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ABSTRACT
Designing light clients for Proof-of-Work blockchains has been a

foundational problem since Nakamoto’s SPV construction in the

Bitcoin paper. Over the years, communication was reduced from

𝑂 (𝐶) down to𝑂 (polylog(𝐶)) in the system’s lifetime𝐶 . We present

Blink, the first provably secure𝑂 (1) light client that does not require
a trusted setup.

1 INTRODUCTION
It is impractical for a blockchain user, such as a wallet, to download

and verify the whole chain due to communication, computation,

and storage constraints. In the seminal Bitcoin white paper [28],

Satoshi Nakamoto predicted this need for efficiency and designed

a light client called the Simplified Payment Verification (SPV) pro-

tocol, which decouples the download of the execution layer data

(transactions) from the consensus layer data (block headers). An

SPV client retrieves all block headers and verifies them according to

the longest chain consensus rule. This process requires communi-

cation that grows linearly with the systems’ lifetime as the header

chain grows at a roughly linear rate.

Several subsequent works optimized this concept, introducing

superlight clients whose communication complexity is only poly-

logarithmic (succinct) in the lifetime of the system [12, 20, 21, 24].

Nevertheless, these protocols are not out-of-the-box compatible

with Bitcoin but instead require a consensus fork.

Designing a client with constant communication complexity has

remained an elusive goal over the past dozen years. This paper fills

this gap.

Contributions. In this work, we present Blink, a novel interactive
PoW light client with constant communication complexity. In a nut-

shell, the Blink client connects to a set of full nodes, one of which is

honest. The client locally samples a random value 𝜂, includes it in

a transaction Tx𝜂 , and sends it to the full nodes. For instance, Tx𝜂
can simply be a payment to a vendor’s fresh address, which was

sampled with high entropy. Then, Blink waits for Tx𝜂 to be included

in a (high-entropy) block and confirmed. The full nodes respond to

the client with a proof 𝜋 consisting of 2𝑘 + 1 consecutive blocks,
with the high-entropy block in the middle and 𝑘 blocks before and

after it (see Figure 1); 𝑘 is the security parameter [17], e.g., the con-

ventional 6 confirmation blocks in Bitcoin. Importantly, full nodes

do not send the full header chain to the client. The constant-sized

proof 𝜋 ensures that the first block in the proof is stable in the chain
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and, therefore, it can be considered as a checkpoint or, in other

words, as a new genesis block G′.

𝜂

𝑘 blocks 𝑘 blocks

G′

Figure 1: Structure of the Blink’s proof 𝜋 . The proof 𝜋 consists
of 2𝑘 + 1 consecutive blocks, with the block including the
entropy 𝜂 in the middle, and 𝑘 blocks before and after it. The
first block G′ in 𝜋 is stable in the chain and acts as a new
genesis block.

We highlight that Blink does not require any trusted setup, and we
prove it secure under an honest majority of computational power,

i.e., against less than 1/2 adversaries. We analyze security in the

static PoW model introduced by the Bitcoin Backbone [17], and we

adopt the light client state security definitions introduced in [31]. In

this model, we refine the problem of Proofs of Proofs-of-Work [24]

and prove that Blink has optimal communication cost, building

the first provably secure Optimal Proof of Proof-of-Work (OPoPoW)
without trusted setup.

Furthermore, Blink is a powerful tool that can be leveraged to de-

velop a plethora of applications with enhanced efficiency compared

to state-of-the-art protocols. Specifically, we present the following

applications, all with constant communication costs:

(1) Bootstrapping PoWblockchain clients, full nodes, andminers

(2) Active payment verification

(3) Past payment and ledger state verification

(4) Bridging PoW blockchains

In further detail, Blink naturally provides a bootstrapping method:
an SPV client or a light miner

1
broadcasts Tx𝜂 , and upon receiving

𝜋 , they can efficiently select the tip of the current longest chain

G′, and start running their protocol on top of it. As a result, the

bandwidth cost of bootstrapping is reduced from linear to constant

with respect to the lifetime of the system.

Second, Blink allows trustless and efficient verification of on-chain
payments. In particular, upon identifying the new genesis G′, an
SPV protocol is executed on top of G′, finalizing the payment as

soon as 𝑘 confirmation blocks appear on top of Tx𝜂 in the longest

chain. Hence, the payment protocol has the same latency as a

1
Light miners do not validate transactions included in the chain before they

booted up thus, to be sure they start mining on the correct tip of the chain, they need

to run an efficient protocol to identify the current longest chain [22]. They start fully

verifying transactions after bootstrapping.



standard SPV client, but only constant communication complexity

as at most 3𝑘 + 1 blocks are relayed in total for finalizing a payment.

Third, assuming block headers include a commitment to the state

of the ledger (e.g., Ethereum PoW and ZCash) or include an efficient

way of verifying the history of transactions (i.e., ancestry proofs

such as block interlinking in the form ofMerkleMountain Ranges [3,

4] or vector commitments [13]), the client enables the extraction of

any historical state of the ledger fromG′ (including the current one).
This means that users can use the Blink-based payment protocol to

read any past transaction as well as any historical state of a smart
contract. This approach reduces the communication overhead from

polylogarithmic, as seen in state-of-the-art protocols [12, 24], to

constant (in the system’s lifetime).

Finally, Blink can serve as a building block for optimistic bridges,

where 𝜋 is used as a fraud proof. This way, Blink enables the first
trustless, secure PoW bridge with constant communication for relay-

ing a transaction from a source to a destination chain. We also

prove that a recent work claiming a trustless constant-size bridge

construction [30] is, in fact, insecure.

We provide a proof-of-concept implementation of Blink, and evalu-
ate its communication cost for the conventional confirmation block

value 𝑘 = 6 and the block height at the time of writing. We under-

score that Blink improves on all previous light client solutions in

terms of bandwidth: SPV requires 67.3MB, NIPoPoWs requires 10KB,

FlyClient requires 5KB, ZK ZeroSync requires 197KB, whereas Blink

requires only 1.6KB. All of the solutions have the same latency as

they all have to wait for 𝑘 confirmation blocks.

Related Work. The description of Nakamoto’s SPV client ap-

pears already in the paper that introduced Bitcoin [28]. A series of

optimizations followed. The first succinct construction was the in-

teractive Proofs of Proof-of-Work protocol [21] with polylogarithmic

communication costs. Later work removed this interactivity and

achieved security against 1/2 adversaries but succinctness only in

the optimistic setting (against no adversaries) [24]. This construc-

tion was subsequently optimized [20], made practical [15], and

redesigned with backwards compatibility in mind [25]. The opti-

mistic setting limitation was alleviated in a follow-up work, achiev-

ing succinctness against all adversaries up to a 1/3 threshold [23].

An alternative construction was also proposed, enabling security

and succinctness against a 1/2 adversary, and adding support for

variable difficulty [12]. All these solutions require polylogarithmic

communication, whereas Blink requires only constant.

Recently, generic (recursive) zero-knowledge (ZK) techniques

were utilized to build constant communication light clients [5, 11,

32]. However, these approaches incur prohibitively high computa-

tional costs (or necessitate specialized blockchain deployments [5,

32] utilizing ZK-friendly cryptographic primitives [19]) and addi-

tionally require a trusted setup to generate and prove verification

keys (which can only be removed if polylogarithmic communication

is acceptable). Contrarily, Blink does not impose high communica-

tion costs nor a trusted setup.

To develop a constant communication light client without a

trusted setup, the idea of using only a small segment of the chain

near the tip was proposed [2]. However, the proposed construc-

tion was shown to be susceptible to pre-mining attacks and thus

insecure [30]. Recently, another construction was introduced called

Glimpse [30], combining the idea of [2] with the injection of a high-
entropy transaction (which was originally introduced in [36, Chap-

ter 5] but for a different purpose) to prove the provided segment

of the chain is “fresh” and not pre-mined. Nevertheless, Glimpse

remains insecure as we show in this work. We also leverage these

ideas to design Blink, the first provably secure light client with

constant communication that does not require a trusted setup.

Finally, a similar quest for proof of stake light clients has achieved

polylogarithmic complexity in an interactive setting [10]. For a

review of the long-standing light client problem, see [14]. Light

clients are also a cornerstone for building trustless bridges between

chains, a question that has been explored in amultitude ofworks [18,

27, 33, 34]. In this work, we demonstrate how Blink can be utilized

to construct a trustless and efficient optimistic bridge.

Comparison. In Table 1, we compare the characteristics of existing

light client protocols, including Blink. We denote by 𝐶 the lifetime

of the system (informally, the length of the blockchain) and by 𝑘

the security parameter. According to the Bitcoin Backbone model,

𝑘 is the common prefix parameter, which is constant for a protocol

execution, albeit with the trade-off of logarithmically increasing

the probability of failure in the lifetime of the system.

We first observe that Glimpse [30] achieves𝑂 (𝑘) communication

but it is not secure in the honest majority assumption (as shown

in this work); its exact resilience, if any, remains unknown. ZK

clients, on the other hand, achieve 𝑂 (1) communication but neces-

sitate a trusted setup; unlike Blink in which such assumption is not

necessary. We further expose a trade-off between communication

overhead and interactivity: prior state-of-the-art PoPoWs are non-

interactive but require𝑂 (𝑘 polylog(𝐶)) communication [12, 21, 23,

24]. Contrarily, Blink only requires𝑂 (𝑘) communication but needs

one round of interaction.

2 PROTOCOL DESIGN
In this section, we introduce Blink, the first provably secure, optimal

PoW light client that does not require a trusted setup.We begin with

a high-level overview of our protocol’s objectives and introduce a

protocol abstraction that embodies these goals. Next, we present

Blink, describing in simple terms the rationale behind its design

and security. Throughout this work, we will use the term block to

mean a block header.

2.1 Optimal Proof of Proof-of-Work Client
A client protocol is an interactive protocol between a set of provers

𝑃 ∈ P maintaining a ledger, and a verifier 𝑉 , i.e., the client. If the

provers convince 𝑉 about the current state of the ledger without

asking 𝑉 to download the whole ledger or execute all the transac-

tions, then the client is a light client. In particular, if the verifier only

receives a constant amount of data independently of the ledger’s

lifetime, then the light client protocol has optimal communication.

A client is convinced about the state of a ledger or, simply, of a

blockchain, if it receives a block B fulfilling the following properties:

(a) B is safe, i.e., it will never be reverted in the view of an honest

node; (b) B is live, i.e., B was created recently and therefore the

client has an up-to-date view of the state of the blockchain.

Our goal is to design a client protocol that, with only constant

communication complexity, satisfies the security notions defined
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SPV[28] KLS[21],NIPoPoW [24] ZK Clients[5, 11, 32] Glimpse [30] Blink
FlyClient[12], Mining LogSpace[23]

Communication O(𝐶) 𝑂 (𝑘 polylog(𝐶)) O(1) O(𝑘) O(𝑘)
No Trusted Setup ✓ ✓ ✗ ✓ ✓

Adv. Resilience 1/2 1/2 1/2 ✗(?) 1/2
Interactivity No No No Yes Yes

Table 1: Comparison of light client solutions

in (a) and (b). Figure 2 illustrates a client protocol abstraction that

realizes our objectives. It showcases the interaction between the

set of provers (P) and the verifier (𝑉 ) highlighting the pivotal

components of our constructionwhich ensure security: the constant-
sized proof 𝜋 that 𝑃 sends to 𝑉 and the extraction of block B from 𝜋 ,

allowing 𝑉 to read the current state of the ledger.

Initiation

(1) 𝑉 connects to a set of nodes in P
Proof Construction

(2) Nodes in P may interact with𝑉
(3) Nodes in P send to𝑉 a (set of) constant-size proof(s) 𝜋 that includes

a block B that is safe and live

Block Extraction

(4) 𝑉 verifies 𝜋
(5) 𝑉 extracts B from 𝜋 and terminates

Figure 2: Abstraction of an OPoPoW client protocol

Throughout the remainder of this work, we will omit discussing

the initiation step, as it remains the same. For simplicity, we treat

ledgers extracted from blockchains only, i.e., we assume the ledger

is generated as the output of a blockchain protocol (and not, e.g., a

DAG protocol). We generalize the discussion in later sections.

2.2 Blink Client
The ultimate goal of an OPoPoW client is to identify a recent, cor-

rect block of the ledger, by only receiving a constant-sized amount

of data from the set of provers. Towards this, we start with a naive

client construction; we identify security threats and propose solu-

tions until we converge to a secure client protocol.

A Naive Construction. Let us start analyzing one of the simplest

constructions one might think of. The provers give the last 𝑘 + 1
consecutive blocks in their longest chain to the client, who in turn

verifies the validity of these blocks and accepts the first (the oldest)

block in the proof as safe and live.We recall that in PoWblockchains,

blocks are considered final after they have 𝑘 confirmation blocks,

where 𝑘 is the safety parameter, e.g., in Bitcoin folklore blocks are

considered final after 6 confirmations. According to [17], 𝑘 is a

constant for a protocol execution, which, however, implies that

the blockchain’s security bounds degrade logarithmically with its

lifetime. Since the client checks their validity, all blocks in the proof

fulfill the PoW difficulty requirements. Trivially, this construction

is broken: adversarial provers can have pre-mined 𝑘 + 1 fake blocks
stored somewhere, and when the client boots up, they provide the

client with a block that is either not part of the longest chain or is

outdated. Upon receiving different 𝑘 + 1 blocks from honest and

adversarial provers, the client cannot identify the correct chain

with higher probability than random guessing.

Preventing Upfront Mining Attacks. To prevent this upfront
mining attack, the client𝑉 can locally sample a random string 𝜂 and

give it to the provers along with a time window 𝑇 , within which 𝑉

accepts a proof 𝜋 [30]. Then, provers can then broadcast an entropy
transaction Tx𝜂 which embeds 𝜂 to the blockchain network, and

wait for it to be included in a block. We will call this block ¤B and

since it contains 𝜂, this is a high-entropy block. Before the timeout

𝑇 expires, if 𝑘 blocks are built on top of ¤B, 𝑃 sends to 𝑉 a proof 𝜋

consisting of ¤B followed by its 𝑘 confirmation blocks. Finally, 𝑉

accepts ¤B. Figure 3 illustrates the protocol presented in [30]; 𝜆 is

a security parameter. While randomizing the proof 𝜋 solves the

upfront mining attack, it does not lead us to a secure client protocol.

Proof Construction

(5) 𝑉 samples 𝜂
$← {0, 1}𝜆

(6) 𝑉 selects a time 𝑇 in the future that corresponds to the expected

creation time of 𝑘 + 1 blocks
(7) 𝑉 sends 𝜂 and 𝑇 to every 𝑃 ∈ P along with a request to return a

light client proof 𝜋 of length 𝑘 + 1 conditioned to 𝜂, within time𝑇
(8) P construct an entropy transaction Tx𝜂 containing 𝜂 and broadcast

it to the blockchain network

(9) As soon as a party 𝑃 ∈ P has a proof 𝜋 consisting of a block ¤B
containing Tx𝜂 with 𝑘 confirmations blocks, 𝑃 sends 𝜋 to𝑉

Block Extraction

(10) 𝑉 accepts 𝜋 if it was received within time𝑇 , ¤B contains Tx𝜂 and has

𝑘 confirmation blocks on top of it

(11) 𝑉 extracts ¤B from 𝜋 and terminates

Figure 3: Naive client protocol [30].

Indeed, we observe that an adversaryA has a probability
𝑡
𝑛 < 1

2

to be elected as PoW block proposer, with 𝑛 the total number of

participants in the PoW game, out of which 𝑡 are controlled by

the adversary. This means that A has a non-negligible probability

to censor Tx𝜂 in the first 𝑘 − 1 blocks after Tx𝜂 was broadcast. If

𝑇 is such that fewer than 2𝑘 consecutive blocks are produced in

𝑇 with overwhelming probability, the adversary can violate the

liveness of the client with probability
𝑡
𝑛 , because honest parties

cannot produce a valid proof of 𝑘 + 1 blocks within time𝑇 . Figure 4

demonstrates this attack.

Preventing Liveness Attacks. To protect the client from this

liveness attack, one could take different directions: (A) remove the

time window𝑇 (alternatively, increase it such that at least 2𝑘 blocks

are produced in 𝑇 with overwhelming probability), or (B) accept

proofs of length less than 𝑘 . In (A), 𝑉 accepts the first proof 𝜋 it

receives, with 𝜋 consisting of ¤B and at least 𝑘 confirmation blocks

on top of it. In (B), 𝑉 accepts the proof 𝜋 that, by 𝑇 , has the most
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𝑘 blocks

𝑟0

𝜂

𝜂𝜂

𝑇

time

Figure 4: Consider 𝑘 = 4. The light client boots at round 𝑟0
and broadcast the entropy 𝜂. With significant probability, the
adversary can censor Tx𝜂 in the first 𝑘 − 1 blocks after Tx𝜂
was broadcast. It results that honest parties might not find a
proof 𝜋 of sufficient length by the timeout 𝑇 .

confirmation blocks on top of ¤B. In Figure 5, we present the client

protocol for the (A) and (B) variants. While both these attempts

safeguard the liveness of the client, the client’s safety is broken: 𝑉

might accept a block that is not part of any honest party’s chain.

Proof Construction

(5) 𝑉 samples 𝜂
$← {0, 1}𝜆

(6) 𝑉 sends 𝜂 to every 𝑃 ∈ P along with a request to return a light client

proof 𝜋 of length 𝑘 + 1 conditioned to 𝜂
(7) P construct an entropy transaction Tx𝜂 containing 𝜂 and broadcast

it to the blockchain network

(8) As soon as a party 𝑃 ∈ P has a proof 𝜋 consisting of a block ¤B
containing Tx𝜂 with 𝑘 confirmations blocks, 𝑃 sends 𝜋 to𝑉

Block Extraction

(9) 𝑉 accepts the first 𝜋 it receives where ¤B contains Tx𝜂 and has 𝑘

confirmation blocks on top of it

(10) 𝑉 extracts ¤B from 𝜋 and terminates

Proof Construction

(5) 𝑉 samples 𝜂
$← {0, 1}𝜆

(6) 𝑉 selects a time𝑇 in the future

(7) 𝑉 sends 𝜂 to every 𝑃 ∈ P along with a request to return a light client

proof 𝜋 conditioned to Tx𝜂 within time𝑇

(8) P construct an entropy transaction Tx𝜂 containing 𝜂 and broadcast

it to the blockchain network

(9) At time 𝑇 , each party 𝑃 ∈ P sends to 𝑉 its 𝜋 , consisting of ¤B con-

taining Tx𝜂 along with all the subsequent confirmation blocks that 𝑃

is aware of

Block Extraction

(10) 𝑉 accepts the 𝜋 that has the most confirmation blocks on top of ¤B
containing Tx𝜂 and was received within time𝑇

(11) 𝑉 extracts ¤B from 𝜋 and terminates

Figure 5: Insecure attempts (A) and (B), top and bottom re-
spectively.

We now describe the safety attack for (A), but a similar logic

applies to (B) as well. After 𝑉 broadcasts Tx𝜂 , honest parties imme-

diately include it on-chain, while the adversary A starts mining

on a private chain that censors Tx𝜂 . A can mine 𝑘 − 𝑙 blocks in
its private chain, with 0 < 𝑙 < 𝑘 − 1, while honest parties only

mine ¤B with at most 𝑘 − 𝑙 − 2 confirmations. This can happen with

non-negligible probability, as we are considering subchains with

fewer than 𝑘 blocks [17], with 𝑘 being the safety security parameter.

Then,A broadcasts their private chain, causing all honest parties to

switch to the adversarial chain due to the longest chain rule. Honest

parties subsequently include Tx𝜂 in their new longer chain and keep

mining on top of it. In the meantime, A starts privately mining

on top of the abandoned chain that included Tx𝜂 early on. Now, to

create a valid proof, A only needs to privately mine 𝑙 + 2 < 𝑘 + 1
blocks, while honest parties need to mine 𝑘 + 1 blocks. As a result,
A can generate a valid proof faster than honest parties, and trick

the client to accept a proof consisting of blocks that will not be part

of the honest chain, thereby breaking security. Figure 6 illustrates

this attack.

𝜂

𝜂

𝑘 blocks

𝑘 blocks< 𝑘 blocks

𝑟0 𝑟𝑟

time

Figure 6: Consider 𝑘 = 4 and 𝑙 = 1. The client broadcasts 𝜂 at 𝑟0.
A privatelymines a subchain of 3 blocks censoring Tx𝜂 , while
honest parties include Tx𝜂 and only mine 2 blocks overall. At
𝑟𝑟 , A releases the private chain, which is adopted by honest
parties as per the longest chain selection rule. Honest parties
now need to mine 5 blocks to find a valid 𝜋 . Contrarily, A
needs to only mine 3 blocks. Hence, A finds 𝜋 first.

The Blink Proof. Before detailing Blink, we observe that the safety
attack in Figure 6 relies onA privately mining in order to delay the

inclusion of Tx𝜂 in the main chain. However, such censoring can

only succeed for a limited time, specifically less than 𝑘 consecutive

blocks, as extending a private chain beyond this would lead to a

safety violation [17]. In other words, A may create up to 𝑘 − 1

blocks faster than honest parties (with non-negligible probability)

but not more than that: any honest majority will create 𝑘 blocks

faster than any minority adversary, rendering the attack in Figure 6

infeasible.

The client can securely accept a block of the blockchain, if they

can identify it as a safe block, i.e., a block that is already 𝑘 deep in

at least one honest party’s chain [17]. Furthermore, the safe block

also needs to be live, i.e., recent enough to be sufficiently close to

the tip of the chain.

We know that the adversary can only censor Tx𝜂 for 𝑘 − 1 blocks
and it takes 𝑘 additional blocks for Tx𝜂 to become safe (Figure 6).

Therefore, we modify 𝜋 to be of length 2𝑘 + 1 and to specifically
contain Tx𝜂 in the middle block ¤B, i.e., at position 𝑘 + 1, as depicted
in Figure 1. However, if the client accepts ¤B of the first valid proof

received, safety is again violated by the same attack described

before:A can create𝜋 before honest parties by using the𝑘+(𝑘−𝑙−1)
blocks from the abandoned honest chain and mining 𝑙 + 1 new

blocks; meanwhile, honest parties must mine 𝑘 > 𝑙 + 1 new blocks.

Nonetheless, 𝜋 now being of length 2𝑘 + 1, it necessarily contains a

safe block, i.e., a block that is at least 𝑘 deep in the chain to be stable

for all honest parties; this is true even if the 𝜋 the client receives

comes from A. In particular, 𝜋 contains at least a block that was

safe even before Tx𝜂 was broadcast: the honest subchain starting

from the block ¤B included early on is at most of length 𝑘 − 2 and at
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least of length 1, thus the first block in 𝜋 is was already part of the

honest parties’ stable chain (cf. Figure 7). Naturally, the first block

in 𝜋 is attached to genesis, otherwise honest parties would not have

extended it. This holds true regardless of the strategy A follows:

Honest parties only abandon their chain if they see a longer one.

𝜂

𝑘 blocks

𝑘 blocks

𝑟0 𝑟𝑟

< 𝑘 − 𝑑 blocks

𝜂

𝑑 blocks

time

Figure 7: Consider 𝑘 = 5. As in Figure 6, except thatA censors
Tx𝜂 by 𝑑 blocks also on the lower branch, such that 𝑑 ≤ 𝑘 − 1
and s.t. the overall number of adversarial blocks before Tx𝜂
on all branches is smaller than 𝑘 . This shows why it is not
sufficient to take less than 𝑘 blocks before Tx𝜂 .

We note that for any 𝜋 coming from an honest party, any block

before the entropy block ¤B is safe, as there are at least 𝑘 + 1 confir-
mations. Thereby, the first block B of any 2𝑘 + 1 proof 𝜋 is always
safe, i.e., it has at least 𝑘 confirmations in the view of an honest party.
As a result, the client can safely accept the first block in the first
valid 𝜋 it receives.

Blink Protocol. In Figure 8 we showcase the pseudocode of the

Blink protocol, while in Algorithm 1 we put forth the algorithm run

by the Blink client, employing Algorithm 2; similarly, in Algorithm 3

we present the code run by provers. We use𝑚 d 𝐴 to indicate that

message𝑚 is sent to party A and𝑚 c 𝐴 to indicate that message

𝑚 is received from party A.

We observe that the client reads a proof of length 2𝑘 + 1, which
is constant in the system’s lifetime, and accepts a block that is 2𝑘

blocks old, incurring a waiting time of 𝑘 blocks, similarly to an SPV.

Blink is the first PoW light client protocol that achieves optimal proof
size with only at most one round of communication between provers
and verifier.

Proof Construction

(5) 𝑉 samples 𝜂
$← {0, 1}𝜆

(6) 𝑉 sends 𝜂 to every 𝑃 ∈ P
(7) P construct an entropy transaction Tx𝜂 containing 𝜂 and broadcast

it to the blockchain network

(8) As soon as a party 𝑃 ∈ P has 𝑘 confirmation blocks on top of the

block ¤B containing Tx𝜂 , 𝑃 sends to𝑉 𝜋 consisting of ¤B with 𝑘 blocks

before and 𝑘 blocks after it

Block Extraction

(9) 𝑉 accepts the first 𝜋 it receives consisting of 2𝑘 + 1 consecutive well-
formed blocks where the middle block contains 𝜂, i.e., 𝜋 [𝑘 ] = ¤B

(10) 𝑉 extracts the first block of proof 𝜋 , i.e., B := 𝜋 [0], and terminates

Figure 8: Pseudocode of the Blink protocol

Algorithm 1 The algorithm ran by the verifier 𝑉 , i.e., the Blink

client.We split the proof 𝜋 into (𝜋0, 𝜋1), with 𝜋0 allowing to identify
a stable and recent block of the blockchain, i.e., the new genesis G′,
and 𝜋1 being the Merkle proof that verifies inclusion of 𝜂 into the

middle block of 𝜋0.

1: function VerifierG ( )

2: 𝜂 c {0, 1}𝜆
3: for 𝑃 ∈ P do
4: 𝜂 d 𝑃

5: while True do
6: 𝜋 c 𝑃 ⊲ Only constant amount of data downloaded

7: (𝜋0, 𝜋1 ) = 𝜋

8: if ValidG (𝜋,𝜂 ) then
9: return 𝜋0 [0]
10: end if
11: end while
12: end for
13: end function

Algorithm 2 The algorithm ran by 𝑉 to check the validity of the

blocks in the proof. Let 𝑥 be the root of the transaction Merkle tree

in a block, and 𝑠 be its parent hash.

1: function ValidG (𝜋 , 𝜂)

2: (𝜋0, 𝜋1 ) ← 𝜋

3: if |𝜋0 | < 𝑘 + 1 then
4: return False
5: end if
6: if ¬MerkleVerify(𝜋1, 𝜂) ∨ 𝜋1 .𝑟𝑜𝑜𝑡 ≠ 𝜋0 [𝑘 + 1] .𝑥 then
7: return False
8: end if
9: ℎ = 𝜋0 [0] .𝑠
10: for B ∈ 𝜋0 do
11: if B.s ≠ ℎ then ⊲ Ancestry failure

12: return False
13: end if
14: h = 𝐻 (B)
15: if h ≥ T then ⊲ Hardcoded target T, static setting

16: return False ⊲ PoW failure

17: end if
18: return G = 𝜋0 [0] ∨ |𝜋0 | = 2𝑘 + 1
19: end for
20: end function

Algorithm 3 The algorithm ran by the provers 𝑃 ∈ P.
1: function Prover( )

2: 𝜂 c 𝑉

3: Tx𝜂 c MakeTx(𝜂)

4: Tx𝜂 d Network ⊲ Wait for Tx𝜂 to be 𝑘-confirmed

5: 𝜋0 c C[−(2𝑘 + 1) :] ⊲ By Common Prefix, Tx ∈ C[−(2𝑘 + 1) :]
6: 𝜋1 c MerkleProve(C[𝑘 + 1], 𝜂)
7: 𝜋 ← (𝜋0, 𝜋1 )
8: 𝜋 d 𝑉

9: end function

3 APPLICATIONS
In this section, we showcase how Blink can be used for different

applications, ranging from verification of payments and state veri-

fication to bootstrapping and bridging.
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Proof Construction

(5) 𝑉 samples 𝜂
$← {0, 1}𝜆

(6) 𝑉 sends 𝜂 to every 𝑃 ∈ P
(7) P construct an entropy transaction Tx𝜂 containing 𝜂 and broadcast

it to the blockchain network

(8) As soon as a party 𝑃 ∈ P has 𝑘 confirmation blocks on top of the

block ¤B containing Tx𝜂 , 𝑃 sends to𝑉 𝜋 consisting of ¤B with 𝑘 blocks

before and 𝑘 blocks after it

(9) 𝑉 accepts the first 𝜋 it receives consisting of 2𝑘 + 1 consecutive well-
formed blocks where the middle block contains 𝜂, i.e., 𝜋 [𝑘 ] = ¤B

(10) Upon accepting 𝜋 ,𝑉 extracts the new genesis G′ := 𝜋 [0] and sends

G′ to all 𝑃 ∈ P
(11) Each 𝑃 ∈ P keeps sending all the blocks descending from G′ in their

chain

State Extraction

(12) 𝑉 maintains the longest chain C descending from G′
(13) When Tx𝜂 is𝑘 deep in C,𝑉 extracts the state from the block including

Tx𝜂 and terminates

Figure 9: Pseudocode of the payment verification with Blink

3.1 Payment Verification
Consider a vendor that wants to check whether a particular buyer

has made a payment for the purchase of a good. The vendor will

only ship the goods after the client’s payment has been verified.

The Blink protocol, as described in Figure 8, only gives security

for the first block in the proof and not, in particular, for the block

containing Tx𝜂 : indeed, the proof 𝜋 accepted by the client might

come from the adversary and, thus, the entropy block might not

belong to the stable chain. In the payment setting, however, it is

desirable to define security of the stable entropy block B𝜂 : Tx𝜂 is

the transaction of the payment to the vendor, with 𝜂 now being an

address freshly sampled at random by the vendor. Assume the buyer

has paid the correct amount to the vendor’s new address. To argue

about the finality of the payment, i.e., the finality of Tx𝜂 , we recall
the strong security guarantee that Blink achieves: Blink allows us

to define a recent, trustlessly identified, stable block. This block

behaves as a secure checkpoint or, in other words, as a new genesis

G′: it is in the stable chain of honest parties, i.e., it will never be

reverted, and the consensus rules applied to G′ are consistent to the
consensus rules applied to the genesis block G. We now show how

to extend the Blink protocol to verify payments. Upon accepting a

proof 𝜋 and identifying G′, the client can send G′ to all provers,

and provers start sending to the client all the blocks descending

from G′. The client now maintains the longest chain descending

from G′, essentially running an SPV algorithmwith G′ as a starting
point. When Tx𝜂 is in a block that is 𝑘-deep in the longest chain

(this will happen, at most, 3𝑘 consecutive blocks on top of G′), the
client considers the payment final and terminates.

With one additional round of communication, Blink can now

verify payments with a constant-sized proof. We observe that the

client latency is the same one of a standard SPV client, i.e., 𝑘 blocks

when there is no adversarial attack, and 2𝑘 when under attack.

In Figure 9 we show the pseudocode for the Blink-based protocol

for payment verification. We note that the Blink construction can

be used out-of-the-box to verify payments in the Bitcoin Back-

bone protocol in the static difficulty setting. We refer the reader to

Section 6 for variable difficulty and practical deployment.

3.2 Bootstrapping via Blink
In blockchains, there is an interplay between different types of

parties: consensus nodes, full nodes, and clients. Consensus nodes, also
called miners, receive transactions from the network (environment)

and execute a distributed protocol that outputs a ledger, i.e., a finite,

ordered sequence of transactions identical for all nodes. Full nodes
do not participate in the distributed ledger protocol; instead, they

receive the ledger from consensus nodes, execute transactions to

verify their validity, and maintain the ledger. Finally, clients connect
to full nodes to retrieve a specific state element from the ledger, e.g.,

an account balance. Bootstrapping these nodes usually requires

a lot of time (from several hours to several days) and resources

because, starting from genesis, they need to download and execute

all the transactions in the ledger (full and consensus nodes) or verify

all the blocks in the ledger (SPV-based clients).

In Section 3.1 we used Blink to identify a recent stable block that

behaves as a new genesis G′ and, commencing from this block, our

client started running an SPV protocol, i.e., the one often run by

(light) clients. Blink can thus serve as an efficient bootstrapping

protocol that allows the identification of a new stable block G′ and,
from that block (e.g., using the state commitment therein), runs the

protocol of a consensus, full, or light node. In this way, nodes do

not have to execute the entire transaction history or download past

blocks but start executing only from transactions 2𝑘 blocks in the

past.

3.3 State Verification
In this work, we demonstrated how to convince a light client about

the state of a ledger, incurring only constant communication over-

head. As specified in Section 2.1, Blink operates on the premise

that each block embeds a constant-sized commitment to the cur-

rent state of the ledger. Commitments come in different flavors

(Merkle tree-based commitments, accumulators, vector commit-

ments), and they are used to download and verify the UTXO set or

account balances after the block, including it, has been successfully

executed.

Having a chain with state commitments enables Blink to be used

to verify more than just payments: Blink allows to verify account
balances and read the current state of on-chain contracts. For a discus-
sion on chains that have state commitments and how to introduce

them to systems like Bitcoin, see Section 6.

3.4 Historical Transaction Verification
While it is uncommon to verify very old transactions, it might be

necessary for some applications to verify, e.g., a few weeks old

transactions. In these cases, once Blink identifies the new genesis

G′, one could travel back the chain block by block until hitting the

block containing the transaction to be verified. While Blink has

constant communication, this is a naive approach for checking past

transactions that comes with a linear overhead: the older the trans-

action, the more blocks the client has to download. More advanced

techniques called proof of ancestry, achieve better performances

in proving that a block is an ancestor of another block: these in-

clude using Merkle Mountain Ranges (MMRs), i.e., extensions of

Merkle trees that allow for efficient appends in logarithmic open-

ings, or vector commitments with constant opening. It follows that
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Blink allows to succinctly synchronize with the current state of

the ledger and, from there, using a proof of ancestry, to travel back

the transaction history until verifying the desired old transaction.

When verifying historical transactions, the communication of Blink

remains constant but can be combined with a linear, logarithmic,

or constant proof of ancestry.

3.5 Bridging with Blink
After more than 15 years of research and work from academia and

industry alike, the blockchain space has grown in a variety of 100+

chains, each presenting different and unique features in terms of

consensus, privacy, throughput, applications, and programmability.

To leverage these diverse opportunities and to enhance users’ flexi-

bility in the crypto world, light clients have recently become a piv-

otal component for bridges as well, allowing them to efficiently and

securely read the state of a chain within new resource-constrained

environments: blockchain themselves.

Successful bridges move a high volume of transactions: ideally,

at least one transaction per block. In this case, every block that

includes a cross-chain transaction must be relayed by the bridge

from the source to the destination chain, in an SPV-like fashion.

However, contrarily to an SPV client, the on-chain costs of the

bridge can be minimized by avoiding verifying blocks by default.

Instead, blocks can be optimistically accepted and only verified on-

demand, i.e., in case a dispute is raised. This is what an optimistic
bridge does. We demonstrate how to use Blink for creating succinct
fraud proofs to resolve disputes.

Consider a PoW source blockchain C𝑆 including state commit-

ments in its blocks and allowing for efficient ancestry proofs. Re-
layers of the bridge can optimistically relay a stable block B from

C𝑆 to the destination blockchain C𝐷 , by submitting B along with a

random string 𝜂𝑅 they sampled to the smart contract, where the

bridge is deployed. Should a challenger notice misbehavior, they

have a time window to start a challenge in which they pinpoint the

contested block B and they reveal a random string 𝜂𝐶 to the bridge

contract. The challenger proceeds to publish a transaction Tx𝜂 on

C𝑆 , which includes 𝜂 := 𝜂𝑅 ⊕ 𝜂𝐶 (where ⊕ is bit-wise xor). Both

parties need to contribute with a random string to prevent each

of them from cheating, i.e., pre-mining a fake proof. The bridge

contract will accept, from anyone, the first valid proof 𝜋 containing

Tx𝜂 , and via ancestry proof it can verify whether or not B is an

ancestor of the first block in 𝜋 by checking the block height. If it is

not, B is removed from the bridge contract. Honest behavior can

be incentivized through collateral that is slashed or redistributed

in case of misbehavior.

4 MODEL
4.1 Notation
The bracket notation [𝑛] refers to the set {1, . . . , 𝑛} for a natural
number 𝑛. 𝐴[𝑖] denotes the 𝑖-th element (starting from 0) of a

sequence 𝐴, while negative indices like 𝐴[−𝑖] refer to the 𝑖-th

element from the end.𝐴[𝑖 : 𝑗] represents the subsequence of𝐴 from

index 𝑖 (inclusive) to 𝑗 (exclusive), while 𝐴[𝑖 :] and 𝐴[: 𝑗] represent
the subsequences from 𝑖 onwards and up to 𝑗 , respectively. The

notation |𝐴| denotes the size of the sequence𝐴. The symbols𝐴 ⪯ 𝐵

and 𝐴 ≺ 𝑌 indicate that 𝐴 is a prefix or a strict prefix of 𝐵 or 𝑌 ,

respectively.

We denote with C
⋂
𝑟 :=

⋂
𝑃∈H C𝑃𝑟 the intersection of the view

of all honest parties’ chains at round 𝑟 . Similarly, we denote with

C
⋃
𝑟 :=

⋃
𝑃∈H C𝑃𝑟 the union of the chains of all honest parties, that

yields a blocktree. For simplicity, we extend our slicing notation

that chops off the last 𝑘 elements of a sequence, i.e., [: −𝑘], to trees

as well. For trees, it works as follows. For every leaf in a tree, select

that leaf and the 𝑘−1 preceding nodes. Then, for every leaf, remove

all selected nodes. The slicing notation for trees will be helpful

later on, when distinguishing between a stable chain in the view

of all honest parties and a stable chain in the view of at least one

honest party. It follows that C
⋂
𝑟 [: −𝑘] is the intersection of the

view of the blockchain of all honest parties at round 𝑟 , pruned of

the last 𝑘 blocks; likewise, C
⋃
𝑟 [: −𝑘] is the union of the view of

the blockchain of all honest parties at round 𝑟 , pruned of the last 𝑘

blocks. In Lemma A.15 (Appendix A.1), we prove that C
⋃
𝑟 [:−𝑘] =⋃

𝑃∈H C𝑃𝑟 [:−𝑘].
We say a block extends another block, if the former has the latter

as ancestor and has a higher block height. We say a block descends
from another block, if the former extends the latter or they are the

same block. Finally, two blocks are parallel when they have the

same height.

4.2 Ledger Model
We assume a synchronous network and we consider the protocol

execution to proceed in discrete rounds.

Definition 4.1 (Ledger). A ledger is a sequence of transactions.

Definition 4.2 (Distributed Ledger Protocol). A distributed ledger
protocol is an Interactive Turing Machine which exposes the fol-

lowing methods:

• execute: Executes a single round of the protocol, during

which the machine can communicate with the network.

• write (Tx): Takes transaction Tx as input.
• read (): Outputs a ledger.

A distributed protocol that returns a total order of the input

transactions for all consensus nodes, satisfies two key properties:

safety and liveness. The notation L𝑃
𝑟 denotes the output of read ()

invoked on party 𝑃 at the end of round 𝑟 .

Definition 4.3 (Safety). A distributed ledger protocol is safe if:
• (Self-consistency) For any honest party 𝑃 and any rounds

𝑟1 ≤ 𝑟2, it holds that L𝑃
𝑟1
⪯ L𝑃

𝑟2
.

• (View-consistency) For any honest parties 𝑃1, 𝑃2 and any

round 𝑟 , it holds that either L𝑃1
𝑟 ⪯ L𝑃2

𝑟 or L𝑃2
𝑟 ⪯ L𝑃1

𝑟 .

Definition 4.4 (Liveness). A distributed ledger protocol is 𝑢-live
if all transactions written to any honest party at round 𝑟 , appear in

the ledgers of all honest parties by round 𝑟 + 𝑢.

The ledger uniquely defines the system’s current state. An empty

ledger is equivalent to a constant genesis state, denoted as 𝑠𝑡0. To as-

certain the state of a non-empty ledger, transactions from the ledger

are sequentially applied to the state, starting from the genesis state.

This transaction application to the existing state is encapsulated by
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a transition function 𝛿 . For a given ledger L = {𝑡𝑥1, . . . , 𝑡𝑥𝑛}, the
state of the system is 𝛿 (. . . 𝛿 (𝛿 (𝑠𝑡0, 𝑡𝑥1), 𝑡𝑥2) . . . , 𝑡𝑥𝑛)

We use the shorthand notation 𝛿∗ to apply a sequence of trans-

actions 𝑡𝑥 = {𝑡𝑥1, . . . , 𝑡𝑥𝑛} to a state. Specifically, 𝛿∗ (𝑠𝑡0, 𝑡𝑥) =

𝛿 (. . . 𝛿 (𝛿 (𝑠𝑡0, 𝑡𝑥1), 𝑡𝑥2) . . . , 𝑡𝑥𝑛).
Prover-VerifierModel. A client protocol is an interactive protocol

between the client, acting as verifier𝑉 , and a set of full nodes, acting

as provers 𝑃 ∈ P. We focus on a client 𝑉 that bootstraps on the

network for the first time and it is only aware of the genesis state.

We assume that the client is honest and connects to at least

one honest prover, in accordance with the standard non-eclipsing

assumption. While honest parties adhere to the correct protocol

execution, the adversary can execute any probabilistic polynomial-

time algorithm.

We can now define state security for client protocols, as originally

introduced in [31]. Assuming safety, we use L
⋃
𝑟 to denote the

longest among all the ledgers kept by honest parties at the end of

round 𝑟 , and L
⋂
𝑟 to denote the shortest among them.

Definition 4.5 (Ledger Client State Security [31]). An interactive

Prover-Verifier protocol (𝑃,𝑉 ) is state secure with safety parameter

𝑣 , if the state commitment ⟨st⟩ output by𝑉 at the end of the protocol

execution at round 𝑟 satisfies safety and liveness as defined below.

There exists a ledger L such that ⟨𝛿∗ (st0,L)⟩ = ⟨st⟩, and ∀𝑟 ′ ≥
𝑟 + 𝑣 :
Safety: L is a prefix of L

⋃
𝑟 ′ .

Liveness: L is an extension of L
⋂
𝑟 .

When a client gets knowledge of the state of the ledger without

downloading the entire ledger or executing all transactions, it is a

light client. Ideally, a light client learns the desired state element by

downloading asymptotically less data than a full node. We measure

the performance of a client protocol by defining the communication
cost for the verifier. In other words, for a specific client protocol we

measure the data received by the verifier in the proof construction

(𝜋 ) phase.

Definition 4.6 (Client Communication Cost). We define cost(E,𝑉 )
to be the communication cost (in bits) of an execution E of a proto-

col Π(P,𝑉 ) for party 𝑉 .

We say that a client protocol has optimal communication cost if
cost(E,𝑉 ) = 𝑂 (1), i.e., the verifier receives only a constant amount

of data. In particular, we will show later that Blink is a light client

with optimal communication cost cost(𝐵𝑙𝑖𝑛𝑘) = 𝑂 (𝑘) = 𝑂 (1),
where 𝑘 is the safety security parameter that is constant for a

protocol execution [17].

Definition 4.7 (Optimal Proof-of Proof-of-Work Protocol (OPoPoW)).
A light client protocol is an Optimal Proof-of Proof-of-Work protocol
when it is secure (Definition 4.5) and has optimal communication

cost (Definition 4.6).

4.3 PoW Blockchain Model
A blockchain protocol is a distributed ledger protocol that operates

typically as follows: Consensus nodes receive and broadcast chains

composed of blocks. Each node 𝑃 maintains a view of the blockchain,

denoted by 𝐶𝑃
, which invariably starts with the genesis block 𝐺 .

Nodes verify these chains by ensuring they comply with the validity

and consensus rules. These chains include fixed-size transactions

arranged in a specific order. Every node interprets its chain to

produce a transaction sequence, i.e., to output its ledger. Moreover,

a consensus node receives new, unconfirmed transactions from the

network, and attempts to add them to its ledger by proposing a

new block that includes them. The nodes’ local views the ledger

can vary from node to node because of the network latency. Honest

nodes adhere to the consensus protocol, while adversarial nodes

may diverge from it. Nevertheless, under specific assumptions, a

blockchain protocol may guarantee that the local chains of different

parties satisfy the two key properties of ledgers, namely safety and

liveness, albeit typically in a probabilistic manner.

To model the proof-of-work setting, the 𝑞-bounded synchronous
setting defined in [17] can be leveraged. The protocol is analyzed in

the static model, where the number of consensus nodes 𝑛 remains

fixed throughout the protocol execution, albeit not known to the

nodes themselves. Furthermore, each of them is assumed to have an

equal computational power (flat model). The protocol proceeds in

synchronous communication rounds. We highlight that the static

model implies static difficulty, i.e., the PoW difficulty remains the

same throughout the protocol execution. The limited capability of

the nodes to generate PoW solutions is captured by their restricted

access to the hash function 𝐻 (·) modeled as a Random Oracle; each

node is allowed 𝑞 queries per round. The adversary controls up to

𝑡 < 𝑛
2
nodes, meaning they are allowed 𝑡 · 𝑞 queries per round. The

adversary can insert messages, manipulate their order, and launch

Sybil attacks, creating seemingly honest messages. However, the

adversary cannot censor honest parties’ messages, ensuring that

all honest parties receive honestly broadcast messages.

The Bitcoin Backbonemodel [17] identifies three security proper-

ties of a blockchain: common prefix, chain quality, and chain growth.
Informally, common prefix dictates that at any point in time, any

two honest parties’ chains after pruning the last 𝑘 blocks are either

the same or one is a prefix of the other. Chain growth expresses

that the blockchain makes progress at least at the pace at which

the honest parties produce blocks. Finally, chain quality captures

the ratio of honestly produced blocks in the system in any long

enough chunk of the chain. The formal definitions can be found

in Appendix A.1. A blockchain protocol satisfying common prefix,

chain quality, and chain growth also maintains a secure ledger, as

per Definition 4.3 and Definition 4.4, under the so-called 𝑘-deep
confirmation rule. This rule states that all nodes consider a block
safe when it is part of their local chain pruned by the last 𝑘 blocks.

As expected, both safety and liveness hold probabilistically.

Chain Client Security. As a blockchain defines a specific dis-

tributed ledger protocol, full nodes, and clients function as described

above. Inheriting the same interactive model, we now define the

client security for blockchain protocols. To do so, we first define

the notion of admissible blocks as a stepping stone.

Definition 4.8 ((𝑢, 𝑘)-Admissible Block at 𝑟 ). Parameterized by

𝑢 ∈ N and 𝑘 ∈ N, we call admissible block at r any block B observed

at round 𝑟 fulfilling the following properties:

• Safety: B ∈ C
⋃
𝑟+𝑢 [: −𝑘]

• Liveness: B ∉ C
⋂
𝑟 [: −𝑘]
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In our definition of (𝑢, 𝑘)-admissible blocks at 𝑟 , the parameters

𝑢 and 𝑘 are free parameters. In our proofs, it turns out that this

admissibility holds if 𝑢 is the “wait time” parameter of liveness, and

𝑘 is the “depth” parameter of safety/persistence of [17]. Thus, for

readability we omit (𝑢, 𝑘) and mean admissibility in the round in

which the client terminates, if not stated otherwise.

Definition 4.9 (Chain Client Security). An interactive Prover-

Verifier protocol (𝑃,𝑉 ) for clients is secure if any block B output

by the Verifier at the end of the protocol execution at round 𝑟∗ is
admissible for some round 𝑟 ≤ 𝑟∗.

In other words, the client accepts a block B at round 𝑟∗, if for
some round 𝑟 ≤ 𝑟∗ the following holds: B is seen as stable by at

least one honest party at round 𝑟 + 𝑢 (safety), and B is not yet seen

by all parties at round 𝑟 (liveness).

State Commitments. We consider PoW blockchains in which

block headers include state commitments, denoted by ⟨𝑠𝑡⟩. State
commitments are a succinct representation of the state of the ledger,

and they are assumed to be of constant size. In the account model of,

e.g., Ethereum, an example of state commitment is the Merkle root

of account balances; in the UTXOmodel of, e.g., Bitcoin, an example

is the Merkle root of the Sparse Merkle Tree where the value of each

leaf corresponds to a UTXO of the UTXO set [28, 31]. Equipped

with this functionality, client protocols satisfying Definition 4.9 also

satisfy Definition 4.5. We stress however that state commitments

are necessary in Blink only for the extraction of the ledger’s state

but not for the secure proof creation.

5 ANALYSIS
In this section, we present the main theorems and formal analysis

of our paper. We start by giving a high-level overview on the proof

strategy, followed by the formal proofs. Due to space constraints,

some preliminary definitions and lemmas used in the proofs are

deferred to Appendix A.

Analysis Overview. The main theorem we prove in this paper is

as follows.

Theorem 5.1. Blink achieves ledger client state security (Defini-
tion 4.5).

Towards proving Theorem 5.1, we start proving the admissibility

of 𝜋 [0]. We identify a special type of block, which we call conver-
gence event at a round 𝑟 (Definition A.18). A convergence event

is an honestly produced block that has (by round 𝑟 ) no parallel

block that is acceptable. We call a block an acceptable block (Defini-

tion A.17) if it is valid and there is at least one honest party who

might potentially switch to a chain including it. These convergence

event blocks have some interesting properties. In particular, (i) all

acceptable blocks at some round 𝑟 need to descend from all conver-

gence events at round 𝑟 with smaller block height (Lemma A.20);

(ii) a block that is a convergence event B̃ in a round in which there

exists a valid block B̂ with a height of at least 𝑘 more than B̃ (even

if B̂ is only known to the adversary), B̃ is destined to become stable

for all honest parties (Lemma A.21); (iii) the nearest ancestral con-

vergence event to any block is always fewer than 𝑘 blocks away

(TheoremA.22). Note that these desirable properties hold regardless

of our construction, and might be of independent interest.

Towards proving the safety of 𝜋 [0], we show that 𝜋 [𝑘 :] always
extends a so-called anchor block B̃, which is the nearest conver-

gence event at the time that 𝜋 is found and sent to the client (Theo-

rem 5.7). Since 𝜋 [𝑘] is fewer than 𝑘 blocks away from its nearest

ancestral convergence event (Theorem A.22), we know that B̃ ∈ 𝜋 .
Also, B̃ will become stable (Lemma A.21), and thus 𝜋 [0] is safe. In-
tuitively, liveness holds since 𝜋 [𝑘] is fresh as it contains the newly

sampled 𝜂 and 𝜋 [0] is exactly 𝑘 blocks away and thus also new; we

formally prove this in Theorem 5.9.

Towards chain client safety, we start arguing about the first

proof 𝜋 of length 2𝑘 + 1 the client accepts at round 𝑟∗ + 1, with
𝜋 [𝑘] containing 𝜂. As a first step, we say that 𝜋 must extend an

anchor block B̃ (Anchor, Theorem 5.7). In turn, B̃ extends a block B′

which is stable for all honest parties already at round 𝑟0. Intuitively,

this holds because when 𝜂 is broadcast, honest parties will only

produce blocks extending B̃. As a result of honest majority, a proof

extending the anchor is found first.

Liveness and safety yield that 𝜋 [0] is an admissible block at

round 𝑟∗ (Theorem 5.9) and we prove that the longest chain rule

applied to the genesis block is consistent with the longest chain rule

applied to 𝜋 [0] (New Genesis, Lemma 5.10). Finally, we show that,

eventually, all honest parties will have an admissible block including

Tx𝜂 and that such a block is close to 𝜋 [0]. It follows that running
a (succinct) SPV algorithm on top of G′ = 𝜋 [0] will guarantee to
Blink admissibility of a block B𝜂 including Tx𝜂 , when B𝜂 is buried

𝑘 blocks deep in the longest chain. We prove that Tx𝜂 becomes

stable for all honest parties (Lemma 5.14) after 𝑢 rounds and that

its distance to G′ is upper-bounded by 3𝑘 blocks (Lemma 5.15).

To conclude, we prove by reduction that any client construc-

tion that fulfilling the chain client security definition, having state

commitments, also fulfills the ledger client state security definition

(Corollary 5.12).

Theorem 5.2. Blink has optimal communication cost, i.e., 𝑂 (𝑘).

The communication cost (Definition 4.6) measures the bits sen-

t/received by 𝑉 during an execution E of a protocol Π(P,𝑉 ). For
each 𝑃 , to which 𝑉 is connected, there is the following overhead.

To identify the new genesis block, 𝑉 sends 𝜂 which has a size of

𝑂 (1) and receives (at most) one proof consisting of 2𝑘 + 1 blocks
for each 𝑃 ∈ P. This makes for a total size of 𝑂 (𝑘). To predicate

security of the block including 𝜂, the client sends the new genesis

G′ to all full nodes and it keeps receiving blocks descending from

G′, until the entropy block is 𝑘 deep in the longest chain - this will

happen after, at most, 3𝑘 blocks from G′. This makes for a total

size of 𝑂 (𝑘).
Note that light client constructions connect to a subset of all full

nodes. Depending on how many nodes the light client connects to,

the overhead increases. This is true for other light client construc-

tions as well. Regardless, the communication cost of 𝐵𝑙𝑖𝑛𝑘 is 𝑂 (1),
i.e., constant in the chain length C. From Theorems 5.1 and 5.2 it

follows, that 𝐵𝑙𝑖𝑛𝑘 is an Optimal Proof-of Proof-of-Work Protocol

(OPoPoW, Definition 4.7).

5.1 Safety and Liveness of Blink
We model time to proceed in discrete rounds. Our network model

stipulates that messages sent in a round 𝑟 reach the recipient in
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round 𝑟 + 1. Like other nodes, the client can send and receive

messages.

Consider a client booting up at round 𝑟0 − 1 and broadcasting

the entropy 𝜂. 𝜂 is received by the blockchain nodes at round 𝑟0.

We say the proof 𝜋 is generated at round 𝑟∗ and received by the

client at round 𝑟∗ + 1. Upon receiving the proof, the client sends

𝜋 [0] to full nodes and waits for Tx𝜂 to become stable. Finally, the

client terminates when Tx𝜂 is stable in the chain of honest parties,

i.e., at round 𝑟∗∗ ≥ 𝑟∗ + 3.
Should the blockchain have fewer than 𝑘 blocks at round 𝑟0, a

proof with fewer than 𝑘 blocks before 𝜂 is valid if its first block is

the genesis block. However, if the chain is shorter than 𝑘 blocks,

the chain itself is already succinct and a light client is not needed.

Consider the blocktree of the execution at round 𝑟0. We define

B′ ∈ C
⋂
𝑟0 as the block with the greatest height which is a conver-

gence event at 𝑟0.

Lemma 5.3. B′ exists.

Proof. The genesis block satisfies the definition of B′. □

We denote the round in which B′ was produced as 𝑟 ′, with
𝑟 ′ < 𝑟0. From LemmaA.21, we know that all honest blocks produced

after 𝑟 ′ extend B′.
Now, consider the blocktree of the execution at round 𝑟∗. We

define B̃ as the block with the greatest height that descends from B′,
wasmined before 𝑟0, and it is a convergence event at 𝑟

∗
. Because this

block is similar to the blocks named B̃ in Theorems A.22 and A.23,

we re-use the name B̃. We say B̃ is produced at round 𝑟 , with

𝑟 ′ ≤ 𝑟 < 𝑟0. We define 𝑆 := {𝑟, . . . , 𝑟∗}.

Lemma 5.4. B̃ exists.

Proof. B′ satisfies the definition of B̃. □

Lemma 5.5. Acceptable blocks produced in 𝑆 descend from B̃.

Proof. This follows directly from Lemmas A.19 and A.20 (Ap-

pendix A.2).

□

As a consequence of Lemma 5.5 and Observation 2, all honest

blocks produced in 𝑆 descend from B̃.

Lemma 5.6. All honest blocks produced in uniquely successful
rounds within {𝑟 + 1, . . . , 𝑟0} have a parallel acceptable (by 𝑟∗) ad-
versarial block.

Proof. Because of the maximality (in terms of height) of B̃, all
blocks extending B̃ and mined in uniquely successful rounds before

𝑟0 have a parallel, acceptable adversarial block. □

For a set of consecutive rounds 𝑆 , let 𝑋 (𝑆) be honest queries, i.e.,
rounds in which at least one honest node found a block, 𝑌 (𝑆) be
uniquely successful honest queries, i.e., rounds in which exactly

one honest node found a block, and 𝑍 (𝑆) be adversarial queries,
i.e., rounds in which the adversary found a block. We denote with

|𝑋 (𝑆) |, |𝑌 (𝑆) |, and |𝑍 (𝑆) | the number of successful queries in 𝑋 (𝑆),
𝑌 (𝑆), and 𝑍 (𝑆). These sets are defined in [17] or Appendix A.1.

B̃
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?

𝑆

𝑌1

(
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Figure 10: This figure illustrates the proof of Theorem 5.7.

Theorem 5.7 (Anchor). In a typical execution, the block with 𝜂
and its 𝑘 subsequent blocks of the proof 𝜋 that the client accepts, i.e.,
𝜋 [𝑘 :], always extend B̃.

Proof. Let𝑌 (𝑆) be the set of honest uniquely successful queries
within 𝑆 , and𝑍 (𝑆) be the set of successful adversarial queries within
𝑆 . Consider Figure 10 and let us define the following disjoint sets,

𝑌1, 𝑌2 and 𝑍1, 𝑍2, where 𝑌1 ∪ 𝑌2 = 𝑌 (𝑆) and 𝑍1 ∪ 𝑍2 = 𝑍 (𝑆).
(1) The queries of 𝑍1 produce blocks that extend B̃.
(2) The queries of 𝑍2 produce blocks that do not extend B̃.
(3) The queries of 𝑌1 produce blocks parallel to (at least) one of the

blocks in 𝑍1 acceptable at 𝑟
∗
.

(4) The queries of 𝑌2 produce blocks not parallel to any of the

blocks in 𝑍1 acceptable at 𝑟
∗
.

Claim 1. If |𝑌2 | = 𝑘 + 1, at round 𝑟∗ + 1 the client has received a
proof 𝜋 with the blocks 𝜋 [𝑘 :] extending B̃.

This is true because in 𝑌2 there are no successful adversarial

queries in 𝑆 producing blocks extending B̃ and having parallel

blocks. Furthermore, by definition of B̃ and by causality, there can-

not be successful adversarial queries outside of 𝑆 producing blocks

extending B̃. Yet, there can exist successful adversarial queries in

𝑍2 which produce blocks not extending B̃.

Claim 2. After 𝑟0, honest parties do not extend blocks in 𝑍2.

Blocks in 𝑍2 do not extend B̃, and thus are not acceptable by 𝑟∗.
Therefore honest parties do not extend them within 𝑆 .

After 𝑟0, honest nodes will include 𝜂 in a block, if 𝜂 was not

included before. It follows that the block in 𝑌2 with the smallest

height descends from a block including 𝜂. The 𝑘 blocks produced

by the remaining queries in 𝑌2 extend the block with 𝜂 by one block

each, as they are uniquely successful and there are no parallel,

adversarial acceptable by 𝑟∗ blocks.

Claim 3. Independently of 𝑘 , the block in 𝑌2 with the greatest
height has all other blocks of 𝑌2 as ancestors.

Towards a contradiction of Theorem 5.7, suppose that at round

𝑟∗ + 1 the client accepts a proof 𝜋 which is generated at round

𝑟∗ and where 𝜋 [𝑘 :] does not extend B̃. For the client to receive

such a proof, the number of blocks produced between 𝑟0 and 𝑟∗
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not extending B̃, thus in 𝑍2, has to be larger than or equal to 𝑘 + 1.
Therefore, also |𝑍2 | ≥ |𝑌2 |. |𝑌2 | can grow at most of 1 per round: if

|𝑌2 | was of 𝑘 + 1 in a previous round 𝑟𝑝 < 𝑟∗, the light client would
have received the proof in 𝑟𝑝 + 1, contradicting the minimality of

𝑟∗. Now we count these sets. We have that |𝑍 | = |𝑍1 | + |𝑍2 | and
|𝑌 | = |𝑌1 | + |𝑌2 |. By definition of 𝑌1, we know that |𝑌1 | ≤ |𝑍1 |.
It follows, that |𝑍 | = |𝑍1 | + |𝑍2 | ≥ |𝑌1 | + |𝑌2 | = |𝑌 |. However,
from Lemma A.7 we know that |𝑆 | ≥ 𝜆 and thus, typicality bounds

apply to this set of rounds. This means that |𝑍 | < |𝑌 |, which is a

contradiction. This concludes the proof of Theorem 5.7. □

Lemma 5.8. B̃ ∈ 𝜋 .

Proof. Because the block containing 𝜂, 𝜋 [𝑘] or ¤B, which was

produced in round ¤𝑟 , is acceptable and has a height larger than

any block that was honestly produced before it, we know from

Theorem A.23 that the nearest convergence event at ¤𝑟 has a height
difference smaller than 𝑘 blocks. □

Theorem 5.9. In a typical execution, the first element 𝜋 [0] in the
proof 𝜋 accepted by Blink client at round 𝑟∗ is an admissible block
(cf. Definition 4.8).

Proof. (Safety) From Lemma 5.8 we know that 𝜋 includes B̃.
From Theorem A.22, we know that B̃ is safe (i.e., B̃ ∈ C

⋃
𝑟0+𝑢 [: −𝑘]).

Since 𝜋 [0] is either B̃ or an ancestor of B̃, 𝜋 [0] is safe as well, i.e.,
𝜋 [0] ∈ C

⋃
𝑟0+𝑢 [: −𝑘] .

(Liveness) Let 𝑙 ′ be the height of B′. Define B′′ := C
⋂
𝑟0 [−𝑘 − 1],

and denote its height with height 𝑙 ′′. Since B′ is by definition either

B′′ (if the latter is uniquely successful and has no adversarial blocks
at the same height by round 𝑟0) or else an earlier block, it follows

that 𝑙 ′′ ≥ 𝑙 ′.
At round 𝑟0, honest users each have a local chain with height of

at least 𝑙 ′′ + 𝑘 , because B′′ is stable for all honest parties at round
𝑟0. Since 𝜋 [𝑘] includes 𝜂 it has to be mined after 𝑟0, which is the

round in which 𝜂 was released. This means, for the height 𝑙𝑘 of

𝜋 [𝑘], it holds that 𝑙𝑘 > 𝑙 ′′ + 𝑘 .
As 𝜋 [0], with height 𝑙0, is 𝑘 blocks before 𝜋 [𝑘], it holds that

𝑙0 = 𝑙𝑘 − 𝑘 . Therefore 𝑙0 + 𝑘 > 𝑙 ′′ + 𝑘 , which means that 𝑙0 > 𝑙 ′′.
However, since B′′ was the last block in the stable intersection at

round 𝑟0, this implies 𝜋 [0] ∉ C
⋂
𝑟0 [: −𝑘].

Therefore, at round 𝑟∗ when the client accepts the a proof 𝜋 ,

𝜋 [0] is an admissible block. □

We observe that, after 𝑟0, every honest chain tip descends from

𝜋 [0]. We refer to 𝜋 [0] as new genesis block G′.

Lemma 5.10 (New Genesis). The longest chain rule applied to the
genesis block G is consistent with the longest chain rule applied to
G′, with G′ being an admissible block.

Proof. Suppose there exists a longest chain that contains G but

does not contain G′. From admissible safety, we know that G′ is
stable for at least one honest user 𝑈 , i.e., G′ ∈ C

⋂
𝑟 [: −𝑘]. Since the

longest chain does not contain G′, honest users will adopt it in the

next round, including the user 𝑈 who has reported G′ as stable.
This violates common prefix. □

Corollary 5.11 (Chain Client Security for Blink). Blink is
chain client secure according to Definition 4.9.

Given a client protocol Π which outputs a block B, one can build

another protocol Π′ that runs Π and reports the state commitment

in B.2

Corollary 5.12. For any client protocol Π that is chain client
secure, the corresponding protocol Π′ constructed in the above manner
is ledger client state secure (Definition 4.5).

This follows from a simple reduction since Π′ merely reports the

state commitment of B. If the state commitment was such that Π′

is not ledger client state secure, the corresponding B cannot have

been admissible. This concludes the proof of the main theorem

Theorem 5.1, which is stated again here:

Theorem 5.13 (Ledger Client State Security for Blink).

Blink is ledger client state secure with the safety parameter 𝑣 (Defini-
tion 4.5) being the wait time parameter 𝑢 of liveness (Definition 4.8).

5.2 Safety and Liveness of B𝜂 := 𝜋 [𝑘]
We now consider the case where Blink is used to verify a payment

(or anything else that is in B𝜂 ), and we show that the corresponding

proof size remains constant. We recall that in this use-case, after

adopting G′ and sending it to the provers, the Blink client main-

tains the longest chain descending from G′. We now show that

the entropy block will be eventually stable for all honest parties at

most 3𝑘 consecutive blocks away from G′.

Lemma 5.14 (Stability of Tx𝜂 ). In a typical execution, a block B𝜂
including Tx𝜂 becomes stable for all honest parties at most at round

𝑟0 + 𝑢, i.e., B𝜂 ∈ C
⋂
𝑟0+𝑢 [: −𝑘].

Proof. It follows from the ledger liveness in Definition 4.4. □

Lemma 5.15 (Vicinity of Tx𝜂 ). In a typical execution, a block
B𝜂 including Tx𝜂 becomes stable for all honest parties at most 3𝑘
consecutive blocks away from G′.

Proof. Let 𝑟𝑔 be the round at which the new genesis block

is produced. By construction, 𝑘 consecutive blocks are produced

between 𝑟𝑔 and 𝑟0. By Lemma 5.14, the entropy transaction Tx𝜂
becomes stable for all honest parties at most at 𝑟𝑠 = 𝑟0 + 𝑢. By
the liveness of the chain (chain quality and chain growth), at 𝑟𝑠 , at

most 2𝑘 − 1 consecutive blocks are produced between G′ and B𝜂
(Corollary A.11), and Tx𝜂 is at least 𝑘 blocks deep in every honest

party’s chain. It follows that after at most 3𝑘 consecutive blocks

are produced, B𝜂 is stable for all honest parties. □

6 PRACTICALITY, LIMITATIONS, AND
EXTENSIONS OF BLINK

State Commitments. In Section 3, we presented an application of

Blink to build a light client that can be convinced about the current

state of a ledger with optimal communication cost. This way, we

enable the confirmation of historical transactions in the ledger,

tracing back to its genesis. However, this application operates on

the premise that each block embeds a state commitment to the

2
For instance, this can easily be achieved for any blockchain protocol that has

state commitments.
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current ledger state. While several blockchains like ZCash, Nimiq,

and Ethereum PoW uphold this premise, the most notable PoW

blockchain, Bitcoin, does not incorporate state commitments in its

block headers. NIPoPoWs, i.e., the polylogarithmic clients described

in [12, 24], have the potential to be added retroactively via a velvet

fork [26, 35]. The idea of introducing state commitments for Blink

via velvet fork is appealing, however, its practical application is still

undetermined.

Multiple Clients. Blink addresses the problem of one light client

connecting to multiple full nodes and asking for the current state

of the chain. In case we have multiple such requests, it is possible

to compress the different entropy transactions using standard tech-

niques. For example, multiple random strings can be ordered in a

Merkle tree, and only the Merkle root is published on-chain within

the entropy transaction. For this to be safe, each light client instance

needs to have a Merkle proof of inclusion of its randomness in the

tree.

Entropy Transaction Fees. Blink incurs on-chain fees which can

be paid by light clients within entropy transactions. These fees can

be paid in the form, for instance, of an anyone-can-spend output.

The way the light client pays the on-chain cost for the entropy

transaction can also be addressed in other ways on the application

level: For instance, dedicated contracts or untrusted services can

be designed such that clients’ costs are mitigated.

Interactivity. Blink demands one round of interactivity between

the client and the full nodes, unlike its predecessors that operate

non-interactively [12, 21, 24]. This is the trade-off we incur for

achieving a constant-sized proof instead of a polylogarithmic one

as in [12, 21, 24]. We could remove the interactivity by introducing

additional assumptions, for example: (i) a trusted committee service

operates the client, similarly to the service provided by Chainlink

for oracles, (ii) a random beacon acts as global entropy source

and provides a service for Blink clients. However, both solutions

come with drawbacks, i.e., centralization or a strong non-practical

cryptographic primitive, respectively. It remains an open question

whether designing a non-interactive light client with constant com-

munication is possible without extra assumptions.

Variable Difficulty. Blink is analyzed in the static setting [17],

i.e., the PoW difficulty remains the same throughout the protocol

execution. In practice, Bitcoin uses a variable difficulty recalcula-

tion. Blink can still be used safely if we assume that parties agree

on a difficulty beforehand, look it up on a trusted service (e.g., some

blockchain explorer), or make some assumptions on the compu-

tational power of a potential adversary. Ideally, however, we can

design a construction that is secure in the variable difficulty set-

ting [16]. This challenge can be overcome by utilizing difficulty

balloons to measure the current difficulty in a succinct fashion [36].

This approach, which is not unlike ours, utilizes entropy proofs

to estimate (within some error) the current PoW difficulty of the

network, by which point we can apply Blink as is. However, we

anticipate that such an approach would only be secure under a

weaker adversary that controls up to 1/3 of the computational

power of the system. To provide an intuition behind this threshold,

consider an adversary 𝑡 < 1/2 that acts as follows: while measuring

the difficulty, the adversary can abstain, thus creating a false sense

of how many blocks she can produce in any given set of rounds.

Thereby, she can take advantage of this false estimation to mine

privately the required proof thereby violating the safety of Blink.

We estimate that this adversarial advantage may be mitigated if

honest nodes can produce double as many PoWs as the adversary.

Another approach would be to modify our light client construc-

tion by changing the selection rule for the proof: now the client

would choose the proof with the most work after the intersection

of all proofs within a given time window. We conjecture such an

approach may alleviate the possible attack vectors of a minority

adversary (𝑡 < 1/2), and we plan to explore it in future work.

7 EVALUATION
We evaluate the feasibility of Blink by measuring its proof size and

its waiting time for Bitcoin. A Proof-of-Concept implementation

of Blink can be found at [8] and all entropy transactions broadcast

during this evaluation can be inspected at this Bitcoin address [1].

Our client uses the python bitcoin-utils library [7] to create the

entropy transactions, and the python request HTTP library [9] to

communicate via RPC APIs [6].

Experimental Setup. We deployed twomainnet Bitcoin full nodes

running Bitcoin Core 25.0 and acting as untrusted provers: one was

operated in-house on our own hardware (Central Europe) and the

other one on a Vultr virtual machine (UK). We use two different

deployments to emulate more realistic network conditions. The

nodes maintain the entire history of all transactions of the ledger

and they allow us to broadcast transactions to the Bitcoin network

as well as to retrieve blocks, transactions, and Merkle proofs.

We ran our custom implementation client on commodity hard-

ware. The client begins by sampling uniformly at random a 160-bit

string 𝜂 and creating the entropy transaction Tx𝜂 by placing 𝜂 in

an OP_RETURN output. The size of Tx𝜂 is 222 bytes. Then, the client

connects to the two Bitcoin full nodes, broadcasts Tx𝜂 , and waits

for it to be 𝑘-confirmed (we set 𝑘 = 6 according to Bitcoin folklore).

When one of the two full nodes reports Tx𝜂 𝑘-deep, the client down-
loads and verifies the Blink proof 𝜋 of size 2𝑘 + 1 block headers, i.e.,
it checks blocks’ parent-child relation and the PoW inequality.

Proof Size. We measure all the data received by the client from

the full node that first reports Tx𝜂 with 𝑘 confirmations. This data

amounts to 7912 bytes (7544 for 𝜋0, and 368 for 𝜋1, Algorithm 1).

The 7912 bytes of network data transmission required is due to

the use of the inefficient JSON format and to the available standard

RPC endpoints of the bitcoind full node. Using an optimized data

transmission that avoids superfluous data, the total amount of data

transmitted over the network can be brought down to 1646 bytes

per prover connection (1040 bytes for the 13 block headers of 80

bytes each, 384 bytes for the Merkle inclusion proof consisting of

12 sibling SHA256 hashes of 256 bits each, and 222 bytes for the

transaction Tx𝜂 ). In Table 2, for height 841368, we compare this to

a full node that requires 684GB, an SPV client that requires 67.3MB,

NIPoPoW and FlyClient clients that require 10.0KB and ∼5KB, re-
spectively, and to a PoW ZK-STARK-based client (ZeroSync[29])

that requires 197KB. We note that the differences between these
clients will be more pronounced as the blockchain grows. We further

note that proving Bitcoin’s state with ZeroSync costs 4k USD (one-

time cost), whereas Blink only incurs the cost of running a full

node, e.g., ∼ 15 USD a day.

12



Full SPV[28] KLS[21], NIPoPoW [24], FlyClient[12] ZK ZeroSync Blink
node Mining LogSpace[23] Client [29]

684GB 67.3MB 10KB ∼5KB 197KB 1.6KB

Table 2: Comparison of light client solutions for Bitcoinmain-
net at height 841368, using the parameter 𝑘 = 6

Waiting Time. Wemeasure the time it takes the client algorithm to

run, averaging it over 10 runs. We broadcast the entropy transaction

with a high-priority fee, which allows Tx𝜂 to be included in the

next 1 or 2 blocks. The average waiting time of the client to accept

a proof is 59 minutes, with a standard deviation of 17 minutes.

This is in accordance with the Bitcoin folklore belief of 6 blocks

per hour. Any node that waits for 6 confirmations incurs the same

waiting time, regardless of whether it is a full node or a light client.

However, full nodes and SPV clients need to download a linear

amount of data in the system’s lifetime, while Blink requires only

constant data in the chain’s length to be downloaded.

8 CONCLUSION
This work presents Blink, the first Optimal Proof of Proof-of-Work

clientwith constant communication complexity andwithout trusted

setup. Blink allows to securely identify a state of the ledger which

is safe and live by solely downloading a proof of 2𝑘 + 1 consecutive
blocks. We showcase how Blink can be leveraged in several differ-

ent applications, ranging from verification of payments and state

verification to bootstrapping and bridging. We prove Blink secure

in the Bitcoin Backbone model against an adversary with minority

computational power. Finally, we implemented Blink to verify its

feasibility and we measured its proof size (experimental 7.9KB, 1.6

KB theoretical) and waiting time (59 ± 17 minutes).
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A ANALYSIS
A.1 Background from the Bitcoin Backbone [17]
We now introduce notation, definitions, theorems, and lemmas

stated in [17] which will be necessary for our analysis.

The properties of blockchain protocols defined in the backbone

model are presented below. Such properties are defined as predi-

cates over the random variable view
𝑡,𝑛
Π,𝐴,𝑍 by quantifying over all

possible adversaries 𝐴 and environments 𝑍 that are polynomially

bounded. Note that blockchain protocols typically satisfy proper-

ties with a small probability of error in a security parameter 𝜅 (or

others). The probability space is determined by random queries

to the random oracle functionality and by the private coins of all

interactive Turing machine instances.

Definition A.1 (Common Prefix Property [17]). The common prefix

property 𝑄cp with parameter 𝑘 ∈ N states that for any pair of

honest players 𝑃1, 𝑃2 adopting the chains 𝐶1, 𝐶2 at rounds 𝑟1 ≤ 𝑟2

in view
𝑡,𝑛
Π,𝐴,𝑍 respectively, it holds that 𝐶

|𝑘 |
1
⪯ 𝐶2.

Definition A.2 (Chain Quality Property [17]). The chain quality

property 𝑄cq with parameters 𝜇 ∈ R and ℓ ∈ N states that for any

honest party 𝑃 with chain 𝐶 in view
𝑡,𝑛
Π,𝐴,𝑍 , it holds that for any ℓ

consecutive blocks of 𝐶 , the ratio of honest blocks is at least 𝜇.

Definition A.3 (Chain Growth Property [17]). The chain growth

property 𝑄cg with parameters 𝜏 ∈ R and 𝑠 ∈ N states that for any

honest party 𝑃 that has a chain 𝐶 in view
𝑡,𝑛
Π,𝐴,𝑍 , it holds that after

any 𝑠 consecutive rounds, it adopts a chain that is at least 𝜏 ·𝑠 blocks
longer than 𝐶 .

Closely following[17], we will call a query 𝑞 ∈ N of a party

successful if it returns a valid solution to the PoW. For each round

𝑖 , 𝑗 ∈ [𝑞], and 𝑘 ∈ [𝑡], we define Boolean random variables 𝑋𝑖 , 𝑌𝑖 ,

and 𝑍𝑖 𝑗𝑘 as follows. If at round 𝑖 an honest party obtains a PoW,

then 𝑋𝑖 = 1, otherwise 𝑋𝑖 = 0. If at round 𝑖 exactly one honest

party obtains a PoW, then 𝑌𝑖 = 1, otherwise 𝑌𝑖 = 0. Regarding

the adversary, if at round 𝑖 , the 𝑗-th query of the 𝑘-th corrupted

party is successful, then 𝑍𝑖 𝑗𝑘 = 1, otherwise 𝑍𝑖 𝑗𝑘 = 0. Define also

𝑍𝑖 =
∑𝑡
𝑘=1

∑𝑞

𝑗=1
𝑍𝑖 𝑗𝑘 . For a set of rounds 𝑆 , let 𝑋 (𝑆) = ∑

𝑟 ∈𝑆 𝑋𝑟
and similarly define 𝑌 (𝑆) and 𝑍 (𝑆). Further, if 𝑋𝑖 = 1, we call 𝑖 a

successful round and if 𝑌𝑖 = 1, a uniquely successful round. We

denote with 𝑓 the probability that at least one honest party succeeds

in finding a PoW in a round.

Definition A.4 (Typical Execution [17]). An execution is (𝜖, 𝜆)-
typical (or just typical), for 𝜖 ∈ (0, 1) and integer 𝜆 ≥ 2/𝑓 , if, for
any set 𝑆 of at least 𝜆 consecutive rounds, the following hold.

(a) (1−𝜖)E[𝑋 (𝑆)] < 𝑋 (𝑆) < (1+𝜖)E[𝑋 (𝑆)] and (1−𝜖)E[𝑌 (𝑆)] <
𝑌 (𝑆).

(b) 𝑍 (𝑆) < E[𝑍 (𝑆)] + 𝜖E[𝑋 (𝑆)].
(c) No insertions, no copies, and no predictions occurred.

Let 𝑛 be the number of consensus nodes, out of which 𝑡 are

controlled by the adversary. Let𝑄 be an upper bound on the number

of computation or verification queries to the random oracle. Let 𝐿

be the total number of rounds in the execution, and 𝜆, 𝜅 security

parameters. Finally, we denote with 𝜈 the min-entropy of the value

that the miner attempts to insert in the chain.

Theorem A.5 (Theorem 4.5 in [17]). An execution is not typical
with probability less than

𝜖typ = 4𝐿2𝑒−Ω (𝜖
2𝜆𝑓 ) + 3𝑄2

2
−𝜅 + [(𝑛 − 𝑡)𝐿]22−𝜈 .

Lemma A.6 (Lemma 4.6 in [17]). The following hold for any set
𝑆 of at least 𝜆 consecutive rounds in a typical execution. For 𝑆 = {𝑖 :
𝑟 < 𝑖 < 𝑠} and 𝑆 ′ = {𝑖 : 𝑟 ≤ 𝑖 ≤ 𝑠}, 𝑍 (𝑆 ′) < 𝑌 (𝑆).

Lemma A.7 (Lemma 4.8 in [17], (aka Patience Lemma)). In a
typical execution, any 𝑘 ≥ 2𝜆𝑓 consecutive blocks of a chain have
been computed in more than 𝑘

2𝑓
consecutive rounds.

Lemma A.8 (Lemma 4.1 in [17], (aka Pairing Lemma)). Suppose
the 𝑘-th block B of a chain C was computed by an honest party in a
uniquely successful round. Then the 𝑘-th block a chain C′ either is B
or has been computed by the adversary.

Lemma A.9 (Lemma 4.2 in [17], (aka Chain Growth)). Suppose
that at round 𝑟 an honest party has a chain of length 𝑙 . Then, by
round 𝑠 ≥ 𝑟 , every honest party has adopted a chain of length at least
𝑙 +∑𝑠−1

𝑖=𝑟 𝑋𝑖 .

TheoremA.10 (Theorem 4.11 in [17], (aka ChainQuality)). In
a typical execution the chain quality property holds with parameters
ℓ ≥ 2𝜆𝑓 and

𝜇 = 1 − 1 + 𝑓
(1 − 𝑓 ) (1 − 𝜖) ·

𝑡

𝑛 − 𝑡 −
(1 + 𝑓 )𝜖
1 − 𝜖

> 1 − 1

1 − 2𝛿/3 ·
𝑡

𝑛 − 𝑡 −
𝛿/3

1 − 𝛿/3
𝛿→0−−−−→ 𝑛 − 2𝑡

𝑛 − 𝑡
Corollary A.11 (Corollary 4.12 in [17]). In a typical execution

the following hold.
• Any ⌈2𝜆𝑓 ⌉ consecutive blocks in the chain of an honest party
contain at least one honest block.
• For any 𝜆 consecutive rounds, the chain of an honest party
contains an honest block computed in one of these rounds.

In our analysis, we assume a typical execution in all proofs. We

note that from Theorem A.5 typical execution fails with negligible

probability, resulting in our proofs holding with overwhelming

probability.

A.2 Preliminaries
In this section, we introduce some definitions, observations, and

lemmas that will be used as building blocks in the formal analysis

of Blink security (Section 5.1).

Let 𝐻 be a hash function modeled as a Random Oracle, and let𝑇

be the target hash value used by parties for solving the PoW. Given

a chain C and a block 𝑏 to be inserted in the chain, consider the

hash ℎ = 𝐻 (C[−1], 𝑏) of these values, and let 𝑐𝑡𝑟 be a counter.

Definition A.12 (PoW Inequality). The PoW inequality holds if

H(ctr, h) < T.
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If a 𝑐𝑡𝑟 fulfilling the PoW inequality is found, the chain C is

extended by the block 𝑏 (which includes 𝑐𝑡𝑟 ). If no suitable 𝑐𝑡𝑟 is

found, the chain remains unaltered.

Definition A.13 (Valid Chain). A chain C is (syntactically) valid
if:

• C = ∅, or
• C[: −1] is valid and the PoW inequality holds for ℎ =

𝐻 (C[−2], C[−1]).

Definition A.14 (Valid Block). A block is valid if it belongs to a

valid chain.

Lemma A.15. The following equality holds:

C
⋃
𝑟 [:−𝑘] =

⋃
𝑃∈H
C𝑃𝑟 [:−𝑘] (1)

Proof. We observe that C
⋃
𝑟 is a tree where each leaf C𝑃𝑟 corre-

sponds to the view of the chain of (at least) one honest party 𝑃 at

some round 𝑟 . C
⋃
𝑟 [:−𝑘] is the result of taking C

⋃
𝑟 and removing

the last 𝑘 blocks from each of the leaves of the tree.

⋃
𝑃∈H C𝑃𝑟 [:−𝑘]

is the result of taking all the chains of honest parties at round

𝑟 , chopping off the last 𝑘 blocks and taking the union of these

chains. By common prefix, honest parties’ chains can only diverge

by less than 𝑘 blocks; therefore, C
⋃
𝑟 [:−𝑘] is a chain such that

C
⋃
𝑟 [:−𝑘] =

⋃
𝑃∈H C𝑃𝑟 [:−𝑘], with some honest parties being aware

of all the blocks in it, and some others lagging behind.

□

Definition A.16 (Acceptable Chain at 𝑟 ). A valid chain C is ac-
ceptable at round 𝑟 , if
• C = ∅, or
• C[: −1] is acceptable at 𝑟 , and either C ⪯ C

⋂
𝑟 [: −𝑘] or

C
⋂
𝑟 [: −𝑘] ⪯ C .

An important notion we use is an acceptable block. Intuitively,
an acceptable block is a block to which honest parties can switch to

without violating common prefix. Honest nodes will never switch

to chains containing non-acceptable blocks.

Definition A.17 (Acceptable Block at 𝑟 ). A block is acceptable at 𝑟
if it belongs to an acceptable chain at 𝑟 .

Observation 1. If a block is stable in an honest party’s view, it is
also acceptable.

Observation 2. All honestly produced blocks are acceptable in
the round in which they are produced.

Observation 3. All honestly produced blocks only descend from
blocks that are acceptable in the round in which the former are pro-
duced.

Observation 4. Any block B produced in round 𝑟𝐵 and acceptable
in round 𝑟 ≥ 𝑟𝐵 , is also acceptable in all rounds in the set of consecutive
rounds {𝑟𝐵, . . . , 𝑟 }.

Definition A.18 (Convergence Event at 𝑟 ). A block B is a conver-
gence event at round 𝑟 if it is produced in a uniquely successful round
𝑟𝐵 and, by round 𝑟 ≥ 𝑟𝐵 , it does not have a parallel acceptable block

in any round in the set of consecutive rounds {𝑟𝐵, . . . , 𝑟 }.

Observation 5. A convergence event is always honestly produced.

Lemma A.19. If a block B produced in round 𝑟𝐵 is a convergence
event at round 𝑟 , it is a convergence event in all rounds in the set of
consecutive rounds {𝑟𝐵, . . . , 𝑟 }.

Proof. By definition, there are no acceptable blocks at {𝑟𝐵, . . . , 𝑟 }
parallel toB. Therefore,B fulfills the definition of convergence event

at all rounds {𝑟𝐵, . . . , 𝑟 }.
□

Lemma A.20. An acceptable block B at 𝑟 must descend from all
convergence events at 𝑟 with a height smaller or equal to B’s height.

Proof. Towards a contradiction, suppose there exists a conver-

gence event B̂ at 𝑟 , such that B does not descend from B̂. There
must be a block B′ parallel to B̂ from which B descends. Because B
is acceptable at 𝑟 , by definition, B′ needs to be acceptable at 𝑟 . How-
ever, both B′ acceptable and B̂ being a convergence event, imply

B̂ = B′. Thus, B′ descends from B̂, reaching a contradiction. □

Lemma A.21. Let 𝑟 be the round in which a block B was produced.
For any block B and any round 𝑟 ′, for which B is a convergence event
at 𝑟 ′ and B ∈ C

⋂
𝑟 ′ [: −𝑘], blocks acceptable at any round after 𝑟

always extend B.

Proof. FromObservation 2 and Lemma A.20, honest parties will

extend B in the rounds between 𝑟 and 𝑟 ′ (included). B is stable for

all honest parties at round 𝑟 ′. Therefore, after 𝑟 ′ all honest parties
only extend B, otherwise common prefix is violated. □

We denote with |𝑋 (𝑆) |, |𝑌 (𝑆) |, and |𝑍 (𝑆) | the number of suc-

cessful queries 𝑋 , 𝑌 , and 𝑍 in a set of consecutive rounds 𝑆 .

Theorem A.22 (General Eventual Stability). Consider a con-
vergence event B̃ at 𝑟∗, which was produced in round 𝑟 and it has
height ˜𝑙 . If there exists a block with height 𝑙 ≥ ˜𝑙 + 𝑘 in C

⋃
𝑟 ∗ then, in a

typical execution, B̃ becomes stable for at least one honest party at
most at round 𝑟 + 𝑢, i.e., B̃ ∈ C

⋃̃
𝑟+𝑢 [: −𝑘].

B̃

𝑟 𝑟∗

𝑆

𝑘 blocks

𝑟𝑎

𝑘 blocks

𝐵̃ stable

𝑟𝑢

𝑆𝑎

. . .

time

C𝐴

Figure 11: This figure illustrates the proof of Theorem A.22.

Proof. Consider Figure 11. Let
˜𝑙 be the height of B̃ and 𝑟 the

round at which B̃ was produced. Since B̃ is a convergence event,
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we know that it was honestly produced. Thus, at any round 𝑟 > 𝑟 ,

honest parties have adopted a chain of length at least
˜𝑙 .

By round 𝑟∗, since B̃ is a convergence event and due to causality,

the acceptable blocks with height larger than
˜𝑙 have been mined at

or after 𝑟 . Since the blocktree at round 𝑟∗ contains a block with a

height 𝑙 ≥ ˜𝑙 + 𝑘 , at least 𝑘 consecutive blocks were mined in the set

of consecutive rounds 𝑆 ′ := {𝑟, . . . , 𝑟∗}. Let 𝑆 := {𝑟 − 1, . . . , 𝑟∗ + 1}.
We can thus apply the patience lemma (Lemma A.7) to this set

of rounds, which means that |𝑆 | > 𝜆 and typicality bounds apply.

In particular, |𝑋 (𝑆) | > |𝑍 (𝑆 ′) |, which implies |𝑋 (𝑆) | > 𝑘
2
. From

chain growth (Lemma A.9), we know that in every round 𝑟 in which

there is at least one honest block found, i.e. 𝑋𝑟 = 1, honest parties

increase the length of their chains by (at least) 1. It follows that in

any round 𝑟 > 𝑟∗, honest parties have adopted a chain longer than

˜𝑙 + 𝑘
2
.

Towards contradiction, suppose that B̃ ∉ C
⋃̃
𝑟+𝑢 [: −𝑘]. This means

that there exists a round 𝑟𝑢 in which all honest parties have adopted

a stable chain C𝐴 of length 𝑙𝐴 ≥ ˜𝑙 + 𝑘 which excludes B̃. We note

that all honest parties must have adopted C𝐴 , otherwise common

prefix would be violated. It follows that: (i) 𝑟𝑢 < 𝑟 + 𝑢 because

otherwise, by chain quality and chain growth, at round 𝑟 + 𝑢, B̃
would be stable; (ii) 𝑟∗ < 𝑟𝑢 because, by definition of convergence

event at 𝑟∗, B̃ does not have any parallel acceptable adversarial

block at round 𝑟∗. The blocks C𝐴 [−(𝑘 + 1) :] have a height of at
least

˜𝑙 and are produced after 𝑟∗. We now proceed with a counting

argument for the set of rounds 𝑆𝑎 := {𝑟∗, . . . , 𝑟𝑎}, where 𝑟𝑎 ≤ 𝑟𝑢
is the first round in which C𝐴 contains at least 𝑘 blocks with a

height higher or equal to
˜𝑙 . Again, since (at least) 𝑘 consecutive

blocks were mined in 𝑆𝑎 and we can apply Lemma A.7 to this set

of rounds, which means that |𝑆𝑎 | > 𝜆 and typicality bounds apply.

In particular, |𝑋 (𝑆𝑎) | > |𝑍 (𝑆 ′𝑎) |, which implies |𝑋 (𝑆𝑎) | > 𝑘
2
.

From Lemma A.9, we know that there are at least |𝑋 (𝑆𝑎) | consec-
utive blocks extending B̃. From Lemma A.7, we know that |𝑆𝑎 | ≥ 𝜆,

which means that typicality bounds apply, i.e., |𝑋 (𝑆𝑎) | > |𝑍 (𝑆𝑎) |,
hence |𝑋 (𝑆𝑎) | > 𝑘

2
and 𝑍 (𝑆𝑎) < 𝑘

2
. The chain C𝐴 which extends

B′ but not B̃, has a length of at most
˜𝑙 − 1 + 𝑘

2
, as honest parties do

not extend shorter chains. Therefore, at round 𝑟𝑎 , all honest parties

cannot have adopted C𝐴 , because they have a chain of length at

least
˜𝑙 + 𝑘 , which includes B̃. This concludes the contradiction.

□

Theorem A.23 (General Vicinity). Consider any acceptable
block ¤B at round 𝑟 , produced in ¤𝑟 and having a height larger than any
honestly produced block in any round before ¤𝑟 . Let B̃ be a convergence
event at ¤𝑟 , such that B̃ is the closest convergence event to ¤B in terms
of height, and such that the height ˜𝑙 of B̃ is smaller or equal to the
height ¤𝑙 of ¤B, i.e., ˜𝑙 ≤ ¤𝑙 . In a typical execution, ¤𝑙 − ˜𝑙 < 𝑘 .

Proof. Consider Figure 12. Let 𝑟 ≤ ¤𝑟 be the round in which

B̃ was produced. We now look at the blocks {B}𝑌 (𝑆 ) that were
honestly produced in the uniquely successful rounds in 𝑆 := {𝑟 +
1, . . . , ¤𝑟 − 1}, i.e., 𝑌 (𝑆). By definition, every block B ∈ {B}𝑌 (𝑆 ) has
a height smaller than ¤B. However, due to Lemma A.20, every block

B ∈ {B}𝑌 (𝑆 ) also extends B̃ and thus has a height larger than B̃.

B̃

𝑟

𝑆

𝑌 (𝑆)

𝑍 (𝑆)

¤𝑟

¤B

time

Figure 12: This figure illustrates the proof of Theorem A.23.

Because B̃ is the nearest convergence event at ¤𝑟 , any block B ∈
{B}𝑌 (𝑆 ) needs to have a parallel, acceptable at ¤𝑟 (and thus mined at

or before ¤𝑟 ) block. Otherwise, B would be the nearest convergence

event to ¤B. Because these parallel blocks are acceptable, they need

to extend B̃ (Lemma A.20) and thus by causality, need to have been

produced at or after 𝑟 and at or before ¤𝑟 , which means they are

produced in 𝑆 ′ := {𝑟, . . . , ¤𝑟 }. Additionally, from Lemma A.8, we

know that these parallel blocks need to be adversarially produced.

Thus, there needs to be at least one successful adversarial query

within 𝑆 ′ for each uniquely successful round in 𝑆 , i.e., |𝑍 (𝑆 ′) | ≥
|𝑌 (𝑆) |.

Due to causality, the blocks between B̃ and ¤B need to have been

produced in 𝑆 ′′ := {𝑟, . . . , ¤𝑟 − 1}. Suppose towards a contradic-

tion, the difference in height between ¤B and B̃ is 𝑘 or more. From

Lemma A.7 we know that |𝑆 ′′ | > 𝜆, thus |𝑆 | ≥ 𝜆, and thus, typical-

ity bounds apply to this set of rounds. Thus, by Lemma A.6 it holds

that |𝑍 (𝑆 ′) | < |𝑌 (𝑆) |, which contradicts the above. □
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