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Abstract

Foreign field arithmetic often creates significant additional overheads in
zero-knowledge proof circuits. Previous work has offloaded foreign arithmetic
from proof circuits by using effective and often simple primitives such as Sigma
protocols. While these successfully move the foreign field work outside of the
circuit, the costs for the Sigma protocol’s verifier still remains high. In use cases
where the verifier is constrained computationally this poses a major challenge.
One such use case would be in proof composition where foreign arithmetic causes
a blowup in the costs for the verifier circuit. In this work we show that by using
folding scheme with Sigmabus and other such uniform verifier offloading
techniques, we can remove foreign field arithmetic from zero-knowledge proof
circuits while achieving succinct final verification. We do this by applying prior
techniques iteratively and accumulate the resulting verifier work into one folding
proof of size O(|F|) group elements, where F is the size of a single Sigma
verifier’s computation. Then by using an existing zkSNARK we can further
compress to a proof size of O(log |F|) which can be checked succinctly by a
computationally constrained verifier.

1. Introduction

Zero-knowledge proofs (ZKPs) [GMRS89] allow a prover to convince a verifier that a
statement is true without revealing any additional information beyond the statement's
validity. ZKPs have emerged as a powerful cryptographic primitive with numerous
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applications, including blockchain scalability, privacy applications, verifying the
authenticity of data, and more general verifiable computation.

Programming ZKP statements often involves formulating them as arithmetic
circuits over finite fields. In the popular rank-1 constraint system (R1CS), the only
permitted operations are additions and multiplications within a single finite field.
Expressing these complex statements as arithmetic circuits poses significant challenges,
one of which is dealing with non-native field arithmetic. Circuits sometimes require
performing operations over fields that differ from the circuit's native field. One such
example is performing an elliptic curve operation within an arithmetic circuit. The base
elements of the curve are in a field that is different from the circuit's native field.
Representing these non-native field elements inside the circuit often relies on the
technique of bit-decomposition, which results in orders of magnitude increase in
computational overhead.

Prior works [KMN23] [OKMZ24] have explored techniques to avoid embedding
non-native arithmetic inside ZKP circuits by offloading it to an external Sigma protocol.
While highly effective at removing the foreign arithmetic from the targeted arithmetic
circuit, this approach has a downside in that it moves the burden to the protocol’s verifier,
which resides outside of the target circuit. It is often the case that a protocol’s verifier
needs to be computationally inexpensive. For example, when verifying on constrained
blockchains or for use in proof composition [BGH19] the protocol’s verifier itself can be
turned into an arithmetic circuit. If done naively, Sigmabus proof composition would
involve the iterative compounding of foreign field arithmetic work for the verifier.

This paper introduces SigmaSuite, a framework that minimizes the use of
non-native arithmetic in a target ZKP circuit while maintaining low final verification
costs. Our key insight leverages folding schemes [KST22][BC23], a primitive that
efficiently aggregates ZKP statements with repeated structure. Using the properties of
folding schemes we can remove foreign field work from the target circuit, while moving
the compounded Sigma verifier work to the prover. Our extended protocol can be used
for aggregating the additional work that would arise from iterative Sigmabus invocations
or any other oftfloading technique that has a uniform verifier. A final succinct proof can
be constructed by composing the folding proof with known zkSNARKSs [KST22].

We explore future directions, such as using LatticeFold as the folding scheme for
aggregating the offloaded Sigmabus verifier instances. With this it would be possible to
remove all foreign field work from both the target circuit and folding verifier. This is
because LatticeFold[BC24] operates entirely over a single ring Rq for both the

commitment scheme and folding operations. However, in this case succinct proofs are
still an active area of research.



1.1 Details of prior works Sigmabus and Folding Scheme
Sigmabus and uniform offloading techniques

Sigmabus [KMN23] is a technique that allows circuit designers to relocate expensive
elliptic curve group operations outside of a zero-knowledge circuit. The key idea from is
to perform a Sigma protocol outside the circuit to prove knowledge of a scalar x such that
it satisfies X = x(G. This avoids having to compute the scalar multiplication X = xG
directly inside the circuit which would require expensive non-native field arithmetic.

Instead, with Sigmabus the prover sends X and a binding commitment cm to x.
The commitment scheme can be any binding commitment scheme, such as a circuit
friendly hash function like Poseidon| GKR+21], or a polynomial commitment scheme like
KZG. The goal is to prove that cm and X contain the same value x. The participants
engage in a modified Schnorr protocol where the challenge ¢ depends on both X and cm
¢ = Hash(X, cm, R, rh). A valid Sigma protocol verifier checks that:

sG =R+ cX

Where R = rG and r 1s a random value chosen from the finite field.
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Figure 1. Modified Schnorr protocol described in [KMN23].



The target circuit ‘GenZK’ is modified to accept public inputs (X, cm, T G s) and

witness (x, 7). The GenZK circuit verifies the following constraints:

cm = Com(x), r,= Com(r), s=r + cx

A valid proof requires both the Sigma protocol and the GenZK proof to be valid. This
allows verifying X = xG without computing it directly in the target circuit. Sigmabus
reduces constraints for elliptic curve operations from hundreds of thousands (in R1CS) or
thousands (in Plonkish circuits) down to just a few hundred for checking
SNARK-friendly hash functions and scalar field operations.

An issue arises in the proof composition setting as there could be N elliptic curve
operations to tackle and therefore N Sigma protocol instances to verify. The additional
work will simply grow with each step. For example, to compose N circuit invocations on
the BN254 curve, we would need N group operations. If using Sigmabus naively the
verifier would still need to do N group operations for the modified Sigma protocol’s
verifier. In the case that one wanted a succinct final verification of N instance this would
be an untenable amount of work.

In later work [OKMZ24] further techniques were introduced that similarly
offloaded the core work out of the arithmetic circuit and into other processes. There may
be many more such ‘offloading’ techniques where the protocols’ verifier steps are
uniform across instances. We consider any resulting verifier to be uniform if the verifier's
procedure is identical across multiple N instances of the offloading protocol. An example
of this would be multiple instances in Sigmabus where the only difference in the Sigma
protocol’s verification process are the input and output values. This uniformity is what
allows for the use of a uniform IVC scheme.

Folding Scheme

Nova [KST22] introduces folding schemes, a primitive that enables efficiently combining
(or "folding") repeated uniform ZKP statements into a single instance. Nova also
introduces the concept of ‘relaxed” R1CS relations which allow for recursively folding
one uniform R1CS instance into another while keeping proof size succinct. In later work,
a flurry of folding schemes were introduced such as Protostar [BC23] and HyperNova
[KS23a] which tackle problems of efficiency and extensions for folding other arithmetic
circuit variations. LatticeFold [BC24] introduced a folding scheme outside of the discrete
log setting. It uses another cryptographic primitive called Lattices which have the



additive homomorphic property needed for folding. It is interesting to note that with
Lattices all work is done in the ring Rq and work with smaller finite fields than the

elliptic curve protocols.

Nova extended prior works on the themes of incremental verifiable computation
(IVCO)[Val08][BDFG21]. Folding enables constructing better IVC where a long
computation can be proven incrementally with a constant-sized proof for each step and
minimal recursive overhead. This is in contrast to prior [IVC schemes that rely on
recursive composition of succinct arguments (like SNARKS) at each step, which is less
efficient than leveraging a specialized folding scheme. At the end of the Nova folding
process it is possible to take the folding proof and transform it into a succinct proof using
other existing zkSNARKSs [KST22]. In this way, many steps of a large incremental
computation can be succinctly proven.

IVC allows the prover to take potentially non-deterministic amounts of uniform
verifier work, such as multiple Sigma protocol verifiers, and prove them incrementally.
IVC allows us to stop at any step and verify. This is particularly useful for long running
computations. Folding based IVC not only has attractive cost and performance
characteristics, but also excellent memory efficiency. A memory constrained prover could
choose a step’s memory footprint, scaling it up or down. A generalization of IVC called
‘proof carrying data’ (PCD)[CT10] allows for mutually distrustful parties to perform
distributed computations that potentially run indefinitely. This could be used to
parallelize the overall prover workload across multiple machines.

1.2 Our approach in a nutshell: SigmaSuite

SigmaSuite's starting point is the observation that the Sigma protocol’s verifier circuit
from Sigmabus itself can be transformed into an arithmetic circuit over a scalar field
(e.g., a R1CS instance). We can then use this verifier circuit within folding scheme-based
recursive arguments (e.g., Nova, HyperNova, ProtoStar, CycleFold), to aggregate
multiple SigmaSuite Sigma verifier instances to effectively move the work to the prover.
At the end of the protocol we have one modified GenZK circuit without foreign field
arithmetic and one proof of folding that can be made succinct via composition with an
existing zkSNARK [KST22]. By doing this, we can take many N such instances of the
Sigmabus verifier circuit and aggregate them for verification into a single succinct proof.
The final cost of aggregated verification is determined by the cost of the
underlying folding scheme and zkSNARK used. Moreover, many folding schemes can be
rendered non-interactive via the Fiat-Shamir (FS) transform [FS87]. This means that the



offloaded work can be performed by the prover rather than the verifier. In this way, we
can aggregate the cost of running many Sigmabus instances and pay a much smaller final
verification cost for both:

1. The original arithmetic circuit, where foreign field constraints were removed via
iterations of Sigmabus.

2. The final ‘folded’ verification of N aggregated Sigmabus instances.

Crucially, by instantiating the folding scheme using techniques like CycleFold
[KS23b], we can represent the folding scheme's verifier circuit very efficiently on a cycle
of elliptic curves. CycleFold avoids having to represent the full folding scheme verifier
on the second curve, reducing it to just a few scalar multiplications. This makes the
non-pairing friendly curve's component extremely small and helps to reduce the cost of
verification. Moreover, it has been demonstrated that a Cyclefold proof can be used in
constrained environments such as in an Ethereum smart contract verifier' with only ~10
million total constraints.

Overall, SigmaSuite provides an approach to minimize foreign field arithmetic in
arithmetic circuits while keeping the final verifier’s costs low by combining the strengths
of Sigmabus for offloading expensive elliptic curve operations with folding schemes to
efficiently aggregate the resulting verifier work. We envision SigmaSuite will enable
efficient proof composition schemes with low overhead verifiers for use in constrained
environments like blockchains and consumer devices.

1.3  Applications

We list below some applications which may benefit from these techniques.

e Removing non-native field work that arises from in circuit elliptic curve arithmetic
such as multi-scalar multiplication (MSM). This often requires representing the
base elements non-natively in the circuit’s scalar field. In many cases this leads to
a blowup in arithmetic constraints. If the prover is a high powered machine, it
could be favorable to move the core work to them.

! https://github.com/privacy-scaling-explorations/sonobe



e (reating succinct proofs for data and assets in blockchains that use different
elliptic curves.

e Dealing with non-native field work which arises during proof composition; e.g.
making a proving scheme’s verifier into an arithmetic circuit for use in another
proving scheme. This process involves multiple instances of ‘uniform verifiers’
for dealing with foreign field arithmetic.

2. Technical Overview

In this section we provide an informal overview both of SigmaSuite and the security
reasoning underlying it.

2.1 Overview Of The SigmaSuite Scheme

SigmaSuite builds upon the techniques introduced in Sigmabus [KMN23] for offloading
expensive elliptic curve operations from arithmetic circuits. Recall that in Sigmabus, to
prove a statement of knowledge of a scalar x which satisfies X = xG:

1. The prover sends X and a commitment cm to the scalar x.

2. They perform a modified Sigma protocol where the challenge ¢ depends on both X
and cm.

3. The prover obtains a transcript (R, ¢, s) proving knowledge of x such that
X = xG.

4. The Sigma protocol’s verifier checks sG = R + cX.

5. This transcript is incorporated into a separate arithmetic circuit that checks:
© ¢m commits to x
o r = Com(r)

o s =1r + cx foracommitted value r

While this avoids the expensive scalar multiplication X = x(G in the main circuit,
Sigmabus still requires verifying N such Sigma protocol instances when composing N



elliptic curve operations. Each instance verification involves non-trivial work like
checking commitments and performing a number of group operations.

SigmaSuite is used to aggregate this overhead by transforming the Sigmabus
verifier circuit itself into an arithmetic circuit over a scalar field (e.g. an R1CS instance).
We can then leverage folding schemes to aggregate N i such verifier circuits, with a

potentially computationally powerful prover, and transform it into a single succinct proof.
The key steps are:

1. The prover generates N ; Sigma protocol transcripts (Ri, C, Si) for N elliptic curve

operations X L= xl,G using Sigmabus.

2. For each step, the prover modified the GenZK circuit Vl, checking:
o cm, commits to X
or = Com(r)
o s =71 +c * X

l

3. Using a folding scheme like Nova, HyperNova, ProtoStar, or LatticeFold, the
prover recursively folds the N uniform Sigma protocol verifier circuits into a
single proof. This can then be made into a succinct proof ‘n’ using known
zkSNARKSs [KST22].

4. The zkSNARK verifier can efficiently check the aggregated Sigma protocol using
n. And then check the GenZK circuit which no longer has any foreign field
arithmetic.
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Figure 2. Layout of SigmaSuite scheme.

By instantiating the folding scheme with CycleFold [KS23b], the folding verifier is
represented very efficiently over a cycle of elliptic curves, with only a few scalar
multiplications on the non-pairing friendly curve. This allows highly efficient verification
of the N Sigmabus instances. Moreover, a similar procedure can be followed with the
uniform portions of the GenZK circuit, effectively folding all of the GenZK instances
into another succinct proof.

The end result is that SigmaSuite enables minimizing non-native field arithmetic
in the original circuit, while also aggregating the verification overhead into a compact
proof with low-cost verification. This makes SigmaSuite well-suited for applications
requiring efficient proof composition for use in constrained verifiers.

2.1 Informal Security Overview
In this section, we provide an informal intuition for why SigmaSuite satisfies the required

security properties of knowledge soundness and zero-knowledge, with formal security
proofs deferred to underlying primitives.



Knowledge Soundness:

The knowledge soundness property ensures that if the verifier accepts a proof, then the
prover must "know" a valid witness for the statement being proven.

For SigmaSuite, knowledge soundness follows from the underlying primitives:

1. The Sigmabus protocols used for offloading each elliptic curve operation are
computationally knowledge-sound, ensuring the prover knows the scalars X

2. The folding scheme used to aggregate the verifier circuits is knowledge-sound,
ensuring the proofs « for each V. circuits are non-malleable.

3. The Sigmabus verifier circuit VL, itself is knowledge-sound, ensuring cm, commits

tox, and S, is computed correctly from X

Therefore, if the verifier accepts the final aggregated proof, it implies the prover knew the
witnesses X for all the initial elliptic curve scalar multiplications X = xl,G.

Zero-Knowledge:

The zero-knowledge property ensures the proof does not leak any information about the
witness(es) beyond the truth of the statement. SigmaSuite's zero-knowledge follows from
the underlying primitives being zero-knowledge:

1. The Sigmabus protocol is honest-verifier zero-knowledge (HVZK).

2. The folding scheme used for aggregation has a zero-knowledge simulator for its
verifier circuit.

By combining these zero-knowledge properties, the SigmaSuite simulator can produce an
untraceable proof transcript without knowing the witnesses X, while still being accepted

by the honest verifier.
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3. Costs and Future Extensions

Following is a brief description of the costs of SigmaSuite and possible future extensions
for other ‘uniform verifier’ offloading protocols.

3.1 Costs Estimation of SigmaSuite

The final cost of verifying SigmaSuite can be broken down into two main components:

1. Cost of the target arithmetic circuit after offloading non-native operations.
2. Cost of verifying the aggregated Sigmabus instances via folding.

Cost of Original Arithmetic Circuit:

By leveraging Sigmabus to offload each non-native elliptic curve operation to a Sigma
protocol, the original arithmetic circuit avoids expensive non-native field arithmetic
constraints. For example, in an RI1CS circuit over the BN254 scalar field, a single elliptic
curve scalar multiplication would normally require thousands of constraints to represent
using bit-decomposition of the BN254 base field elements. With Sigmabus, this is
reduced to just a few hundred constraints in circuit to do a hash evaluation. If using
Poseidon [GKR+21], the in-circuit work would roughly require 220 constraints to be
expressed in R1CS. For N elliptic curve operations, Sigmabus provides an N * reduction
in non-native constraints in the arithmetic circuit compared to the naive approach.

Cost of Aggregated Sigmabus Verification:

While Sigmabus avoids the N * blow-up of non-native constraints, it still requires
verifying N separate Sigma protocol verifier instances, each with a number of elliptic
curve operations. With SigmaSuite this work is moved to the prover running the folding
protocol with final verification being succinct.

The total cost of folding depends on the choice of folding scheme used. The
original Nova paper [KST22] has a stated cost of two multi-exponentiations with size
O(|F|). HyperNova [KS23a] reduced the prover’s cost at each step to a single
multi-scalar multiplication (MSM) of size equal to the number of variables in the
constraint system. One can choose a folding scheme with various tradeoffs for prover
speed and final verification. In Nova [KST22] with a zZkSNARK wrapper the final
verification time is O(log |F|) or O(|F|) depending on the commitment scheme used,

11



where |F| is the size of the step circuit (the uniform verifier circuit from a single instance
of SigmaSuite).

By transforming the Sigma verifier circuit into an arithmetic circuit (such as
R1CS) and applying a folding scheme, SigmaSuite can aggregate the verification cost of
multiple instances into a single proof. This final folding proof can then be transformed
into a succinct proof using known zkSNARKSs [KST22]. The folding protocol can be
optimized to deal with the non-native arithmetic that occurs in the folded relaxed R1CS
circuits. Future optimizations could include precompiles and parallelization possible with
PCD [CT10] type scheme.

3.2 Future Work and Extensions

We expect that SigmaSuite will benefit from more progress in uniform verifier offloading
techniques. These could be similar to Sigma protocols or other variants that effectively
remove foreign arithmetic from the target circuit. These new works can be added to
SigmaSuite to extend it into an expansive tool set for dealing with foreign field
arithmetic. If a succinct verifier is also created for offloading techniques the benefits
would be compounded.

The efficiency of SigmaSuite heavily relies on the underlying folding scheme used
for aggregating the Sigmabus verifier instances. While CycleFold [KS23b] provides an
efficient instantiation, there may be opportunities to optimize folding schemes for
specific scenarios or curve configurations. Future work could explore tailoring folding
schemes to maximize performance in common use cases. Moreover, LatticeFold could be
used to remove all foreign field work from both the target circuit and folding verifier.
This would be a particularly attractive direction if succinct LatticeFold proofs are
realized.

Lastly, formal security proofs and detailed analysis of SigmaSuite's knowledge
soundness and zero-knowledge properties would strengthen its theoretical foundations.
While the security of SigmaSuite relies on the underlying primitives, developing rigorous
proofs and exploring potential optimizations within the proven secure boundaries is an
important direction for future research. By pursuing these avenues, SigmaSuite can
evolve into a powerful and flexible framework for tackling foreign field arithmetic in
zero-knowledge arithmetic circuit, enabling efficient and scalable proof composition for a
wide range of applications.
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