
Security Analysis of Signal’s PQXDH Handshake

Rune Fiedler1 Felix Günther2

1 Cryptoplexity, Technische Universität Darmstadt, Germany
2 IBM Research Europe – Zurich, Switzerland

rune.fiedler@cryptoplexity.de, mail@felixguenther.info

Abstract. Signal recently deployed a new handshake protocol named PQXDH to protect against “har-
vest now, decrypt later” attacks of a future quantum computer. To this end, PQXDH adds a post-
quantum KEM to the Diffie–Hellman combinations of the prior X3DH handshake.
In this work, we give a reductionist security analysis of Signal’s PQXDH handshake in a game-based
security model that captures the targeted “maximum-exposure” security, allowing fine-grained compro-
mise of user’s long-term, semi-static, and ephemeral key material. We augment prior such models to
capture not only the added KEM component but also the signing of public keys, which prior analyses
did not capture but which adds an additional flavor of post-quantum security in PQXDH. We then
establish a fully parameterized, concrete security bound for the session key security of PQXDH, in par-
ticular shedding light on a KEM binding property we require for PQXDH’s security, and how to avoid
it.
Our discussion of KEM binding complements the tool-based analysis of PQXDH by Bhargavan, Ja-
comme, Kiefer, and Schmidt, which pointed out a potential re-encapsulation attack if the KEM shared
secret does not bind the public key. We show that both Kyber (used in PQXDH) and its current NIST
draft standard ML-KEM (foreseen to replace Kyber once standardized) satisfy a novel binding notion we
introduce and rely on for our PQXDH analysis, which may be of independent interest.

1 Introduction
Billions of people today use messaging apps such as Facebook Messenger, Google Messages, Skype, Signal,
or WhatsApp, in which the Signal end-to-end encryption protocol [Sig] secures the communication. The
Signal protocol consists of two main components: The initial handshake protocol, which allows two parties
to derive a shared session key while authenticating each other, and the Double Ratchet protocol, which
allows renewing the session key in an ongoing session to achieve forward secrecy and post-compromise
security. Until 2023, Signal used X3DH [MP16] as initial handshake protocol. In 2023, Signal released
PQXDH [KS23, KS24], which modifies X3DH to add protection against quantum adversaries; in particular
against “harvest now, decrypt later” attacks where an adversary records communication today to break
its confidentiality when a cryptographically-relevant quantum computer becomes available in the future.

In X3DH, each user has Diffie–Hellman (DH) keys of different lifetimes (long-term, semi-static, and
ephemeral). Combining several DH keys of two users Alice and Bob in the initial key agreement ensures
mutual authentication and, as long as one of the combinations of keys remains uncompromised, that
the derived session key is secure. To protect against “harvest now, decrypt later” quantum adversaries,
PQXDH [KS24] adds a quantum-safe key encapsulation mechanism (KEM) to X3DH while keeping the ex-
isting, well-understood [CCD+17] handshake structure unmodified. Furthermore, X3DH signs the involved
semi-static DH key and PQXDH additionally the KEM key under the the user’s long-term key.

1

In a nutshell, the protocol message flow is as follows (where the KEM appears only in PQXDH): Bob
sends his long-term, semi-static, and ephemeral DH shares, as well as an ephemeral KEM public key for
a full handshake; a reduced handshake omits the ephemeral keys and has a semi-static KEM public key
instead. Alice generates an ephemeral DH key pair, encapsulates against Bob’s KEM key, and sends her
ephemeral DH key and KEM ciphertext to Bob. Both parties derive the session key from DH shared secrets
from three or four DH key combinations (long-term/semi-static, ephemeral/long-term, ephemeral/semi-
static, and, if present, ephemeral/ephemeral) and the KEM shared secret.

Previous Security Analyses of X3DH and PQXDH

The development of PQXDH was accompanied by formal, tool-based verification conducted by Bhargavan,
Jacomme, Kiefer, and Schmidt (BJKS) [BJKS23, BJK23]. Their analysis provided improvements and
security assurance for PQXDH (leading to revisions of the protocol description [KS23, KS24]), using both
the symbolic-analysis tool ProVerif [BC] and the computational-analysis tool CryptoVerif [Bla]. Security
of Signal’s original X3DH handshake (as well as its ratcheting protocol) was established by Cohn-Gordon,
Cremers, Dowling, Garratt, and Stebila (CCDGS) [CCD+17] through a reductionist security analysis in
what we refer to as a “maximum-exposure”1, game-based security model. Vatandas, Gennaro, Ithurburn,
and Krawczyk [VGIK20] analyzed the deniability of X3DH, and Fiedler and Janson [FJ24] the deniability
of PQXDH.

The core difference between these prior analyses of PQXDH and X3DH is that while the tool-based anal-
yses of BJKS provide machine-checked assurance, the ProVerif results remain on the symbolic, protocol-
logic level and the CryptoVerif model does not account for all “maximum-exposure” attack vectors that
Signal aims to protect against. Concretely, for proof complexity reasons, the CryptoVerif model of
BJKS [BJKS23, BJK23] only captures the compromise of long-term user keys (but not of semi-static
and ephemeral keys) and separately considers attacks against the classic DH and the post-quantum KEM
security. Such compromise, however, is a main reason for the many key combination Signal’s X3DH
and PQXDH handshake, and combined classic/post-quantum hybrid guarantees a main reason behind the
PQXDH design specifically.

Our Contributions

This work completes the analysis picture for PQXDH by providing a reductionist security analysis of
PQXDH (Revision 3 [KS24], throughout this paper) in a “maximum-exposure”, game-based security model
following that for X3DH by CCDGS [CCD+17].

Augmented game-based security model. To this end, we first augment the coded game-based se-
curity model of Brendel, Fiedler, Günther, Janson, and Stebila (BFGJS) [BFG+22, BFG+21] to capture
the added KEM component in PQXDH. In particular, we model that the KEM key and the semi-static
DH keys in PQXDH are signed (instead of assuming them to be authentically distributed like in the prior
game-based models [CCD+17, BFG+22, BFG+21]). This requires careful adaptation of related corruption
modeling, which adds both model and proof complexity but leads to a security model which more closely2

captures the real-world deployment.
1The adversary may compromise nearly all secrets as long as trivial wins are excluded.
2Security modeling still always requires trade-offs in abstraction. For example, like all prior analyses [CCD+17, BFG+22,

BFG+21, BJKS23, BJK23], we assume dedicated signing keys whereas Signal’s implementation re-uses the long-term DH user
keys for signing.

2

Concrete security bound for PQXDH. We then analyze the PQXDH handshake, establishing its
security based on the Gap Diffie–Hellman (GapDH) assumption holding in the DH group, the KEM
providing one-way security under chosen-ciphertext attacks (OW-CCA), a certain form of binding property
(which we expand on below), and low key-collision probability and correctness errors of the KEM, the
signature scheme being existentially unforgeable, and the key derivation function behaving like a random
oracle. In particular, we confirm that combining DH and KEM keys yields a combined, hybrid security
bound, compared to the separate analysis in BJKS [BJKS23]. Our resulting security theorem for PQXDH
is fully parameterized, giving concrete security bounds for each component.

Design discussion and KEM binding. We conclude with a discussion of the PQXDH design, with
insights that complement those by BKJS [BJKS23]. In particular, we provide a point of view on the
key derivation approach taken by Signal’s X3DH and PQXDH, why it leads to requiring a certain binding
property from the KEM in our analysis, and how this requirement could be easily avoided.

For background, BKJS in their analysis [BJKS23, BJK23] discovered the following potential “KEM
re-encapsulation attack” on PQXDH: An adversary can learn a KEM shared secret by compromising the
involved KEM secret key, and then re-encapsulating this shared secret under another, uncompromised
KEM public key. In consequence, decapsulations under two distinct public keys yield the same shared
secret, and two sessions with different KEM public keys compute the same session key, violating the
protocol’s security goals.

The BKJS analysis excludes this attack by modeling that the KEM public key is included in the
associated data when AEAD-encrypting messages, a suggestion that the PQXDH description however
only follows optionally: it argues that Kyber, used in the Signal implementation, already prevents the
re-encapsulation attack [KS24, Sections 3.3 and 4.12]. Our analysis covers Signal’s approach, providing
fine-grained insight into the properties required of the KEM to ensure security of the initial key agreement,
without relying on the AEAD. Concretely, we require that the derived shared secret binds the involved
public key and ciphertext, in a setting where the adversary knows the involved keys and the randomness to
generate them. We prove that both Kyber [SAB+] (currently deployed in PQXDH) and the current NIST
draft of ML-KEM [NIS23] (provisioned to replace Kyber in PQXDH once standardized) satisfy this binding
property.

We view these KEM binding results as being of independent interest: They complement a range of
binding notions for KEMs defined in concurrent work by Cremers, Dax, and Medinger (CDM) [CDM23],
yet their notion that would fit the PQXDH setting is not satisfied by ML-KEM [Sch24]. We discuss the
framework of CDM in more detail in Section 3 and relate the binding notion we introduce and require in
the PQXDH analysis to theirs. Binding properties also arise in other key-combiner settings, e.g., in multi-
recipient KEMs [AHK+23] and X-Wing [BCD+24], where the shared secret shall bind the ciphertext.

Related work

Several fully post-quantum replacements for X3DH have been considered in the literature: Hashimoto,
Katsumata, Kwiatkowski, and Prest [HKKP22] propose SC-DAKE, a generic construction based on KEMs
and a ring signature. BFGJS [BFG+22] propose a similar construction called SPQR based on KEMs
and a designated verifier signature. Dobson and Galbraith [DG22] lift X3DH to supersingular isogenies
with their construction called SI-X3DH, which is however broken by the SIDH attack [CD23, MMP+23,
Rob23]. Collins, Huguenin-Dumittan, Nguyen, Rolin, and Vaudenay [CHDN+24] propose K-Waay, based
on adapting split KEMs [BFG+20]. In this work, we focus on Signal’s deployed PQXDH protocol.

3

GEUF-CMA
SIG (A):

1 (pk, sk)←$ SIG.KGen()
2 Q← ∅
3 (m∗, σ∗)←$ASign(pk)
4 return JVf(pk, m∗, σ∗ ∧m∗ ̸∈ QK

Sign(m):
5 Q← Q ∪ {m}
6 return SIG.Sig(sk, m)

Figure 1: EUF-CMA security for a signature scheme SIG = (KGen, Sig, Vf).

2 Preliminaries

2.1 Notation

We refer to the first element of a list l⃗ with l⃗[1]. For n ∈ N, [n] denotes {1, . . . , n}. We write a deterministic
or randomized algorithm A with input x and output y as y ← A(x) resp. y←$ A(x) (or also A(x) → y
resp. A(x) $→ y), for the latter with explicit randomness r we write y ← B(x; r). We sample an element
e uniformly at random from a set S with e←$ S. We write Pr[G(A)] for the probability that a game G
involving an adversary A outputs true.

2.2 Signatures

Definition 2.1 (Signature scheme). A signature scheme SIG = (KGen, Sig, Vf) with associated message
space M is a triple of PPT algorithms:

• KGen() $→ (pk, sk): The probabilistic key generation outputs a public-key/secret-key pair (pk, sk).

• Sig(sk, m) $→ σ: The probabilistic signing takes as input a secret key sk and a message m and outputs
a signature σ.

• Vf(pk, m, σ)→ d: The deterministic verification takes as input a public key pk, a message m, and a
signature σ and outputs a decision d ∈ {0, 1}. If d = 1 we say the signature is valid.

A signature scheme is correct, if for all (pk, sk)←$ KGen() and for all m ∈ M it holds that Pr[Vf(pk, m,
Sig(sk, m)) = 1].

Definition 2.2 (EUF-CMA Security of Signatures). Let SIG = (KGen, Sig, Vf) be a signature scheme. We
say that SIG is (t, ϵ, qSig)–EUF-CMA-secure, if for any adversary A against Game GEUF-CMA

SIG (A) defined in
Figure 1 with running time at most t and making at most qSig queries to the Sign oracle, we have that

AdvEUF-CMA
SIG (A) := Pr

[
GEUF-CMA

SIG (A)
]
≤ ϵ.

2.3 Hash functions

Definition 2.3 (Preimage resistance of hash functions). Let H : {0, 1}∗ → {0, 1}n be a (hash) function.
We say that H is (t, ϵd,M)–preimage resistant for randomly sampled preimages (PR-d-secure) and (t, ϵr)–
preimage resistant for randomly sampled images (PR-r-secure), respectively, if for any adversary A with
running time at most t we have that

AdvPR-d
H,M(A) := Pr

[
d = H(m′) | m←$M, d← H(m), m′←$A(d)

]
≤ ϵd, resp.

AdvPR-r
H (A) := Pr

[
d = H(m′) | d←$ {0, 1}n, m′←$A(d)

]
≤ ϵr.

4

GGDH
(G,g,q)(A):

1 a, b←$ Zq

2 gz ←$ADDH((G, g, q), a, b)
3 return Jgz = gabK

DDH(gx, gy, gz):
4 return JCDH(gx, gy) = gzK

GOW-CCA
KEM (A):

1 (pk, sk)←$ KGen()
2 (ct∗, ss∗)←$ Enc(pk)
3 ss′←$ADecaps(pk, ct∗)
4 return Jss′ = ss∗K

Decaps(ct):
5 if ct = ct∗

6 return ⊥
7 else
8 return Dec(sk, ct)

Figure 2: Security game for the GapDH problem defined in Definition 2.6 (left) and for OW-CCA security of KEM =
(KGen, Enc, Dec) defined in Definition 3.3 (right).

Definition 2.4 (Collision resistance of hash functions). Let H : {0, 1}∗ → {0, 1}n be a (hash) function.
We say that H is (t, ϵ)–collision-resistant (CR-secure), if for any adversary A with running time at most
t we have that

AdvCR
H (A) := Pr

[
H(m) = H(m′) ∧m ̸= m′ | (m, m′)←$A()

]
≤ ϵH.

Our analysis further uses that finding two input values that collide in the truncated (256-bit) output
is hard. Prior work discusses the related (weak) near collision resistance [MvV97, PS14, JKN21], partial
collision resistance [WY05, LT11, YCW14], and truncated collision resistance [JK18]. We model this as
collision resistance of a hash function H truncated to the first 256 bits, which we denote by H256.

SHA3. Bertoni, Daemen, Peters, and Van Assche [BDPV08] show that SHA3 is indifferentiable from a
random oracle when the underlying permutation is modeled as a random permutation. Thus, finding a
collision or preimage in SHA3 or SHA3256 is as hard as finding it in a random oracle yielding digests of the
same length.

2.4 Diffie–Hellman Key Exchange

Definition 2.5 (Diffie–Hellman Key Exchange). A Diffie–Hellman Key Exchange (DH) scheme is a tuple
of algorithms (KGen, DH), defined as follows:

• KGen() $→ (pk, sk): This probabilistic algorithm returns a key pair (pk, sk)

• DH(pkA, skB)→ DHAB: On input a public key pkA and a secret key skB, this deterministic algorithm
returns the shared DH secret DHAB.

We say that a DH key exchange DH is correct if, for every (pkA, skA), (pkB, skB)←$ KGen(), it holds that

Pr[DH(pkA, skB) = DH(pkB, skA)] = 1.

For notational convenience we allow the arguments to be in arbitrary order, i.e., DH(pkA, skB) =
DH(skA, pkB). We write CDH(pkA, pkB) to refer to the DH shared secret DHAB when we do not care
which secret key is used.

We rely on the GapDH problem [OP01, CCD+17], i.e., that the computational DH problem is hard
given a decisional DH oracle.

Definition 2.6 (GapDH problem). Let (G, g, q) be a group of order q with generator g. We say that
the (t, ϵGDH, qDDH)-GapDH problem holds in (G, g, q) if for any adversary A with running time at most t
making at most qDDH queries to its DDH oracle, we have that

AdvGDH
(G,g,q)(A) := Pr

[
GGDH

(G,g,q)(A)
]
≤ ϵGDH,

where GGDH
(G,g,q)(A) is defined in Figure 2.

5

3 Key Encapsulation Mechanisms and Binding Properties
We first recap the basic syntax, correctness, and security of key encapsulation mechanisms (KEMs), before
discussing the novel KEM binding properties.

Definition 3.1 (Key Encapsulation Mechanisms). A key encapsulation mechanism KEM = (KGen, Enc,
Dec) consists of the following three algorithms:

• KGen() $→ (pk, sk): The probabilistic key generation with randomness space RKEM.KGen outputs a
public-key/secret-key pair with (pk, sk) ∈ PK × SK.

• Enc(pk) $→ (ct, ss): The probabilistic encapsulation algorithm with randomness space RKEM.Enc takes
as input a public key pk ∈ PK and outputs a ciphertext ct ∈ C and the therein encapsulated shared
secret ss ∈ SS.

• Dec(sk, ct)→ ss′: The deterministic decapsulation algorithm takes as input a ciphertext ct ∈ C and
secret key sk and outputs ss′ ∈ SS ∪ {⊥}, where ⊥ indicates an error.

We say that a KEM KEM = (KGen, Enc, Dec) is δ-correct if, for every key pair (pk, sk)←$ KGen(), and
every encapsulation (ct, ss)←$ Enc(pk), we have

Pr
[
ss′ ̸= ss | ss′ ← Dec(sk, ct)

]
≤ δ.

In our analysis, we sometimes need to rule out that honestly generated KEM public keys collide.
We capture that probability in the following. For Kyber [SAB+] and ML-KEM [NIS23], such public-key
collisions boil down to random 256-bit seeds colliding under SHA3-512.

Definition 3.2 (KEM public-key collision probability). We define the public-key collision probability of
a KEM via a function γcoll : N → [0, 1], letting γcoll(n) denote the probability that two among n honestly
generated public keys collide:

γcoll(n) := Pr
[
pki = pkj ∧ i ̸= j | (pki, ski)←$ KGen() for i ∈ [1, n]

]
.

Our analysis requires KEM one-way security under chosen-ciphertext attacks (OW-CCA), which is
implied by standard IND-CCA security.

Definition 3.3 (OW-CCA Security of KEMs). Let KEM = (KGen, Enc, Dec) be a KEM. We say that KEM
is (t, ϵ, qDec)–OW-CCA-secure, if for any adversary A against Game GIND-CCA

KEM (A) defined in Figure 2 with
running time at most t and making at most qDec queries to the Decaps oracle, we have that

AdvOW-CCA
KEM (A) := Pr

[
GOW-CCA

KEM (A)
]
≤ ϵ.

3.1 Binding Properties

Due to the way PQXDH includes (only) the KEM shared secret in its key derivation (but not the KEM
public key or ciphertext), our security analysis relies on a novel binding property of the KEM scheme. In
a nutshell, we ask that it is hard to find two distinct ciphertexts or (honestly generated) public keys so
that the corresponding decapsulations output the same shared secrets, even when given full control over
the ciphertexts and knowing corresponding secret keys and the randomness used to generate these keys.
The latter is a result of capturing the “maximum-exposure” security of PQXDH, allowing an adversary to
reveal a session’s random coins (cf. Section 4). The PQXDH setting, in which an adversary interacts with
many KEM keys, also motivates our notion being multi-user.

6

GLEAK+-BIND-SS-{CT,PK}
KEM,n (A):

1 for k ∈ [n]
2 rk←$RKEM.KGen

3 (pkk, skk)← KEM.KGen(; rk)
4 (i, cti, j, ctj)←$A((pkk, skk, rk)k∈[n])

// A gets all key pairs and KGen randomness

5 ssi ← KEM.Dec(ski, cti)
6 ssj ← KEM.Dec(skj , ctj)
7 if ssi = ⊥ ∨ ssj = ⊥: return false
8 return Jssi = ssj ∧ (cti ̸= ctj ∨ pki ̸= pkjK)

GX-BIND-SS-{CT,PK}
KEM (A):

11 if X = LEAK :
12 (pk0, sk0)←$ KEM.KGen()
13 (pk1, sk1)←$ KEM.KGen()
14 (ct0, ct1)←$A(pk0, sk0, pk1, sk1)
15 if X = MAL:
16 (pk0, sk0, pk1, sk1, ct0, ct1)←$A()
17 ss0 ← KEM.Dec(sk0, ct0)
18 ss1 ← KEM.Dec(sk1, ct1)
19 if ss0 = ⊥ ∨ ss1 = ⊥: return false
20 return Jss0 = ss1 ∧ (ct0 ̸= ct1 ∨ pk0 ̸= pk1)K

Figure 3: Security games for our (multi-user) LEAK+-BIND-SS-{CT,PK} notion (left) and the LEAK -BIND-SS-{CT,PK}
and MAL-BIND-SS-{CT,PK} notion from [CDM23] (right). In all games, the adversary’s goal is to produce colliding shared
secrets ss under distinct ciphertexts ct or public keys pk.

Aligning with language of Cremers, Dax, and Medinger (CDM) [CDM23] from their concurrent work
systematizing binding notions for KEMs, our notion asks that the KEM shared secret binds both public
key and ciphertext used to produce it, under leakage of key generation randomness (and hence secret
keys), which is a novel variant we denote as LEAK+-BIND-SS-{CT,PK}. In general, their notion X-
BIND-P -Q captures that the components in set P ∈ {{ss}, {ct}, {ss, ct}} bind the components in set Q ∈
{{pk}, {ss}, {ct}}, where the KEM keys are chosen by the adversary (X = MAL), honestly generated and
leaked to the adversary (X = LEAK), or honestly generated without leakage of secrets (X = HON). We
reproduce their LEAK and MAL notions for ss simultaneously binding pk and ct in our syntax3 on the
right-hand side of Figure 3.

In the following, we formalize our new LEAK+-BIND-SS-{CT,PK} binding property and relate it
to the notions in the CDM framework [CDM23]. In particular, we show in Section 3.3 below that both
Kyber and the current NIST draft standard of ML-KEM satisfy the LEAK+-BIND-SS-{CT,PK} property,
while the notion from [CDM23] that implies ours, MAL-BIND-SS-{CT,PK}, is not satisfied by ML-KEM
[Sch24].4 While Signal’s current implementation of PQXDH uses Kyber [SAB+], it is already prepared5 to
transition to the NIST standard ML-KEM [NIS23].

Definition 3.4 (LEAK+-BIND-SS-{CT,PK}). Let KEM = (KGen, Enc, Dec) be a KEM and n ≥ 2.
We say that KEM is (t, ϵ, n)-LEAK+-BIND-SS-{CT,PK}-secure, if for any adversary A against Game
GLEAK+-BIND-SS-{CT,PK}

KEM,n (A) defined in Figure 3 with running time at most t, we have that

AdvLEAK+-BIND-SS-{CT,PK}
KEM,n (A) := Pr

[
GLEAK+-BIND-SS-{CT,PK}

KEM,n (A)
]
≤ ϵ.

Figure 4 visualizes the relations between LEAK+-BIND-SS-{CT,PK} and the corresponding notions
from [CDM23]: The MAL variant is strictly stronger than the LEAK+ variant, which in turn is strictly
stronger than the LEAK variant. Notably, ML-KEM separates the MAL and our LEAK+ variants; we
show the other implications and separations below, incl. relating our multi-user notion to the 2-user case.

3Note that in the syntax of [CDM23] the KEMs shared secret ss is simply called a “key”, denoted k. Accordingly, in their
notation, P ∈ {{k}, {ct}, {k, ct}} and Q ∈ {{pk}, {k}, {ct}}. We will stick to our syntax and hence, e.g., write MAL-BIND-
SS-CT corresponding to their notion MAL-BIND-K-CT .

4CDM [CDM23, Appendices B and E] conjecture that Kyber is MAL-BIND-SS-{CT,PK}–secure as it hashes both pk and
ct into the key derivation. Their generic argument [CDM23, Thm. E.1] requires including both via an injective function, a
hash function as used in Kyber however is clearly not injective. We leave it as an open question whether Kyber achieves MAL-
BIND-SS-{CT,PK} security; for us, the LEAK+ variant suffices.

5https://github.com/signalapp/libsignal/commit/0670f0d

7

https://github.com/signalapp/libsignal/commit/0670f0d

MAL-BIND-SS-{CT,PK} LEAK+-BIND-SS-{CT,PK}
for n users

LEAK+-BIND-SS-{CT,PK}
for 2 users

LEAK -BIND-SS-{CT,PK}

Thm. 3.5

Thm. 3.7

Thm. 3.6

Thm. 3.7

\
Thm. 3.9 (ML-KEM)

\
Thm. 3.8

Figure 4: Relations between our LEAK+-BIND-SS-{CT,PK} binding notion and the corresponding MAL, LEAK notions
from [CDM23] for KEMs. Solid arrows indicate implications, dashed ones loose implications, and crossed-out ones separations.
Annotations indicate the respective theorems.

3.2 Relations of Binding Properties

First, we show the implication from MAL to LEAK+ (Theorem 3.5) and from LEAK+ to LEAK (Theo-
rem 3.6). Second, we show that our notion is equivalent for n and 2 users, up to a factor of n2 (Theorem 3.7).
Third, we give a separation between LEAK and LEAK+ (Theorem 3.8). Lastly, we show that ML-KEM
and Kyber are LEAK+ (Theorem 3.9 and Theorem 3.10), while ML-KEM is known to not be MAL [Sch24],
giving us a separation for LEAK+ and MAL.

Note that for the following theorems we assume KEMs with a public key space |PK| ≥ 2.

Theorem 3.5 (MAL-BIND-SS-{CT,PK} =⇒ LEAK+-BIND-SS-{CT,PK}). A MAL-BIND-SS-{CT,PK}–
secure KEM KEM is also LEAK+-BIND-SS-{CT,PK}–secure. Concretely, for any LEAK+-BIND-SS-
{CT,PK} adversary A against KEM there exist an adversary B such that

AdvLEAK+-BIND-SS-{CT,PK}
KEM,n (A) ≤ AdvMAL-BIND-SS-{CT,PK}

KEM (B).

Proof. To win in the LEAK+-BIND-SS-{CT,PK} game, A must produce ciphertexts cti, ctj such that
ssi = ssj and one (or both) of pki ̸= pkj and cti ̸= ctj hold.

We let B truthfully simulate GLEAK+-BIND-SS-{CT,PK}
KEM,n (A) for A, i.e., honestly computing keys pkk for

k ∈ [n], obtaining i, cti, j, ctj from A. Then, B outputs (pki, ski, pkj , skj , cti, ctj). If A wins, we have that
ssi = ssj while pki ̸= pkj or cti ̸= ctj , so B also wins in the MAL-BIND-SS-{CT,PK} game.

Theorem 3.6 (LEAK+-BIND-SS-{CT,PK} =⇒ LEAK -BIND-SS-{CT,PK}). A LEAK+-BIND-SS-
{CT,PK}–secure KEM KEM is also LEAK -BIND-SS-{CT,PK}–secure. Concretely, for any LEAK -
BIND-SS-{CT,PK} adversary A against KEM there exist an adversary B such that

AdvLEAK -BIND-SS-{CT,PK}
KEM (A) ≤ AdvLEAK+-BIND-SS-{CT,PK}

KEM,2 (B).

Proof. We let B start A on its own inputs except the key generation randomness, thereby truthfully
simulating the LEAK -BIND-SS-{CT,PK} game for A. When A terminates, B returns the output of A.
If A wins, then so does B.

Theorem 3.7 (LEAK+-BIND-SS-{CT,PK}: n users ⇐⇒ 2 users). Let n ≥ 2. A (t, ϵ, n)-LEAK+-
BIND-SS-{CT,PK}-secure KEM KEM is also (t, ϵ, 2)-LEAK+-BIND-SS-{CT,PK}-secure and a (t, ϵ, 2)-
LEAK+-BIND-SS-{CT,PK}-secure KEM KEM is also (t′, n2 · ϵ, n)-LEAK+-BIND-SS-{CT,PK}-secure

8

(for t′ ≈ t). Concretely, for any LEAK+-BIND-SS-{CT,PK} adversary A against KEM there exist an
adversary B such that

AdvLEAK+-BIND-SS-{CT,PK}
KEM,2 (A) ≤ AdvLEAK+-BIND-SS-{CT,PK}

KEM,n (A) and

AdvLEAK+-BIND-SS-{CT,PK}
KEM,n (A) ≤ n2 · AdvLEAK+-BIND-SS-{CT,PK}

KEM,2 (B).

Proof. The “=⇒” direction straightforwardly holds by letting A ignore the remaining n− 2 keys.
The “⇐=” direction holds via a guessing argument: Let B guess two distinct key indices i, j ∈ [n],

embed the two keys obtained in its game in these positions, and sample the remaining n− 2 keys itself. If
A uses i (and possibly j) for its attack, B is successful if A is. The chance of B guessing correctly is 1

n2 ,
establishing the claim.

Theorem 3.8 (LEAK -BIND-SS-{CT,PK} ≠⇒ LEAK+-BIND-SS-{CT,PK}). Assuming a LEAK -BIND-
SS-{CT,PK}–secure KEM KEM′ and a preimage-resistant (PR-d) hash function H (when sampling from
{0, 1}256), there exists a KEM KEM which is LEAK -BIND-SS-{CT,PK}–secure but not LEAK+-BIND-
SS-{CT,PK}–secure. Concretely, for any LEAK -BIND-SS-{CT,PK} adversary A against KEM′ there
exist adversaries B1, B2, B3 such that

AdvLEAK+-BIND-SS-{CT,PK}
KEM,2 (B1) = 1 and

AdvLEAK -BIND-SS-{CT,PK}
KEM (A) ≤ AdvPR-d

H (B2) + AdvLEAK -BIND-SS-{CT,PK}
KEM′ (B3).

Proof. Let KEM′ = (KGen′, Enc′, Dec′) with shared secret space SS ′ and randomness space RKGen′ for
key generation be LEAK -BIND-SS-{CT,PK}–secure, and consider the following modification KEM with
shared secret space SS ′ ∪ {ss∗} where ss∗ denotes a distinguished shared secret with ss∗ /∈ SS ′ and
randomness space {0, 1}256 ×RKGen′ for key generation.

KGen(; r):
1 (x, rKG)← r

2 y ← H(x)
3 (pk′, sk′)← KGen′(; rKG)
4 return (pk′, (sk′, y))

Enc(pk):

5 return (Enc′(pk),⊥)

Dec(sk, pk, ct):

6 (sk′, y)← sk
7 (ct′, z)← ct
8 if y = H(z)
9 return ss∗

10 return Dec′(sk′, pk, ct′)

KEM is not LEAK+-BIND-SS-{CT,PK}-secure: An adversary B1 gets (pk1, sk1, r1, pk2, sk2, r2) as
input, parses the randomness as (x1, rKG,1) ← r1 and (x2, rKG,2) ← r2, and outputs the two ciphertexts
(0, x1), (1, x2) (omitting the indices for the two users). Both decapsulations trigger the special case. Hence,
the shared secrets collide, while the ciphertexts differ (at least) in their first component and B1 always
wins.

KEM is LEAK -BIND-SS-{CT,PK}-secure: If A triggers the special condition in the decapsulation,
then it has found a preimage under H (for randomly sampled 256-bit preimages), breaking preimage
resistance. Otherwise, the adversary cannot take advantage of the extra components in the secret key
and ciphertext. Hence, breaking LEAK -BIND-SS-{CT,PK} of KEM implies breaking LEAK -BIND-SS-
{CT,PK} of KEM′, which we have excluded by assumption.

9

KGen():

1 z←$ {0, 1}256

2 (pk, sk′)←$ PKE.KGen()
3 sk ← (sk′, pk, H(pk), z)
4 return (pk, sk)

Enc(pk):

5 m←$ {0, 1}256

6 m← H(m)

7 (ss′, r)← G(m∥H(pk))
8 ct ← PKE.Enc(pk, m; r)

9 ss ← KDF(ss′∥H(ct))

ss ← ss′

10 return (ct, ss)

Dec(sk, ct):

11 (sk′, pk, h, z)← sk
12 m′ ← PKE.Dec(sk′, ct)
13 (ss′, r′)← G(m′∥h)
14 ct ← PKE.Enc(pk, m′; r′)
15 if ct = ct′:
16 ss ← KDF(ss′∥H(ct))

ss ← ss′

17 else
18 ss ← KDF(z∥H(ct))

ss ← J(z∥ct)

19 return ss

Figure 5: Algorithmic description of ML-KEM and Kyber using functions H, G, and J resp. KDF and a public key encryption
scheme PKE. Solid boxes are exclusive to Kyber, dashed boxes are exclusive to ML-KEM.

3.3 Kyber and ML-KEM
Figure 5 gives an algorithmic description of Kyber [SAB+] and its corresponding current draft NIST
standard ML-KEM [NIS23]. On a high level, the scheme uses a public key encryption scheme PKE in an
FO transform [FO99], as well as three functions H, G, and J (ML-KEM) resp. KDF (Kyber), instantiated as
SHA3-256, SHA3-512, and SHAKE256 with 256 bits output, respectively. Our interest being in the binding
properties, we focus here on the internals of decapsulation. The decapsulation algorithm first decrypts the
PKE ciphertext ct to m′. Then, it hashes m′ and h (the hashed public key, stored in the secret key) under
G onto ss′, r′. It uses r′ as randomness for re-encrypting m′. If the re-encrypted ciphertext matches ct,
Kyber outputs KDF(ss′∥H(ct)) as shared secret while ML-KEM outputs ss′ directly. Otherwise, perform an
implicit rejection, i.e., compute the shared secret as KDF(z∥H(ct)) for Kyber resp. J(z∥ct) for ML-KEM,
where z is a secret random 256-bit string, which is part of the secret key.

In the following, we show that ML-KEM and Kyber satisfy the LEAK+-BIND-SS-{CT,PK} binding
property, assuming collision resistance of all involved hash functions, (only for ML-KEM) random-oracle
properties of H and J, and (only for Kyber) preimage resistance of G256 for randomly sampled images.

Theorem 3.9 (ML-KEM is LEAK+-BIND-SS-{CT,PK}–secure). Assuming H is (t, ϵH)–collision-resistant,
G256 is (t, ϵG)–collision-resistant, J is (t, ϵJ)–collision-resistant, and modeling H, J as independent random
oracles, ML-KEM is (t′, ϵ, n)–LEAK+-BIND-SS-{CT,PK}–secure for t′ ≈ t and

ϵ = n2

2256 + 2ϵJ + q2
RO

2256 + ϵH + 2ϵG,

where qRO is the number of random oracle queries made by the adversary.

Proof. We analyze the probability of A winning over a series of game hops.

Game 0. We start with the original binding game GLEAK+-BIND-SS-{CT,PK}
ML-KEM,n (A):

AdvLEAK+-BIND-SS-{CT,PK}
ML-KEM,n (A) = AdvG0

ML-KEM(A).

We distinguish several cases for the adversary to win, depending on how the adversary fulfills the winning
condition and if the decapsulation accepts (line 15 in Figure 5 evaluates to true) or implicitly rejects (i.e.,

10

decapsulation branches into line 17). We denote line 15 being taken with Ax and line 17 with Rx, where
x ∈ {i, j} are the key indices in the binding game. We index any intermediate values from decapsulation
of cti and ctj with i and j, respectively. We assume a successful adversary, i.e., ssi = ssj . Note that Rx

and Ax are mutually exclusive. The cases are:

A. Both decapsulations reject and the ciphertexts are for two distinct public keys, i.e., Ri∧Rj∧pki ̸= pkj .

B. Both decapsulations reject and the ciphertexts are distinct, i.e., Ri ∧Rj ∧ cti ̸= ctj .

C. One decapsulation rejects, i.e., wlog. Ri ∧Aj .

D. Both decapsulations accept and the ciphertexts are for two distinct public keys, i.e., Ai ∧Aj ∧ pki ̸=
pkj .

E. Both decapsulations accept and the ciphertexts are distinct, i.e., Ai ∧Aj ∧ pki = pkj ∧ cti ̸= ctj .

We treat these cases as events in G0 and indicate the occurrence of event X by G0[X]. By the union bound
we get:

AdvG0
ML-KEM(A) ≤

∑
X∈{A,B,C,D,E}

AdvG0[X]
ML-KEM(A)

Case A (Both decapsulations reject, distinct public keys: Ri ∧Rj ∧ pki ̸= pkj).

Here, we bound the probability of the adversary producing ciphertexts that both get implicitly rejected
during decapsulation and decapsulate to the same shared secret under distinct public keys.

Game A.0. This is the game conditioned on Ri ∧Rj ∧ pki ̸= pkj being satisfied.

AdvGA.0
ML-KEM(A) = AdvG0[Ri∧Rj∧pki ̸=pkj]

ML-KEM (A).

Game A.1 (Colliding z values). We let GA.0 return false if there is a collision among the z values in
the n secret keys. Since the z values are 256-bit strings sampled uniformly at random, by the birthday
bound we get:

AdvGA.0
ML-KEM(A) ≤ AdvGA.1

ML-KEM(A) + n2

2256 .

Game A.2 (Collision in J). Now, we have established zi∥cti ̸= zj∥ctj (since zi ̸= zj), yet J(zi∥cti) =
J(zj∥ctj). We build a reduction B1 that outputs zi∥cti, zj∥ctj , breaking (t, ϵJ)–collision resistance of J:

AdvGA.1
ML-KEM(A) ≤ ϵJ.

Case B (Both decapsulations reject, distinct ciphertexts: Ri ∧Rj ∧ cti ̸= ctj).

Here, we bound the probability of the adversary producing two distinct ciphertexts that both get implicitly
rejected during decapsulation and decapsulate to the same shared secret.

Game B.0. This is the game conditioned on Ri ∧Rj ∧ cti ̸= ctj being satisfied.

AdvGB.0
ML-KEM(A) = AdvG0[Ri∧Rj∧cti ̸=ctj]

ML-KEM (A).

Since cti ̸= ctj , we also have zi∥cti ̸= zj∥ctj , yet J(zi∥cti) = J(zj∥ctj). We build a reduction B2 that
outputs zi∥cti, zj∥ctj , breaking (t, ϵJ)–collision resistance of J:

AdvGB.0
ML-KEM(A) ≤ ϵJ.

11

Case C (One decapsulation rejects: Ri ∧Aj).

Here, we bound the probability of the adversary producing exactly one ciphertext that gets implicitly
rejected during decapsulation while both ciphertexts decapsulate to the same shared secret.

Game C.0. This is the game conditioned on Ri ∧Aj being satisfied.

AdvGC.0
ML-KEM(A) = AdvG0[Ri∧Aj]

ML-KEM (A).

For A to win, it needs to create a collision J(zi∥cti) = ssi = ssj = G256(m′
j∥hj) between J and G.

Assuming both J and G beave like (independent) random oracles, the probability of finding such a collision
with qRO many random oracle queries is upper bounded by:

AdvGC.0
ML-KEM(A) ≤ q2

RO
2256 .

Case D (Both decapsulations accept, distinct public keys: Ai ∧Aj ∧ pki ̸= pkj).

Here, we bound the probability of the adversary producing ciphertexts that both get accepted during
decapsulation and decapsulate to the same shared secret under distinct public keys.

Game D.0. This is the game conditioned on Ai ∧Aj ∧ pki ̸= pkj being satisfied.

AdvGD.0
ML-KEM(A) = AdvG0[Ai∧Aj∧pki ̸=pkj]

ML-KEM (A).

Since we know that pki ̸= pkj and G256(mi∥H(pki)) = ssi = ssj = G256(mj∥H(pkj)), it must be that A
provides us with a collision either in H or in G256. Once more, we can distinguish two cases:

1. The first case is mi∥H(pki) = mj∥H(pkj). Then we can build a reduction B3 that outputs pki, pkj

as collision in H, breaking (t, ϵH)-collision resistance of H.

2. Otherwise, mi∥H(pki) ̸= mj∥H(pkj), and we can build reduction B4 that outputs mi∥H(pki), mj∥H(pkj)
as collision in G256. Hence, B2 breaks the (t, ϵG)-collision resistance of G256.

Jointly,
AdvGD.0

ML-KEM(A) ≤ ϵH + ϵG.

Case E (Both decapsulations accept, distinct ciphertexts: Ai ∧Aj ∧ pki = pkj ∧ cti ̸= ctj).

Here, we bound the probability of the adversary producing ciphertexts that both get accepted during
decapsulation and decapsulate to the same shared secret under the same public key.

Game E.0. This is the game conditioned on Ai ∧Aj ∧ pki = pkj ∧ cti ̸= ctj being satisfied.

AdvGE.0
ML-KEM(A) = AdvG0[Ai∧Aj∧pki=pkj∧cti ̸=ctj]

ML-KEM (A).

We know that pki = pkj (and hence hi = hj) for G256(mi∥hi) = ssi = ssj = G256(mj∥hj). Note that
we must have mi ̸= mj : Otherwise, the re-encryption step in both decapsulations would result in identical
ciphertexts cti = ctj , which contradicts the condition of event E.

Now, we can build a reduction B5 that outputs mi∥H(pki), mj∥H(pkj) as collision in G256. Since G
collides in its first output, which is 256 bits, B3 breaks the (t, ϵG)-collision resistance of G256.

AdvGE.0
ML-KEM(A) ≤ ϵG.

Collecting the bounds yields the claim.

12

For the Kyber proof, we do not require any collisions across hash functions, allowing us to avoid relying
on the random oracle. Instead, we additionally require G256 to be (t, ϵ′

G)–preimage-resistant for randomly
sampled images.

Theorem 3.10 (Kyber is LEAK+-BIND-SS-{CT,PK}–secure). Assuming H is (t, ϵH)–collision-resistant,
G256 is (t, ϵG)–collision-resistant and (t, ϵ′

G)–preimage-resistant (PR-r, i.e., when sampling from the range),
and KDF is (t, ϵKDF)–collision-resistant, Kyber is (t′, ϵ, n)–LEAK+-BIND-SS-{CT,PK}–secure for t′ ≈ t
and

ϵ = ϵH + ϵKDF + n2

2256 + ϵKDF + ϵKDF + nϵ′
G + ϵKDF + ϵG + ϵH

= 2ϵH + ϵG + nϵ′
G + 4ϵKDF + n2

2256 .

Proof. We analyze the probability of A winning over a series of game hops.

Game 0. We start with the original binding game GLEAK+-BIND-SS-{CT,PK}
Kyber,n (A):

AdvLEAK+-BIND-SS-{CT,PK}
Kyber,n (A) = AdvG0

Kyber(A).

We distinguish several cases for the adversary to win, depending on how the adversary fulfills the winning
condition and if the decapsulation accepts (line 15 in Figure 5 evaluates to true) or implicitly rejects (i.e.,
decapsulation branches into line 17). We denote line 15 being taken with Ax and line 17 with Rx, where
x ∈ {i, j} are the key indices in the binding game. We index any intermediate values from decapsulation
of cti and ctj with i and j, respectively. We assume a successful adversary, i.e., ssi = ssj . Note that Rx

and Ax are mutually exclusive. The cases are:

A. Both ciphertexts are distinct, i.e., cti ̸= ctj .

B. Both decapsulations reject and the ciphertexts are for two distinct public keys, i.e., Ri∧Rj∧pki ̸= pkj .

C. One decapsulation rejects and the ciphertexts are for two distinct public keys, i.e., wlog. Ri ∧ Aj ∧
pki ̸= pkj .

D. Both decapsulations accept and the ciphertexts are for two distinct public keys, i.e., Ai ∧Aj ∧ pki ̸=
pkj .

We treat these cases as events in G0 and indicate the occurrence of event X by G0[X]. By the union bound
we get:

AdvG0
Kyber(A) ≤

∑
X∈{A,B,C,D}

AdvG0[X]
Kyber(A)

Case A (distinct ciphertexts: cti ̸= ctj).

Here, we bound the probability of the adversary producing two distinct ciphertexts that decapsulate to
the same shared secret.

Game A.0. This is the game conditioned on cti ̸= ctj being satisfied.

AdvGA.0
Kyber(A) = AdvG0[cti ̸=ctj]

Kyber (A).

We know that KDF(xi∥H(cti)) = ssi = ssj = KDF(xj∥H(ctj)) for xi being either ss′
i (in case of an

accepting decapsulation) or zi (in case of an implicitly rejecting decapsulation), and xj likewise. Since we

13

know that cti ̸= ctj , we can now either build a reduction B1 that outputs cti, ctj , breaking (t, ϵH)–collision-
resistance of H, or a reduction B2 that outputs xi∥H(cti), xj∥H(ctj), breaking (t, ϵKDF)–collision-resistance
of KDF:

AdvGA.0
Kyber(A) ≤ ϵH + ϵKDF.

Case B (Both decapsulations reject, distinct public keys: Ri ∧Rj ∧ pki ̸= pkj).

Here, we bound the probability of the adversary producing ciphertexts that both get implicitly rejected
during decapsulation and decapsulate to the same shared secret under distinct public keys.

Game B.0. This is the game conditioned on Ri ∧Rj ∧ pki ̸= pkj being satisfied.

AdvGB.0
Kyber(A) = AdvG0[Ri∧Rj∧pki ̸=pkj]

Kyber (A).

Game B.1 (Colliding z values). We let GB.0 return false if there is a collision among the z values in
the n secret keys. Since the z values are 256-bit strings sampled uniformly at random, by the birthday
bound we get:

AdvGB.0
Kyber(A) ≤ AdvGB.1

Kyber(A) + n2

2256 .

Game B.2 (Collision in KDF). Now, we have established zi∥H(cti) ̸= zj∥H(ctj) (since zi ̸= zj), yet
KDF(zi∥H(cti)) = KDF(zj∥H(ctj)). We build a reduction B3 that outputs zi∥H(cti), zj∥H(ctj), breaking
(t, ϵKDF)–collision resistance of KDF:

AdvGB.1
Kyber(A) ≤ ϵKDF.

Case C (One decapsulation rejects, distinct public keys: Ri ∧Aj ∧ pki ̸= pkj).

Here, we bound the probability of the adversary producing exactly one ciphertext that gets implicitly
rejected during decapsulation, while both ciphertexts decapsulate to the same shared secret under distinct
public keys.

Game C.0. This is the game conditioned on Ri ∧Aj ∧ pki ̸= pkj being satisfied.

AdvGC.0
Kyber(A) = AdvG0[Ri∧Aj∧pki ̸=pkj]

Kyber (A).

If ss′
i ̸= zj (for ss′ = G256(m′

i∥hi)), we can build a reduction B4 that returns ss′
i∥H(cti), zj∥H(ctj) to

break (t, ϵKDF)–collision-resistance of KDF. Otherwise, we can build a reduction B5 that guesses j ∈ [n]
and embeds an image of G256 in zj , breaking the (t, ϵ′

G)–preimage resistance of G256 for randomly sampled
images (PR-r) if it guesses j correctly. Hence,

AdvGC.0
Kyber(A) ≤ ϵKDF + n · ϵ′

G.

Case D (Both decapsulations accept, distinct public keys: Ai ∧Aj ∧ pki ̸= pkj).

Here, we bound the probability of the adversary producing ciphertexts that both get accepted during
decapsulation and decapsulate to the same shared secret under distinct public keys.

Game D.0. This is the game conditioned on Ai ∧Aj ∧ pki ̸= pkj being satisfied.

AdvGD.0
Kyber(A) = AdvG0[Ai∧Aj∧pki ̸=pkj]

Kyber (A).

14

Now, KDF(G256(mi∥hi)∥H(cti)) = ssi = ssj = KDF(G256(mj∥hj)∥H(ctj)) for pki ̸= pkj . It must be
that A provides us with a collision either in KDF, G256, or H. Once more, we can distinguish the cases:

1. In case G256(mi∥hi)∥H(cti) ̸= G256(mj∥hj)∥H(ctj), then we can build a reduction B6 that outputs
G256(mi∥hi)∥H(cti), G256(mj∥hj)∥H(ctj), breaking (t, ϵKDF)–collision-resistance of KDF.

2. Otherwise, if mi∥hi ̸= mj∥hj , then we can build a reduction B7 that outputs mi∥hi, mj∥hj , breaking
(t, ϵG)–collision-resistance of G256.

3. Otherwise, we must have mi∥hi = mj∥hj and H(pki) = hi = hj = H(pkj). By GC.0, pki ̸= pkj and
we can build a reduction B8 that outputs pki, pkj , breaking (t, ϵH)–collision-resistance of H.

Jointly,
AdvGC.0

Kyber(A) ≤ ϵKDF + ϵG + ϵH.

Collecting the bounds yields the claim.

4 Security Model
We analyze security of the PQXDH protocol in a computational, game-based security model for authen-
ticated key exchange protocols, following the tradition of Bellare and Rogaway (BR) [BR94], but refined
towards the maximum-exposure security that Signal’s handshakes (both X3DH and PQXDH) aim at. Our
model is based on prior Signal and Signal-like security models by CCDGS [CCD+17] and particularly
BFGJS [BFG+22, BFG+21], the latter introducing syntax and modeling for the particular class of asyn-
chronous key exchange protocols that the Signal handshakes belong to.

In BR-style models, a computational adversary interacts with multiple users across multiple sessions of
the key exchange protocol, fully controlling the network and being able to reroute, modify, inject, and drop
messages at will (through a Send oracle). For maximum-exposure, the model allows the adversary to com-
promise a user’s long-term key (via a CorruptLTKey oracle) and semi-static keys (CorruptSSKey),
as well as reveal a session’s key (RevealSessKey) and ephemeral randomness (RevealRand). The tar-
geted security property finally is key indistinguishability, asking that keys established in so-called “fresh”
sessions are indistinguishable from random keys. “Freshness” here encodes that a session is not trivially
compromised and that the protocol under analysis aims to protect against the involved key compromises
(defined through a set of “clean” predicates). We will detail those technical bits below.

For the analysis of PQXDH, we extend the prior models in several ways:

• Prior models [CCD+17, BFG+22, BFG+21] assumed semi-static keys being authentically distributed.
However, only long-term keys can be verified out-of-band in Signal, and semi-static keys are signed
with those keys instead. We are the first to capture these signed semi-static keys in a game-based
model for a computational security analysis. In both the model and the security analysis (cf. Sec-
tion 5), capturing these signatures leads to notable added complexity.

• In contrast to Signal’s classical X3DH handshake, PQXDH also involves signed ephemeral (KEM)
keys. We capture this, too, expanding on the set of attack vectors our model covers.

• PQXDH adding KEM keys means that multiple semi-static keys (DH and KEM) can now be involved
in a handshake. We capture this by accordingly modified identification of semi-static keys.

Note that CCDGS [CCD+17] also analyzed the ratcheting protocol, working in a multi-stage key exchange
model [FG14]; PQXDH does not affect the ratcheting part, hence we focus on the initial handshake.
BFGJS [BFG+22, BFG+21] in turn also studied deniability, which we do not consider in this work.

15

In the following, we will first review the syntax required to express both the PQXDH protocol and the
security model formally; we mostly follow BFGJS [BFG+22, BFG+21] here, in parts verbatim, and focus
on highlighting (with light-gray background) the main differences introduced in this work to account for
signed semi-static and ephemeral keys as well as multiple identifiers for semi-static keys.

4.1 Syntax and Notation

Key exchange syntax. We define a two-party key exchange protocol via the following probabilistic
algorithms:

• KGenLT() $→ (ltpk , ltsk): The long-term key generation algorithm that outputs a party’s public-
key/secret-key pair.

• KGenSS(ltsk) $→ ((sspk1, sssk1, σ1), . . .): The semi-static key generation algorithm that takes as
input a long-term secret key ltsk and outputs a vector of public-key/secret-key pairs and corr-
esponding signatures .6

• Run(ltsk , ⃗sssk , ⃗ltpk , π, m) $→ (π′, m′): The session execution algorithm that takes as input a party’s
long-term secret key ltsk , that party’s semi-static secret keys ⃗sssk , all parties’ long-term public keys
⃗ltpk , a session state π, and an incoming message m, and outputs an updated session state π′ and a

(possibly empty) outgoing message m′. The session sending the first message is set up by calling Run
with a distinguished message m = (create, (⃗ssid , type)), where ⃗ssid indicates the semi-static keys7

to be used and type whether a full (type = full) or reduced (type = reduced) handshake should be
performed.

Note that an explicit ephemeral key generation algorithm is not mandatory and can happen inside of Run.

Parties and sessions. In our model, parties P ∈ [np], each holding a long-term public-key/secret-key
pair generated by KGenLT may run multiple instances of the protocol (simultaneously or sequentially); we
denote the ith such session of party P by πi

P . Each session maintains the following information:

• oid ∈ [np]: The identity of the session owner.

• pid ∈ [np]∪{⋆}: The identity of the intended peer, which may initially be unknown (indicated by ⋆).

• role ∈ {initiator, responder}: The role of the party.

• stexec ∈ {⊥, running, accepted, rejected}: The status of this session’s execution.

• sid ∈ {0, 1}∗ ∪ {⊥}: A session identifier defining partnering.

• cid ∈ {0, 1}∗ ∪ {⊥}: A contributive identifier, defining a preliminary form of partnering (often
as a substring or prefix of the session identifier) for the case the session is not yet bound to an
authenticated peer [DFGS15].

• K ∈ KKE ∪ {⊥}: The session key established in this session, initialized to ⊥.
6The length of this vector is protocol-dependent; e.g., in X3DH, semi-static keys consist of one DH key pair, and PQXDH

adds a second semi-static key (for a KEM scheme). For simplicity, we have a set of semi-static keys be generated in one
operation, yet in the protocol each key can be used independently.

7In the model, semi-static keys are identified by some value ssid = ”s, n” where s indicates the KGenSS call through which
they were generated and n the key’s position in that call’s output. In practice, the latter signifies the type of semi-static key
if there are several; for PQXDH, n = 1 for DH keys and n = 2 for KEM keys.

16

• type ∈ {full, reduced}: Indicator whether an ephemeral pre-key was used (type = full) for key estab-
lishment, or not (type = reduced).

• coins ∈ RKE: The random coins from the randomness space RKE used in the execution of Run; set
by the game and read-only thereafter.

• sspks ∈ ({0, 1}∗)∗ ∪ {⊥}: The semi-static public keys used in this session.

For bookkeeping in the security game we additionally introduce the following flags, which are not accessible
by the protocol sessions:

• revrand ∈ {true, false} indicates whether the random coins π.coins have been revealed via a RevealRand
query. The default value is false.

• pcorr ∈ {true, false} indicates whether the peer’s long-term key was corrupted at the point in time
when this session accepted. The default value is false.

Session partnering. We say two sessions πi
U and πj

V are partnered if they agree on the session identifier:
πi

U .sid = πj
V .sid ̸= ⊥. Contributive identifiers (cid) indicate when sessions may eventually derive the same

key but are not fully partnered (yet); we use these to model security of initiator’s keys in incomplete
handshakes.

4.2 Security Game

The security property of an authenticated key exchange protocol KE we consider in this work is indistin-
guishability of session keys (KI), formalized through the game GKI

KE(A) in Figure 6 played by an adversary A.
At the start of the game, a random challenge bit btest←$ {0, 1} is fixed and long-term public-key/secret-key
pairs are generated for all np honest parties and their public keys ⃗ltpk provided to the adversary. The
adversary is then able to interact with honest parties via the following queries:

• Send(U, i, m): Sends message m to session πi
U , which corresponds to executing Run(ltskU , ⃗ssskU ,

⃗ltpk , πi
U , m), saving the updated session state π′ as πi

U , and returning the outgoing message m′ to
the adversary.

• CorruptLTKey(U): Returns party U ’s long-term secret key ltskU to the adversary; recorded
through the flag corrltkU .

• CorruptSSKey(U, ssid): Returns party U ’s semi-static secret key ssskssid
U to the adversary; recorded

through the flag corrssk sspk , where sspk is the public key corresponding to ssskssid
U .8

• RevealRand(U, i): Returns the random coins of session πi
U to the adversary, recorded in the session

through the flag revrand.

• RevealSessKey(U, i): If session πi
U has accepted, return its session key πi

U .K to the adversary.

• Test(U, i): If the Test query has been called before or session πi
U has not accepted, then return

⊥. Otherwise; if btest = 0, return πi
U .K, otherwise return a randomly sampled session key from the

protocol’s key space KKE. Record the test session as π∗ ← πi
U .

8Since we model that semi-static keys are not authentically distributed (but signed), sessions only know the public key
received (sspk), but not the game label ssid, which was used in prior models [CCD+17, BFG+22, BFG+21] to track compromise
more easily.

17

At the end of the game, the adversary outputs a bit b′. The adversary is said to win if b′ = btest
and the test session π∗ is fresh. Formally, if the test session is fresh, the experiment outputs 1 if b′ =
btest and 0 otherwise; if the test session is not fresh, then the experiment outputs a random bit. The
adversary’s advantage in the key indistinguishability game measured as the experiment outputting 1 minus
the adversary’s guessing chane, 1

2 .

Definition 4.1 (Key indistinguishability). Let KE be a key exchange protocol and A an adversary against
the key indistinguishability (KI) game GKI

KE(A) in Figure 6. We say that KE achieves (t, ϵ, (qSnd, qCorrLT,
qCorrSS, qRevR, qRevSK))–key indistinguishability, if for any adversary A against GKI

KE(A) with running time
at most t and making at most qSnd, qCorrLT, qCorrSS, qRevR, resp. qRevSK queries to its Send, CorruptLTKey,
CorruptSSKey, RevealRand, resp. RevealSessKey oracles, we have that

AdvKI
KE(A) = Pr

[
GKI

KE(A)
]
− 1

2 ≤ ϵ.

Note that the model restricts the adversary to a single query to the Test oracle.

Soundness. The model also captures soundness (via the predicate sound), i.e., that session identifiers
appropriately reflect correct protocol executions. Concretely, soundness demands that an adversary cannot
create one of the following situations (or else it will win the game immediately):

(i) Two sessions accept with the same session identifier, but derive different session keys, indicate dif-
ferent handshake types (full vs. reduced), or do not agree on their contributive identifiers (Fig. 6,
line 18).

(ii) Two initiator sessions accept with the same session identifier (Fig. 6, line 19).

(iii) Three sessions accept with the same session identifier in full handshake type (Fig. 6, line 20).

Freshness. Unrestricted access to the game oracles allows for trivial wins, e.g., by testing a session
key and also revealing it (or its partner). The freshness predicate fresh rules out such trivial wins,
and further encodes that the adversary has not obtained sufficiently many secrets, via CorruptLTKey
and/or CorruptSSKey and/or RevealRand queries, to derive the session key of the test session itself
and/or substituted signed keys in its execution; this is encoded through a set of so-called clean predicates
(Figure 6, line 16 and lines 46 ff.).

Clean predicates. Following the terminology of CCDGS [CCD+17], the set of clean predicates capture
the maximum-exposure properties of the protocol being analyzed. Figure 6, lines 46 ff. formally capture
these for PQXDH. The core properties closely follow those for the classic X3DH handshake [CCD+17,
BFG+22]: in handshakes where the long-term/semi-static, ephemeral/long-term, or ephemeral/semi-static
(or, for type = full handshakes, ephemeral/ephemeral) secrets combination between initiator/responder is
not revealed, we expect security of the derived session key. Jumping ahead, for those combinations where
PQXDH employs both DH and KEM keys, we will obtain hybrid/combiner security terms in our analysis
(see Section 5), capturing that an adversary has to break both primitives to successfully attack the protocol
via these compromise angles.

In addition to prior work [CCD+17, BFG+22, BFG+21], our clean predicates further model the
signatures on the responder’s (semi-static and ephemeral public) keys and allow the adversary to replace
semi-static and ephemeral keys sent over the network. Instead of assuming authentic distribution of semi-
static public keys, we merely preclude the adversary from compromising the (long-term) signing key prior

18

GKI
KE(A):

1 btest←$ {0, 1} // sample challenge bit

2 π∗ ← ⊥ // variable for test session

3 for U ∈ [np] // generate long-term keys

4 (pkU , skU)←$ KGenLT()
5 for s ∈ [nss] // generate semi-static keys

6
(
(sspks,1

U , sssks,1
U , σs,1

U), . . .
)
←$ KGenSS(ltskU)

7 ⃗ssskU ←
{

sssks,1
U , . . .

}s∈[nss]

8 ⃗ltpk ←
{

ltpkU

}
U∈[np]

9 ⃗sspk ←
{

(sspks,1
U , σs,1

U), . . .
}s∈[nss]

U∈[np]

10 b′←$A
(

⃗ltpk , ⃗sspk
)

// run adversary

11 if sound() = false: return true // adversary wins if it breaks soundness

12 if fresh(π∗) = false : b′ ← 0 // attack invalid if test session is not fresh

13 return Jb′ = btestK // determine win or loss

fresh(π∗):
14 if π∗.revealed = true : return false // test session is revealed

15 if ∃ πj
V ̸= π∗ : (πj

V .sid = π∗.sid ∧ πj
V .revealed = true) : return false

// test session’s partner is revealed

16 return cleanπ∗.type(π∗)
// test session is clean wrt. to its handshake type (full resp. reduced)

sound():

17 return ∀ distinct π, π′, π′′(
18 (π.sid = π′.sid ̸= ⊥ =⇒ π.K = π′.K∧π.type = π′.type∧π.cid = π′.cid)

// same session identifiers imply same key, type, contributive identifiers

19 and (π.sid = π′.sid ̸= ⊥ ∧ π.role = initiator =⇒ π′.role = responder)
// session identifiers of two initiator sessions never collide

20 and (π.sid = π′.sid = π′′.sid ̸= ⊥ =⇒ π.type = reduced)
)

// session identifiers of three sessions only collide in reduced mode

Send(U, i, m):

21 if πi
U = ⊥ // initiate session: for responders, we have m = (create, (⃗ssid, type))

22 πi
U .oid← U // set owner identity

23 if m = (create, . . .): πi
U .role← responder // set responder role

24 else πi
U .role← initiator // set initiator role (m is first message)

25 πi
U .coins←$RKE // sample session randomness

26 πi
U .stexec ← running

27 (πi
U , m′)← Run(skU , ⃗ssskU , ⃗ltpk , πi

U , m)
// run session, random coins in πi

U

28 if πi
U .stexec = accepted: // flag if peer was corrupted upon acceptance

29 πi
U .pcorr← corrltkπi

U
.pid

30 return (m′, πi
U .stexec) // return message and session state

Test(U, i):

31 if πi
U = ⊥ or πi

U .stexec ̸= accepted or π∗ ̸= ⊥: return ⊥
// session does not exist, has not accepted yet, or test already asked

32 π∗ ← πi
U // record test session

33 K0 ← πi
U .K

34 K1←$KKE

35 return Kbtest // return real-or-random challenge key

CorruptLTKey(U):
36 corrltkU ← true // mark long-term key corrupted

37 return skU // return long-term secret key

CorruptSSKey(U, ssid):
38 corrssk sspkssid

U

← true // mark semi-static key corrupted

39 return ssskssid
U // return semi-static secret key

RevealRand(U, i):

40 if πi
U = ⊥: return ⊥ // session does not exist

41 πi
U .revrand← true // mark randomness revealed

42 return πi
U .coins // return session’s random coins

RevealSessKey(U, i):

43 if πi
U = ⊥ or πi

U .stexec ̸= accepted: return ⊥
// session does not exist or has not yet derived session key

44 πi
U .revealed← true // mark session key revealed

45 return πi
U .K // return session key

cleanfull(π∗):
46 return cleanreduced(π∗) or cleanEE(π∗)

cleanreduced(π∗):
47 return cleanLTSS(π∗) or cleanELT(π∗) or cleanESS(π∗)

cleanEE(π∗):

48 return ¬π∗.revrand and
(
cleanpeerE(π∗) or cleansigE(π∗)

)
// test session randomness is unrevealed and peer’s ephemeral contribution is clean or cleanly signed

cleanpeerE(π∗):
49 return
50

(
π∗.role = initiator and ∃π ̸= π∗ :

(π.role = responder and π∗.cid = π.cid and ¬π.revrand)
)

// contributively-partnered responder session’s randomness is unrevealed

51 or
(
π∗.role = responder and ∃π ̸= π∗ :

(π.role = initiator and π∗.sid = π.sid and ¬π.revrand)
)

// partnered initiator session’s randomness is unrevealed

cleansigE(π∗) :

52 return
(
π∗.role = initiator and ¬π∗.pcorr and ∀π :

((π.role = responder and π∗.cid = π.cid) =⇒ ¬π.revrand)
)

// long-term (signing) secret of the responder peer was uncompromised upon
acceptance, and if a partner exists, then that partner’s randomness is unrevealed

cleanLTSS(π∗):
53 return
54

(
π∗.role = initiator and ¬corrltkπ∗.oid and
∀sspk ∈ π∗.sspks : (¬corrssksspk) and ¬π∗.pcorr

)
// tested initiator’s long-term and responder’s semi-static secrets are uncompromised

and responder long-term was uncompromised upon acceptance

55 or
(
π∗.role = responder and ¬corrltkπ∗.pid and
∀sspk ∈ π∗.sspks : (¬corrssksspk)

)
// initiator long-term and tested responder’s semi-static secrets are uncompromised

cleanELT(π∗):
56 return
57

(
π∗.role = initiator and ¬π∗.revrand and ¬corrltkπ∗.pid

)
// tested initiator’s randomness is unrevealed and responder long-term secret is uncompromised

58 or
(
π∗.role = responder and cleanpeerE(π∗) and ¬corrltkπ∗.oid

)
// intiator’s ephemeral contribution is clean and tested responder’s long-term secret is uncompromised

cleanESS(π∗):
59 return
60

(
π∗.role = initiator and ¬π∗.revrand and
∀sspk ∈ π∗.sspks : (¬corrssksspk) and ¬π∗.pcorr

)
// tested initiator’s randomness is unrevealed and responder semi-static secrets
are uncompromised and responder long-term was uncompromised upon acceptance

61 or
(
π∗.role = responder and cleanpeerE(π∗) and
∀sspk ∈ π∗.sspks : (¬corrssksspk)

)
// initiator’s ephemeral contribution is clean and tested responder’s semi-static secrets are uncompromised

Figure 6: Key indistinguishability (KI) game for key exchange protocol KE (top), in which adversary A has access to oracles
Send, Test, CorruptLTKey, CorruptSSKey, RevealRand, and RevealSessKey (middle), and wrt. to clean predicates
for PQXDH (bottom). Highlighted code reflects the main changes compared to the model of BFGJS [BFG+22, BFG+21].

19

to the targeted session having accepted (cf. Figure 6, lines 54 and 60). Treating signatures explicitly, we
also capture the additional guarantees that signing KEM keys give: for the ephemeral/ephemeral combina-
tion to contribute security, it is now (also) sufficient to have the peer’s contribution be cleanly signed (cf.
Figure 6, line 48). To that end we set a flag pcorr in a session if its peer was corrupted upon acceptance
(Figure 6, line 29). For PQXDH, this part of the model ensures that a quantum-later adversary cannot,
in addition to a “harvest now, decrypt later” attack, replace the ephemeral KEM public key with its own
without being noticed.

In more formal detail, let π∗ denote the test session. Depending on whether an ephemeral pre-key was
used in the key derivation of π∗ or not, we apply either the cleanfull or the cleanreduced predicate to π∗.

Since cleanreduced is part of the description of cleanfull, we first discuss the case π∗.type = reduced.
Intuitively, a session key derived in such a session remains unknown to the adversary, if one of the four
keys (i.e., excluding the unused DH4) that constitute the master secret is “clean”, i.e., cannot be computed
by the adversary. This is the case if one of the following three clean predicates holds for the test session π∗:

cleanLTSS: This predicate indicates whether the combination of the long-term key of the initiator and the
semi-static keys of the responder are unknown to the adversary. If the test session is an initiator, the
responder’s signing key must further be uncompromised upon acceptance.

cleanELT: This predicate indicates whether the combination of the ephemeral contribution of the initiator
and the long-term key of the responder is unknown to the adversary.

cleanESS: This predicate indicates whether the combination of the ephemeral contribution of the initiator
and the semi-static keys of the responder are unknown to the adversary. If the test session is an
initiator, the responder’s signing key must further be uncompromised upon acceptance.

If the test session π∗ is a responder session, the evaluation of cleanELT and cleanESS necessitates a
further predicate called cleanpeerE (in all other cases, it is sufficient to consider the compromise of keys and
randomness via the flags corrltk, corrssk, revrand, and pcorr).

cleanpeerE: This (sub)predicate indicates that the randomness used within any (sid- or cid-)partnered ses-
sion is unknown to the adversary.

For test sessions in full handshake mode, i.e., where π∗.type = full, it must either hold that cleanreduced
is true or that the additional input to the master secret computation is clean. The latter is captured by
the following predicate:

cleanEE: This predicate indicates that the ephemeral contribution of the test session is unknown to the
adversary and that the ephemeral contribution of the peer is unknown to the adversary (captured by
cleanpeerE) or was “cleanly” signed (captured by the new cleansigE predicate we introduce). It is the
second part of this “or” statement by which our model captures that KEM ephemeral keys are pro-
tected by signatures against replacement.

Again, the predicate cleanpeerE helps to determine within cleanEE whether the randomness of the test ses-
sion’s (contributive) partners is unrevealed. The following predicate precludes that the adversary substi-
tutes the responder’s ephemeral key and signs it with the signing key obtained from corrupting the long-
term key.

cleansigE: This (sub)predicate indicates that for initiator test sessions the peer was not corrupted at the
time of acceptance and, if the test session has a contributively partnered session, then the ephemeral
contribution of that session is not known to the adversary.

20

5 PQXDH Analysis
We formalize the PQXDH handshake in Figure 7, highlighting the changes compared to X3DH to achieve
post-quantum security in dark gray. Ours is the first reductionist analysis to model the signatures on
public keys, which we accent with light gray. Long-term key pairs consist of a DH key pair and a signing
key pair.9 Semi-static key pairs consist of a DH key pair and a KEM key pair, each signed under the
long-term signing key. The protocol then works as follows.

First, Bob produces a pre-key bundle with semi-static and ephemeral keys as indicated by the ⃗ssid
vector and type: The pre-key bundle always includes the semi-static DH key and for reduced handshakes
a semi-static KEM key. Only for full handshakes, the pre-key bundle includes ephemeral DH and KEM
keys.10 Signatures on the semi-static DH key and the KEM key (regardless if it is semi-static or ephemeral)
are always included.

Second, Alice verifies both signatures and samples an ephemeral DH key pair of her own. She computes
several DH secret combinations, namely long-term/semi-static, ephemeral/long-term, ephemeral/semi-
static, and ephemeral/ephemeral (the last one only for full handshakes), and encapsulates against Bob’s
KEM public key. She derives the session key via a key derivation function KDF on input all three/four
DH shared secrets and the KEM shared secret and sends her sampled DH ephemeral public key and the
KEM ciphertext to Bob.

Third, Bob computes the same DH shared secrets and decapsulates the KEM ciphertext. He derives
the session key in the same manner and accepts.

Security

We show that PQXDH achieves key indistinguishability wrt. to the maximum-exposure attack vectors for-
malized through the clean predicates in our model (cf. Section 4). As for the prior analysis of X3DH [CCD+17]
whose proof structure we follow in parts, the bound is highly non-tight; we still give it in concrete terms
for clarity.

Theorem 5.1 (Key indistinguishability of PQXDH). The PQXDH protocol given in Figure 7 with random-
ness space RKE = RDH.KGen ×RKEM.KGen ×RKEM.Enc ×RSIG.Sig achieves (t, ϵ, (qSnd, qCorrLT, qCorrSS, qRevR,
qRevSK))–key indistinguishability, assuming (for t′ ≈ t) the GapDH problem in the group (G, g, q) is (t′,
ϵGDH, 1.5(qRO+qSnd)2)-hard, KEM is a (t′, ϵCCA, ns)–OW-CCA-secure and (t′, ϵLEAK+ , np·nss+ns)–LEAK+-
BIND-SS-{CT,PK}-secure KEM with public-key collision probability γcoll and correctness error δcorr, SIG is
a (t′, ϵSIG, 2nss +ns)-unforgeable signature scheme, and KDF behaves like a (programmable) random oracle.
Concretely, for any efficient adversary A we have

AdvKI
PQXDH(A) ≤ (np + np · nss + ns)2

q
+ γcoll(np · nss + ns) + ns · δcorr + ϵLEAK+

+



(np · (ϵSIG + np · nss · ϵGDH)) // cleanLTSS
+ (ns · np · ϵGDH) // cleanELT
+ (np · (ϵSIG + nss · ns · ϵGDH)) // cleanESS ∧ type = full
+ (np · (ϵSIG + nss · ns ·min(ϵGDH, ϵCCA))) // cleanESS ∧ type = reduced
+

(
n2

s ·min(ϵGDH, ϵCCA)
)

// cleanEE ∧ cleanpeerE
+

(
np ·

(
ϵSIG + n2

s · qRO · ϵCCA
))

// cleanEE ∧ cleansigE


.

For easier accessibility, we first give a summary of the proof; the full proof follows below.
9The PQXDH description [KS24] suggests to use a single key pair for both DH and the signature scheme XEdDSA [Per16],

modeling which we leave to future work.
10Ephemeral DH and KEM pre-keys are used as long as there are some left on the Signal server. In practice, ephemeral

DH and KEM pre-keys may run out at different points in time. We do not model this to improve accessibility of the proof.

21

KGenLT():

1
(
ltpkDH, ltskDH)

←$ DH.KGen()

2
(
ltpkSIG, ltskSIG)

←$ SIG.KGen()

3 return
(
(ltpkDH, ltpkSIG), (ltskDH, ltskSIG)

)
KGenSS(ltsk):

4
(
sspkDH, ssskDH)

←$ DH.KGen() ;
(
sspkKEM, ssskKEM)

←$ KEM.KGen()

5
(
ltskDH, ltskSIG)

← ltsk

6 σDH←$ SIG.Sig
(
ltskSIG, sspkDH

B

)
; σKEM←$ SIG.Sig

(
ltskSIG, sspkKEM

B

)
7 ssskDH∗ ← (ssskDH, sspkDH, σDH) ; ssskKEM∗ ← (ssskKEM, sspkKEM, σKEM)

8 return
(
(sspkDH, ssskDH∗, σDH), (sspkKEM, ssskKEM∗, σKEM)

)
Alice Bob

Run(ltskB , ⃗ltpk , ⃗ssskB , πB , (create, (⃗ssid, type)))
(r1, r2, r3,⊥)← πB .coins
(ssskDH

B , sspkDH
B , σDH

B)← sssk ⃗ssid[1]
B

if type = full // full handshake

(epkDH
B , eskDH

B)← DH.KGen(; r1)
(epkKEM

B , eskKEM
B)← KEM.KGen(; r2)

(ltskDH
B , ltskSIG

B)← ltskB

σKEM ← SIG.Sig(ltskSIG
B , epkKEM

B ; r3)
epkB ← (epkDH

B , epkKEM
B)

sspk ← (sspkDH
B ,⊥)

else // reduced handshake

(sspkKEM
B , ssskKEM

B , σKEM
B)← sssk ⃗ssid[2]

B

epkB ← ⊥
sspk ← (sspkDH

B , sspkKEM
B)

σKEM ← σKEM
B

πB .pid← ⋆
πB .sspks← sspk
πB .type← type
πB .cid← (B, ltpkB , sspk , epkB)
return (πB , m = (B, sspk , epkB , σDH

B , σKEM))

mRun(ltskA, ⃗ssskA, ⃗ltpk , πA, m; coins)
(r4,⊥,⊥, r5)← πA.coins
(ltskDH

A , ltskSIG
A)← ltskA

(epkDH
A , eskDH

A)← DH.KGen(; r4)
(B, sspk , epkB , σDH

B , σKEM)← m

(ltpkDH
B , ltpkSIG

B)← ltpkB

(sspkDH
B , sspkKEM

B)← sspk
if SIG.Vf(ltpkSIG

B , sspkDH
B , σDH

B) = false
return (πA, ϵ)

DH1 ← DH(ltskDH
A , sspkDH

B)
DH2 ← DH(eskDH

A , ltpkDH
B)

DH3 ← DH(eskDH
A , sspkDH

B)
if epkB ̸= ⊥ // full handshake

(epkDH
B , epkKEM

B)← epkB

DH4 ← DH(eskDH
A , epkDH

B)
if SIG.Vf(ltpkSIG

B , epkKEM
B , σKEM) = false

return (πA, ϵ)
(ct, ss)← KEM.Enc(epkKEM

B ; r5)
πA.type← full

else // reduced handshake

DH4 ← ϵ

if SIG.Vf(ltpkSIG
B , sspkKEM

B , σKEM) = false
return (πA, ϵ)

(ct, ss)← KEM.Enc(sspkKEM
B ; r5)

πA.type← reduced
πA.K← KDF(DH1∥DH2∥DH3∥DH4∥ ss)

πA.sid←
(

A, B, ltpkA, ltpkB ,

sspk , epkB , epkDH
A , ct

)
πA.pid← B
πA.sspks← sspk
πA.cid← (B, ltpkB , sspk , epkB)
πA.stexec ← accepted
return (πA, m′ = (A, epkDH

A , ct)) m′

Run(ltskB , ⃗ssskB , ⃗ltpk , πB , m′; coins)
(A, epkDH

A , ct)← m′

(ltpkDH
A , ltpkSIG

A)← ltpkA

DH1 ← DH(ltpkDH
A , ssskDH

B)
DH2 ← DH(epkDH

A , ltskDH
B)

DH3 ← DH(epkDH
A , ssskDH

B)
if πB .type = full // full handshake

DH4 ← DH(epkDH
A , eskDH

B)
ss ← KEM.Dec(eskKEM

B , ct)
else // reduced handshake

DH4 ← ϵ

ss ← KEM.Dec(ssskKEM
B , ct)

πB .K← KDF(DH1∥DH2∥DH3∥DH4∥ ss)

πB .sid←
(

A, B, ltpkA, ltpkB ,

sspk , epkB , epkDH
A , ct

)
πB .pid← A
πB .stexec ← accepted
return (πB , ϵ)

Figure 7: The PQXDH protocol. Darker gray code lines are additions compared to the original X3DH protocol to add post-
quantum security. Lighter gray code lines are signature elements of the X3DH and PQXDH not covered in the prior analyses
of [CCD+17].

22

Proof summary. The proof proceeds via a series of game hops. First, we exclude collisions in the DH
and KEM public keys, yielding the terms (np+np·nss+ns)2

q + γcoll(np · nss + ns). Second, we exclude KEM
correctness errors when decapsulating in sessions (ns ·δcorr). Now, soundness holds, as the session identifiers
carrying non-colliding DH/KEM keys make them non-colliding themselves and sessions agreeing on session
identifiers in particular derive the same session keys. Third, we ensure that KEM shared secrets bind the
public keys and ciphertexts, introducing the ϵLEAK+ term; this in particular rules out re-encapsulation
attacks where sessions that are not partnered possibly derive the same session key.11

At this stage we separate the proof into several cases based on the clean predicate (cf. the annotated
sum in the bound of Theorem 5.1). Let us illustrate the fourth case (cleanESS ∧ type = reduced) here since
it covers the most interesting proof techniques, including handling the signatures and a hybrid DH/KEM
argument; the other cases follow in a similar fashion. In this case, the cleanESS predicate is satisfied and
the adversary is testing a session running a reduced (type = reduced) handshake. In the proof, we first
guess the responder identity involved in the test session, introducing a np loss. Second, we ensure that
the guessed responder’s semi-static KEM and DH keys are not tampered with in the test session, reducing
to the unforgeability of the signature scheme (ϵSIG). Third and fourth, we guess the two semi-static key
identifiers of the responder as well as the initiator session, with a loss of n2

ss · ns. Fifth, we abort if the
adversary queries the key derivation function KDF, modeled as random oracle, on the master secret of
the test session. To bound this step, we embed both a GapDH challenge and a OW-CCA challenge into
the test session (concretely, into the ephemeral DH and KEM encapsulation contribution of the initiator
and the semi-static DH and KEM keys of the responder, which we both guessed before). If the adversary
detects this change, the reduction can win both games, yielding the minimum of the advantages as the
hybrid bound, i.e., min(ϵGDH, ϵCCA). Finally, we can replace the session key of the test session with a
random key, making it independent of the challenge bit btest. Concluding that the session key of the test
session is now independent of btest since non-partnered sessions derive distinct keys (in particular due to
the KEM binding hop in the beginning), this completes the proof case.

We get hybrid guarantees for the fourth and fifth proof cases (cleanESS in reduced mode and cleanEE in
full mode with a clean peer, i.e., cleanpeerE), showing that for these attack vectors, an adversary would need
to break both GapDH in the DH group and OW-CCA security of the KEM. The other attack vectors either
involve only DH secrets (and hence do not provide post-quantum security), or, for the sixth case (cleanEE
in full mode with clean signatures), the adversary can manipulate the (unsigned) ephemeral DH key, hence
only the KEM secret ensures security here. All in all, PQXDH maintains the classical guarantees of X3DH
for the first three cases (as intended), extends the guarantees for the fourth and fifth case to provide hybrid
guarantees, and adds a post-quantum guarantee for the last case due to the signed ephemeral KEM key
(compared to no guarantee under this attack vector for X3DH).

We now give the full proof for Theorem 5.1.

Proof. Game 0. We start with Game G0 being the original key indistinguishability game GKI
PQXDH(A),

i.e.,
AdvKI

PQXDH(A) = AdvG0
PQXDH(A).

Game 1 (DH and KEM key collisions). We let G0 abort (overwriting the adversary’s output with 0)
if any two honestly generated DH keys or KEM keys coincide. There are np many long-term DH keys,
np · nss many semi-static DH keys, and at most ns many ephemeral DH keys, so by the birthday bound

11As we will detail in the proof (Game 3) and discuss in Section 6, if PQXDH included the session context (e.g., the values
in the session identifier) in the key derivation, as is good practice, this problem would not occur: different KEM public keys
or ciphertexts would lead to different session keys (by being part of the KDF input as session context).

23

the probability for any two DH keys colliding can be upper-bounded by (np+np·nss+ns)2

q . As for KEM keys,
there are np · nss semi-static ones and at most ns ephemeral ones, which collide with probability at most
γcoll(np · nss + ns); cf. Definition 3.1. Put together, we have

AdvG0
PQXDH(A) ≤ (np + np · nss + ns)2

q
+ γcoll(np · nss + ns) + AdvG1

PQXDH(A).

Game 2 (KEM correctness). We next let G1 abort if any honestly created KEM encapsulation fails
to decapsulate correctly. This introduces a KEM correctness error term for each of the ns many sessions:

AdvG1
PQXDH(A) ≤ ns · δcorr + AdvG2

PQXDH(A).

Soundness. At this point soundness holds unconditionally; we consider the three sub-conditions of the
sound predicate:

• Agreement on shared key, type, contributive identifiers (Figure 6, line 18): The DH keys and the
KEM key and the KEM ciphertext in the session identifier determine all inputs to the key derivation
function KDF. By G2, KEM ciphertexts decapsulate correctly and both parties derive the same
session key. The session identifier further determines the type by epkB being empty (type = reduced)
or not (type = full). Finally, the contributive identifier is a subset of the session identifier, hence
matching if the latter match.

• No initiator session identifiers collide (Figure 6, line 19): Every initiator samples a fresh ephemeral
DH key epkDH

A included in the session identifier. These DH keys do not collide by Game G1. Hence,
initiator session identifiers do not collide.

• No three session identifiers collide in full mode (Figure 6, line 20): Three colliding session identifiers
implies colliding identifiers for two initiator sessions or for two responder sessions. Collisions of ini-
tiator session are ruled out above already. Collisions of responder sessions imply colliding ephemeral
DH keys epkDH

B , which are ruled out by Game G1.

Game 3 (KEM shared secret collisions). We will need later that two sessions that use distinct
(semi-static or ephemeral) KEM public keys or distinct ciphertexts do not end up using the same shared
secret ss (and hence possibly the same session key, despite not being partnered).12 In this game, we abort
if any two sessions derive the same shared secret ss while using different KEM public keys (either key
may be an ephemeral key in a full session or a semi-static key in a reduced session) or different KEM
ciphertexts.

We bound the probability of this abort happening by the advantage of a reduction B1 in breaking KCR
security of the KEM scheme for n = np ·nss + ns. Let B1 use the first np ·nss challenge keys as semi-static
KEM keys in KGenSS instead of generating them itself, and the remaining challenge keys in place of the
(at most ns) ephemeral KEM keys generated by responder sessions (letting the KEM.KGen randomness
obtained in the KCR game replace r2 in the session’s random coins). If any two sessions πi, πj obtain
the same KEM shared secret ssi = ssj (as the output of encapsulation for initiator sessions, or as the

12If PQXDH included the session context (e.g., the values in the session identifier) in the key derivation, we would not need
this game hop, since different KEM public keys or ciphertexts would lead to different session keys. See also the discussion in
Section 6.

24

output of decapsulation for responder sessions) involving two distinct public keys pki, pkj or two distinct
ciphertexts cti, ctj , B1 outputs (i, cti, j, ctj) and wins. Hence,

AdvG2
PQXDH(A) ≤ ϵLEAK+ + AdvG3

PQXDH(A).

Separating the clean cases. At this point, we will divide the proof into six sub-cases following the
structure of the cleanfull resp. cleanreduced predicates evaluated on the test session π∗. We can bound
the advantage of the adversary in Game G3 by the sum of its advantages in Games G3[c] which are G3
conditioned on a sub-predicate c:

AdvG3
PQXDH(A) ≤

∑
c ∈

{
cleanLTSS(π∗), cleanELT(π∗),

cleanESS(π∗) ∧ π∗.type=full, cleanESS(π∗) ∧ π∗.type=reduced,
cleanEE(π∗) ∧ cleanpeerE(π∗) ∧ π∗.type=full,
cleanEE(π∗) ∧ cleansigE(π∗) ∧ π∗.type=full

}
AdvG3[c]

PQXDH(A).

In the remainder of the proof, we will bound each of these cases, numbered A–F, separately.

Case A (cleanLTSS(π∗)).

In this proof case, the cleanLTSS predicate ensures for the test session π∗ that

1. the initiator’s long-term key is uncompromised,

2. the responder’s semi-static key is uncompromised, and

3. if π∗ is an initiator, the responder’s long-term (signing) key was uncompromised upon acceptance.

Via the last point, we can guarantee that initiator and responder indeed agree on the semi-static key
(identifier), given signatures are unforgeable. Then, similar to the classical Signal proof [CCD+17], the
uncompromised long-term/semi-static Diffie–Hellman combination then ensures key indistinguishability
for the test session.

Game A.0. This case begins with Game G3 conditioned on cleanLTSS(π∗) being satisfied.

AdvGA.0
PQXDH(A) = AdvG3[cleanLTSS(π∗)]

PQXDH (A).

Game A.1 (Guess responder identity V ∗). We first guess the identity V ∗ of the responder involved
in the test session, overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses
at most a factor of the number of users np:

AdvGA.0
PQXDH(A) ≤ np · AdvGA.1

PQXDH(A).

Game A.2 (Signature unforgeability). We now abort the game (again, returning 0 as the adversary’s
bit guess) in the event that the test session π∗ is an initiator session and accepts using a semi-static DH
public key sspkDH

V ∗ that was not generated through a KGenSS run for V ∗. This ensures that the test
session accepts with π∗.sspks = (sspkDH

V ∗ , ·) corresponding to a DH key pair of which the adversary does

25

not know the secret key, since cleanLTSS(π∗) guarantees that the semi-static secret belong to sspkDH
V ∗ is

not compromised. The probability of such an abort can be bounded by the advantage of the following
reduction B2 against the (t, ϵSIG, 2nss + ns)-unforgeability of SIG.

The reduction B2 samples all key components itself except for the signature key of V ∗: In place of
the long-term public signature key ltpkSIG

V ∗ of V ∗ it uses the public key pk obtained in its unforgeability
game. In its simulation of Game GA.1, B2 uses its signing oracle to obtain signatures under ltskSIG

V ∗ : two per
semi-static key (for DH and KEM public keys) and up to ns signatures on ephemeral KEM keys. Since
cleanLTSS(π∗) = true, we know that π∗.pcorr = false, i.e., the long-term key of V ∗ was not corrupted when
the test session accepted and so B2 does not have to answer a CorruptLTKey(V ∗) query prior to the
abort event. Hence, B2 provides a perfect simulation of Game GA.1 up to when the abort would happen,
and if π∗ receives a signature σV ∗ on a semi-static DH public key that V ∗ did not generate, then B2 can
output this as its forgery and wins. Thus,

AdvGA.1
PQXDH(A) ≤ ϵSIG + AdvGA.2

PQXDH(A).

Game A.3 (Guess initiator identity U∗). We guess the identity U∗ of the initiator to the test session,
overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step again loses at most a
factor of the number of users np:

AdvGA.2
PQXDH(A) ≤ np · AdvGA.3

PQXDH(A).

Game A.4 (Guess semi-static key identifier ssid∗ of V ∗). We now guess the identifier ssid of the
responder V ∗’s (uncorrupted) semi-static DH key sspkDH

V ∗ . Note that depending on the role of π∗ this is
either the test session’s own key (if π∗.role = responder), or of the intended peer (if π∗.role = initiator). We
denote the guessed identifier by ssid∗, and abort, setting the adversary’s output bit to 0, if this guess is
incorrect, losing at most a factor of the number of semi-static keys per user nss:

AdvGA.3
PQXDH(A) ≤ nss · AdvGA.4

PQXDH(A).

Game A.5 (GapDH). We now abort the game (again, returning 0 as the adversary’s bit guess) in
the event that the adversary queries the random oracle on a value formatted like a master secret and
beginning with CDH(ltpkDH

U∗ , sspkDH
V ∗), i.e., the shared DH key between ltpkDH

U∗ and sspkDH
V ∗ , where sspkDH

V ∗

is the semi-static DH key with identifier ssid∗. The probability of such an abort can be bounded by the
advantage of the following reduction B3 against the (t, ϵGDH, qDDH)-hardness of the GapDH problem in
(G, g, q).

Reduction B3 samples all key components itself except for replacing the long-term DH key ltpkDH
U∗ of U∗

and the semi-static DH key sspkDH
V ∗ of V ∗ with its own challenge values ga and gb. Since cleanLTSS(π∗) =

true, B3 never has to answer the queries CorruptLTKey(U∗) or CorruptSSKey(V ∗, ssid∗) in its sim-
ulation of Game GA.4. Though, B3 may have to answer for RevealSessKey and Send queries that
involve the substituted keys. Hence, the reduction patches the random oracle and the Send oracle to
generate the session keys in a consistent manner. In consequence, the reduction answers queries to the
RevealSessKey oracle consistently as well.

Figure 8 gives an algorithmic description of the changes. In particular, the reduction gives special
treatment to Send queries that involve any of the challenge secrets, i.e., for Send queries where the
initiator is the initiator of the test session U∗ partnered with the responder of the test session V ∗ using
the semi-static key ssid∗ of the test session, the responder is U∗, or the responder is V ∗ with semi-static
key ssid∗ and the initiator is not U∗. In these cases the reduction cannot compute all DH shared secrets

26

RO′(x):
1 if DH1∥DH2∥DH3∥DH4∥ss = x // if we can parse the query string x as three or four DH shared secrets (DH4 may be empty) and a KEM shared

secret. . .

2 if DDH(ltpkDH
U∗ , sspkDH

V ∗ , DH1) // referring to V ∗’s key from ssid∗

3 B3 halts and returns DH1 as its GapDH solution // change for Game GA.5

4 return patch(DH1 , DH2 , DH3 , DH4 , ss) // extra routine to ensure consistency

5 return RO(x)

patch(PoS1, PoS2, PoS3, DH4 , ss):
// the first three arguments may pairs of DH public keys or DH shared secrets

6 foreach (e1, e2, e3, e4, e5, y) in L // iterate over list entries

7 if DDH-eq(PoS1, e1) ∧ DDH-eq(PoS2, e2) ∧ DDH-eq(PoS3, e3) ∧DH4 = e4 ∧ ss = e5

8 return y // query matches a prior one, respond with recorded value y

9 y←$ {0, 1}256 // new query; sample value at random

10 L← L ∪ {(PoS1, PoS2, PoS3, DH4 , ss, y)} // record response y on this query

11 return y

DDH-eq(PoS1, PoS2):
12 if (pk1, pk2) = PoS1 ∧ if (pk3, pk4) = PoS2 // if both PoS1 and PoS2 parse as two public keys. . .

13 return {pk1, pk2} = {pk3, pk4}
14 if (pk1, pk2) = PoS1 // if PoS1 parses as two public keys. . .

15 return DDH(pk1, pk2, PoS2)
16 if (pk1, pk2) = PoS2 // if PoS2 parses as two public keys. . .

17 return DDH(pk1, pk2, PoS1)
18 return PoS1 = PoS2 // else, both are DH shared secrets

Send(W, i, m) substitutes KDF call in Run where GapDH challenge keys are involved:
19 ...
20 U ← πi

W .initiator V ← πi
W .responder ssid← πi

W .ssid
21 (. . . , epkDH

U , . . .)← πi
W .sid

22 if U = U∗ ∧ V = V ∗ ∧ ssid = ssid∗

23 compute DH2 , DH4 , ss with the corresponding secret keys as specified in Run
24 πi

W .K← patch((ltpkDH
U∗ , sspkDH

V ∗), DH2 , (epkDH
U , sspkDH

V ∗), DH4 , ss)
25 else if V = U∗

26 compute DH1 , DH3 , DH4 , ss with the corresponding secret keys as specified in Run
27 πi

W .K← patch(DH1 , (epkDH
U , ltpkDH

U∗), DH3 , DH4 , ss)
28 else if U ̸= U∗ ∧ V = V ∗ ∧ ssid = ssid∗

29 compute DH1 , DH2 , DH4 , ss with the corresponding secret keys as specified in Run
30 πi

W .K← patch(DH1 , DH2 , (epkDH
U , sspkDH

V ∗), DH4 , ss)
31 else // B3 can compute all secrets

32 compute DH1 , DH2 , DH3 , DH4 , ss with the corresponding secret keys as specified in Run
33 πi

W .K← patch(DH1 , DH2 , DH3 , DH4 , ss)
34 ...

Figure 8: Algorithmic description of how B3 simulates the random oracle and the Send oracle in game GA.5. To ensure
consistency of queries we use an additional (global) list L, which is initialized as empty. This list L contains six-tuples
consisting of three pairs of DH public keys or DH shared secrets (PoS), a DH shared secret, a KEM shared secret, and the
associated RO output. The patch routine checks if incoming queries match list entries with the DDH-eq routine: DDH-eq
returns true if both PoS argument are the same two public keys, if the two PoS arguments are a valid DH tuple according
to the DDH oracle, or if the two PoS arguments are identical DH shared secrets. We patch the Send oracle to use the patch
routine in lieu of computing the KDF, whenever there are challenge secret keys involved that B3 does not know.

27

entering the key derivation function and chooses a session key via the patch routine. Specifically, the patch
routine takes as arguments three pairs of DH public keys or DH shared secrets PoS (since DH1 , DH2 , DH3
are the DH shared secrets that the reduction can potentially not compute), a DH shared secret, and a
KEM shared secret, and returns a RO output that is consistent with previous queries. To this end, patch
saves all queries together with their RO response in a list L and checks new queries against L. Note
here that two PoS are equivalent if the pair of public keys in one of them forms a valid Diffie–Hellman
triple with the shared secret in the other one according to the DDH oracle or if the PoS components are
equivalent, as described by the DDH-eq routine. If a query does not match any previous query, the patch
routine randomly chooses a new session key and records the query with the response in L.

Since the Send oracle computes consistent session keys for each session, B3 also consistently answers
to the RevealSessKey oracle queries. To ensure consistency with queries to the random oracle, the
reduction also uses the patch routine for RO queries. Finally, in case the adversary queries the random
oracle on a value beginning with CDH(ltpkDH

U∗ , sspkDH
V ∗), the reduction B3 halts and returns this value to its

own challenger.
Note that for each RO query the reduction makes up to 1 + 2|L| ≤ 3|L| queries to the DDH oracle

(line 2 and up to two times per entry in line 7). For each query to the Send oracle,13 the reduction calls
the patch routine once, which makes up to 3|L| queries to the DDH oracle. Each call to patch adds at
most one entry to L, so |L| grows from 1 to qRO + qSnd. Using the Gaussian sum we get

qDDH ≤
qRO+qSnd∑

i=1
3 · (i− 1) = 3 · (qRO + qSnd − 1) · (qRO + qSnd)

2 ≤ 1.5(qRO + qSnd)2.

Unless A queries the random oracle on CDH(ltpkDH
U∗ , sspkDH

V ∗) in the DH1 position, B3 provides a perfect
simulation of game GA.4. If A makes such a random oracle query, then B3 will detect this and win its
GapDH game. Thus,

AdvGA.4
PQXDH(A) ≤ ϵGDH + AdvGA.5

PQXDH(A).

Game A.6 (Replacing the session key). We now replace the session key of the test session π∗ with
a uniformly sampled key. Since Game GA.5 has ruled out that the adversary queries the RO on the master
secret DH1∥DH2∥DH3∥DH4∥ss of the test session π∗, the adversary has no chance of detecting this change.
Thus,

AdvGA.5
PQXDH(A) = AdvGA.6

PQXDH(A).

To conclude this proof case, observe that in Game GA.6 the session key of the test session π∗ is now
a uniformly random key, independent of btest. Furthermore, A cannot reveal the session key of the test
session π∗ via a RevealSessKey query on π∗ or any partnered session which might hold the same key.
Finally, any non-partnered session will derive a different session key: any difference in the identities A, B
yields different DH public keys by Game G1, any difference in the DH shares implies a difference in the
DH[1]–DH[4] inputs, while differing KEM public keys or ciphertexts yield a different ss input by Game G3.
Thus, A cannot gain any information about the test bit btest and can do no better than to guess:

AdvGA.6
PQXDH(A) ≤ 0.

13If PQXDH would include the session context (e.g., the values in the session identifier) in the key derivation, as is good
practice, the reduction would need less DDH oracle queries: Using the context, the reduction can detect when a challenge DH
key is combined with a maliciously generated (ephemeral) key. In the modified Send oracle in Figure 8, only the first PoS in
line 24 remains a pair of public keys, while the other three occurrences are solved via context. In consequence, at maximum
PoS per entry in L contains two public keys and we get a maximum of qRO + qSnd DDH queries.

28

Case B (cleanELT(π∗)).

In this proof case, the cleanELT predicate ensures for the test session π∗ that

1. the initiator’s randomness is not revealed, and

2. the responder’s long-term key is uncompromised.

Similar to the classical Signal proof [CCD+17], the uncompromised ephemeral/long-term Diffie–Hellman
combination ensures key indistinguishability for the test session.

Game B.0. This case begins with Game G3 conditioned on cleanELT(π∗) being satisfied.

AdvGB.0
PQXDH(A) = AdvG3[cleanELT(π∗)]

PQXDH (A).

Game B.1 (Guess initiator session). We guess the initiator session π∗
i contributing to the test ses-

sion π∗ (i.e., either the test session itself if it is an initiator session, or the initiator session partnered to
the test session), overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses
at most a factor of the number of sessions ns:

AdvGB.0
PQXDH(A) ≤ ns · AdvGB.1

PQXDH(A).

Game B.2 (Guess responder identity V ∗). We guess the identity V ∗ of the responder involved in
the test session, overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at
most a factor of the number of users np:

AdvGB.1
PQXDH(A) ≤ np · AdvGB.2

PQXDH(A).

Game B.3 (GapDH). We now abort the game (again, returning 0 as the adversary’s bit guess) in the
event that the adversary queries the random oracle on a value formatted like a master secret and beginning
with CDH(epkDH, ltpkDH

V ∗), i.e., the shared DH key between the ephemeral key of the test session’s initiator
epkDH and ltpkDH

V ∗ . The probability of such an abort can be bounded by the advantage of the following
reduction B4 against the (t, ϵGDH, qDDH)-hardness of the GapDH problem in (G, g, q).

The reduction follows the idea of Game GA.5, only that now we embed the GapDH challenge keys as
the ephemeral key in the initiator session π∗

i and as the long-term key of V ∗. The reduction does not
need to answer corresponding RevealRand queries on π∗

i or CorruptLTKey queries on V ∗ due to
cleanELT. It can use a similar strategy to the one in Game GA.5 to patch the random oracle, yet it has an
easier time ensuring consistency of the Send oracle: It can always compute DH1 and DH3 by using the
responder’s semi-static secret key, and DH4 (if it is a full handshake) with the honest party’s ephemeral
secret key. Outside of the test session B4 can use the initiator’s ephemeral secret key to compute DH2
if the ephemeral key was honestly generated. Hence, B4 can compute all inputs to the KDF for all Send
queries itself, except for the Send queries to V ∗ with a malicious ephemeral key on the initiator side. In
consequence, B4 queries the DDH oracle at most once per Send query and once when checking RO queries
for the DH2 position. All in all, B4 needs a maximum of qSnd + qRO queries to the DDH oracle, which is
well below the number in Game GA.5.

Unless A queries the random oracle on CDH(epkDH, ltpkDH
V ∗) in the DH2 position, B4 provides a perfect

simulation of GB.2. If A does make such a random oracle query, then B4 will detect this and win its GapDH
game. Thus,

AdvGB.2
PQXDH(A) ≤ ϵGDH + AdvGB.3

PQXDH(A).

29

Game B.4 (Replacing the session key). We now replace the session key of the test session π∗ with
a uniformly sampled key. Since Game GB.3 has ruled out that the adversary queries the RO on the master
secret DH1∥DH2∥DH3∥DH4∥ss of the test session π∗, the adversary has no chance of detecting this change.
Thus,

AdvGB.3
PQXDH(A) = AdvGB.4

PQXDH(A).

To conclude this proof case, observe that in Game GB.4 the session key of the test session π∗ is now
a uniformly random key, independent of btest. As before, A can neither reveal the session key of the test
session π∗ nor of any partnered session, nor does any other session derive the same session key by Game G3.
Thus, A cannot gain any information about the test bit btest and can do no better than to guess:

AdvGB.4
PQXDH(A) ≤ 0.

Case C (cleanESS(π∗) ∧ π∗.type = full).

In this proof case, the test session performs a full handshake and the cleanESS predicate ensures for the
test session π∗ that

1. the initiator’s randomness is not revealed, and

2. the responder’s semi-static key is uncompromised, and

3. if π∗ is an initiator, the responder’s long-term (signing) key was uncompromised upon acceptance.

Via the last point, similarly to Case A, we can guarantee that initiator and responder indeed agree on
the semi-static key (identifier), given signatures are unforgeable. Then, similar to the classical Signal
proof [CCD+17], the uncompromised ephemeral/semi-static Diffie–Hellman combination ensures key in-
distinguishability for the test session.

Game C.0. This case begins with Game G3 conditioned on cleanESS(π∗) ∧ π∗.type = full being satisfied.

AdvGC.0
PQXDH(A) = AdvG3[cleanESS(π∗) ∧ π∗.type=full]

PQXDH (A).

Game C.1 (Guess responder identity V ∗). We first guess the identity V ∗ of the responder to the
test session, overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at
most a factor of the number of users np:

AdvGC.0
PQXDH(A) ≤ np · AdvGC.1

PQXDH(A).

Game C.2 (Signature unforgeability). We now abort the game (again, returning 0 as the adversary’s
bit guess) in the event that the test session π∗ is an initiator session and accepts using a semi-static DH
public key sspkDH

V ∗ that was not generated through a KGenSS run for V ∗. This ensures that the test
session accepts with π∗.sspks = (sspkDH

V ∗ , ·) corresponding to a DH key pair of which the adversary does
not know the secret key, since cleanESS(π∗) guarantees that the semi-static secret belong to sspkDH

V ∗ is not
compromised. Similar to Game GA.2, the probability of such an abort can be bounded by the advantage of a
reduction against the (t, ϵSIG, 2nss +ns)-unforgeability of SIG. The argument is identical to the Game GA.2.
Thus,

AdvGC.1
PQXDH(A) ≤ ϵSIG + AdvGC.2

PQXDH(A).

30

Game C.3 (Guess semi-static key identifier ssid∗ of V ∗). We now guess the identifier ssid of the
responder V ∗’s (uncorrupted) semi-static key sspkDH

V ∗ . Note that depending on the role of π∗ this is either
the test session’s own key (if π∗.role = responder), or of the intended peer (if π∗.role = initiator). We denote
the guessed identifier by ssid∗, and abort, setting the adversary’s output bit to 0, if this guess is incorrect,
losing at most a factor nss of the number of semi-static keys per user:

AdvGC.2
PQXDH(A) ≤ nss · AdvGC.3

PQXDH(A).

Game C.4 (Guess initiator session). We guess the initiator session π∗
i involved in the test session π∗

(i.e., either the test session itself if it is an initiator session, or the initiator session partnered to the test
session), overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at most a
factor of the number of sessions ns:

AdvGC.3
PQXDH(A) ≤ ns · AdvGC.4

PQXDH(A).

Game C.5 (GapDH). We now abort the game (again, returning 0 as the adversary’s bit guess) in the
event that the adversary queries the random oracle on a value formatted like a master secret, beginning
with CDH(epkDH, sspkDH

V ∗), i.e., the shared DH key between the ephemeral key of the test session’s initiator
epkDH and sspkDH

V ∗ , where sspkDH
V ∗ is the semi-static DH key with identifier ssid∗. The probability of such an

abort can be bounded by the advantage of the following reduction B5 against the (t, ϵGDH, qDDH)-hardness
of the GapDH problem in (G, g, q).

The proof follows the idea of Games GA.5 and GB.3. Though, now we embed the GapDH challenge keys
as the ephemeral key in the initiator session π∗

i and as semi-static key of V ∗ with semi-static id ssid∗. The re-
duction does not need to answer corresponding RevealRand queries on π∗

i or CorruptSSKey(V ∗, ssid∗)
queries due to cleanESS. It can use a similar strategy to patch the random oracle: It can always compute
DH1 and DH2 by using the initiator’s and responder’s long-term secret key, respectively, and DH4 with
the honest party’s ephemeral secret key. Outside of the test session B5 can use the initiator’s ephemeral
secret key to compute DH3 if the ephemeral key was honestly generated. Hence, B5 can compute all inputs
to the KDF for all Send queries itself, except for the Send queries to the test session or to V ∗ with ssid∗

and a malicious ephemeral key on the initiator side. In consequence, B5 queries the DDH oracle at most
once per Send query and once when checking RO queries for the DH3 position. All in all, B5 needs a
maximum of qSnd + qRO queries to the DDH oracle, which is well below the number in Game GA.5.

Unless A queries the random oracle on CDH(epkDH, ltpkDH
V ∗) in the DH2 position, B5 provides a perfect

simulation of GC.4. If A does make such a random oracle query, then B5 will detect this and win its GapDH
game. Thus,

AdvGC.4
PQXDH(A) ≤ ϵGDH + AdvGC.5

PQXDH(A).

Game C.6 (Replacing the session key). We now replace the session key of the test session π∗ with
a uniformly sampled key. Since Game GC.5 has ruled out that the adversary queries the RO on the master
secret DH1∥DH2∥DH3∥DH4∥ss of the test session π∗, the adversary has no chance of detecting this change.
Thus,

AdvGC.5
PQXDH(A) = AdvGC.6

PQXDH(A).
To conclude this proof case, observe that in Game GC.6 the session key of the test session π∗ is now

a uniformly random key, independent of btest. As before, A can neither reveal the session key of the test
session π∗ nor of any partnered session, nor does any other session derive the same session key by Game G3.
Thus, A cannot gain any information about the test bit btest and can do no better than to guess:

AdvGC.6
PQXDH(A) ≤ 0.

31

Case D (cleanESS(π∗) ∧ π∗.type = reduced).

In this proof case, the test session performs a reduced handshake and the cleanESS predicate ensures for
the test session π∗ that

1. the initiator’s randomness is not revealed, and

2. the responder’s semi-static key is uncompromised, and

3. if π∗ is an initiator, the responder’s long-term (signing) key was uncompromised upon acceptance.

Via the last point, we can guarantee that initiator and responder indeed agree on the semi-static key
(identifier), given signatures are unforgeable. The difference to Case C is that, in a reduced handshake,
the semi-static KEM public key of the responder is used (and there is no ephemeral/ephemeral Diffie–
Hellman combination). This means we get the following hybrid guarantee: both the ephemeral/semi-static
Diffie–Hellman combination being uncompromised and the semi-static KEM key being uncompromised
are, on their own, sufficient to ensure key indistinguishability for the test session.

Game D.0. This case begins with Game G3 conditioned on cleanESS(π∗) ∧ π∗.type = reduced being
satisfied.

AdvGD.0
PQXDH(A) = AdvG3[cleanESS(π∗) ∧ π∗.type=reduced]

PQXDH (A).

Game D.1 (Guess responder identity V ∗). We first guess the identity V ∗ of the responder to the
test session, overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at
most a factor of the number of users np:

AdvGD.0
PQXDH(A) ≤ np · AdvGD.1

PQXDH(A).

Game D.2 (Signature unforgeability). In this game case, we are interested in the authenticity of
both semi-static DH and KEM keys, and hence now abort the game (again, returning 0 as the adversary’s
bit guess) in the event that the test session π∗ is an initiator session and accepts using a semi-static DH
public key sspkDH

V ∗ or a semi-static KEM public key sspkKEM
V ∗ that was not generated through a KGenSS run

for V ∗. Since for reduced handshakes both public keys are recorded in π∗.sspks = (sspkDH
V ∗ , sspkKEM

V ∗), this
ensures that the test session accepts with semi-static DH and KEM public keys of which the adversary does
not know the secret, since cleanESS(π∗) guarantees that the semi-static secrets corresponding to sspkDH

V ∗ or
to sspkKEM

V ∗ are not compromised.
Again similar to Game GA.2, we can reduce this hop to the (t, ϵSIG, 2nss + ns)-unforgeability of SIG:

AdvGD.1
PQXDH(A) ≤ ϵSIG + AdvGD.2

PQXDH(A).

Game D.3 (Guess semi-static key identifiers ssid∗
1, ssid∗

2 of V ∗). We now guess the ssid identifiers
of the responder V ∗’s (uncorrupted) semi-static DH and KEM keys, sspkDH

V ∗ resp. sspkKEM
V ∗ . Note that

depending on the role of π∗ this is either the test session’s own key (if π∗.role = responder), or of the
intended peer (if π∗.role = initiator). We denote the guessed identifiers by ssid∗

1 (for the DH key) and ssid∗
2

(for the KEM key), and abort, setting the adversary’s output bit to 0, if this guess is incorrect, losing at
most a factor nss of the number of semi-static keys of each type per user, for each of the two guesses:

AdvGD.2
PQXDH(A) ≤ n2

ss · AdvGD.3
PQXDH(A).

32

Game D.4 (Guess initiator session). We guess the initiator session π∗
i involved in the test session π∗

(i.e., either the test session itself if it is an initiator session, or the initiator session partnered to the test
session), overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at most a
factor of the number of sessions ns:

AdvGD.3
PQXDH(A) ≤ ns · AdvGD.4

PQXDH(A).

Game D.5 (GapDH + OW-CCA). We now abort the game (again, returning 0 as the adversary’s
bit guess) in the event that the adversary queries the random oracle on a value formatted like a master
secret, beginning with CDH(epkDH, sspkDH

V ∗), i.e., the shared DH key between the ephemeral key of the test
session’s initiator epkDH and sspkDH

V ∗ , and ending with the KEM shared secret ss∗ resulting from π∗
i encap-

sulating against sspkKEM
V ∗ , where sspkDH

V ∗ and sspkKEM
V ∗ are the semi-static DH and KEM keys in sspkssid∗

V ∗ .
The probability of such an abort can be bounded by the minimum of the advantages of the following re-
duction B6 playing simultaneously against the (t, ϵGDH, qDDH)-hardness of the GapDH problem in (G, g, q)
and (t, ϵCCA, ns)–OW-CCA security of KEM.

The reduction embeds the GapDH challenge as the ephemeral DH share in the initiator session π∗
i and

as semi-static DH key of V ∗ with semi-static id ssid∗
1 (as in Game GC.5), and the KEM public key pkKEM

from the OW-CCA game as the semi-static key sspkKEM
V ∗ of V ∗ with semi-static id ssid∗

2. Furthermore,
it uses the KEM challenge ciphertext ct∗ in π∗

i . Similar to Game GC.5, the reduction does not need to
answer corresponding RevealRand on π∗

i or CorruptSSKey(V ∗, ssid∗
1/ssid∗

2) queries due to cleanESS.
Furthermore, as for Game GC.5, patching the Send oracle is relatively easy: Except for queries to the test
session or to V ∗ using sspkDH

V ∗ and a malicious ephemeral DH key on the initiator side, the reduction can
compute all DH shared secrets with the DH secret keys and it can decapsulate the KEM shared secret with
the KEM secret key or, for sessions using sspkKEM

V ∗ , the Decaps oracle of the OW-CCA game. Otherwise
(and in particular in the test session), the reduction uses a freshly sampled key as session key. If the DDH
oracle accepts a query, then the reduction returns the DH3 and ss∗ from the corresponding RO query to
its GapDH and OW-CCA games after finishing the simulation for A.

The reduction ensures consistency with the random oracle by checking RO queries against the above
mentioned patches. In consequence, the remaining queries to the DDH oracle are once per Send query
and when checking RO queries for the DH3 position. All in all, B6 needs a maximum of qSnd + qRO queries
to the DDH oracle, which is well below the number in GA.5; it further makes at most ns many Decaps
query in the OW-CCA game.

Unless A queries the random oracle on CDH(epkDH, sspkDH
V ∗) in the DH3 position and ss∗ in the ss

position, B6 provides a perfect simulation of GD.4. If A does make such a random oracle query, then B6
will detect this and win both its GapDH game and its OW-CCA game. We can thus bound the game hop
by the minimum advantage against the two games:

AdvGD.4
PQXDH(A) ≤ min(ϵGDH, ϵCCA) + AdvGD.5

PQXDH(A).

Game D.6 (Replacing the session key). We now replace the session key of the test session π∗ with
a uniformly sampled key. Since Game GD.5 has ruled out that the adversary queries the RO on the master
secret DH1∥DH2∥DH3∥DH4∥ss of the test session π∗, the adversary has no chance of detecting this change.
Thus,

AdvGD.5
PQXDH(A) = AdvGD.6

PQXDH(A).

To conclude this proof case, observe that in Game GD.6 the session key of the test session π∗ is now
a uniformly random key, independent of btest. As before, A can neither reveal the session key of the test

33

session π∗ nor of any partnered session, nor does any other session derive the same session key by Game G3.
Thus, A cannot gain any information about the test bit btest and can do no better than to guess:

AdvGD.6
PQXDH(A) ≤ 0.

Case E (cleanEE(π∗) ∧ cleanpeerE(π∗) ∧ type(π∗) = full).

In this proof case, the test session performs a full handshake and the cleanEE predicate and its cleanpeerE
sub-predicate ensure for the test session π∗ that

1. the test session’s owner’s randomness is not revealed, and

2. the randomness of the session (contributively) partnered to the test session is not revealed.

Similar to Case D, we get a hybrid guarantee here: both the ephemeral/ephemeral Diffie–Hellman com-
bination being uncompromised and the ephemeral KEM key being uncompromised are, on their own,
sufficient to ensure key indistinguishability for the test session.

Game E.0. This case begins with Game G3 conditioned on cleanEE(π∗) ∧ cleanpeerE(π∗) ∧ π∗.type = full
being satisfied.

AdvGE.0
PQXDH(A) = AdvG3[cleanEE(π∗) ∧ cleanpeerE(π∗) ∧ π∗.type=full]

PQXDH (A).

Game E.1 (Guess initiator and responder sessions). We guess the initiator and responder ses-
sions π∗

i resp. π∗
r involved in the test session π∗ (i.e., both the test session itself and its sid- resp. cid-

partner), overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at most
a factor of the number of sessions ns squared:

AdvGE.0
PQXDH(A) ≤ n2

s · AdvGE.1
PQXDH(A).

Game E.2 (GapDH + OW-CCA). We now abort the game (again, returning 0 as the adversary’s
bit guess) in the event that the adversary queries the random oracle on a value formatted like a master
secret, beginning with CDH(epkDH

U∗ , epkDH
V ∗), i.e., the shared DH key between the ephemeral keys epkDH

U∗

and epkDH
V ∗ of the guessed initiator session π∗

i , resp. responder session π∗
r , and ending with the KEM

shared secret ss∗ resulting from π∗
i encapsulating against epkKEM

V ∗ . The probability of such an abort can be
bounded by the minimum of the advantages of the following reduction B7 playing simultaneously against
the (t, ϵGDH, qDDH)-hardness of the GapDH problem in (G, g, q) and (t, ϵCCA, ns)–OW-CCA security of
KEM.

The reduction embeds the GapDH challenge as the ephemeral keys in the sessions π∗
i and π∗

r , and
the KEM public key pkKEM from the OW-CCA game as ephemeral key epkKEM

V ∗ in π∗
r . It uses the KEM

challenge ciphertext ct∗ in π∗
i . Similar to Game GD.5, the reduction does not need to answer corresponding

RevealRand queries on π∗
i or π∗

r due to cleanEE ∧ cleanpeerE. Furthermore, as for Game GD.5, patching
the Send oracle is relatively easy: Except for queries to the test session or to π∗

r with a modified initiator
ephemeral key,14 the reduction can compute all DH shared secrets itself. For the latter query, B7 uses a
single call to the DDH oracle of GapDH resp. Decaps oracle of OW-CCA to simulate. In the test session,
the reduction uses a freshly sampled key as session key. If the DDH oracle accepts a query, then the

14This can happen if the test session is a responder session and the adversary mauls the initiator public key on the wire.

34

reduction returns the DH3 and ss from the corresponding RO query to its GapDH and OW-CCA games
after finishing the simulation for A.

The reduction ensures consistency with the random oracle by checking RO queries against the above
mentioned patches. It queries the DDH oracle possibly once for π∗

r and when checking RO queries for the
DH4 position, so overall a maximum of qRO + 1 queries, which is well below the number in Game GA.5. It
further makes at most one Decaps query in the OW-CCA game.

Unless A queries the random oracle on CDH(epkDH
U∗ , epkDH

V ∗) in the DH4 position and ss∗ in the ss
position, B7 provides a perfect simulation of GE.1. If A does make such a random oracle query, then B7
will detect this and win both its GapDH game and its OW-CCA game. We can thus bound the game hop
by the minimum advantage against the two games:

AdvGE.1
PQXDH(A) ≤ min(ϵGDH, ϵCCA) + AdvGE.2

PQXDH(A).

Game E.3 (Replacing the session key). We now replace the session key of the test session π∗ with
a uniformly sampled key. Since Game GE.2 has ruled out that the adversary queries the RO on the master
secret DH1∥DH2∥DH3∥DH4∥ss of the test session π∗, the adversary has no chance of detecting this change.
Thus,

AdvGE.2
PQXDH(A) = AdvGE.3

PQXDH(A).
To conclude this proof case, observe that in Game GE.3 the session key of the test session π∗ is now

a uniformly random key, independent of btest. As before, A can neither reveal the session key of the test
session π∗ nor of any partnered session, nor does any other session derive the same session key by Game G3.
Thus, A cannot gain any information about the test bit btest and can do no better than to guess:

AdvGE.3
PQXDH(A) ≤ 0.

Case F (cleanEE(π∗) ∧ cleansigE(π∗) ∧ type(π∗) = full).

In this proof case, the test session performs a full handshake and the cleanEE predicate and its cleansigE
sub-predicate ensure for the test session π∗ that

1. the test session’s owner’s randomness is not revealed, and

2. if π∗ is an initiator, the responder’s long-term (signing) key was uncompromised upon acceptance
and a potential responder partner session’s randomness was not revealed.

Via the second point, we can guarantee that initiator and responder agree on the ephemeral KEM key,
given signatures are unforgeable. The KEM encapsulation then ensures key indistinguishability for the
test session.

Game F.0. This case begins with Game G3 conditioned on cleanEE(π∗) ∧ cleansigE(π∗) ∧ type(π∗) = full
being satisfied.

AdvGF.0
PQXDH(A) = AdvG3[cleanEE(π∗) ∧ cleansigE(π∗) ∧ type(π∗)=full]

PQXDH (A).

Game F.1 (Guess responder identity V ∗). We first guess the identity V ∗ of the responder to the
test session, overwriting the adversary’s bit guess with 0 if this guess was incorrect. This step loses at
most a factor of the number of users np:

AdvGF.0
PQXDH(A) ≤ np · AdvGF.1

PQXDH(A).

35

Game F.2 (Signature unforgeability). We now abort the game (again, returning 0 as the adversary’s
bit guess) in the event that the test session π∗ is an initiator session and accepts using an ephemeral KEM
public key epkKEM

V ∗ that was not generated by V ∗. This ensures that the test session accepts with an
ephemeral KEM public key of which the adversary does not know the secret key, since the adversary
cannot reveal V ∗’s session randomness. Similar to Game GA.2, the probability of such an abort can be
bounded by the advantage of a reduction against the (t, ϵSIG, 2nss + ns)-unforgeability of SIG. The proof
is identical to the one for Game GA.2. Thus,

AdvGF.1
PQXDH(A) ≤ ϵSIG + AdvGF.2

PQXDH(A).

Game F.3 (Guess initiator and responder sessions). We guess the initiator and responder ses-
sions π∗

i resp. π∗
r involved in the test session π∗ (i.e., both the test session itself and its partner), overwriting

the adversary’s bit guess with 0 if this guess was incorrect. This step loses at most a factor of the number
of sessions ns squared:

AdvGF.2
PQXDH(A) ≤ n2

s · AdvGF.3
PQXDH(A).

Game F.4 (OW-CCA). We now abort the game (again, returning 0 as the adversary’s bit guess) in the
event that the adversary queries the random oracle on a value formatted like a master secret and ending
with the KEM shared secret ss∗ resulting from π∗

i encapsulating against epkKEM
V ∗ . The probability of such

an abort can be bounded by the advantage of the following reduction B8 playing against (t, ϵCCA, ns)–OW-
CCA security of KEM.

The reduction embeds the challenge pkKEM, ct∗ from the OW-CCA game as ephemeral key epkKEM
V ∗

of V ∗, and as KEM ciphertext in π∗
r . The reduction does not need to answer a RevealRand query on π∗

r
due to cleanEE. When A halts, the reduction guesses i ∈ [qRO] and returns the ss position of the ith RO
query (assuming this query is formatted like a master secret) as the target shared secret.

Unless A queries the random oracle on ss∗ in the ss position, B8 provides a perfect simulation of
Game GF.3. If A does make such a random oracle query, then B8 wins its OW-CCA game if it guesses the
ith RO query correctly. We can thus bound the game hop by the advantage against OW-CCA times a loss
of qRO:

AdvGF.3
PQXDH(A) ≤ qRO · ϵCCA + AdvGF.4

PQXDH(A).

Game F.5 (Replacing the session key). We now replace the session key of the test session π∗ with
a uniformly sampled key. Since Game GF.4 has ruled out that the adversary queries the RO on the master
secret DH1∥DH2∥DH3∥DH4∥ss of the test session π∗, the adversary has no chance of detecting this change.
Thus,

AdvGF.4
PQXDH(A) = AdvGF.5

PQXDH(A).

To conclude this proof case, observe that in Game GF.5 the session key of the test session π∗ is now
a uniformly random key, independent of btest. As before, A can neither reveal the session key of the test
session π∗ nor of any partnered session, nor does any other session derive the same session key by Game G3.
Thus, A cannot gain any information about the test bit btest and can do no better than to guess:

AdvGF.5
PQXDH(A) ≤ 0.

Collecting the bounds from all cases yields the overall theorem bound.

36

6 Discussion and Conclusion
In this work, we provided a reductionist security analyis of Signal’s PQXDH in a “maximum-exposure”,
game-based security model, augmented compared to prior versions [CCD+17, BFG+22, BFG+21] to cap-
ture the KEM component but also key signing, and gave a fully-parameterized, concrete security bound
for PQXDH.

Our bound relies (among other things) on the LEAK+-BIND-SS-{CT,PK} binding property of the
KEM. While we show that this property is satisfied by both Kyber and ML-KEM, the current and future
KEMs in PQXDH may not satisfy this property; so achieving PQXDH-like security without relying on
a binding property is of general interest. We can indeed forgo this assumption (and the corresponding
advantage term), if in the key derivation of PQXDH, we include the KEM public key and ciphertext
(or, ideally, the whole session context as is good practice). This supports and complements a proposal
discussed in the tool-based formal verification of PQXDH by BJKS [BJK23, BJKS23], to make sure the key
agreement in the initial handshake does not rely on the follow-up AEAD encryption (which would indeed
violate key indistinguishability as we prove it). As a side note, including context into the key derivation
also supports tighter security proofs [CCG+19].

Our reduction for PQXDH has an additional case (compared to the X3DH analysis [CCD+17]), where
key indistinguishability hinges solely on the signed ephemeral KEM key. This guarantees security against
an active adversary who later gets quantum powers. Hence, PQXDH protects against an even stronger
class of attacks than the “harvest now, decrypt later” attack which motivated the design.

Like prior Signal analyses [CCD+17, BJKS23, BJK23], we model the long-term DH and signing keys
as separate ones; we leave it to future work to more accurately reflect the implementation which re-uses
the same keys for both purposes.

Acknowledgments
We thank Ehren Kret and Rolfe Schmidt for discussions on the PQXDH protocol, and Franziskus Kiefer
for insights on the KEM re-encapsulation attack. R.F. was supported by the German Federal Ministry of
Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts
within their joint support of the National Research Center for Applied Cybersecurity ATHENE.

References
[AHK+23] Joël Alwen, Dominik Hartmann, Eike Kiltz, Marta Mularczyk, and Peter Schwabe. Post-

quantum multi-recipient public key encryption. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’23, page 1108–1122, New York,
NY, USA, 2023. Association for Computing Machinery. (Cited on page 3.)

[BC] Bruno Blanchet and Vincent Cheval. Proverif: Cryptographic protocol verifier in the formal
model. https://bblanche.gitlabpages.inria.fr/proverif/. (Cited on page 2.)

[BCD+24] Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin
Varner, and Bas Westerbaan. X-wing. IACR Communications in Cryptology, 1(1), 2024. (Cited
on page 3.)

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indifferen-
tiability of the sponge construction. In Nigel P. Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 181–197,
Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany. (Cited on page 5.)

37

https://bblanche.gitlabpages.inria.fr/proverif/

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila.
Towards post-quantum security for Signal’s X3DH handshake. In Orr Dunkelman, Michael
J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020: 27th Annual International Workshop
on Selected Areas in Cryptography, volume 12804 of Lecture Notes in Computer Science, pages
404–430, Halifax, NS, Canada (Virtual Event), October 21-23, 2020. Springer, Heidelberg,
Germany. (Cited on page 3.)

[BFG+21] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila.
Post-quantum asynchronous deniable key exchange and the Signal handshake. Cryptology
ePrint Archive, Report 2021/769, 2021. https://eprint.iacr.org/2021/769. (Cited on
pages 2, 15, 16, 17, 18, 19, and 37.)

[BFG+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila.
Post-quantum asynchronous deniable key exchange and the Signal handshake. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022: 25th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II, volume 13178 of Lecture
Notes in Computer Science, pages 3–34, Virtual Event, March 8–11, 2022. Springer, Heidel-
berg, Germany. (Cited on pages 2, 3, 15, 16, 17, 18, 19, and 37.)

[BJK23] Karthikean Barghavan, Charlie Jacomme, and Franziskus Kiefer. Formal analysis of the
PQXDH protocol, 2023. https://github.com/Inria-Prosecco/pqxdh-analysis. (Cited on
pages 2, 3, and 37.)

[BJKS23] Karthikean Barghavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. An analysis
of Signal’s PQXDH, October 2023. https://cryspen.com/post/pqxdh/. (Cited on pages 2, 3,
and 37.)

[Bla] Bruno Blanchet. Cryptoverif: Cryptographic protocol verifier in the computational model.
https://bblanche.gitlabpages.inria.fr/CryptoVerif/. (Cited on page 2.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes
in Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994. Springer,
Heidelberg, Germany. (Cited on page 15.)

[CCD+17] Katriel Cohn-Gordon, Cas J. F. Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A formal security analysis of the Signal messaging protocol. In IEEE European
Symposium on Security and Privacy, EuroS&P 2017, pages 451–466, 2017. (Cited on pages 1,
2, 5, 15, 17, 18, 21, 22, 25, 29, 30, and 37.)

[CCG+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, Håkon Jacobsen, and Tibor Jager.
Highly efficient key exchange protocols with optimal tightness. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694
of Lecture Notes in Computer Science, pages 767–797, Santa Barbara, CA, USA, August 18–
22, 2019. Springer, Heidelberg, Germany. (Cited on page 37.)

[CD23] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. In Carmit
Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part V,
volume 14008 of Lecture Notes in Computer Science, pages 423–447, Lyon, France, April 23–
27, 2023. Springer, Heidelberg, Germany. (Cited on page 3.)

38

https://eprint.iacr.org/2021/769
https://github.com/Inria-Prosecco/pqxdh-analysis
https://cryspen.com/post/pqxdh/
https://bblanche.gitlabpages.inria.fr/CryptoVerif/

[CDM23] Cas Cremers, Alexander Dax, and Niklas Medinger. Keeping up with the KEMs: Stronger
security notions for KEMs. Cryptology ePrint Archive, Paper 2023/1933, 2023. Version 1.0.6
(April 3, 2024), https://eprint.iacr.org/2023/1933. (Cited on pages 3, 7, and 8.)

[CHDN+24] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge
Vaudenay. K-Waay: Fast and deniable Post-Quantum X3DH without ring signatures. In
33rd USENIX Security Symposium (USENIX Security 24), Philadelphia, PA, August 2024.
USENIX Association. (Cited on page 3.)

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and Commu-
nications Security, pages 1197–1210, Denver, CO, USA, October 12–16, 2015. ACM Press.
(Cited on page 16.)

[DG22] Samuel Dobson and Steven D. Galbraith. Post-quantum signal key agreement from SIDH.
In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography - 13th
International Workshop, PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings,
volume 13512 of Lecture Notes in Computer Science, pages 422–450. Springer, 2022. (Cited on
page 3.)

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st
Conference on Computer and Communications Security, pages 1193–1204, Scottsdale, AZ,
USA, November 3–7, 2014. ACM Press. (Cited on page 15.)

[FJ24] Rune Fiedler and Christian Janson. A deniability analysis of Signal’s initial handshake
PQXDH. Proc. Priv. Enhancing Technol., 2024(4), 2024. (Cited on page 2.)

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 537–554, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany. (Cited on page 10.)

[HKKP22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. An efficient
and generic construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure,
and deniable. Journal of Cryptology, 35(3):17, July 2022. (Cited on page 3.)

[JK18] Tibor Jager and Rafael Kurek. Short digital signatures and ID-KEMs via truncation collision
resistance. In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASI-
ACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer Science, pages 221–250,
Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Germany. (Cited
on page 5.)

[JKN21] Tibor Jager, Rafael Kurek, and David Niehues. Efficient adaptively-secure IB-KEMs and
VRFs via near-collision resistance. In Juan Garay, editor, PKC 2021: 24th International
Conference on Theory and Practice of Public Key Cryptography, Part I, volume 12710 of
Lecture Notes in Computer Science, pages 596–626, Virtual Event, May 10–13, 2021. Springer,
Heidelberg, Germany. (Cited on page 5.)

[KS23] Ehren Kret and Rolfe Schmidt. The PQXDH key agreement protocol, September 2023.
Revision 1, https://signal.org/docs/specifications/pqxdh/. (Cited on pages 1 and 2.)

39

https://eprint.iacr.org/2023/1933
https://signal.org/docs/specifications/pqxdh/

[KS24] Ehren Kret and Rolfe Schmidt. The PQXDH key agreement protocol, January 2024. Revision
3, https://signal.org/docs/specifications/pqxdh/. (Cited on pages 1, 2, 3, and 21.)

[LT11] Gaëtan Leurent and Søren S. Thomsen. Practical near-collisions on the compression function
of BMW. In Antoine Joux, editor, Fast Software Encryption – FSE 2011, volume 6733 of
Lecture Notes in Computer Science, pages 238–251, Lyngby, Denmark, February 13–16, 2011.
Springer, Heidelberg, Germany. (Cited on page 5.)

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski.
A direct key recovery attack on SIDH. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes in Computer
Science, pages 448–471, Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany.
(Cited on page 3.)

[MP16] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement protocol, November 2016.
https://signal.org/docs/specifications/x3dh/. (Cited on page 1.)

[MvV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. The CRC Press series on discrete mathematics and its applications. CRC
Press, 2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997. (Cited on page 5.)

[NIS23] NIST. Module-lattice-based key-encapsulation mechanism standard, August 2023. FIPS 203
(draft). https://doi.org/10.6028/NIST.FIPS.203.ipd. (Cited on pages 3, 6, 7, and 10.)

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001: 4th International
Workshop on Theory and Practice in Public Key Cryptography, volume 1992 of Lecture Notes
in Computer Science, pages 104–118, Cheju Island, South Korea, February 13–15, 2001.
Springer, Heidelberg, Germany. (Cited on page 5.)

[Per16] Trevor Perrin. The XEdDSA and VXEdDSA signature schemes, October 2016. https:
//signal.org/docs/specifications/xeddsa/. (Cited on page 21.)

[PS14] Inna Polak and Adi Shamir. Using random error correcting codes in near-collision attacks
on generic hash-functions. In Willi Meier and Debdeep Mukhopadhyay, editors, Progress
in Cryptology - INDOCRYPT 2014: 15th International Conference in Cryptology in India,
volume 8885 of Lecture Notes in Computer Science, pages 219–236, New Delhi, India, De-
cember 14–17, 2014. Springer, Heidelberg, Germany. (Cited on page 5.)

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology – EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes
in Computer Science, pages 472–503, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany. (Cited on page 3.)

[SAB+] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
Kyber. https://pq-crystals.org/kyber/. (Cited on pages 3, 6, 7, and 10.)

[Sch24] Sophie Schmieg. Unbindable kemmy schmidt: ML-KEM is neither MAL-BIND-K-CT nor
MAL-BIND-K-PK. Cryptology ePrint Archive, Paper 2024/523, 2024. https://eprint.
iacr.org/2024/523. (Cited on pages 3, 7, and 8.)

40

https://signal.org/docs/specifications/pqxdh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://pq-crystals.org/kyber/
https://eprint.iacr.org/2024/523
https://eprint.iacr.org/2024/523

[Sig] Signal: Technical information. https://signal.org/docs/. (Cited on page 1.)

[VGIK20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. On the crypto-
graphic deniability of the Signal protocol. In Mauro Conti, Jianying Zhou, Emiliano Casal-
icchio, and Angelo Spognardi, editors, ACNS 20: 18th International Conference on Applied
Cryptography and Network Security, Part II, volume 12147 of Lecture Notes in Computer
Science, pages 188–209, Rome, Italy, October 19–22, 2020. Springer, Heidelberg, Germany.
(Cited on page 2.)

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 19–35, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg,
Germany. (Cited on page 5.)

[YCW14] Hongbo Yu, Jiazhe Chen, and Xiaoyun Wang. Partial-collision attack on the round-reduced
compression function of Skein-256. In Shiho Moriai, editor, Fast Software Encryption –
FSE 2013, volume 8424 of Lecture Notes in Computer Science, pages 263–283, Singapore,
March 11–13, 2014. Springer, Heidelberg, Germany. (Cited on page 5.)

41

https://signal.org/docs/

	Introduction
	Preliminaries
	Notation
	Signatures
	Hash functions
	Diffie–Hellman Key Exchange

	Key Encapsulation Mechanisms and Binding Properties
	Binding Properties
	Relations of Binding Properties
	Kyber and ML-KEM

	Security Model
	Syntax and Notation
	Security Game

	PQXDH Analysis
	Discussion and Conclusion
	References

