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Abstract. The discourse herein pertains to a directional encryption cryptosystem predicat-

ed upon logarithmic signatures interconnected via a system of linear equations (we call it 

LINE). A logarithmic signature serves as a foundational cryptographic primitive within the 

algorithm, characterized by distinct cryptographic attributes including nonlinearity, non-

commutativity, unidirectionality, and factorizability by key. The confidentiality of the cryp-

tosystem is contingent upon the presence of an incomplete system of equations and the substan-

tial ambiguity inherent in the matrix transformations integral to the algorithm. Classical crypta-

nalysis endeavors are constrained by the potency of the secret matrix transformation and the 

indeterminacy surrounding solutions to the system of linear equations featuring logarithmic 

signatures. Such cryptanalysis methodologies, being exhaustive in nature, invariably exhibit 

exponential complexity. The absence of inherent group computations within the algorithm, and 

by extension, the inability to exploit group properties associated with the periodicity of group 

elements, serves to mitigate quantum cryptanalysis to Grover's search algorithm. LINE is pred-

icated upon an incomplete system of linear equations embodies the security levels ranging from 

1 to 5, as stipulated by the NIST, and thus presents a promising candidate for the construction 

of post-quantum cryptosystems. 

 

Keywords: LINE, Post-quantum cryptosystem, Logarithmic signature, Directional encryp-

tion. 

1 Introduction 

Computationally complex problems, commonly referred to as "hard problems," en-

compass a wide array of issues for which a substantial, preferably insurmountable, 

allocation of resources is necessitated for resolution. Within the realm of cryptog-

raphy, these problems serve as the foundational bedrock for secure cryptographic 

schemes. Typically, this is achieved by establishing a correlation between the 

scheme's security and the infeasibility of solving the associated complex problem. 

Historically, two predominant complex problems, or their derivatives, have held sway 

in public-key cryptography: integer factorization and discrete logarithmization. RSA 

integers and discrete logarithms within finite cyclic groups (DLOG) form the corner-

stone of numerous cryptographic constructions [1,2,3,4,5]. Practical implementations 
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of cryptographic schemes reliant on RSA and DLOG dilemmas are orchestrated such 

that the selection of parameters introduces convolution into the corresponding crypta-

nalysis endeavor. 

In 1994, Shor [6] elucidated that these conventionally arduous problems can be ef-

fortlessly resolved through the utilization of large-scale quantum computers. The 

trajectory of quantum computing development has increasingly materialized, with 

prognostications from entities such as Microsoft and IBM anticipating the advent of 

large-scale quantum computers boasting several thousand qubits by 2030. Such ad-

vancements portend a tangible menace to the efficacy of contemporary public-key 

cryptography in upholding security. Consequently, the cryptographic community, 

industry stakeholders, and numerous standardization bodies have initiated strategic 

maneuvers toward the adoption of a quantum-resistant alternative: post-quantum 

cryptography. Post-quantum cryptography, also known as quantum-resistant cryptog-

raphy, emerges as a pivotal response to the impending vulnerability of classical cryp-

tographic systems in the face of quantum computational prowess.  

We delve into the fundamental principles, challenges, and promising avenues of 

post-quantum cryptographic research, elucidating its pivotal role in fortifying the 

security posture of digital communications and transactions. Amidst the exigency 

posed by the impending advent of quantum computing, the quest for cryptographic 

primitives impervious to quantum attacks has garnered substantial impetus. The land-

scape of quantum-resistant cryptographic primitives, spanning lattice-based, code-

based, hash-based, and multivariate polynomial cryptographic schemes is changing 

almost day by day. Through a comprehensive analysis of their underlying mathemati-

cal structures, security properties, and implementation considerations, we aim to fur-

nish readers with insights into the diverse arsenal of cryptographic tools poised to 

withstand the disruptive potential of quantum adversaries. 

2 Motivation 

Quantum-resistant cryptosystems, predicated on lattice-based structures, error-

correcting linear codes, multidimensional polynomial equations, one-way functions, 

elliptic curve isogenies, and non-commutative groups, actively leverage computation-

ally complex problems. This mosaic of cryptographic techniques engenders resilience 

against quantum threats, underpinning a diverse array of cryptographic schemes. 

The first category encompasses schemes such as FrodoKEM, Kyber, Saber, along 

with Dilithium, Falcon, and qTESLA signatures, which hinge on the arduous task of 

training with LWE errors and the short integer solution of SIS. These schemes find 

application in key encapsulation and directed encryption scenarios. 

The complexity of decoding linear noisy codes with a secret code is pivotal in 

schemes like BIKE, Classic McEliece, HQC, NTS-KEM, ROLLO, and CFS, Duran-

dal, WAVE signatures. These schemes rely on the intricate process of deciphering 

linear noisy codes, thereby fortifying their cryptographic underpinnings [7,8,9,10]. 

Furthermore, the complexity inherent in solving multidimensional equations forms 

the cornerstone of signature schemes such as LUOV, MQDSS, Rainbow, and 
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GeMSS. These schemes exploit the intricacies of multidimensional equations to bol-

ster cryptographic robustness. 

Likewise, the challenges posed by unidirectional functions are harnessed in signa-

ture schemes like XMSS, SPHINCS+, and Picnic, contributing to their quantum re-

sistance [11,12,13]. 

Moreover, the complexity entailed in searching for isogenic elliptic curves under-

scores the security of directional encryption schemes like SIKE and CSIDH, along 

with signature schemes such as CSI-FiSh and SQISign. 

Lastly, the complexity arising from the group factorization problem serves as a 

linchpin in directional encryption schemes. These schemes, spanning from 

[17,18,19,20,21,22,23,24], derive cryptographic strength from the intractability of the 

group factorization problem. The evaluation of quantum security for cryptosystems, 

submitted to the NIST competition and earmarked as candidates for post-quantum 

cryptography, undergoes continuous scrutiny and refinement. Recent advancements, 

detailed in literature [25], elucidate the construction of polynomial quantum algo-

rithms for solving the LWE problem with polynomial modulus-noise relations. De-

spite identified algorithmic flaws, novel insights into leveraging complex Gaussian 

functions and windowed quantum Fourier transforms portend promising avenues for 

quantum computing applications or novel LWE problem-solving methodologies. As 

underscored by Bart Prinell's commentary, while the absence of large-scale quantum 

computers impedes empirical validation of quantum algorithms, the imperative of 

post-quantum encryption remains paramount to ensuring resilience against prospec-

tive quantum adversaries [26]. The current slate of NIST-standard candidates appears 

robust, albeit subject to refinement through parameter optimization and technological 

advancements. 

A fundamental reimagining of cryptosystem design is proposed, wherein the tradi-

tional paradigm of leveraging hard-to-solve problems is supplanted by a novel ap-

proach predicated on problems boasting a constellation of equivalent solutions devoid 

of regularities. Such a framework obviates vulnerability to quantum cryptanalysis, 

relegating adversaries to Grover's algorithm with exponential complexity. Exemplify-

ing this approach, the Shamir threshold secret sharing scheme capitalizes on classical 

algebraic principles, wherein secrecy is predicated on the unavailability of a critical 

mass of function values required to reconstruct the overarching secret. 

3 Our contribution 

3.1 Definition of an incomplete cryptosystem of linear equations  

 

The construction of the cryptosystem is predicated upon a well-established algebra-

ic problem, wherein the existence of a unique solution is contingent upon a fully de-

fined system of linear equations. However, when confronted with an incompletely 

defined system of equations, the enumeration of solutions is governed by the cardinal-

ity of the set of potential solutions. 
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In our formulation, we establish linear equations relative to unknowns, utilizing 

values denoted by logarithmic subscripts. Notably, the number of equations pertaining 

to secret values of logarithmic signatures is typically fewer than the total number of 

unknowns. Consequently, this engenders an incomplete system of linear equations 

vis-à-vis the unknowns, precluding polynomial-time resolution. The crux of any po-

tential attack on such a cryptosystem boils down to the task of sorting and defining 

variables. The security of a cryptosystem hinged upon a problem featuring incom-

pletely defined equations is contingent upon the robustness of the set of solutions. 

Central to the algorithm is the concept of logarithmic signature, serving as a foun-

dational cryptographic primitive imbued with distinctive cryptographic attributes, 

including non-linearity, non-commutativity, unidirectionality, and factorizability by 

key. Subsequently, we shall delve into a comprehensive exposition elucidating the 

salient aspects of cryptosystems integrating logarithmic signatures. 

3.2 Logarithmic signature  

The representation of logarithmic signatures is intricately linked to the positional 

numbering system, wherein the data array, constituting the logarithmic signature, is 

structured into subblocks. Each subblock comprises vectors or strings, which can be 

construed as numerical entities. The encryption process, or cryptogram, is determined 

by the summation of vectors selected by a designated key (numeric value). The com-

putational security of the cipher hinges upon the formidable challenge of decompos-

ing the cryptogram into constituent vectors in the absence of knowledge regarding the 

correspondence between vector positions and their respective values. 

An early instantiation of logarithmic signatures for finite permutation groups was 

introduced in [18] within the context of constructing a symmetric cryptosystem. A 

defining characteristic of such constructions lies in their susceptibility to factorization 

by key. Subsequent discourse on the algebraic properties of logarithmic signatures 

and associated cryptosystems was deliberated in depth in [19,20]. In 2002, Magliveras 

et al. [21] devised two public key cryptosystems, MST1 and MST2. Building upon 

this foundation, Lempken et al. [22] leveraged logarithmic signatures and random 

coverages to devise a generalized MST3 encryption scheme. Notably, the public key 

in this scheme encompasses ordinary logarithmic signatures alongside random numer-

ical entities, while the secret key is constituted by random coverages and sandwich 

transformations [21]. The presumed intractability of this scheme hinges upon the 

group factorization problem within non-Abelian groups. Furthermore, spurred by 

insights gleaned from attacks detailed in [23], Svaba and van Trung refined an ex-

tended variant of the generalized scheme [24], denoted as eMST3 cryptosystems. This 

iteration incorporates a clandestine homomorphism to obfuscate the secret logarithmic 

signature via a random cover transformation. Subsequent advancements in the MST3 

cryptosystem were predicated upon high-order groups encompassing generalized 

Suzuki groups, small Ree groups, three-parametric groups, automorphism groups of 

the Suzuki functional field, and automorphisms of the Ree functional field 

[27,28,29,30,31,32,33,34]. 
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The efficacy of logarithmic signatures lies in their simplicity, as the computation of 

text ciphers is facilitated through elementary addition operations utilizing bitwise 

XOR. However, a notable drawback is the substantial size of logarithmic arrays, ne-

cessitating the employment of masking arrays to ensure a commensurately high level 

of secrecy. 

Within the purview of the presented cryptosystem, the logarithmic signature as-

sumes a pivotal role as a fundamental cryptographic primitive facilitating keyless 

encryption and factorization by means of the logarithmic signature's key. 

3.3 Our proposal  

Let's consider the main steps of the algorithm. 

Step 1. Here we construct of a secret logarithmic signature over a field (2 )mF . 

The implementation of secret homomorphic transformations with calculations over 

the field (2 )mF  presented in [35] . Let's construct a logarithmic signature using the 

following set of secret homomorphic transformations: 
3 51 2 4

1 2 3 4 5

        ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→
, 

where 
1 - simple factorization logarithmic signature type ( )

1
1,..., sr r


; 

Transformation 1 (
1 ). In this step we make a noise of s  blocks of the 

1  signa-

ture. In this case the signature type does not change. As a result, we get 
2  signature. 

Transformation 2 (
2 ). Next, we shuffling secretly all blocks of 

2  signature. As 

a result, we get 
3  signature. 

Transformation 3 (
3 ). Then, we mix all records in signature blocks 

3 . As a re-

sult, we get 
4  signature. 

Transformation 4 (
4 ). Next, we proceed with secret homomorphic transformation 

of array strings in this way:
4 3( ) ( )i i  =  , 1 21, ... si r r r= + + +

, 
(2 )mF 

. As a 

result, we get 
5  signature. 

Transformation 5 (
5 ). Finally, we use secret homomorphic transformation of 

string array 
4( ) ( ) m mi i   =  , 

1 21, ... si r r r= + + + . As a result, we get   signature. 

Note, that 
m m 

 is an invertible binary matrix of dimension m m . 

We have a logarithmic signature ( )i =  over m - bit strings as a result of all 

steps. The security estimation is determined taking to the account a high entropy of 

secret transformations. These estimates are discussed in [24,35 ÷ 37]. 

Step 2. Here we construct general parameters, public and secret keys. Let's con-

struct K k k=  logarithmic signatures 
K . We present logarithmic signatures 

K in 

the form of a two-dimensional set of arrays with index 
1 2,k k K  , 

1 1,k k= , 
2 1,k k=

for given types ( )
1 2 1 2

1 2
, 1 ( , )

,
,...,k k s k k

k k
r r r= , 

1 2,k k Kr r . 
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1 2 1 2 1 2 1 2, 1 2 ( , ) , , ,[ , ,..., ] : ( )k k s k k k k i j k kB B B = = , 
1 21, ( , )j s k k= , 1, ji r= . 

The index j determines the number of the block and the index i determines the 

number of the record in j the block. Records of arrays ,i j are defined m - bitwise 

strings that we identify with the elements of the finite field (2 )mF . Let the set 
K

consist of L  factorizable logarithmic signatures 
L , L K i K L−  non-factorizable 

signatures 
K L −

. 

Factorized logarithmic signatures 
L will be constructed using secret transfor-

mations 
1 5  . In two-dimensional indexing 

1 2,k k , 
1k y 

2k we determine whether 

the logarithmic signature belongs to the set 
1 2,k k L  . We construct non-factorizable 

logarithmic signatures 
K L −

for type (2,2,...,2)

m

 by filling them with random m -bit 

strings 1( )j and 
2 ( )j , 1,j m= of each block of the logarithmic signature 

1 2,k k K L  − . Values and indexes 
1k and 

2k determine belonging to a set of non-

factorizable logarithmic signatures 
K L −

. 

For logarithmic signatures 
1 2,k k L  , we generate arrays 

1 2,k k L  with random 

records 
1 2 1 2 1 2 1 2, 1 2 ( , ) , , ,[A ,A ,...,A ] : ( )k k s k k k k i j k ka = = , 

, (2 ) / 0m

i ja F , 
1 21, ( , )j s k k= , 

1, ji r= , ( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r . 

Let’s the values of the string 
1 2

1 2
1, 2, ,,

,j j k kk k
      , ( )

1 2
, ,

(2 ) / 0m

i j k k
F  1,j m= , 

1 2,k k  for each block in 
1 2,k k K L  − satisfy the following conditions: 

( )
1 2

1, 2, ,j j k k
  + = , where 1, 2i = , 1,j m= , (2 ) / 0mF  . 

We generate random sets 

1 2,k k Kt t
, 1 2 1 2 1 2, 1 ( , ) ,( ,..., ) (2 ) / 0m

k k s k k k kt t t F= 
 

1 2,k k K 
, 1 2 1 2 1 2, 1 ( , ) ,( ,..., ) (2 ) / 0m

k k s k k k k F  = 
 

and let ( ) ( )
1 2 1 2

, ,, ,i j i jk k k k
t  , 

1 2,( ) 0j k kt  , 
1 2,( ) 0j k k  , 1, ji r= - the number of the 

record in 
1 21, ( , )j s k k= the block of the array, for the logarithmic 

1 2,k k type signature

( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r  

Let's set a secret binary matrix  with m m  dimensions and let's determine the 

arrays 
1 2,k k K  and 

1 2,k k K  . For factorizable logarithmic signatures, 
1 2,k k L 

we define arrays 
1 2,k k L  and 

1 2,k k L  by following expressions: 

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k j k k i j k kt   = + + ,
1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k k  = +  

and similarly, for non-factorable 
1 2,k k K L  − we define the arrays 

1 2,k k K LG − and

1 2,k k K L − by following expressions: 
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1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k kt  = + ,
1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k k  = +  

for 
1 21, ( , )j s k k= , 1, ji r= . 

All calculations by 
1 2,k k K  and 

1 2,k k K  are determined by the rule below. Let 

the argument for 
1 2,k k be m -bit string R . Let's decompose the string R into values 

according to the type ( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r  

1

1 2

11 1 2

1 2

( , ) log
log log0

1 2 ( , ) 1 2 3 1

2

( , ,..., ) 2 2 2 ... 2

j

i

i

s k k r
r r r

s k k j

j

R R R R R R R R R

−

=

=


= = + + + = + 

. 

The values jR show the number of the record in j the block of the array 
1 2,k k K 

. Calculations for the argument R are determined by bitwise summation of the array 

of strings
1 2,k k K    

1 2

1 2 1 2 1 2

( , )

, , 1 2 ( , ) ,

1

( ) ( , ,..., )
j

s k k

k k k k s k k R j

j

R R R R  
=

= = 
. 

As a results we obtain general parameters and cryptosystems K k k=  , L K , 

m , 
Kr , secret keys 

K , 
Kt , 

K ,   and public keys 
K , 

K . 

Step 3. On this step we construct of a cryptosystem based on an incomplete system 

of linear equations for logarithmic signatures 
1 2,k k K  . The fundamental objective 

underlying the construction of the cryptosystem is to compute L linear sums 

1 2 1 2, ,( )k k k k lR U = by values 
1 2 1 2, ,( )k k k kR . 1,l L= . Let's determine the sums 

lU by 

expressions of the form 

( )
1

k

ij ij i

j

R U
=

= , 1,i k= , 

( )
1

k

ji ji k i

j

R U +

=

= , 1,i k= , 

( ) 2

1

k

j j k i

j

R U  +

=

= , ( )mod 1k j i k = − + + , 1,i k=  

( ) 3

1

k

j j k i

j

R U  +

=

= , ( )mod 1k i j k = − + + , 1,i k=  

Values ( )ij ijR are calculated by ijR . 

All expressions for 
lU include only one value 

1 2 1 2, ,( )k k k kR from string and/or array 

column 
1 2,k k K  . The number of such expressions equal to 4k . Relatively to

( )ij ijR we get a system of linear equations. Since the number of unknowns 

1 2 1 2, ,( )k k k kR is equal to 
2K k= , and the number of knowns 

lU is equal to L K , the 

system of linear equations will be incomplete with respect to the unknowns 

1 2 1 2, ,( )k k k kR . For K values of logarithmic signatures, 
1 2 1 2, ,( )k k k kR it is easy to calcu-
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late L K the values of 
lU . The solution of the inverse problem regarding the finding 

1 2 1 2, ,( )k k k kR has an uncertainty of 
( )2 K L m−

possible solutions. The cryptosystem has 

potential ( )K L m− bit security. 

Example. Let 4k = . The arrays 
1 2,k k  which define expressions for

iU  1, 4i k=  

are marked in orange. Please see Fig. 1.). 

 
Figure 1 - The arrays 

1 2,k k  

We form L equations of 
LU that are linearly independent relative to the desired 

ones 
1 2,k k L  . We do it to construct the cryptosystem with ( )K L m− bits security. 

Let 8L = . Let's choose the following eight equations  1 2 3 5 9 12, , , ,LU U U U U U U=  . 

Expressions for relatively unknown amounts 
1 2,k k K  have the following form 

( ) ( ) ( ) ( )11 11 21 21 31 31 41 41 1R R R R U   + + + =
 

( ) ( ) ( ) ( )12 12 22 22 32 32 42 42 2R R R R U   + + + =
 

( ) ( ) ( ) ( )13 13 23 23 33 33 43 43 3R R R R U   + + + =
 

( ) ( ) ( ) ( )11 11 12 12 13 13 14 14 5R R R R U   + + + =
 

( ) ( ) ( ) ( )11 11 24 24 33 33 42 42 9R R R R U   + + + =
 

( ) ( ) ( ) ( )12 12 21 21 34 34 43 43 10R R R R U   + + + =
 

( ) ( ) ( ) ( )13 13 22 22 31 31 44 44 11R R R R U   + + + =
 

( ) ( ) ( ) ( )14 14 23 23 32 32 41 41 12R R R R U   + + + =
 

The solution for the unknowns 
1 2,k k L  can be expressed in the following expres-

sions: 

( ) ( ) ( ) ( )11 11 9 24 24 33 33 42 42R U R R R   = + + +  
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( ) ( ) ( ) ( ) ( ) ( )12 12 3 5 9 12 24 24 32 32 41 41 42 42 43 43( )R U U U U R R R R R     = + + + + + + + +  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

13 13 1 2 9 10 11 24 24 32 32

33 33 34 34 41 41 43 43 44 44

( )R U U U U U R R

R R R R R

  

    

= + + + + + +

+ + + + +
 

( )

( ) ( ) ( )

14 14 1 2 3 9 10 11

12 24 24 34 34 44 44

(

)

R U U U U U U

U R R R



  

= + + + + +

+ + + +
 

( ) ( )

( ) ( ) ( ) ( )

21 21 3 5 9 10 12 24 24

32 32 34 34 41 41 42 42

( )R U U U U U R

R R R R

 

   

= + + + + +

+ + + +
 

( ) ( ) ( ) ( )22 22 2 3 5 9 12 24 24 41 41 43 43( )R U U U U U R R R   = + + + + + + +  

( ) ( )

( ) ( ) ( ) ( )

23 23 1 2 3 9 10 11 24 24

32 32 34 34 41 41 44 44

( )R U U U U U U R

R R R R

 

   

= + + + + + +

+ + + +
 

( ) ( ) ( ) ( )31 31 1 3 5 10 12 32 32 33 33 34 34( )R U U U U U R R R   = + + + + + + +  

Thus, to calculate the values,  11 12 13 14 21 22 23 31, , , , , , , L         one should de-

fine  24 32 33 34 41 42 43 44, , , , , , , K LG        − . 

 

Step 4. Encryption. To implement encryption we consider the following input pa-

rameters: x long Lm bit message, public keys 
K , 

K , hash function h . Encryption 

step consists of the following routines. 

We divide the message x  into m -bit strings, which are converted into a set of L

input parameters ijR for L  factorizable logarithmic signatures 
1 2,k k L  according to 

their type ( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r . 

Next, we calculate the hash value ( )h x for Lm the bit string of the message x that 

can be present with K L−  m -bit strings with subsequent transformation 

1 2,( ( )) k kh x R = into a set of input parameters ijR for K L− non- factorable logarithmic 

signatures 
1 2,k k K L  − in accordance with the type (2,2,...,2)

m

. The hash function 

( )h x is unidirectional and sensitive to bit changes in the message x . We can also add 

a session key to the display 
1 2,( ( )) k kh x R = to randomize the cipher text in the case of 

low entropy of the message x . 

Then, we calculate the values of 
1 2 1 2, ,( )k k k kR and

1 2 1 2, ,( )k k k kR  
1 1,k k= , 

2 1,k k= . 

Then, we calculate L the values of linear sums for 
1 2 1 2, ,( )k k k k lR U = , 

l LU U . 

Finally, we calculate L sums of 
1 2 1 2, ,( )k k k k lR V = , 

l LV V using similar expres-

sions for 
LU . 

The encryption result is recognized as a L  m -bit values 
l LU U and 

l LV V . 

Step 5. Decryption. To implement decryption we consider the following input pa-

rameters: a cipher text 
l LU U , 

l LV V , secret keys 
K , 

Kt , 
K , . It is necessary 
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to calculate 
1 2,k k L  and to calculate 

1 2,k k LR R and restore x  through the factoriza-

ble signatures 
1 2,k k L  . 

To calculate, ( )
1 2 1 2k k k k LR  you need to subtract the values 

1 2,k k K LG − from the 

sums of the set 
LU . Decryption consists of the following steps. 

First, we calculate 
l l l l lD U V t = + + + , 1,l L= . The values 

lU contain sums 

for subsets of factorizable and non-factorizable signatures
1 2,k k L   

1 2,k k L   

1 2 1 2 1 2 1 2

, ,1 2 1 2

, , , ,( ) ( )
k k L k k L

l k k k k k k k kU R R
   

 
 

= + 
. 

The values 
lV contain similar sums for subsets 

1 2,k k L  and
1 2,k k L   

1 2 1 2 1 2 1 2

, ,1 2 1 2

, , , ,( ) ( )
k k L k k L

l k k k k k k k kV R R
   

 
 

= + 
. 

Indices 
1 ( , )k j l= are 

2 ( , )k j l= determined by the serial number j of the loga-

rithmic signature in the equation for 
lU and the number of the equation l . 

 

Substituting 
lU and 

lV into the expression for 
lD , we get 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,1 2 1 2 1 2 1 2

1 2 1 2 1 2

, ,1 2 1 2

1 2
1 2 1 2

1 2 1 2

, , , , , , , ,

, , ,

,
, ,

, ,

( ) ( ) ( ) ( )

( )

(

k k L k k L k k L k k L

k k L k k L

l k k k k k k k k k k k k k k k k

k k k k k k

k k
k k k k

k k K k k K

D R R R R

R t

t

       

   

    



 

   

 

 

   
= + + +   
   
   

+

+ + =

+

   

 

  1 2

1 2 1 2

, 1 21 2

, ,1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

, 1 2 , 1 21 2 1 2

1 2 1 2

1 2 1 2

,

, ,

,

, , , , , ,

, ,

, ,

, ,

)

( )

( ) ( )

k k L

k k L k k L

k k L L k k L L

k k

k k k k

k k

k k k k k k k k k k k k

k k k k

k k k k

k k K k k K

R

R
t

R R

t

 

   

     



 

    

 



 

   

 

 
 
 
  +
 
 +
 + 

 
+ + + 

 
 

+ + =


 

   

  1 2 1 2

,1 2

, ,( )
k k L

k k k kR
 






 

As a result, we get L equations relative to the unknowns
1 2 1 2, ,( )k k k kR  

1 2 1 2

,1 2

, ,( )
k k L

k k k k lR D
 




= , 1,l L= . 

Then, we solve the system of linear equations relatively
1 2 1 2, ,( )k k k kR  

1 2 1 2

,1 2

, ,( )
k k L

k k k k lR D
 




=
, 1,l L= . 

Finally, we find factorization 
1 2 1 2 1 2

1

, , ,( )k k k k k kR R −= and restore the message x . 
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3.4 Security analysis 

There are several brute force attacks are considered as follows. First one is a brute-

force of the input message x  within an encryption and verification for the coinci-

dence of ciphertexts. The complexity of this attack equals 1 2LmN = . 

Next is a brute-force of ciphertexts 
lU , 

lV , 1,l L=  via solving of a system of line-

ar equations relative to logarithmic signatures and the subsequent attack on logarith-

mic signatures. The complexity of this attack equals 
2

2 2 LmN = . 

Then, we consider brute-force of a secret homomorphic transformation  , calcula-

tion 
lD and attack on logarithmic signatures. The secret transformation  is based on 

matrix multiplication. A brute force attack by selection  has a complexity 
2

2m where 

m the dimension of the matrix is 
m m 

. 

Also, analytical attacks on secret transformation   can be proposed as follows: 

Arrays of 
1 2,k k L  and 

1 2,k k L   for factorizable logarithmic signatures 

1 2,k k L  are defined by expressions: 

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k j k k i j k kt   = + +
, 1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k k  = +

 

where 
1 2, ,( ) 0i j k k  , 

1 2,( ) 0j k kt  , 
1 2,( ) 0j k k  1, ji r= is the record`s number in 

1 21, ( , )j s k k= the array block, for a logarithmic signature 
1 2,k k of the type 

( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r . Let 

1 2 1 2, , ,( ) ( ) 0i j k k j k kt +  . The values 
1 2, ,( )i j k k , 

1 2,( )j k kt , 
1 2,( )j k k

are considered secret and there is no mapping 

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k j k kt   = + +
 

and it is impossible to construct equations relatively  

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k j k kt   = + + . 

It is possible to try to strengthen the attack based on the addition of records 

1 2, ,( )i j k k within 
1 2, ,( )i j k k the block of arrays. Since the value of the secret parameter 

1 2,( )j k kt is constant for the entries 
1 2, ,( )i j k k in j the block of the array 

1 2,k k and the 

secret parameter 
1 2,( )j k k is constant for the entries 

1 2, ,( )i j k k in the corresponding j

block of the array, 
1 2,k k it is possible to consider the sums 

1 2, ,( )i j k k and
1 2, ,( )i j k k  

( )
1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 1 1 2, , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k i j k k i j k k      + = + + +  without

1 2,( )j k kt , 

 

1 1 2 2 1 2 1 1 2 1 1 2, , , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k   + = +  without
1 2,( )j k k . 

Since 
1 1 2 2 1 2, , , ,( ) ( )i j k k i j k k  , there is no mapping 

( )
1 1 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2, , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k i j k k i j k k      + = + + +

 
and it is impossible to obtain a solution to the equation 
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( )
1 1 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2, , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k i j k k i j k k      + = + + +  

relatively to  . 

Also, there are following analytical attacks on  non-factorizable logarithmic sig-

natures 
1 2,k k L   are considered. The first attack on  is based on the analysis of 

records in arrays 
1 2,k k L  and

1 2,k k L    

1 2 1 2 1 2, , , , , ,( ) ( ) ( )i j k k i j k k i j k kt  = + , 
1 2 1 2 1 2, , , , , ,( ) ( ) ( )i j k k i j k k i j k k  = + , 1, 2i = . 

The values 
1 2, ,( )i j k kt and 

1 2, ,( )i j k k are considered as a secret ones. 

1 2 1 2 1 21, , 2, , ,( ) ( ) ( )j k k j k k j k kt t t= = , 
1 2 1 2 1 21, , 2, , ,( ) ( ) ( )j k k j k k j k k  = =  

and it is impossible to obtain ratios 
1 2 1 2 1 2 1 2, , , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k i j k kt    + = +  

to compute  . 

The second attack on  is based on the observation that the values of the secret pa-

rameters 
1 2,( )j k kt and 

1 2,( )j k k are constant in each j block of the array of records 

1 2, ,( )i j k k and 
1 2, ,( )i j k k . It is possible to strengthen the attack on  , if we consider the 

sum of records 
1 2 1 21, , 1, ,( ) ( )j k k j k k + and 

1 2 1 21, , 2, ,( ) ( )j k k j k k + within blocks of arrays 

1 2, ,( )i j k k and
1 2, ,( )i j k k   

( )
1 2 1 2 1 2 1 2 1 2 1 21, , 2, , 1, , 1, , 1, , 1, ,( ) ( ) ( ) ( ) ( ) ( )j k k j k k j k k j k k j k k j k k      + = + + +

, 

1 2 1 2 1 2 1 2 1 2 1 21, , 2, , 1, , 1, , 1, , 1, ,( ) ( ) ( ) ( ) ( ) ( )j k k j k k j k k j k k j k k j k k     + = + + +
. 

It is possible to obtain an equation for calculation  

( )
1 2 1 2 1 2 1 21, , 2, , 1, , 2, ,( ) ( ) ( ) ( )j k k j k k j k k j k k    + = +

. 

Taking into account the requirement ( )
1 2

1, 2, ,j j k k
  + = for the values of the 

strings 
1 2

1 2
1, 2, ,,

,j j k kk k
      , 1,j m= , 

1 2,k k we obtain a unique equation for all 

blocks of the array of records
1 2, ,( )i j k k  

1 2 1 21, , 2, ,( ) ( )j k k j k k z  = + . 

Since the equation is written only for one m bit string, and the number of required 

values of the binary matrix  is equal to 
2m , there remains uncertainty in 

2m m− bits 

regarding the coefficients of the matrix  . Complexity of the attack 
2

3 2m mN −= . 

The third attack on  is determined by the possibility of constructing sums from 

2n  entries on arrays of logarithmic signatures 
1 2,k k L  , so that 

1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j

t
 

= and 
1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j


 

= , then we obtain a relatively solv-

able  equation 

1 2 1 2

1 1

, , , ,

1,2, ( ,..., 0 1,2, ( ,..., )

( ) ( )
n n

i j k k i j k k

i j j j i j j j

  
   

=  , 
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1 2 1 2

1 1

, , , ,

1,2, ( ,..., 0 1,2, ( ,..., )

( ) ( )
n n

i j k k i j k k

i j j j i j j j

 
   

=  . 

A system of m linear equations allows you to find a solution relatively  

1 2 1 2

1 1

, , , ,

1,2, ( ,..., ) 1,2, ( ,..., )

( ) ( )
n n

i j k k i j k k

i j j j i j j j

  
   

=  . 

The system of equations is based on the selection of m bit records from the arrays 

of values of logarithmic signatures in the sets 
1 2, ,( )i j k k и 

1 2, ,( )i j k k , the sums of the 

entries in which contain 
1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j

t
 

= и 
1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j


 

= . Since the 

values of 
1 2, ,( )i j k kt and 

1 2, ,( )i j k k are considered secret, the values of the sums 

1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j

t
 

 cannot 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 be predicted and can be assumed with 

probability 22 m− , what the selected entries in sets 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 and 

1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 will be equal to zero. 

To build a system of equations,  it is necessary to have m cases of equality of ze-

ro 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j

t
 

 both 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 in the sums 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 and 

1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 for each calculation  . The probability of such an event can be 

estimated by the value of 
222 m− . 

An important issue is establishing the fact that the matrix calculated  by the sys-

tem of equations for a random set 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 is 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 the 

desired one. Representations of arrays 
1 2,k k L  and 

1 2,k k L  do not allow verifica-

tion 
1 2 1 2, , , ,( ) ( )i j k k i j k k  = due to secrecy 

1 2 1 2, , , ,( ) , ( )i j k k i j k kt  . 

Finally, we can evaluate of the quantum secrecy of directional encryption based on 

a cryptosystem with an incomplete system of linear equations. 

The cryptosystem security for directional encryption is based on the secrecy of the 

homomorphic matrix transformation and the incompleteness of the linear equations 

relative to the values of the logarithmic signatures. The impossibility of an algebraic 

solution regarding the uncertainty of the matrix transformation is determined by the 

incomplete definition of systems of linear equations for matrix equations and a proba-

bilistic assessment of the possibility of constructing such a system of equations. The 

absence of a mechanism for verifying the truth of solutions for an attack on a secret 

matrix transformation based on random samples of records of logarithmic signatures 

indicates a probabilistic assessment of the success of the attack. It is not possible to 

formulate a target function for a quantum algorithm for such an attack. 

A similar attack on the algebraic solution relative to the values of the logarithmic 

signatures due to the indeterminacy of the linear equations also cannot be formalized 

with a target function for the quantum algorithm. 
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A quantum attack based on Grover's algorithm with exponential complexity is pos-

sible for the search attack of the input text based on the given cipher text. 

It appears that polynomial attacks on the algorithm are not possible, since the data 

in the algorithm (records of arrays 
1 2,k k and 

1 2,k k ) are structured as random sets 

without regularities. Simple logarithmic signatures are well structured, however, se-

cret transformations used to construct protected logarithmic signatures introduce 

strong randomization in array records. 

3.5 Security parameters evaluation 

We consider the general parameters of the cryptosystem as follows: 

- m -bit length of logarithmic signatures; 

- K as a number of logarithmic signatures in the cryptosystem; 

- L as a number of factorizable logarithmic signatures in the cryptosystem; 

- 
Kr types of logarithmic signatures. 

Below are the sizes of keys for building a cryptosystem with parameters 4k = , 

16K k k=  = , 8L = , 
1 2, (2,2,...,2)

m

k kr = . It should also be noted that the arrays 
K

are generated as random entries and can be generated based on the initial value. 

The secret keys of the cryptosystem are 
K , 

Kt , 
K ,  . 

Public keys are defined as 
K , 

K . 

Table 1 – Secret keys costs 

 
m

 

Costs for secret keys 

2K Km =

 byte 

Kt Km=

 byte 

K Km =

 byte 

2m =

byte 

K K Kt  + + +

byte 

8 256 128 128 8 520 

16 1024 512 512 32 1080 

32 4096 2048 2048 128 8320 

64 16384 8192 8192 512 33280 

 

Table 2 – Public keys costs 

Public key costs 

K K =  byte K K =  byte K K + byte 

256 32 288 

1024 32 1056 

4096 32 4128 

16384 32 16416 

 

Table 3 - Decryption costs  
m

 
Th

e size 

of the 

cipher 

Th

e size 

of the 

cipher 

The 

number is 

multiplied 

The 

number 

is com-

plex

Num

ber 

added 

The 

number is 

added when 

reducing the 

The 

number is 

calculated
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text is 

U  

be

at 

text is 

V  

be

at 

K by the 

binary 

dimension 

matrix
m m   

K K +  

m - eve-

ryday 

words 

L  

K K +

with 

words 

K Kt +

 

system of 

linear equa-

tions 

( ) / 2L K L−

 

1

K
−

 

8 64 64 8 8 8 32 8 

16 128 128 8 8 8 32 8 

32 256 256 8 8 8 32 8 

64 512 512 8 8 8 32 8 

 

Table 4 – Security estimation 
m  Guessing 

attack through 

selection of 

input text 

2 Lm−  

A brute 

force guess-

ing attack   
2

2 m−  

A brute force 

guessing attack 

through entries in a 

block 
2( )2 m m− −  

Attacking the 

matrix  through a 

system of equations 
222 m−  

8 642−  642−  562−  1282−  

16 1282−  2562−  2402−  5122−  

32 2562−  10242−  9922−  20482−  

64 5122−  40962−  40322−  81922−  

4 Conclusions 

A cryptosystem based on an incomplete system of linear equations with respect to 

logarithmic signatures is a good candidate for post-quantum cryptography. The in-

completeness implemented in the algorithm for systems of linear equations guarantees 

undecidability with respect to secret logarithmic signatures and secret matrix trans-

formation. Quantum secrecy is based on the high randomization of records in arrays 

of logarithmic signatures and the absence of regularities in the structured data of the 

algorithm. The directional encryption algorithm is well-scalable with respect to com-

puting costs, memory, and limitations of hardware platforms without reducing the 

high level of secrecy. Due to the selection of the general parameters of the cryptosys-

tem, the declared NIST levels of secrecy of 128, 192, 256 bits are realized. 

The cost of public keys when calculating over words of 16, 32 bits is in the range 

of 1 ÷ 4 Kbytes and is comparable to implementations for the best candidates for post-

quantum cryptography. The basic computational operation of the algorithm is bitwise 

XOR over the words of logarithmic arrays. 
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