
An Efficient and Extensible Zero-knowledge Proof Framework
for Neural Networks

Tao Lu

lutao2020@zju.edu.cn

Zhejiang University

Haoyu Wang

whaoyu@zju.edu.cn

Zhejiang University

Wenjie Qu

wenjiequ@u.nus.edu

National University of Singapore

Zonghui Wang

zhwang@zju.edu.cn

Zhejiang University

Jinye He

jin-yehe@outlook.com

National University of Singapore

Tianyang Tao

tianyangtao@u.nus.edu

National University of Singapore

Wenzhi Chen

chenwz@zju.edu.cn

Zhejiang University

Jiaheng Zhang

jhzhang@nus.edu.sg

National University of Singapore

ABSTRACT
In recent years, cloud vendors have started to supply paid services

for data analysis by providing interfaces of their well-trained neural

network models. However, customers lack tools to verify whether

outcomes supplied by cloud vendors are correct inferences from

particular models, in the face of lazy or malicious vendors. The cryp-

tographic primitive called zero-knowledge proof (ZKP) addresses

this problem. It enables the outcomes to be verifiable without leak-

ing information about the models. Unfortunately, existing ZKP

schemes for neural networks have high computational overheads,

especially for the non-linear layers in neural networks.

In this paper, we propose an efficient and extensible ZKP frame-

work for neural networks. Our work improves the performance

of the proofs for non-linear layers. Compared to previous works

relying on the technology of bit decomposition, we convert com-

plex non-linear relations into range and exponent relations, which

significantly reduces the number of constraints required to prove

non-linear layers. Moreover, we adopt a modular design to make

our framework compatible with more neural networks. Specifically,

we propose two enhanced range and lookup proofs as basic blocks.

They are efficient in proving the satisfaction of range and exponent

relations. Then, we constrain the correct calculation of primitive

non-linear operations using a small number of range and exponent

relations. Finally, we build our ZKP framework from the primitive

operations to the entire neural networks, offering the flexibility for

expansion to various neural networks.

We implement our ZKPs for convolutional and transformer neu-

ral networks. The evaluation results show that our work achieves

over 168.6× (up to 477.2×) speedup for separated non-linear layers

and 41.4× speedup for the entire ResNet-101 convolutional neural

network, when compared with the state-of-the-art work, Mystique.

In addition, our work can prove GPT-2, a transformer neural net-

work with 117million parameters, in 287.1 seconds, achieving 35.7×
speedup over ZKML, which is a state-of-the-art work supporting

transformer neural networks.

1 INTRODUCTION
In the past decade, neural networks in deep learning have gained

unprecedented focus in various fields, such as medical examination

[28, 41], industrial fault detection [31, 33], natural language process-

ing [48, 56, 61], and so on. Therefore, many customers are content

with subscribing to a paid service known as Machine-Learning-

as-a-Service (MLaaS), where cloud vendors such as Amazon [2],

Google [26], and OpenAI [42] offer cloud-based platforms for data

analysis through their deep learning models.

However, in the traditional MLaaS framework, customers lack

tools to verify whether outcomes supplied by cloud vendors are

indeed predictions of particular models because well-trained mod-

els are regarded as intellectual property and secret to customers.

This lack of transparency leads to the outcomes provided by cloud

vendors being untrusted, subsequently limiting the application

of MLaaS in safety-critical domains such as medical examination,

where any erroneous result may lead to serious consequences.

The cryptographic primitive called Zero-Knowledge Proof (ZKP)

addresses this problem. It enables the owner of the secret model to

convince customers that the results are correct predictions, while

preserving the model’s privacy. Considerable efforts [10, 16, 17,

35, 38, 40, 55, 60] have been directed toward developing ZKPs for

neural networks, but their high computational costs make them

hard to deploy practically. For example, a state-of-the-art work

called zkCNN [40] requires more than 50 seconds to complete a

proof for the inference of the VGG-11 model [53] with a single

CIFAR-10 image [12] as input. It is thousands of times longer than

performing the inference without zero-knowledge proofs.

We notice that the main focus of these previous works [17, 38, 40,

60, 68] is on the proof for linear layers in neural networks, such as

convolutional and fully-connected layers. However, their inefficient

schemes for non-linear layers hinder further improvement of the

overall performance. For example, Mystique [60], a well-known

ZKP scheme for convolutional neural networks (CNNs) [45], re-

quires more than 90 percent of the total runtime for non-linear

layer proofs. Moreover, in the era of large language models, trans-

former neural networks such as GPT [48, 49] are playing an increas-

ingly important role. Nevertheless, most previous ZKP schemes

[16, 17, 40, 55] for CNNs cannot be extended to handle complex

non-linear layers in transformers, such as Softmax and GELU lay-

ers. While Mystique [60] and ZKML [10] are capable of generating

proofs for complex non-linear layers, their huge computational

costs hinder their practical deployment, with the process taking

several hours to produce non-linear layer proofs for GPT-2 [49].

In summary, the challenges related to non-linear layers are

twofold. First, generating proofs for these non-linear layers is a sig-

nificant performance bottleneck, reducing the overall efficiency of

proving entire neural networks. Second, ZKP solutions [16, 40, 55]

tailored for a specific non-linear layer struggle to be used in other

non-linear layers. This limits the extension to more neural net-

works. Addressing the challenges associated with non-linear layers

is crucial to developing ZKPs for neural networks.

In this paper, we propose an efficient and extensible ZKP frame-

work for neural networks. In this framework, we employ Vector

Oblivious Linear Evaluation (VOLE) as our proving backend. The

VOLE backend is adept at proving large-scale computation with a

small memory requirement, and thus it is well-suited for construct-

ing zero-knowledge proofs for large-scale neural networks.

Our work addresses the challenges related to non-linear layer

proofs. We employ the range and lookup proofs to prove the cor-

rect calculation of these non-linear layers, with our technique that

utilizes a small number of range and exponent relations to con-

strain the correctness of non-linear operations. Compared to the bit

decomposition method used in previous works [16, 38, 40, 55, 60],

which requires decomposing each input and output of non-linear op-

erations into Boolean values and proving that they satisfy particular

Boolean circuits with hundreds of relations, our approach greatly

reduces the required relations and improves the proving efficiency.

Moreover, we adopt a modular design to make our framework com-

patible with more neural networks. Specifically, we propose two

enhanced VOLE-based range and lookup proofs as basic blocks.

They are efficient in proving the satisfaction of range and exponent

relations. Then, we constrain the correct calculation of primitive

non-linear operations using a small number of range and exponent

relations. Finally, we build our ZKP framework from the primitive

operations to the entire neural networks, offering the flexibility for

expansion to various neural networks.

Our proposed VOLE-based range and lookup proofs are of inde-

pendent interest. For the range proof, we follow previous works

[13, 14] that leverage Legendre’s theorem, which implies integers

that can be decomposed into three integer squares are positive.

Unfortunately, the step of identifying these three squares is a per-

formance bottleneck in our proving framework. Hence, we optimize

the searching method in [47], improving its expected time complex-

ity from 𝑂 (𝑏2) to 𝑂 (𝑏), where 𝑏 denotes the bit length of integers.

For the lookup proof, we adopt the subset lemma proposed in [19] to

prove all lookup elements are in an exponent table, where the most

time-consuming step is to sort the lookup elements. We perform

the sorting process by grouping together elements with identical

values, which is the optimal sorting method for our setting, where

the elements exhibit only a few distinct values.

Our contributions. The following is a summary of contributions:

• We propose a ZKP framework for neural networks. Our frame-

work achieves the following properties at the same time.

– Efficient. Our work improves performance by optimizing non-

linear layer proofs. We convert complex non-linear relations

into range and exponent relations, which significantly reduces

the number of constraints required to prove non-linear layers

and thus improves the proving efficiency.

– Practical. Our work is carefully designed to be compatible

with existing well-studied neural networks that have high-

accuracy performance. For example, we can straightforwardly

generate proofs for various neural networks [30] in PyTorch

[46], a well-known machine learning library.

– Extensible. Our work adopts a modular design, offering the

flexibility for expansion to various neural networks. We con-

struct our ZKP framework from the fundamental primitive

operations to the entire neural networks, such as convolu-

tional and transformer neural networks.

• We propose two VOLE-based range and lookup proofs as the ba-

sic blocks of our ZKP framework for neural networks. They are

of independent interest and fully compatible with other VOLE-

based proofs [60, 63]. By improving the searching method to

identify three squares in the range proof and employing an opti-

mal sorting method tailored to our setting in the lookup proof,

both proofs demonstrate outstanding efficiency and are competi-

tive with other existing range and lookup proofs.

• We implement our zero-knowledge proofs for convolutional and

transformer neural networks. The evaluation results show that

our implementation achieves over 168.6× (up to 477.2×) speedup
for separated non-linear layers and 41.4× speedup for the entire

ResNet-101 convolutional neural network, when compared with

the state-of-the-art VOLE-based work, Mystique [60]. In addition,

our work can prove GPT-2, a transformer neural network with

117 million parameters, in 287.1 seconds achieving 35.7× speedup
over ZKML [10], which is a state-of-the-art work that supports

transformer neural networks.

1.1 Related Works
Zero-knowledge proof for neural networks. Considerable ef-
forts have been directed toward developing zero-knowledge proofs

for neural networks. Most previous works [16, 17, 35, 38, 40, 60, 68]

primarily focus on the proof for linear layers using different prov-

ing backends such as zkSNARK [20, 27], GKR protocols [25, 62],

and VOLE [3, 63]. To generate non-linear layer proofs, these works

rely on bit decomposition, whose huge computational costs hinder

their practical deployment. Recently, [17] proposed a ZENO lan-

guage to provide a ZKP framework for neural networks, but it only

supports CNNs and cannot be extended to other neural networks

like transformers. The concurrent works [10, 29, 54] employ lookup

proofs to construct non-linear layer proofs. Specifically, ZKML [10]

employs Halo2 [67] as the ZKP backend to support transformer

neural networks, but it requires several hours to generate a proof

for GPT-2 [49]. The work [29] utilizes the lookup proof that is based

on ZK-RAM [64] to build non-linear layer proofs. However, their

scheme cannot be directly deployed into neural networks due to the

lack of compatibility with existing networks in practice. zkLLM [54]

is a GPU-accelerated scheme customized for transformer neural

networks, while our work targets providing an efficient and exten-

sible framework for various neural networks on CPUs. All of the

above works are about the inference procedure of neural networks.

Other recent works [21, 52, 55] attempt to generate proofs for the

training procedure of machine learning models.

Range and lookup proofs. Range and lookup proofs serve as the

basic blocks in numerous private-preserving applications [7, 22].

Many recent works have been dedicated to advancing these two

types of proofs. For range proofs, existing works [8, 13, 14, 22, 57,

58] typically are divided into two categories [11] involving digital

decomposition and square decomposition. Our range proof adopts

square decomposition, whereas previous works [13, 14, 22] utilize

the searching method in [47] to identify decomposed squares. This

searchingmethod becomes a performance bottleneck in our proving

framework. Thus, we further optimize this method and improve

its efficiency. For lookup proofs, previous works [15, 18, 51, 65, 66]

mainly focus on optimizing proofs involving large lookup tables.

Conversely, the lookup table used in our setting is relatively small.

Hence, we adopt the subset lemma introduced in [19] to build the

VOLE-based lookup proof, which is well-suited for our setting.

2 DESIGN OVERVIEW
At a high level, we design zero-knowledge proof (ZKP) for neural

networks in machine-learning-as-a-service (MLaaS) setting, where

we enable the service provider to supply, alongside the prediction

outcome, a proof that convinces customers the outcome is really

generated by the intended model. In addition, this proof leaks no

information about the model’s parameters.

To make our work compatible with a broader range of neural net-

works, we adopt a modular design. Figure 1 outlines the overview of

our framework. First, we propose two enhanced range and lookup

proofs as basic blocks. They are efficient in proving the satisfaction

of range and exponent relations. Then, we constrain the correct

calculation of non-linear operations with a small number of range

and exponent relations. Finally, we assemble the design modules

to build our ZKP scheme for the entire neural network. Below, we

give insights into our design modules.

Basic block 1: Range proof. Range proof is the basic block to

prove a secret value 𝑥 is within a certain range, such as [0, 𝐵], where
𝐵 is a range bound. In our setting, the requirement for millions of

range proofs makes their efficiency significantly affect the perfor-

mance of the entire framework. However, existing range proofs

[8, 13, 14, 57, 58] cannot meet our efficiency requirement.

Our range proof is constructed based on the three-square de-

composition lemma, which states that there exist three integers

{𝑦𝑖 }𝑖∈[1,3] such that 4𝑥 (𝐵 − 𝑥) + 1 =
∑

3

𝑖=1
𝑦2

𝑖
if and only if 𝑥 being

in the range [0, 𝐵]. To efficiently find these three integers, we op-

timize the searching method in [47], improving its expected time

complexity from𝑂 (𝑏2) to𝑂 (𝑏), where 𝑏 denotes the bit length of 𝑥 .

Our method initially identifies the largest even integer 𝑦1 such that

4𝑥 (𝐵 − 𝑥) + 1 = 𝑦2

1
+ 𝑞 and 𝑞 is a prime. Next, Fermat’s two-square

theorem states that the prime 𝑞 can be expressed as the sum of two

squares when 𝑞 ≡ 1 (mod 4). We determine two integers 𝑦2 and 𝑦3

from a precomputed table containing two-square decompositions

of primes. This table does not need to be large because the prime 𝑞

is small in most of our cases. In the case when 𝑞 is large, we can

still use the method in [47] to find the decomposed integers.

One remaining issue is that the above approach only works

on integers, not on finite field elements. We bridge this gap by

leveraging the shortness test [13] to ensure that 𝑥 and {𝑦𝑖 }𝑖∈[1,3]
are small enough so that the phenomenon of wrapping around in

the finite field cannot occur. In this case, the finite field elements can

effectively be treated as integers. Section 4 presents more details

about our range proof.

Basic block 2: Lookup proof. Lookup proof is the basic block

to prove a secret vector 𝒙 belongs to a public table {𝒕𝑖 }𝑖∈[1,𝑑] , where
𝑑 denotes the table size. In our setting, we utilize lookup proof to

prove the satisfaction of exponent relations. As shown in Figure

2, the pair of two numbers appearing in the exponent table infers

their exponent relation, where the exponent table holds integers

and their corresponding powers. In our setting, we only need a

small exponent table with a few hundred elements. Therefore, we

should design our lookup proof that is suitable for this setting.

We construct our lookup proof based on the subset lemma [19],

which states that the equivalence of two polynomials 𝑔 and ℎ leads

to an ordered set X := {𝒙𝑖 }𝑖∈[1,𝑛] being the subset of a table

T := {𝒕𝑖 }𝑖∈[1,𝑑] , indicating each 𝒙𝑖 belongs to the table T. The
polynomial 𝑔 is related to the public table T and the set X known

by the prover, while the polynomial ℎ is associated with the set S,
representing the union set {X,T} sorted by T, which is not readily

available to the prover.

Therefore, the prover must obtain S before proving the equiva-

lence of two polynomials. Although using the quick sort algorithm

to obtain S has a time complexity of 𝑂 (𝑛 log𝑛), we perform the

sorting process by grouping together elements with identical val-

ues, which is the optimal sorting method for our setting where the

elements exhibit only a few distinct values. This adjustment allows

us to obtain S in 𝑂 (𝑛) time complexity. With S prepared, we prove

the equivalence of two polynomials using the polynomial proof

studied in [63]. Section 5 gives details about our lookup proof.

Constraints for non-linear operations. Our work utilizes the

range and exponent relations to constrain the correct calculation

of non-linear operations used in neural networks. We complete the

constraining process with two steps. First, we employ the range and

exponent relations to constrain the correct calculation of primitive

non-linear operations, such as round and bit-shift operations, with

details in Section 6.1. Second, We employ these primitive operations

to build the constraints for non-linear layers in neural networks,

with details in Section 6.2. For an intuitive demonstration, we show

a simple example to explain the logic behind our method.

In this example, we use 𝐵 = 2
𝑏
and 0 ≤ 𝑥 − 𝐵𝑦 < 𝐵 to constrain

the result 𝑦 calculated from 𝑏-bit right shift on integer 𝑥 . Logically,

the 𝑏-bit right shift means discarding the last 𝑏 bits of 𝑥 . Therefore,

the difference between 𝑥 and 𝐵𝑦 corresponds to the value of the last

𝑏 bits, which is less than 𝐵 = 2
𝑏
. Therefore, we have 0 ≤ 𝑥 −𝐵𝑦 < 𝐵.

Furthermore, we could prove the integer 𝑦 satisfying the above two

relations is unique. If there is another 𝑦 satisfying 0 ≤ 𝑥 − 𝐵𝑦 < 𝐵,

we set 𝑦 = 𝑦 + 𝑡 , where 𝑡 is a non-zero integer. Then, we have

0 ≤ 𝑥 − 𝐵(𝑦 + 𝑡) < 𝐵, which conflicts with 0 ≤ 𝑥 − 𝐵𝑦 < 𝐵.

In summary, our method only requires a single range relation

and a single exponent relation to constrain the correct calculation

of the right shift operation. We achieve a reduction by around

two orders of magnitude compared to the previous works using

bit decomposition. Such works prove each bit of the input 𝑥 and

output 𝑦 is correctly decomposed and the previous bits in 𝑥 are the

same as the bits in 𝑦, requiring hundreds of relations in total.

Range Proof

(Section 4)

Lookup Proof

(Section 5)

Polynomial
Proof

Matrix
Multiplication

ReLU

Pooling

Softmax

GELU

Normlization

Convolutional

Fully-Connected

Nonlinear Layer

Linear Layer

Our Work

Previous Works

Verifiable
Neural Netwoks

VGG-11

ResNet-50

ResNet-101

GPT-2

Transformers

CNNs

BERT

Section

7

Convolutional

ReLU

Pooling

Fully-
Connected

x5

CNNs Input Transformers

Output

x12

Input

Linear Linear Linear

Linear

Softmax

Linear

Norm.

Linear

GELU

Linear

Norm.

Pooling

Output

Primtive
Max

Min

Absolute

Bit-Shift

Round

Section 6.1
Section

6.2

Figure 1: A design overview of our framework.

Assemble together. We assemble the design modules into our

ZKP framework for neural networks. The insight of this step is

straightforward. Briefly, we convert the non-linear relations in neu-

ral networks into range and exponent relations, whose satisfaction

is proven through our range and lookup proofs, respectively. For

the linear relations in neural networks, we convert them to matrix

multiplication, and its correct calculation is proven through poly-

nomial proofs discussed in previous studies [60, 63]. This approach

ensures that both linear and non-linear relations are addressed

within our ZKP framework.

However, an issue remains. Typically, the calculation of neural

networks involves floating-point operations, but these operations

are not ZKP-friendly. For example, merely proving the addition

of two floating-point numbers requires more than a hundred con-

straints [23]. Large-scale neural networks cannot tolerate such over-

head. As a solution, existing ZKP schemes [16, 38, 40, 60] for neural

networks, including ours, opt for approximating these floating-

point numbers to integers or fixed-point numbers.

To minimize the loss of accuracy caused by approximation, we

design our ZKP framework to make it compatible with existing

approximated neural networks that have high accuracy. For exam-

ple, our framework can work with the approximated ResNet-101

networks in PyTorch [46], a prominent library for machine learning.

It achieves an accuracy of 93.79% on the CIFAR-10 dataset, dropped

by only 0.04% compared to the original ResNet-101 network.

3 PRELIMINARIES
3.1 Notation
We use 𝜆 and 𝜌 to denote the computational and statistical security

parameters, respectively. We use F𝑝 to denote a finite field with

prime order 𝑝 . We use 𝑥 ← 𝑆 to denote that sampling 𝑥 uniformly at

random from a finite set 𝑆 . For 𝑎, 𝑏 ∈ N, we denote the set {𝑎, ..., 𝑏}
by [𝑎, 𝑏], and the set {𝑎, ..., 𝑏 − 1} by [𝑎, 𝑏). We employ the finite

field F𝑝 to encode the signed integers between [−𝑝−1

2
,
𝑝−1

2
] in a

natural way. We use bold lower-case letters like 𝒙 to denote vectors,

and 𝑥𝑖 is the 𝑖-th element in 𝒙 .

83

0 1
1

Exponent Table

63
...

2
2 4

2 4
Pair 1

4 16

4 13
Pair 2

Figure 2: The exponent table used to prove the exponent
relations between two numbers.

3.2 VOLE and IT-MACs
Vector Oblivious Linear Evaluation (VOLE) [5] is a secure two-party

protocol for generating correlations that consist of a global key

Δ ∈ F𝑝 and three vectors (𝒙,𝒎, 𝒌) with the relationsm𝑖 = k𝑖 −Δ ·𝑥𝑖
for 𝑖 ∈ [1, 𝑛], where 𝒙 , 𝒎, and 𝒌 belong to (F𝑝)𝑛 . In our setting,

the VOLE correlation is used as Information Theoretic Message

Authentication Codes (IT-MACs) to authenticate values over F𝑝 .
Specifically, letΔ ∈ F𝑝 be a global key, known only by the verifierV .

A value 𝑥 ∈ F𝑝 known by the prover P is authenticated following

the functionality in Figure 3 by giving V a local key k ∈ F𝑝 and

giving P a tag m ∈ F𝑝 . We denote the authentication code by

[𝑥] = (𝑥,m, k), where P holds (𝑥,m) andV holds k.
The random values can be efficiently authenticated by the recent

LPN-based VOLE protocols [6, 59], exhibiting communication com-

plexity that is sublinear relative to the number of random values.

To authenticate the non-random value 𝑥 , P andV begin by getting

an authenticated random value [𝑟]. Next, P sends the difference

𝑑 = 𝑥 − 𝑟 ∈ F𝑞 toV and then both parties compute [𝑥] = [𝑟] + 𝑑 ,
leveraging the additive homomorphic property inherent in VOLE

correlations. Specifically, given [𝑥1], ..., [𝑥𝑛] and public coefficients

𝑐0, 𝑐1, ..., 𝑐𝑛 , the parties can locally compute [𝑦] = ∑𝑛
𝑖=1

𝑐𝑖 [𝑥𝑖] + 𝑐0

without any communication.

Functionality Auth(𝑥)
This functionality should be performed after the global key Δ
being generated. On input 𝑥 ∈ F𝑝 , this functionality interacts

with the prover P and the verifierV , and outputs the

authentication code [𝑥] = (𝑥,m, k) that satisfys m = k − Δ · 𝑥 .
(1) IfV is honest, sample k← F𝑝 . Otherwise, receive k ∈ F𝑝

from the adversary.

(2) If P is honest, compute m := k − Δ · 𝑥 ∈ F𝑝 . Otherwise,
receive m ∈ F𝑝 from the adversary and recompute

k := m + Δ · 𝑥 ∈ F𝑝 .
(3) Output [𝑥] to parties by sending (𝑥,m) to P and k toV .

Figure 3: The functionality for generating the authentication
code using the VOLE correlation.

3.3 Zero-knowledge Proof
Zero-knowledge proof (ZKP) is a cryptographic primitive that al-

lows a prover P to convince a verifierV that a statement is true

without leaking any information about the prover’s secret witness.

Same as other VOLE-based zero-knowledge proofs [63], we present

the definition of zero-knowledge proof in the Universal Compos-

ability (UC) framework [9] with the ideal functionality FauthZK
shown in Figure 4. UC framework is the general-purpose security

framework for the analysis of cryptographic protocols. Briefly, we

say that a protocol Π UC-realizes an ideal functionality F if we

cannot distinguish the world where the prover and the verifier

execute the real protocol Π and the world where two parties per-

form the ideal functionality F . A more formal description about

UC framework are shown in Appendix A.

Recent works [4, 63] have explored efficient VOLE-based proving

protocols that achieve the polynomial command of the ideal func-

tionality FauthZK. These protocols follow the commit-and-prove

paradigm, where they consider authentication codes as a form of

commitment and then prove the committed values satisfy partic-

ular relations by running a consistency-check procedure. In this

paper, we support proving protocols that achieve other commands

of the ideal functionality listed in Figure 4 using the same commit-

and-prove paradigm. These protocols are basic blocks of our ZKP

framework for neural networks.

3.4 Tools for Range Proof
3.4.1 Three-Square Decomposition. Legendre’s three-square theo-
rem states that a natural number 𝑥 can be represented as the sum

of three squares of integers (𝑥 = 𝑦2

1
+𝑦2

2
+𝑦2

3
) if and only if 𝑥 is not

of the form 𝑥 = 4
𝑚 (8𝑛 + 7) for non-negative integers𝑚 and 𝑛. This

theorem infers the following lemma, showing the necessary and

sufficient condition for an integer 𝑥 to be in the range [0, 𝐵].

Lemma 3.1. Let 𝑥 ∈ Z be an integer. It holds that 𝑥 ∈ [0, 𝐵] if and
only if there exists three integers 𝑦1, 𝑦2, 𝑦3 satisfying 4𝑥 (𝐵 − 𝑥) + 1 =

𝑦2

1
+ 𝑦2

2
+ 𝑦2

3
.

Functionality FauthZK
[𝑥] = (𝑥,m, k) is denoted as an authentication code, where

the prover P holds (𝑥,m) and the verifierV holds k.
Init: On input (init) from the prover P and the verifierV ,

sample Δ← F𝑝 ifV is honest. Otherwise, receive Δ ∈ F𝑝
from adversary. Store Δ and send it toV , and then ignore all

subsequent (init) commands.

Auth: This procedure can be run multiple times. On input

(auth, id, 𝑥) from P and (auth, id) fromV , perform Auth(𝑥)
if id is fresh identifier and 𝑥 ∈ F𝑝 . The functionality of

Auth(𝑥) is shown in Figure 3. Finally, store (id, 𝑥).

Commands for zero-knowledge proof
Polynomial: On the input (poly, 𝑝, {id𝑖 }𝑖∈[1,𝑛]) from P and

V , retrieve {(id𝑖 , 𝑥𝑖)}𝑖∈[1,𝑛] if each id𝑖 is present in memory,

or send false toV and abort. Next, send true toV if

𝑝 (𝑥1, 𝑥2, ..., 𝑥𝑛) = 0, or send false toV otherwise. Here, 𝑝

represents a polynomial.

Range: On the input (range, 𝐵, {id𝑖 }𝑖∈[1,𝑛]) from P andV ,

retrieve {(id𝑖 , 𝑥𝑖)}𝑖∈[1,𝑛] if each id𝑖 is present in memory, or

send false toV and abort. Send true toV if all 𝑥𝑖 ∈ [0, 𝐵], or
send false toV . Here, 𝐵 represents a range bound.

Lookup: Set the table T := {𝒕 𝑗 } 𝑗∈[1,𝑑] and 𝒕 𝑗 ∈ (F𝑝)𝑤 . Let
𝒊𝒅𝑖 := (id𝑖1, ..., id𝑖𝑤) and 𝒙𝑖 ∈ (F𝑝)𝑤 . On the input (lookup,
T, { 𝒊𝒅𝑖 }𝑖∈[1,𝑛]) from P andV , retrieve {(𝒊𝒅𝑖 , 𝒙𝑖)}𝑖∈[1,𝑛] if
each 𝒊𝒅𝑖 is present in memory, or send false toV and abort.

Next, send true toV if all 𝒙𝑖 ∈ T, or send false toV .

Figure 4: The ideal functionality for zero-knowledge proof
with the authentication codes.

Furthermore, the three integers {𝑦𝑖 }𝑖∈[1,3] can be identified via

the searching method proposed in [47], with an expected time

complexity of 𝑂 (𝑏2), where 𝑏 denotes the bit length of 𝑥 .

3.4.2 Masking Scheme. We use an additive masking method to

prevent information leakage in our range proof. The masking algo-

rithm for value 𝑣 in range [0,𝑉] works as follows: (1) Randomly pick

a value 𝑟 from [0,𝑉 𝐿]. We call 𝑟 the mask and 𝐿 ≥ 1 the masking

overhead. (2) Performmask(𝑣, 𝑟) that outputs 𝑣 +𝑟 if 𝑣 +𝑟 ∈ [𝑉 ,𝑉𝐿]
or ⊥ otherwise. This masking algorithm has the properties shown

in the following lemma.

Lemma 3.2. Let 𝐿 ≥ 1 be the masking overhead and 𝑟 is uniformly
chosen from [0,𝑉 𝐿]. For any value 𝑣 ∈ [0,𝑉], it holds that the
probability ofmask(𝑣, 𝑟) outputting⊥ is 𝑉

1+𝑉𝐿
which is less than 1/𝐿.

The distribution of the output of mask(𝑣, 𝑟) is uniform over [𝑉 ,𝑉𝐿]
if mask(𝑣, 𝑟) does not outputs ⊥.

3.4.3 Shortness Test. We use the binary affine shortness test [13] to

check whether all elements of a vector 𝒙 ∈ (F𝑝)𝑛 are inside a speci-

fied range [−𝐾,𝐾]F𝑝 . Specifically, for any vector 𝒙 ∈ (F𝑝)𝑛 and any

affine value 𝜇 ∈ F𝑝 , the binary affine shortness test BAST(𝒙, 𝜇, 𝐾)
works as follows: (1) Randomly pick a binary vector 𝜸 ∈ {0, 1}𝑛 . (2)
Compute 𝜁 = 𝜇 + ∑𝑛

𝑖=1
𝛾𝑖𝑥𝑖 , and then output true if 𝜁 ∈ [0, 𝐾]F𝑝

or false otherwise. This shortness test method has the soundness

property shown in the following lemma.

Lemma 3.3. Let BAST be the binary affine shortness test for any
vector 𝒙 ∈ (F𝑝)𝑛 . Let 𝐾 be the range bound and 𝐾 ≤ (𝑝 − 1)/2. For
any affine value 𝜇 ∈ F𝑝 , if there is 𝑥𝑖 ∈ 𝒙 not in the range [−𝐾,𝐾]F𝑝 ,
the probability of BAST(𝒙, 𝜇, 𝐾) outputs true is at most 1

2
.

Note that Lemma 3.3 does not guarantee the correctness of the

shortness test, that is, if all elements of the vector 𝒙 ∈ (F𝑝)𝑛 are in

the range [−𝐾,𝐾]F𝑝 , we cannot imply the output of BAST is true.

3.5 Tools for Lookup Proof
3.5.1 Subset Lemma. We use the subset lemma proposed in [19]

to prove an ordered set of vectors X := {𝒙𝑖 }𝑖∈[1,𝑛] being the subset
of the table T := {𝒕 𝑗 } 𝑗∈[1,𝑑] . Let S := {𝒔𝑖 }𝑖∈[1,𝑛+𝑑] . We define two

polynomials 𝑔 and ℎ with 𝛼, 𝛽,𝛾 as variables:

𝑔(𝛼, 𝛽,𝛾) := (1 + 𝛽)𝑛 ·
𝑛∏
𝑖=1

(𝛾 +
𝑤∑︁
𝑘=1

𝛼𝑘−1𝑥𝑖𝑘)

·
𝑑−1∏
𝑖=1

(𝛾 (1 + 𝛽) +
𝑤∑︁
𝑘=1

𝛼𝑘−1 (𝑡𝑖𝑘 + 𝛽𝑡 (𝑖+1)𝑘))
(1)

ℎ(𝛼, 𝛽,𝛾) :=

𝑛+𝑑−1∏
𝑖=1

(𝛾 (1 + 𝛽) +
𝑤∑︁
𝑘=1

𝛼𝑘−1 (𝑠𝑖𝑘 + 𝛽𝑠 (𝑖+1)𝑘)) (2)

, where 𝑥𝑖𝑘 , 𝑡𝑖𝑘 , 𝑠𝑖𝑘 are the 𝑘-th elements of the vectors 𝒙𝑖 , 𝒕𝑖 , 𝒔𝑖 , re-
spectively. The following lemma shows the necessary and sufficient

condition for X to be a subset of T.
Lemma 3.4. Given the ordered sets X, T, and S, let 𝑔 and ℎ are two

polynomials described by Equation (1) and Equation (2) with 𝛼, 𝛽,𝛾
as variables. It holds 𝑔(𝛼, 𝛽,𝛾) ≡ ℎ(𝛼, 𝛽,𝛾) if and only if X is the
subset of T and S is the union set {X,T} sorted by T.
Here, the ordered set S is sorted by T when all elements in S are in

the same order as they appear in T. Formally, for any 𝑖 < 𝑖′ such
that 𝒔𝑖 ≠ 𝒔𝑖′ , if there exists 𝑗, 𝑗 ′ that 𝒔𝑖 = 𝒕 𝑗 , 𝒔𝑖′ = 𝒕 𝑗 ′ , then 𝑗 < 𝑗 ′.

4 ZERO-KNOWLEDGE RANGE PROOF
Zero-knowledge range proof enables the prover to convince the

verifier that a secret value is in a certain range. It serves as a fun-

damental component in numerous private-preserving applications

[7, 22] as well as the basic block of our ZKP framework for neural

networks. In this section, we present a VOLE-based range proof,

taking inspiration from prior works [13, 14] that leverage the three-

square decomposition technique based on Lemma 3.1. Our approach

enhances efficiency significantly by improving the search algorithm

[47] for identifying three-square decompositions.

4.1 Scheme
In our range proof, two parties are given public inputs that include

a range bound 𝐵 and identifiers {id𝑥
𝑖
}𝑖∈[1,𝑛] corresponding to au-

thentication codes {[𝑥𝑖]}𝑖∈[1,𝑛] . It guarantees that the verifier only
outputs true when each 𝑥𝑖 is in the range [0, 𝐵] for 𝑖 ∈ [1, 𝑛]. Be-
low, we outline the core ideas behind our range proof, with the full

details described in Figure 5.

Initially, the prover checks that each 𝑥𝑖 is in the range [0, 𝐵] by
its own. If all checks pass, the prover can identify three integers

Protocol ΠRange

Let 𝑅 be the repetition number of the shortness tests shown

in Section 3.4.3, 𝐿 be the masking overhead shown in Section

3.4.2, and 𝑛 be the scale of input.

Input: Two parties P andV receive public inputs including a

range bound 𝐵 and identifiers {id𝑥
𝑖
}𝑖∈[1,𝑛] , which correspond

to authentication codes {[𝑥𝑖]}𝑖∈[1,𝑛] , where each 𝑥𝑖 ∈ F𝑝 .
Range Prove: P convincesV that each 𝑥𝑖 is in the range

[0, 𝐵] for 𝑖 ∈ [1, 𝑛] as follows:
(1) If any 𝑥𝑖 ∉ [0, 𝐵] for 𝑖 ∈ [1, 𝑛], P sends ⊥ toV , andV

outputs false and aborts. Next, P identifies 𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3
that satisfy 4𝑥𝑖 (𝐵 − 𝑥𝑖) + 1 =

∑
3

𝑗=1
𝑦2

𝑖 𝑗
.

(2) For 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 3], P andV select identifiers

id𝑦
𝑖 𝑗
. Next, they invoke the (auth) command of FauthZK,

which returns authentication codes [𝑦𝑖 𝑗] to the parties.

For 𝑘 ∈ [1, 𝑅], P samples𝑚𝑘 ← [0, 4𝑛𝐵𝐿]. P andV
select identifiers id𝑚

𝑘
. They invoke the (auth) command

of FauthZK, which returns [𝑚𝑘] to the parties.

(3) V samples shortness testing challenges 𝛾𝑖 𝑗𝑘 ← [0, 1] for
𝑖 ∈ [1, 𝑛], 𝑗 ∈ [0, 3], 𝑘 ∈ [1, 𝑅] and sends them to P. Next,
P computes 𝜁𝑘 = mask (∑𝑛

𝑖=1

∑
3

𝑗=0
𝛾𝑖 𝑗𝑘𝑦𝑖 𝑗 ,𝑚𝑘) and

responds 𝜁𝑘 toV , where 𝑦𝑖0 := 𝑥𝑖 .

(4) V checks 𝜁𝑘 ≠ ⊥ and 𝜁𝑘 ∈ [4𝑛𝐵, 4𝑛𝐵𝐿] for all 𝑘 ∈ [1, 𝑅].
If any check fails,V outputs false and aborts.

(5) Set 𝑓 (𝑥,𝑦1, 𝑦2, 𝑦3) :=
∑

3

𝑗=1
𝑦2

𝑖
− 4𝑥 (𝐵 − 𝑥)−1. P andV

send (poly, 𝑓 , {id𝑥
𝑖
, id𝑦

𝑖1
, id𝑦

𝑖2
, id𝑦

𝑖3
}) to FauthZK for all

𝑖 ∈ [1, 𝑛].V outputs false once FauthZK returns false.
(6) For 𝑘 ∈ [1, 𝑅], P andV locally compute [𝑧𝑘] := [𝑚𝑘]+∑𝑛

𝑖=1

∑
3

𝑗=0
𝛾𝑖 𝑗𝑘 [𝑦𝑖 𝑗] − 𝜁𝑘 , which is achieved using the

additive homomorphic property. Finally, they execute

CheckZero on [𝑧𝑘], where P sends the tag of [𝑧𝑘] toV
who checks if it equals the local key of [𝑧𝑘]. If any check

fails,V outputs false. Otherwise,V outputs true.

Figure 5: Protocol for the zero-knowledge range proof in the
FauthZK-hybrid model.

{𝑦𝑖 𝑗 } 𝑗∈[1,3] such that 4𝑥𝑖 (𝐵 − 𝑥𝑖) + 1 =
∑

3

𝑗=1
𝑦2

𝑖 𝑗
, which infers the

corresponding integer 𝑥𝑖 is in the range [0, 𝐵] based on Lemma 3.1.

To efficiently find these three integers, we improve the searching

method in [47]. First, we identify the largest even integer 𝑦𝑖1 such

that 4𝑥𝑖 (𝐵 − 𝑥𝑖) + 1 = 𝑦2

𝑖1
+ 𝑞𝑖 , where 𝑞𝑖 is a prime. This step

is achieved by trying multiple 𝑦𝑖1 from large to small, and the

probability of each attempt being successful is 𝑂 (1/𝑏) according
to the distribution of primes appearing among integers, where 𝑏

denotes the bit length of 𝑥𝑖 . Second, Fermat’s two-square theorem

states that the prime 𝑞𝑖 can be expressed as the sum of two squares

when 𝑞𝑖 ≡ 1 (mod 4). We determine these two integers 𝑦𝑖2 and 𝑦𝑖3
from a precomputed table that contains two-square decompositions

of primes. This table does not need to be large because the prime

𝑞𝑖 is small in most our cases. Querying two-square decompositions

from the table can be completed in𝑂 (1) time complexity. Thus, the

expected time complexity of our approach is 𝑂 (𝑏).

Next, the prover would employ the polynomial proof to prove

the satisfaction of the equation 4𝑥𝑖 (𝐵−𝑥𝑖) +1 =
∑

3

𝑗=1
𝑦2

𝑖 𝑗
. However,

an issue remains. Our ZKP framework works on the finite field F𝑝 .
The phenomenon of wrapping around in the finite field could cause

this equation to hold over the finite field, but not hold over integers.

We use the shortness test shown in Section 3.4.3 to ensure that 𝑥𝑖
and {𝑦𝑖 𝑗 } 𝑗∈[1,3] are small enough that wrapping around does not

occur. Specifically, the verifier picks 4𝑛𝑅 random binary challenges

and sends these challenges to the prover, where 𝑅 is the repeat

number to reduce the soundness error in the shortness test. The

prover responds with the linear combination of these binary chal-

lenges and {𝑦𝑖 𝑗 } 𝑗∈[0,3] with 𝑦𝑖0 := 𝑥𝑖 . To avoid leaking information

about the secret 𝑥𝑖 , we mask the linear combination value using

the additive masking method shown in Section 3.4.2.

Finally, the following three points are checked by the verifier to

ensure that 𝑥𝑖 is in the range [0, 𝐵] for 𝑖 ∈ [1, 𝑛]:

• The challenge responses from the prover pass all shortness tests.

It is achieved by checking the response values are in the range

[4𝑛𝐵, 4𝑛𝐵𝐿], where 𝐿 is the masking overhead.

• The decomposed three elements satisfy the equation 4𝑥𝑖 (𝐵−𝑥𝑖) +
1 =

∑
3

𝑗=1
𝑦2

𝑖 𝑗
. It is achieved by invoking the (poly) command of

FauthZK to verify the evaluation of polynomial 𝑓 (𝑥𝑖 , 𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3) =∑
3

𝑗=1
𝑦2

𝑖 𝑗
− 4𝑥𝑖 (𝐵 − 𝑥𝑖) − 1 equals zero for all 𝑖 ∈ [1, 𝑛].

• The shortness test challenge responses from the prover are indeed

masked linear combinations. It is achieved by locally subtracting

the authentication codes of these linear combinations from the

response values using the additive homomorphic property. Sub-

sequently, they execute CheckZero, where the prover forwards
tags of the authenticated results to the verifier, who checks that

these tags are equal to the corresponding local keys.

Theorem 4.1. Let 𝐵 be the range bound,𝑅 be the repetition number
of shortness tests in Section 3.4.3, 𝐿 be the masking overhead shown in
Section 3.4.2, 𝑛 be the scale of input, and 𝐾 := 4𝑛𝐵𝐿. If 4𝐾2 + 4𝐵𝐾 +
1 ≤ 𝑝−1

2
, the protocol ΠRange shown in Figure 5 UC-realizes the

(range) command of functionality FauthZK in the presence of a static,
malicious adversary with correctness error at most 𝑅

𝐿
and statistical

soundness error at mostmax(𝑅
𝐿
, 1

𝑝 +
1

2
𝑅) in the FauthZK-hybrid model.

The security proof of this theorem can be found in Appendix B.

Given the range bound 𝐵, the number 𝑛, and a finite field F𝑝 , we

can choose suitable parameters 𝐿 and 𝑅 such that
𝑅
𝐿
≤ 2
−𝜌

and

1

𝑝 +
1

2
𝑅 ≤ 2

−𝜌
. For example, when 𝐵 = 2

32
,𝑛 = 2

20
, and 𝑝 ≈ 2

254
, we

can choose 𝐿 = 2
46

and 𝑅 = 42 to achieve at least 40-bit statistical

security with 4𝐾2 + 4𝐵𝐾 + 1 ≤ 𝑝−1

2
.

5 ZERO-KNOWLEDGE LOOKUP PROOF
Zero-knowledge lookup proof allows the prover to convince the

verifier that a secret vector is in a public table. We utilize lookup

proof to prove exponent relations between two numbers by showing

that they appear in the same row of the exponent table, as shown in

Figure 2. In our setting, we only need a small exponent table with

a few hundred elements. Therefore, we employ the subset lemma

[20] shown in Section 3.5 to design a VOLE-based lookup proof

tailored to this setting.

Protocol ΠLookup

Let 𝑑 be the table size,𝑤 be the dimensions of each element

in the table, and 𝑛 be the number of lookups.

Input: The prover P and the verifierV are given public

inputs that include a table T := {𝒕 𝑗 } 𝑗∈[1,𝑑] and identifiers

{ 𝒊𝒅𝑥
𝑖
}𝑖∈[1,𝑛] , where 𝒕 𝑗 ∈ (F𝑝)𝑤 and 𝒊𝒅𝑥

𝑖
:= (id𝑥

𝑖1
, ..., id𝑥

𝑖𝑤
).

These identifiers are corresponding to authentication codes

{[𝒙𝑖]}𝑖∈[1,𝑛] with 𝒙𝑖 ∈ (F𝑝)𝑤 .
Lookup Prove: P convincesV that all elements of X are in

the table T as follows:

(1) If any 𝒙𝑖 ∉ T for 𝑖 ∈ [1, 𝑛], P sends ⊥ toV , andV
outputs false and aborts. Otherwise, P calculate the set

S := {𝒔𝑖 }𝑖∈[1,𝑛+𝑑] that is the union set {X,T} sorted by T.
(2) For 𝑖 ∈ [1, 𝑛 + 𝑑], P andV select identifiers 𝒊𝒅𝑠

𝑖
. Next,

they invoke the (auth) command of FauthZK, which
returns authentication codes [𝒔𝑖] to the parties.

(3) V samples three random elements (𝑟1, 𝑟2, 𝑟3) from the

finite field F𝑝 , and sends them to P.
(4) P andV define two polynomial 𝑔′ (X) and ℎ′ (S) that are

same as 𝑔(𝛼, 𝛽,𝛾) and ℎ(𝛼, 𝛽,𝛾) in Section 3.5 but with

X, S as variables and (𝛼, 𝛽,𝛾) = (𝑟1, 𝑟2, 𝑟3) as coefficients.

P andV define the polynomial 𝑙 ′ (X, S) := 𝑔′ (X) − ℎ′ (S),
and send (poly, 𝑙 ′, ({ 𝒊𝒅𝑥

𝑖
}𝑖∈[1,𝑛] , { 𝒊𝒅𝑠𝑖 }𝑖∈[1,𝑛+𝑑])) to

FauthZK. Finally,V outputs what FauthZK outputs.

Figure 6: Protocol for the zero-knowledge lookup proof in
the FauthZK-hybrid model.

5.1 Scheme
In our lookup proof, two parties are given public inputs that include

a table denoted as T := {𝒕 𝑗 } 𝑗∈[1,𝑑] and identifiers { 𝒊𝒅𝑥
𝑖
}𝑖∈[1,𝑛] ,

where 𝒕 𝑗 ∈ (F𝑝)𝑤 and 𝒊𝒅𝑥
𝑖

:= (id𝑥
𝑖1
, ..., id𝑥

𝑖𝑤
). These identifiers

are corresponding to authentication codes {[𝒙𝑖]}𝑖∈[1,𝑛] with 𝒙𝑖 ∈
(F𝑝)𝑤 . The protocol guarantees that the verifier only outputs true
when 𝒙𝑖 are in the table T for all 𝑖 ∈ [1, 𝑛]. Below, we outline the
key ideas of our scheme that implements the lookup proof. The

details of our scheme are described in Figure 6.

First, the prover checks that each 𝒙𝑖 is in the table T by its own.

If all checks pass, the prover prove to the verifier the equivalence

of two polynomial 𝑔(𝛼, 𝛽,𝛾) and ℎ(𝛼, 𝛽,𝛾) shown in Section 3.5,

which infers 𝒙𝑖 is in the table T using Lamma 3.4.

The coefficients of 𝑔(𝛼, 𝛽,𝛾) are related with the public table T
and the set X = {𝒙𝑖 }𝑖∈[1,𝑛] known by the prover, while the coef-

ficients of ℎ(𝛼, 𝛽,𝛾) correlate with S, the union set {X,T} sorted
by T. The set S is not readily available to the prover. Therefore,

the prover must first obtain S before proving the equivalence of

two polynomials. Although using the quick sort algorithm to com-

pute S has a time complexity of 𝑂 (𝑛 log𝑛), but this part is still the
performance bottleneck in the protocol. We perform the sorting

process by grouping together all elements of the union set {X,T}
with identical values, which is the optimal sorting method for our

setting where the elements exhibit only a few distinct values. This

adjustment allows us to obtain S in 𝑂 (𝑛) time complexity.

Following the above steps, we define a polynomial 𝑙 (𝛼, 𝛽,𝛾) :=

𝑔(𝛼, 𝛽,𝛾) − ℎ(𝛼, 𝛽,𝛾). Based on Schwartz-Zippel Lemma, when the

verifier randomly samples (𝑟1, 𝑟2, 𝑟3) ← (F𝑝)3 as the inputs to

the polynomial 𝑙 , the probability of 𝑙 (𝑟1, 𝑟2, 𝑟3) = 0 is negligible if

two polynomials 𝑔 and ℎ are not equivalent. Thus, the final step

is to prove that the evaluation of polynomial 𝑙 equals zero at a

random point (𝑟1, 𝑟2, 𝑟3). Two parties invoke the (poly) command

of FauthZK, which utilizes the authentication codes of X and S to

check the evaluation of the polynomial 𝑙 ′ (X, S) equals zero, where
𝑙 ′ is same as 𝑙 but with X, S as variables and (𝛼, 𝛽,𝛾) := (𝑟1, 𝑟2, 𝑟3)
as coefficients. Finally, the verifier outputs what FauthZK outputs.

Theorem 5.1. Let 𝑑 be the table size,𝑤 be the dimensions of the
elements in the table, 𝑛 be the lookup number. The protocol ΠLookup
shown in Figure 6 UC-realizes the (lookup) command of functionality
FauthZK in the presence of a static, malicious adversary with statistical
soundness error at most (𝑛+𝑑) (𝑤 +1)/𝑝 in the FauthZK-hybrid model.

The security proof of this theorem is in Appendix C.

6 ZKP FOR NON-LINEAR OPERATIONS
In this section, we present our ZKPs for non-linear operations used

in neural networks. The core idea of our work is to constrain the

correct calculation of these non-linear operations by range and

exponent relations, whose satisfaction can be further proved using

range and lookup proofs discussed in the above two sections.

We complete the constraining process with two steps. In Section

6.1, we employ the range and exponent relations to constrain the

primitive operations, such as round and bit-shift operations. In Sec-

tion 6.2, we obtain the constraints for the non-linear layers in neural

networks using the constraints for these primitive operations.

Note that some non-linear operations, such as the max operation,

exhibit both non-linear and linear characteristics. These operations

are additionally subject to constraints via polynomial relations that

can be proved by polynomial proofs studied in previous work [63].

6.1 Constraints for Primitive Operations
Table 1 outlines the constraints for primitive non-linear operations.

We carefully design these constraints to guarantee that the calcula-

tion results of these primitive operations are correct and unique. All

constrains are on the finite field, where the elements are effectively

treated as integers by employing additional shortness tests, shown

in Section 3.4.3, to ensure the elements are small enough so that the

phenomenon of wrapping around in the finite field cannot occur. In

the following, we describe the underlying logic of these constraints

for each primitive operation.

Max Operation. The max operation identifies the maximum

value within a given set, donated as 𝑞𝑚𝑎𝑥 = max(𝑞1, ..., 𝑞𝑛). Ob-
viously, each element in the set maintains a non-negative differ-

ence with the maximum value 𝑞𝑚𝑎𝑥 , satisfying the range relation:

0 ≤ 𝑞𝑚𝑎𝑥 − 𝑞𝑖 for all 𝑖 ∈ [1, 𝑛]. In addition, 𝑞𝑚𝑎𝑥 is equal to at

least one element in the set. This constraint is described using a

polynomial relation:

∏𝑛
𝑖=1
(𝑞𝑚𝑎𝑥 − 𝑞𝑖) = 0. If 𝑞𝑚𝑎𝑥 is not equal to

any 𝑞𝑖 , the value on the left side of the equation would not be 0.

Next, we argue that 𝑞𝑚𝑎𝑥 , satisfying the above two relations, is

unique. If there is another 𝑞𝑚𝑎𝑥 such that 𝑞𝑚𝑎𝑥 = 𝑞𝑚𝑎𝑥 + 𝑡 , where
𝑡 is a non-zero element. It follows that 0 ≤ 𝑞𝑚𝑎𝑥 − 𝑞𝑖 + 𝑡 for all

𝑖 ∈ [1, 𝑛]. By choosing 𝑞𝑖 = 𝑞𝑚𝑎𝑥 , we get 𝑡 must be positive, which

is conflicted with 𝑞𝑚𝑎𝑥 being the maximum value.

Overall, the above two relations ensure that the result of the max

operation is correct and unique.

Min Operation. The min operation gets the minimum value

within a given set, donated as 𝑞𝑚𝑖𝑛 = min(𝑞1, ..., 𝑞𝑛). The result
𝑞𝑚𝑖𝑛 is constrained by the range relation: 0 ≤ 𝑞𝑖 − 𝑞𝑚𝑖𝑛 for all

𝑖 ∈ [1, 𝑛], and the polynomial relation:

∏𝑛
𝑖=1
(𝑞𝑖 − 𝑞𝑚𝑖𝑛) = 0. The

underlying logic of constraints for the min operation is the same

as the constraints for the max operation.

Sign Operation. The sign operation, donated as 𝑠 = sign(𝑞),
identifies the sign of a given element. It returns +1 for positive ele-

ments, −1 for negative ones, and 0 for zero. First, the sign operation

implies that 𝑠 inherently shares the same sign as the element 𝑞,

establishing the range relation: 0 ≤ 𝑠 (𝑞 − 𝑠). It is worth noting that

this relation also guarantees that 𝑠 must be zero when 𝑞 is zero.

Next, we need to constrain 𝑠 within the values {+1, 0,−1} through
the polynomial relation: (𝑠−1) (𝑠+1) (𝑠2+𝑞2) = 0, which guarantees

that 𝑠 must be −1 or +1 when 𝑞 is not zero.

We argue that 𝑠 , satisfying the above two relations, is unique.

When 𝑞 is zero, the inequality 0 ≤ −𝑠2
from the range relation

implies 𝑠 = 0. When 𝑞 is not zero, the polynomial relation restricts

𝑠 to be either +1 or −1, and the range relation ensures 𝑠 matches

the sign of 𝑞, thereby confirming the uniqueness of 𝑠 .

Absolute Value Operation. This operation yields the absolute

value of a given element, donated as |𝑞 | = abs(𝑞). We notice that the

constraints for the result |𝑞 | can be easily established based on the

sign operation. Initially, we constrain 𝑠 to be the sign of𝑞. Following

this, the polynomial relation |𝑞 | = 𝑠𝑞 ensures the result |𝑞 | is correct.
It also guarantees |𝑞 | being unique due to the uniqueness of 𝑠 .

Right Shift Operation. The right shift operation, denoted as

𝑚 = 𝑞 ≫ 𝑏, produces the result by discarding the last 𝑏 bits of the

binary form of 𝑞. Therefore, the difference between 𝑞 and𝑚𝐸𝑏 is

the value of the last 𝑏 bits, which is less than 𝐸𝑏 = 2
𝑏
. Thus, we

constrain the result𝑚 with the range relation: 0 ≤ 𝑞−𝑚𝐸𝑏 ≤ 𝐸𝑏 −1.

When 𝑞 is zero, the relation becomes 0 ≤ −𝑚𝐸𝑏 ≤ 𝐸𝑏 − 1, which

infers𝑚 = 0. When q is not zero, it ensures the difference between

𝑞 and𝑚𝐸𝑏 is less then 𝐸𝑏 , and the result𝑚 is correct and unique.

RoundOperation. This operation, donated as 𝑧 = round(𝑥), ap-
proximates a given element to the nearest integer, where the given

element 𝑥 can be fractions, floating-point numbers, and square

roots. Obviously, the difference between the result 𝑧 and the input

𝑥 is at most
1

2
, satisfying the relation: − 1

2
≤ 𝑥 − 𝑧 < 1

2
. We employ

it to build constraints for the round operation.

For the round operation involving fractions, donated as 𝑧𝑑 =

round(𝑞1/𝑞2), we multiply the round constraint − 1

2
≤ 𝑞1

𝑞2

−𝑧𝑑 < 1

2

by 2𝑠𝑞2 to eliminate fractions, where 𝑠 = sign(𝑞2). It yields the
range relation: −𝑠𝑞2 ≤ 2𝑠 (𝑞1 −𝑧𝑑𝑞2) ≤ 𝑠𝑞2 −1. The term −1 is used

to convert the inequality sign from < to ≤. This range relation is

equivalent to the two corresponding range relations in Table 1.

For the round operation involving floating-point numbers, do-

nated as 𝑧𝑒 = round(𝑐 · 2𝑒), where 𝑐 is the coefficient and 𝑒 is the

exponent of the floating-point number, we require two auxiliary

elements 𝐸+ and 𝐸− that have the properties: 𝐸+ = 2
|𝑒 |+1

when 𝑒 is

positive, 𝐸− = 2
|𝑒 |+1

when 𝑒 is negative, and 𝐸+ = 2
𝑒𝐸− . Next, we

Table 1: The constraints for primitive non-linear operations

Primitive Operations Constraints

1) 𝑞𝑚𝑎𝑥 = max(𝑞1, ..., 𝑞𝑛)
• ∀𝑖 ∈ [1, 𝑛], 0 ≤ 𝑞𝑚𝑎𝑥 − 𝑞𝑖
•∏𝑛

𝑖=1
(𝑞𝑚𝑎𝑥 − 𝑞𝑖) = 0

2) 𝑞𝑚𝑖𝑛 = min(𝑞1, ..., 𝑞𝑛)
• ∀𝑖 ∈ [1, 𝑛], 0 ≤ 𝑞𝑖 − 𝑞𝑚𝑖𝑛

•∏𝑛
𝑖=1
(𝑞𝑖 − 𝑞𝑚𝑖𝑛) = 0

3) 𝑠 = sign(𝑞) • 0 ≤ 𝑠 (𝑞 − 𝑠)
• (𝑠 − 1) (𝑠 + 1) (𝑠2 + 𝑞2) = 0

4) |𝑞 | = abs(𝑞) • 𝑠 = sign(𝑞)
• |𝑞 | = 𝑠𝑞

5)𝑚 = 𝑞 ≫ 𝑏 (𝑏 ≥ 0) • 𝐸𝑏 = 2
𝑏

• 0 ≤ 𝑞 −𝑚𝐸𝑏 ≤ 𝐸𝑏 − 1

6) 𝑧𝑑 = round(𝑞1/𝑞2)
• 𝑠 = sign(𝑞2)
• 0 ≤ 2𝑠𝑞1 − 2𝑠𝑧𝑑𝑞2 + 𝑠𝑞2

• 0 ≤ 𝑠𝑞2 + 2𝑠𝑧𝑑𝑞2 − 2𝑠𝑞1 − 1

7) 𝑧𝑒 = round(𝑐 · 2𝑒)

• 𝑠 = sign(𝑒)
• 𝐸 = 2

𝑠𝑒

• 𝐸+ = 𝑠 (𝑠 + 1)𝐸 + (2 + 𝑠) (1 − 𝑠)
• 𝐸− = 𝑠 (𝑠 − 1)𝐸 + (2 − 𝑠) (1 + 𝑠)
• 0 ≤ 2𝑐𝐸+ − 2𝑧𝑒𝐸

− + 𝐸− ≤ 2𝐸− − 1

8) 𝑧𝑠 = round(√𝑞) (𝑞 ≥ 0)
• 𝑠 = sign(𝑞)
• 0 ≤ 4𝑞 − 𝑠 (2𝑧𝑠 − 1)2 + (𝑠 − 1)𝑧2

𝑠

• 0 ≤ (2𝑧𝑠 + 1)2 − 4𝑞 − 1

9) 𝑧𝑓 = floor(𝑞1/𝑞2)
• 𝑠 = sign(𝑞2)
• 0 ≤ 𝑠𝑞1 − 𝑠𝑞2𝑧𝑓
• 0 ≤ 𝑠𝑞2 (𝑧𝑓 + 1) − 𝑠𝑞1 − 1

multiple the round constraint − 1

2
≤ 𝑐 ·2𝑒−𝑧𝑒 < 1

2
by 2𝐸− to remove

fractions. It yields the range relation:−𝐸− ≤ 2𝑐𝐸+−2𝑧𝑒𝐸
− ≤ 𝐸−−1.

For the round operation involving square roots, donated as 𝑧𝑠 =

round(√𝑞). We square the round constraint − 1

2
+𝑧𝑠 ≤

√
𝑞 < 1

2
+𝑧𝑠 ,

and then multiple it by 4. It yields the range relation: 𝑠 (2𝑧𝑠 − 1)2 +
(1 − 𝑠)𝑧2

𝑠 ≤ 4𝑞 ≤ (2𝑧𝑠 + 1)2 − 1, where 𝑠 = sign(𝑞) and the term

(1−𝑠)𝑧2

𝑠 is used to guarantee 𝑧𝑠 = 0 when 𝑞 = 0. This range relation

is equivalent to the two corresponding range relations in Table 1.

The uniqueness of all rounding results is guaranteed by the initial

constraint: − 1

2
≤ 𝑥 − 𝑧 < 1

2
, because there is only a single integer 𝑧

for which 𝑥 − 𝑧 is in the range [− 1

2
, 1

2
), regardless of 𝑥 .

Floor Operation. The floor operation, donated as 𝑧 = floor(𝑥),
approximates a given element 𝑥 to the largest integer less than or

equal to 𝑥 . It constrains the difference between the result 𝑧 and

the input 𝑥 being at most 1, satisfying the relation: 0 ≤ 𝑥 − 𝑧 < 1.

We give an example for the floor operation on fractions, donated

as 𝑧𝑓 = floor(𝑞1/𝑞2). It is constrained by the range relations: 0 ≤
𝑠𝑞1 − 𝑠𝑞2𝑧𝑓 and 0 ≤ 𝑠𝑞2 (𝑧𝑓 + 1) − 𝑠𝑞1 − 1. The logic of constraints

for the floor operation is the same as that for the round operation.

Remark: The Upper Bounds of Range Relations. Most range

relations listed in Table 1 are defined only by lower bounds. To align

with the requirement of our range proof, we need to determine their

upper bounds. In our setting, the elements we use have an inherent

range, as shown in the approximation method part of Section 6.2,

where each integer 𝑞 has |𝑞 | ≤ 𝐵𝑄 , and each floating-point number

𝑐 · 2𝑒 has |𝑐 | ≤ 𝐵𝐶 and 2
|𝑒 | ≤ 𝐵𝐸 . We set the upper bounds of

these range relations using the maximum values of their associated

elements. For example, the upper bound of 2𝑠𝑞1 − 2𝑠𝑧𝑑𝑞2 + 𝑠𝑞2 in

the round operation on fraction is 2𝐵𝑄 because
𝑞1

𝑞2

− 𝑧𝑑 < 1

2
, which

infers 2𝑠𝑞1 − 2𝑠𝑧𝑑𝑞2 ≤ 𝑠𝑞2 = |𝑞2 | ≤ 𝐵𝑄 , where 𝑠 = sign(𝑞2).

6.2 Constraints for Non-linear Layers
We employ the primitive operations to build the constraints for non-

linear layers, including ReLU, MaxPooling, and AvgPooling layers

of convolutional neural networks as well as Normalization, Softmax,

and GELU layers of transformer neural networks. Furthermore, our

framework offers the flexibility to extend to additional non-linear

layers, as the primitive operations serve as generic components for

constructing non-linear layers in neural networks.

Performing non-linear layers involves floating-point operations,

but floating-point operations are not ZKP-friendly. As a solution,

existing ZKP schemes [16, 38, 40, 60], including ours, opt for approx-

imating floating-point numbers to integers or fixed-point numbers.

In this section, we first present the approximation method and then

the constraints for each non-linear layer.

ApproximationMethod.The approximationmethod [24]maps

floating-point numbers to 𝑄-bit integers with the formula 𝑥 =

𝑆 (𝑞 − 𝑍), where 𝑥 is the original floating-point number, 𝑞 is the

𝑄-bit approximated integer, 𝑆 is a floating-point number called

scale, and 𝑍 is an integer called zero point. Every𝑄-bit integer is in

the inherent range [−𝐵𝑄 , 𝐵𝑄]. For example, 𝐵𝑄 = 127 when 𝑄 = 8.

The scale 𝑆 is adjustable to achieve the mapping from float-point

numbers to 𝑄-bit integers with minimal inaccuracy. In our setting,

all floating-point numbers are represented as the form 𝑐 · 2𝑒 with
|𝑐 | ≤ 𝐵𝐶 and 2

|𝑒 | ≤ 𝐵𝐸 . To simplify, we omit the discussion about

zero point 𝑍 . This is because, in our ZKP scheme, the prover and

the verifier can locally calculate the authentication code of 𝑞 −𝑍 by

themselves, using the homomorphic property of VOLE correlations.

ReLU Layer. ReLU layers apply an element-wise operation on

their input𝑥 to produce the output𝑦with the formula𝑦 = max(0, 𝑥).
In the approximation setting, both the input 𝑞𝑥 and the output 𝑞𝑦
share the same scale 𝑆 . The constraints for ReLU layers can be

built on the constraints for the max operation with the formula

𝑞𝑦 = max(0, 𝑞𝑥). The scale 𝑆 appears on both sides of the equation

and thus has been eliminated.

MaxPooling Layer.MaxPooling layers use a sliding kernel to

calculate themaximumvalue of the input covered by the kernel with

the formula𝑦 = max(𝑥1, ..., 𝑥𝑘), where 𝑘 is the kernel size. In the ap-
proximation setting, the input {𝑞𝑥1, ..., 𝑞𝑥𝑘 } and the output𝑞𝑦 share

the same scale 𝑆 . With the same logic of constraints for ReLU layers,

the constraints for MaxPooling layers are built on the constraints

for the max operation with the formula 𝑞𝑦 = max(𝑞𝑥1, ..., 𝑞𝑥𝑘).
AvgPooling Layer. AvgPooling layers calculate the average

value of the input covered by a sliding kernel with the formula

𝑦 = (∑𝑘
𝑖=1

𝑥𝑖)/𝑘 , where 𝑘 is the kernel size. In the approximation

setting, we are required to prove the relation between the input

and the output as 𝑞𝑦 = round(∑𝑘
𝑖=1

𝑞𝑥𝑖/𝑘). It is consistent with the

constraints for the round operation on fractions. The difference

is that the divisor 𝑘 is a public positive integer. Thus, we directly

assign the sign 𝑠 = +1 to the constraints for the round operation,

obtaining the range relation: 0 ≤ (∑𝑘
𝑖=1

2𝑞𝑥𝑖) − 2𝑘𝑞𝑦 + 𝑘 ≤ 2𝑘 − 1.

Normalization Layer. Normalization layers first calculates the

input’s mean 𝜇 = (∑𝑛
𝑖=1

𝑥𝑖)/𝑛 and variance 𝑣 = (∑𝑛
𝑖=1
(𝑥𝑖 − 𝜇)2)/𝑛,

where 𝑛 is the input size. Then, it applies an element-wise operation

on its input with the formula 𝑦𝑖 = (𝑥𝑖 − 𝜇)/𝜎 , where 𝜎 =
√
𝑣 . In the

approximation setting, the three elements {𝑞𝑥𝑖 , 𝑞𝜇 , 𝑞𝜎 } share the
same scale 𝑆𝑥 , and the output 𝑞𝑦𝑖 has an independent scale 𝑆𝑦 . The

normalization formula can be represented as 𝑆𝑦𝑞𝑦𝑖 = (𝑞𝑥𝑖 −𝑞𝜇)/𝑞𝜎 .
The output 𝑞𝑦𝑖 is constrained by the following relations:

(1) 𝑞𝜇 = round(∑𝑛
𝑖=1

𝑞𝑥𝑖/𝑛); (2) 𝑞𝑣 = round(∑𝑛
𝑖=1
(𝑞𝑥𝑖 − 𝑞𝜇)2/𝑛);

(3) 𝑞𝜎 = round(√𝑞𝑣); (4) 𝑞𝑡𝑖 = round((1/𝑆𝑦) (𝑞𝑥𝑖 − 𝑞𝜇));
(5) 𝑞𝑦𝑖 = round(𝑞𝑡𝑖/𝑞𝜎), where 𝑞𝑡𝑖 is an intermediate result.

The relations (1)(2)(5) can be converted to the constraints for

the round operations on fractions. The relation (3) is unfolded as

constraints for the round operation on square roots, and the relation

(4) involves the round operation on floating-point numbers.

Softmax Layer. Softmax layers perform an element-wise op-

eration on its input with the formula 𝑦𝑖 = exp(𝑥𝑖)/
∑𝑛

𝑗=1
exp(𝑥 𝑗),

where 𝑛 is the input size and exp denotes the exponent function

with the natural logarithm 𝑒 as the base. This formula is same as

𝑦𝑖 = exp(𝑥𝑖)/
∑𝑛

𝑗=1
exp(𝑥 𝑗), where each 𝑥𝑖 = 𝑥𝑖 −max(𝑥1, ..., 𝑥𝑛).

We decompose 𝑥𝑖 with 𝑥𝑖 = (− ln 2)𝑧𝑖 +𝑝𝑖 , where 𝑝𝑖 ∈ (− ln 2, 0]
and 𝑧 is a non-negative integer. Next, the approach in [37] is used

to approximate the function exp for the input 𝑝𝑖 ∈ (− ln 2, 0] with
a second-order polynomial 𝐿(𝑝𝑖) = 𝐴(𝑝𝑖 + 𝐵)2 + 𝐶 , where 𝐴 =

0.3585, 𝐵 = 1.353, and 𝐶 = 0.344. Each exponent result is calculated

by the formula 𝑡𝑖 = exp(𝑥𝑖) = 2
−𝑧𝑖 exp(𝑝𝑖) ≈ 𝐿(𝑝𝑖) ≫ 𝑧𝑖 .

In the approximation setting, the scales of 𝑝𝑖 and 𝑡𝑖 are constant

floating-point numbers with 𝑆𝑝 = ln 2/𝐵𝑄 and 𝑆𝑡 = (𝐴𝐵2 +𝐶)/𝐵𝑄 ,

where 𝐵𝑄 is the maximum value of 𝑄-bit approximated integers.

The output 𝑞𝑦𝑖 is constrained by the six relations:

(1) 𝑞𝑥𝑖 = 𝑞𝑥𝑖 −max(𝑞𝑥1, ..., 𝑞𝑥𝑘); (2) 𝑧𝑖 = floor((−𝑆𝑥/ln 2)𝑞𝑥𝑖);
(3) 𝑞𝑝𝑖 = rd((𝑆𝑥/𝑆𝑝)𝑞𝑥𝑖) + 𝐵𝑄𝑧𝑖 ; (4) 𝑡𝑖 = rd(𝐿(𝑆𝑝𝑞𝑝𝑖)/𝑆𝑡) ≫ 𝑧𝑖 ;

(5) 𝑞𝑚𝑖 = rd((1/𝑆𝑦)𝑡𝑖); (6) 𝑞𝑦𝑖 = rd(𝑞𝑚𝑖/
∑𝑛

𝑗=1
𝑡 𝑗),

where rd is abbreviation of round and 𝑞𝑚𝑖 is an intermediate result.

The above relations all involve primitive non-linear operations

in Table 1 and can be converted to the corresponding constraints.

GELU Layer. GELU layers apply an element-wise operation

on its input with the formula 𝑦 = 1

2
𝑥 (1 + erf (𝑥/

√
2)), where erf

denotes the Gauss error function [32]. The function erf involves
the integration operation, which is not computationally efficient.

We employ the approach in [37] to approximate the function

erf by the formula 𝑡 = erf (𝑥) ≈ sign(𝑥) · 𝐿(min(|𝑥 |,−𝐵)), where
𝐿(𝑥) = 𝐴(𝑥+𝐵)2+1 is a second-order polynomial with𝐴 = −0.2888

and 𝐵 = −1.769. In the approximation setting, using above equation,

the output 𝑞𝑦 is constrained by the relations:

(1) 𝑠𝑥 = sign(𝑞𝑥); (2) |𝑞𝑥 | = abs(𝑞𝑥); (3) 𝑧𝐵 = floor(−
√

2𝐵/𝑆𝑥);
(4) 𝑞𝑚𝑖𝑛 = min(|𝑞𝑥 |, 𝑧𝐵); (5) 𝑡 = 𝑠𝑥 · round(𝐿((𝑆𝑥/

√
2)𝑞𝑚𝑖𝑛));

(6) 𝑞𝑦 = round((𝑆𝑥/2𝑆𝑦)𝑞𝑥 (1 + 𝑡)).
Similarly, the above relations can be converted to the constraints

for the corresponding primitive non-linear operations in Table 1.

7 ZERO-KNOWLEDGE NEURAL NETWORKS
In this section, we put everything together to provide our ZKPs

for neural networks. For an intuitive description, we present it

in the Machine-Learning-as-a-Service (MLaaS) setting, where our

work enables the service provider (prover) to convince the customer

(verifier) that its prediction outcomes are correctly calculated from

a particular neural network model, while preserving the model’s

privacy. Below, we introduce the crucial parts of our work.

Overall Workflow. Our work consists of three steps to provide

the service of verifiable prediction. First, we follow the commit-and-

prove method with the authentication code as a form of commit-

ment. It requires the service provider to authenticate a well-trained

neural network model for its customer. Second, upon receiving

input, the service provider employs the authenticated model to

compute the prediction result and return it to the customer. Third,

the service provider proves to its customer that the prediction result

is indeed generated from the authenticated model.

Basic Blocks. Our work adopts the VOLE-based proving back-

end with the ideal functionality shown in Figure 4. Specifically, we

employ the recent LPN-based VOLE protocols [5, 6, 59] as the foun-

dation to authenticate the parameters of neural network models.

We utilize previous works [60, 63] to provide the polynomial proof.

The range and lookup proofs are designed by ourselves, shown in

Section 4 and Section 5, respectively. These components are com-

patible with each other under our proving framework so that we

can put them together to build our ZKPs for neural networks.

Neural Networks. Our work provides the service of verifiable

prediction for convolutional and transformer neural networks [45,

56]. In addition, the modular design in our framework offers the

flexibility for expansion to more neural networks.

Existing ZKP schemes [16, 38, 40, 60], including ours, opt for

approximating floating-point numbers to integers or fixed-point

numbers, thereby avoiding floating-point operations that are not

ZKP-friendly. To minimize the loss of accuracy due to approxima-

tion, our work is designed to be compatible with existing approxi-

mated neural networks that have high accuracy.

For convolutional neural networks, we employ multiple classic

approximated networks in PyTorch [46], a prominent library for

machine learning, where the method proposed in [34] is used to ap-

proximate models. For transformer neural networks, we employ the

GPT-2 model [49] provided by OpenAI [42] and utilize the method

proposed in IBert [37] to approximate models. These approximated

networks maintain similar accuracy comparable to the original

networks, with evaluation details outlined in Section 8.4.

Proving Procedure. Neural networks comprise a sequence of

layers, where each layer processes its input to produce the output.

Except for the first layer’s input and the last layer’s output, inter-

mediate results of other layers are secret to verifiers. Therefore,

the prover should authenticate these intermediate results, which

enables the subsequent proving procedure to process without leak-

ing these intermediate results. Next, we aim to prove the correct

calculation of each layer in neural networks. Our proving frame-

work works under the universal composition security model [9],

which helps us to construct our ZKPs for the entire network by

compositing the proving procedure for each layer.

The proving procedure of linear layers, such as convolutional

and fully-connected layers, has been explored in previous works

[16, 17, 38, 40]. In essence, the calculation of these linear layers

is fundamentally matrix multiplication. Therefore, we adopt the

optimized polynomial proof in Mystique [60], designed for matrix

multiplication, to prove the correct calculation of linear layers.

The proving procedure of non-linear layers is performed by

constraining these non-linear layers with range and exponent re-

lations, as detailed in Section 6. Next, we prove the satisfaction of

these relations using our range and lookup proofs, presented in

Section 4 and Section 5, respectively. Some non-linear layers, such

as MaxPooling, exhibit non-linear and linear characteristics. Thus,

they are additionally subject to constraints via polynomial relations.

We prove the satisfaction of these polynomial relations using the

polynomial proof proposed in Quicksilver [63].

8 EVALUATION
In this section, we present a comprehensive evaluation of our ZKP

framework for neural networks.

8.1 Experimental Setup
Software.Ourwork is implemented in C++ and the source code can

be found in [69].. We utilize the libff library [39] to provide the finite

field operations and employ a 254-bit field with the prime order

𝑝 = 21888242871839275222246405745257275088548364400416034

343698204186575808495617. We use OpenMP [44] to implement

multi-core parallelism. For evaluations performed in this paper,

we achieve the computational security parameter 𝜆 = 128 and the

statistical security parameter 𝜌 = 40.

Hardware. Our evaluations are performed in the machine, which

is equipped with an AMD Ryzen 3700X 8-Core CPU and 32GB of

memory. The memory resource is not the bottleneck for our scheme,

even when evaluating large-scale neural networks. All experiments

are performed in a network environment with a bandwidth of 500

Mbps and a latency of around 50ms.

8.2 Evaluating Range and Lookup Proofs
We benchmark the performance of our range and lookup proofs,

where prover time and verifier time refer to the local computational

time of two parties. The time for data transfer between two parties

is listed separately.We specify that the total runtime includes prover

time, verifier time, and the time for data transfer.

Range proof. Table 2 gives the evaluation results of range proofs.

The experiment benchmarks the performance for proving that 𝑛

elements are in the range [0, 224], where 𝑛 varying across 2
10

to 2
18
.

We compare our scheme with two different types of range proofs.

Bulletproofs [8] is the range proof based on the technology of bit

decomposition, and Lasso [51] is a state-of-the-art work for the

lookup proof that can also be applied to range checking.

As shown in Table 2, the computational costs of our range proof

are small. It only takes 287ms for the prover and 142ms for the veri-

fier to complete proving 2
18

elements. The prover time and verifier

time of our scheme are over 847.0× and 75.3× shorter than Bullet-

proofs, respectively. The advantage comes from two perspectives.

On the one hand, our scheme employs the three-square decom-

position technology, which introduces fewer constraints than bit

decomposition in Bulletproofs. On the other hand, we optimize

the searching method [47] to efficiently identify three squares re-

quired in our scheme, removing the performance bottleneck when

three-square decomposition is used in the VOLE proving backend.

Lasso [51] is a very recent work. The results show that the com-

putational time of our scheme is up to 22.2× shorter than that of

Table 2: The performance of range proofs

Num. Schemes Prover Verifier Proof Size Transfer

2
10

Bulletproofs 5.37s 0.39s 0.033MB 101ms

Lasso 141ms 23.6ms 0.062MB 152ms

Ours 6.34ms 5.18ms 0.117MB 202ms

2
14

Bulletproofs 85.8s 6.11s 0.513MB 307ms

Lasso 484ms 49.6ms 0.165MB 203ms

Ours 29.2ms 12.7ms 1.831MB 415ms

2
18

Bulletproofs 1358s 96.7s 8.005MB 540ms

Lasso 2175ms 108ms 0.558MB 308ms

Ours 287ms 142ms 29.33MB 955ms

Table 3: The performance of lookup proofs

Num. Schemes Prover Verifier Proof Size Transfer

2
10

Plookup 78.2ms 4.47ms 960B 54.6ms

Ours 4.00ms 1.23ms 0.096MB 153ms

2
14

Plookup 1034ms 6.40ms 960B 55.9ms

Ours 63.7ms 20.4ms 1.501MB 367ms

2
18

Plookup 123.1s 31.4ms 960B 58.3ms

Ours 1066ms 379ms 24.43MB 872ms

Lasso. However, our scheme introduces more communication over-

heads. This is because the commitments used in our scheme are

VOLE correlations, whose communication complexity is linear to

the number of committing elements. It is greater than the polyno-

mial commitments [50] with sublinear communication complexity.

Overall, the total runtime of ours is still competitive with Lasso.

We can achieve at most 1.87× speedup over Lasso.

Lookup proof. Table 3 shows the evaluation results of lookup

proofs. In our work, they serve to prove the relation between two

field elements, 𝑒 and 𝐸, with the constraint that 𝐸 is the 𝑒-th power

of 2. The pair of two elements appearing in the exponent table,

shown in Figure 2, infers their exponent relation. Our experiment

benchmarks the performance for proving that 𝑛 pairs are in the

exponent table, where 𝑛 varies across 2
10

to 2
18
.

We compare our work with Plookup [19], a lookup scheme suit-

able for small lookup tables. The proof size of Plookup is constant

because it employs KZG commitments [36] with constant commu-

nication complexity. However, KZG commitments would introduce

significant computational overheads. As shown in Table 3, the

prover time of ours is at most 115.5× shorter than that of Plookup.

Although our work has larger communication overheads, the total

runtime of ours still achieves up to 53.2× speedup over Plookup.

8.3 Evaluating Non-linear Layer Proofs
This section presents the evaluation results of our ZKPs for non-

linear layers. We compare our work with another two VOLE-based

ZKP schemes. [29] is a concurrent work with ours. As their im-

plementation has not been open-sourced, we use the evaluation

results from their literature to perform comparisons. For fairness,

Table 4: The performance of non-linear layer proofs

Layers Schemes Prover Verifier Proof Size Transfer

ReLU

Mystique 194s
†

58.2MB 1.54s

Concurrent 1.91s 30.1MB 0.99s

Ours 0.28s 0.14s 18.3MB 0.74s

Softmax

Mystique 14050s 3972MB 77.29s

Concurrent 78.3s 816MB 16.16s

Ours 24.1s 11.9s 1166MB 22.95s

GELU

Mystique 2712s 655MB 13.07s

Concurrent 32.7s 338MB 6.92s

Ours 2.31s 1.10s 99.6MB 2.30s

Norm.

Mystique 9643s 2220MB 43.32s

Concurrent 176s 1787MB 34.98s

Ours 9.69s 4.76s 394MB 8.02s

†
The complex synchronization in their implementations makes

it difficult to timekeep the prover and the verifier separately.

we configure the same setting as in their literature to execute our

implementation on AWS c5.9xlarge instance with Intel Xeon 8000

series CPUs. Mystique [60] is used as the common baseline of the

concurrent work and ours. In our experiments, we demonstrated

the performance of ZKP schemes on four classic non-linear layers:

ReLU, Softmax, GELU, and Normalization Layers.

As shown in Table 4, for separated non-linear layers, our work

significantly reduces computational and communication costs, achiev-

ing over 168.6× (up to 477.2×) speedup compared to Mystique,

which employs the traditional bit decomposition method to gen-

erate non-linear layer proofs. Our work uses range and exponent

relations to constrain the correct calculation of non-linear layers,

significantly reducing the number of required relations compared

to the relations introduced by bit decomposition. Moreover, our

work is competitive to the concurrent work [29]. Especially for Nor-

malization layers, we achieve 12.2× lower computational costs and

4.54× lower communication costs. Note that the concurrent work

[29] cannot directly deploy their non-linear layer proofs into neural

networks due to the lack of compatibility with existing networks.

8.4 Evaluating Neural Network Proofs
In this section, we evaluate the performance of our ZKP framework

for convolutional and transformer neural networks.

Setup. For convolutional neural networks, we evaluate our ZKPs on
three well-known architectures. They are VGG-11 [53], ResNet-50

[30], and ResNet-101 [30]. Among them, ResNet-101 is the largest

model with around 44.5 million parameters. We train these models

using Pytorch [46] with the 8-bit approximation technique [34].

These well-trained models are fully compatible with our ZKP frame-

work. In our experiments, we use the CIFAR-10 dataset [12], which

contains 10 classes of images, and the image size is 32 × 32 × 3.

For transformer neural networks, we evaluate our ZKP scheme

on GPT-2 [49], which is a large language model with around 117

million parameters. In our experiments, we utilize the GPT-2 model

provided by OpenAI [42] and employ the method proposed in IBert

[37] to approximate the model using 16-bit integers. We use data

Table 5: The performance of ZKP schemes for convolutional
and transformer neural networks

Models Schemes Prover Verifier Proof Size Transfer

VGG-11

zkCNN 52.8s 8.33s 45.9KB 0.15s

Ours 1.62s 0.57s 65.9MB 1.66s

ResNet-50

Mystique 403s
†

1.27GB 25.59s

Ours 4.22s 1.75s 205MB 4.35s

ResNet-101

Mystique 617s 1.98GB 39.69s

Ours 6.65s 2.85s 310MB 6.37s

GPT-2

ZKML 2.84h 24.43s 15.6KB 0.10s

Ours 136.1s 62.85s 4.37GB 88.17s

†
The complex synchronization in their implementation makes it

difficult to timekeep the prover and the verifier separately.

Table 6: The performance of our ZKP scheme for GPT-2

Layers Prover Verifier Proof Size Transfer

Norm. 7.87s 4.29s 298MB 6.15s

Softmax 16.45s 8.23s 667MB 13.28s

GELU 74.56s 36.39s 2281MB 44.49s

Linear 37.26s 13.94s 1235MB 24.25s

Total 136.1s 62.85s 4481MB 88.17s

from the dataset [43] provided by OpenAI as the input. This dataset

contains various English sentences.

Efficiency. For convolutional neural networks, we compare our

work with two state-of-the-art ZKP schemes. zkCNN [40] is a

scheme based on the GKR protocol [25]. Its open-source imple-

mentation provides the proof for VGG-11. Mystique [60] is a VOLE-

based ZKP scheme like ours, and its open-source implementation

provides the proofs for ResNet-50 and ResNet-101. Other previous

works [16, 35, 38] have greater computational costs than the above

two schemes, so we skip the comparisons with them.

As shown in Table 5, the computational costs of our scheme are

small in practice. It only takes 1.62s for the prover and 0.57s for the

verifier to complete the proof for VGG-11. Compared to zkCNN,

our scheme has larger communication overheads but smaller com-

putational costs. The total runtime of our scheme achieves 15.9×
speedup. Compared to Mystique, a VOLE-based ZKP scheme like

ours, we have advantages in both computational and communi-

cation costs. The overall runtime of our scheme achieves 41.5×
speedup for ResNet-50 and achieves 41.4× for ResNet-101. We

count the prover and verifier time together for Mystique in Table 5

because the complex synchronization operations in its implemen-

tation make it difficult to count them individually.

For transformer neural networks, we compare our work with

the concurrent work ZKML [10], a ZKP scheme that also supports

transformer neural networks. Executing ZKML requires over 500GB

of memory. Therefore, we perform ZKML and our implementation

on Alibaba Cloud ecs.re4.20xlarge instance [1] with 960GB memory

and 80 vCPU cores. Moreover, in order to be consistent with the

experimental setting of ZKML, we use English sentences of length

64 as input to GPT-2. zkLLM [54] is another concurrent work that

Table 7: The accuracy of convolutional neural networks

Models Original Mystique zkCNN Ours

VGG-11 91.73% / 88.70% 91.70%

ResNet-50 93.96% 93.94% / 94.00%

ResNet-101 93.83% 93.81% / 93.79%

requires GPU acceleration. Due to the different requirements in

hardware devices, we cannot make a fair comparison with zkLLM.

Table 5 shows that our work can generate a proof for GPT-2 in a

total of 287.1 seconds, achieving 35.7× speedup over ZKML. Table

6 gives evaluation results of our ZKP scheme for each layer type,

including GELU, Softmax, Normalization, and other linear layers.

We notice that the proof for the linear layers only takes 26.3% of the

total runtime. This reflects that optimizing the proof of non-linear

layers in complex neural networks is an important step towards

improving the overall performance.

Accuracy. For convolutional neural networks, we evaluate the

accuracy of the neural network models used in these ZKP schemes

on the CIFAR-10 dataset [12]. As shown in Table 7, both Mysitique

[60] and ours are compatible with the high-accuracy approximated

neural networks, and we almost achieve the same accuracy as the

original model without approximation. The accuracy difference

between our scheme and the original networks is within 0.04%.

For transformer neural networks, we evaluate the cosine simi-

larity between the outputs of the original GPT-2 model provided

by OpenAI [42] and the outputs of the approximated GPT-2 model

that our ZKP scheme is compatible with. We execute both models

with the same inputs. The evaluation results show that the average

cosine similarity of the outputs from two models reaches 99.95%.

REFERENCES
[1] Alibaba. 2024. Alibaba cloud service. https://www.alibabacloud.com

[2] Amazon. 2024. Amazon Machine Learning Services. https://docs.aws.amazon.

com/whitepapers/latest/aws-overview/machine-learning.html

[3] Carsten Baum, Samuel Dittmer, Peter Scholl, and Xiao Wang. 2023. Sok: vector

OLE-based zero-knowledge protocols. Designs, Codes and Cryptography 91, 11

(2023), 3527–3561.

[4] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and Peter Scholl. 2021.

Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part IV 41. Springer, 92–122.

[5] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing

vector OLE. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 896–912.

[6] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. 2019. Efficient two-round OT extension and silent non-

interactive secure computation. In Proceedings of the 2019 ACM SIGSACConference
on Computer and Communications Security. 291–308.

[7] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:

Towards privacy in a smart contract world. In International Conference on Finan-
cial Cryptography and Data Security. Springer, 423–443.

[8] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and

more. In 2018 IEEE symposium on security and privacy (SP). IEEE, 315–334.
[9] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[10] Bing-Jyue Chen, Suppakit Waiwitlikhit, Ion Stoica, and Daniel Kang. 2024. ZKML:

AnOptimizing System forML Inference in Zero-Knowledge Proofs. In Proceedings
of the Nineteenth European Conference on Computer Systems. 560–574.

[11] Miranda Christ, Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Deepak

Maram, Arnab Roy, and Joy Wang. 2024. SoK: Zero-Knowledge Range Proofs.

Cryptology ePrint Archive (2024).
[12] CIFAR-10. 2024. A collection of images that are commonly used to train machine

learning and computer vision algorithms. https://www.cs.toronto.edu/~kriz/

cifar.html

[13] Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, and Michael Reichle. 2022.

Sharp: Short relaxed range proofs. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security. 609–622.

[14] Geoffroy Couteau, Michael Klooß, Huang Lin, andMichael Reichle. 2021. Efficient

range proofs with transparent setup from bounded integer commitments. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 247–277.

[15] Liam Eagen, Dario Fiore, and Ariel Gabizon. 2022. cq: Cached quotients for fast

lookups. Cryptology ePrint Archive (2022).
[16] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021. Zen:

An optimizing compiler for verifiable, zero-knowledge neural network inferences.

Cryptology ePrint Archive (2021).
[17] Boyuan Feng, Zheng Wang, Yuke Wang, Shu Yang, and Yufei Ding. 2024. ZENO:

A Type-based Optimization Framework for Zero Knowledge Neural Network

Inference. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1. 450–464.

[18] Ariel Gabizon and Dmitry Khovratovich. 2022. flookup: Fractional decomposition-

based lookups in quasi-linear time independent of table size. Cryptology ePrint
Archive (2022).

[19] Ariel Gabizon and Zachary J Williamson. 2020. plookup: A simplified polynomial

protocol for lookup tables. Cryptology ePrint Archive (2020).
[20] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk: Per-

mutations over lagrange-bases for oecumenical noninteractive arguments of

knowledge. Cryptology ePrint Archive (2019).
[21] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mah-

moody, Guru-Vamsi Policharla, and Mingyuan Wang. 2023. Experimenting with

zero-knowledge proofs of training. In Proceedings of the 2023 ACM SIGSAC Con-
ference on Computer and Communications Security. 1880–1894.

[22] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang. 2022. Succinct

Zero Knowledge for Floating Point Computations. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1203–1216.

[23] Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Yinuo Zhang. 2022. Succinct

zero knowledge for floating point computations. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1203–1216.

[24] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and

Kurt Keutzer. 2022. A survey of quantization methods for efficient neural network

inference. In Low-Power Computer Vision. Chapman and Hall/CRC, 291–326.

[25] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. 2015. Delegating

computation: interactive proofs for muggles. Journal of the ACM (JACM) 62, 4
(2015), 1–64.

[26] Google. 2024. Innovative AI and machine learning products, solutions, and

services powered by Google’s research and technology. https://cloud.google.

com/products/ai

[27] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In

Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II 35. Springer, 305–326.

[28] Awni Y Hannun, Pranav Rajpurkar, Masoumeh Haghpanahi, Geoffrey H Tison,

Codie Bourn, Mintu P Turakhia, and Andrew Y Ng. 2019. Cardiologist-level

arrhythmia detection and classification in ambulatory electrocardiograms using

a deep neural network. Nature medicine 25, 1 (2019), 65–69.
[29] Meng Hao, Hanxiao Chen, Hongwei Li, Chenkai Weng, Yuan Zhang, Haomiao

Yang, and Tianwei Zhang. 2024. Scalable Zero-knowledge Proofs for Non-linear

Functions in Machine Learning. (2024).

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[31] Miao He and David He. 2017. Deep learning based approach for bearing fault

diagnosis. IEEE Transactions on Industry Applications 53, 3 (2017), 3057–3065.
[32] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).

arXiv preprint arXiv:1606.08415 (2016).
[33] Rahat Iqbal, Tomasz Maniak, Faiyaz Doctor, and Charalampos Karyotis. 2019.

Fault detection and isolation in industrial processes using deep learning ap-

proaches. IEEE Transactions on Industrial Informatics 15, 5 (2019), 3077–3084.
[34] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and

training of neural networks for efficient integer-arithmetic-only inference. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
2704–2713.

[35] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. 2022. Scaling up Trust-

less DNN Inference with Zero-Knowledge Proofs. arXiv preprint arXiv:2210.08674
(2022).

https://www.alibabacloud.com
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/machine-learning.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/machine-learning.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://cloud.google.com/products/ai
https://cloud.google.com/products/ai

[36] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings
16. Springer, 177–194.

[37] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.

2021. I-bert: Integer-only bert quantization. In International conference on machine
learning. PMLR, 5506–5518.

[38] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vcnn: Verifiable

convolutional neural network based on zk-snarks. Cryptology ePrint Archive
(2020).

[39] Libff. 2024. A C++ library for finite fields and elliptic curves. https://github.com/

scipr-lab/libff

[40] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. ZkCNN: Zero knowledge proofs

for convolutional neural network predictions and accuracy. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security.
2968–2985.

[41] RiccardoMiotto, FeiWang, ShuangWang, Xiaoqian Jiang, and Joel T Dudley. 2018.

Deep learning for healthcare: review, opportunities and challenges. Briefings in
bioinformatics 19, 6 (2018), 1236–1246.

[42] Openai. 2024. An AI research and deployment company whose mission is to

ensure that artificial general intelligence benefits all of humanity. https://openai.

com

[43] Openai. 2024. Dataset of GPT-2 outputs for research in detection, biases, and

more. https://github.com/openai/gpt-2-output-dataset/tree/master

[44] OpenMP. 2024. OpenMP: A framework is to standardize directive-based multi-

language high-level parallelism that is performant, productive and portable.

https://www.openmp.org

[45] Keiron O’Shea and Ryan Nash. 2015. An introduction to convolutional neural

networks. arXiv preprint arXiv:1511.08458 (2015).
[46] Pytorch. 2024. A fast, flexible experimentation and efficient production through a

user-friendly front-end, distributed training, and ecosystem of tools and libraries.

https://pytorch.org

[47] Michael O Rabin and Jeffery O Shallit. 1986. Randomized algorithms in number

theory. Communications on Pure and Applied Mathematics 39, S1 (1986), S239–
S256.

[48] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.

Improving language understanding by generative pre-training. (2018).

[49] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[50] Srinath Setty. 2020. Spartan: Efficient and general-purpose zkSNARKs without

trusted setup. In Annual International Cryptology Conference. Springer, 704–737.
[51] Srinath Setty, Justin Thaler, and Riad Wahby. 2023. Unlocking the lookup singu-

larity with Lasso. Cryptology ePrint Archive (2023).
[52] Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese, Natalie

Dullerud, Sébastien Gambs, Nicolas Papernot, Xiao Wang, and Adrian Weller.

2022. Confidential-PROFITT: confidential PROof of fair training of trees. In The
Eleventh International Conference on Learning Representations.

[53] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[54] Haochen Sun, Jason Li, and Hongyang Zhang. 2024. zkLLM: Zero Knowledge

Proofs for Large Language Models. (2024).

[55] Haochen Sun and Hongyang Zhang. 2023. zkDL: Efficient Zero-Knowledge

Proofs of Deep Learning Training. arXiv preprint arXiv:2307.16273 (2023).
[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[57] Nan Wang and Sid Chi-Kin Chau. 2022. Flashproofs: Efficient zero-knowledge

arguments of range and polynomial evaluation with transparent setup. In Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. Springer, 219–248.

[58] Nan Wang, Sid Chi-Kin Chau, and Dongxi Liu. 2023. SwiftRange: A Short and

Efficient Zero-Knowledge Range Argument For Confidential Transactions and

More. Cryptology ePrint Archive (2023).
[59] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2021. Wolverine: fast,

scalable, and communication-efficient zero-knowledge proofs for boolean and

arithmetic circuits. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
1074–1091.

[60] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.

Mystique: Efficient conversions for {Zero-Knowledge} proofs with applications

to machine learning. In 30th USENIX Security Symposium (USENIX Security 21).
501–518.

[61] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.

2020. Transformers: State-of-the-art natural language processing. In Proceedings
of the 2020 conference on empirical methods in natural language processing: system
demonstrations. 38–45.

[62] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct zero-knowledge proofs with optimal prover

computation. In Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part III 39. Springer, 733–764.

[63] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. Quicksilver:

Efficient and affordable zero-knowledge proofs for circuits and polynomials over

any field. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 2986–3001.

[64] Yibin Yang and David Heath. 2023. Two ShufflesMake a RAM: Improved Constant

Overhead Zero Knowledge RAM. Cryptology ePrint Archive (2023).
[65] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nit-

ulescu, and Mark Simkin. 2022. Caulk: Lookup arguments in sublinear time. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 3121–3134.

[66] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla

Rafols. 2022. Baloo: Nearly optimal lookup arguments. Cryptology ePrint Archive
(2022).

[67] zcash. 2024. The Halo2 zero-knowledge proving system. https://github.com/

zcash/halo2

[68] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. 2021.

Veriml: Enabling integrity assurances and fair payments for machine learning

as a service. IEEE Transactions on Parallel and Distributed Systems 32, 10 (2021),
2524–2540.

[69] zkNN. 2024. A Efficient and Extensible ZKP framework for neural networks.

https://anonymous.4open.science/r/zknn-D209

A UNIVERSAL COMPOSITION
In this paper, all our protocols are proven in the Universal Com-

posability (UC) framework [9], which is a general-purpose security

model for the analysis of cryptographic protocols. It uses ideal

functionality as a benchmark for describing how a cryptographic

protocol should behave.

Formally, we say a protocol Π UC-realizes an ideal functionality

F if for any adversary A, there exists a simulator S such that for

any environmentZ, the output distribution ofZ is indistinguish-

able in two worlds where the parties execute protocol Π with the

adversary A and where the parties perform the ideal functionality

F with the simulator S. Moreover, we prove the security of our

protocols in the G-hybrid model, where it allows two parties that

execute the protocol Π in the real world to additionally access the

command in another ideal functionality G.

B SECURITY PROOF OF THEOREM 4.1
Proof. First, we consider the case where both the prover and the

verifier execute ΠRange honestly with all 𝑥𝑖 being in the range

[0, 𝐵] for 𝑖 ∈ [1, 𝑛]. In this case, we show that the verifier would

output true except for the probability at most
𝑅
𝐿
, which infers the

correction error of ΠRange is at most
𝑅
𝐿
.

Correctness: Due to each 𝑥𝑖 ∈ [0, 𝐵], we can identify {𝑦𝑖 𝑗 } 𝑗∈[1,3]
that satisfy 4𝑥𝑖 (𝐵−𝑥𝑖)+1 =

∑
3

𝑗=1
𝑦𝑖 𝑗

2
for 𝑖 ∈ [1, 𝑛], and𝑦𝑖 𝑗 are all in

the range [0, 𝐵]. Therefore, following the protocol ΠRange, it passes

the first check of verifier with all prover’s responses {𝜁𝑘 }𝑘∈[1,𝑅]
being in the range [4𝑛𝐵, 4𝑛𝐵𝐿], unless at least onemask procedure

performed by prover outputs ⊥. Based on Lemma 3.2, the event

that each mask procedure outputs ⊥ is independent and occurs

with probability at most
1

𝐿
. Thus, the probability that there exists

𝜁𝑘 = ⊥ is at most 1 − (1 − 1

𝐿
)𝑅 ≤ 𝑅

𝐿
. For the second check and

the third check, it succeeds obviously when the prover performs

honestly. Overall, the honest verifier would output true except for
the probability at most

𝑅
𝐿
. □

https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libff
https://openai.com
https://openai.com
https://github.com/openai/gpt-2-output-dataset/tree/master
https://www.openmp.org
https://pytorch.org
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://anonymous.4open.science/r/zknn-D209

Next, we consider two cases where the prover is malicious or

the verifier is malicious. In each case, we construct a simulator S,
which is given access to the (range) command of FauthZK and runs

an adversary A as a subroutine when emulating other commands

of FauthZK. In both cases, we show that it cannot distinguish the

real-world execution and the ideal-world execution with statistical

error at most max(𝑅
𝐿
, 1

𝑝 +
1

2
𝑅).

Before the protocol ΠRange begins, P andV have authenticated

𝑥𝑖 ∈ F𝑝 by performing the (auth) command of FauthZK. During this
procedure, S records 𝑥𝑖 and its tags sent by the malicious prover

or records the local keys sent by the malicious verifier.

Malicious prover. S interacts with adversary A and the (range)
command of FauthZK as follows:

(1) Whenever S receives ⊥ from A, S sends abort to FauthZK
which sends false to the honest verifier and aborts.

(2) S emulates (auth) command of FauthZK in Step (2) of the pro-

tocol ΠRange. S records {𝑦𝑖 𝑗 }𝑖∈[1,𝑛], 𝑗∈[1,3] , {𝑚𝑘 }𝑘∈[1,𝑅] , and
their tags that are sent to FauthZK by A.

(3) S randomly samples challenges of the shortness tests 𝛾𝑖 𝑗𝑘 ←
[0, 1] for 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [0, 3], 𝑘 ∈ [1, 𝑅], and send them to A.

(4) S receives the responses 𝜁𝑘 fromA, and if any 𝜁𝑘 ∉ [4𝑛𝐵, 4𝑛𝐵𝐿]
for 𝑖 ∈ [1, 𝑅], S sends abort to FauthZK.

(5) S emulates (poly) command of FauthZK in ΠRange, where S
checks

∑
3

𝑗=1
𝑦2

𝑖 𝑗
− 4𝑥𝑖 (𝐵 −𝑥𝑖) − 1 = 0 for 𝑖 ∈ [1, 𝑛]. If any above

check fails, S sends abort to FauthZK.
(6) S computes the tags of [𝑧𝑘] :=

∑𝑛
𝑖=1

∑
3

𝑗=0
𝛾𝑖 𝑗𝑘 [𝑦𝑖 𝑗] + [𝑚𝑘] −𝜁𝑘

for 𝑘 ∈ [1, 𝑅] with 𝑦𝑖0 := 𝑥𝑖 . Next, S uses them to check the

correctness of the tag sent by A in the CheckZero procedure.
If any check fails, S sends abort to FauthZK.

(7) S sends the (range, {id𝑥
𝑖
}𝑖∈[1,𝑛] , 𝐵) to FauthZK, which sends

true to the honest verifier if 𝑥𝑖 is in the range [0, 𝐵] for 𝑖 ∈ [1, 𝑛],
or sends false to the honest verifier otherwise.

Clearly, the view of the adversary A is simulated perfectly by S,
except for the CheckZero procedure. In CheckZero procedure, if

the adversary A performs honestly and outputs the tag on zero,

then the event that S check the correctness in the ideal world is

equivalent to the event that the honest verifier check the correctness

in the real world. Otherwise, the honest verifier outputs true only
when the adversary can randomly hit the global key Δ ∈ F𝑝 with

probability at most
1

𝑝 in the real world. In the ideal world, the

honest verifier definitely outputs true.
Conditioned on the same view of A, we remain to get the prob-

ability that the honest verifier outputs true in the real world when

there exists 𝑥𝑖 ∉ [0, 𝐵]. Based on Lemma 3.3, after performing 𝑅

repetitions of the shortness tests, all elements of {𝑥𝑖 }𝑖∈[1,𝑛] and
{𝑦𝑖 𝑗 }𝑖∈[1,𝑛], 𝑗∈[1,3] are in the range [−4𝑛𝐵𝐿, 4𝑛𝐵𝐿], except for the
probability at most

1

2
𝑅 . This ensures that 𝑥𝑖 and {𝑦𝑖 𝑗 } 𝑗∈[1,3] are

small enough that wrapping around, in the equation 4𝑥𝑖 (𝐵−𝑥𝑖)+1 =∑
3

𝑗=1
𝑦𝑖 𝑗

2
, does not occur if 4𝐾2+4𝐵𝐾+1 ≤ 𝑝−1

2
and𝐾 = (4𝑛𝐵−1)𝐿.

This is because |4𝑥𝑖 (𝐵−𝑥𝑖)+1| ≤ 4𝐾2+4𝐵𝐾+1 and

∑
3

𝑗=1
𝑦2

𝑖 𝑗
≤ 3𝐾2

.

Therefore, 4𝑥𝑖 (𝐵 −𝑥𝑖) + 1 =
∑

3

𝑗=1
𝑦𝑖 𝑗

2
hold over the integer setting,

which infers 𝑥𝑖 ∈ [0, 𝐵] based on Lemma 3.1.

Overall, it cannot distinguish the real-world execution and the

ideal-world execution with statistical error at most
1

𝑝 +
1

2
𝑅 . □

Malicious verifier. S interacts with adversary A and the (range)
command of FauthZK as follows:

(1) S sends (range, {id𝑥
𝑖
}𝑖∈[1,𝑛] , 𝐵) toFauthZK, which in turn replies

with either true or false based on whether all {𝑥𝑖 }𝑖∈[1,𝑛] are in
the range [0, 𝐵]. If FauthZK responds false, S sends ⊥ toA, and

then outputs false.
(2) S sets 𝑦𝑖1 := 0, 𝑦𝑖2 := 0 and 𝑦𝑖3 := 0 for 𝑖 ∈ [1, 𝑛], and randomly

samples 𝑚𝑘 ← [0, 4𝑛𝐵𝐿] for 𝑘 ∈ [1, 𝑅]. S emulate (auth)
command of FauthZK in Step (2) of ΠRange, and records the

identifiers and the local keys of {[𝑦𝑖 𝑗]}𝑖∈[1,𝑛], 𝑗∈[1,3] that are
sent to FauthZK by A.

(3) S interacts with A, and receives the challenges 𝛾𝑖 𝑗𝑘 ← [0, 1]
for 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [0, 3], 𝑘 ∈ [1, 𝑅] from A. Next, S computes

𝜁𝑘 := mask(0,𝑚𝑘) and sends 𝜁𝑘 to A for 𝑘 ∈ [1, 𝑅].
(4) S emulates (poly) command of FauthZK, where S checks the

identifiers that are sent to FauthZK by A are consistent with

the previously recorded identifiers. If the check fails, S sends

false to A, or sends true to A otherwise.

(5) During the CheckZero procedure, S computes the local keys of

[𝑧𝑘] :=
∑𝑛
𝑖=1

𝛾𝑖0𝑘 [𝑥𝑖] +
∑

3

𝑗=1
𝛾𝑖 𝑗𝑘 [𝑦𝑖 𝑗] + [𝑚𝑘]−𝜁𝑘 for 𝑘 ∈ [1, 𝑅]

using the corresponding local keys that S has recorded, and

sends the local keys of [𝑧𝑘] to A.

(6) S outputs whatever A outputs.

Clearly, the view of adversaryA is simulated perfectly by S, except
for the responses {𝜁𝑘 }𝑘∈[1,𝑅] from the honest prover in the real

world and from 𝑆 in the ideal world. The distribution of {𝜁𝑘 }𝑘∈[1,𝑅]
is uniform over [4𝑛𝐵, 4𝑛𝐵𝐿] based on Lemma 3.2, unless some of

𝜁𝑘 are equal to ⊥. The event that 𝜁𝑘 is ⊥ is independent and occurs

with probability at most
1

𝐿
for 𝑘 ∈ [1, 𝑅]. Thus, the probability that

there exists 𝜁𝑘 = ⊥ is at most 1 − (1 − 1

𝐿
)𝑅 ≤ 𝑅

𝐿
. In conclusion, it

cannot distinguish the real-world execution and the ideal-world

execution with statistical error at most
𝑅
𝐿
. □

C SECURITY PROOF OF THEOREM 5.1
Proof. The correctness of this protocol is obviously satisfied in

the case where both the prover and the verifier execute ΠLookup
honestly with each 𝒙𝑖 being in the table T for 𝑖 ∈ [1, 𝑛].

Next, we consider two cases where the prover is malicious or

the verifier is malicious. In each case, we construct a simulator S,
which is given access to the (lookup) command of FauthZK and runs

an adversary A as a subroutine when emulating other commands

of FauthZK. In both cases, we show that it cannot distinguish the

real-world execution and the ideal-world execution with statistical

error at most (𝑛 + 𝑑) (𝑤 + 1)/𝑝 .
Before the protocol ΠLookup begins, P andV have authenticated

{𝒙𝑖 }𝑖∈[1,𝑛] by performing the (auth) command of FauthZK. During
this procedure, S records 𝒙𝑖 and its tags sent by the malicious

prover, or it records the local keys sent by the malicious verifier.

Malicious prover. S interacts with adversaryA and the (lookup)
command of FauthZK as follows:

(1) Whenever S receives ⊥ from A, S sends abort to FauthZK
which sends false to the honest verifier and aborts.

(2) S emulates (auth) command of FauthZK in Step (2) of the pro-

tocol ΠLookup. S records {𝒔𝑖 }𝑖∈[1,𝑛+𝑑] and their tags that are

sent to FauthZK by A.

(3) S randomly samples (𝑟1, 𝑟2, 𝑟3) ← (F𝑝)3 and sends them to A.

(4) S emulates (poly) command ofFauthZK, whereS checks𝑔′ (X) =
ℎ′ (S). If the above check fails, S sends abort to FauthZK.

(5) S sends (lookup, T, { 𝒊𝒅𝑥
𝑖
}𝑖∈[1,𝑛]) to FauthZK, which sends true

to the honest verifier if all 𝒙𝑖 is in the table T for 𝑖 ∈ [1, 𝑛], or
sends false to the honest verifier otherwise.

Clearly, the view of A is simulated perfectly by S. Only the case

that X is not the subset of the table T would cause a different dis-

tribution between two worlds. In this case, 𝑔(𝛼, 𝛽,𝛾) and ℎ(𝛼, 𝛽,𝛾)
are definitely not equivalent due to the converse of Lemma 3.4.

Therefore, for randomly sampled (𝑟1, 𝑟2, 𝑟3) ← (F𝑝)3, the prob-

ability that 𝑙 (𝑟1, 𝑟2, 𝑟3) := 𝑔(𝑟1, 𝑟2, 𝑟3) − ℎ(𝑟1, 𝑟2, 𝑟3) equals zero is

at most (𝑛 + 𝑑) (𝑤 + 1)/𝑝 , which is same as the probability that

V outputs true in the real world because the evaluation value of

𝑙 ′ (X, S) := 𝑔′ (X)−ℎ′ (S) is the same as 𝑙 when the authenticated sets

X and S are fixed. Therefore, it cannot distinguish the real world and
the ideal world with statistical error at most (𝑛 + 𝑑) (𝑤 + 1)/𝑝 . □

Malicious verifier.S interacts with adversaryA and the (lookup)
command of FauthZK as follows:

(1) S sends (lookup,T, { 𝒊𝒅𝑥
𝑖
}𝑖∈[1,𝑛]) to FauthZK, which in turn

replies with either true or false based on whether {𝒙𝑖 }[𝑖∈𝑛]
are in the table T or not. If FauthZK responds false, S sends ⊥
to A, and then outputs false.

(2) S sets S̄ := {𝒔𝑖 }[1,𝑛+𝑑] with all elements of 𝒔𝑖 being zero for

𝑖 ∈ [1, 𝑛 + 𝑑]. S emulate (auth) command of FauthZK in Step

(2) of ΠLookup, and records the identifiers of [S̄] that are sent to
FauthZK by A.

(3) S interacts with A and receives (𝑟1, 𝑟2, 𝑟3) from A. Then, S
emulates (poly) command of FauthZK, where S checks the iden-

tifiers that are sent to FauthZK by A are consistent with the

previously recorded identifiers. If the check fails, S sends false
to A, or sends true to A otherwise.

(4) S outputs whatever A outputs.

When there exists 𝒙𝑖 ∉ T, A receives ⊥ in both the real world and

the ideal world. Otherwise, A receives true in both worlds when

the identifiers, sent to FauthZK by A, are consistent. Therefore, the

view of A is simulated perfectly by S, and it cannot distinguish

the real-world execution and the ideal-world execution. □

	Abstract
	1 Introduction
	1.1 Related Works

	2 Design Overview
	3 Preliminaries
	3.1 Notation
	3.2 VOLE and IT-MACs
	3.3 Zero-knowledge Proof
	3.4 Tools for Range Proof
	3.5 Tools for Lookup Proof

	4 Zero-knowledge Range Proof
	4.1 Scheme

	5 Zero-knowledge Lookup Proof
	5.1 Scheme

	6 ZKP for Non-linear Operations
	6.1 Constraints for Primitive Operations
	6.2 Constraints for Non-linear Layers

	7 Zero-Knowledge Neural Networks
	8 Evaluation
	8.1 Experimental Setup
	8.2 Evaluating Range and Lookup Proofs
	8.3 Evaluating Non-linear Layer Proofs
	8.4 Evaluating Neural Network Proofs

	References
	A Universal Composition
	B Security Proof of Theorem 4.1
	C Security Proof of Theorem 5.1

