h1, . . . ,hi−1,h′,hi+1, . . . ,hM)
15: return (bx,⟨ρ′⟩,H ′)

Figure 22: Pirex+ Online Phase: Recover

• (H ′,P′)← Rewrite(⟨ρ′⟩,H ,P):
Client:
1: parse H = (h1, . . . ,hi, . . . ,hM)
2: parse hi = (ℓi,ski,πi)
3: (q0,q1)← XOR-PIR.Gen(πi)
4: Send q0 to S0 and q1 to S1

Server: On receiving query ql , Sl executes:
5: rl ← XOR-PIR.Ret(ql ,P)

Client: On receiving r0 and r1, client executes:
6: ⟨ρ⟩ ← XOR-PIR.Rec(r0,r1)
7: ⟨ρ⟩ ← AHE.Enc(pk,AHE.Dec(sk,⟨ρ⟩))
8: Write Pleft[c] = ⟨ρ⟩ to servers S0 and S1
9: Write Pright[c] = ⟨ρ′⟩ to servers S0 and S1

10: Update counter c← c+1 (mod M)
11: H ′← (h1, . . . ,h′i, . . . ,hM) where h′i = (ℓi,ski, i)
12: return (H ′,P)

Figure 23: Pirex+ Oblivious Refresh

• P′← Update(x,b′x,P):
Client:
1: Let e←{0}2M , k←

⌊ x
m

⌋
2: for each hi = (ℓi,ski,πi) do
3: e[πi] = 1 if x = (k ·m)+PRF(ski,k)
4: for i = 1 to 2M do
5: ⟨ei⟩ ← AHE.Enc(sk,e[i])
6: Send (⟨e1⟩, . . . ,⟨e2M⟩) to S0 and S1

Server:
7: ε← b′x−DB[x]
8: for i = 1 to 2M do
9: P[i]← P[i] ⊞ (⟨ei⟩� ε)

10: return P

Figure 24: Pirex+ Remote Update Parities

D Pirex+ Security Proof (Theorem 3)

Proof. We extend the Ideal simulator S from Appendix B:
1. In the offline phase, the simulator S additionally outputs

a dummy encrypted parity buffer P, where P[i]← ⟨0⟩
2. In the online phase, the simulator S additionally outputs

two random bit strings q and q′

3. At c-th oblivious refresh, S writes into Pleft[c] and
Pleft[c] a dummy encrypted parity value ⟨0⟩

Offline: The servers receive a database DB as input from Z:
1. The client executes steps (1)→ (3) as in Hyb0 (Figure 13)
2. The client receives parity ρi from Sℓi and set hint hi = (ℓi,ski, i)
3. The client sends parity buffer P to S0,S1 with P[i] = ⟨ρi⟩

Online: On receiving an index x ∈ Pk from Z, the client executes:
4. Executes steps (5)→ (13) as in Hyb0 to obtain R 0, R 1, (ℓ′,sk′)
5. Get (q0,q1)← XOR-PIR.Gen(πi)
6. Send q0,q1 to server S0,S1 and receive r0,r1
7. Obtain parity ρi using r0 and r1
8. Execute steps (14)→ (15) as in Hyb0 to obtain DB[x] and ρ′

Oblivious Refresh:
9. Write Pright[c] = ⟨ρ′⟩ and add h′ = (ℓ′,sk′,π′= c+M)

10. Get (q0,q1)← XOR-PIR.Gen(πc) with πc ∈ hc
11. Send q0,q1 to server S0,S1 and receive r0,r1
12. Obtain ⟨ρ⟩ using r0 and r1 and re-encrypt ⟨ρ⟩
13. Write Pleft[c] = ⟨ρ⟩ and update hc = (ℓc,skc,c)

Figure 25: Hyb+0 Experiment

Offline: The servers receive a database DB as input from Z:
1. The client executes steps (1)→ (3) as in Hyb1 (Figure 14)
2. The client receives parity ρi from Sℓi and set hint hi = (ℓi,Si, i)
3. The client sends parity buffer P to S0,S1 with P[i] = ⟨ρi⟩

Online: On receiving an index x ∈ Pk from Z, the client executes:
4. Execute steps (5)→ (11) as in Hyb1 to obtain R 0, R 1
5. Get (q0,q1)← XOR-PIR.Gen(πi)
6. Send q0 to server S0 and receive r0
7. Send q1 to server S1 and receive r1
8. Obtain parity ρi using r0 and r1
9. Execute steps (12)→ (13) as in Hyb1 to obtain DB[x] and ρ′

Oblivious Refresh:
9. Write Pright[c] = ⟨ρ′⟩ and add h′ = (ℓ′,S ′,π′= c+M)

10. Get (q0,q1)← XOR-PIR.Gen(πc) with πc ∈ hc
11. Send q0 to server S0 and receive r0
12. Send q1 to server S1 and receive r1
13. Obtain ⟨ρ⟩ using r0 and r1 and re-encrypt ⟨ρ⟩
14. Write Pleft[c] = ⟨ρ⟩ and update hc = (ℓc,Sc,c)

Figure 26: Hyb+1 Experiment

In addition to the online/offline phase, the simulator S can
receive an update command, on which it outputs an IND-CPA
encrypted random binary vector.

We now define a sequence of hybrid experiments Hyb+i .
The differences between Hyb+i and Hyb+i+1 are highlighted in
red. We show that the Real and Ideal are indistinguishable:
|Pr[REALΠF ,A ,Z(λ)= 1]−Pr[IDEALF ,S,Z(λ)= 1]| ≤ negl(λ)

Hybrid 0. We define Hyb+0 experiment as REALΠF ,A ,Z with
an adversarial A and an environment Z. We simplify the real
protocol of Pirex+ as in Figure 25.

Hybrid 1. Let Hyb+1 experiment be as in Figure 26. Similar to
Hyb1, the client samples a set S j

$←Dn instead of using a PRF
key. This adjustment does not affect the way a client retrieves
a parity using standard XOR-PIR and thus, the view of Z in
Hyb+1 and Hyb+0 are computationally indistinguishable.

Hybrid 2. Let Hyb+2 experiment be as in Figure 27. From
Hyb2, we know that the client uses a set S∗ that is not related
to any precomputed offline parity to create the data query.

20

Offline: The servers receive a database DB as input from Z:
1. The client executes steps (1)→ (3) as in Hyb2 (Figure 15)
2. The client recieves parity ρi from Sℓi and set hint hi = (ℓi,Si, i)
3. The client sends parity buffer P to S0,S1 with P[i] = ⟨ρi⟩

Online: On receiving an index x ∈ Pk from Z, the client executes:
4. Execute steps (5)→ (12) as in Hyb2 to obtain R 0, R 1
5. Get (q0,q1)← XOR-PIR.Gen(πi)
6. Send q0 to server S0 and receive r0
7. Send q1 to server S1 and receive r1
8. Execute step (13) as in Hyb2 to obtain DB[x]

Oblivious Refresh:
8. Write Pright[c] = ⟨0⟩
9. Get (q0,q1)← XOR-PIR.Gen(πc)

10. Send q0 to server S0 and receive r0
11. Send q1 to server S1 and receive r1
12. Obtain ⟨ρ⟩ using r0 and r1 and re-encrypt ⟨ρ⟩
13. Write Pleft[c] = ⟨ρ⟩ and update hc = (ℓc,Sc,c)

Figure 27: Hyb+2 Experiment

Offline: The servers receive a database DB as input from Z:
1. The client executes steps (1)→ (3) as in Hyb3 (Figure 16)
2. The client Ssends parity buffer P to S0,S1 with P[i] = ⟨0⟩

Online: On receiving an index x ∈ Pk from Z, the client executes:
3. Execute steps (4)→ (10) as in Hyb3 to obtain R 0, R 1
4. Get (q0,q1)← XOR-PIR.Gen(πi)
5. Send q0 to server S0 and q1 to server S1
6. Execute step (11) as in Hyb3 to obtain DB[x]

Oblivious Refresh:
7. Write Pright[c] = ⟨0⟩
8. Get (q0,q1)← XOR-PIR.Gen(πc)
9. Send q0 to server S0 and q1 to server S1

10. Write Pleft[c] = ⟨0⟩

Figure 28: Hyb+3 Experiment

Therefore, no offline parity can be used to recover DB[x]. The
client thus does not need to obtain an offline parity using r0
and r1 as in Hyb+1. Similar to Hyb2, the ideal functionality
is invoked to obtain DB[x]. Here in Hyb+2, we do not need
to write a new refresh parity in the buffer Pright since no
precomputed hint (and the corresponding offline parity) is
consumed in the online phase. Due to the IND-CPA property
of the AHE encryption, the client can write ⟨0⟩ into Pright[c]
as a dummy refresh parity, which makes the view of Z in
Hyb+2 and Hyb+1 computationally indistinguishable.

Hybrid 3. Let Hyb+3 experiment be as in Figure 28. In Hyb+3,
the additional difference (w.r.t experiment Hyb3) is that the
client does not use the offline parities computed by the servers
to create the parity buffer P. The client instead encrypts and
sends a dummy buffer P, with P[i] = ⟨0⟩. Due to the IND-CPA
property of AHE encryption, Z cannot distinguish between
a dummy parity buffer and a buffer containing the offline
parities computed by the servers. Therefore, the view of Z in
Hyb+3 and Hyb+2 are computationally indistinguishable.

Note that since the parity buffer contains all zero, the client
does not need to recover the offline parity retrieved by PIR
when performing oblivious refresh, since the client already
knows the value must be ⟨0⟩. The client can write Pleft[c] =

Offline: The servers receive a database DB as input from Z:
1. The client executes steps (1)→ (3) as in Hyb4 (Figure 17)
2. The client sends parity buffer P to S0,S1 with P[i] = ⟨0⟩

Online: On receiving an index x ∈ Pk from Z, the client executes:
3. Execute steps (4)→ (10) as in Hyb4 to obtain R 0, R 1
4. Get (q0,q1)← XOR-PIR.Gen(πi)
5. Send q0 to server S0 and q1 to server S1
6. Execute step (11) as in Hyb4 to obtain DB[x]

Oblivious Refresh:
7. Write Pright[c] = ⟨0⟩
8. Send random bit strings q0 to server S0 and q1 to server S1
9. Write Pleft[c] = ⟨0⟩

Figure 29: Hyb+4 Experiment

Offline: The servers receive a database DB as input from Z:
1. The client executes steps (1)→ (3) as in Hyb5 (Figure 18)
2. The client sends parity buffer P to S0,S1 with P[i] = ⟨0⟩

Online: On receiving an index x ∈ Pk from Z, the client executes:
3. Execute steps (4)→ (10) as in Hyb5 to obtain R 0, R 1
4. Send random bit strings q0 to server S0 and q1 to server S1
5. Execute step (11) as in Hyb5 to obtain DB[x]

Oblivious Refresh:
6. Write Pright[c] = ⟨0⟩
7. Send random bit strings q0 to server S0 and q1 to server S1
8. Write Pleft[c] = ⟨0⟩

Figure 30: Hyb+5 Experiment

⟨0⟩, regardless of the PIR query produced by XOR-PIR.Gen.

Hybird 4. Let Hyb+4 experiment be as in Figure 29. In Hyb+4,
the additional difference is that for oblivious refresh, the client
replaces the query strings produced by XOR-PIR.Gen, with
two random bit strings of the same lengths. By the security of
XOR-PIR, under a statically adversarial view A , Z cannot dis-
tinguish between the two received bit strings. Thus, the view
of Z in Hyb+4 and Hyb+3 are computationally indistinguishable.

Hybird 5. Let Hyb+5 experiment be as in Figure 30. In Hyb+5,
the additional difference is that to simulate the PIR query
for retrieving an offline parity (to be used for DB[x] recon-
struction originally), the client replaces the query bit strings
produced by XOR-PIR.Gen, with two random bit strings of
the same length. By the security of XOR-PIR, under a stati-
cally adversarial view A , Z cannot distinguish between the
two received bit strings. Therefore, the view of Z in Hyb+5 and
Hyb+4 are computationally indistinguishable.

Note that Hyb+5 is identical to the online and offline phases
simulated by the simulator S in the Ideal. The remaining part
is to show that for the parities’ update algorithm, Z cannot
distinguish between the encrypted dummy binary vector from
S and the real encrypted update vector from Figure 24. This is
true due to the IND-CPA property of AHE, the encryption of a
random binary vector is indistinguishable from the encryption
of a specific binary vector (where the elements are 1 at the
update positions on the parity buffer). To this end, the Ideal
and Real for Pirex+ are computationally indistinguishable.

21

	INTRODUCTION
	Our Contributions
	Technical Highlights

	PRELIMINARIES & MODELS
	PRIVATE PARTITION RETRIEVAL
	THE PROPOSED SCHEME
	Data Structures
	Offline Phase
	Online Phase
	Analysis

	REDUCING CLIENT STORAGE
	EXPERIMENTAL EVALUATION
	Implementation
	Configuration
	Results

	Related Work
	PPR Security Proof (Lemma 1)
	Pirex Security Proof (Theorem 2)
	Pirex+ Detailed Algorithm
	Pirex+ Security Proof (Theorem 3)

