
BUFFing FALCON without Increasing the
Signature Size

Samed Düzlü1, Rune Fiedler2, Marc Fischlin2

1 Universität Regensburg, Germany samed.duzlu@ur.de
2 Technische Universität Darmstadt, Germany

firstname.lastname@cryptoplexity.de

Abstract. This work shows how FALCON can achieve the Beyond Un-
Forgeability Features (BUFF) introduced by Cremers et al. (S&P’21)
more efficiently than by applying the generic BUFF transform. Specifi-
cally, we show that applying a transform of Pornin and Stern (ACNS’05),
dubbed PS-3 transform, already suffices for FALCON to achieve BUFF
security. For FALCON, this merely means to include the public key in the
hashing step in signature generation and verification, instead of hashing
only the nonce and the message; the other signature computation steps
and the signature output remain untouched. In comparison to the BUFF
transform, which appends a hash value to the final signature, the PS-3
transform therefore achieves shorter signature sizes, without incurring
additional computations.

Keywords: BUFF, Post-Quantum Cryptography, FALCON, (Q)ROM

1 Introduction

In 2017, NIST has initiated a standardization process [11] for post-quantum
signature schemes to resist the threat of (future) quantum computers. At the end
of round 3 [1], the hash-based SPHINCS+ [9] and the lattice-based Dilithium
[10] and FALCON [16] were selected for standardization. Draft standards for the
first two schemes [13,14] are available, while the draft standard for FALCON is
expected this year. To further diversify the assumptions on which the signature
schemes are based, NIST has started an additional call for signature schemes
[12].

In their additional call, NIST has declared the Beyond UnForgeability Fea-
tures, or BUFF for short, formalized by Cremers et al. [4], as desired features.
The BUFF properties add resilience against maliciously generated (public) keys.
The three properties are: Exclusive Ownership (EO, can a signature verify under
several public keys?), Message-Bound Signatures (MBS, can a signature verify
several messages?), and Non-Resignability (NR, given a signature for an unknown
message, can the adversary engineer another signature under its own key for this
unknown message?).

Three different signature transforms related to exclusive ownership notions
were first introduced by Pornin and Stern [15]. In [4], Cremers et al. show that



neither of those transforms generically suffice to ensure security with respect
to all BUFF notions. This is why they introduced the BUFF transform, which
generically adds BUFF security to any signature scheme. The transform appends
a hash of the message and the public key to the signature (over this hash value).
In [4], it was shown that the original version of FALCON merely satisfies message-
bound signatures, but neither exclusive ownership, nor non-resignability. Hence,
the BUFF transform seems necessary for FALCON, and indeed, FALCON-BUFF
achieves all BUFF properties.

1.1 BUFFing FALCON Directly

In this work we argue that the third transformation of [15], dubbed PS-3 trans-
form by [4], already suffices for FALCON to achieve all BUFF properties. For
signatures, FALCON computes a hash value H(r∥m) of a nonce r and the message
m and then finds a close-by lattice point to this hash value with help of the secret
key, described by a value s. The signature then consists of σ = (r, s). The verifier
also computes H(r∥m) and verifies that s describes a sufficiently close lattice
point to the hash value with help of the public key.

The PS-3 transform adds the public key to the hash evaluation, H(r∥pk∥m),
both for signing and verifying. The signature, however, remains as before. In
particular, one of the pleasing features of FALCON, the short signature size, is
not changed at all. Table 1 compares FALCON, as is, FALCON with the BUFF
transform (called FALCON-BUFF), and FALCON with the PS-3 transform (called
FALCON-PS-3). The table compares the achieved BUFF properties and signature
sizes.

Scheme Sig. target Sig. format M-S-UEO MBS NR Size (B)

FALCON H(r∥m) (r, s) ✗ [4] ✓ [4] ✗ [4] 1280
FALCON-BUFF H(r∥pk∥m) (r, s, H(r∥pk∥m)) ✓ [4] ✓ [4] ✓ [4] 1344
FALCON-PS-3 H(r∥pk∥m) (r, s) ✓ Prop. 14 ✓ Prop. 16 ✓ Prop. 18 1280

Table 1. The impact of the PS-3 and BUFF transform on FALCON: Signature target,
signature format, BUFF properties, and signature size (in bytes, for security level V).
✓ indicates that a property holds and ✗ indicates an attack.

Both, the standard notion of existential unforgeability and our proof of the
BUFF security of FALCON-PS-3, make use of the same assumptions as FALCON,
namely, the random oracle model and the same underlying lattice hardness
assumption. Unforgeability of FALCON follows the GPV framework [7] and is
proven in the (Q)ROM and reduces to the SIS problem for NTRU lattices. We
show that unforgeability of FALCON-PS-3 is reduced to unforgeability of FALCON
directly, without requiring additional assumptions, and give the proofs for the
BUFF security of FALCON-PS-3 in the random oracle model (while the original
BUFF transform refers to standard assumptions like collision resistance). For the

2



two weaker variants S-CEO and S-DEO of M-S-UEO and NR we discuss security
in the quantum setting under the quantum random oracle assumption.

In our view, the short signature size of FALCON-PS-3, together with the
fact that the important unforgeability property is not weakened by the PS-3
transform, and that the random oracle assumption for the BUFF properties
appears to be necessary in FALCON anyway, makes FALCON-PS-3 the better
candidate for standardization than FALCON-BUFF.

1.2 Related Work

Aulbach et al. [2] have analyzed the BUFF security of the additional signature
candidates for the NIST standardization process that are based on codes, isoge-
nies, lattices, and multivariate equations. Their analysis considers an exclusive-
ownership flavor called S-UEO, which guarantees exclusive ownership for honestly
generated key pairs and signatures, as well as a weaker version of non-resignability
called wNR. In particular, they observe that the PS-3 transform is sufficient to
secure against S-UEO, MBS, and wNR for many of the alternative candidates,
but not in general. The results regarding FALCON here are inspired by their
analysis.

Recently, Don et al. [6] noted that the original non-resignability notion in
[4] is unachievable if one allows for arbitrary auxiliary data about the unknown
message. The definition is easy to fix by demanding that the auxiliary data
is computationally independent of the message, as already pointed out in the
latest version of [4]. We discuss the different definitions of non-resignability in
Section 2.3.

2 Preliminaries

We briefly introduce our notation, review the syntax and unforgeability of signa-
ture schemes, followed by the BUFF properties and two of the transformations
proposed to achieve (some of) the BUFF properties.

2.1 Notation

We write y ← A(x) for a deterministic algorithm A with input x and output
y, and y ←$ A(x) for the random output y of the probabilistic algorithm A on
input x. Here, the probability is over A’s internal coin tosses. In cryptography,
algorithms usually receive the security parameter in unary, 1n, as additional
input; we often omit this extra input for sake of brevity and write for instance
KGen() instead of KGen(1n). Similarly, when algorithms operate in presence of
an oracle, typically a random oracle H, then we also omit writing oracle access
explicitly and simply write y ←$ A(x) instead of y ←$ AH(x). In particular, if A
is adversarial and quantum, then it has quantum access to the random oracle
H. Yet, algorithms of schemes and protocols proceed classically, such that oracle
access is still classical for such algorithms. Vice versa, the adversary, too, only

3



has classical oracle access to such procedures, e.g., to the signing oracle Sign(sk, ·)
in the unforgeability definition.

We write the concatenation of two strings a and b as a∥b. If we want to
emphasize that encoding of two strings via concatenation is reversible with
context information, e.g., if it is clear that a is of fixed length, then we often
write (a, b) instead of a∥b.

2.2 Syntax and unforgeability

Definition 1 (Signatures). A signature scheme Σ = (KGen, Sign, Verify) with
associated message space M is a triple of three PPT algorithms:

– KGen() $→ (pk, sk) outputs a key pair consisting of a public key pk and a
secret key sk

– Sign(sk, m) $→ σ takes a secret key sk and a message m as input and outputs
a signature σ

– Verify(pk, m, σ)→ d takes a public key pk, a message m, and a signature σ
as input and outputs a decision bit d ∈ {0, 1}. If d = 1 we say the signature
is valid.

A signature scheme Σ is δ-correct, if for every (pk, sk) ← $ KGen() and every
m ∈M it holds that Pr[Verify(pk, m, Sign(sk, m)) = 1] ≥ 1− δ. It is correct if it
is 0-correct.

The conventional security requirement for signature schemes is unforgeability
under chosen message attacks (just unforgeability for short).

Definition 2 (Unforgeability). Let Σ be a signature scheme. We say that Σ
provides existential unforgeability under chosen-message attacks (EUF-CMA) if,
for every PPT algorithm A, there exists a negligible function µ : N → R such
that, for every n ∈ N,

AdvEUF-CMA
Σ,A (n) := Pr[ExpEUF-CMA

Σ,A (n)] ≤ µ(n),

where ExpEUF-CMA
Σ,A (n) is defined on the left-hand side in Figure 1.

2.3 BUFF properties

Exclusive ownership ensures that a signature does not verify messages under
two distinct public keys, where the two messages are identical (constructive EO),
distinct (destructive EO), or arbitrary (universal EO). The prefixes indicate
that the adversary chooses the keys itself (malicious) and does not need to
output a secret key (strong). Note that M-S-UEO implies S-UEO, which in turn
is equivalent to the combination of S-CEO and S-DEO.

4



ExpEUF-CMA
Σ,A (n):

11 : Q ← ∅
12 : (sk, pk)←$ KGen(1n)

13 : (m′, σ′)←$ASign(sk,·)(pk)
14 : d← Verify(pk, m′, σ′)

15 : return
[
d = 1 ∧ m′ /∈ Q

]

Sign(sk, m):

21 : σ ←$ Sign(sk, m)
22 : Q ← Q∪ {m}
23 : return σ

Fig. 1. Definition of the experiment ExpEUF-CMA
Σ,A (n) from Definition 2.

ExpS-CEO
Σ,A (n):

31 : Q ← ∅
32 : (sk, pk)←$ KGen(1n)

33 : (m′, σ′, pk′)←$ASign(sk,·)(pk)
34 : d← Verify(pk′, m′, σ′)

35 : return
[
d = 1 ∧ (m′, σ′) ∈ Q ∧ pk′ ̸= pk

]

Sign(sk, m):

41 : σ ←$ Sign(sk, m)
42 : Q ← Q∪ {(m, σ)}
43 : return σ

ExpS-DEO
Σ,A (n):

51 : Q ← ∅
52 : (sk, pk)←$ KGen(1n)

53 : (m′, σ′, pk′)←$ASign(sk,·)(pk)
54 : d← Verify(pk′, m′, σ′)

55 : return
[
d = 1 ∧

(
∃m∗ ̸= m′ : (m∗, σ′) ∈ Q

)
∧ pk′ ̸= pk

]
Fig. 2. Definition of the experiments ExpS-CEO

Σ,A (n) and ExpS-DEO
Σ,A (n) from Definitions 3

and 4, respectively.

5



Definition 3 (Strong Constructive Exclusive Ownership [4]). Let Σ be
a digital signature scheme. We say that Σ provides strong constructive exclu-
sive ownership (S-CEO) if, for every PPT algorithm A, there exists a negligible
function µ : N→ R such that, for every n ∈ N,

AdvS-CEO
Σ,A (n) := Pr[ExpS-CEO

Σ,A (n)] ≤ µ(n),

where ExpS-CEO
Σ,A (n) is defined on the top in Figure 2.

Definition 4 (Strong Destructive Exclusive Ownership [4]). Let Σ be
a digital signature scheme. We say that Σ provides strong destructive exclu-
sive ownership (S-DEO) if, for every PPT algorithm A, there exists a negligible
function µ : N→ R such that, for every n ∈ N,

AdvS-DEO
Σ,A (n) := Pr[ExpS-DEO

Σ,A (n)] ≤ µ(n),

where ExpS-DEO
Σ,A (n) is defined on the bottom in Figure 2.

ExpM-S-UEO
Σ,A (n):

61 : (m1, m2, σ, pk1, pk2)←$A(1n)
62 : d1 ← Verify(pk1, m1, σ)
63 : d2 ← Verify(pk2, m2, σ)
64 : return [d1 = 1 ∧ d2 = 1
65 : ∧ pk1 ̸= pk2]

ExpMBS
Σ,A(n):

71 : (m1, m2, σ, pk)←$A(1n)
72 : d1 ← Verify(pk, m1, σ)
73 : d2 ← Verify(pk, m2, σ)
74 : return [d1 = 1 ∧ d2 = 1
75 : ∧ m1 ̸= m2]

Fig. 3. Definition of the experiments ExpM-S-UEO
Σ,A (n) and ExpMBS

Σ,A(n) from Definitions 5
and 6, respectively.

Definition 5 (Malicious-Strong Universal Exclusive Ownership [4]). Let Σ
be a digital signature scheme. We say that Σ provides malicious-strong universal
exclusive ownership (M-S-UEO) if, for every PPT algorithm A, there exists a
negligible function µ : N→ R such that, for every n ∈ N,

AdvM-S-UEO
Σ,A (n) := Pr[ExpM-S-UEO

Σ,A (n)] ≤ µ(n),

where ExpM-S-UEO
Σ,A (n) is defined on the left-hand side in Figure 3.

Message-bound signatures ensure that a signature does not verify two mes-
sages under the same public key.

Definition 6 (Message-Bound Signatures [4]). Let Σ be a digital signature
scheme. We say that Σ provides message-bound signatures (MBS) if, for every

6



PPT algorithm A, there exists a negligible function µ : N → R such that, for
every n ∈ N, it holds that

AdvMBS
Σ,A(n) := Pr[ExpMBS

Σ,A(n)] ≤ µ(n),

where ExpMBS
Σ,A(n) is defined on the right-hand side in Figure 3.

The third BUFF property is called non-resignability. Intuitively, it guarantees
the following: Given a signature on an unknown message, an adversary cannot
produce a signature for the same (unknown) message that verifies under a new
public key. This leaves some wiggle room to formalize that an adversary may
have circumstantial knowledge about the message. The original definition of [4]
did this with auxiliary info that has sufficient min-entropy. However, as [6] points
out, this definition is not achievable since the auxiliary info can directly contain
a signature under a fresh key pair. Instead, [6] propose a different formalization
of non-resignability, where message sampling and generation of auxiliary info is
split into two algorithms, where the auxiliary info has to be generated without
access to the random oracle. To circumvent this issue, [2] has proposed a variant
named weak non-resignability (wNR), which does not use any auxiliary info at
all. In Remark 19 we discuss the relation between our new definition and wNR
in more detail.

Since our results are in the random oracle model and in the quantum random
oracle model, we chose to define the notion more directly via unpredictability:

Definition 7 (Unpredictability). For (quantum) random oracle H we say
that a message distribution D is unpredictable with respect to KGen, if for any
algorithm A there exists a negligible function µ : N→ R such that, for every n ∈ N,
it holds that

Advpred
D,H,KGen,A(n) := Pr[Exppred

D,H,KGen,A(n)] ≤ µ(n),

where Exppred
D,H,KGen,A(n) is defined on the left-hand side in Figure 4.

Note that the above definition can be used with both classical as well as
quantum algorithms (with superposition oracle queries), and with efficient and
potentially also unbounded algorithms A. It comes close in spirit to the notion
of unpredictability entropy [8].

As additional tool we need computational indistinguishability of the auxiliary
data (following [5], the updated full version of [4]).

Definition 8 (Computational Independence of auxiliary data). We say
that a message distribution D has computationally independent auxiliary data
with respect to key generator KGen, if for every PPT algorithm A there exists a
negligible function µ : N→ R such that, for every n ∈ N, it holds that

AdvCI-aux
D,H,KGen,A(n) := Pr[ExpCI-aux

D,H,KGen,A(n)]− 1
2 ≤ µ(n),

where ExpCI-aux
D,H,KGen,A(n) is defined on the right-hand side in Figure 4.

7



Exppred
D,H,KGen,A(n):

81 : (pk, sk)←$ KGen(1n)
82 : (m, aux)←$D(pk)
83 : m′ ←$A(pk, sk, aux)

84 : return
[
m = m′]

ExpCI-aux
D,H,KGen,A(n):

91 : (pk, sk)←$ KGen(1n)
92 : b←$ {0, 1}
93 : (m0, aux0)←$D(1n, pk)
94 : (m1, aux1)←$D(1n, pk)

95 : b′ ←$AH(pk, sk, m0, auxb)

96 : return
[
b′ = b

]
Fig. 4. On the left-hand side, the definition of the experiment Exppred

D,H,KGen,A(n) from
Definition 7, on the right-hand side, the definition of the experiment ExpCI-aux

D,H,KGen,A(n)
from Definition 8.

Definition 9 (Non-Resignability). Let Σ be a digital signature scheme. We
say that Σ is non-resignable (NR) if, for every PPT algorithms A and D, where
D is unpredictable with computationally-independent auxiliary data for KGen,
there exists a negligible function µ : N → R such that, for every n ∈ N, it holds
that

AdvNR
Σ,A,D(n) := Pr[ExpNR

Σ,A,D(n)] ≤ µ(n),

where ExpNR
Σ,A,D(n) is defined in Figure 5.

ExpNR
Σ,A,D(n):

101 : (pk, sk)←$ KGen(1n)
102 : (m, aux)←$D(1n, pk)
103 : σ ←$ Sign(sk, m)
104 : (σ′, pk′)←$A(pk, σ, aux)
105 : d← Verify(pk′, m, σ′)

106 : return
[
d = 1 ∧ pk′ ̸= pk

]
Fig. 5. The definition of the experiment ExpNR

Σ,A,D(n) from Definition 9.

2.4 Transformations

We briefly review the BUFF transformation and the PS-3 transformation with
the help of Figure 6: Based on a signature scheme Σ and a hash function H, we
change the signing and verification algorithms as follows: Signing first computes
a hash digest of the message and the public key, which it then signs with the
original scheme. It returns the signature and — only for the BUFF transformation

— also the hash digest. Verification unwraps the signature, re-computes the hash

8



KGen∗(1n):

11 : (sk, pk)←$ KGen(1n)
12 : return (sk, pk)

Sign∗(sk, m):

21 : h← H(m, pk)
22 : σ ←$ Sign(sk, h)

23 : σ∗ ← (σ, h )
24 : return σ∗

Verify∗(pk, m, σ∗):

31 : (σ̂, ĥ )← σ∗

32 : h← H(m, pk)
33 : d← Verify(pk, h, σ̂)

34 : return
[
d = 1 ∧ ĥ = h

]
Fig. 6. Applying the BUFF [4] or PS-3 [15] transformation to a signature scheme Σ =
(KGen, Sign, Verify) with a hash function H, yielding a transformed signature scheme
Σ∗ = (KGen∗, Sign∗, Verify∗). Boxed lines are exclusive to the BUFF transformation.

digest, and verifies the signature with the original verification algorithm for the
digest as message. For the BUFF transformation, verification additionally checks
that the re-computed digest and the digest in the signature match.

Many signatures schemes, e.g., FALCON, begin the signing procedure with
hashing the message (possibly together with some other input). We can combine
this hash function call with the hash function call of the transformation (shown
in line 21 of Figure 6), yielding a more compact notation.

3 Description of FALCON and its Transforms

FALCON is a lattice-based signature scheme over NTRU that makes use of the
GPV framework [7]. Figure 7 provides an algorithmic description of FALCON
and its transformed variants, following the exposition of [4]. The public keys and
all values that appear in arithmetic operations in FALCON are polynomials in
Z[x]/(q, ϕ), where ϕ is a polynomial of degree n and with q = 12 289. The values
are chosen such that addition and multiplication in Z[x]/(q, ϕ) correspond to
addition and multiplication in Zn

q , so we use these two rings interchangeably,
often without explicitly mentioning the isomorphism. FALCON comes with two
parameter sets. For our purpose, the parameters we require are n = 512, 1024
and β which is given respectively as ⌊β⌋2 = 34 034 726 and β2 = 70 265 242.
Rounding up, we set β to be 5834 and 8383, respectively, which is sufficient for
us.

To create a signature, we compute a target value c and use the trapdoor in the
secret key to compute a short vector s that defines a lattice point which is close
to c. The bound is for the resulting size is given by β. Verification recomputes
the target c and checks that the element s in the signature is short and its
corresponding lattice point is close to c. For further information on how these
algorithms (and the subroutines FalconTree, NTRUGen, FFT, and FFSampling)
work we refer the reader to [4] or [16].

It is worth noting that the hashing computation H, called HashToPoint in
[16], is via iterations of SHAKE-256 and outputs values from Zn

q . To this end,
the hashing algorithm first hashes the entire input string via the injection proce-
dure of SHAKE and then iteratively extracts values cj ∈ Zq via the extraction

9



KGen(1n)

11 : (f, g, F, G)←$ NTRUGen(ϕ, q)

12 : B←
[

g − f
G − F

]
13 : B̂← FFT(B)

14 : T ← FalconTree(B̂)

15 : sk← (B̂, T )
16 : h← gf−1

17 : pk← h

18 : return (sk, pk)

Sign(sk, pk, m)

21 : h← pk
22 : (B̂, T )← sk
23 : r ←$ {0, 1}320

24 : c← H(r∥m) // FALCON

c← H(r∥h∥m) // FALCON-PS-3

25 : t← (FFT(c), FFT(0)) · B̂−1

26 : s←$ FFSampling(t, T, ⌊β2⌋)
27 : (s1, s2)← FFT−1(s)
28 : s← Compress(s2)
29 : σ ← (r, s)
30 : return σ

Verify(pk, m, σ)

31 : h← pk
32 : (r, s)← σ

33 : c← H(r∥m) // FALCON

c← H(r∥h∥m) // FALCON-PS-3

34 : s2 ← Decompress(s)
35 : s1 ← c− s2h

36 : return
[
∥(s1, s2)∥2 ≤ ⌊β2⌋

]

Fig. 7. Algorithmic description of FALCON and FALCON-PS-3 .

procedure of SHAKE to create each entry in the final output c =
∑

cjxj ∈ Zn
q .

For each scalar cj the algorithm repeatedly extracts the next 16 bits output from
SHAKE, views it as an integer t, checks that t < kq for k = ⌊k/216⌋ and, if so,
sets cj ← t mod q. This means that, if one assumes that SHAKE behaves like an
extendable-output random oracle, that the output value c is uniform. We may
thus assume that H behaves like a random oracle.

Regarding the encoding of values, we assume that h = pk is of fixed length
(for given n) and that keys for the different security parameters n = 512 and
n = 1024 are differently encoded in the sense that one cannot be the prefix of
the other one. This is indeed the case in FALCON, as public keys start with
a header byte 0000k1k2k3k4 where bits k1 . . . k4 encode log2 n ∈ {9, 10}. This
ensures in our case that hashing r∥h∥m for fixed-length r can never coincide
with encodings with other nonces r′, public keys h′, and messages m′. We also

10



note that signatures σ in Falcon are encoded in such a way that the entries r, s
are recoverable; we thus simply describe signatures here as tuples σ = (r, s).

Looking at the original scheme FALCON, the scheme after applying the PS-3,
called FALCON-PS-3, and the scheme after applying the BUFF transform, called
FALCON-BUFF, we notice the following differences: After applying either trans-
form, the target c additionally depends on the public key (see lines 24 and 33).
FALCON-BUFF additionally carries a hash digest of r∥pk∥m in the signature
and checks the re-computed digest during verification (not depicted in the figure,
would affect lines 29, 32, 33). We can use the first 512 bits squeezed from SHAKE-
256 as digest to sidestep including the complete output c of HashToPoint, which
is of size approximately n log q (corresponding to roughly 6900 bits for n = 512
or 13800 bits for n = 1024), in the signature.

4 Analysis of FALCON-PS-3

We first show that FALCON-PS-3 retains unforgeability of FALCON.

Proposition 10 (Unforgeability). Assuming FALCON is unforgeable, then the
advantage of an adversary A against EUF-CMA of FALCON-PS-3 is at most

AdvEUF-CMA
FALCON-PS-3,A(n) ≤ AdvEUF-CMA

FALCON,B(n).

for some adversary B where B runs in approximately the same time as A.

Proof. We construct an adversary B against FALCON from an adversary A
against FALCON-PS-3 as follows: The reduction B is started with a public key
pk = h as input, which it passes on to A. For any signature query mi of A, the
reduction queries h∥mi, i.e., the public key concatenated with the message, to its
own signing oracle. Hence, the signing oracle computes the target c as H(r∥h∥mi).
This results in a valid signature for mi under FALCON-PS-3 and a valid signature
for h∥mi under FALCON. Once A returns a message and signature (m∗, σ∗) as
forgery, the reduction outputs (h∥m∗, σ∗). If σ∗ verifies m∗ under FALCON-PS-3,
it also verifies h∥m∗ under FALCON and if m∗ has not been signed in A’s simu-
lation before, then neither has h∥m∗ in B’s attack. Hence, the reduction wins if
A wins. ⊓⊔

Preparation for BUFF security of FALCON-PS-3. To analyze the BUFF
security of FALCON-PS-3, we introduce some notation and give some probability
estimations that are useful in the proofs later.

Let R > 0 be some bound. We define SR := {x ∈ Z[x]/(q, ϕ) | ∥x∥ ≤ R}
as the set of elements from Z[x]/(q, ϕ) of norm at most R and sR := #SR the
cardinality of this set. On the other hand, we set B(R) := {x ∈ Rn | ∥x∥ < R} to
be the Euclidean ball of elements from Rn of norm less than R. We let vol(B(R))
denote the volume of this ball.

We begin by estimating the probability of a randomly chosen element from
Z[x]/(q, ϕ) to lie in the set SR of such elements with some norm bound.

11



Lemma 11. Let R +
√

n
2 ≤ q and n = 2k. Then, for uniformly random c ∈

Z[x]/(q, ϕ), we have

Pr[c ∈ SR] < 2(5−k) n
2

(
R +

√
n

2
q

)n

≤ 2(5−k) n
2 .

Proof. First, we can estimate the number of elements of SR as

sR ≤ vol
(

B(R +
√

n
2 )
)

.

Indeed, let Hx be the n-dimensional hypercube with edge length 1 centered at
x. Note, vol(Hx) = 1. Further, for x ̸= y ∈ Zn, we have Hx ∩Hy = ∅. Finally,
note that the diameter of any Hx is

√
n so that the maximum distance of x to

any element of Hx is less than
√

n
2 . Therefore,

⋃
x∈SR

Hx ⊆ B(R +
√

n
2 ). Using

these facts, we have

sR =
∑

x∈SR

vol(Hx) ≤ vol
(

B(R +
√

n
2 )
)

.

The formula for the volume of a ball of radius R +
√

n
2 in dimension n is given

by

vol
(

B(R +
√

n
2 )
)

= πn/2

Γ
(

n
2 + 1

) (R +
√

n

2

)n

.

Here, Γ is Euler’s Gamma function, which we bound using Stirling’s formula3 to
get

Γ
(n

2 + 1
)

>
√

πn( n
2e )n/2.

For n = 2k we get, using π, e < 4,

πn/2

Γ
(

n
2 + 1

) <
π(n−1)/2

n1/2

(
2e

n

)n/2
< 2n−1− k

2 +(3−k) n
2 < 2(5−k) n

2 .

Thus, we have

sR < 2(5−k) n
2

(
R +

√
n

2

)n

.

Assuming R +
√

n
2 ≤ q, we have

Pr[c ∈ SR] = sR

qn
< 2(5−k) n

2

(
R +

√
n

2
q

)n

≤ 2(5−k) n
2

as was claimed. ⊓⊔

Table 2 illustrates this probability for all security levels of FALCON using the
estimation of Lemma 11.
3 Here, Γ (m + 1) >

√
2πm

(
m
e

)m
e1/(12m+1) ≥

√
2πm

(
m
e

)m

12



Parameter level I level V

n 512 1024
β 5834 8383
q 12289 12289

Pr[c ∈ SR] < 2−1024 < 2−2560

Table 2. The table shows the FALCON parameters relevant for the BUFF analysis of
FALCON-PS-3 for n = 512 = 29 and n = 1024 = 210. Additionally, the row Pr[c ∈ SR]
gives an upper bound on the probability of a random element being of some size ≤ R,
as long as R +

√
n

2 ≤ q, using the estimation of Lemma 11.

For M-S-UEO and MBS, an adversary is required to find two messages that
are verified with the same signature. This translates to the situation where two
uniformly random c1, c2 are close to a certain lattice, which we define now.

Associated to a pair h1, h2 ∈ Z[x]/(q, ϕ) that play the role of public keys, we
define the lattice Λh1,h2 by

{(zh1, zh2) | z ∈ Z[x]/(q, ϕ)}.

It is important to note that Λh1,h2 is a lattice of rank n in the Euclidean space
of dimension 2n.

The bound R =
√

2β in the following statement will be used in the proof of
the Propositions 14 and 17 below. Namely, one signature (r, s) for public keys
h1 and h2 defines an element (sh1, sh2) ∈ Λh1,h2 . The condition that two values
c1, c2 computed as hashes of random salt, public key, and message verify under
the signature, implies that c = (c1, c2) is close to Λh1,h2 within the distance

√
2β.

In these two security games M-S-UEO and MBS, h1 ̸= h2 or m1 ̸= m2,
respectively, for successful attacks, so that the values cℓ = H(r∥hℓ∥mℓ) for ℓ ∈
{1, 2} are independent and uniformly random in either case. We continue by
estimating the probability that the bound

√
2β is satisfied for a randomly chosen

pair c = (c1, c2).

Lemma 12. For any h1, h2 and uniformly random c = (c1, c2) with ci ∈ Z[x]/(q, ϕ),
and
√

2β +
√

n
2 < q, we have

Pr
[
dist (Λh1,h2 , c) ≤

√
2β
]

< 2(5−k) n
2 ,

where dist(Λh1,h2 , c) is the shortest distance of c to any element of Λh1,h2 .

Note that
√

2β +
√

n
2 < q applies for either parameter set of FALCON.

Proof. Up to rotation, we may assume that Λh1,h2 ⊆ Rn × {0}, as the rank
of Λh1,h2 is n. Note also that a rotation does not change the norm, nor the
distribution of the random points, nor the number of elements in the standard
lattice that satisfy some bound R. For the distance, we then have dist(Λh1,h2 , c) ≥

13



∥c2∥, since it suffices to measure the distance of the second component from the
rotated-to-0 point. Hence,

Pr
[
dist (Λh1,h2 , c) ≤

√
2β
]
≤ Pr

[
∥c2∥ ≤

√
2β
]
.

It thus suffices to bound the right hand side, where we are in the situation of
Lemma 11 with R =

√
2β. Using Lemma 11, we have

Pr
[
dist (Λh1,h2 , c) ≤

√
2β
]
≤ Pr

[
∥c2∥ ≤

√
2β
]

< 2(5−k) n
2

(√
2β +

√
n

2
q

)n

≤ 2(5−k) n
2 ,

as was claimed. ⊓⊔

The proof of the lemma can been seen as a bound to estimate the probability
that two random hash values can be matched to a single signature. But the
lemma reveals another useful property which we will take advantage of later:
For any given h1, h2 and any (sufficiently close) given c1, the probability that a
random c2 is close to the lattice is small. This can be seen as a bound to estimate
that, for a given valid signature, another independent hash value most likely
cannot be matched to this signature (or even to an adapted one for a different
value s′):

Corollary 13. For any h1, h2 and any c1 with ∥c1 − sh1∥ ≤ β for some s ∈
Z[x]/(q, ϕ), for uniformly random c2 from Z[x]/(q, ϕ), and

√
2β +

√
n

2 < q, we
have

Pr
[
dist (Λh1,h2 , (c1, c2)) ≤

√
2β
]

< 2(5−k) n
2 .

Proof. Rotate the lattice Λh1,h2 as in the proof of the lemma to Rn × {0} and
note that we bound the probability of a short distance via the probability of a
small norm of the random c2, Pr

[
∥c2∥ ≤

√
2β
]
. ⊓⊔

M-S-UEO security of FALCON-PS-3. We can now show the M-S-UEO security
of FALCON-PS-3.

Proposition 14 (M-S-UEO). Assuming H is a random oracle, for any adversary
A against M-S-UEO security of FALCON-PS-3 that makes qH queries to the
random oracle, the advantage satisfies

AdvM-S-UEO
FALCON-PS-3,A(n) ≤ (qH + 2)2 · 2(5−k) n

2 .

For the two parameter sets of FALCON, the bounds are thus (qH + 2)2 · 2−1024 for
security level I and (qH + 2)2 · 2−2560 for security level V, respectively.

14



Proof. We assume that the adversary queries the hash function about its two
signature output values before terminating; if not we first make these two queries,
increasing the number from qH to at most qH + 2 random oracle queries. In total,
the adversary makes qH + 2 queries of the form (ri, hi, mi), where ri is a random
salt, hi ∈ Z[x]/(q, ϕ) is a public key, and mi is a message, to receive uniformly
random ci. An output (hi, hj , mi, mj , (ri, s)) of an adversary against M-S-UEO
can be valid, only if hi ̸= hj , ri = rj , and there exists an s ∈ Z[x]/(q, ϕ) with
∥(cℓ − shℓ, s)∥ ≤ β for ℓ ∈ i, j.

We show that with overwhelming probability, no such s exists. Thus, the
advantage of the adversary is in the first place bounded by its chance to find
an instance of (ri, mi, hi) and (rj , mj , hj) such that for the resulting ci and cj ,
there exists a single s that validates both ci under hi and cj under hj .4

First, note that ∥(cℓ − shℓ, s)∥ ≤ β implies that ∥(ci − shi, cj − shj)∥ ≤
√

2β.
In other words,

dist(Λhi,hj , (ci, cj)) ≤
√

2β.

As ci, cj ∈ Z[x]/(q, ϕ) are uniformly random, we apply Lemma 12 to see that
the probability that this happens is bounded from above by 2(5−k) n

2 . As there
are (less than) (qH + 2)2 pairs of distinct public keys, which can be tested by the
adversary, we have the claimed result. ⊓⊔

S-CEO and S-DEO of FALCON-PS-3 for Quantum Random Oracles. We
can lift the above lower bound to the quantum case as well, exploiting known
lower bounds for searching unstructured databases. But instead of showing the
stronger notion of M-S-UEO we will revert to S-CEO and S-DEO. Assume that the
adversary has made all qSign classical signature queries for the S-CEO or S-DEO
attack upfront, resulting in signatures σi = (ri, si) for messages mi. Making
signature queries later can only decrease the adversary’s success probability, as
it limits the number of valid entries in the database. Define the function f(h′)
for S-CEO (resp. f(h′, m′) for S-DEO for some bounded message length, e.g.,
given through the run time of the adversary in question) to be 1 if there exists
i ∈ {1, 2, . . . , qSign} such that applying H(ri∥h′∥mi) resp. H(ri∥h′∥m′) yields a
valid signature with sufficiently small s′

i,1 ← c′
i − si,2h′ (and where, on top,

m′ ̸= mi for S-DEO). Then, the goal of the adversary in the quantum random
oracle model is to find an input h′ resp. (h′, m′) making f evaluate to 1.

Note that for any fixed signature σi with hash value ci = H(ri∥h∥mi), the
hash value c′ = H(ri∥h′∥mi) (resp. c′ = H(ri∥h′∥m′) for S-DEO) is uniformly
and independently distributed, if keys h, h′ are different. Therefore, for each
input h′ resp. h′, m′ to function f the associated hash value c′ allows for a valid
signature under both keys with probability at most 2(5−k)n/2 by Corollary 13.
4 If such an s exists, then the adversary indeed may have a good chance to mount

a successful attack: the public keys may be chosen so that a trapdoor of Λhi,hj is
known, and if a solution exists, the trapdoor may allow to compute a solution. The
proof shows that under the randomness of the hash function, which the adversary
cannot control, it is infeasible to find such instances in the first place.

15



Put differently, for each fixed signature there is a fraction of at most 2(5−k)n/2

challenges making f evaluate to 1. The number qSign of signatures increases this
number by a factor qSign.

We finally need to relate the number of bad hash values to the number of bad
inputs. Here, bad values refer to values which lead to a sufficiently small hash
value. Let H be the size of the hash space, and N be the size of the input space
of h′ resp. h′, m′. Note that for S-CEO the two sizes coincide because both public
keys as well as hashes are from Z[x]/(q, ϕ). For S-DEO, however, N is larger and
we need to estimate how many inputs may hit a bad hash value. Observe that
for each h′, m′ the hash value is independently distributed and hits a bad hash
value with probability at most qSign · 2(5−k)n/2. Then the probability that all N
inputs h′, m′ hit twice as often such bad hash values is by the Chernoff bound5

at most exp(−pN/3), where p = qSign · 2(5−k)n/2. Hence, except with this double-
exponentially small probability, we can assume (in both cases) that the number
of inputs h′ resp. h′, m′ hitting a bad hash value is at most 2qSign · 2(5−k)n/2.
Furthermore, valid solutions are located at random positions by the randomness
of H.

We can now apply the lower bound of Boyer et al. [3] for search algorithms.
This bound states that, if there are t solutions with f(x) = 1, then the expected
number of oracle evaluations of f to find a valid input x with probability ϵ, is
at least Ω(

√
ϵN/t) for the search space N . In our case we have N describe the

cardinality of the set of admissible inputs h′ resp. h′, m′, with f having at most
t ≤ 2qSign · 2(5−k)n/2 ·N inputs evaluating to 1, except with exponentially small
probability.

Proposition 15 (S-CEO and S-DEO for Quantum Random Oracles). If
we assume that H is a quantum random oracle, then the probability of a quantum
adversary breaking S-CEO (resp. S-DEO) for FALCON-PS-3 with qH superposition
random oracle queries and at most qSign classical signature queries is at most

AdvS-CEO
FALCON-PS-3,A(A), AdvS-DEO

FALCON-PS-3,A(n) ≤ O
(

q2
H · qSign · 2(k−5)n/2

)
.

For the two parameter sets of FALCON, the bounds are thus O
(
q2

H · qSign · 2−1024)
for security level I and O

(
q2

H · qSign · 2−2560) for security level V, respectively,
with small constants in the O-notation.

Proof. Assume that the hash function H behaves well in the sense that the
number of possible solutions t in the algorithm of Boyer et al. [3] is bounded by
t ≤ 2qSign · 2(5−k)n/2 ·N , where N ≥ qn. The probability that this does not hold
is at most

exp
(
−qSign · 2(k−5)n/2 ·N/3

)
≤ O

(
qSign · 2(k−5)n/2

)
,

5 For k independent Bernoulli variables Xi with Pr[Xi] = p and δ ∈ (0, 1] it holds
Pr
[∑

Xi ≥ (1 + δ)pk
]
≤ exp(−δ2pk/3).

16



where we used a very generous estimate for the upper bound. If this is not the
case, then we get an upper bound for the advantage ϵ of the adversary via the
lower bound for the number of oracle queries:

q2
H ≥ Ω

(
ϵ · qSign · 2(k−5)n/2

)
.

We therefore get for the adversary’s success probability that, either H is not
well-balanced with probability at most O

(
qSign · 2(k−5)n/2), or if it is, then ϵ ≤

O
(
q2

H · qSign · 2(k−5)n/2) by the search lower bound. Putting the two bounds
together and subsuming the constants in the O-notation we derive the claim. ⊓⊔

MBS security of FALCON-PS-3. The MBS security of FALCON-PS-3 trans-
lates immediately to the MBS security of FALCON, if one views the additional
input h to the hashing step as part of the message m′ = h∥m. Note that near-
collision resistance is a standard model assumption, so that the following result
applies to quantum adversaries.

Proposition 16 (MBS). Assuming near-collision resistance (cf. [4, Assumption
V.2]) of the hash function H, FALCON-PS-3 satisfies MBS.

Using Lemma 11 we can give another proof of MBS which does not use the
near-collision resistance assumption, but is in the random oracle model instead.

Proposition 17 (MBS, Random Oracle Version). Assuming H is a random
oracle, for any adversary A that makes qH queries to the random oracle, we have

AdvMBS
FALCON-PS-3,A(n) ≤ (qH + 2)2 · 2(5−k) n

2 .

Proof. We set Λh,h the rank n lattice in R2n as defined in earlier. If (pk, m1, m2, σ)
with h ← pk, (r, s) ← σ, is a successful attack against MBS of FALCON-PS-3,
by setting cℓ = H(r∥h∥mℓ) for ℓ ∈ {1, 2}, we find that dist(Λh,h, (c1, c2)) ≤

√
2β.

Note that as m1 ̸= m2, the values c1 and c2 are independent and uniformly
random. By Lemma 12, the probability that dist(Λh,h, (c1, c2)) ≤

√
2β holds is

less than 2(5−k) n
2 .

Now, let A be an adversary making qH queries. By increasing this value by 2,
we may assume that A has queried r∥h∥m1 and r∥h∥m2, where (h, m1, m2, (r, s))
is its final output. We let rℓ∥hℓ∥mℓ denote all queries of A with hash values cℓ.
Then, any ci and cj can only be part of a successful MBS attack if hi = hj ,
ri = rj , and mi ̸= mj . Note that then ci and cj are independent and uniformly
random. As there are at most (qH + 2)2 such pairs, and for each the probability
that there exists a valid s is bounded as shown above, we conclude the result. ⊓⊔

NR security of FALCON-PS-3. Finally we show that FALCON-PS-3 satisfies
non-resignability in the random oracle model, as long as the challenge sampler
D in the game produces an output (m, aux)←$D(pk) where the message part m
is unpredictable, given aux and the key pair. We note that the NR property can

17



be shown along the lines of [6] since the hash value H(r∥h∥m) in FALCON-PS-3
is salted. However, the security proof in [6] in the ROM and QROM does not
consider auxiliary data and is carried out indirectly via non-malleability. The
former can be patched via computationally indistinguishability, and we can give
a more direct proof without having to revert to non-malleability. We outline this
in the classical ROM setting:

Proposition 18 (Non-Resignability). Assuming H is a random oracle, the
probability of an adversary (A,D), where D is unpredictable with computationally-
independent auxiliary data with respect to KGen of FALCON-PS-3, making at most
qD random oracle queries, breaking NR of FALCON-PS-3 with qH random oracle
queries is at most

AdvNR
FALCON-PS-3,A,D(n) ≤ 2 ·AdvCI-aux

D,H,KGen,B(n) + (qH + qD) ·Advpred
D,H,KGen,C(n)

+ (qH + qD)2(5−k) n
2 .

where B and C have roughly the same running time as A.

Proof. An attacker against NR of FALCON-PS-3 is given a public key pk, a
signature σ ← (r, s) that verifies under this public key pk for a message m
(that is supposedly largely unknown to the attacker), as well as circumstantial
knowledge aux about the message. We argue that it is infeasible for an adversary,
given σ, pk, and aux to find a public key pk′ and a signature σ′ which verifies
for the message m.

We proceed via game hopping. Let Game0 be the original attack of A against
the scheme. We denote by Pr[Gamei] the probability that the ith game returns
1. In particular, Pr[Game0] then denotes A’s success probability in the attack.

In the hop to game Game1 we simply let the game execute another sampling
step for distribution D for the given public key pk. For sake of distinction we
denote this sampling step as (m, aux) ←$ D(pk), although D is the same algo-
rithm as D. The rest of the game remains unchanged. It obviously follows that
Pr[Game0] = Pr[Game1].

In the hop to game Game2 we replace the auxiliary information aux when
runningA in Game1 by the sample aux picked independently as (m, aux)←$D(pk)
in the extra sampling step introduced in the previous game. That is, in Game2
we measure the probability of A winning the NR experiment when receiving aux
instead of aux. By the computational indistinguishability this cannot decrease
the success probability significantly. Specifically, we can build an adversary B
against the indistinguishability of the sampler D running the entire experiment
for the given input data (m, auxb) where auxb = aux or auxb = aux. In particular,
algorithm B receives the key pair (pk, sk) according to the scheme and the
challenger’s input (m, auxb), creates a signature σ for m with sk, and runs A
on input (pk, σ, auxb). All oracle queries of A to H are forwarded to B’s oracle
H. Eventually, B verifies if A succeeded in the non-resignability game. This is
possible since B knows the message m.

If auxb = aux then the simulation of B corresponds to Game1. If auxb = aux
then it corresponds to Game2. Taking into account a factor of 2 for switching to

18



a guessing experiment we obtain:

Pr[Game1] ≤ Pr[Game2] + 2 ·AdvCI-aux
D,H,KGen,B(n).

In the third hop to Game3 we declare A to lose if it ever makes a random
oracle query to H about the message ∗∥∗∥m sampled by the challenger D in game
Game2, or if D does so when sampling the independent value (m, aux) in the
second execution. We remark that we can recover the message part form a query
to H via the expected encoding of sound queries, i.e., expecting a leading nonce
of 320 bits and fixed-length encoding of the key. We can bound the probability of
A or D making such a query in Game2 by the (un)predictability of the sampler
D(pk). For this we construct a predictor C(pk, sk, aux), receiving a key pair
(pk, sk) generated by KGen and auxiliary data aux generated by D(pk), but not
the message m. We let C first pick an index i between 1 and qH + qD at the
beginning. Then C samples (m, aux)←$D(pk) according to the game to create
some auxiliary input, forwarding random oracle queries of D to its own oracle.
Next, it generates a challenge signature σ with the help of the input sk, but
using a random c instead of the actual hash value H(r∥pk∥m) for the unknown
message m. It finally runs A on input (pk, σ, aux), relaying random oracle queries
of A to its own random oracle. In both simulations, if either D or A makes the
ith query ∗∥ ∗ ∥mi to the random oracle, counting queries of both algorithms
together, algorithm C outputs the message-entry mi in this query as a prediction.

Note that the probability of D or A making a query about m to H in Game2
is identical to the one in Game3 up to the point where D or A makes such a
query (and possibly spots that c used in the simulated signature does not match
the correct H-value). Therefore, algorithm C guesses the first of such queries (if
it exists) with probability 1/(qH + qD) and in this case predicts m correctly if
D or A would pose such a query. We can thus bound this event from above by
(qH + qD) ·Advpred

D,H,KGen,C(n). It follows that

Pr[Game2] ≤ Pr[Game3] + (qH + qD) ·Advpred
D,H,KGen,C(n).

Note that now adversary A loses if it queries the random oracle H about input
∗∥ ∗ ∥m according to Game3, and aux is independently distributed of H(∗∥ ∗ ∥m)
since D never makes a query about m to its random oracle. Furthermore, in
FALCON-PS-3, key generation does not query the random oracle to compute
the key pair (pk, sk). Thus, the only information about hash values involving
m is (implicitly) via the challenge signature σ but for public key pk = h, i.e.,
about H(r∥pk∥m). Yet, the adversary needs to succeed for a different public key
pk′ = h′ ≠ pk = h. Hence, we can imagine to sample the hash value H(r′∥pk′∥m)
for verifying A’s signature σ′ = (r′, s′) for the public key pk′ = h′ only after
A has output the values pk′, σ′. As c′ = H(r′∥pk′∥m) is uniformly distributed,
the same holds for c′ − s′h′ with s′ and h′ being determined. By Lemma 11, the
probability that the norm of c′ − s′h′ is bounded by β is less than 2(5−k) n

2 . This
shows the proposition. ⊓⊔

19



Remark 19. Note that the first game hops in the proof of Proposition 18 are not
tied to FALCON-PS-3 in particular. Rather, equivalence of wNR without auxiliary
data, as formalized in [2], and NR with computationally-independent auxiliary
data appears to hold for any signature scheme. Moreover, this remains true for
the quantum setting, where the potential distinguisher B has quantum access
to the random oracle, then we merely need to work with a notion of quantum
indistinguishability.

Then, observe that in the classical setting the fact that neither the message
sampler D nor the adversary A queries the random oracle about the unknown
message, due to unpredictability, does not use specifics of FALCON-PS-3, but
also holds in general.

In FALCON-PS-3 the first game hops allow us to conclude that the adversary
produces an output which is independent of the hash value of m, also because key
generation in FALCON-PS-3 does not query the random oracle at all. A technical
trick for general schemes, where KGen calls the random oracle, could resolve this
part as well: One may formally put all hash queries made during key generation
into the secret key sk, and then let our guessing adversary C —receiving sk as
input— also potentially pick from this query list, such that one can conclude
that key generation neither queries about m.

5 Conclusion

Our analysis shows that, under reasonable assumptions about the hash func-
tion, for FALCON it suffices to apply the PS-3 transform to achieve all beyond-
unforgeability features. In comparison to the full BUFF transform, the PS-3
transform does not increase the signature size. From our point of view, this
suggests to consider FALCON-PS-3 as a preferred candidate for standardization
of a BUFFed version of FALCON.

6 Acknowledgements

S.D. was funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 –
236615297. R.F. was supported by the German Federal Ministry of Education
and Research and the Hessian Ministry of Higher Education, Research, Science
and the Arts within their joint support of the National Research Center for
Applied Cybersecurity ATHENE. Finally, S.D. is thankful to Patrick Struck for
his helpful comments on early versions of this work.

References

1. Gorjan Alagic, David Cooper, Quynh Dang, Thinh Dang, John M. Kelsey, Jacob
Lichtinger, Yi-Kai Liu, Carl A. Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, and Daniel Apon. Status report on the third
round of the nist post-quantum cryptography standardization process, 07 2022. 1

20



2. Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, and Maximiliane
Weishäupl. Hash your keys before signing: Buff security of the additional nist pqc
signatures. Cryptology ePrint Archive, Paper 2024/591, 2024. https://eprint.
iacr.org/2024/591. 3, 7, 20

3. Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on
quantum searching. Fortschritte der Physik, 46(4–5):493–505, June 1998. 16

4. Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson.
Buffing signature schemes beyond unforgeability and the case of post-quantum
signatures. In 2021 IEEE Symposium on Security and Privacy (SP), 2021. 1, 2, 3,
6, 7, 9, 17

5. Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson.
Buffing signature schemes beyond unforgeability and the case of post-quantum
signatures. Cryptology ePrint Archive, Paper 2020/1525, 2023. https://eprint.
iacr.org/2020/1525, version 1.4. 7

6. Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck. On the (in)security
of the buff transform. Cryptology ePrint Archive, Paper 2023/1634, 2023. https:
//eprint.iacr.org/2023/1634. 3, 7, 18

7. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008. 2, 9

8. Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational
entropy, or toward separating pseudoentropy from compressibility. In Moni Naor,
editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 169–186. Springer, Hei-
delberg, May 2007. 7

9. Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rech-
berger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Wester-
baan, and Ward Beullens. SPHINCS+. Technical report, National Institute of
Standards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022. 1

10. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM.
Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. 1

11. NIST. Post-quantum cryptography. https://csrc.nist.gov/projects/
post-quantum-cryptography-standardization, 01 2017. 1

12. NIST. Call for additional digital signature schemes for the post-quantum cryptog-
raphy standardization process, 09 2022. 1

13. NIST. Module-lattice-based digital signature standard, August 2023. FIPS 204
(draft). https://doi.org/10.6028/NIST.FIPS.204.ipd. 1

14. NIST. Stateless hash-based digital signature standard, August 2023. FIPS 205
(draft). https://doi.org/10.6028/NIST.FIPS.205.ipd. 1

15. Thomas Pornin and Julien P. Stern. Digital signatures do not guarantee exclusive
ownership. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS
05, volume 3531 of LNCS, pages 138–150. Springer, Heidelberg, June 2005. 1, 2, 9

16. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,

21

https://eprint.iacr.org/2024/591
https://eprint.iacr.org/2024/591
https://eprint.iacr.org/2020/1525
https://eprint.iacr.org/2020/1525
https://eprint.iacr.org/2023/1634
https://eprint.iacr.org/2023/1634
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography-standardization
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd


and Zhenfei Zhang. FALCON. Technical report, National Institute of Stan-
dards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022. 1, 9

22

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	BUFFing FALCON without Increasing the Signature Size
	Introduction
	BUFFing FALCON Directly
	Related Work

	Preliminaries
	Notation
	Syntax and unforgeability
	BUFF properties
	Transformations

	Description of FALCON and its Transforms
	Analysis of FALCON-PS-3
	Conclusion
	Acknowledgements
	References


