
Non-Transferable Anonymous Tokens by Secret Binding
F. Betül Durak

betul.durak@microsoft.com

Microsoft Research

United States

Laurane Marco

laurane.marco@epfl.ch

EPFL

Switzerland

Abdullah Talayhan

abdullah.talayhan@epfl.ch

EPFL

Switzerland

Serge Vaudenay

serge.vaudenay@epfl.ch

EPFL

Switzerland

ABSTRACT
Non-transferability (NT) is a security notion which ensures that

credentials are only used by their intended owners. Despite its

importance, it has not been formally treated in the context of

anonymous tokens (AT) which are lightweight anonymous cre-

dentials. In this work, we consider a client who “buys” access to-

kens which are forbidden to be transferred although anonymously

redeemed. We extensively study the trade-offs between privacy (ob-

tained through anonymity) and security in AT through the notion

of non-transferability. We formalise new security notions, design a

suite of protocols with various flavors of NT, prove their security,

and implement the protocols to assess their efficiency. Finally, we

study the existing anonymous credentials which offer NT, and show

that they cannot automatically be used as AT without security and

complexity implications.

1 INTRODUCTION
The notion of anonymity has been introduced and proposed to

be used as a mechanism to protect the privacy of consumers in

almost any system. On the one hand, it provides a strong tool

to protect honest users from being tracked, on the other hand, it

creates an opportunity for misbehaviour and fraud, thus creating a

security threat. In recent years, there has been a growing interest

in designing one-time anonymous tokens for applications such as

private browsing with Privacy Pass (PP) [1] and Trust Tokens (TT)1,
private access to services

2
[2], private statistics aggregation [3], or

even for private contact tracing [4].

These protocols are usually designed in a client-server setting
3
.

They first require to establish some form of “trust” (that we keep

informal for now) to the client before issuing any anonymity-

preserving access token. InPP, the “trust” is establishedwith CAPTCHA
[5] to prove human-hood. In other settings, the system integrates

the client-authenticity verification with a trusted attestor; or it may

introduce an identity manager (IdM) as a proxy to authenticate the

client with an account before issuing anonymous tokens as in [3].

Upon establishing the “trust”, the protocol operates in two phases:

issuance and redemption. During the issuance phase, the client

obtains a token through a “signature" by the server on a random

(and masked) message given by the client. During the redemption

phase, the client redeems the unmasked token to the server who

either accepts or rejects it. The protocol must satisfy two properties:

1
https://web.dev/trust-tokens/

2
https://developer.apple.com/news/?id=huqjyh7k

3
It is not unusual to involve more parties such as a trusted third party as an attestor.

(1) the security: the client cannot produce valid tokens without the

help of the server (one-more unforgeability), and (2) privacy: the

server must not be able to link the issuance and redemption sessions

of a token (unlinkability).

When tokens have a form of value which is somehow charged to

the client, “trust” must become strongly enforced. This implies that

a token cannot be charged without the client’s consent (what we

call accountability) and sometimes that only the charged client can

redeem the token (what we call non-transferability). Still, redeem
should remain anonymous.

In this work, we use digital identities (defined by a key pair)

as a way to establish trust and specifically issue the tokens to the

identities defined by a public key. The client holds a corresponding

secret key.When the client attempts to redeem, they will be asked to

prove (in zero-knowledge) the knowledge of the secrets associated

to their identity. Although token issuance with trust establishment

is based on a public key, redeem with ownership proof remains

anonymous. Of course, this assumes that the network traffic does

not compromise privacy.

1.1 Non-Transferability
Anonymous token protocols implicitly assume that the client re-

deeming the token corresponds to the one to which it was issued.

Ensuring this property is crucial as we detail next and discuss more

extensively in Appendix C.

Token sharing and transferring. As explored in the context of

anonymous credentials [6–8], sharing or unauthorized transfer of

anonymous credentials is a threat to the systems. One time anony-

mous tokens are the optimized lightweight version of anonymous

credentials with a randomly selected message being the attribute.

Hence, unlike anonymous credentials which carry a value in the

form of identification data with privacy protection, one-time tokens

do not embed any meaningful data. Nevertheless, they cannot be

issued to clients without a trust establishment, specifically when

they are used for access control. For example, CAPTCHAs were

introduced as proof-of-humanhood and solving them is considered

as a trust signal. Because asking to solve CAPTCHAs was costly for

honest users, token issuance were processed in batches in Privacy

Pass [1]. Even though the tokens do not embed a valuable infor-

mation, it is essential to maintain the initial trust establishment

due to the economy it creates for malicious actors with “human

bots". Since tokens being transferable would imply transferring said

established trust with them, without prevention of transferability

of anonymous tokens, demanded privacy from users can easily be

https://web.dev/trust-tokens/
https://developer.apple.com/news/?id=huqjyh7k

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

abused. This problem cannot be prevented by enforcing a login

information during the issuance.

This security threat highlight the importance of ensuring non-
transferability: A token should only be allowed to be redeemed by its
assigned owner.

Transferring can happen when tokens have no intrinsic value for

the client once the client owns the token. Assuming that the client’s

secret key has some intrinsic value and that redeem implies using

the secret key, the client may become more reluctant to transfer

the token. This is essentially our approach: to bind the token to a

valuable secret and to make redeem impossible without the secret.

Our Setting. In this work, we consider a setting where we don’t

separate the user from their device in the sense that a client refers

to both the user and the device and a (possibly malicious) client

can program the device however they want. This is a stronger

setting than assuming a trusted hardware acting as an interface

between the user and the protocols [8]. We assume that each client

owns a key pair (sk𝑐 , pk𝑐) on the client side. We wish to obtain

the following properties for a non-transferable anonymous token

protocol: a client cannot request a token made for a specific client

public key pk𝑐 , without holding the corresponding secret key sk𝑐 .
When redeeming their token, the client must stay anonymous,

but they should not be able to redeem a token without proving

knowledge of the secret key sk𝑐 associated to the public key pk𝑐
for which the token was issued.

1.2 Our Results
In this work, we formalise the notion of a non-transferable one-

time anonymous token (NTAT), we give an algebraic MAC-based

construction and analyse its security and performance. More pre-

cisely, we formalize the NTAT framework via a key pair on the

client side which allows to tie a token to a client’s identity, and

makes the redemption procedure interactive to require the client

to prove knowledge of the secret key associated to the token they

are redeeming.

We formalise the security of NTAT, which we study under three

notions: accountability ensures that every issued token is approved

by the server and accounted to a given client public key pk𝑐 (it in-
cludes one-more unforgeability and request unforgeability); unlink-
ability, which is kept from the original anonymous tokens settings;

and non-transferability, which is composed of the soundness and

uniqueness notions, and captures the fact that a client who can

successfully redeem the token must own the unique client secret

key on which the token was issued.

We provide an NTAT construction, and a variant that achieves

public verifiability of tokens through the use of pairings (App. D.1).

We analyze their complexity and communication cost in comparison

to some state of the art protocols. We provide additional variants

of our construction in Appendix D. One with more attributes, one

based on an honestly used trusted hardware to defeat attacks based

on a maliciously used trusted hardware, one where client authenti-

cation is kept separate from the issuance protocol for a complexity

advantage and one that binds the client’s secret key to an external

valuable secret.

We then proceed to prove their security. One-more unforgeability

(OMUF) relies on the Algebraic GroupModel (AGM) [9], the random

oracle model (ROM), and the hardness of the discrete logarithm

problem (DLog), unlinkability relies on DLog and ROM, request

unforgeability and soundness are based on information theory,

and uniqueness requires the hardness of the DLog. We use the

AGM [9] (only for OMUF) as it helps proving security without

making protocols more complex than necessary.

Design choicesWe introduce and justify a few design choices.

Firstly, we only consider anonymous tokens with interactive

redemption, which we formally define in Theorem 2.1. Indeed, if

redemption is non-interactive, then non-transferability is incom-

patible with the other security notions of accountability and un-

linkability. We discuss this more extensively in subsection 2.4.

Then, we give a construction based on algebraic MACs since

their algebraic structure allows for efficient (non-interactive) zero-

knowledge proofs. Alternative construction based on oPRFs (obliv-

ious pseudo-random functions) such as [10] were considered but

they require to prove knowledge of the pre-image of a hash function,

which is expensive.

Finally, our construction requires the client to authenticate dur-

ing issuance, in the form of proving the knowledge of their secret

key, since it otherwise leads to an attack on the one-more unforge-

ability security as highlighted in Appendix E.

1.3 Related Work
Non-transferability is a known and studied problem in the context

of anonymous credentials [6, 8, 11]. In this section, we summarize

the related and previous work and the security notion of non-

transferability.

Anonymous Credentials (AC). AC protocols (between an issuer

and a verifier) were introduced in the form of blind signatures by

Chaum [12, 13]. In AC, a client wants to show a type of “proof” to

a verifier to prove that they own a set of attributes (for instance:

Attr = [state = “NY”, age = 34]). The attributes should satisfy two

conditions: (1) they have been verified and used to issue a credential

by the issuer (issuance phase) and (2) they verify a public predicate

(for instance, state = “NY” ∧ age ≥ 18) (show phase). Anonymity

holds in the sense that no more than verified predicates is revealed

about the attributes, and no linkable information between issuance

and show sessions is given.

There exist many variations of the anonymity notion. Attributes

could be commitments to a hidden value where the issuer would

see only a commitment to them or they could be the plain attributes

shown clearly to the issuer. The show phase could reveal a reran-

domized commitment while verifying the predicate anonymously,

or it could simply reveal a given subset of plain attributes.

In 2001, Camenish and Lysyanskaya [6] introduced a variant of

anonymous credentials, that they call non-transferable, based on

RSA assumptions. Baldimsti and Lysyanskaya [14], give another

variant of anonymous credentials that is still based on blind signa-

tures. Their scheme was allegedly affected by attacks on ROS [15–

17], but recent work [18] has dis-proven this claim.

U-Prove [11] is an implementation of AC based on Brands [19].

In U-Prove, the issuer must see the plain attributes which are put in

credentials. The client can separate the attributes as those which are

shown to the verifier, those which are revealed as a commitment, or

those which remain hidden (though their existence is not hidden).

2

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

The issuing phase is a 3-move protocol and the show phase is

non-interactive. The security of U-Prove is not formally proven.

U-Prove also describes an option to add the public key of a device
as an attribute and to show ownership without revealing it during

the show phase. This option is added to make the credentials device-

protected. To achieve device-bound, it is suggested to embed the

secret key of the device as an additional attribute and making the

device prove that it knows the attribute (i.e. the secret key in a

zero-knowledge way) during the show phase.

Keyed-Verification Anonymous Credentials (KVAC). In AC, if

the verifier has to use the secret of the issuer during the show phase,

the scheme becomes a KVAC [20]. Doing so offers performance

advantage. However, both AC and KVAC can be used simultane-

ously: an upper AC provides credentials, and proving credentials to

a specific verifier (with their own key) would transform in a KVAC

that could be reused to the same verifier.

Barki et al. [21] describe a KVAC protocol which issues creden-

tials on a commitment to the attributes. Showing credentials only

requires the commitment and the credentials so does not provide

non-transferability. They build a KVAC scheme without pairing and

also transform it into an AC scheme using pairing. Their protocol

relies on an algebraic MAC which we will use as a core primitive

for our protocol.

Trusted Hardware as a Solution. Hanzlick and Slamanig [8] pro-

pose a non-transferable AC protocol called CHAC. In their setting,

a client has their secret key kept by a trusted hardware such as a

SIM card and that using the secret would not be possible without

its help. The client is composed of a “core” (trusted hardware) and

a “helper” (smartphone/computer). There are interaction between

the two. The role of the core is to keep the secret key safe and the

role of the helper is to minimize the tasks of the core.

They rely on the discrete logarithm assumption in bilinear groups.

The issuance and the show protocols have 3 moves and are initiated

by the server (to send a nonce). Furthermore, it is a multi-show

system: the server cannot detect if a client uses their credentials

several times.
4

Anonymous Tokens. Enforcing a credential to be used only once

is done by adding an extra attribute 𝑡 (called a tag), serving as a

unique identifier of the credential which is revealed at the show

phase. Anonymous tokens are lightweight single-show credentials

in which the number of attributes is restricted.

There exists various proposals to extend the tokens with more

functionalities such as embedding a bit [22–24], or private vs public

verifiability [4], or embedding more attributes [23, 24], making

them look closer to anonymous credentials [13]. Each of these

functionalities may require different underlying primitives such

as blind signatures [12] (providing public verifiability), oblivious

PRFs (oPRFs) [25] (first used in Privacy Pass [1] for efficiency and

private verifiability) or algebraic MACs [23, 24, 26]. In this work,

we based our constructions on (algebraic) MACs.

4
The paper [8, Footnote 4] claims that it is easy to transform a multi-show protocol

into a single-show protocol by adding a tag as an attribute and showing it. However,

given that it must be shown at issuance as well, unlinkability would be broken.

1.4 Notations
We introduce some notation used throughout the paper. We write

1predicate to refer to the indicator functionwhich outputs 1 if predicate
is true and 0 otherwise. We use the superscript oracles for conve-
nience to denote oracle access to all the oracles of a given security

game, whose names are denoted with a starting "O". The notation
1
𝜆
denotes the security parameter 𝜆 in unary form.

We use two assumptions in our proofs: DLog and 𝑛-DLog as

follows. Given an additive groupG of a prime order qwith a random
generator𝐺 ,DLog assumption states that for a given random𝑌 ∈ G,
the adversary cannot find 𝑥 such that 𝑌 = 𝑥 · 𝐺 . And, 𝑛-DLog
assumption states that given a set of

{
𝐺,

(
𝑌𝑖 = 𝑥

𝑖 ·𝐺
)
𝑖∈{1,...,𝑛}

}
,

the adversary cannot find 𝑥 .

2 NON-TRANSFERABLE ANONYMOUS
TOKENS

The goal of non-transferability is to make sure that the redeemer of

an anonymous token is the same client who requested the token in

order to prevent stealing of tokens as well as unauthorized transfer

of tokens.

More precisely, we want to have the following properties : each

token must be accounted to one public-key pk𝑐 and each issuance

should be authorized by the corresponding client; each token is issued
obliviously and redeemed anonymously, hence the public key pk𝑐
cannot be revealed at redeem ; the client should not be able to redeem
a token without proving knowledge of the secret key sk𝑐 associated
to the public key pk𝑐 for which the token was issued.

We give the formal framework below.We focus on a two-move is-

suance protocol. We separate it with three algorithmsClient.Query,
Server.Issue, Client.Final instead of presenting it as a single inter-

active protocol. We then formalize the security notions of one time

anonymous tokens. We enrich the standard one-more unforgeabil-

ity and unlinkability notions to fit our new formalism, and we

introduce a new notion of non-transferability.

2.1 A framework for non-transferable
anonymous tokens

Definition 2.1 (Anonymous Tokens with Interactive Redemption).
An Anonymous Token with Interactive Redemption is a tuple of

algorithms defined in the following way:

• Setup(1𝜆) → pp: a probabilistic polynomial time algorithm

that takes as input the security parameter 𝜆 and returns

public parameters pp.
• Server.KeyGen(pp) → (sk𝑠 , pk𝑠): a probabilistic polyno-

mial time algorithm that takes as input pp and generates a

private-public key pair for the server.

• Client.KeyGen(pp) → (sk𝑐 , pk𝑐): a probabilistic polyno-

mial time algorithm that takes as input pp and generates a

private-public key pair for the client. Additionally, we use a

predicate KeyVer(pp, sk𝑐 , pk𝑐) to tell whether a key pair is

valid. (The predicate must be easy to evaluate.)

• Client.Query(pp, sk𝑐 , pk𝑠) → (query, st): the first step of

an interactive issuance algorithm between client and server.

3

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

Correctness(𝜆)
1: Setup(1𝜆) → pp
2: Server.KeyGen(pp) → (sk𝑠 , pk𝑠)
3: Client.KeyGen(pp) → (sk𝑐 , pk𝑐)
4: if ¬KeyVer(pp, sk𝑐 , pk𝑐) then return 0

5: Client.Query(pp, sk𝑐 , pk𝑠) → (query, st)
6: Server.Issue(pp, sk𝑠 , pk𝑐 , query) → resp
7: Client.Final(st, resp) → (𝜎,𝜔)
8: ⟨Client.Prove(pp, (𝜎,𝜔), sk𝑐 , pk𝑠), Server.Verify(pp, 𝜎, sk𝑠) ⟩ → 𝑏

9: return 𝑏

Figure 1: Correctness game (Definition 2.2).

The client uses their secret key and pp to generate a request

query for a token and saves their state st for future steps.5

• Server.Issue(pp, sk𝑠 , pk𝑐 , query) → resp/⊥: the second step
of issuance, where the server takes the client query, client

public key, and server secret key and generates a response.

If the query is not valid, the server returns ⊥.
• Client.Final(st, resp) → (𝜎,𝜔): the third and final step of

issuance, where the client takes the server’s response from

the previous step, as well as the client’s previous state, and

generates a token 𝜎 (which is essentially a blind commit-

ment to the client’s secret key), as well as decommitment

information 𝜔 to the token.

• ⟨Client.Prove(pp, 𝜎, 𝜔, sk𝑐 , pk𝑠), Server.Verify(pp, 𝜎, sk𝑠)⟩ →
0/1: Given a token 𝜎 , the redemption protocol consists of

an interactive proof of knowledge of (𝜔, sk𝑐) between the

client (prover) and the server (verifier) to ensure that the

client knows the secret key sk𝑐 and the decommitment in-

formation 𝜔 .

Client.Prove and Server.Verify are two interactive algorithms.

For instance, Server.Verify initially takes input (pp, 𝜎, sk𝑠)
and returns a state for itself. Then, it inputs the state and

a message from the client and returns a new state for itself

and a response for the client. It continues until the new state

is ⊥ (ideally one round-trip communication should happen),

in which case the new response is the final output of the

protocol.
6

For the rest of this paper, when we refer to anonymous tokens

(AT) we will assume interactive redemption unless mentioned oth-

erwise.

Definition 2.2 (Correctness). An AT scheme is correct if for all

𝜆 and for all randomness used within the algorithms Correctness
game (Figure 1) returns 1.

Definition 2.3 (Non-Transferable Anonymous Tokens). We say that

an AT is a Non-Transferable Anonymous Token (NTAT) if it has
the following security properties : it is accountable (Section 2.2),

unlinkable (Section 2.3) and non-transferable (Section 2.4).

We define the aforementioned security notions in the following

sections.

5
In previous works, this algorithm also takes as input from the client a nonce 𝑡 which

is used to prevent double-spending. In our protocol, double spending is prevented by

using a unique 𝜎
6
We also consider variants ofATwhere Server.Verify does not use sk𝑠 . I.e., the server’s
secret is not needed in redeem. In Appendix D.1 we propose such variant.

OMUF(A)
1: Setup(1𝜆) → pp
2: Server.KeyGen(pp) →
(sk𝑠 , pk𝑠)

3: 𝑞 [·] ← 0; st[·] ← ∅
4: ((sk𝑐 , pk𝑐), (𝜎𝑖 , 𝜔𝑖)𝑖∈{1,...,𝑞}) ←

AOIssueTok,ORedeem (pp, pk𝑠)
5: if 𝑞 ≤ 𝑞 [pk𝑐] then return 0

6: if ∃𝑖 ≠ 𝑗 s.t. 𝜎𝑖 = 𝜎 𝑗 then re-
turn 0

7: if ¬KeyVer(pp, sk𝑐 , pk𝑐) then
return 0

8: for 𝑖 = 1 to 𝑞 do
9: ⟨Client.Prove(pp, 𝜎𝑖 , 𝜔𝑖 , sk𝑐 , pk𝑠)

, Server.Verify(pp, 𝜎𝑖 , sk𝑠) ⟩ →
out

10: if out = 0 then return 0

11: return 1

OIssueTok(pk𝑐 , query)
12: 𝑞 [pk𝑐] ← 𝑞 [pk𝑐] + 1

13: resp ←
Server.Issue(pp, sk𝑠 , pk𝑐 , query)

14: return resp

ORedeem(sid, input)
15: if st[sid] does not exist

then
16: st[sid] ←
(pp, input, sk𝑠)

17: return
18:

Server.Verify(st[sid], input) →
(st′, output)

19: st[sid] ← st′

20: return output

Figure 2: One-More Unforgeability game (Definition 2.4).

2.2 Accountability Notion
We define the notion saying that every issued token must have been

approved by the server and somehow “charged” to a specific public

key pk𝑐 upon request by its owner. For that, the main ingredient is

the notion of one-more unforgeability (OMUF) to which we add the
notion of request unforgeability (RUF). The former notion ensures

that an adversary cannot forge 𝑞 valid tokens without making 𝑞

issuance requests to the server. This captures the case where the

server is honest and all the clients aremalicious by default. However,

this alone is not enough to provide full security with accountability.

With the RUF notion, an adversary cannot query the server to

charge a public key without knowing the corresponding secret key.

For this, one client is honest and other participants are malicious

by default. These two notions make the system accountably secure.

One-More UnForgeability.We formalize the idea that an adver-

sary cannot make 𝑞 + 1 tokens when it requests the issuance of 𝑞

tokens. Compared to the standard notion of OMUF, in our game,

we have to count issuance sessions for the same pk𝑐 and focus on

the adversary not being able to make more tokens for the target

pk𝑐 .

Definition 2.4 (One-more unforgeability). An AT is one-more un-

forgeable if for any PPT adversary A we have

AdvOMUF (A) = Pr[OMUF(A) → 1] = negl(𝜆)
where the OMUF(A) game is defined in Figure 2.

InOIssueTok,A can request the issuance of a token to be charged

on key pk𝑐 . The 𝑞 [pk𝑐] counter is the number of issued tokens

which have been charged to pk𝑐 . Essentially, A tries to get more

than 𝑞 [pk𝑐] tokens associated to pk𝑐 .
In ORedeem,A can launch a redeem session sid with the server

by setting the token 𝜎 in input. This first call will define the inner
state of the server for this redeem session. The last call toORedeem
sends the last message from the client. It sets the inner state of the

server to ⊥ and defines the final output of the protocol outsid.
A is providing a key pair. The key sk𝑐 is needed to check that

the tokens are valid. The key pk𝑐 is needed to check how many

4

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

RUF(A)
1: Setup(1𝜆) → pp
2: Qquery, Qfinal ← ∅
3: ClientKeyGen(pp) → (sk𝑐 , pk𝑐)
4: (query, sk𝑠) ←

AORequest,OFinal,ORedeem (pp, pk𝑐)
5: if ∃ 𝑗 query = query𝑗 then abort

6: resp ←
Server.Issue(pp, sk𝑠 , pk𝑐 , query)

7: if resp = ⊥ then abort
8: return 1

ORequest(𝑗, pk𝑠)
9: if 𝑗 ∈ Qquery then abort
10: insert 𝑗 in Qquery
11: Client.Query(pp, sk𝑐 , pk𝑠) →
(query𝑗 , st𝑗)

12: return query𝑗

OFinal(𝑗, resp)
13: if 𝑗 ∈ Qfinal or 𝑗 ∉ Qquery

then abort
14: insert 𝑗 in Qfinal
15: resp𝑗 ← resp
16: Client.Final(pp, st𝑗 , resp𝑗) →
(𝜎 𝑗 , 𝜔 𝑗)

17: out𝑗 ← 1𝜎𝑗 ≠⊥
18: return out𝑗
ORedeem(sid, input)
19: if st[sid] does not exist then
20: (𝑗, pk𝑠) ← input
21: if 𝑗 ∉ Qfinal then abort
22: st[sid] ←
(pp, 𝜎 𝑗 , 𝜔 𝑗 , sk𝑐 , pk𝑠)

23: return 𝜎 𝑗

24:

Client.Prove(st[sid], input) →
(st′, output)

25: st[sid] ← st′

26: return output

Figure 3: Request unforgeability game (Definition 2.5).

tokens have been accounted. The two keys must satisfy the KeyVer
predicate. However, both keys can be maliciously generated.

We could have formalized a stronger notion in which redeem is

done by a malicious prover, without having to produce a consistent

sk𝑐 (nor a𝜔𝑖). However, our forthcoming soundness property states

that we can extract a consistent (𝜔𝑖 , sk𝑐 , pk𝑐) out from a successful

prover. If the malicious redeemer makes no further issuance query,

neither does the extractor in Theorem 4.4. So, we keep an honest

prover in ourOMUF definition and argue that it is enough, together
with soundness, to capture OMUF with a malicious prover.

Unforgeability of requests. This notion says that if a query by

a client to issue a token is accepted by the server with public key

pk𝑐 , it is guaranteed that the query was not forged, even if the

adversary interacts with the client using sk𝑐 . In this model, one

client is honest and all other participants (other clients and the

server) are malicious by default. This implies that the adversary

can choose pk𝑠 and sk𝑠 and also change it at will.

Definition 2.5. An anonymous token with interactive redemption

scheme is request-unforgeable if for any PPT adversaryA, we have

AdvRUF (A) = Pr[RUF(A) → 1] = negl(𝜆)

where the RUF(A) game is defined in Figure 3.

InRUF, the client is honest and simulated by the oracles.ORequest
makes the client request the token of index 𝑗 . OFinal finalizes the
issuance of the token of index 𝑗 by giving the response from the

(possibly malicious) server. ORedeem makes the client redeem the

token of index 𝑗 . The adversary tries to forge an issuance query

which has not been made by ORequest.
ORedeem now runs sessions of the redeem protocol with the

client. The session sid defines the inner state st[sid] for the client.
The very first call with this session identifier defines the state of the

session. By convention, the input defines the index 𝑗 of the token to

be redeemed. Interestingly, A can launch the redeem of the same

tokens (of issuance session 𝑗) many times (with several redeem

sessions sid), and possibly with different pk𝑠 . For the acceptance

UNLINK2 (A)
1: Setup(1𝜆) → pp
2: Server.KeyGen(pp) →
(sk𝑠 , pk𝑠)

3: Qquery, Qfinal, Qredeem ← ∅
4: 𝑖 ← 0; 𝑏 ←$ {0, 1}
5: (𝑗0, 𝑗1, state) ←
Aoracles

1
(pp, sk𝑠 , pk𝑠)

6: if { 𝑗0, 𝑗1 } ⊈ Qfinal − Qredeem
then abort

7: if out𝑗
0
= 0 or out𝑗

1
= 0 then

abort
8: if 𝑏 = 1 then
9: swap (usr𝑗

0
, 𝜎 𝑗

0
, 𝜔 𝑗

0
) and

(usr𝑗
1
, 𝜎 𝑗

1
, 𝜔 𝑗

1
)

10: 𝑏′ ← Aoracles
2

(state)
11: return 1𝑏=𝑏′

ORequest(𝑗, usr)
12: if 𝑗 ∈ Qquery then abort
13: insert 𝑗 in Qquery
14: usr𝑗 ← usr
15:

Client.Query(pp, sk𝑐,usr, pk𝑠) →
(query𝑗 , st𝑗)

16: return query𝑗

OFinal(𝑗, resp)
17: if 𝑗 ∈ Qfinal or 𝑗 ∉ Qquery then

abort
18: insert 𝑗 in Qfinal
19: resp𝑗 ← resp
20: Client.Final(pp, st𝑗 , resp𝑗) →
(𝜎 𝑗 , 𝜔 𝑗)

21: out𝑗 ← 1𝜎𝑗 ≠⊥
22: return out𝑗
ORedeem(sid, input)
23: if st[sid] does not exist then
24: 𝑗 ← input
25: if 𝑗 ∉ Qfinal then abort
26: insert 𝑗 in Qredeem
27: usr← usr𝑗
28: st[sid] ←
(pp, 𝜎 𝑗 , 𝜔 𝑗 , sk𝑐,usr, pk𝑠)

29: return 𝜎 𝑗

30: Client.Prove(st[sid], input) →
(st′, output)

31: st[sid] ← st′

32: return output

OClientKeyGen()
33: increment 𝑖

34: ClientKeyGen(pp) →
(sk𝑐,𝑖 , pk𝑐,𝑖)

35: return (sk𝑐,𝑖 , pk𝑐,𝑖)

Figure 4: Unlinkability game (Definition 2.6).

of the forged query, the adversary must provide for which sk𝑠 the
query is accepted by honestly running the server.

2.3 Unlinkability Notion
This notion captures the fact that a malicious server should not be

able to link the issuance and redemption phase of a given token.

We assume an honest key generation in the setup of the server (line

2 in the game).
7
I.e., we assume that the server is set up with a key

pair generated using Server.KeyGen.8

Our notion is equivalent to the one in previous work [22, 23],

with adaptation to our NTAT notion (but for honest key setup on

the server).

Definition 2.6 (Unlinkability). An AT scheme is unlinkable if for

any PPT adversary A, we have

AdvUNLINK2 (A) = Pr[UNLINK2 (A) → 1] ≤ 1

2

+ negl(𝜆)

where the UNLINK2 (A) game is defined in Figure 4.

2.4 Non-Transferability Notion
We now define the non-transferability notion. In this definition,

the goal is to capture the fact that a client who does not possess

the client secret key on which the token was issued should not be

able to successfully redeem the token. For that, we first define the

notion of soundness for redeem which is similar to the knowledge

soundness of interactive proofs of knowledge: if an adversary A2

is able to redeem a token 𝜎 after being given information from an

7
We need this assumption in the proof of Theorem 4.3 (in Γ4

on page 17).

8
To allow malicious key generation, we would need an extra key registration process

where the server would prove the knowledge of sk𝑠 in an extractable manner. We

choose the simpler approach with honest setup. Alternatively, we could improve the

proof of Theorem 4.3 by adding extra assumptions such as AGM.

5

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

adversary A1, A2 must know some witness 𝜔 and some key pair

(sk𝑐 , pk𝑐) associated to 𝜎 . The “must know” part of it is formalized

by the notion of extractor.

Then, we define the uniqueness property of (𝜔, sk𝑐 , pk𝑐) to for-

malize that 𝜎 is binding towards a unique (𝜔, sk𝑐 , pk𝑐), thus to a

unique (sk𝑐 , pk𝑐). Hence, transfer implies giving this pair.

Soundness. The game starts with an adversary A1 (who could

possibly get the secret sk𝑠 of the server, without loss of generality)
who returns a state as well as a token 𝜎 and a session identifier sid∗

to be used by the ORedeem oracle to redeem 𝜎 . Then, an adversary

A2 fed with the state plays with the server through OIssueTok
and ORedeem. A2 is supposed to successfully redeem 𝜎 (to be

checked by outsid∗ = 1). If this is the case, an extractor E playing

with A2 in a blackbox manner and with the state should extract

the input (𝜔, sk𝑐 , pk𝑐) to a successful honest prover to redeem 𝜎 ,

and satisfying KeyVer(pp, sk𝑐 , pk𝑐). Our idea is that if A1 with a

registered key pk𝑐 issues a token 𝜎 and transfers it to A2, for A2

to redeem it, A1 must provide sk𝑐 as well. We further make sure

that the pk𝑐 of A1 and the extracted pk𝑐 are the same by the next

notion of uniqueness.

We adapt the notion of knowledge soundness of proofs of knowl-

edge to our setting.

SOUND(A1,A2, E)
1: Setup(1𝜆) → pp
2: Server.KeyGen(pp) → (sk𝑠 , pk𝑠)
3: (𝜎, state, sid∗) ← A1 (pp, sk𝑠 , pk𝑠)
4: ORedeem(sid∗, (𝜎, sk𝑠)) ⊲ initializes st[sid∗]
5: AOIssueTok,ORedeem

2
(state) ⊲ indirect output in outsid∗

6: if outsid∗ undefined or outsid∗ = 0 then return 0 ⊲ redeem failed

7: EA2
,OIssueTok,ORedeem (pp, pk𝑠 , 𝜎, sid∗, state) → (𝜔, sk𝑐 , pk𝑐)

8: run ⟨Client.Prove(pp, 𝜎,𝜔, sk𝑐 , pk𝑠), Server.Verify(pp, 𝜎, sk𝑠) ⟩ → out
9: if out = 1 and KeyVer(pp, sk𝑐 , pk𝑐) then
10: return 1 ⊲ extraction succeeded

11: return 2

OIssueTok(pk𝑐 , query)
1: resp← Server.Issue(pp, sk𝑠 , pk𝑐 , query)
2: return resp
ORedeem(sid, input)
1: if st[sid] does not exist then
2: st[sid] ← (pp, input, sk𝑠)
3: return
4: Server.Verify(st[sid], input) → (st′, output)
5: st[sid] ← st′

6: if st′ = ⊥ then outsid ← output
7: return output

Figure 5: Soundness game (Definition 2.7).

Definition 2.7 (Soundness). An AT scheme is 𝐾-sound if there

exists an extractor E of bounded complexity with limit to oracle

accesses (as detailed below) such that for any A1 and A2, the

SOUND game outputs 2 with negligible probability.

AdvSOUND (A1,A2, E) = Pr[SOUND(A1,A2, E) → 2] ≤ negl(𝜆)
where the SOUND game is defined in Figure 5. Given the random

coins rnd which are used in the first three steps of the SOUND
game (for setup, key generation, and A1), we define 𝑝rnd = 1 −
Pr[SOUND(A1,A2, .) → 0|rnd] as the probability, over the coins
by A2, that A2 succeeds to redeem the transferred token 𝜎 . The

extractor E can run A2 in a black-box manner a number of times

UNIQ (A)
1: Setup(1𝜆) → pp
2: A(pp) → (𝜎,𝜔, sk𝑐 , pk𝑐 , 𝜔′, sk′𝑐 , pk′𝑐 , sk𝑠 , pk𝑠)
3: run ⟨Client.Prove(pp, 𝜎,𝜔, sk𝑐 , pk𝑠), Server.Verify(pp, 𝜎, sk𝑠) ⟩ → out
4: run ⟨Client.Prove(pp, 𝜎,𝜔′, sk′𝑐 , pk𝑠), Server.Verify(pp, 𝜎, sk𝑠) ⟩ → out′

5: if ¬KeyVer(pp, sk𝑐 , pk𝑐) or out = 0 then return 0

6: if ¬KeyVer(pp, sk′𝑐 , pk′𝑐) or out′ = 0 then return 0

7: if (𝜔, sk𝑐 , pk𝑐) = (𝜔′, sk′𝑐 , pk′𝑐) then return 0

8: return 1

Figure 6: Uniqueness game (Definition 2.8).

which is limited to 𝐾 (𝑝rnd, 𝜆) on average. The complexity of E is

𝐾 (𝑝rnd, 𝜆) ×Poly(𝜆). The number of oracle calls by E is also limited

to 𝐾 (𝑝rnd, 𝜆) times the bound on the number of oracle calls by A2.

Essentially, if we want to transfer a token to be redeemed with

high probability 𝑝rnd, we have an extraction with small complexity,

where “high” and “small” are defined by the function 𝐾 . Typically,

we will have 𝐾 (1, 𝜆) ≈ 2 so E succeeds to extract by running A2

twice on average. In our results, we use 𝐾 (𝑥, 𝜆) = 2

𝑥 (𝑥−𝜀 (𝜆)) for
some negligible function 𝜀 (𝜆). Hence, for 𝑝rnd larger than a positive

constant, we have 𝐾 = O(1).
When calling A2 in a black box manner (which is counted as

one unit of complexity for E), the extractor simulates the responses

from the oracle queries made byA2. This implies that the execution

of A2 is stalled upon an oracle query and the execution resumes

when the extractor provides the answer to the query. By calling

A2, E controls the random coins of A2 and can easily rewind A2

by replaying the same input and coins. Note that E must keep the

same capabilities asA2: ifA2 needs to make new tokens to succeed

to redeem, E also needs to call OIssueTok to extract. If A2 works

without this oracle, extraction does not need it either.

The non-transferability notion by Hanzlick and Slamanig [8] is

much simpler and falsifiable. This comes from the fact that they

assume that the device holding sk𝑐 is trusted, so they do not have

to deal with a malicious A1 misusing it. Essentially, their non-

transferability notion is a form of unforgeability.

Uniqueness. Finally, we define the uniqueness notion. We say

redeem is non-transferable if it is both sound and enforces unique-

ness.

Definition 2.8 (Uniqueness). An AT scheme enforces uniqueness

if for any PPT adversary A we have

AdvUNIQ (A) = Pr[UNIQ (A) → 1] = negl(𝜆)
where the UNIQ (A) game is defined in Figure 6.

Redeem cannot be non-interactive. Non-transferability means

soundness and uniqueness together. An intuitive observation is

that, when redeem is non-interactive, soundness is compatible with

neither accountability (more specifically with RUF security) nor

unlinkability. Indeed, assuming soundness, there exists some E that

we can use as follows when we have a scheme with non-interactive

redeem. We set A1 to the honest client setting up their keys and

issuing a token then set state to the non-interactive redeem mes-

sage. Then, A2 is set to a dummy algorithm just sending state:
essentially,A2 sets its output equal to its input. Due to correctness,

𝑝rnd is always 1, meaning𝐾 (𝑝rnd, 𝜆) is assumed to be small. Clearly,

6

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

E playing 𝐾 (𝑝rnd, 𝜆) times with A2 learns nothing in this interac-

tion. Thus, it reduces to an extractor not using A2 at all and still

being able to extract. Soundness implies that E can extract sk𝑐 from
state by playing with the issuance and redeem oracles. Assuming

uniqueness is satisfied, this must be the correct sk𝑐 . The crucial
point is that the input state toA2 can be obtained when an honest

client is redeeming a token, because of the non-interactive redeem.

The ability to extract sk𝑐 from redeem allows us to build adver-

saries to break the RUF andUNLINK security notions. This justifies

our definition of an AT. In this argument, the non-interaction is

essential.

3 OUR NON-TRANSFERABLE ANONYMOUS
TOKENS PROTOCOL

In this section, we present our non-transferable anonymous tokens

scheme following our interface of Theorem 2.1 and Theorem 2.3.We

have the non-interactive proof 𝜋𝑐 by the client, the non-interactive

proof 𝜋𝑠 by the server, the issuance protocol defined with three

algorithms ClientQuery, ServerIssue,ClientFinal, and the redeem

interactive protocol defined by Client.Prove and Server.Verify. We

also provide in Appendix D variants of our protocol based on pair-

ings (ensuring publicly verifiability) and trusted hardware (with

explicit and implicit authentication). The correctness of our schemes

is straightforward and omitted.

3.1 Our NTAT scheme
Our protocol uses random oracles which are denoted differently

as 𝐻𝑖 to enforce domain separation. In practice, we could have a

single random oracle 𝐻 and define 𝐻𝑖 (input) = 𝐻 (𝑖, input).
Setup. Our protocol sets up pp and keys by the algorithms on

Figure 7. We have pp = (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) to define an additive

group G of prime order q with random generators 𝐺1,𝐺2,𝐺3,𝐺4.

For accountability, we requireG to be a generic group. In particular,

for uniqueness, the discrete logarithm problem must be hard. The

client and the server have key sk𝑐 = 𝑥 , pk𝑐 = 𝑥𝐺1 (denoted pk𝑐 = 𝑋)

and sk𝑠 = 𝑦, pk𝑠 = 𝑦𝐺2 (denoted pk𝑠 = 𝑌) respectively.

Setup(1𝜆)
1: Generate G of order q
2: Select random generators

𝐺1, . . . ,𝐺4 of G
3: pp← (q,G,𝐺1, . . . ,𝐺4)
4: return pp

Client.KeyGen(pp)
5: pp← (q,G,𝐺1, . . . ,𝐺4)
6: 𝑥 ←$Z𝑞
7: 𝑋 ← 𝑥𝐺1

8: (sk𝑐 , pk𝑐) ← (𝑥,𝑋)
9: return (sk𝑐 , pk𝑐)

KeyVer(pp, sk𝑐 , pk𝑐)
10: pp← (q,G,𝐺1, . . . ,𝐺4)
11: (𝑥,𝑋) ← (sk𝑐 , pk𝑐)
12: return 1𝑋=𝑥𝐺

1

Server.KeyGen(pp)
13: pp← (q,G,𝐺1, . . . ,𝐺4)
14: 𝑦 ←$Z𝑞
15: 𝑌 ← 𝑦𝐺2

16: (sk𝑠 , pk𝑠) ← (𝑦,𝑌)
17: return (sk𝑠 , pk𝑠)

Figure 7: Set-up and key generation.

Issuance protocol.
The core of the protocol described in Figure 8 uses the algebraic

MAC construction from Barki et al. [21]. The (𝜎, 𝑟, 𝑠) triplet, with
𝜎 = 1

𝑦+𝑠 (𝑥𝐺1 + 𝑟𝐺3 + 𝐺4), is precisely MAC𝐵𝐵 (𝑋) under secret
key 𝑦 with generators 𝐺1,𝐺3,𝐺4. This can also be seen as a BBS+

ClientQuery(pp, sk𝑐 , pk𝑠)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: 𝑥 ← sk𝑐 ;𝑋 ← 𝑥𝐺1

3: 𝑟 ←$Z𝑞 ,
4: 𝛿 ←$Z∗q
5: 𝑇 ← 𝛿 · (𝑋 + 𝑟𝐺3 +𝐺4)
6: 𝜋𝑐 ← ΠREP3 .Prove(pp, 𝑋,𝑇 , 𝑥, 𝛿, 𝑟)
7: query← (𝑇, 𝜋𝑐)
8: st← (pp, pk𝑠 , 𝑟 , 𝛿,𝑇)
9: return (query, st)
ClientFinal(st, resp)
1: (pp, pk𝑠 , 𝑟 , 𝛿,𝑇) ← st
2: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
3: 𝑌 ← pk𝑠 ; (𝑠, 𝑆, 𝜋𝑠) ← resp
4: if notΠDLEQ .Verify(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝜋𝑠)

return ⊥
5: 𝜎 ← 1

𝛿
.𝑆 ⊲

𝜎 = 1

𝑦+𝑠 (𝑥𝐺1 + 𝑟𝐺3 +𝐺4)
6: return (𝜎,𝜔 = (𝑟, 𝑠))

ServerIssue(pp, sk𝑠 , pk𝑐 , query)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: (𝑇, 𝜋𝑐) ← query
3: 𝑦 ← sk𝑠 ; 𝑋 ← pk𝑐
4: if not ΠREP3 .Verify(pp, 𝑋,𝑇 , 𝜋𝑐)

return ⊥
5: 𝑠 ←$Z𝑞 − {−𝑦 }
6: 𝑆 ← 1

𝑦+𝑠𝑇

7: 𝜋𝑠 ← ΠDLEQ .Prove(pp, 𝑦𝐺2, 𝑆,𝑇 , 𝑠, 𝑦)
⊲ PoK of 𝑦 s.t. 𝑌 = 𝑦𝐺2 ∧ 𝑦𝑆 =

𝑇 − 𝑠𝑆
8: resp← (𝑠, 𝑆, 𝜋𝑠)
9: return resp

Figure 8: Token issuance.

signature on sk𝑐 in a group which does not necessarily have a

pairing (hence without public verifiability) [27, 28].

First, the client commits to their public key 𝑋 = 𝑥𝐺1 via 𝐶 =

𝑋 + 𝑟𝐺3 + 𝐺4. This commitment will be embedded in the token,

so that later the client can prove knowledge of the corresponding

secret key 𝑥 to enable non-transferability.

The client constructs 𝑇 by randomly masking (with a factor 𝛿)

the commit value 𝑋 + 𝑟𝐺3 + 𝐺4. This will be used by the server

to construct resp. The random masking ensures unlinkability. The

client provides a proof of knowledge attesting the fact that 𝑇 was

computed properly. This ensures that the resulting token is actually

tied to the client’s public key 𝑋 . As discussed in Appendix E, this

proof is not enough to obtainOMUF-security. The client also proves
knowledge of 𝑥 during this proof 𝜋𝑐 . This gives RUF-security at

the same time.

After receiving 𝑇 and verifying 𝜋𝑐 , the server (with secret key

𝑦) samples random 𝑠 and computes 𝑆 . These values are specifically

constructed so that the client can compute 𝜎 = 1

𝑦+𝑠 (𝑥𝐺1+𝑟𝐺3+𝐺4)
using the values 𝑆, 𝑠, 𝛿 in the final part of the issuance protocol.

The server also proves that 𝑆 was constructed properly, which is

required to ensure unlinkability.

Finally, the client receives 𝑠, 𝑆, 𝜋𝑠 , verifies that 𝑆 was computed

properly and computes 𝜎 .

Client proof 𝜋𝑐 . We present in Figure 9 how we use ΠREP3 (see

Appendix B) over the group G2
in our protocol to make a proof 𝜋𝑐

issued by the client. We use it to prove the knowledge of 𝑥 , 𝛿 , and

𝑟 satisfying

𝑥

(
𝐺1

𝐺1

)
+ 𝑟

(
0

𝐺3

)
− 1

𝛿

(
0

𝑇

)
=

(
𝑋

−𝐺4

)
The protocol uses a random oracle which is denoted by 𝐻1. It is

based on a generalized Schnorr proof [29] with Fiat-Shamir trans-

form [30].

Server proof 𝜋𝑠 . We present in Figure 10 how the ΠDLEQ (see

Appendix B) proof will be used in our protocol with its notations

to make a proof 𝜋𝑠 issued by the server. We use it to prove the

knowledge of 𝑦 satisfying

𝑦

(
𝐺2

𝑆

)
=

(
𝑌

𝑇 − 𝑠𝑆

)
7

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

Prover(pp, 𝑋,𝑇 , 𝑥, 𝛿, 𝑟)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: (𝑎,𝑏, 𝑐) ←$Z3

q
3: comm1 ← 𝑎.𝐺1

4: comm2 ← 𝑎.𝐺1 + 𝑏𝐺3 + 𝑐𝑇
5: ch← 𝐻1 (pp, 𝑋,𝑇 , comm1, comm2)
6: resp

1
← 𝑎 − ch.𝑥 mod q

7: resp
2
← 𝑏 − ch.𝑟 mod q

8: resp
3
← 𝑐 + ch. 1

𝛿
mod q

9: return (ch, resp
1
, resp

2
, resp

3
)

Verifier(pp, 𝑋,𝑇 , ch, resp
1
, resp

2
, resp

3
)

1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: comm′

1
← resp

1
.𝐺1 + ch.𝑋

3: comm′
2

← resp
1
.𝐺1 +

resp
2
.𝐺3 + resp3

.𝑇 − ch.𝐺4

4: ch′ ← 𝐻1 (pp, 𝑋,𝑇 , comm′
1
, comm′

2
)

5: return (ch == ch′)

Figure 9: ΠREP3: Client proof 𝜋𝑐 .

Prover(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝑦)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: 𝑎 ←$Zq
3: comm1 ← 𝑎.𝐺2

4: comm2 ← 𝑎.𝑆

5: ch ← 𝐻2 (pp, 𝑌 , 𝑆,𝑇 −
𝑠𝑆, comm1, comm2)

6: resp← 𝑎 + ch.𝑦 mod q
7: return (ch, resp)

Verifier(pp, 𝑌 , 𝑆,𝑇 , 𝑠, ch, resp)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: comm′

1
← resp.𝐺2 − ch.𝑌

3: comm′
2
← resp.𝑆−ch.(𝑇 −𝑠𝑆)

4: ch′ ← 𝐻2 (pp, 𝑌 , 𝑆,𝑇 −
𝑠𝑆, comm′

1
, comm′

2
)

5: return (ch == ch′)

Figure 10: ΠDLEQ: Server proof 𝜋𝑠 .

Client.Prove(pp, 𝜎,𝜔, sk𝑐 , pk𝑠)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: (𝑟, 𝑠) ← 𝜔 ; 𝑥 ← sk𝑐 ; 𝑌 ←

pk𝑠
3: 𝜎′ ← 𝑥𝐺1 + 𝑟𝐺3 +𝐺4 − 𝑠𝜎
4: 𝛼, 𝛽,𝛾 ←$Zq
5: 𝑄 ← 𝛼𝐺1 + 𝛽𝐺3 + 𝛾𝜎
6: 𝜌 ←$ {0, 1}ℓ𝜌
7: comm← 𝐻3 (𝜌,𝑄)
8: Send (𝜎′, comm) to the server

9: Receive 𝑐
10: (𝑣0, 𝑣1, 𝑣2) ← (𝛼 + 𝑐𝑥, 𝛽 +

𝑐𝑟,𝛾 − 𝑐𝑠)
11: Send(𝑣0, 𝑣1, 𝑣2, 𝜌) to the server

Server.Verify(pp, 𝜎, sk𝑠)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: 𝑦 ← sk𝑠
3: Receive 𝜎′, comm from the

client

4: if 𝜎′ ≠ 𝑦𝜎 then abort

5: 𝑐 ←$Zq
6: Send 𝑐 to the client

7: Receive (𝑣0, 𝑣1, 𝑣2, 𝜌) from the

client

8: 𝑄′ ← 𝑣0𝐺1 + 𝑣1𝐺3 + 𝑣2𝜎

9: 𝑄∗ ← 𝑄′ − 𝑐 (𝜎′ −𝐺4)
10: comm∗ ← 𝐻3 (𝜌,𝑄∗)
11: return (comm == comm∗)

Figure 11: Redemption.

The protocol uses a random oracle which is denoted by 𝐻2. Like

𝜋𝑐 , it is based on a generalized Schnorr proof [29] with Fiat-Shamir

transform [30].

Redeem protocol. Suppose a token 𝜎 was issued to a client with

public key 𝑋 = 𝑥𝐺1. To ensure non-transferability, during redemp-

tion we require the client to prove knowledge of that secret key

𝑥 , as well as of the randomness 𝜔 = (𝑟, 𝑠) used within the token.

To preserve unlinkability, the client cannot reveal their public key

𝑋 . Thus to redeem their token, the client must engage in an inter-

active protocol Π = ZKPoK(𝑥, 𝑠, 𝑟 : 𝜎 = 1

𝑦+𝑠 (𝑥𝐺1 + 𝑟𝐺3 +𝐺4)) by
revealing 𝜎 ′ = 𝑦𝜎 . We construct in Figure 11 such a protocol Π,
assuming the client and server are already both in possession of

the token, i.e. we do not picture the first interaction which consists

in the client sending their token 𝜎 to the server to be verified. With

some rearranging, the client wants to convince the server that it

knows (𝑥, 𝑠, 𝑟) such that 𝜎 ′ −𝐺4 = 𝑥𝐺1 + 𝑟𝐺3 − 𝑠𝜎 . Π is based on

the generalized Schnorr protocol [29].

Discussion. In our protocol, we use a multiplicative mask 𝛿 on the

Pedersen commitment and in the end we reveal part of the BBS

signature, i.e. the group element 𝜎 . Thanks to the multiplicative

masking, 𝜎 is unlinkable. The scalar 𝑠 and the Pedersen nonce 𝑟

remain private. For the redeem protocol, the client proves that they

know the scalars and that it makes a full valid signature to the

verifier who owns the signing key 𝑦.

We could have used additive masking instead as in the standard

[31]. However, additive masking implies that we must keep 𝜎 se-

cret as well as 𝑠 as they are not modified by the additive mask.

Moreover, we would need a token tag 𝑡 as an extra attribute to

be revealed to prevent double-spending. Finally, the client must

prove the knowledge of a valid signature without even knowing

how to verify it without pairing. It makes proofs more expensive

and complex without pairing.

We give the detailed protocols in Appendix A.

3.2 Performance
We start by evaluating the complexity of our protocol and its pairing

variant. We denote the client by 𝐶 , by 𝑆 the server, by × the scalar

multiplication operation in G and by 𝑒 the pairing operation. We

focus on these two operations to estimate the complexity.
9
We do

not count group additions, operations on integers, or hashing for

simplicity.

The complexity comparison with the pairing variant (Appen-

dix D.1) is a bit delicate because the group is different and there is a

new pairing operation. Although the number of group operations

is lower, their complexity is higher, as confirmed by experiment.

The advantage may rather be in the functionality to have a redeem

server who does not need the secret 𝑦.

We also compare the two versions of our NTAT first with non-

transferable ACs with limited attribute and with other state-of-the-

art protocols. Namely, we compare it toU-Prove (with device-bound
version) [11] and CHAC (with one attribute) [8]. We also add to

the comparisons Privacy Pass (PP) [1], the construction from Barki

et al. which we denote by BBDT (from the initials of the authors)

and BBDT’s pairing variant (note that the communication is the

same for the 2 variants hence we only detail the complexity and

functionality), and ATHM [23] which is based on an algebraic MAC

construction. We summarize the complexity comparison in Table 1.

We also count the amount of communication, and compare it to the

same protocols in Table 2.

We stress that those protocols do not have the same functional-

ity, and we highlight some differences in Table 3. For instance, PP,
ATHM and BBDT do not offer non-transferability. PP and ATHM
are anonymous tokens with the notion of one-more unforgeabil-

ity (OMUF). ATHM was made to offer private bit metadata while

others do not. Other protocols are ACs (or KVACs) and one-more

unforgeability is not really the point. (As a matter of fact,U-Prove is
not OMUF-secure and it is not clear how to make it so, as discussed

in Appendix F.) Issuance creates credentials which may be used

multiple times. U-Prove may offer non-transferability in our sense,

when using the device binding version. We discuss it in Appen-

dix F. CHAC is a KVAC which splits the client into two parts, one

being a trusted hardware. CHAC is done to minimize the work of

the trusted hardware and to treat many attributes by aggregation.

Their non-transferability notion relies on the trusted hardware

9
If we want to regroup a sum of 𝑛 scalar multiplications as an optimized 𝑛-multi-

scalar multiplication, the figures for NTAT break down as follows: issuance takes

(2×3 +1×2 +4×1) for the client and (1×4 +1×2 +3×1) for the server, and redeem takes

(1×3 +1×1) for the client and (1×3 +2×1) for the server.
8

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

Table 1: Complexity comparison

Issuance Redemption Total
Client Server Client Server

Our NTAT scheme 11× 8× 4× 5× 28×
Our Pairing NTAT 7×, 2𝑒 6× 4× 4×, 2𝑒 21×, 4𝑒

U-Prove [11] 9× 3× 3× 7× 22×
CHAC [8] 5× 5×, 5𝑒 17× 12𝑒 27×, 17𝑒

CHAC∗ [8] 3× 5×, 5𝑒 10× 12𝑒 18×, 17𝑒

BBDT [21] 3×,
Π
REP2

.Prove,

Π
DLEQ

.Verify

2×,
Π
REP2

.Verify,

Π
DLEQ

.Prove

11× 10× 17×,
Π
REP2

,

Π
DLEQ

Pairing BBDT [21] 3×,
Π
REP2

.Prove,

Π
DLEQ

.Verify

2×,
Π
REP2

.Verify,

Π
DLEQ

.Prove

11× 9×, 2𝑒 16×, 2𝑒 ,

Π
REP2

,

Π
DLEQ

PP [1] 2× 7× 0× 1× 10×
ATHM [23] 17× 11× 0× 1× 29×

assumption and is much weaker than ours. However, in our com-

parison we merged the two parts of the client and simplified the

protocol for fair comparison. We discuss it in Appendix G. For a fair

comparison with NTAT, we consider U-Prove with no attribute and

device binding, and CHAC with one attribute. Regarding CHAC,
we also considered a variant CHAC∗ with a merged client (which

would not offer non-transferability).

We detail our criteria from Table 3 as follows:

• Protocols indicating one form of non-transferability aremarked

as such but it could mean different things. For instance,

CHAC relies on a trusted hardware to have a weaker notion

of non-transferability. U-Prove also claims device binding by

using a trusted hardware and suggests redeem to be inter-

active, although it is not fully specified, not formalized, and

not proven. NTAT has a formal notion based on soundness

and proven security.

• Anonymous tokens are marked as offering OMUF security.

Others are marked when we can just add an additional at-

tribute (to play the role of a nonce) which is private at is-

suance and revealed at redeem.

• Having a “secretless redeem” (a redeem server without the

secret of the issuing server) allows to separate the issuing

server and the redeem server, which could be useful in some

applications.

• Having a stateless issuer is a major advantage as it allows

to implement issuers as a REST and use multiple backends

servers with load balancing.

• Protocols which make redeem reveal a unique identifier of

the token/credential are indicated as “single-show”. Protocols

allowing to have a unique identifier as an extra attribute

without breaking unlinkability are marked as “both”, except

if they do not have multi-show unlinkability.

We implemented
10

our NTAT scheme, U-Prove and CHAC in Rust

with Ristretto group using curve25519-dalek library (SIMD and

BasePointTable optimizations disabled) and the PairingNTAT scheme

withBls12-381 curve using the arkworks library [32].We use SHA256

for𝐻1, 𝐻2, 𝐻3. The benchmarks have been obtained using the Crite-

rion.rs statistical benchmarking suite [33] on a laptop with 2.3 GHz

Intel Core i9-9880H. We report the benchmark results in Table 4.

10
Source code is available at https://zenodo.org/records/11001946.

Table 2: Communication comparison. We denote by G the
group elements, by q the scalars, by 𝑏 the extra bits, and by ℓ𝜌
and ℓ𝐻 the length of 𝜌 and𝐻 . Note that BBDT does not specify
explicit proofs for the server and client during issuance hence
we denote their generic cost by ΠREP2,ΠDLEQ.

Issuance Redemption Total
Our NTAT scheme 2G + 7q 1G + 4q +

(ℓ𝜌 + ℓ𝐻)𝑏
3G + 11q +
(ℓ𝜌 + ℓ𝐻)𝑏

Our Pairing NTAT 2G + 5q 1G + 4q +
(ℓ𝜌 + ℓ𝐻)𝑏

3G + 9q +
(ℓ𝜌 + ℓ𝐻)𝑏

U-Prove [11] 3G + 2q 3G + 5q 6G + 7q
CHAC [8] 8G + 1q 8G + 1q 16G + 2q
BBDT[21] 2G + 2q +

Π𝑅𝐸𝑃2 +
ΠDLEQ

3G + 8q + ℓ𝐻𝑏 5G + 10q +
ℓ𝐻𝑏 +Π𝑅𝐸𝑃2 +

ΠDLEQ

PP [21] 2G + 1q + ℓ𝐻𝑏 1G + ℓ𝐻𝑏 3G+1q+2ℓ𝐻𝑏

ATHM [23] 4G + 8q 2G + 1q 6G + 9q

Table 3: Functionality and properties comparison

Type Non-

transferable

OMUF Secretless

redeem

Stateless

issuer

Single

or

Multi

show

Our NTAT AT ✓ ✓ × ✓ Single

Our Pair-

ing NTAT AT ✓ ✓ ✓ ✓ Single

U-Prove
[11]

AC ✓ × ✓ × Single

CHAC [8] KVAC ✓ × ✓ × Multi

CHAC∗

[8]

KVAC × × ✓ × Multi

BBDT [21] KVAC × ✓ × ✓ Both

Pairing

BBDT [21]

KVAC × ✓ ✓ ✓ Both

PP[1] AT × ✓ × ✓ Single

ATHM[23] AT × ✓ × ✓ Single

Table 4: Benchmark Results. For U-Prove (Fig. 26, Fig. 27) and
CHAC (Fig. 30) we merge the core and helper procedures as a
single client.

Issuance Redemption Total
Client Server Client Server

NTAT scheme 651.94𝜇𝑠 517.31𝜇𝑠 191.24𝜇𝑠 190.80𝜇𝑠 1.55𝑚𝑠

Pairing NTAT 5.47𝑚𝑠 3.13𝑚𝑠 985.93𝜇𝑠 3.82𝑚𝑠 13.41𝑚𝑠

U-Prove 444.25𝜇𝑠 149.68𝜇𝑠 99.02𝜇𝑠 307.737𝜇𝑠 1.00𝑚𝑠

CHAC 1.28𝑚𝑠 10.74𝑚𝑠 4.02𝑚𝑠 19.80𝑚𝑠 35.84𝑚𝑠

4 SECURITY
4.1 OMUF Security
This security relies on the algebraic group model and random oracle

model.

Theorem 4.1 (OMUF). The NTAT scheme described in Figures 7–
11 is OMUF-secure in AGM and ROM. More precisely, for any adver-
sary, we have

AdvOMUF ≤ 𝑛
𝑚𝐻2

q
+ 𝑛(𝑛 + 5)

2q
+ 2AdvDLog + Adv𝑛-DLog + 1

q

where q is the group order, 𝑛 is the total number ofOIssueTok queries,
AdvDLog (respectively Adv𝑛-DLog) is the advantage of an adversary

9

https://zenodo.org/records/11001946

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

solving the DLog (respectively 𝑛-Dlog) problem with similar complex-
ity, and𝑚𝐻𝑖

is the number of 𝐻𝑖 queries in Random Oracle Model
(ROM).

Proof. We consider an adversary A playing the OMUF game

in Figure 2.

We use the ROM in 𝜋𝑐 : an oracle call to evaluate 𝐻2 by using

lazy sampling. There are random oracles 𝐻1 and 𝐻3, too. The total

number of oracle calls to 𝐻𝑖 by A is denoted by𝑚𝐻𝑖
.

Γ1:We let ((sk𝑐 , pk𝑐), (𝜎𝑖 , 𝜔𝑖)𝑖∈{1,...,𝑞 }) be the output ofA, and we

denote sk𝑐 = 𝑥 , sk𝑠 = 𝑦, pk𝑐 = 𝑋 , and 𝜔𝑖 = (𝑟𝑖 , 𝑠𝑖). We further

denote 𝜎 ′
𝑖
= 𝑥𝐺1 + 𝑟𝑖𝐺3 + 𝐺4 − 𝑠𝑖𝜎𝑖 . Our first step is to reduce

OMUF to a game Γ1
in which the steps Step 7 and following are

replaced by the following winning conditions: 𝑋 = 𝑥𝐺1 and 𝜎𝑖 =
1

𝑦+𝑠𝑖 (𝑥𝐺1 + 𝑟𝑖𝐺3 +𝐺4) for 𝑖 = 1, . . . , 𝑞. Clearly, Step 7 of the OMUF
game aborts if and only if𝑋 ≠ 𝑥𝐺1 so this condition does notmodify

the outcome of the game. The second condition is equivalent to

𝜎 ′
𝑖
= 𝑦𝜎𝑖 which is precisely what is verified in the first message of

the redeem protocol in Step 9 of the OMUF game. The rest of the

redeem protocol is based on the representation of 𝜎 ′
𝑖
and passes

thanks to the perfect completeness of the protocol. Clearly, those

changes do not modify the outcome of the game.

AdvOMUF = AdvΓ
1

Γ2: We define a DDH oracle specialized for the 𝑌 = 𝑦𝐺2 key: on

input (𝐴, 𝐵), the ODDH𝑦 oracle answers whether 𝑦𝐴 = 𝐵.

ODDH𝑦 (𝐴, 𝐵)
1: return 1𝑦𝐴=𝐵

Clearly, theORedeem oracle can be simulated by an adversary who

would have access to ODDH𝑦 by simply calling ODDH𝑦 (𝜎, 𝜎 ′) in
the first operations by the server. Indeed, the other operations on

the server side need no secret information to be done. Conversely,

the ODDH𝑦 oracle can be simulated by an adversary who would

have access to ORedeem by just setting a dummy session sid with

input 𝐴 and first message (𝐵, comm), with a dummy comm. The

rest of the interaction would be dropped. Hence, access toORedeem
and ODDH𝑦 are equivalent.

We reduce Γ1
to another game Γ2

wherewe replace theORedeem
oracle using an ODDH𝑦 oracle and transformA accordingly. Note

that the random oracle 𝐻3 is now only queried by A. So, we can

change A to simulate 𝐻3 by lazy sampling and make 𝐻3 disappear

from the game.

We have

AdvΓ
1

= AdvΓ
2

Γ3: In the next step, we replace in a game Γ3
theOIssueTok oracle by

another oracle which only returns 𝑠 ′
𝑗
and 𝑆 𝑗 (for the 𝑗

𝑡ℎ
query) but

not 𝜋𝑠 . This can be done by adding inA a simulator for the missing

proof 𝜋𝑠 . At the same time, we remove the random oracle calls to𝐻2

which appear in 𝜋𝑠 (namely, 𝐻2 (pp, 𝑌 , 𝑆,𝑇 − 𝑠𝑆, comm′
1
, comm′

2
))

as only A is using it, so can simulate it.

To simulate 𝜋𝑠 , the adversary picks ch and resp at random then

computes (comm′
1
, comm′

2
). Due to the distribution of ch and resp,

this pair is uniform in the pairs proportional to (𝐺2, 𝑆). So, the
probability that 𝐻2 was called on this input before is bounded by

𝑚𝐻
2

q . If it happens, the simulation fails. Otherwise, the adversary

can program the query to 𝐻2 in its own simulation for verification

to return ch. By doing this over all the 𝑛 issuance queries, we obtain

AdvΓ
2

≤ AdvΓ
3

+ 𝑛
𝑚𝐻2

q
Γ4: Next, we add in a game Γ4

the extra winning condition that

no collision on the output 𝑠 ′
𝑖
of the OIssueTok oracle occurs. The

advantage loss is bounded by
𝑛 (𝑛−1)

2q where 𝑛 =
∑
𝑞 [pk𝑐] is the

total number of OIssueTok queries. In the new game, we further

replace the sampling method of 𝑠 ′
𝑗
by a uniform sampling in Zq

and add the extra winning condition that 𝑠 ′
𝑗
≠ −𝑦 for every 𝑗 . The

advantage loss is bounded by
𝑛
q .

AdvΓ
3

≤ AdvΓ
4

+ 𝑛(𝑛 + 1)
2q

Γ5: In Γ5
, we first change A so that it does not query OIssueTok

with an incorrect proof. This is possible as A can check the proof

before submitting and simulate what happens when the proof is

incorrect. Next, we make sure in the OIssueTok oracle that

𝐻1 (pp, 𝑋,𝑇 , comm1, comm2) has been queried before in the game.

When this is not the case, ch = ch′ with probability 1/q. We fully

write the Γ5
game in Figure 12.

AdvΓ
4

≤ AdvΓ
5

+ 𝑛
q

Γ5 (A)
1: Setup(1𝜆) → pp
2: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
3: Server.KeyGen(pp) → (𝑦,𝑌)
4: 𝑞 [·] ← 0, 𝑗 ← 0

5: ((𝑥,𝑋), (𝜎𝑖 , 𝑟𝑖 , 𝑠𝑖)𝑖∈{1,...,𝑞}) ←
AOIssueTok,ODDH𝑦 (pp, 𝑌)

6: if 𝑞 ≤ 𝑞 [𝑋] then abort
7: if ∃𝑖 ≠ 𝑗 𝜎𝑖 = 𝜎 𝑗 then abort
8: if ∃𝑖 ≠ 𝑗 𝑠′𝑖 = 𝑠′𝑗 then abort

9: if 𝑋 ≠ 𝑥𝐺1 then abort
10: if ∃𝑖 𝜎𝑖 ≠

1

𝑦+𝑠𝑖
(𝑥𝐺1+𝑟𝑖𝐺3+𝐺4)

11: then abort
12: return 1

ODDH𝑦 (𝐴, 𝐵)
1: return 1𝑦𝐴=𝐵

OIssueTok(𝑋,𝑇 , ch, resp
1
, resp

2
, resp

3
)

13: increment 𝑗

14: (𝑋 𝑗 ,𝑇𝑗 , ch𝑗 , resp𝑗1, resp𝑗2, resp𝑗3) ←
(𝑋,𝑇 , ch, resp

1
, resp

2
, resp

3
)

15: 𝑞 [𝑋 𝑗] ← 𝑞 [𝑋 𝑗] + 1

16: comm1 ← resp
1
.𝐺1 + ch.𝑋

17: comm2 ← resp
1
.𝐺1 + resp2

.𝐺3 +
resp

3
.𝑇 − ch.𝐺4

18: if 𝐻1 (pp, 𝑋,𝑇 , comm1, comm2)
not queried before

19: then abort
20: ch′ ←

𝐻1 (pp, 𝑋,𝑇 , comm1, comm2)
21: if ch ≠ ch′ then abort
22: 𝑠′𝑗 ←$Z𝑞
23: if 𝑠′𝑗 = −𝑦 then abort

24: 𝑆 𝑗 ← 1

𝑦+𝑠′
𝑗
𝑇

25: return (𝑠′𝑗 , 𝑆 𝑗)

Figure 12: Γ5 game for OMUF security.

AGM: In the algebraic group model,A must provide an expression

of every group elements it provides (namely, the queries 𝑋 𝑗 and 𝑇𝑗
to OIssueTok, the queries comm1 and comm𝑒 to 𝐻1, and the final

output 𝑋 and 𝜎𝑖) as a linear combination of the group elements it

received (namely,𝐺1, . . . ,𝐺4, 𝑌 , and the 𝑆 𝑗 returned by OIssueTok).
Hence, each group element 𝑍 which is produced by the adversary

comes with a vector vec𝑍 = (𝑎1, . . . , 𝑎4, 𝑏, 𝑐1, . . . , 𝑐𝑛) ∈ Z𝑛+5q s.t.

𝑍 = 𝑎1𝐺1 + · · · + 𝑎4𝐺4 + 𝑏𝑌 + 𝑐1𝑆1 + · · · + 𝑐𝑛𝑆𝑛
We write base = (𝐺1, . . . ,𝐺4, 𝑌 , 𝑆1, . . . , 𝑆𝑛) with a scalar product

𝑍 = ⟨vec𝑍 , base⟩.
In our protocol, given that 𝑆 𝑗 =

1

𝑦+𝑠′
𝑗
𝑇𝑗 , the adversary can form a

4-dimensional vector vec′
𝑍
∈ Zq (𝑦)4 where coefficients are rational

functions in terms of a variable𝑦, and s.t.𝑍 is equal to ⟨vec′
𝑍
, base′⟩

after evaluation to 𝑦 ← 𝑦, with base′ = (𝐺1, . . . ,𝐺4). We define

𝜙 (𝑎1, . . . , 𝑐𝑛) = (𝑎1, 𝑎2+𝑏𝑦, 𝑎3, 𝑎4) +
𝑐1

𝑦 + 𝑠 ′
1

vec′𝑇1

+· · ·+ 𝑐𝑛

𝑦 + 𝑠 ′𝑛
vec′𝑇𝑛

by recursion with vec′
𝑍
= 𝜙 (vec𝑍).

10

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

The −𝑠 ′
𝑗
are poles of the rational functions which are randomly

selected byOIssueTok. Recall that theymust be pairwise different in

the winning cases. Let𝑄 (𝑦) = (𝑦 + 𝑠 ′
1
) · · · (𝑦 + 𝑠 ′𝑛). By induction on

𝑛, it follows that 𝑄 (𝑦).vec′(𝑍) always has polynomial coefficients,

with degrees bounded by 𝑛 + 1.

Given the way 𝜙 is constructed and thanks to the non-collision

of the poles −𝑠 ′
𝑗
, we can see that 𝜙 (𝑣) = 0 implies 𝑣 = 0. So, 𝜙 is

injective.

If the adversary finds a vector 𝑣 such that ⟨𝑣, base⟩ = 0, then

either [case1] 𝑣 = 0, or [case2] 𝑣 ≠ 0 (and thus 𝜙 (𝑣) ≠ 0 thanks

to 𝜙 being injective) and 𝑦 is a root of ⟨𝜙 (𝑣), base′⟩. That is, 𝑦 is a

root of 𝜙 (𝑣) (that the adversary can find by solving a polynomial

equation) or the game finds a non-trivial relation over base′.
In the next reduction, we spot some ⟨𝑣, base⟩ = 0 equations of

interest. For each equation, we check in which case we are. If we

are in [case1], we proceed in the game reduction. Otherwise, the

adversary computes 𝑃 (𝑦) = 𝑄 (𝑦)𝜙 (𝑣). 𝑃 is a vector of polynomials

such that ⟨𝑃 (𝑦), base′⟩ = 0 and 𝑃 ≠ 0. The adversary tries to solve

𝑃 (𝑦) = 0 and checks if it gets 𝑦. If this is the case, the adversary

continues like in [case1] tomake forgeries. Otherwise, the adversary

stops and yields 𝑃 , and the game finds ⟨𝑃 (𝑦), base′⟩ = 0 as a non-

trivial relation over base′.

Γ6: The verification of 𝜋𝑐 consists in checking that

ch𝑗 = 𝐻1 (pp, 𝑋 𝑗 ,𝑇𝑗 , comm𝑗1, comm𝑗2)
with comm𝑗1 = resp𝑗1𝐺1 + ch𝑗𝑋 𝑗 and comm𝑗2 = resp𝑗1𝐺1 +
resp𝑗2𝐺3 + resp𝑗3𝑇𝑗 − ch𝑗𝐺4, which we write comm𝑗2 − comm𝑗1 =

resp𝑗2𝐺3 + resp𝑗3𝑇𝑗 − ch𝑗 (𝑋 𝑗 + 𝐺4). The first time this hash is

computed, the value of ch is not known but the input vectors are al-

ready set. We are interested in veccomm𝑗1
and veccomm𝑗2

. We obtain

two equations of interest (for instance, the first equation is with

𝑣 = veccomm𝑗1
− resp𝑗1vec𝐺1

− ch𝑗vec𝑋 𝑗
) and apply the reduction.

Taking these equations of interest, when both are in [case1] we

have

veccomm𝑗1
= resp𝑗1vec𝐺1

+ ch𝑗vec𝑋 𝑗

veccomm𝑗2
− veccomm𝑗1

= resp𝑗2vec𝐺3
+ resp𝑗3vec𝑇𝑗

− ch𝑗 (vec𝑋 𝑗
+ vec𝐺4

)
Wewonder for howmany ch𝑗 values there exist some scalars resp𝑗1,
resp𝑗2, resp𝑗3 satisfying the two equations. Clearly, if either vec𝑋 𝑗

is not proportional to vec𝐺1
or vec𝑇𝑗

is not in the linear span of

vec𝐺3
and vec𝑋 𝑗

+ vec𝐺4
, the number of possible ch𝑗 is 0 or 1 and

verification passes with probability bounded by
1

q .

We reduce to a game Γ6
where for each OIssueTok query, either

vec𝑋 𝑗
is of form 𝑥 𝑗vec𝐺1

and vec𝑇𝑗
is in the linear span of vec𝐺3

and

vec𝑋 𝑗
+ vec𝐺4

, or the oracle returns ⊥ or A returns a polynomial

𝑃 such that ⟨𝑃 (𝑦), base′⟩ = 0 and 𝑃 ≠ 0 [case2]. We have

AdvΓ
5

≤ AdvΓ
6

+ 𝑛
q

Γ7: In Γ6
, we can in [case1] extract𝑥 𝑗 , 𝛿 𝑗 , and 𝑟 𝑗 such that𝑋 𝑗 = 𝑥 𝑗𝐺1

and 𝑇𝑗 = 𝛿 𝑗 (𝑋 + 𝑟 𝑗𝐺3 +𝐺4) by solving a linear system with vector

representation. If this fails,A can compute the nonzero polynomial

𝑃 . The adversary can find the roots of 𝑃 and check if one of them is

equal to𝑦. If this is the case,A can use𝑦 to forge a token for a fresh

𝑋 to return it. We obtain an adversary who wins in the forgery

game Γ7
(Figure 13) in those cases. We also define a companion

adversary A ′ who does the same but aborts in the winning cases

of Γ7
and rather focuses on the leftover case where 𝑃 (𝑦) ≠ 0. It

is such that ⟨𝑃 (𝑦), base′⟩ = 0. The game and A ′ boil down in a

simple game which sets up pp, gives it to the adversary who finds a
nonzero vector𝑤 such that ⟨𝑤, base′⟩ = 0. This solves the discrete

logarithm game.

AdvΓ
6

≤ AdvΓ
7

+ AdvDLog

Γ7 (A)
1: Setup(1𝜆) → pp
2: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
3: Server.KeyGen(pp) → (𝑦,𝑌)
4: 𝑞 [·] ← 0, 𝑗 ← 0

5: ((𝑥,𝑋), (𝜎𝑖 , 𝑟𝑖 , 𝑠𝑖)𝑖∈{1,...,𝑞}) ←
AOIssueTok (pp, 𝑌)

6: if 𝑞 ≤ 𝑞 [𝑋] then abort
7: if ∃𝑖 ≠ 𝑗 vec(𝜎𝑖) = 𝜎 𝑗 then abort
8: if ∃𝑖 ≠ 𝑗 𝑠′𝑖 = 𝑠′𝑗 then abort

9: if 𝑋 ≠ 𝑥𝐺1 then abort
10: if ∃𝑖 𝜎𝑖 ≠

1

𝑦̄+𝑠𝑖
(𝑥𝐺1 + 𝑟𝑖𝐺3 +𝐺4)

then abort
11: return 1

OIssueTok(𝑥, 𝛿, 𝑟)
12: increment 𝑗

13: (𝑥 𝑗 , 𝛿 𝑗 , 𝑟
′
𝑗) ← (𝑥, 𝛿, 𝑟)

14: 𝑞 [𝑥 𝑗 .𝐺1] ← 𝑞 [𝑥 𝑗 .𝐺1] + 1

15: 𝑠′𝑗 ←$Z𝑞
16: if 𝑠′𝑗 = −𝑦 then abort

17: 𝑆 𝑗 ←
𝛿𝑗

𝑦+𝑠′
𝑗
(𝑥𝐺1 + 𝑟 ′𝑗𝐺3 +𝐺4)

18: return (𝑠′𝑗 , 𝑆 𝑗)
ODDH𝑦 (𝐴, 𝐵)
19: return 1𝑦𝐴=𝐵

Figure 13: Γ7 game for OMUF security.

Γ8:We now simulateOIssueTok(𝑥, 𝛿, 𝑟) with a BBS signature oracle
which upon a queried message (𝑥, 𝑟) would answer with a random 𝑠

and𝜎 = 1

𝑦+𝑠 (𝑥𝐺1+𝑟𝐺3+𝐺4). The simulation consists of multiplying

𝜎 by 𝛿 before returning the result. In the winning case, A forges

more message/signature pairs with same 𝑥 as it queries the signing

oracle with that 𝑥 . Hence, there must be one pair ((𝑥, 𝑟), (𝑠, 𝜎))
which does not match any sign query. This if a BBS forgery in the

sense of SUF+ [28].

SUF+ security. We now use the SUF+ security of BBS [28]. To

follow the terminology of the authors, we generate non-colliding

𝑠 ′
𝑗
in Zq − {𝑦}. The colliding probability is 𝛿 = 0. Based on the BBS

security [28, Th. 2], we obtain

AdvΓ
8

≤ AdvDLog + Adv𝑛-DLog + 1

q

Note that the cited BBS result holds in AGM with a pairing group.

The pairing allows to simulate the ODDH𝑦 oracle which becomes

redundant in the game. In our context, we have no pairing but we

keep the ODDH𝑦 oracle. We easily check that the result holds in

this context as well. □

4.2 RUF Security
This security is based on the discrete logarithm assumption and

the random oracle model. We leave the proof to Appendix ??.

Theorem 4.2 (RUF). The NTAT scheme described in Figures 7–11
is RUF-secure in ROM, assuming that the discrete logarithm problem
is hard. More precisely, for any adversaryA, there exists an adversary
B of complexity essentially twice the complexity of A, and solving
the discrete logarithm problem such that we have

AdvRUF (A) ≤ 𝑚ORedeem
𝑚𝐻3

q2
ℓ𝜌
+
𝑚𝐻1
(𝑚𝐻1

+ 1)
2q

+
√︃

2𝑚𝐻3
.AdvDLog (B)

where q is the group order,𝑚ORedeem is the total number ofORedeem
queries, AdvDLog is the advantage of an adversary solving the DLog
problem with similar complexity, and𝑚𝐻𝑖

is the number of𝐻𝑖 queries
in ROM.

11

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

Proof. We consider an adversary A playing the RUF game.

Γ1: We change the ORequest to return st𝑗 together with (𝑇, 𝜋𝑐) in
query𝑗 (i.e. to give the additional information of 𝑟 and 𝛿 to A) and

we change A so that it receives it but doing the same computation

as before (i.e. ignoring the extra information). In the new game, the

adversary can compute 𝜎 = 𝑆
𝛿
,𝜔 = (𝑟, 𝑠), and 𝜎 ′ = 𝑋 +𝑟𝐺3+𝐺4−𝑠𝜎 .

AdvRUF = AdvΓ
1

Γ2: We change the adversary so that it simulates the ORedeem
oracle using the zero-knowledge simulator and the programming

technique of 𝐻3 which was already used in the proof of OMUF-
security. We reduce to a game Γ2

with no ORedeem oracle. To

do so, A would generate a dummy comm as the missing part of

the output. Upon query with the challenge 𝑐 , A would generate

(𝑣0, 𝑣1, 𝑣2, 𝜌) at random, compute 𝑄 ′, 𝑄∗, then program 𝐻3 so that

comm = 𝐻3 (𝜌,𝑄∗). This fails with probability bounded by

𝑚𝐻
3

q2
ℓ𝜌
,

the probability that (𝜌,𝑄∗) was ever queried to 𝐻3, for each of the

ORedeem sessions.

AdvΓ
1

≤ AdvΓ
2

+𝑚ORedeem
𝑚𝐻3

q2
ℓ𝜌

Furthermore, the adversary can now fully simulate OFinal and 𝐻2.

The oraclesOFinal,ORedeem,𝐻2, and𝐻3 have now been removed.

Γ3: In Γ3
, we have no oracle any more except 𝐻1 and ORequest

which returns 𝑇 = 𝛿 (𝑋 + 𝑟𝐺3 + 𝐺4) together with 𝜋𝑐 , 𝑟 , and 𝛿 .
Clearly, this latter oracle can be perfectly simulated and we have

only 𝐻1 remaining.

AdvΓ
2

= AdvΓ
3

We get an adversary which is given (pp, 𝑋) and which returns

query = (𝑇, 𝜋𝑐 , 𝑦) with 𝐻1 as only oracle. The adversary wins if

ΠREP3 .Verify(pp, 𝑋,𝑇 , 𝜋𝑐) accepts. Acceptance implies a verifica-

tion that 𝐻1 (pp, 𝑋,𝑇 , comm′
1
, comm′

2
) = ch.

Γ4: We reduce to a game in which we require the final 𝐻1 query to

the random oracle to have been made before by A as an additional

winning condition. If this does not hold, the previous game wins

with probability
1

q . We further require 𝐻1 to show no collision

during the game as an additional condition, which normally occurs

with probability bounded by

𝑚𝐻
1
(𝑚𝐻

1
−1)

2q . Hence,

AdvΓ
3

≤ AdvΓ
4

+
𝑚𝐻1
(𝑚𝐻1

+ 1)
2q

Γ5: Thanks to the new requirements, ch from 𝜋𝑐 defines a unique

(comm1, comm2) in the table of 𝐻1 queries which must match

(comm′
1
, comm′

2
) in the end. Hence, the protocol is equivalent to

having A to return (comm1, comm2) instead of ch in the final 𝜋𝑐
and the verification to be that (comm′

1
, comm′

2
) = (comm1, comm2)

with (comm′
1
, comm′

2
) computed from ch = 𝐻1 (pp, 𝑋,𝑇 , comm1,

comm2).
We obtain a regular unforgeability security for the Fiat-Shamir

transform of a regular Σ-protocol. We can now use the forking

lemma ([34], [35]) to obtain two successful executionswith the same

input (pp, 𝑋), same comm1, different ch, and the corresponding

different resp
1
. This gives

resp
1
.𝐺1 + ch.𝑋 = resp∗

1
.𝐺1 + ch∗ .𝑋

which solves the discrete logarithm of 𝑋 . This defines an adversary

B solving the discrete logarithm problem and such that

AdvΓ
5

≤
√︃

2𝑚𝐻3
.AdvDLog (B)

□

4.3 UNLINK Security
This security is based on information theory. Only the number of

oracle accesses is bounded. We leave the proof to Appendix ??.

Theorem 4.3 (Unlinkability). The NTAT scheme described in
Figures 7–11 is UNLINK2-secure in ROM. More precisely, for any
adversary, we have

AdvUNLINK
2

≤ 1

2

+
𝑛𝑞𝑟 (𝑛𝐻1

+ 1) + 𝑛𝐻2
+𝑚ORedeem𝑛𝐻3

2
−ℓ𝜌

q
where q is the group order, ℓ𝜌 is the bitlength of 𝜌 ,𝑛𝑞𝑟 is the total num-
ber of ORequest queries,𝑚ORedeem is the total number of ORedeem
queries, 𝑛𝐻𝑖

is the number of 𝐻𝑖 queries in ROM.

Proof. Recall that we assume honest key generation on the

server side. We consider the UNLINK2 game from Figure 4 with

adversary (A1,A2).
Γ1:We remove the computation of 𝜋𝑐 inside ORequest and make

A simulate it, using the zero-knowledge of the proof 𝜋𝑐 . More

precisely, A pick ch and (resp
1
, resp

2
, resp

3
) then deduce comm′

1

and comm′
2
and the input to 𝐻1. Except with probability

𝑛𝐻
1

q , this

query is fresh and we can program 𝐻1. Hence we get:

AdvUNLINK2 ≤ AdvΓ
1

+
𝑛𝑞𝑟𝑛𝐻1

q
where 𝑛𝑞𝑟 is the number of request to ORequest. There is no 𝐻1

oracle any more as it is fully simulated by A.

Γ2: In the next step, we simplify the ORedeem oracle which would

only return 𝜎 𝑗 and 𝜎
′
𝑗
= 𝑥 𝑗𝐺1+𝑟 𝑗𝐺3+𝐺4−𝑠 𝑗𝜎 and the rest would be

simulated by the adversary. To do so, A would generate a dummy

comm as the missing part of the output. Upon query with the

challenge 𝑐 , A would generate (𝑣0, 𝑣1, 𝑣2, 𝜌) at random, compute

𝑄 ′,𝑄∗, then program𝐻3 so that comm = 𝐻3 (𝜌,𝑄∗). This fails with
probability bounded by

𝑛𝐻
3

q2
ℓ𝜌
, the probability that (𝜌,𝑄∗) was ever

queried to 𝐻3, for each of the ORedeem sessions.

AdvΓ
1

≤ AdvΓ
2

+𝑚ORedeem
𝑛𝐻3

q2
ℓ𝜌

There is no 𝐻3 oracle any more as it is fully simulated by A.

Γ3: We notice that 𝜎 ′ = 1

𝛿
(𝑇 − 𝑠𝑆). We change ORedeem so that it

would compute 𝜎 𝑗 =
1

𝛿 𝑗
𝑆 𝑗 and 𝜎

′
𝑗
= 1

𝛿 𝑗
(𝑇𝑗 − 𝑠 𝑗𝑆 𝑗). Note that the

swap in UNLINK would need to hold on the values of 𝛿 𝑗 ,𝑇𝑗 , 𝑆 𝑗 to

be consistent.

AdvΓ
2

= AdvΓ
3

Γ4: InOFinal(𝑗, resp), we parse resp = (𝑠, 𝑆, 𝜋𝑠) and query𝑗 = 𝑇 (as

there is no 𝜋𝑐 any more). In Γ4
we change OFinal to output out𝑗 by

directly checking whether 𝑆 = 1

𝑦+𝑠𝑇 .
11

The difference between the

two games is bounded by the soundness of 𝜋𝑠 , i.e. the probability

that A can issue some (𝑌, 𝑆,𝑇 , 𝑠, 𝜋𝑠) such that verification passes

but the value 𝑦 such that 𝑌 = 𝑦𝐺2 does not satisfy 𝑦𝑆 = 𝑇 − 𝑠𝑆 .
To bound this probability, we look at every query to 𝐻2 by the

game. Each query defines (𝑌, 𝑆,𝑇 ,𝑇 − 𝑠𝑆, comm1, comm2) and the

11
Here, we use 𝑦 from sk𝑠 which comes from the honest key generation of pk𝑠 .

12

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

value of ch = 𝐻2 (pp, 𝑌 , 𝑆,𝑇 − 𝑠𝑆, comm1, comm2) is uniformly se-

lected. If we let 𝑧 be such that 𝑇 − 𝑠𝑆 = 𝑧𝑆 , the chances that there

exists resp such that 𝜋𝑠 = (ch, resp) passes for (𝑌, 𝑆,𝑇 , 𝑠) is 1 if𝑦 = 𝑧

and
1

q if 𝑦 ≠ 𝑧. Furthermore, for any (𝑌, 𝑆,𝑇 , 𝑠) which matches no

query to 𝐻2, the probability that the verification passes for any 𝜋𝑠

is
1

q . Hence, the soundness advantage is bounded by

𝑛𝐻
2
+1

q . We

deduce

AdvΓ
3

≤ AdvΓ
4

+
𝑛𝐻2+1
q

Γ5: Thanks to the previous reduction, 𝑟 𝑗 is only used to compute𝑇𝑗
in ORequest. In Client.Query, instead of sampling (𝑟, 𝛿) uniformly,

the new game Γ5
samples (𝑇, 𝛿) uniformly but with 𝑇 ≠ 0. The

distribution is unchanged, except in the 𝑇 = 0 case which occurs

with probability
1

q .

AdvΓ
4

≤ AdvΓ
5

+
𝑛𝑞𝑟

q
Next, since 𝛿 is not used in ORequest any more, we postpone the

random selection of 𝛿 to where it is used: in ORedeem.

Γ5 (A)
1: Setup(1𝜆) → pp
2: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
3: 𝑦 ←$Zq
4: 𝑌 ← 𝑦𝐺2

5: Qquery, Qfinal, Qredeem ← ∅
6: 𝑖 ← 0; 𝑏 ←$ {0, 1}
7: (𝑗0, 𝑗1, state) ← Aoracles

1
(pp, 𝑦,𝑌)

8: if { 𝑗0, 𝑗1 } ⊈ Qfinal − Qredeem then abort
9: if out𝑗

0
= 0 or out𝑗

1
= 0 then abort

10: if 𝑏 = 1 then
11: swap (𝑠 𝑗

0
, 𝑆 𝑗

0
,𝑇𝑗

0
) and (𝑠 𝑗

1
, 𝑆 𝑗

1
,𝑇𝑗

1
)

12: 𝑏′ ← Aoracles
2

(state)
13: return 1𝑏=𝑏′

OClientKeyGen()
14: increment 𝑖

15: 𝑥𝑖 ←$Zq
16: 𝑋𝑖 ← 𝑥𝑖𝐺1

17: return (𝑥𝑖 , 𝑋𝑖)

ORequest(𝑗, usr)
18: if 𝑗 ∈ Qquery then abort
19: insert 𝑗 in Qquery
20: (𝑥 𝑗 , 𝑋 𝑗) ←
(sk𝑐,usr, pk𝑐,usr)

21: 𝑇𝑗 ←$G − {0}
22: return𝑇𝑗

OFinal(𝑗, 𝑠, 𝑆)
23: if 𝑗 ∈ Qfinal or 𝑗 ∉ Qquery

then abort
24: insert 𝑗 in Qfinal
25: (𝑠 𝑗 , 𝑆 𝑗) ← (𝑠, 𝑆)
26: out𝑗 ← 1

𝑆= 1

𝑦+𝑠 𝑇𝑗
27: return out𝑗
ORedeem(𝑗)
28: if 𝑗 ∉ Qfinal then abort
29: insert 𝑗 in Qredeem
30: if out𝑗 = ⊥ then return
31: 𝛿 𝑗 ←$Z∗q
32: 𝜎 𝑗 ← 1

𝛿𝑗
𝑆 𝑗

33: 𝜎′𝑗 ←
1

𝛿𝑗
(𝑇𝑗 − 𝑠 𝑗𝑆 𝑗)

34: return (𝜎 𝑗 , 𝜎
′
𝑗)

Figure 14: Game Γ5 in unlinkability.

Γ5 unlinkability.We show what is left in Γ5
on Figure 14. When

ORedeem goes on, we have out𝑗 = 1 so 𝑆 𝑗 =
1

𝑦+𝑠 𝑗 𝑇𝑗 . This implies

𝑇𝑗−𝑠 𝑗𝑆 𝑗 = 𝑦𝑆 𝑗 hence𝜎 ′𝑗 = 𝑦𝜎 𝑗 . The random selection of 𝛿 𝑗 makes𝜎 𝑗

independent from (𝑠 𝑗 , 𝑆 𝑗 ,𝑇𝑗). Hence, it is clear that no information

is revealed about 𝑏. Therefore, we get AdvΓ
5

= 1

2
□

4.4 SOUND Security
This security is based on information theory in ROM. However,

ROM is only needed to limit the capability of the adversary in terms

of access to 𝐻3 and to compute the probability of a collision. We do

not program a random oracle nor exploit access information to it.

Theorem 4.4 (Soundness). The NTAT scheme described in Fig-
ures 7–11 is 𝐾-SOUND-secure in ROM with 𝐾 (𝑥) = 2

𝑥 (𝑥−1/q) and

AdvSOUND ≤
4𝑚2

𝐻3

2
ℓ𝐻

where𝑚𝐻3
is the maximal number of 𝐻3 calls made by A1 and A2,

and ℓ𝐻 is the bitlength of 𝐻3 outputs.

For instance, a transfer of probability 𝑝rnd = 100% would yield

𝐾 (1) ≈ 2 executions of A2 to extract the secret.

Proof. We want to show that for any adversaryA = (A1,A2),
there exists an extractor E that outputs a valid witness.

The general idea is to build an extractor E like in the usual

extractors in Σ protocols: E runs twice the redeem protocol, session

sid∗, with same commitment until the answer from two different

challenges is obtained, then extract a witness from two correct

responses to the two challenges.

We consider the SOUND game with A1, A2, and our E which

is defined below.

When E runs A2, A2 may call the ORedeem oracle which

is stateful. Except calls of type ORedeem(sid, 𝜎 ′, comm) follow-
ing a ORedeem(sid, pp, 𝜎), which answer whether 𝜎 ′ = 𝑦𝜎 , these
calls can be perfectly simulated by E. To simulate the remaining

ORedeem(sid, 𝜎 ′, comm), we just make E query ORedeem with a

dummy fresh sid′ to extract theODDH𝑦 output. By changing sid to
this dummy fresh sid′, the oracle used during the extraction phase

can be considered as stateless. This eliminates troubles to rewind

A2.

The extractor E iterates a loop of independent rounds until the

extraction works. At each round, E runs A2 twice with same coin

flips until the ORedeem(sid∗, 𝜎 ′, comm) oracle call is made by A2,

at the point where Server.Verify selects the challenge 𝑐 . Hence, E
can easily run two executions ofA2 which fork during the selection

of 𝑐 .

In the two executions, if session sid∗ does not succeed in ei-

ther execution, the round fails and E iterates to the next round.

Otherwise, we let 𝜎 , 𝜎 ′, comm be the common values in the ses-

sions sid∗ of ORedeem during the two executions. The two ex-

ecutions give (𝑐, 𝑣0, 𝑣1, 𝑣2, 𝜌,𝑄) and (𝑐 ′, 𝑣 ′
0
, 𝑣 ′

1
, 𝑣 ′

2
, 𝜌 ′, 𝑄 ′) such that

𝐻3 (𝜌,𝑄) = 𝐻3 (𝜌 ′, 𝑄 ′) = comm and

𝑄 = 𝑣0𝐺1 + 𝑣1𝐺3 + 𝑣2𝜎 − 𝑐 (𝜎 ′ −𝐺4)
𝑄 ′ = 𝑣 ′

0
𝐺1 + 𝑣 ′1𝐺3 + 𝑣 ′2𝜎 − 𝑐

′(𝜎 ′ −𝐺4)
If 𝑐 = 𝑐 ′, the round fails and E iterates. Otherwise, E ends the loop.

Next, if 𝑄 ≠ 𝑄 ′, (A1,A2, E) found a collision on 𝐻3 during

2𝑚𝐻3
calls and aborts. In this case, the SOUND game returns 2.

This happens with complexity bounded by

4𝑚2

𝐻
3

2
ℓ𝐻

. Otherwise, we

have𝑄 = 𝑄 ′ and 𝑐 ≠ 𝑐 ′. Hence, E can set 𝑥 =
𝑣′

0
−𝑣0

𝑐′−𝑐 , 𝑟 =
𝑣′

1
−𝑣1

𝑐′−𝑐 , and

𝑠 = − 𝑣′
2
−𝑣2

𝑐′−𝑐 to get 𝜎 ′ = 𝑥𝐺1 + 𝑟𝐺3 +𝐺4 − 𝑠𝜎 . The extractor further
sets 𝑋 = 𝑥𝐺1 so that (𝑥, 𝑋) is a a possible output of Client.KeyGen.
Finally, E outputs (𝑟, 𝑠, 𝑥, 𝑋) which makes the redeem protocol

return 1 so the SOUND game returns 1.

We let 𝐸 be the event that outsid∗ = 1 (i.e. that the transfer

of the token to A2 succeeds). We let rnd be the set of random

coins of the game in the first three steps and rnd′ be the set of

random coins which are used by the entire game to run A2 (state)
until just before the time that the challenge 𝑐 is picked. In one

round of E, once rnd′ is set, the two executions are independent.

We let 𝜀 (rnd′) = Pr[𝐸 |rnd′] which would be the probability that

one execution makes session sid∗ succeed. We let 𝐸 ′ be the event
that the the round succeeds. Due to the independence of the two

13

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

executions, we have

Pr[𝐸 ′ |rnd′] ≥ 𝜀 (rnd′)
(
𝜀 (rnd′) − 1

q

)
The average of 𝜀 (rnd′) over rnd′ is Pr[𝐸 |rnd] = 𝑝rnd. We ap-

ply the Jensen inequality on 𝑥 ↦→ 𝑥

(
𝑥 − 1

q

)
to deduce Pr[𝐸 ′] ≥

𝑝rnd

(
𝑝rnd − 1

q

)
. The average number of rounds is bounded by

1/Pr[𝐸 ′]. Since we have two executions ofA2 per round, we obtain

𝐾 (𝑥) = 2

𝑥 (𝑥−1/q) . □

4.5 UNIQ Security
Theorem 4.5 (UNIQ). The NTAT scheme described in Figures 7–

11 is UNIQ-secure, assuming that the discrete logarithm problem is
hard. More precisely, for any adversary A, there exists an adversary
B of complexity essentially similar to A, and solving the discrete
logarithm problem such that we have

AdvUNIQ (A) ≤ AdvDLog (B) + 5

q
where q is the group order and AdvDLog is the advantage of an adver-
sary solving the DLog problem with similar complexity.

Proof. We consider an adversary A playing the UNIQ game.

We define a discrete logarithm solver as follows.

B(q,G,𝐺, 𝑍)
1: 𝛼1, 𝛽1, . . . , 𝛼4, 𝛽4 ←$Z8

q
2: 𝐺𝑖 ← 𝛼𝑖𝐺 + 𝛽𝑖𝑍 for 𝑖 = 1, . . . , 4

3: pp← (q,G,𝐺1,𝐺2,𝐺3,𝐺4)
4: if ∃𝑖 𝐺𝑖 = 0 then abort

5: A(pp) → (𝜎, 𝑟, 𝑠, 𝑥,𝑋, 𝑟 ′, 𝑠′, 𝑥 ′, 𝑋 ′, 𝑦,𝑌)
6: 𝑎 ← (𝑦 + 𝑠′) (𝑥𝛼1 + 𝑟𝛼3 + 𝛼4) − (𝑦 + 𝑠) (𝑥 ′𝛼1 + 𝑟 ′𝛼3 + 𝛼4)
7: 𝑏 ← (𝑦 + 𝑠′) (𝑥𝛽1 + 𝑟𝛽3 + 𝛽4) − (𝑦 + 𝑠) (𝑥 ′𝛽1 + 𝑟 ′𝛽3 + 𝛽4)
8: if 𝑏 = 0 then abort

9: return −𝑎/𝑏

The 𝐺𝑖 = 0 failure cases occur with probability bounded by

4

q . Except in those cases, B provides to A some pp with correct

distribution. Hence, A gets pp and outputs some values making

UNIQ win with probability AdvUNIQ (A) − 4

q .

In the UNIQ winning cases, we have 𝑋 = 𝑥𝐺1, 𝑋
′ = 𝑥 ′𝐺1, and

(𝑟, 𝑠, 𝑥) ≠ (𝑟 ′, 𝑠 ′, 𝑥 ′). Furthermore, the redeem protocol accept with

the key pair (𝑦,𝑌). This implies 𝑦𝜎 = 𝑥𝐺1 + 𝑟𝐺3 + 𝐺4 − 𝑠𝜎 and

𝑦𝜎 = 𝑥 ′𝐺1 + 𝑟 ′𝐺3 +𝐺4 − 𝑠 ′𝜎 which leads us to 𝑎𝐺 + 𝑏𝑍 = 0.

Let 𝑧 be such that 𝑍 = 𝑧𝐺 and 𝛾𝑖 = 𝛼𝑖 +𝑧𝛽𝑖 be such that𝐺𝑖 = 𝛾𝑖𝐺

for 𝑖 = 1, . . . , 4. The adversary A has information on the 𝛾𝑖 but 𝛽𝑖
is independent from 𝛾𝑖 . We have 𝑏 = ((𝑦 + 𝑠 ′)𝑥 − (𝑦 + 𝑠)𝑥 ′)𝛽1 +
((𝑦 + 𝑠 ′)𝑟 − (𝑦 + 𝑠)𝑟 ′)𝛽3 + (𝑠 ′ − 𝑠)𝛽4 Assuming that 𝑠 ≠ 𝑠 ′ or 𝑥 ≠ 𝑥 ′

or 𝑟 ≠ 𝑟 ′, the distribution of 𝑏 conditioned to pp being fixed is

uniform, so Pr[𝑏 = 0|pp] = 1

q . Hence, B succeeds with probability

at least AdvUNIQ (A) − 5

q . □

5 CONCLUSION
In conclusion, we formalised the key security notion of non-
transferability for anonymous tokens. We provided a concrete con-

struction with proven security as well as an efficient implementa-

tion. We also discussed several variants to extend the basic func-

tionality to include public verifiability, more attributes or binding

to an external valuable secret.

Our treatment of the non-transferability notion is the first formal

one in the literature with complete security definitions and their

respective proofs. Our main construction is resistant to token steal-

ing attacks. Moreover, we provide a variant which also prevents

identity leasing.

Acknowledgements. We are greatly thankful to our anony-

mous reviewers for suggesting important improvements to the

paper. We also thank Greg Zaverucha and Christian Paquin for

their discussions.

REFERENCES
[1] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo

Valsorda. Privacy Pass: Bypassing Internet Challenges Anonymously. Proceedings
on Privacy Enhancing Technologies, pages 164–180, 2018.

[2] Michael Z. Lee, Alan M. Dunn, Jonathan Katz, Brent Waters, and Emmett Witchel.

Anon-Pass: Practical Anonymous Subscriptions. IEEE Security & Privacy, 12:20–
27, 2014.

[3] Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah, Chen-Kuei,

Lee Zutian Luo, Payman Mohassel, Ananth Raghunathan, Shaahid Shaikh, Yen-

Chieh, and Sung Albert Zhang. DIT: De-Identified Authenticated Telemetry at

Scale, 2021. https://research.fb.com/privatestats.

[4] Tjerand Silde and Martin Strand. Anonymous Tokens with Public Metadata

and Applications to Private Contact Tracing. Cryptology ePrint Archive, Report

2021/203, 2021. https://ia.cr/2021/203.

[5] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA:

Using Hard AI Problems for Security. In Advances in Cryptology — EUROCRYPT
2003, pages 294–311. Springer Berlin Heidelberg, 2003.

[6] Jan Camenisch and Anna Lysyanskaya. An Efficient System for Non-transferable

Anonymous Credentials with Optional Anonymity Revocation. In Advances in
Cryptology — EUROCRYPT 2001, pages 93–118, 2001.

[7] Sebastian Pape. A Survey on Non-transferable Anonymous Credentials. In

The Future of Identity in the Information Society, pages 107–118. Springer Berlin
Heidelberg, 2009.

[8] Lucjan Hanzlik and Daniel Slamanig. With a Little Help from My Friends:

Constructing Practical Anonymous Credentials. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, page 2004–2023.
Association for Computing Machinery, 2021.

[9] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The Algebraic Group Model and its

Applications. In Advances in Cryptology – CRYPTO 2018, pages 33–62. Springer
International Publishing, 2018.

[10] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-Optimal

Password-Protected Secret Sharing and T-PAKE in the Password-Only Model.

Cryptology ePrint Archive, Report 2014/650, 2014. https://ia.cr/2014/650.

[11] Christian Paquin and Greg Zaverucha. U-Prove Cryptographic

Specification V1.1 Revision 4. Microsoft Technical Report, 2022.

https://github.com/microsoft/uprove-node-reference/raw/main/doc/U-

Prove%20Cryptographic%20Specification%20V1.1%20Revision%204.pdf.

[12] David Chaum. Blind Signatures for Untraceable Payments. In Advances in
Cryptology: Proceedings of CRYPTO ’82, pages 199–203. Plenum, 1982.

[13] David Chaum. Security without Identification: Transaction Systems to Make Big

Brother Obsolete. COmmunications of ACM, page 1030–1044, 1985.

[14] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous Credentials Light. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, page 1087–1098. Association for Computing Machinery, 2013.

[15] David Wagner. A generalized birthday problem. In Moti Yung, editor, Advances
in Cryptology — CRYPTO 2002, pages 288–304, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[16] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory

Neven, and Igors Stepanovs. On the security of two-round multi-signatures. In

2019 IEEE Symposium on Security and Privacy (SP), pages 1084–1101, 2019.
[17] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana

Raykova. On the (in)security of ROS. In Advances in Cryptology: Proceedings of
EUROCRYPT, 2021.

[18] Julia Kastner, Julian Loss, and Omar Renawi. Concurrent security of anonymous

credentials light, revisited. Cryptology ePrint Archive, Paper 2023/707, 2023.

https://eprint.iacr.org/2023/707.

[19] Stefan Brands. Untraceable off-line cash in wallet with observers. In Advances in
Cryptology — CRYPTO’ 93, pages 302–318. Springer Berlin Heidelberg, 1994.

[20] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and

Keyed-Verification Anonymous Credentials. In ACM CCS 2014, 2014.
[21] Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré. Improved

Algebraic MACs and Practical Keyed-Verification Anonymous Credentials. In

Selected Areas in Cryptography – SAC 2016, pages 360–380, 2017.
[22] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. Anonymous

Tokens with Private Metadata Bit. In Advances in Cryptology – CRYPTO 2020,
pages 308–336, 2020.

14

https://research.fb.com/privatestats
https://ia.cr/2021/203
https://ia.cr/2014/650
https://github.com/microsoft/uprove-node-reference/raw/main/doc/U-Prove%20Cryptographic%20Specification%20V1.1%20Revision%204.pdf
https://github.com/microsoft/uprove-node-reference/raw/main/doc/U-Prove%20Cryptographic%20Specification%20V1.1%20Revision%204.pdf
https://eprint.iacr.org/2023/707

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

[23] Melissa Chase, F. Betül Durak, and Serge Vaudenay. Anonymous Tokens with

Stronger Metadata Bit Hiding from Algebraic MACs. In Advances in Cryptology
– CRYPTO 2023: 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part II, page 418–449,
Berlin, Heidelberg, 2023. Springer-Verlag.

[24] Melissa Chase, F. Betül Durak, and Serge Vaudenay. Anonymous tokens with

hidden metadata bit from algebraic macs. Cryptology ePrint Archive, Paper

2022/1622, 2022. https://eprint.iacr.org/2022/1622.

[25] M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-

Random Functions. In Proceedings 38th Annual Symposium on Foundations of
Computer Science, pages 458–467, 1997.

[26] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message

Authentication, Revisited. In Advances in Cryptology – EUROCRYPT 2012, pages
355–374, 2012.

[27] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-TAA. In Roberto

De Prisco and Moti Yung, editors, Security and Cryptography for Networks, pages
111–125, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[28] Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit Hazay

and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages
691–721, Cham, 2023. Springer Nature Switzerland.

[29] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Advances
in Cryptology — CRYPTO’ 89 Proceedings, pages 239–252, 1990.

[30] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology — CRYPTO’ 86,
volume 263, 03 1999.

[31] M. Lodder, T. Looker, and A. Whitehead. Blind Signatures Extension of the BBS

Signature Scheme, 2023. https://identity.foundation/bbs-signature/draft-blind-

bbs-signatures.html.

[32] arkworks contributors. arkworks zksnark ecosystem, 2022.

[33] Criterion.rs statistics-driven microbenchmarking in rust, 2023.

[34] David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. In

Advances in Cryptology — EUROCRYPT ’96, pages 387–398, 1996.
[35] David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures

and Blind Signatures. Journal of Cryptology, 2001.
[36] Jan Camenisch and Markus Stadler. Proof Systems for General Statements about

Discrete Logarithms. Technical report, ETH Zurich, Department of Computer

Science, 1997.

[37] Paulo Mateus and Serge Vaudenay. On Tamper-Resistance from a Theoretical

Viewpoint. In Cryptographic Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, Proceedings, pages 411–428, 2009.

[38] Ivan Puddu, Daniele Lain, Moritz Schneider, Elizaveta Tretiakova, Sinisa Matetic,

and Srdjan Capkun. TEEvil: Identity Lease via Trusted Execution Environments.

arxiv, 2019. https://arxiv.org/abs/1903.00449.

[39] Stefan Dziembowski, Sebastian Faust, and Tomasz Lizurej. Individual Cryptogra-

phy. Cryptology ePrint Archive, Report 2023/088, 2023. https://eprint.iacr.org/

2023/088.pdf.

[40] Y Desmedt. Major Security Problems with the “Unforgeable” (Feige-)Fiat-Shamir

Proofs of Identity and How to Overcome Them. In Congress on Computer and
Communication Security and Protection Securicom’88, pages 147–159. SEDEP Paris

France, 1988.

[41] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Universally Composable

Multiparty Computation with Partially Isolated Parties. In Theory of Cryptogra-
phy, pages 315–331, 2009.

[42] Ioana Boureanu and Serge Vaudenay. Input-Aware Equivocable Commitments

and UC-secure Commitments with Atomic Exchanges. In Provable Security, pages
121–138, 2013.

[43] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro,

and Christopher A. Wood. A Fast and Simple Partially Oblivious PRF, with

Applications. In Advances in Cryptology — EUROCRYPT 2021. Springer-Verlag,
2021.

[44] Craig Gentry, Zulfikar Ramzan, and Stuart Stubblebine. Secure Distributed

Human Computation. In Financial Cryptography and Data Security, pages 328–
332, 2005.

[45] Serge Vaudenay. E-Passport Threats. IEEE Security and Privacy, page 61–64, 2007.
[46] Serge Vaudenay and Martin Vuagnoux. About Machine-Readable Travel Docu-

ments. Journal of Physics: Conference Series, 2007.
[47] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Universal Designated

Verifier Signature Proof (or How to Efficiently Prove Knowledge of a Signature).

In Advances in Cryptology - ASIACRYPT 2005, pages 644–661, 2005.
[48] Jean Monnerat, Serge Vaudenay, andMartin Vuagnoux. About Machine-Readable

Travel Documents Privacy Enhancement Using (Weakly) Non-Transferable

Data Authentication. In International Conference on RFID Security, pages 13–26,
2007.

[49] Jean Monnerat, Sylvain Pasini, and Serge Vaudenay. Efficient Deniable Authen-

tication for Signatures. In Applied Cryptography and Network Security, pages
172–291, 2009.

[50] Fatih Balli, F. Betül Durak, and Serge Vaudenay. BioID: A Privacy-Friendly

Identity Document. In Security and Trust Management, pages 53–70, 2019.

[51] Rafael Pass. On Deniability in the Common Reference String and Random Oracle

Model. In Advances in Cryptology - CRYPTO 2003, pages 316–337, 2003.
[52] Paulo Mateus and Serge Vaudenay. On Tamper-Resistance from a Theoretical

Viewpoint. In Cryptographic Hardware and Embedded Systems - CHES 2009, pages
411–428, 2009.

[53] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to Leak a Secret. InAdvances
in Cryptology — ASIACRYPT 2001, pages 552–565, 2001.

[54] Thomas Ristenpart and Scott Yilek. The Power of Proofs-of-Possession: Securing

Multiparty Signatures against Rogue-Key Attacks. In Advances in Cryptology -
EUROCRYPT 2007, pages 228–245, 2007.

[55] David Chaum and Hans van Antwerpen. Undeniable Signatures. In Advances in
Cryptology — CRYPTO’ 89 Proceedings, pages 212–216, 1990.

[56] Yvo Desmedt and Moti Yung. Weaknesses of Undeniable Signature Schemes. In

Advances in Cryptology — EUROCRYPT ’91, pages 205–220, 1991.
[57] Markus Jakobsson. Blackmailing using Undeniable Signatures. In Advances in

Cryptology — EUROCRYPT’94, pages 425–427, 1995.
[58] Jan Camenisch andMarkusMichels. Confirmer Signature Schemes Secure against

Adaptive Adversaries. In Advances in Cryptology — EUROCRYPT 2000, pages
243–258, 2000.

[59] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier

Proofs and Their Applications. In Advances in Cryptology — EUROCRYPT ’96,
pages 143–154, 1996.

[60] Popov A, M.Nystroem, D.Balfanz, and J.Hodges. The Token Binding Protocol

Version 1.0. IETF RFC 8471, 2018. https://www.rfc-editor.org/info/rfc8471.

[61] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial

knowledge and simplified design of witness hiding protocols. In Yvo G. Desmedt,

editor, Advances in Cryptology — CRYPTO ’94, pages 174–187, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

15

https://eprint.iacr.org/2022/1622
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.html
https://arxiv.org/abs/1903.00449
https://eprint.iacr.org/2023/088.pdf
https://eprint.iacr.org/2023/088.pdf
https://www.rfc-editor.org/info/rfc8471

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

ClientQuery(pp, sk𝑐 , pk𝑠)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
2: 𝑥 ← sk𝑐 ;𝑋 ← 𝑥𝐺1

3: 𝑟 ′ ←$Z𝑞 ; 𝑡 ←$Z∗q
4: 𝑇 ← 𝑋 + 𝑟 ′𝐺3 +𝐺4 + 𝑡𝐺5

5: 𝜋𝑐 ← ΠREP3 .Prove(pp, 𝑋,𝑇 , 𝑥, 𝑟 ′, 𝑡)
6: query← (𝑇, 𝜋𝑐)
7: st← (pp, pk𝑠 , 𝑟 ′, 𝑡,𝑇)
8: return (query, st)
ClientFinal(st, resp)
1: (pp, pk𝑠 , 𝑟 ′, 𝑡,𝑇) ← st
2: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
3: 𝑌 ← pk𝑠
4: (𝑠, 𝑟 ′′, 𝑆, 𝜋𝑠) ← resp
5: if notΠDLEQ .Verify(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝑟 ′′, 𝜋𝑠)

return ⊥
6: 𝜎 ← 𝑆

7: 𝑟 ← 𝑟 ′ + 𝑟 ′′ ⊲

𝜎 = 1

𝑦+𝑠 (𝑥𝐺1+𝑟𝐺3+𝐺4+𝑡𝐺5)
8: 𝜎′ ← 𝑇 +𝑟 ′′𝐺3 −𝑠𝜎 ⊲ 𝜎′ = 𝑦𝜎

9: return (𝑡,𝜔 = (𝜎, 𝜎′, 𝑟 , 𝑠))

ServerIssue(pp, sk𝑠 , pk𝑐 , query)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
2: (𝑇, 𝜋𝑐) ← query
3: 𝑦 ← sk𝑠 ; 𝑋 ← pk𝑐
4: if not ΠREP3 .Verify(pp, 𝑋,𝑇 , 𝜋𝑐)

return ⊥
5: 𝑟 ′′ ←$Z𝑞
6: 𝑠 ←$Z𝑞 − {−𝑦 }
7: 𝑆 ← 1

𝑦+𝑠 (𝑇 + 𝑟
′′𝐺3)

8: 𝜋𝑠 ← ΠDLEQ .Prove(pp, 𝑦𝐺2, 𝑆,𝑇 , 𝑠, 𝑟
′′, 𝑦)

⊲ PoK of 𝑦 s.t. 𝑌 = 𝑦𝐺2 ∧ 𝑦𝑆 =

𝑇 + 𝑟 ′′𝐺3 − 𝑠𝑆
9: resp← (𝑠, 𝑟 ′′, 𝑆, 𝜋𝑠)
10: return resp

Figure 15: Token issuance with additive masking.

ADDITIONAL MATERIAL
A NON-TRANSFERABILITY WITH ADDITIVE

MASKING
In this section, we briefly define a non-transferable anonymous

token from BBS signatures with additive masking (instead of multi-

plicative mask on a Pedersen commitment). The advantage is that

it is closer to ongoing standards. The drawback is the complexity

overhead.

Setup. Setup provides an additional group generator 𝐺5 to be used

for the new attribute 𝑡 .

Issuance protocol. The client selects the token tag 𝑡 , a random

𝑟 ′, and sets 𝑇 = 𝑥 .𝐺1 + 𝑟 ′.𝐺3 + 𝐺4 + 𝑡 .𝐺5. Note that 𝑇 − 𝐺4 is a

Pedersen commitment for (𝑥, 𝑡). The client proves the knowledge
of an opening (𝑥, 𝑟 ′, 𝑡) (proof 𝜋𝑐). The server adds another masking

𝑟 ′′.𝐺3 and signs. It reveals (𝑠, 𝑟 ′′, 𝜎) and a proof of correctness for

𝜎 (proof 𝜋𝑠). Finally, the client keeps the tag 𝑡 and the witness

𝜔 = (𝜎, 𝑟, 𝑠) with 𝑟 = 𝑟 ′ + 𝑟 ′′. The protocol is on Figure 15. We

included the precomputation of 𝜎 ′ = 𝑇 + 𝑟 ′′.𝐺3 − 𝑠 .𝜎 = 𝑥 .𝐺1 +
𝑟 .𝐺3 + 𝐺4 + 𝑡 .𝐺5 − 𝑠𝜎 = 𝑦.𝜎 which plays a role in redemption. It

comes for almost free at this stage as the client already computed

𝑟 ′′𝐺3 and 𝑠𝜎 to verify 𝜋𝑠 .

Client proof 𝜋𝑐 . 𝜋𝑐 proves knowledge of (𝑥, 𝑟 ′, 𝑡) such that

𝑥

(
𝐺1

𝐺1

)
+ 𝑟 ′

(
0

𝐺3

)
+ 𝑡

(
0

𝐺5

)
=

(
𝑋

𝑇 −𝐺4

)
The protocol is in Figure 16.

Server proof 𝜋𝑠 . 𝜋𝑠 proves knowledge of 𝑦 such that

𝑦

(
𝐺2

𝑆

)
=

(
𝑌

𝑇 − 𝑠 .𝑆

)
The protocol is in Figure 17.

Prover(pp, 𝑋,𝑇 , 𝑥, 𝑟 ′, 𝑡)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
2: (𝑎,𝑏, 𝑐) ←$Z3

q
3: comm1 ← 𝑎.𝐺1

4: comm2 ← 𝑎.𝐺1 + 𝑏𝐺3 + 𝑐𝐺5

5: ch← 𝐻1 (pp, 𝑋,𝑇 , comm1, comm2)
6: resp

1
← 𝑎 − ch.𝑥 mod q

7: resp
2
← 𝑏 − ch.𝑟 ′ mod q

8: resp
3
← 𝑐 − ch.𝑡 mod q

9: return resp = (ch, resp
1
, resp

2
, resp

3
)

Verifier(pp, 𝑋,𝑇 , ch, resp
1
, resp

2
, resp

3
)

1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←
pp

2: comm′
1
← resp

1
.𝐺1 + ch.𝑋

3: comm′
2

← resp
1
.𝐺1 +

resp
2
.𝐺3 + resp3

.𝐺5 + ch.(𝑇 −
𝐺4)

4: ch′ ← 𝐻1 (pp, 𝑋,𝑇 , comm′
1
, comm′

2
)

5: return (ch == ch′)

Figure 16: ΠREP3: Client proof 𝜋𝑐 with additive masking.

Prover(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝑟 ′′, 𝑦)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
2: 𝑎 ←$Zq
3: comm1 ← 𝑎.𝐺2

4: comm2 ← 𝑎.𝑆

5: ch ← 𝐻2 (pp, 𝑌 , 𝑆,𝑇 −
𝑠𝑆, comm1, comm2)

6: resp← 𝑎 + ch.𝑦 mod q
7: return (ch, resp)

Verifier(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝑟 ′′, ch, resp)

1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←
pp

2: comm′
1
← resp.𝐺2 − ch.𝑌

3: comm′
2
← resp.𝑆 − ch.(𝑇 +

𝑟 ′′𝐺3 − 𝑠𝑆)
4: ch′ ← 𝐻2 (pp, 𝑌 , 𝑆,𝑇 +𝑟 ′′𝐺3 −

𝑠𝑆, comm′
1
, comm′

2
)

5: return (ch == ch′)

Figure 17: ΠDLEQ: Server proof 𝜋𝑠 with additive masking.

Client.Prove(pp, 𝑡, 𝜔, sk𝑐 , pk𝑠)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
2: (𝜎, 𝜎′, 𝑟 , 𝑠) ← 𝜔 ; 𝑥 ←

sk𝑐 ; 𝑌 ← pk𝑠
3: 𝛼, 𝛽,𝛾, 𝛿, 𝜇 ←$Zq
4: 𝐴← 1

𝜇
𝜎 , 𝐵 ← 1

𝜇
𝜎′

5: 𝑄 ← 𝛼.𝐺1 + 𝛽.𝐺3 +𝛾 .𝐴 + 𝛿.𝐵
6: 𝜌 ←$ {0, 1}ℓ𝜌
7: comm← 𝐻3 (𝜌,𝑄)
8: Send (𝐴, 𝐵, comm) to the

server

9: Receive 𝑐
10: (𝑣0, 𝑣1, 𝑣2, 𝑣3) ← (𝛼 + 𝑐𝑥, 𝛽 +

𝑐𝑟,𝛾 − 𝑐𝑠𝜇, 𝛿 − 𝑐𝜇)
11: Send(𝑣0, . . . , 𝑣3, 𝜌) to the

server

Server.Verify(pp, 𝑡, sk𝑠)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4,𝐺5) ←

pp
2: 𝑦 ← sk𝑠
3: Receive 𝐴, 𝐵, comm from the

client

4: if 𝐵 ≠ 𝑦.𝐴 then abort

5: 𝑐 ←$Zq
6: Send 𝑐 to the client

7: Receive (𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝜌) from
the client

8: 𝑄′ ← 𝑣0 .𝐺1 + 𝑣1 .𝐺3 + 𝑣2 .𝐴 +
𝑣3 .𝐵 + 𝑐.(𝐺4 + 𝑡 .𝐺5)

9: comm′ ← 𝐻3 (𝜌,𝑄′)
10: return (comm == comm′)

Figure 18: Redemption with additive masking.

Redemption. To redeem a token, the client masks (𝜎, 𝜎 ′) with a

random 𝜇, reveals the tag 𝑡 , 𝐴 = 1

𝜇𝜎 , 𝐵 = 1

𝜇𝜎
′
, and proves knowl-

edge of a valid tuple (𝑥, 𝑟, 𝑠 ′, 𝜇) with 𝑠 ′ = 𝑠𝜇 such that

𝐺4 + 𝑡 .𝐺5 = −𝑥 .𝐺1 − 𝑟 .𝐺3 + 𝑠 ′.𝐴 + 𝜇.𝐵

The protocol is in Figure 18.

Complexity. The number of multiplications during issuance by

the client is 11 for the client (2 in ClientQuery, 3 in ΠREP3, and 6

in ΠDLEQ, the computation of 𝑠𝜎 and 𝑟 ′′𝐺3 in ClientFinal being
already done for the verification of 𝜋𝑠) and 10 for the server (2 in

ServerIssue, 5 in ΠREP3, and 3 in ΠDLEQ). For redemption, we have

6 multiplications for the client and 7 for the server. The total is 31

multiplications which is worse than our NTAT.

Variant with pairing. When a pairing is available, the protocol

simplifies as follows. The proof 𝜋𝑠 is replaced by the verification of

𝑒 (𝑆,𝑌 + 𝑠𝐺2) = 𝑒 (𝑇 + 𝑟 ′′𝐺3,𝐺2). It becomes a standard blind BBS

16

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

signature [31]. For redeem, we can now use the standard proof of

knowledge of a BBS signature with opening of attribute 𝑡 [28].

The complexity of issuance for the client becomes 7 multiplica-

tions and 2 pairings. It is of 7 multiplications for the server. For

redemption, onemultiplication (by𝑦) for the verifier can be replaced

by 2 pairings using no secret. The total is of 19 multiplications and

4 pairings which becomes slightly better than our Pairing NTAT.

B A NOTE ON PROOF SYSTEMS
Throughout the paper, we use and refer to the followingwell-known

proof systems, written here using the notation of Camenisch-Stadler

([36]).

ΠDLEQ = NIZK{(𝑥) : 𝑋 = 𝑥𝐺 ∧𝑊 = 𝑥𝑇 }
ΠREP𝑛 = NIZK{(𝑥1, 𝑥2, . . . , 𝑥𝑛) : 𝑋 = 𝑥1𝐺1 + 𝑥2𝐺2 + · · · + 𝑥𝑛𝐺𝑛}

More generally, we consider NIZK{𝑥 : 𝜑 (𝑥) = 𝑋 } for a group

homomorphism 𝜑 : Z𝑛q → G𝑚 , 𝑥 ∈ Z𝑛q , 𝑋 ∈ G𝑚 , which is a

generalization of the Fiat-Shamir [30] transform of the Schnorr

proof [29]. Namely, the prover picks 𝑟 ∈ Z𝑛q , computes comm =

𝜑 (𝑟), ch = 𝐻 (pp, 𝜑, 𝑋, comm), resp = 𝑟 − ch.𝑥 , and the proof is 𝜋 =

(ch, resp). To verify it, the verifier computes comm′ = 𝜑 (resp) +
ch.𝑋 , then checks ch = 𝐻 (pp, 𝜑, 𝑋, comm′).

ΠDLEQ can be seen as a proof with 𝑛 = 1, 𝑚 = 2, and

𝜑 (𝑥) = (𝑥𝐺, 𝑥𝑇). ΠREP𝑛 can be seen as a proof with 𝑚 = 1 and

𝜑 (𝑥1, . . . , 𝑥𝑛) = 𝑥1𝐺1 + · · · + 𝑥𝑛𝐺𝑛 .

C ADDITIONAL THREAT MODELS
C.1 Anonymity and Its Security Threats
In this section, we briefly describe security threats related to

anonymity.

Trusted Hardware as a Threat. We can use trusted hardware to

break security or privacy. For instance, Mateus and Vaudenay [37]

showed how it can be used by a malicious citizen to sell ballots in

e-voting (thus breaking receipt-freeness). Selling ballots is transfer-

ring credentials to vote.

Identity Leasing. Puddu et al. [38] construct a system TEEvil based

on a trusted hardware (e.g. Intel SGX) by which an account owner

would anonymously lease their account to a third party for a limited

period of time without revealing their credentials and get anony-

mous rewards such as cryptocurrencies (e.g. ZCash). Such a system

is a threat to digital society, e-voting, and social networks, not even

mentioning the business model of content providers. TEEvil acts as

a trusted third party in a fair exchange of an identity lease against

payment.

Individual Cryptography. Dziembowski et al. [39] propose a

protocol to prove that a secret 𝑆 is stored as a whole in at least

one physical device, thus making it individual. The motivation is

to avoid the creation of a distributed account among participants

who do not trust each other but would like to share the cost of

creating an account, thus making the account non-individual. In

this setting, 𝑆 is the secret related to the account. It is known by the

verifier 𝑉 and should be known by the individual account owner.

The technique to prove it consist of saying that to compute𝐻 (𝑆, 𝑁)
for a random nonce 𝑁 and a random oracle𝐻 requires to know 𝑆 as

a whole. In practice,𝐻 is a hash function and could be implemented

with MPC at some cost. Hence, some 𝐻 (𝑆, 𝑁) computations could

escape from this assumption but not all if there are too many. This

approach does not prevent 𝑆 from being known by more than one

device. It does not prevent either against an attack where 𝐻 (𝑆, 𝑁)
would be computed by a trusted hardware. Also, assuming that the

verifier knows the secret 𝑆 makes this approach inappropriate in

our context, because the redeem server should not learn the secret

of the client.

Fraud in distance bounding. The notion of terrorist fraud was

proposed by Desmedt [40] as an attack where a malicious prover 𝑃∗
1

helps another malicious prover 𝑃∗
2
(a terrorist) to enter a country

by participating to the identity proof with the honest immigration

officer𝑉 . In this form of attack, 𝑃∗
1
has credentials and tries to make

𝑃∗
2
use them.

To give this attack a sense, we should imagine that exchange

between 𝑃∗
2
and𝑉 are purely digital, with no sensor, and we should

exclude the trivial attack consisting for 𝑃∗
1
in providing to 𝑃∗

2
all

their private input then going offline. The rationale is that this

input would provide more privilege to 𝑃∗
2
and, for instance, connect

to the wallet of 𝑃∗
1
. However, 𝑃∗

1
expects a monetary reward for

their participation instead of leaving out their purse. We should

further consider the relay attack where 𝑃∗
2
purely relays communi-

cation between 𝑃∗
1
and 𝑉 . This can be discarded by assuming that

𝑃∗
2
is somehow isolated [41], or that interaction with 𝑃∗

2
must be

atomic [42]. For instance, we can assume that 𝑃∗
1
is offline, or that

communication to 𝑃∗
1
would take too much time and be detected

(as it is used for distance-bounding protocols).

Hoarding Attacks. Tyagi et al. studied the construction of a par-

tially oblivious PRF as an extension to PP to prevent so-called

hoarding attacks which are already a real-world security problem

arising from anonymity[43]. In hoarding (a.k.a farming) attacks,

the adversary accumulates anonymously issued tokens over time

to mount DDoS attacks by redeeming them all at once. The effi-

cient construction of a partially oblivious PRF allows the client

and server to establish a public metadata such as an expiration

timestamp so that malicious clients are not given time to hoard

the tokens. However, this alone does not solve the problem that

the adversary creates an army of malicious clients to collect the

tokens to redeem them at once, falling back to the original problem.

Adding a proof of humanhood such as a CAPTCHA would not be

enough since a distributed human army could still defeat this pro-

tection [44]. This shows that protection against transfer of tokens

is also necessary.

Token stealing. Kreuter et al. provided a possible solution to token
hijacking in the presence of a man-in-the-middle adversary [22].

The adversary, in that setting, is so powerful that it intercepts the

communication during the redemption phase and intercept the

tokens from a secure channel between the client and the issuer.

The aim of the adversary is to redeem the tokens in another web

server. Since, the attack scenario is application specific, the counter-

measure they propose does not cover the incidents in which the

tokens, which may be stored in the cache of the client device, can

be stolen even before redemption phase started.

17

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

C.2 4 Shades of Non-Transferability
In this section we discuss additional threat models related to non-

transferability.

Transfer of Passive Authentication: In the biometric passport

standard, an honest prover (the passport) passively proves the valid-

ity of an identity by disclosing a digital signature from an authority

on a document which associates the picture, name, date of birth,

gender, and citizenship of the person. This creates a privacy threat

for the passport holder as the malicious verifier could later exhibit

this signed document and reveal identity attributes in an unde-

niable manner [45, 46]. This threat could be mitigated by having

the passport to prove knowledge of a valid signature instead of

revealing it [47–50].

Transfer of interactive proofs: In a zero-knowledge interactive

proof, a prover 𝑃 proves to a verifier 𝑉 that a predicate is true

without revealing any more information. In the standard model,

proofs are deniable in the sense that the verifier cannot later on

prove to another verifier𝑊 that the predicate is true. The threat is

that an honest 𝑃 interacting with a malicious𝑉 ∗ would allow𝑉 ∗ to
later prove to𝑊 ∗ that 𝑃 participated in a successful proof. When

moving to non-standard models such as the random oracle model or

the common reference string model, deniability may fall down and

extra care should be taken to make interactive proofs deniable [51].

However, deniability breaks down again when allowing trusted

hardware [52].

Transfer of genuinity: A common way to defeat spam consists

of requiring emails to be digitally signed by the sender to prove

that it is genuine. This however creates a privacy threat against the

honest sender as the malicious receiver could later show undeniable

evidences that the sender sent that email. Ring signatures were

proposed as a solution for that: making the sender sign on behalf of

the ring made of the sender and the receiver. The malicious receiver

would no longer be able to prove that the sender sent the email

as the signature could have equally be made by the receiver [53].

Having a malicious ring/group member be able to prove that they

did not produce a given valid signature is an anonymity loss and

a privacy threat for other ring/group members. A malicious user

could declare a rogue public key and later on prove that this public

key was pseudorandomly generated, proving such the ignorance

of the secret key and thus the impossibility to have produced the

signature. The threat was raised by Ristenpart and Yilek [54] and

defeated by requiring members to prove honest key generation

during a key registration phase. However, a proof of ignorance is

still possible when allowing trusted hardware [52].

Transfer in Undeniable Signatures: In undeniable signature [55],
a digital signature cannot be universally verified (the signature is

called invisible) for privacy reasons. It rather requires an interactive

proof. Desmedt and Yung [56] showed that by having the verifier

implemented a distributed system of malicious verifiers, the sig-

nature validity would be proved to all verifiers. The attack was

extended by Jakobsson [57] as a way to blackmail the signer. At the

same time, some variations of undeniable signatures were proposed

to offer non-transferability: confirmer signatures and designated

verifier signatures [58, 59].

ClientQuery(pp, sk𝑐 , pk𝑠)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: 𝑥 ← sk𝑐 ;𝑋 ← 𝑥𝐺1

3: 𝑟 ←$Z𝑞 ,
4: 𝛿 ←$Z∗q
5: 𝑇 ← 𝛿 · (𝑋 + 𝑟𝐺3 +𝐺4)
6: 𝜋𝑐 ← ΠREP3 .Prove(pp, 𝑋,𝑇 , 𝑥, 𝛿, 𝑟)
7: query← (𝑇, 𝜋𝑐)
8: st← (pp, pk𝑠 , 𝑟 , 𝛿,𝑇)
9: return (query, st)
ClientFinal(st, resp)
1: (pp, pk𝑠 , 𝑟 , 𝛿,𝑇) ← st
2: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
3: 𝑌 ← pk𝑠 ; (𝑠, 𝑆) ← resp
4: if 𝑒 (𝑆,𝑌 + 𝑠𝐺2) ≠ 𝑒 (𝑇,𝐺2) re-

turn ⊥
5: 𝜎 ← 1

𝛿
.𝑆

6: return (𝜎,𝜔 = (𝑟, 𝑠))

ServerIssue(pp, sk𝑠 , pk𝑐 , query)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: (𝑇, 𝜋𝑐) ← query
3: 𝑦 ← sk𝑠 ; 𝑋 ← pk𝑐
4: if not ΠREP3 .Verify(pp, 𝑋,𝑇 , 𝜋𝑐)

return ⊥
5: 𝑠 ←$Z𝑞 − {−𝑦 }
6: 𝑆 ← 1

𝑦+𝑠𝑇

7: resp← (𝑠, 𝑆)
8: return resp

Figure 19: Token issuance with pairing.

D NTAT VARIANTS
D.1 A Universally-Verifiable (Pairing-Based)

Variant
We provide a variant of our protocol based on pairings: it has less

operations (namely, the 𝜋𝑠 proof by the server is not needed any

more) and has a redeem server who does not need the issuer’s

secret key anymore. For this reason, Server.Verify deviates from

Theorem 2.1 by having pk𝑠 as input instead of sk𝑠 . We also briefly

indicate how security proofs change for this variant.

Issuance protocol. In this version of the protocol, illustrated in

Figure 19, we modify the issuance to ensure public verifiability, i.e.,

no secret information is needed to verify a token. In particular this

means that the server issuing and the one verifying the token can be

two distinct entities, and that during issuance the client can verify

the validity of the server’s response without a server-side proof.

We achieve this by using pairings. We therefore implicitly assume

that groups used in the set-up are in this case pairing friendly.

More precisely, the client computes (𝑇, 𝜋𝑐) as before. The server
returns (𝑠, 𝑆) only, in particular, no proof is returned. However,

in this version the client can verify the validity of the server’s

response via a pairing computation. It checks whether 𝑒 (𝑆,𝑌 +
𝑠𝐺2) = 𝑒 (𝑇,𝐺2). Indeed, if the server behaves honestly we have

𝑒 (𝑆,𝑌 +𝑠𝐺2) = 𝑒 (1

𝑦+𝑠𝑇, (𝑦+𝑠)𝐺2) = 𝑒 (𝑇,𝐺2). If this check is passed,
they compute 𝜎 as before, otherwise they return ⊥.
Redeem protocol. We can achieve public verifiability by using

pairings. This means that the redeemer does not need to know

the server secret key 𝑦 in order to verify the token anymore. The

redemption procedure described in Figure 20. It is similar to the

previous redemption protocol, except that we replace the check

𝜎 ′ = 𝑦𝜎 on the server side by a pairing check 𝑒 (𝜎,𝑌) = 𝑒 (𝜎 ′,𝐺2)
such that the verifying server does not need to know the issuing

server’s secret key 𝑦 anymore.

OMUF-Security. The security result is similar for this variant.

The AGM model is enriched as group elements may further

be of three different types, depending on the group they live in.

There are three types of groups so three types of linear expressions.

Depending on the pairing,𝐺2 (and 𝑌) may not be in the same group

18

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

Client.Prove(pp, 𝜎,𝜔, sk𝑐 , pk𝑠)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: (𝑟, 𝑠) ← 𝜔 ; 𝑥 ← sk𝑐 ; 𝑌 ←

pk𝑠
3: 𝜎′ ← 𝑥𝐺1 + 𝑟𝐺3 +𝐺4 − 𝑠𝜎
4: 𝛼, 𝛽,𝛾 ←$Zq
5: 𝑄 ← 𝛼𝐺1 + 𝛽𝐺3 + 𝛾𝜎
6: 𝜌 ←$ {0, 1}ℓ𝜌
7: comm← 𝐻3 (𝜌,𝑄)
8: Send (𝜎′, comm) to the server

9: Receive 𝑐
10: (𝑣0, 𝑣1, 𝑣2) ← (𝛼 + 𝑐𝑥, 𝛽 +

𝑐𝑟,𝛾 − 𝑐𝑠)
11: Send(𝑣0, 𝑣1, 𝑣2, 𝜌) to the server

Server.Verify(pp, 𝜎, pk𝑠)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: 𝑌 ← pk𝑠
3: Receive 𝜎′, comm from the

client

4: if 𝑒 (𝜎,𝑌) ≠ 𝑒 (𝜎′,𝐺2) then
abort

5: 𝑐 ←$Zq
6: Send 𝑐 to the client

7: Receive (𝑣0, 𝑣1, 𝑣2, 𝜌) from the

client

8: 𝑄′ ← 𝑣0𝐺1 + 𝑣1𝐺3 + 𝑣2𝜎

9: 𝑄∗ ← 𝑄′ − 𝑐 (𝜎′ −𝐺4)
10: comm∗ ← 𝐻3 (𝜌,𝑄∗)
11: return (comm == comm∗)

Figure 20: Redemption with pairing.

of (𝐺1,𝐺3,𝐺4, 𝑆1, . . . , 𝑆𝑛). Vectors for elements in the pairing range

group are written in the basis consisting of 𝑒 (𝐺1,𝐺2), 𝑒 (𝐺3,𝐺2),
𝑒 (𝐺4,𝐺2), etc.

No ODDH𝑦 oracle is needed to simulate ORedeem. Thus, the

transition to Γ2
does not introduce an extra oracle.

RUF-Security. The security result is the same for this variant.

UNLINK-Security. The security result is similar for this variant.

In the transition to Γ4
, the pairing verification is equivalent to

the verification so we have no advantage overhead: AdvΓ
3

= AdvΓ
4

.

SOUND-Security. The security result is the same for this variant.

UNIQ-Security. The security result is the same for this variant.

D.2 Variant with More Attributes
We can easily add attributes 𝑥1, . . . , 𝑥𝑛 ∈ Zq in NTAT. We assume

new random generators 𝐻1, . . . , 𝐻𝑛 ∈ G are provided in pp.
During issuance, we distinguish two kinds of attributes: (type-1)

public attributes (which are known by the client and the server

during issuance) and (client)-private attributes (which are known

by the client only and for which the client must prove knowledge).

For simplicity, we do not discuss server-private attributes which are

put by the server and unknown by the client (e.g. private metadata

bits [22, 23]). During issuance, adding more attributes does not

affect the communication cost, but it may induce a complexity

overhead. Private attributes can be sorted in three types: (type-2)

attributes for which it is enough that the client proves its knowledge,

(type-3) attributes for which it is required to prove that the attribute

is the logarithm of an extra provided group element, and (type-4)

attributes for which it is required to prove that the attribute is the

same as in an extra commitment to this attribute which is known.

We add attributes by replacing𝑋 by𝑋 +∑𝑖 𝑥𝑖𝐻𝑖 . Adding a type-1

attribute 𝑥𝑖 is trivial as there is nothing more to do. Adding a private

attribute 𝑥𝑖 requires to prove the knowledge of 𝑥𝑖 in a ΠREP𝑛 proof.

For type-2 attributes, this is enough. However, type-3 and type-4

attributes require that the known value is the same as in an extra

(provided) equation related to this attribute. For type-4 attributes,

there is even an extra blinding unknown in the extra commitment.

For instance, sk𝑐 = 𝑥 could be considered as a type-3 attribute.

If we count the computation of 𝑥𝑖𝐻𝑖 on both sides, the additional

complexity cost is 𝑛1 + 𝑛2 + 2𝑛3 + 3𝑛4 multiplications for the client

and 𝑛1 + 𝑛2 + 2𝑛3 + 3𝑛4 for the server, where 𝑛𝑖 is the number of

ClientQuery(pp, sk𝑐 , pk𝑠)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4, 𝐻1, ..., 𝐻𝑛) ←

pp
2: 𝑥 ← sk𝑐 ;𝑋 ← 𝑥𝐺1

3: (𝑥1, ..., 𝑥𝑛) ← att
4: 𝑋𝑖 ← 𝑥𝑖𝐻𝑖 𝑖 = 1, ..., 𝑛

5: 𝑟 ←$Z𝑞 ,
6: 𝛿 ←$Z∗q
7: 𝑇 ← 𝛿 · (𝑋 +∑𝑛

𝑖=1
𝑥𝑖𝐻𝑖 +𝑟𝐺3+

𝐺4)
8: 𝜋𝑐 ← ΠREP3 .Prove(pp, 𝑋, extra,𝑇 ,

𝑥, (𝑥𝑖)𝑖 , 𝛿, 𝑟)
9: query← (𝑇, 𝜋𝑐)
10: (pp, pk𝑠 , 𝑟 , 𝛿,𝑇) ← st
11: return (query, st)
ClientFinal(st, resp)
1: (pp, pk𝑠 , 𝑟 , 𝛿,𝑇) ← st
2: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
3: 𝑌 ← pk𝑠 ; (𝑠, 𝑆, 𝜋𝑠) ← resp
4: if notΠDLEQ .Verify(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝜋𝑠)

return ⊥
5: 𝜎 ← 1

𝛿
.𝑆

6: return (𝜎,𝜔 = (𝑟, 𝑠))

ServerIssue(pp, sk𝑠 , pk𝑐 , query)
1: (𝑞,G,𝐺1,𝐺2,𝐺3,𝐺4, 𝐻1,, 𝐻𝑛) ←

pp
2: (𝑇, 𝜋𝑐) ← query
3: 𝑦 ← sk𝑠 ; 𝑋 ← pk𝑐
4: if not ΠREP3 .Verify(pp, 𝑋, extra𝑇, 𝜋𝑐)

return ⊥
5: 𝑠 ←$Z𝑞 − {−𝑦 }
6: 𝑆 ← 1

𝑦+𝑠𝑇

7: 𝜋𝑠 ← ΠDLEQ .Prove(pp, 𝑦𝐺2, 𝑆,𝑇 , 𝑠, 𝑦)
8: resp← (𝑠, 𝑆, 𝜋𝑠)
9: return resp

Figure 21: Token issuance with additional attributes.

type-𝑖 attributes. The additional communication cost is (𝑛3+𝑛4)G+
(𝑛2 + 𝑛3 + 2𝑛4)q.

We illustrate the issuance in Figure 21.

During redemption, we distinguish four kinds of attributes (the

type during redemption is independent from the type in issuance):

(type-a) attributes which are revealed (the verifier can see the at-

tribute), (type-b) attributes which are present but must remain

hidden, and (type-c) attributes which are revealed in the form of

an exponential, and (type-d) attributes which are revealed in the

form of a commitment. For instance, sk𝑐 = 𝑥 could be considered

as a type-3b attribute.

The redemption protocol changes naturally. Type-a attributes

are revealed. They require 𝑛𝑎 extra multiplications for the server,

and 𝑛𝑎q communications. Other attributes generate 1 extra multi-

plication each for the client and for the server, and 1 extra scalar

to transmit. If they are of type-c, the extra equation implies 1 ex-

tra multiplication on both sides. If they are of type-d, the extra

equation in the proof implies 2 extra multiplications on both sides,

1 extra scalar to transmit, and the commitment implies 1 extra

multiplication for the client and one extra group element to trans-

mit. Overall, we need 𝑛𝑏 + 2𝑛𝑐 + 4𝑛𝑑 extra multiplications for the

client, 𝑛𝑎 + 𝑛𝑏 + 2𝑛𝑐 + 3𝑛𝑑 extra multiplications for the server, and

𝑛𝑑G + (𝑛𝑎 + 𝑛𝑏 + 𝑛𝑐 + 2𝑛𝑑)q extra transmission.

We compare it to the versions of BBDT,CHAC,U-Prove with

several attributes. In the case of CHACwe consider only one device

(i.e. 𝑖 = 1 in the original paper). We consider an interactive version

of redemption for all the protocols that we compare ours to. Observe

that, while ours fully support all four kinds of attributes for issuance

and for redemption distinctly , it is not the case of all other protocols.

In fact, in BBDT we have only Type-1, Type-2, Type-a and Type-b

attributes. In U-Prove, we have only Type-1, Type-a, Type-b, and

Type-d attributes. Note that in U-Prove issuance is independent of
the number of attributes since they consider the public attributes

generation out of the scope of their protocol. InCHAC, we only have
Type-1, Type-a and Type-b. In their model, the Type-b attributes

19

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

are attributes for which tokens were issued, but that are kept secret

and not involved during redemption. This differs slightly from our

model, and justifies why 𝑛𝑏 does not appear in our comparison.

We summarize the comparison results in terms of complexity and

communication in Tables 5, 6.

D.3 Variant with Clients using a Trusted
Hardware

Our NTAT does not protect against an identity leasing attack [38].

A malicious client could upload their secret sk𝑐 to a trusted plat-

form (i.e. a trusted hardware) which would implement a secure

transaction: a temporary usage of the identity against payment.

The maliciously used trusted hardware would secure the trans-

action, making sure that sk𝑐 does not leak and is used only in

a limited way. It is already known that maliciously used trusted

hardware can break some fragile cryptographic notions such as

non-transferability [37]. It is also known that honestly used trusted

hardware can be used to defeat maliciously used ones [37].
12

The

approach consists of storing sk𝑐 securely inside a trusted hardware

and making it do some computations which use sk𝑐 . The selection
of those computations should be such that a malicious usage of

the trusted hardware does not allow transferability, and be light

enough. This is the approach of CHAC [8].

We propose a variant of NTAT in which we focus on securing

the storage of sk𝑐 and some computations using it. We therefore

differ slightly from our client-server model, and introduce a third

entity for these two steps, which we call core (to be consistent

with [8, 11]), which consists of a trusted hardware. We present the

modification in Figures 22–23. The core is involved during issuance

and redeem. However, Section D.4 presents a variant in which the

core would not be required for issuance any more.

If we merge the core and the client, we obtain a protocol which is

clearly equivalent to our NTAT protocol, hence enjoying the same

security. Then, focusing on the core protocol, it is clear that we es-

sentially implement an honest prover for the Schnorr protocol [29].

This protocol is honest-verifier zero-knowledge. With a malicious

verifier, it may only leak transferable evidences that the protocol

happened but the evidence would not be usable with an honest

server. Hence, the core must be involved during a redeem session

with an honest server.

D.4 Variant with Client Authentication outside
Token Issuance

Assuming that the client proved knowledge of sk𝑐 before engaging
the NTAT issuance protocol, the proof of knowledge of sk𝑐 in 𝜋𝑐
becomes redundant. Essentially, we assume that the client securely

authenticates, with a proof of knowledge of sk𝑐 , and that the server
keeps pk𝑐 as a state in a client-server communication session (hence

becomes stateful). During the session, the client can request tokens

once or multiple times. The authenticated status could further span

in multiple secure communication sessions by using techniques

such as token binding protocol [60]
13

12
This arm race reasoning can be pushed even further with nested trusted hardware:

putting a defensive trusted hardware inside an offensive trusted hardware to re-enable

identity leasing. We do not consider it here.

13
The Token Binding Protocol allows to bind several (TLS) sessions with a proof of

possession of the same cryptographic key. When used for token issuance and token

Webelieve that such approach is implicitlymade byU-Prove [11]
To remove sk𝑐 from issuance, we replace the proof 𝜋𝑐 in the

protocol by a proof of knowledge ΠREP2 of 𝛿 and 𝑟 satisfying

𝑟𝐺3 −
1

𝛿
𝑇 = −𝐺4 − 𝑋

The protocol is in Figure 24.

We stress that the proof of knowledge of sk𝑐 is needed in RUF-
security (which is evident by definition of RUF), and also inOMUF-
security: there is an attack when such a proof is not done (see

Appendix E) and the knowledge of sk𝑐 is used in Γ8
as the adver-

sary must provide sk𝑐 to the OIssueTok oracle. Our point is not to

suppress authentication but rather to avoid doing it redundantly,

for instance if the client wants several tokens or if the protocol is

such that authentication has already been made.

There are multiple advantages with this approach:

• Simplicity: the issuance protocol no longer needs sk𝑐 and is

simpler; the variant with secure hardware no longer needs

the secure hardware during issuance; the authentication part

of the client is kept separate from issuance.

• Complexity: it saves one multiplication on both sides during

issuance and one scalar to communicate. This leads us to

a total of 26 scalar multiplications and the transmission of

3G + 10q + (ℓ𝜌 + ℓ𝐻)𝑏. One separate authentication can be

used in several issuance requests.

• Privacy: the issuance protocol no longer gives transferable

evidence of an issuance request and becomes deniable.

The drawback is that authentication is not integrated any more and

may become more expensive in a separate protocol.

D.5 Binding to an External Valuable Secret
In this section, we explore possible solutions to the scenario where

the key used in our NTAT protocol is not in itself valuable, and we

wish to bind it to some external valuable secret. More precisely,

suppose the user is in possession of an external valuable secret sk′𝑐
satisfying a public predicate 𝑅(sk′𝑐). We consider a hash function

𝐻 together with some law + compatible with sk′𝑐 .
We enrich the NTAT key generation as shown on Figure 25.

The triplet (pk𝑐 , 𝜋,𝐶) plays the role of the public key. Intuitively,
𝐶 gives a one time pad encryption of sk′𝑐 so that if sk𝑐 is revealed,
so will sk′𝑐 be.

We now discuss the ΠKeyGen proof. We want to prove the follow-

ing relation: the existence of 𝑥 such that 𝑥 ·𝐺1 = 𝑋 ∧R(𝐶 −𝐻 (𝑥)),
where R is the predicate related to our external valuable public

key, 𝑥 is kept private and 𝑋 and 𝐶 are publicly known values. For

proving the first part, i.e. proving𝑋 = 𝑥 ·G1 we can use the Schnorr

sigma protocol [29]. We can reasonably assume the existence of a

sigma protocol for R . Finally, one can combine these two sigma-

protocols into an AND sigma-protocol ([61]) and then turn this

into a non-interactive zero-knowledge proof using the Fiat-Shamir

[30] transform, which gives us the (ΠKeyGen .Prove,ΠKeyGen .Verify)
protocol.

redeem, this makes sure that a token owned by an honest client cannot be stolen

nor reused. The standard suggests using a trusted hardware to store the binding

key. However, this does not protect export by a malicious client (so there is no non-

transferability) and this does not offer unlinkability.

20

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

Table 5: Complexity comparison. When relevant, 𝑛𝑖 , 𝑖 ∈ {1, 2, 3, 4, 𝑎, 𝑏, 𝑐, 𝑑} is the number of Type-𝑖 attributes.

Issuance Redemption Total
Client Server Client Server

NTAT
scheme

11× 8× 4× 5× 28×

NTAT with

attributes

(11 + 𝑛1 + 𝑛2 + 2𝑛3 +
3𝑛4)×

(8+𝑛1+𝑛2+2𝑛3+3𝑛4)× (4 + 𝑛𝑏 +
2𝑛𝑐 + 4𝑛𝑑)×

(5 +𝑛𝑎 +𝑛𝑏 +
2𝑛𝑐 + 3𝑛𝑑)×

(28 + 2𝑛1 + 2𝑛2 +
4𝑛3 + 6𝑛4 + 𝑛𝑎 +
2𝑛𝑏 +4𝑛𝑐 +7𝑛𝑑)×

BBDT [21] (𝑛2 + 2) ×
+Π

REP(𝑛
2
+1)
.Prove

+Π
DLEQ

.Verify

2 × +
Π

REP(𝑛
2
+1)
.Verify +

Π
DLEQ

.Prove

(𝑛𝑏 + 10)× (𝑛𝑏 + 9)× (𝑛2+2𝑛𝑏 +14) ×+
Π

REP(𝑛
2
+1)
+ Π

DLEQ

U-Prove
[11]

9× 3× (3 + 𝑛𝑏 +
4𝑛𝑑)×

(7 + 𝑛𝑏 +
3𝑛𝑑)×

(22+2𝑛𝑏 +7𝑛𝑑)×

CHAC [8] 5× (4 + 𝑛1)×, 5𝑒 17× (10 + 𝑛𝑎)𝑒 (26 + 𝑛𝑎)×,(15 +
𝑛𝑎)𝑒

Table 6: Communication comparison. When relevant, 𝑛𝑖 , 𝑖 ∈ {1, 2, 3, 4, 𝑎, 𝑏, 𝑐, 𝑑} is the number of Type-𝑖 attributes.

Issuance Redemption Total

NTAT scheme 2G + 7q 1G + 4q + (ℓ𝜌 + ℓ𝐻)𝑏 3G + 11q + (ℓ𝜌 + ℓ𝐻)𝑏
NTAT with at-

tributes

(2 + 𝑛3 + 𝑛4)G + (7 + 𝑛2 +
𝑛3 + 2𝑛4)q

(1 +𝑛𝑑)G + (4 +𝑛𝑎 +𝑛𝑏 +
𝑛𝑐 + 2𝑛𝑑)q + (ℓ𝜌 + ℓ𝐻)𝑏

(3 +𝑛3 +𝑛4 +𝑛𝑑)G + (11 +
𝑛2 + 𝑛3 + 2𝑛4 + 𝑛𝑎 + 𝑛𝑏 +
𝑛𝑐 + 2𝑛𝑑)q + (ℓ𝜌 + ℓ𝐻)𝑏

U-Prove [11] 3G + 2q 3G + (5 + 𝑛𝑏 + 3𝑛𝑑 + 𝑛𝑎)q 6G + (7 + 𝑛𝑏 + 3𝑛𝑑 + 𝑛𝑎)q
CHAC [8] 8G + 1q 8G + 1q 16G + 2q
BBDT [21] 2G + 2q +Π

REP(𝑛𝑏 +1)
+Π

DLEQ
3G + (𝑛𝑎 + 𝑛𝑏 + 7)q + ℓ𝐻𝑏 5G + (𝑛𝑎 + 𝑛𝑏 + 9)q +

ℓ𝐻𝑏 + Π
REP(𝑛

2
+1)
+ Π

DLEQ

E ON THE NECESSITY OF AUTHENTICATION
IN NTAT

The necessity to prove the knowledge of 𝑥 in 𝜋𝑐 . RUF security

needs to authenticate the key holder but we could have assumed

it was done outside of the protocol. However, it seems necessary

in OMUF too, although it is not intuitive. Here is an OMUF at-

tack when 𝜋𝑐 does not prove the knowledge of 𝑥 but only proves

commitment to 𝑋 :

(1) Engage the issuance protocol normally with public key 𝑋1 =

𝑥1 .𝐺1 and get 𝜎1 = 1

𝑦+𝑠1

(𝑋1 + 𝑟1 .𝐺3 +𝐺4).
(2) Engage the issuance protocol with a fake public key 𝑋2 = 𝜎1

and get 𝜎2 = 1

𝑦+𝑠2

(𝑋2 + 𝑟2 .𝐺3 +𝐺4).
(3) Set 𝑥3 = 1

1+𝑠1−𝑠2

.𝑥1, 𝑋3 = 𝑥3 .𝐺1, 𝜎3 =
𝑠2−𝑠1

𝑠2−𝑠1−1
𝜎2 − 1

𝑠2−𝑠1−1
𝜎1,

𝑟3 =
𝑟2 .(𝑠2−𝑠1)−𝑟1

𝑠2−𝑠1−1
, 𝑠3 = 𝑠2.

(4) Yield 𝑥3, 𝑋3, 𝜎3, 𝑟3, 𝑠3.

We do have 𝜎3 = 1

𝑦+𝑠3

(𝑥3 .𝐺1 + 𝑟3 .𝐺3 +𝐺4) which is a forgery for

public key 𝑥3 .𝐺1 which was never queried to the issuer. If we prove

knowledge of 𝑥 in 𝜋𝑐 , the above attack does not work because the

adversary does not know log𝑋2.

Interestingly, this is not an attack against the one-more unforge-

ability of BBS as the second query to the signing oracle does not

yield a signature: it would be a signature on (log𝜎 : 1, 𝑟2) but the
adversary cannot provide log𝜎1. So, this attack makes two sign

queries and yield two signatures. It does not break one-more un-

forgeability for BBS. In our case, the accounting of queries and

signatures is per-𝑋 values. The attack makes one query with 𝑋1

and gets one signature, one query with 𝑋2 and gets no signature,

and no query with𝑋3 but gets one signature. This breaks ourOMUF
notion.

F U-Prove
U-Prove [11] is an anonymous credentials system. It uses no pairing

but still offers public verifiability.

Issuance in U-Prove is 3-move, initiated by the server (which

implies that the server must keep a state). During issuance, owner-

ship verification is out of the scope of U-Prove: anyone can request

a token on behalf of anyone with a proposed list of attributes. In

particular, they have no RUF security.

The equivalent to redemption is called “presentation”. The pre-

sentation phase plays two role: authentication/integrity of shown

attributes and proof of holding some secrets. Clients can selectively

reveal some attributes, or commitments to attributes, or keep them

hidden (but their presence is revealed). A client can also insert

some prover information PI in the token. PI is blindly signed during

issuance, i.e., the issuer does not see it. However, it must be revealed

during presentation.

Tokens have a unique identifier which must be revealed at re-

deem. A token may be used multiple times (including to open

attributes differently) but in a linkable way. We consider it as a

21

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

Core Client Server

pp, 𝑐 = 𝑥 pp, 𝑋,𝑌 pp, 𝑋,𝑌
𝑎 ←$Zq
comm1 ← 𝑎 ·𝐺1

comm1

𝑟, 𝑏, 𝑐 ←$Zq , 𝛿 ←$Z∗q
𝑇 ← 𝛿 · (𝑋 + 𝑟𝐺3 +𝐺4)

comm2 ← comm1 + 𝑏𝐺3 + 𝑐𝑇
ch← 𝐻1 (pp, 𝑋,𝑇 , comm1, comm2)

ch

resp
1
← 𝑎 − ch.𝑥

resp
1

resp
2
← 𝑏 − ch.𝑟

resp
3
← 𝑐 + ch 1

𝛿

𝑇, ch, resp
1
, resp

2
, resp

3

comm′
1
← resp

1
.𝐺1 + ch.𝑋

comm′
2
← resp

1
.𝐺1 + resp2

.𝐺3

+ resp
3
.𝑇 − ch.𝐺4

ch′ ← 𝐻1 (pp, 𝑋,𝑇 , comm′
1
, comm′

2
)

if not (ch == ch′) return ⊥
𝑠 ←$Zq − {−𝑦 }, 𝑆 ← 1

𝑦+𝑠𝑇

𝜋𝑠 ← ΠDLEQ .Prove(pp, 𝑦𝐺2, 𝑆,𝑇 , 𝑠, 𝑦)
𝑠, 𝑆, 𝜋𝑠

if not ΠDLEQ .Verify(pp, 𝑌 , 𝑆,𝑇 , 𝑠, 𝜋𝑠)
return ⊥
𝜎 ← 𝑆

𝛿

output: (𝜎,𝜔 = (𝑟, 𝑠))

Figure 22: Issuance with trusted hardware

single-show system. In the U-Prove specifications, presentation is

non-interactive, which makes it transferable. Thus, the informa-

tive part of the U-Prove document suggests to make presentation

interactive.

For non-transferability, U-Prove suggests to disincentivize trans-
fer by embedding a valuable secret in one additional attribute [11,

Section 3.5]. This attribute value should not be a hash (otherwise,

the transfer of the hash would still be possible). The idea is that

knowing the attribute values is necessary for the client during pre-

sentation. However, the attribute value must be shared with the

issuer so we do not see it as an appropriate solution (unlessU-Prove
is extended to allow attribute registration without sharing).

U-Prove suggests another technique for non-transferability: de-
vice binding. This ends up in a similar setting as in CHAC [8] with

a client split into a “core” and a “helper”. A difference with CHAC
is that there is no ownership verification during issuance - the core

is not involved in issuance. Another difference is that in U-Prove,

interaction with the core needs 4 moves instead of 2 during presen-

tation. Device binding ensures that the secret of the device was used

to make the presentation proof. However, the security of U-Prove
is not formally proven.

We rewrite in Figure 26 and Figure 27 the U-Prove protocol in
a simplified manner: using device binding, and with interactive

presentation. The algorithms in issuance are run as follows : the

server starts by running Server.Issue0, then it is the client’s turn

with ClientQuery, then Server.Issue1 and finally ClientFinal This
is the “option" which would compare the best with NTAT. However,
it is vulnerable to ROS attack which makes U-Prove not OMUF
secure.

ROS Attack. Benhamouda et al. [17] presented the ROS attack

which applies to U-Prove as follows. We consider a malicious client

who engages with 𝑛 issuance sessions in parallel with the same set

of attributes. This implies that the sessions will have the values of

Γ and Σ𝑧 in common, in addition to pp and 𝑌 . The forged tokens

will have the same 𝐻 . A valid token is a tuple (𝐻, PI𝑖 , Σ′𝑧 , 𝜎 ′𝑐,𝑖 , 𝜎
′
𝑟,𝑖
)

22

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

Core Client Server

pp, sk𝑐 = 𝑥 pp, 𝑋,𝑌 , 𝜎,𝜔, pp, 𝜎, 𝑦
𝛼 ←$Zq
comm1 ← 𝛼𝐺1

comm1

(𝑟, 𝑠) ← 𝜔

𝜎′ ← 𝑋 + 𝑟𝐺3 +𝐺4 − 𝑠𝜎
𝛽,𝛾 ←$Z2

q
𝑄 ← comm1 + 𝛽𝐺3 + 𝛾𝜎

𝜌 ←$ {0, 1}ℓ
comm← 𝐻3 (𝜌,𝑄)

𝜎′, comm

If 𝜎′ ≠ 𝑦𝜎 then abort

𝑐 ←$Zq
𝑐

𝑐

𝑣0 ← 𝛼 + 𝑐𝑥

𝑣0

𝑣1 ← 𝛽 + 𝑐𝑟
𝑣2 ← 𝛾 − 𝑐𝑠

𝜌, 𝑣0, 𝑣1, 𝑣2

𝑄′ ← 𝑣0𝐺1 + 𝑣1𝐺3 + 𝑣2𝜎

𝑄∗ ← 𝑄′ − 𝑐 (𝜎′ −𝐺4)
comm∗ ← 𝐻3 (𝜌,𝑄∗)

output: (comm == comm′)

Figure 23: Redemption with trusted hardware

Prover(pp, 𝑋,𝑇 , 𝛿, 𝑟)
1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: (𝑏, 𝑐) ←$Z2

q
3: comm2 ← 𝑏𝐺3 + 𝑐𝑇
4: ch← 𝐻1 (pp, 𝑋,𝑇 , comm2)
5: resp

2
← 𝑏 − ch.𝑟 mod q

6: resp
3
← 𝑐 + ch. 1

𝛿
mod q re-

turn ch, resp
2
, resp

3

Verifier(pp, 𝑋,𝑇 , (ch, resp
2
, resp

3
))

1: (q,G,𝐺1,𝐺2,𝐺3,𝐺4) ← pp
2: comm′

2
← resp

2
.𝐺3 +

resp
3
.𝑇 − ch.𝐺4

3: ch′ ← 𝐻1 (pp, 𝑋,𝑇 , comm′
2
)

return (ch == ch′)

Figure 24: ΠREP2: Client proof 𝜋𝑐 with no sk𝑐 .

Client.KeyGen(pp, sk′𝑐)
1: pp→ (q,G,𝐺1, . . . ,𝐺4)
2: 𝑥 ←$Z𝑞
3: 𝑋 ← 𝑥𝐺1

4: (sk𝑐 , pk𝑐) ← (𝑥,𝑋)
5: 𝐶 ← 𝐻 (𝑥) + sk′𝑐
6: 𝜋 ← ΠKeyGen .Prove(pp,𝐶, 𝑥,𝑋)
7: return (sk𝑐 , (pk𝑐 , 𝜋,𝐶))

KeyVer(pp, sk𝑐 , (pk𝑐 , 𝜋,𝐶))
1: pp→ (q,G,𝐺1, . . . ,𝐺4)
2: returnΠKeyGen .Verify(pp, 𝜋,𝐶, pk𝑐)

Figure 25: Updated client key generation to bind to an exter-
nal valuable secret

satisfying 𝜎 ′
𝑐,𝑖

= Hash(𝐻, PI𝑖 , Σ′𝑧 , Σ′𝑎,𝑖 , Σ
′
𝑏,𝑖
), where(

Σ′
𝑎,𝑖

Σ′
𝑏,𝑖

)
= 𝜎 ′𝑟,𝑖

(
𝑌

𝐻

)
− 𝜎 ′𝑐,𝑖

(
𝐺0

Σ′𝑧

)

ClientQuery(pp, sk𝑐 , pk𝑠 , (Σ𝑧 , Σ𝑎, Σ𝑏))

1: pick 𝛼, 𝛽1, 𝛽2

2: 𝐻 ← 𝛼 (𝐺𝑥𝑡 + pk𝑐)
3: Σ′𝑧 ← 𝛼Σ𝑧
4: Σ′𝑎 ← 𝛽1𝐺0 + 𝛽2𝑌 + Σ𝑎
5: Σ′

𝑏
← 𝛽1Σ

′
𝑧 + 𝛽2𝐻 + 𝛼Σ𝑏

6: 𝜎′𝑐 ← Hash(𝐻, PI, Σ′𝑧 , Σ
′
𝑎, Σ
′
𝑏
)

7: 𝜎𝑐 ← 𝜎′𝑐 + 𝛽1

8: 𝑠𝑡 ← (pp, 𝛽2, 𝐻, pk𝑠 , 𝜎
′
𝑐 , Σ
′
𝑎, Σ
′
𝑏
, Σ′𝑧)

9: return 𝜎𝑐 , 𝑠𝑡

ClientFinal(𝑠𝑡, 𝜎𝑟)
1: 𝜎′𝑟 ← 𝜎𝑟 + 𝛽2

2:

3: if Σ′𝑎 + Σ′
𝑏

= 𝜎′𝑟 (𝐻 + 𝑌) −
𝜎′𝑐 (𝐺0+Σ′𝑧) then return token:

(𝐻, PI, Σ′𝑧 , 𝜎
′
𝑐 , 𝜎
′
𝑟) and witness:

𝛼

Server.Issue0 (pp, pk𝑐 , sk𝑠 , pk𝑠)
1: Γ ← 𝐺𝑥𝑡 + pk𝑐
2: Σ𝑧 ← 𝑦0Γ
3: pick 𝑤

4: Σ𝑎 ← 𝑤𝑌 ; Σ𝑏 ← 𝑤Γ
5: 𝑠𝑡 ← (sk𝑠 , 𝑤)
6: return (𝑠𝑡, (Σ𝑧 , Σ𝑎, Σ𝑏))
Server.Issue1 (st, 𝜎𝑐)
1: 𝑠𝑡 ← (sk𝑠 , 𝑤)
2: 𝜎𝑟 ← 𝑦0𝜎𝑐 + 𝑤
3: return 𝜎𝑟

Figure 26: U-Prove issuance with device binding

By running 𝑛 parallel token requests, with 𝑛 ≥ log
2
q, the bitlength

of the group order, the malicious client first collects Σ𝑧 and 𝑛 pairs

of (Σ𝑎,𝑖 , Σ𝑏,𝑖). The malicious prover selects two possible choices

PI𝑖,b, b ∈ {0, 1} for each 𝑖 , computes 2𝑛 hashes to get 𝜎𝑐,𝑖,b =

Hash(𝐻, PI𝑖,b, Σ𝑧 , Σ𝑎,𝑖 , Σ𝑏,𝑖) (following the protocol as if 𝛼 = 1 and

23

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

pp = (𝐺0,𝐺𝑥𝑡 ,𝐺𝑑) (where,𝐺𝑥𝑡 = 𝐺0 + 𝑥𝑡𝐺𝑡), (sk𝑐 , pk𝑐) = (𝑥𝑑 , 𝑥𝑑𝐺𝑑)
core helper verifier

sk𝑐 = 𝑥𝑑 𝐻, PI, Σ′𝑧 , 𝜎
′
𝑐 , 𝜎
′
𝑟 , 𝛼 pk𝑠 = 𝑌

pick 𝑤′
𝑑

𝐴𝑑 ← 𝑤′
𝑑
𝐺𝑑

𝐴𝑑

pick 𝑤0, 𝑤𝑑

comm← 𝑤0𝐻 + 𝑤𝑑𝐺𝑑 +𝐴𝑑

𝐻, PI, Σ′𝑧 , 𝜎
′
𝑐 , 𝜎
′
𝑟 , comm

𝜎′𝑐
?

= Hash(𝐻, PI, Σ′𝑧 , 𝜎
′
𝑟𝑌

− 𝜎′𝑐𝐺0, 𝜎
′
𝑟𝐻 − 𝜎′𝑐Σ′𝑧)

pick 𝑎
𝑎

𝑐𝑝 ← Hash(𝐻,𝑎)
𝑐𝑝

𝑐 ← Hash(𝑐𝑝)
𝑟 ′
𝑑
← −𝑐𝑥𝑑 + 𝑤′𝑑

𝑟 ′
𝑑

𝑐 ← Hash(𝑐𝑝)
𝑟0 ← 𝑐

𝛼
+ 𝑤0

𝑟𝑑 ← 𝑟 ′
𝑑
+ 𝑤𝑑

𝑟0, 𝑟𝑑

𝑐𝑝 ← Hash(𝐻,𝑎)
𝑐 ← Hash(𝑐𝑝)

comm
?

= −𝑐𝐺𝑥𝑡 + 𝑟0𝐻 + 𝑟𝑑𝐺𝑑

Figure 27: U-Prove interactive presentation with device binding

𝛽1 = 𝛽2 = 0), then makes a smart choice to select b = b𝑖 for each 𝑖
so that by setting PI𝑖 = PI𝑖,b𝑖 and 𝜎𝑐,𝑖 = 𝜎𝑐,b𝑖 , the adversary sends

𝜎𝑐,𝑖 to wrap up the issuance, gets back 𝜎𝑟,𝑖 , and is able to forge 𝑛 + 1

valid tokens. Therefore, U-Prove is not OMUF-secure: by making 𝑛

issuance queries, the adversary gets 𝑛+1 valid tokens with pairwise

different token identifiers. (A token identifier is the hash of the tuple

(𝐻, PI, Σ′𝑧 , 𝜎 ′𝑐 , 𝜎 ′𝑟).)
More precisely, we assume that the index 𝑖 goes from 0 to 𝑛 − 1.

The adversary sets 𝑧𝑖 =
2
𝑖

𝜎𝑐,𝑖,1−𝜎𝑐,𝑖,0 and

𝑧𝑛 = −
𝑛−1∑︁
𝑖=0

𝑧𝑖𝜎𝑐,𝑖,0

This has the property that for any selection of b0, . . . , b𝑛−1, we have

𝑧0𝜎𝑐,0,b0
+ · · · + 𝑧𝑛−1𝜎𝑐,𝑛−1,b𝑛−1

+ 𝑧𝑛 = b0 + 2b1 + · · · + 2
𝑛−1b𝑛−1

Then, the adversary defines(
Σ𝑎,𝑛
Σ𝑏,𝑛

)
=

𝑛−1∑︁
𝑖=0

𝑧𝑖

(
Σ𝑎,𝑖
Σ𝑏,𝑖

)
− 𝑧𝑛

(
𝐺0

Σ′𝑧

)

Hence, by computing 𝜎𝑐,𝑛 = Hash(𝐻, PI∗, Σ𝑎,𝑛, Σ𝑏,𝑛) mod q for an

arbitrary PI∗ then setting the b𝑖 as the binary representation of 𝜎𝑐,𝑛
(which is possible when 𝑛 ≥ log

2
q), sending the 𝜎𝑐,𝑖 to finish the

issuances and getting the 𝜎𝑟,𝑖 , we obtain the relation(
Σ𝑎,𝑛
Σ𝑏,𝑛

)
=

(
𝑛−1∑︁
𝑖=0

𝑧𝑖𝜎𝑟,𝑖

) (
𝑌

𝐻

)
− 𝜎𝑐,𝑛

(
𝐺0

Σ′𝑧

)
so an extra valid token (𝐻, PI∗, Σ′𝑧 , 𝜎𝑐,𝑛, 𝜎𝑟,𝑛).

The attack above uses 𝛼 = 1 and 𝛽1 = 𝛽2 = 0 for simplicity but

could also use random choices for 𝛼, 𝛽1, 𝛽2.

There may be several ways to defeat the ROS attack. We could

require PI to be constant. We could use 𝐻 as a token identifier.

Those fixes would require to revisit the security of U-Prove in all

applications. The cleanest way would be to add an attribute which

would play the role of the token identifier so that issuance requests

for the same set of attributes would produce tokens which are

considered as being the same. Such additional attribute would be

revealed at presentation (so add one scalar to transmit and one

24

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

multiplication for the server) but would be hidden at issuance.

However, there is currently no such mechanism in U-Prove. So far,

all attributes must be shared with the issuer.

One can argue that the ROS attack applies in corner use cases

of U-Prove and can be defeated. However, it illustrates that using

anonymous credentials as anonymous tokens and hope that they

would automatically be OMUF-secure is a wrong belief.

G WITH A LITTLE HELP FROMMY FRIEND
In this section, we simplify the CHAC protocols for a single is-

suance [8]. It relies on pairing and the redeemer does not need the

secret key. However, there is no variant without pairing.

CHAC separates the client into a “core” and a “helper”. The core

has low capabilities but is secure. The helper has computational

power but is not secure. An essential part of CHAC is to put the

minimum inside the core. In addition to this, the protocol offers an

effective aggregation protocol so that having many attributes does

not add too much complexity.

Their notion of non-transferability is called “dependability”. It

relies on the assumption that the core belonging to the user is a

trusted hardware which would not deviate from its protocol. Hence,

the malicious user cannot hold their own secret.

The protocol has an additional move in issuance. Furthermore,

all attributes must be shared during issuance. We illustrate the

protocol in Figure 28–29 as well as its merged client version in

Figure 30.

25

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

crs = (𝑌1, 𝑌2) = (𝑔𝛿
1
, 𝑔𝛿

2
) , (sk, pk) = (𝑌𝛼

1
, (𝑔1, 𝑔

𝛼
1
)) , (isk, ipk) = ((𝐹, (𝑥𝑖,𝑗)𝑖,𝑗), (𝑔

𝑥𝑖,𝑗

2
)𝑖,𝑗) , Attr = (𝑣𝑖)𝑖 , 𝑗 ∈ {1, . . . , ℓ }, ℓ = 2

core helper server

sk = 𝑌𝛼
1

isk = (𝐹, (𝑥𝑖,𝑗)𝑖,𝑗)
pick nonce

nonce

aid← 𝐻 (Attr, nonce)
aid

pick 𝑘, 𝑟

𝑈1 ← 𝑔𝑘
1
,𝑈2 ← 𝑔𝑘

2

Sig← sk · 𝐻 (aid)𝑟
𝑤 ← 𝑟/𝑘

𝑈1,𝑈2, Sig, 𝑤

𝑆1 ← 𝑈𝑤
1
, 𝑆2 ← 𝑈𝑤

2

pk, Sig, 𝑆1, 𝑆2

aid← 𝐻 (Attr, nonce)
𝑒 (𝑆1, 𝑔2)

?

= 𝑒 (𝑔1, 𝑆2)
𝑒 (Sig, 𝑔2)

?

= 𝑒 (pk, 𝑌2)𝑒 (𝐻 (aid), 𝑆2)
𝑦 ← 𝐹 (pk)

𝑍𝑖 ← (
∏

𝑗 pk
𝑥𝑖,𝑗

𝑗
)𝑦

𝑊1 ← 𝑔
1

𝑦

1
,𝑊2 ← 𝑔

1

𝑦

2

𝑉𝑖 ← 𝐻 ((ipk𝑖,𝑗) 𝑗 , 𝑣𝑖)
1

𝑦

𝑊1,𝑊2, (𝑍𝑖 ,𝑉𝑖)𝑖

Figure 28: CHAC Issuance

26

Non-Transferable Anonymous Tokens by Secret Binding Full version, May 8th, 2024

crs = (𝑌1, 𝑌2) = (𝑔𝛿
1
, 𝑔𝛿

2
) , (sk, pk) = (𝑌𝛼

1
, (𝑔1, 𝑔

𝛼
1
)) , (isk, ipk) = ((𝐹, (𝑥𝑖,𝑗)𝑖,𝑗), (𝑔

𝑥𝑖,𝑗

2
)𝑖,𝑗) , Attr = (𝑣𝑖)𝑖 , 𝑗 ∈ {1, . . . , ℓ }, ℓ = 2

core helper server

sk = 𝑌𝛼
1

isk = (𝐹, (𝑥𝑖,𝑗)𝑖,𝑗)
pick nonce

nonce

aid← 𝐻 (Attr, nonce)
aid

pick 𝑘, 𝑟

𝑈1 ← 𝑔𝑘
1
,𝑈2 ← 𝑔𝑘

2

Sig← sk · 𝐻 (aid)𝑟
𝑤 ← 𝑟/𝑘

𝑈1,𝑈2, Sig, 𝑤

𝑆1 ← 𝑈𝑤
1
, 𝑆2 ← 𝑈𝑤

2

𝑍 ←∏
𝑖 𝑍𝑖 ,𝑉 ←

∏
𝑖 𝑉𝑖

pick 𝑟 ′, 𝑘′,𝜓

𝐴′ ← 𝑔𝑟
′

1
, 𝐵′ ← pk𝑟

′

pk′ ← (𝐴′, 𝐵′)
Sig′ ← Sig𝑟

′
𝐻 (aid)𝑘′

𝑆′
1
← 𝑆𝑟

′
1
𝑔𝑘
′

1
, 𝑆′

2
← 𝑆𝑟

′
2
𝑔𝑘
′

2

𝑍 ′ ← 𝑍𝑟 ′𝜓

𝑊 ′
1
←𝑊

1

𝜓

1
,𝑊 ′

2
←𝑊

1

𝜓

2

𝑉 ′ ← 𝑉
1

𝜓

msg← (pk′, Sig′, 𝑆′
1
, 𝑆′

2
, 𝑍 ′,𝑊 ′

1
,𝑊 ′

2
,𝑉 ′)

msg

aid← 𝐻 (Attr, nonce)
𝑒 (𝑆′

1
, 𝑔2)

?

= 𝑒 (𝑔1, 𝑆
′
2
)

𝑒 (Sig′, 𝑔2)
?

= 𝑒 (pk′
2
, 𝑌2)𝑒 (𝐻 (aid), 𝑆′

2
)∏

𝑗 𝑒 (pk′𝑗 ,
∏

𝑖 ipk𝑖,𝑗)
?

= 𝑒 (𝑍 ′,𝑊 ′
2
)

𝑒 (𝑊 ′
1
, 𝑔2)

?

= 𝑒 (𝑔1,𝑊
′
2
)

𝑒 (𝑊 ′
1
,
∏

𝑖 𝐻 ((ipk𝑖,𝑗) 𝑗 , 𝑣𝑖))
?

= 𝑒 (𝑔1,𝑉
′)

Figure 29: CHAC Redeem

27

Full version, May 8th, 2024 F. Betül Durak, Laurane Marco, Abdullah Talayhan, and Serge Vaudenay

crs = (𝑌1, 𝑌2) = (𝑔𝛿
1
, 𝑔𝛿

2
) , (sk, pk) = (𝑌𝛼

1
, (𝑔1, 𝑔

𝛼
1
)) , (isk, ipk) = ((𝐹, 𝑥1, 𝑥2), (𝑔𝑥1

2
, 𝑔

𝑥
2

2
))

client server

sk = 𝑌𝛼
1

isk = (𝐹, 𝑥1, 𝑥2)
pick nonce

nonce

ℎ ← 𝐻 (nonce)
pick 𝑟

𝑆1 ← 𝑔𝑟
1
, 𝑆2 ← 𝑔𝑟

2

Sig← sk · ℎ𝑟
pk, Sig, 𝑆1, 𝑆2

ℎ ← 𝐻 (nonce)
𝑒 (𝑆1, 𝑔2)

?

= 𝑒 (𝑔1, 𝑆2)
𝑒 (Sig, 𝑔2)

?

= 𝑒 (pk
2
, 𝑌2)𝑒 (ℎ, 𝑆2)

𝑦 ← 𝐹 (pk)
𝑍 ← (pk𝑥1

1
pk𝑥2

2
)𝑦

𝑊1 ← 𝑔
1

𝑦

1
,𝑊2 ← 𝑔

1

𝑦

2

𝑉 ← 𝐻 (ipk)
1

𝑦

𝑊1,𝑊2, 𝑍,𝑉

pick nonce
nonce

ℎ ← 𝐻 (nonce)
pick 𝑟 ′, 𝑘′′,𝜓 (𝑘′′ = 𝑟𝑟 ′ + 𝑘′)
𝑆′

1
← 𝑔𝑘

′′
1

, 𝑆2 ← 𝑔𝑘
′′

2

Sig′ ← sk𝑟
′
ℎ𝑘
′′

𝐴′ ← 𝑔𝑟
′

1
, 𝐵′ ← pk𝑟

′
2

pk′ ← (𝐴′, 𝐵′)
𝑍 ′ ← 𝑍𝑟 ′𝜓

𝑊 ′
1
←𝑊

1

𝜓

1
,𝑊 ′

2
←𝑊

1

𝜓

2

𝑉 ′ ← 𝑉
1

𝜓

msg← (pk′, Sig′, 𝑆′
1
, 𝑆′

2
, 𝑍 ′,𝑊 ′

1
,𝑊 ′

2
,𝑉 ′)

msg

ℎ ← 𝐻 (nonce)
𝑒 (𝑆′

1
, 𝑔2)

?

= 𝑒 (𝑔1, 𝑆
′
2
)

𝑒 (Sig′, 𝑔2)
?

= 𝑒 (pk′
2
, 𝑌2)𝑒 (ℎ, 𝑆′

2
)

𝑒 (pk′
1
, ipk

1
)𝑒 (pk′

2
, ipk

2
) ?

= 𝑒 (𝑍 ′,𝑊 ′
2
)

𝑒 (𝑊 ′
1
, 𝑔2)

?

= 𝑒 (𝑔1,𝑊
′
2
)

𝑒 (𝑊 ′
1
, 𝐻 (ipk)) ?

= 𝑒 (𝑔1,𝑉
′)

Figure 30: CHAC with a single (and constant) attribute and merged client

28

	Abstract
	1 Introduction
	1.1 Non-Transferability
	1.2 Our Results
	1.3 Related Work
	1.4 Notations

	2 Non-Transferable Anonymous Tokens
	2.1 A framework for non-transferable anonymous tokens
	2.2 Accountability Notion
	2.3 Unlinkability Notion
	2.4 Non-Transferability Notion

	3 Our Non-Transferable Anonymous Tokens Protocol
	3.1 Our NTAT scheme
	3.2 Performance

	4 Security
	4.1 OMUF Security
	4.2 RUF Security
	4.3 UNLINK Security
	4.4 SOUND Security
	4.5 UNIQ Security

	5 Conclusion
	References
	A Non-Transferability with Additive Masking
	B A Note on proof systems
	C Additional Threat Models
	C.1 Anonymity and Its Security Threats
	C.2 4 Shades of Non-Transferability

	D NTAT Variants
	D.1 A Universally-Verifiable (Pairing-Based) Variant
	D.2 Variant with More Attributes
	D.3 Variant with Clients using a Trusted Hardware
	D.4 Variant with Client Authentication outside Token Issuance
	D.5 Binding to an External Valuable Secret

	E On the Necessity of Authentication in NTAT
	F UProve
	G With a Little Help from my Friend

