
Pando: Extremely Scalable BFT Based on Committee Sampling

Xin Wang
Institute for Advanced Study

Tsinghua University
Beijing, China

wangxin87@tsinghua.edu.cn

Haochen Wang
Institute for Advanced Study

Tsinghua University
Beijing, China

whc20@mails.tsinghua.edu.cn

Haibin Zhang
Department of Information Technology

Yangtze Delta Region Institute of Tsinghua University
Zhejiang, China

bchainzhang@aliyun.com

Sisi Duan
Institute for Advanced Study

Tsinghua University
Beijing, China

duansisi@tsinghua.edu.cn

Abstract—Byzantine fault-tolerant (BFT) protocols are known
to suffer from the scalability issue. Indeed, their performance
degrades drastically as the number of replicas n grows. While a
long line of work has attempted to achieve the scalability goal,
these works can only scale to roughly a hundred replicas.

In this paper, we develop BFT protocols from the so-called
committee sampling approach that selects a small committee
for consensus and conveys the results to all replicas. Such
an approach, however, has been focused on the Byzantine
agreement (BA) problem (considering replicas only) instead
of the BFT problem (in the client-replica model); also, the
approach is mainly of theoretical interest only, as concretely,
it works for impractically large n.

We build an extremely efficient, scalable, and adaptively
secure BFT protocol called Pando in partially synchronous
environments based on the committee sampling approach. In
particular, we devise novel BFT building blocks targeting scal-
ability, including communication-efficient and computation-
efficient consistent broadcast and atomic broadcast protocols.

Pando inherits some inherent issues of committee sampling-
based protocols: Pando can only achieve near-optimal re-
silience (i.e., f < (1/3− ϵ)n, where f is the number of faulty
replicas and ϵ is a small constant), and Pando attains safety and
liveness only probabilistically. Interestingly, to make ϵ come
close to 0 (near-optimal resilience), n needs to be sufficiently
large but not impractically large, e.g., n > 500—just what we
need for scalable BFT.

Our evaluation on Amazon EC2 shows that in contrast
to existing protocols, Pando can easily scale to a thousand
replicas in the WAN environment, achieving a throughput of
62.57 ktx/sec.

1. Introduction

Byzantine fault-tolerant (BFT) protocols—handling arbi-
trary failures and attacks—are nowadays the de facto model

of permissioned blockchains and are being increasingly
used in permissionless blockchains [1], [2]. However, BFT
protocols are known to suffer from the scalability doom,
i.e., their performance degrades significantly as the number
of replicas grows. In this regard, BFT is in sharp contrast
to permissionless blockchains that usually consist of a large
number of replicas, e.g., over a million1 in Ethereum [3].

To overcome the scalability challenge, several ap-
proaches have been introduced, including sharding-based
BFT protocols that operate in a number of BFT shards [4]–
[8]. Most of these protocols, however, use an overly strong
assumption requiring that each shard does not have more
than one-third or half faulty replicas; meanwhile, cross-
shard transactions cause consistency issues (requiring, e.g.,
rollback) and significant communication overhead. Conven-
tional BFT approaches introduce techniques such as par-
allelism [9], [10] or de-coupling block transmission from
consensus [11]–[14]. While these protocols mark significant
milestones for scalable BFT, they can support roughly a
hundred replicas only in the WAN environment. It is an
open problem to scale BFT to, say, 1,000 replicas.
The overhead of existing approaches, briefly. The main
bottlenecks for existing BFT approaches are the commu-
nication overhead and the computational overhead. The
communication becomes prohibitively high as n grows.
Meanwhile, existing approaches use threshold signatures (or
a set of O(n) signatures) for quorum certificates (QCs) to
lower the communication and the authenticator complexity.
The computational overhead they caused at a single replica
is proportionally higher when n increases, thereby hurting
scalability.
Our approach. We propose Pando, an adaptively-secure
and scalable BFT protocol in the partially synchronous
model, where there exists an unknown upper bound on
message transmission and processing [16]. We follow the

1. Data source (accessed in June 2024): https://www.beaconcha.in/

1

https://www.beaconcha.in/

protocols resilience transmission consensus timing
Narwhal [11]/Bullshark [12] f < n/3 O(Ln2 + κn4) O(κn3) partial sync.

Tusk [11] f < n/3 O(Ln2 + κn4) O(κn3) async.
Dumbo-NG [15] f < n/3 O(Ln2 + κn3) O(κn3) async.

Star [14] f < n/3 O(Ln2 + κn3) O(κn3) partial sync.

Pando (this work) f < (1/3− ϵ)n O(Ln2 + κ2n2) O(κ2n2) partial sync.

TABLE 1: Communication complexity of BFT systems that decouple block transmission from consensus on the order. L
is the size of input (i.e., a block proposal) of every replica, κ is the length of the cryptographic security parameter, and
ϵ is a small constant and can come close to 0 with appropriately chosen parameters. Following all prior work, we simply
use O(κ) as the committee size and doing so ensures the needed security bound. We assume all protocols instantiate the
quorum certificates (QCs) with a set of digital signatures. In practice, the size of QCs for all protocols (including ours) can
be optimized using aggregate signatures.

framework that de-couples block transmission from the
agreement on the block order, as this model is known
to achieve high performance under high concurrency of
transactions [11], [14], [15]. As summarized in Table 1,
our work reduces the communication complexity of the
transmission and consensus processes, the crucial building
blocks in the model that de-couples block transmission
from consensus. Additionally, we also improve the message
complexity of the state transfer process (which is used for
data synchronization) from O(n2) to O(κn).

Our approach is inspired by a line of work on scal-
able Byzantine agreement and Byzantine broadcast, where
a small committee of O(κ) replicas is selected among
n (sufficiently large) replicas. Such protocols have been
studied in both the synchronous setting [17]–[21] and the
asynchronous setting [22], [23]. For these committee-based
protocols, a possible workflow is to sample a committee,
have the committee members reach an agreement, and then
ask the committee members to convey the results to all
replicas. However, such an approach works only in the static
security model, where the adversary is restricted to choosing
the set of corrupted replicas at the start of the protocol
but fails to work in the adaptive security model, where the
adversary can choose the set of corrupted replicas at any
moment during the execution of the protocol based on the
state it accumulated. (For instance, PBFT [24] attains adap-
tive security, while HoneyBadgerBFT [25] achieves static
security only.) In fact, prior work on scalable Byzantine
agreement and Byzantine broadcast has been focused on
the adaptive security model, and it is less interesting to
study statically secure protocols. Also, note that the line
of work has not explored practical BFT or atomic broadcast
protocols yet.

In this work, we design and implement the first practical
committee-based BFT protocol in the adaptive adversary
model. Compared to prior committee-based approaches, our
approach utilizes the Chernoff bound in a novel manner to
provide a new bound on committee size. The core is to
bound the committee size such that the fraction of Byzantine
replicas in the committee remains the same (except with a
small probability) as that in the entire system. Additionally,
our protocol gains in improved communication compared to
all prior work that de-couples block transmission from con-
sensus. Our work utilizes different techniques to optimize
the communication complexity of all three building blocks,

as summarized below.
• For the transmission process (for disseminating propos-

als), we provide a communication-efficient consistent
broadcast (CBC) protocol [26], a crucial building block
for the transmission process of all the protocols of the
same kind. Based on the improved CBC protocol, we pro-
vide a transmission process that achieves O(Ln2+κ2n2)
communication, where L is the size of each replica’s
input and κ is the committee size. Each quorum certificate
(QC) generated by the transmission process consists of
only O(κ) digital signatures (or an aggregate signature
with O(κ + κ log κ) size) such that its communication
cost does not grow as n increases. In contrast, all prior
practical QC implementations consist of O(n) signatures
or an aggregate signature with O(κ+ n log n) size.
• We instantiate the consensus process (for agreement on

the transaction order) with a partially synchronous atomic
broadcast protocol [27] that has O(|M |n + κ2n) com-
munication and O(κn) messages, where |M | is the size
of input to the atomic broadcast protocol. Compared to
prior work (e.g., HotStuff [28] has O(|M |n+ κn2) com-
munication and O(n) messages if QCs are instantiated
by digital signatures and PBFT [24] has O(|M |n+ κn2)
communication as well), our protocol gains in improved
communication for n > κ. We use the new atomic
broadcast protocol in the consensus process that achieves
O(κ2n2) communication.
• Finally, we provide a simple yet efficient state trans-

fer process (for proposal synchronization) with O(κn)
messages. Our state transfer process is more efficient
than prior constructions involving all-to-all communica-
tion (and thus requiring O(n2) messages).

Note that our communication improvement focuses on
the κ term. The improvement is more evident with n grow-
ing, especially when we look at concrete complexity—which
is validated via our experiments.

Our contributions. We make the following contributions.
• We propose Pando, an adaptively secure and scalable BFT

protocol. Compared to prior work that also de-couples
block transmission from agreement on the order, our work
optimizes both the communication and computational cost
of the underlying building blocks.
• Our work explores the new BFT design from the com-

mittee sampling approaches which to date have mostly

2

been studied in the theoretical community with a focus
on Byzantine agreement or Byzantine broadcast only. The
only price is that the protocol requires f < (1/3 − ϵ)n.
Namely, the protocol achieves near-optimal resilience only
(due to the ϵ parameter). In Pando, the value of ϵ can come
close to 0, when n gets moderately large.
• We implement our protocol and evaluate its performance

on Amazon EC2. We show Pando can easily scale to 1,000
replicas in the WAN network and achieve a throughput of
62.57 ktx/sec.

2. Related Work

Partially synchronous BFT. Partially synchronous BFT has
been widely studied in the literature [29]. Starting from
PBFT [24], an impressive number of practical BFT protocols
are proposed (e.g., [30]–[34]). HotStuff [28] provides a
three-phase solution that achieves linear message complex-
ity, and many efforts have been made to reduce the number
of phases required [35]–[38]. Our new atomic broadcast
protocol in the consensus process is a scalable version of
prior protocols such as PBFT and HotStuff: our protocol has
three phases of communication similar to that in PBFT; the
locked blocks for safe view changes (i.e., leader election)
follows the HotStuff technique.
Scalable BFT. Beginning with Narwhal [11], Bull-
shark [12], Dumbo-NG [13], and Star [14] use a framework
that de-couples the transmission of block proposals (also
called the transmission process) from the agreement on the
order of the blocks (called the consensus process). Our
protocol also follows the framework. As shown in Bull-
shark [12], Bullshark and Narwhal share almost identical
throughput in normal cases, and BullShark offers almost 2x
the throughput of Mir-BFT [9] at the same latency. The most
recent partially synchronous BFT protocol that separates
transmission from consensus, Star [14], is shown to achieve
2.38x the throughput of Narwhal when n = 91. We choose
Star and Narwhal for the performance comparison.

Besides those works mentioned in the introduction,
many alternative solutions can improve the scalability
of BFT, such as using trusted hardware [39], [40] and
network/topology-level optimization [41].
Byzantine agreement and Byzantine broadcast at scale.
King and Saia [18] presented the first committee sampling
based Byzantine agreement protocol in the synchronous
setting and the protocol achieves O(n1.5) communication.
The committee sampling mechanism was called the sampler
protocol, and an ideal sampler is assumed. In particular, the
sampler samples “subsets of elements such that all but a
small number contain at most a fraction of bad elements
close to the fraction of bad elements of the entire set”.
Many works improved the complexity of communication
in the Byzantine agreement and Byzantine broadcast pro-
tocols, assuming the existence of a sampler. Abraham et
al. [19] proposed a binary Byzantine agreement with sub-
quadratic communication complexity. In the asynchronous
setting, Blum, Katz, Liu-Zhang, and Loss [22] presented a

Byzantine agreement protocol achieving subquadratic com-
munication complexity under the adaptive adversary setting
assuming f < (1− ϵ)n/3 (Note that this is interchangeable
with our f < (1/3 − ϵ)n assumption). Additionally, a line
of work studies Byzantine broadcast, a problem limited to
the synchronous setting where f < (1 − ϵ)n, and uses
committee-based approaches to optimize the communica-
tion [20], [21].

Algorand [42], [43] is a practical committee sampling
based Proof-of-Stake protocol. The VRF-based commit-
tee sampling mechanism is a practical instantiation of the
sampler notion by King and Saia [18]. Our protocol also
adopts the VRF-based committee sampling mechanism by
Algorand. Both Algorand and Pando assume a partially
synchronous network. Our Pando protocol is different from
Algorand. First, Pando achieves a more balanced network
bandwidth utilization by employing a leaderless feature for
block proposals. Namely, all n replicas can create a block
proposal, and replicas agree on at least n − f proposals
at a time. In contrast, Algorand only agrees on one block
proposal at a time. Accordingly, Pando is more efficient
than Algorand. Second, the design of Pando allows for a
much smaller committee size. In particular, the probability
for the system to achieve security properties such as safety
and liveness is the same for the two protocols, but Pando
requires a much smaller committee size. For instance, to
limit the probability of safety violation to 10−9 and to
set ϵ = 0.12 (i.e., the system has 80% correct replicas),
Algorand needs a committee size of 2,000 replicas [42,
Figure 3]. In contrast, Pando only needs a committee size
of 200 (Figure 3). This is achieved by carefully designing
the consensus process (i.e., our partially synchronous atomic
broadcast protocol). In terms of experimental comparison,
we focus on the comparison of Pando versus protocols in
the same category (BFT protocols that also de-couple block
transmission from consensus) and do not compare Pando
with Algorand.

Proof-of-Stake (PoS). Ethereum’s PoS [44] utilizes the
concept of the committee to aggregate the votes (i.e., attes-
tations) from replicas to improve performance. The random
coins of committee sampling are generated on-chain via the
beacon chain. In Delegated PoS (DPOS) [45], a committee is
first selected according to certain rules and the committee
is in charge of reaching an agreement and conveying the
results to the replicas. Such an approach, as mentioned in
the introduction, fails to achieve adaptive security.

BFT with adaptive security. Protocols that are secure in the
static adversary model might not be adaptively secure [46],
[47]. BFT using statically secure threshold cryptography
(e.g., threshold signatures or threshold encryption) may
not be adaptively secure. Indeed, designing BFT in the
adaptively secure model is more challenging. Meanwhile,
adaptive security may come with a price. For instance,
EPIC [48] and Hale [49] studied how to achieve adaptive
security in the asynchronous model and showed that while
practical asynchronous BFT in the adaptively secure model
is possible, the performance degrades up to 30% compared

3

to its counterpart in the static model. Note that a lot of
conventional partially synchronous protocols (that do not
use threshold signatures) achieve adaptive security [48], e.g.,
PBFT [24] and BFT-SMaRt [50]. Namely, these protocols all
use a view change protocol (i.e., leader election) that rotates
the leaders. The protocols thus achieve O(n) time under
both static adversary assumption and adaptive adversary
assumption, i.e., if f continuous leaders are faulty, the
system achieves zero throughput in the interim.
Asynchronous BFT. The celebrated FLP result [51] rules
out the possibility of deterministic consensus in asyn-
chronous environments, so asynchronous must be proba-
bilistically live. Asynchronous BFT protocols have been
extensively studied [25], [48], [52]–[57]). Our transmission
process and state transfer process are fully asynchronous.

3. System Model and Building Blocks

BFT. We study Byzantine fault-tolerant state machine repli-
cation (BFT) protocol. In a BFT protocol, clients submit
transactions (requests) and replicas deliver them. The client
obtains a final response to the submitted transaction from
the replica responses.

A BFT system with n replicas, {P1, · · · , Pn}, can tol-
erate f < (1/3− ϵ)n Byzantine failures, which is optimal.
Following prior work on scalable Byzantine agreement, this
paper considers near-optimal resilience, i.e., f < (1/3−ϵ)n,
where ϵ is a small constant and 0 < ϵ < 1/3.

We consider a partially synchronous network where
there exists a Global Stabilization Time (GST), after which
the network becomes synchronous. We consider a (weakly)
adaptive adversary. Such an adversary can selectively cor-
rupt the replicas while the protocol is running but cannot
perform “after-the-fact-removal” and retroactively erase the
messages the replica sent before they become corrupted.
Additionally, we assume “atomic sends” [22] where an
honest replica Pi can send a message to multiple replicas
and the adversary can corrupt Pi either before or after it
sends the message to all receivers.

We follow prior works [24], [27], [28], [35] and define
several notations. A Byzantine quorum is a set of replicas.
If we consider a system with n replicas and f Byzantine
failures, a Byzantine quorum consists of ⌈n+f+1

2 ⌉ replicas,
or simply 2f + 1 out of n = 3f + 1 replicas. A set of
signatures generated by a Byzantine quorum is called a
quorum certificate (QC) or a certificate.

In this work, we sample a set of λ = O(κ) committee
members, where κ is the length of the security parameter.
Following prior protocols, we consider λ = κ for simplicity.
Our protocol ensures that except with negligible probabil-
ity, the number of faulty replicas in each committee is
t < ⌊κ−1

3 ⌋. Slightly abusing the notation, we also use the
term QC in the committee to denote κ− t signatures from
committee members.

A BFT protocol we consider in this work satisfies the
following properties with probability 1 − negl(κ), where
negl(κ) is a negligible function in κ.

• Safety: If a correct replica delivers a transaction tx
before delivering tx′, then no correct replica delivers a
transaction tx′ without first delivering tx.
• Liveness: If a transaction tx is submitted to all correct

replicas, then all correct replicas eventually deliver tx.
BFT protocols do not need to expose an explicit order

for blocks of transactions, but the concrete constructions
may assign an order to each block. In this work, we use
height to denote the order of a block. Namely, in a chain of
blocks, the height of each block is the number of blocks on
the chain rooted by the genesis block. For a QC qc, we use
the function height(qc) to denote the height of the block
for qc. Each replica uses a tree-based data structure to store
the blocks proposed by all the replicas. Block b extends b′

if b extends the branch led by b′.
Atomic broadcast. We also use atomic broadcast as a
building block. Atomic broadcast is only syntactically differ-
ent from BFT; in atomic broadcast, a replica a-broadcasts
messages and all replicas a-deliver messages. An atomic
broadcast protocol satisfies the following properties with
probability 1− negl(κ).
• Safety: If a correct replica a-delivers a message m be-

fore a-delivering m′, then no correct replica a-delivers a
message m′ without first a-delivering m.
• Liveness: If a correct replica a-broadcasts a message m,

then all correct replicas eventually a-deliver m.
Here, we restrict the API of atomic broadcast such that

only a single replica a-broadcasts a transaction. One can
alternatively allow all replicas to a-broadcast transactions.

3.1. Building Blocks

Consistent broadcast (CBC). We review the definition of
consistent broadcast (CBC). A CBC protocol is specified by
c-broadcast and c-deliver such that the following properties
hold:
• Validity: If a correct replica p c-broadcasts a message m,

then p eventually c-delivers m.
• Consistency: If two correct replicas c-deliver two mes-

sages m and m′, then m = m′.
• Integrity: For any message m, every correct replica c-

delivers m at most once. Moreover, if the sender is correct,
then m was previously c-broadcast by the sender.

The ComProve()/ComVerify() oracle. We follow prior
works [19]–[21] and define a ComProve()/ComVerify()
oracle as a committee sampling function. We present
in Algorithm 1 the functionality of ComProve() and
ComVerify() [21]. ComProve() is parametered by the
total number of replicas and a mining probability pmine.
It is specified by two functionalities: ComProve() and
ComVerify(). In particular, a replica Pi can query
ComProve(m, i) to check whether it is an eligible member
of the committee, where m is the designated input. The
query of the ComProve() function is also called a mining
attempt. Upon receiving a mining attempt for the first time,
ComProve() flips a random coin and returns a binary result.
It returns 1 with mining probability pmine. If 1 is returned,

4

Pi is part of the committee. After Pi has successfully made
a mining attempt, ComVerify(m, i) returns the same answer
for all future identical queries to any replica.

In this work, we use the notation Cy
x to denote the

committees, where the subscript x specifies the corre-
sponding process (i.e., transmission, consensus, or state
transfer) and epoch number, and the superscript y de-
notes the instance number. For instance, Cj

t,e denotes the
committee used in the transmission process for the j-th
instance in epoch e. In this case, we can instantiate the
ComProve() and ComVerify() functions as follows: replica
Pi queries ComProve(t||e||j, i) to learn whether it is a
committee member where || denotes concatenation; after Pi

queries the ComProve() function, any replica Pk queries
ComVerify(t||e||j, i) to verify whether Pi belongs to Cj

t,e.
We instantiate ComProve() and ComVerify() with the

Verifiable Random Function (VRF). In particular, depending
on the committee size, we set up a difficulty parameter
D. When Pi generates a VRF evaluation for t||e||j (the
ComProve(t||e||j, i) function). Pi belongs to Cj

t,e if the
VRF evaluation is lower than D. When Pi sends some mes-
sage to other replicas, Pi also includes the VRF evaluation
to the replicas. When Pk queries ComVerify(t||e||j, i), the
function returns true if the VRF evaluation is lower than D.

4. Motivation and Overview

4.1. Review of Existing De-coupling Approaches

Narwhal [11], Dumbo-NG [15], Bullshark [12], and
Star [14] all employ a framework that de-couples block
dissemination from the agreement on block order. Such a
framework usually involves three processes: a transmission
process where each replica creates a proposal, sends to
all replicas, and collects matching signatures from a suffi-
ciently large fraction of replicas to form a quorum certificate
(QC)—each QC proves that the corresponding transactions
are valid and available; a consensus process where replicas
reach an agreement on the order of the QCs (so the order
of the transactions can be finalized); after an agreement is
reached, replicas that do not hold the proposals run state
transfer with other replicas.

Algorithm 1 The ComProve() and ComVerify() oracle.
m is a tuple that consists of the designated inputs of the
function.

1: public parameters: let pmine be the mining probability
2: local parameters: let calli ← ⊥ for any i ∈ [n]

3: function COMPROVE(m, i)
4: if calli = ⊥ then
5: let b← 1 with probability pmine or 0 otherwise
6: calli ← b
7: end if
8: return calli
9: end function

10: function COMVERIFY(m, j)
11: return callj
12: end function

As an example, we show the Star framework in Figure 1
(as Star outperforms other protocols). In Star, the trans-
mission process is a pipelining mode of weak consistent
broadcast (wCBC) instances. The protocol is epoch-based
and each epoch consists of n parallel wCBC instance. In
each instance, each replica Pi broadcasts its proposal to the
replicas and expects to collect a weak quorum certificate
(wQC) of f +1 matching signatures. In each epoch, at least
n− f wQCs are expected to be collected. In the consensus
process, the n − f wQCs are used as input. As the input
of the consensus process consists of only wQCs instead
of the message payload, the consensus process does not
become the bottleneck of the system anymore. Star uses
PBFT or Dashing [14] as the consensus process. Finally,
after an agreement on the order of the wQCs is reached
in the consensus process, replicas that have not received
the corresponding proposals need to synchronize with other
replicas via a state transfer process.

Star, Narwhal, Bullshark, and Dumbo-NG utilize dif-
ferent protocols in different processes. Narwhal and Bull-
shark utilize the direct acyclic graph (DAG) data structure
and CBC in the transmission process. Dumbo-NG uses a
pipeline mode of CBC that is slightly different from that
in Star. In the consensus process, Narwhal uses HotStuff,
and Bullshark employs a partially synchronous variant of
DAG-Rider [58].

By default, in state transfer process, each replica requests
the missing proposals from all other replicas. Dumbo-NG
uses erasure coding to achieve a more communication-
efficient approach (called “retrieval” in the paper). All these
state transfer approaches involve all-to-all communication
and achieve O(n2) messages.

The feature that separates block proposals from con-
sensus makes such protocols achieve great scalability. For
example, when deployed in WAN with 91 replicas (using
m5.xlarge instances on AWS), Star achieves throughput of
256 ktx/sec, significantly higher than conventional protocols.

4.2. The Scalability Bottlenecks

If we further scale the existing system to a larger number
of replicas, performance may degrade significantly due to
both communication overhead and computational overhead.
Communication overhead. Most existing protocols rely on
all-to-all communication, so it is not surprising that the
performance degrades significantly as n further grows. In

Figure 1: The Star framework [14].

5

P0

P1

P2

Pn-1

. .
 .

b1

b1

b1

n-f sigs

QC

QC

QCs1

s2

sn-1

(a) Conventional consistent broadcast
(CBC) protocol.

P0

P1

P2

Pn-1

. .
 .

b1

b1

b1

k-t sigs

QC

QC

QC

s2

sn-1

0

et,C

(b) Our scalable CBC approach.

P0

P1

P2

Pn-1

. .
 .

New-View Propose Prepare Commit

1

lec,C

2

lec,C

3

lec,C

(c) Our scalable atomic broadcast protocol.

Figure 2: Overview of our approach.

the transmission process, the all-to-all communication for
block proposal (due to n parallel CBC instances) seems
to be unavoidable. However, collecting O(n) signatures
and including them in the proposal may again consume
high network bandwidth and degrade the performance as
n increases. Additionally, the input to the consensus pro-
cess consists of O(n) QCs and each QC consists of O(n)
signatures. As n grows, the communication overhead to the
consensus process becomes more significant. Note that even
if we use an aggregate signature to replace a set of O(n)
digital signatures, the communication cost of each signature
is O(κ+ n log n), which still grows as n increases.

Computational overhead. Threshold signature is a com-
mon technique to lower the communication complexity
of the protocols and optimize system performance. Many
protocols use threshold signatures to reduce the size of
each QC from O(κn) to O(κ) [14], [15], [28], [35], [53],
[59]. However, threshold cryptosystems may suffer from
performance degradation as n grows [52]. In practice, most
implementations use a set of O(n) digital signatures (e.g.,
ECDSA) instead [14], [15], [28], [35], [53]. The commu-
nication complexity, however, is increased accordingly as
mentioned above.

4.3. Technical Overview

Scalable consistent broadcast (CBC) for the transmission
process. We show the conventional CBC protocol in Fig-
ure 2a. Our transmission process improves CBC using only
one technique, as shown in Figure 2b: instead of letting all
replicas reply with a signature to the sender (e.g., P0), we
sample a committee of κ size and only committee members
reply with a signature. The underlying idea is that since
collecting n digital signatures or using threshold signatures
can be expensive when n is large, we can alternatively use
the committee-based approach. The leader only needs to
collect O(κ) signatures as a QC. This immediately brings
two benefits. First, instead of having all replicas reply with
a signature to each sender, only κ replicas need to do so, so
the communication cost does not grow as n grows. Second,
as each certificate consists of only O(κ) signatures instead
of O(n) signatures, the consensus process can also be made
communication-efficient.

Using a new application of the Chernoff bound, we show
that by setting the committee size as λ = 3α

ϵ2 ln 1
δ = O(κ),

with probability 1− negl(κ), the number of faulty replicas
in the committee is less than t = λ/3, where δ is the desired
failure probability and α is a small constant (see Lemma 1).
Accordingly, if the sender Pi is correct, with probability
1− negl(κ), at least two-thirds of committee members will
reply with a digital signature, so Pi eventually completes the
CBC. Following the convention in prior works, we simply
use κ as the committee size in this work.

Atomic broadcast at scale for the consensus process. We
propose a scalable atomic broadcast protocol. Our insight is
also aligned with our improved CBC scheme. In particular,
we can already ensure that the fraction of correct replicas
in the committee remains the same as the entire system.
Instead of letting all replicas exchange their votes, only the
committee members send their votes to all replicas, and we
can still ensure that at least two-thirds of the committee
members will take the same action in each phase of the
protocol. The actual proof, as shown in Appendix A, is more
involved, but it exploits this insight.

To avoid the security threats in the adaptive security
model, we sample three committees in each epoch e of the
protocol, denoted as C1

c,e, C2
c,e, and C3

c,e, as illustrated in
Figure 2c. After each committee member broadcasts its vote,
it will not vote again. Accordingly, even if the committee
member is corrupted, it is already too late in the weakly
adaptive adversary model and the protocol is still live.

The atomic broadcast protocol is communication-
efficient due to two reasons. First, the input M of the
consensus process is O(κ2n) instead of O(κn2) as each QC
has O(κ) signatures. Second, in each phase of the protocol,
only one-to-all or κ-to-all communication is involved and
the communication complexity is O(|M |n + κ2n), where
|M | is the size of the input. Note that although protocols
like HotStuff only involve one-to-all communication, the
communication complexity is O(|M |n + κn2) if we use
digital signatures for the quorum certificates. Our atomic
broadcast protocol can be used as a dedicated BFT protocol
and is thus of independent interest.

State transfer with O(κn) messages. All prior works
achieve O(n2) messages and involve all-to-all communi-
cation, which might be very expensive when n is large. In
Pando, we provide a simple yet efficient state transfer ap-

6

Algorithm 2 The Pando protocol for replica Pi and tag ID

1: initialization: start the transmission process and the
consensus process

2: upon a-deliver(le,m)
3: O ← Obtain(le,m)
4: obtain the non-overlapped transactions in O and

deliver in a deterministic order
5: set ce← le

proach with O(κn) messages and O(Lκn2) communication.

5. The Pando Protocol

5.1. The Generic Workflow

The generic workflow of Pando is presented in Algo-
rithm 2. We also present the utility functions in Algorithm 5.
In particular, every replica starts the transmission process
and the consensus process when initializing the protocol.

The transmission process is epoch-based, where each
replica proposes a batch of transactions in every epoch.
A new epoch of the transmission process (Algorithm 3) is
started when every replica has a non-empty queue and has
received at least n−f proposed messages from the previous
epoch. QCs are formed in the transmission process and the
queue of QCs W is shared between the transmission process
and the consensus process.

The consensus process (Algorithm 4) is also epoch-
based: in each epoch, there is a designated leader. For each
epoch le, the leader proposes W [le] and W [le] consists
of at least n − f QCs. After an agreement is reached,
replicas start the state transfer process. If a replica has
received the proposals corresponding to the QCs, it delivers
the transactions in the proposals. Finally, Pi obtains a set
of non-overlapped transactions in O and then delivers the
transactions in O in a deterministic order.

5.2. The Transmission Process

The transmission process can be viewed as a scalable
version of pipelined consistent broadcast (CBC). In this
section, we present a pipelining mode for replicas to propose
blocks, where a replica broadcasts the QCs for the prior
epoch and also a new block. The pseudocode is shown in
Algorithm 3.
The Ci

t,e signing committee for each i ∈ [n]. In the
transmission process, n committees are sampled for each
epoch e. Each committee serves for signing purposes in each
CBC instance. For the instance initiated by Pi in epoch e,
we use Ci

t,e to denote the signing committee, where the
subscript t denotes the transmission process. The identity
of a committee member (i.e., a replica) is not revealed until
the replica queries the ComProve() function and sends a
message to the replicas. After a committee member sends
out a message, other replicas can verify the identity of
the committee member via the ComVerify() function, as

Algorithm 3 The transmission process for replica Pi and
tag ID

1: local parameters: let epoch e← 1, Q be the queue of
pending transactions, proposals be the received propos-
als, qci be the latest certificate, W ← ⊥ be the queue
of certificates.

2: function INITEPOCH(e)
3: sample a committee Cj

t,e for each j ∈ [n]
4: M ← select(Q)
5: send (PROPOSAL, e,M, qci) to all replicas
6: h← Hash(M)
7: upon receiving κ − t valid signatures for (e, h, i)

from Ci
t,e

8: let qci be the set of valid signatures
9: wait until |proposals[e]| ≥ n− f

10: e← e+ 1
11: InitEpoch(e)
12: end function
13: upon receiving (PROPOSAL, e,M, qcj) from Pj s.t. j ∈

[n]
14: if Pi ∈ Cj

t,e then
15: h← Hash(M)
16: create a signature σi for (e, h, j) and send to Pj

17: end if
18: proposals[e][j]←M
19: W [e− 1]←W [e− 1] ∪ qcj

described in Sec. 3. In the rest of the paper, we omit the
details of membership discovery and verification when no
ambiguity occurs.
The workflow. To start epoch e, every replica Pi calls the
InitEpoch(e) function (line 2). In this function, Pi obtains
a batch of transactions M from its queue Q and then
broadcasts a (PROPOSAL, e,M, qci) message to all replicas
(line 5), where qci is the QC formed in epoch e − 1 (if
e = 1, qci = ⊥, also known as a genesis block). Pi then
waits for κ − t matching signatures for (e, h, i) from Ci

t,e,
where h is the hash of M (line 15). For each replica Pi,
upon receiving a proposal (PROPOSAL, e,M, qcj) from Pj ,
Pi verifies whether it belongs to the committee Cj

t,e. If so,
Pi creates a signature for (e,Hash(M), j) and then sends to
Pj . Meanwhile, Pi sets its local parameter proposals[e][j]
as M and adds the QC qcj to its local queue W [e − 1]
(lines 18-19). Here, qcj is the QC for the proposal in epoch
e− 1 so qcj is added to W [e− 1].

After Pi collects κ − t signatures from Cj
t,e, the sig-

natures become a QC and the local parameter qci is
updated accordingly (line 8). Then Pi waits for n − f
valid (PROPOSAL) messages before entering the next epoch
(line 9).

5.3. The Consensus Process

The consensus process is shown in Algorithm 4 and
we use a partially synchronous atomic broadcast protocol
to instantiate the consensus process. The protocol has four

7

Algorithm 4 The consensus process for replica Pi

1: public parameters: each committee have κ replicas and t←
κ/3

2: local parameters: let epoch le ← 0, last committed epoch
ce← 0, lockedQC ← ⊥, Received← ∅

3: in each epoch le, sample three committees C1
c,le, C2

c,le, and
C3

c,le

4: � NEW-VIEW phase
5: upon |W [le]| ≥ n− f
6: start a timer ∆ and obtain ℓ← le mod n
7: if Pi ∈ C1

c,le then
8: send (NEW-VIEW, le, lockedQC) to the leader Pℓ

9: end if
10: � PROPOSE phase
11: upon receiving κ− t (NEW-VIEW) messages from replicas in

C1
c,le

12: if CheckLeader(le, i) then
13: qchigh ← the highest QC in (NEW-VIEW) messages
14: Wi ←W [le]
15: if height(qchigh) < le− 1 then
16: for each e′ ∈ (height(qchigh), le− 1]
17: Wi ←Wi ∪W [e′]
18: end if
19: create a block b with content Wi

20: broadcast (PROPOSE, b, le, qchigh) ▷ a-broadcast
21: end if
22: � PREPARE phase
23: upon receiving (PROPOSE, b, e, qchigh) from the leader Pℓ s.t.

le = e
24: if Pi ∈ C2

c,le and CheckLeader(e, ℓ)and IsValid(b) then
25: σi ← a signature for (1, hash(b), le)
26: broadcast (PREPARE, hash(b), le, σi)
27: end if
28: Received[e]← b

29: � COMMIT phase
30: upon receiving κ−t (PREPARE, h, e, σj) from C2

c,le s.t. le = e
31: lockedQC ← κ− t signatures for (1, h, e)
32: if Pi ∈ C3

c,le then
33: σi ← a signature for (2, h, le)
34: broadcast (COMMIT, h, le, σi)
35: end if
36: upon receiving t+1 (COMMIT, h, e, σj) from C3

c,le s.t. le = e
37: if Pi ∈ C3

c,le and Pi has not sent (COMMIT) then
38: σi ← a signature for (2, h, le)
39: broadcast (COMMIT, h, le, σi)
40: end if
41: � Deliver
42: upon receiving κ−t (COMMIT, h, e, σj) from C3

c,le s.t. le = e
43: let m be the content in the block b and h = hash(b)
44: if ce+ 1 ̸= le then
45: m← ObtainMissing(ce+ 1, le,m)
46: a-delivers each me ∈ m according to the epoch

numbers
47: else
48: a-deliver(le,m) ▷ a-deliver event
49: end if
50: set le← le+ 1, ce← le

51: � View Change
52: upon ∆ times out
53: set le← le+ 1

phases: NEW-VIEW, PROPOSE, PREPARE, and COMMIT.

Algorithm 5 Utilities

1: function ISVALID(b)
2: if b extends the block for lockedQC and for any

We ∈ b for epoch e and VerifyQCs(We, e) returns true
and e′ ≥ ce where e′ is the epoch number for any QC
included in b then

3: return true
4: else
5: return false
6: end if
7: end function
8: function VERIFYQCS(Wj , e)
9: if |Wj | ≥ n − f and for each qcℓ ∈ Wj , each

σk ∈ qcℓ from Pk, ComVerify(t||e||1||ℓ, k) returns 1
and σk is a valid signature for (e, ∗, ℓ) then

10: return true
11: else
12: return false
13: end if
14: end function
15: function CHECKLEADER(e, i)
16: if i = e mod n+ 1 then
17: return true
18: else
19: return false
20: end if
21: end function
22: function OBTAINMISSING(ce, le,m)
23: m← ⊥
24: for e ∈ [ce, le]
25: if ∃We s.t., We ∈ m then
26: m[e]←We

27: else
28: wait for me from the block b proposed in

epoch e
29: m[e]← me

30: end if
31: return m
32: end function

The protocol is epoch-based. To differentiate the epoch
number from that in the state transfer process, we use le
to denote the latest epoch number of the system and ce
to denote the last epoch where some value has been a-
delivered. Every replica also maintains a lockedQC, which
is updated in the COMMIT phase of every epoch.

The C1
c,le, C2

c,le, and C3
c,le committees. In each epoch

le, three committees are sampled, where the subscript c
denotes the consensus process. The C1

c,le, C2
c,le, and C3

c,le
committees are used in the NEW-VIEW phase, PREPARE,
and COMMIT phases, respectively.

The workflow. There is a designated leader in each epoch
le. We use le mod n to denote the identity of the leader.
Every replica also starts a timer ∆. In case no value is a-
delivered before ∆ expires, replicas enter the next epoch
(line 52).

8

NEW-VIEW phase. Every replica Pi first identifies
whether it belongs to C1

c,le. If so, it sends a (NEW-
VIEW, le, lockedQC) message to the leader Pℓ of epoch le
(line 7-8), where lockedQC is a local parameter.
PROPOSE phase. After receiving at least κ− t (NEW-VIEW)
messages from C1

c,le, the leader obtains qchigh, the QC with
the largest height (i.e., epoch number). If Pi is the leader
(i.e., i = le mod n), Pi then obtains the height of qchigh
(line 13). By default, Pi uses W [le] as the proposal for
the current epoch. Additionally, if height(qchigh) is lower
than le − 1, it means that the epoch lower than le − 1 is
not a-delivered. In this case, Pi also proposes for epochs
between height(qchigh) and le − 1. In particular, for each
e′ between height(qchigh) and le− 1, Pi appends W [e′] to
its proposal Wi (lines 15-17). After that, Pi creates a block b
with content Wi, the height le, and hash of qchigh. Then, Pi

broadcasts a (PROPOSE, b, le, qchigh) message to all replicas
(line 20). Here, we say Pi a-broadcasts b.
PREPARE phase. Every replica waits for the proposal from
the leader. Upon receiving a (PROPOSE, b, e, qchigh) message
from the leader Pℓ, Pi verifies whether b is valid (line 24 and
Algorithm 5, lines 1-7). Namely, b is valid if b extends the
block of Pi’s local lockedQC and each We in the proposal
consists of n − f valid QCs. After that, if Pi belongs to
C2

c,e, it broadcasts a (PREPARE, hash(b), le, σi) message to
all replicas, where σi is a signature for (1, hash(b), le).
COMMIT and DELIVER phases. Every replica expects κ−t
(PREPARE) messages from C2

c,e. If so, the signatures included
in the (PREPARE) messages form a QC and every replica
updates its local lockedQC (line 31).

If a replica Pi belongs to C3
c,le, it creates a signature

for (2, hash(b), le) and then sends a (COMMIT, h, le, σi)
message to all replicas (lines 32-34), where h = hash(b).
If Pi belongs to C3

c,le, receives t + 1 matching (COMMIT)
messages from replicas in C3

c,le, and has not sent a (COMMIT)
message, Pi also sends a (COMMIT, h, le, σi) message to all
replicas (lines 36-39).

Finally, after each replica receives κ − t matching
(COMMIT, h, le, σi) messages, it is ready to a-deliver block b
(and the hash of b is h). Before that, Pi also checks whether
its last committed epoch is ce = le− 1 (line 44). If so, Pi

fetches block b (either stored locally or from other replicas)
and then a-delivers m, the content in block b. Otherwise, Pi

queries the ObtainMissing() function to obtain the missing
values between ce + 1 and le − 1 (lines 45-46). In the
ObtainMissing(ce, le,m) function, there are two cases for
each epoch e ∈ [ce, le]:
• A set of QCs for epoch e is included in m (Algorithm 5,

lines 25-26), i.e., the leader has previously included We in
its proposal. In this case, Pi can include We in its output
and a-delivers the value.
• QCs for epoch e are not included in m (Algorithm 5,

lines 27-29). This might be caused by the fact that some
correct replica has previously a-deliverd some value in
epoch e but Pi has not. In this case, Pi waits for a QC
from C3

c,e and then synchronizes the proposed block b
from other replicas (We ignore the details of how replicas

Algorithm 6 The state transfer process for replica Pi

1: function OBTAIN(e,m)
2: sample a committee Cj

s,e for each j ∈ [n]
3: O ← ⊥
4: for qcj ∈ m
5: if proposal[e][j] ̸= ⊥ then
6: O ← O ∪ proposals[e][j]
7: if Pi ∈ Cj

s,e then
8: broadcast (DISTRIBUTE, j, proposals[e][j])
9: end if

10: end if
11: upon receiving (DISTRIBUTE, j,M) from Pk

12: if Pk ∈ Cj
s,e and Hash(M) matches that

corresponding to qcj then
13: O ← O ∪M
14: end if
15: wait until |O| = |m|
16: clear W [e] and remove transactions in O from Q
17: end function

obtain the proposed block based on the hash value as the
approach largely follows prior works [24], [28]). Then Pi

a-delivers the value.
Afterward, Pi a-delivers the proposed values sequen-

tially according to the epoch numbers.

5.4. State Transfer

We provide a state transfer mechanism that only in-
volves κ-to-all communication so the message complexity
is O(κn). The idea is aligned with our transmission and
consensus process and we show the pseudocode in Algo-
rithm 6.

In our state transfer mechanism, n committees are
sampled and each one is denoted as Cj

s,e. Committee
members in Cj

s,e are in charge of helping other correct
replicas collect the proposal from Pj . Namely, if the QC
from Pj (denoted as qcj) is a-delivered in the consen-
sus process, every correct replica Pi that belongs to Cj

s,e

and meanwhile holds the proposal will send a message
(DISTRIBUTE, j, proposals[e][j]) to all replicas (lines 5-8),
where proposals[e][j] is the proposal Pi previously received
from Pj in the transmission process. Any correct replica that
receives a (DISTRIBUTE, j,M) message verifies whether the
hash of M matches that in the a-delivered message in the
consensus process (lines 11-12). If so, the replica adds M to
its output O. Finally, every correct replica Pi waits for the
proposals for every QC in m (i.e., |O| = |m|) and completes
the state transfer.

5.5. Correctness and Complexity

Correctness. Our protocol is secure under a weakly adaptive
adversary. This is because an adversary cannot corrupt too
many members in each committee until it is too late, except
with negligible probability. Namely, in all three processes,

9

every member of each committee only sends a message
once. Therefore, even if the adversary learns that the replica
is in a committee, the message has already been sent so
corrupting the replica is useless.

While we show the proof of correctness in detail in
Appendix A, we briefly sketch the correctness below.
Safety. Roughly, the safety of the atomic broadcast protocol
ensures the safety of the BFT. For the safety of our atomic
broadcast protocol, a crucial observation is that a committee
can convey the agreement result to all replicas. Informally,
the crux is to show that if a correct replica Pi has received
κ − t matching (COMMIT) messages from C3

c,e in epoch e
for an a-broadcast message m, no correct replica will a-
deliver message m′ ̸= m in epoch e and any correct replica
will only vote for a (PROPOSE) message that excludes m in
epochs greater than e. The property that no correct replica
will a-deliver message m′ ̸= m in epoch e is ensured by the
fact that each committee has at least κ − t correct replicas
with 1− negl(κ) probability (Lemma 1). Indeed, if at least
κ − t replicas in C3

c,e are correct, no correct replica will
a-deliver m′ by the quorum intersection rule [27].

Additionally, we also need to ensure that every correct
replica will only vote for a (PROPOSE) message that excludes
m in epochs greater than e. This is achieved by two factors.
First, if Pi has received κ− t matching (COMMIT) messages
from C3

c,e in epoch e, at least f + 1 correct replicas in the
entire system are locked on m after receiving κ−t matching
(PREPARE) messages from C2

c,e. This can also be proved
using the Chernoff bound and we show the correctness in
Lemma 2 and Corollary 2. Second, to ensure that a correct
leader always proposes the correct proposal (that excludes a
message already a-delivered by at least one correct replica),
we introduce a New-View phase where a committee is
sampled and the committee members send their lockedQC
to the leader Pℓ. In this way, the leader can receive the
highest locked QC.
Liveness. Liveness of the system requires understanding all
three processes. First, our transmission process ensures that
if a QC is formed, at least f + 1 correct replicas have
previously received the proposal. We show in Lemma 5 that
this happens with probability 1− δ. Second, the probability
that a message m a-broadcast by a correct replica is not a-
delivered decreases as the system proceeds. Informally, this
is because a correct replica will a-broadcast a message that
has previously been proposed but still not a-delivered yet.
Indeed, in our atomic broadcast protocol, we intentionally
bind the epoch number with the leader. In particular, every
leader pℓ (where ℓ = le mod n + 1) only proposes W [le]
(the certificates for proposals in epoch le of the transmission
process, line 14 of Algorithm 4). This can greatly simplify
the state transfer process but it is possible that some cer-
tificates in epochs lower than le cannot be a-delivered. To
address this issue, the leader pℓ also proposes the certificates
between epoch height(qchigh) and le− 1 (lines 15-17). In
this way, even if some leaders fail to propose any value in
their turn, a set of n − f certificates can still be proposed
with the help of a correct leader. The amortized number of

certificates a-delivered in every epoch is thus n−f . Finally,
our state transfer process samples a committee and we just
need to ensure that at least one correct committee member
has previously received the proposal from the leader. As we
already know that at least f+1 correct replicas in the system
have previously received the proposal, it is not difficult to
see that with overwhelming probability, at least one correct
committee member has received the proposal. We show in

Lemma 6 that the probability is 1− δ
1
9
−ϵ2

ϵ2 .
Complexity. As our protocol only involves one-to-all and
κ-to-all communication, the message complexity is O(κn).
The communication complexity of the transmission process,
consensus process, and state transfer process is O(Ln2 +
κ2n2), O(κ2n2), and O(Lκn), respectively. We leave the
detailed complexity analysis in Appendix B.

6. Analysis of Probability of Achieving Safety
and Liveness

We analyze the concrete probability of safety and live-
ness violation of Pando in Appendix C and we summarize
our results in this section. In Lemma 1, we show that if we
use a committee size of 3α

ϵ2 ln 1
δ = O(κ), with probability

1− δ, the number of faulty replicas in the committee is no
more than t = ⌊κ3 ⌋. If we set δ = e−ω(log κ), δ is a negligible
function. Using δ as a parameter, we analyze the concrete
probability of safety and liveness violation.
Probability of safety violation. Safety of the system is
violated if a correct replica a-delivers m and another correct
replica a-delivers m′ and m ̸= m′ in the consensus process.
As shown in Theorem 1, the probability of safety violation
is O(δ2).

An interesting fact is that the probability of safety vio-
lation is related to the number of phases in the consensus
process. Informally, consider the protocol within a view,
there are two phases of κ-to-all communication (i.e., the
PREPARE phase and the COMMIT phase), and we rely
on the committees C2

c,e and C3
c,e to achieve the security

properties. Safety is violated only if neither committee has
at least κ− t correct replicas, i.e., the probability of safety
violation is O(δ2). Additionally, our proof shows that the
probability of safety violation across views is significantly
lower than O(δ2). Thus, the probability of safety violation
of the protocol is bounded by O(δ2).

Notably, we can modify the consensus process to have
more phases to lower the probability of safety violation. For
instance, if we have one more phase of communication in
the consensus process, the probability of safety violation
becomes O(δ3).

We use the two-phase protocol shown in Algorithm 4
in our implementation. We show the relationship between
the committee size and ϵ in Figure 3. We also show some
examples of the concrete probabilities in Table 2. In the
table, Pando (x) denotes the setting where the committee
size is xn. Here, we use xn for ease of understanding;
this could simply be κ instead. Note the if the committee

10

0 500 1,000 1,500

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

committee size

ϵ

= 10−3

= 10−4

= 10−6

= 10−9

= 10−10

Figure 3: Committee size vs. ϵ to limit the probability of
violating safety and liveness to 10−3, 10−4, 10−6, 10−9,
and 10−10 respectively.

size is O(n), the complexities of the protocol should be
changed accordingly and the probability of achieving safety
and liveness become 1 − negl(n) instead of 1 − negl(κ).
The tables aim to show the relationship between ϵ and n.
Namely, the goal is to show that given a desirable probability
of safety and liveness violation (e.g., 10−4 so the protocol
fails once every 10,000 epochs), how much resilience needs
to be sacrificed for each n. As shown in Table 2, n does not
have to be impractically large in our system. For example,
for n ≥ 400 and a committee size of more than 160 replicas,
the resilience of the system is between n > 4f to n > 3f .
When n is greater, ϵ is closer to 0. Meanwhile, to achieve an
even higher probability of safety and liveness (e.g., 10−9)
with the same n, ϵ has to be higher as well as shown in
Figure 3.
Probability of liveness violation. We consider that liveness
is violated if a transaction m is submitted to the system but is
never delivered. Liveness can be violated in three scenarios:
1) No value is a-delivered in the consensus process; 2)
Some value is a-delivered in the consensus process but no
correct replica has received the corresponding proposal; 3)
Some value is a-delivered in the consensus process, at least
one correct replica has received the corresponding proposal,
but the state transfer fails. As we show in Appendix A,
the probability of the first scenario is δ2E , where E is the
number of correct epochs (the leader in atomic broadcast is
correct) after m is submitted and after GST. Therefore, the
failure probability of the consensus process is closer to 0 as
the system is up and running. Accordingly, the probability
of liveness violation of Pando becomes p1 + (1 − p1)p2,
where p1 is the probability that no correct replica has
received the transaction in the transmission process and
p2 is the probability that state transfer fails. As shown in

Theorem 4, the probability of liveness violation is O(δ
1
9
−ϵ2

ϵ2)
for ϵ < 0.19 or O(δ2) for ϵ ∈ [0.19, 0.33).

7. Implementation and Evaluation

We implement Pando in Golang. We also implement Star
in the same library and assess Narwhal using their open-

n = 100 200 300 400 500 1000

Pando (0.2) 0.193 0.138 0.125 0.104 0.092 0.068
Pando (0.4) 0.138 0.104 0.089 0.074 0.068 0.047
Pando (0.6) 0.125 0.089 0.073 0.063 0.056 0.039
Pando (0.8) 0.104 0.074 0.063 0.053 0.047 0.033

TABLE 2: The value of ϵ for the system to achieve safety
and liveness with a probability of at least 1−10−4. The sys-
tem requires f ∈ [0, 1

5n), f ∈ [15n,
1
4n), and f ∈ [14n,

1
3n)

for dark gray cells, gray cells, and white cells, respectively.

source implementation [60]. We assess these two protocols
as they have the same partial synchrony assumption as ours.
Our codebase involves around 10,000 LOC for the protocol
and about 1,000 LOC for evaluation. In our implementation,
we use gRPC as the communication library. We use HMAC
to realize the authenticated channel and use SHA256 as
the underlying hash function. We use the Golang-based
reed solomon code library2 for erasure coding. We use
the Golang-based VRF implementation3 to instantiate the
ComProve() and ComVerify() oracle. The VRF scheme
we use achieves adaptive security under the random oracle
assumption.

We evaluate the performance of our protocols on Ama-
zon EC2 using up to 200 virtual machines (VMs) and up to
1,000 replicas. By default, we use m5.xlarge instances for
our evaluation. The m5.xlarge instance has four vCPUs and
16GB memory. For one of the experiments, we use other
types of instances. When assessing a setup with fewer than
100 replicas, we use each instance to run one replica. For a
setup with more replicas, we use each instance to run five
replicas. We deploy our protocols in the WAN setting, where
replicas are evenly distributed in four different regions: us-
west-2 (Oregon, US), us-east-2 (Ohio, US), ap-southeast-1
(Singapore), and eu-west-1 (Ireland).

We conduct the experiments under different network
sizes and batch sizes. We use n to denote the network size
and b to denote the batch size. We repeat each experiment
five times and report the average performance. The transac-
tion size is 250 bytes.

When evaluating Pando, we vary the committee sizes
from 0.2n to n to assess the performance. Namely, when
the committee size is n, the protocol is very close to a
conventional protocol, e.g., Star. We intentionally do so to
validate our results. We use the notation Pando (x) to denote
the experiment with xn committee members. For example,
Pando (0.2) uses 0.2n committee members and Pando (1)
uses n committee members. Notably, for Pando (1), com-
mittee sampling is not needed anymore and the failure rate
is not subjective to the failure rate δ. Our evaluation still
involves the VRF evaluations to assess the overhead created
due to committee sampling.

We summarize the required ϵ for our experiments to
achieve a failure rate of 10−4 in Table 2. To achieve a failure
rate of lower than 10−4, Pando (0.6) needs to set ϵ = 0.125
when n = 100, i.e., f < 0.2n. When n is larger, ϵ can be

2. https://github.com/klauspost/reedsolomon
3. https://github.com/yoseplee/vrf

11

n = 31 n = 61 n = 91
0

100

200

300

400

98.64

138.7

190.3

218.12

274.65

344.47

161.58
170.32

268.65

132.24
123.83

116.65

Pe
ak

th
ro

ug
hp

ut
(k

tx
/s

ec
)

Pando (1) Pando (0.8)
Star Narwhal

(a) Peak throughput of Star, Narwhal
and Pando as f grows.

0 50 100 150
0

1

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (1) Star Narwhal

(b) Latency vs. throughput in WAN
for n = 31.

0 50 100 150
0

1

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (1) Star Narwhal

(c) Latency vs. throughput in WAN
for n = 61.

0 50 100 150 200 250
0

1

2

3

4

5

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (1) Star Narwhal

(d) Latency vs. throughput in WAN
for n = 91.

0 500 1,000 1,500 2,000 2,500 3,000

2

3

4

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)
Pando (0.6) Pando (0.8)
Pando (1)

(e) Latency vs. throughput of Pando
in WAN using different committee
sizes for n = 91.

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(f) Latency vs. throughput of Pando
in WAN for n = 100.

0 500 1,000 1,500 2,000 2,500 3,000
0

2

4

6

8

10

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(g) Latency vs. throughput of Pando
in WAN for n = 200.

0 200 400 600 800 1,0001,2001,4001,600
0

5

10

15

20

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(h) Latency vs. throughput of Pando
in WAN for n = 300.

0 100 200 300 400 500 600
0

10

20

30

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(i) Latency vs. throughput of Pando
in WAN for n = 400.

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

Throughput (ktx/sec)

L
at

en
cy

(S
ec

)

Pando (0.2) Pando (0.4)

(j) Latency vs. throughput of Pando
in WAN for n = 500.

n = 100 n = 200 n = 300 n = 400 n = 500
0

1,000

2,000

3,000 2,947.44

2,812.4

1,558.42

600.96

158.25

2,359.4

1,527.36
1,456.1

125.72
55.35

Pe
ak

th
ro

ug
hp

ut
(k

tx
/s

ec
) Pando (0.2)

Pando (0.4)

(k) Peak throughput of Pando as
n grows.

0 2 4 6 8 10 12

n=100 (0.2)
n=200 (0.2)
n=300 (0.2)

n=100 (0.4)
n=200 (0.4)
n=300 (0.4)

Latency breakdown (Sec)

Transmission Consensus

(l) Latency breakdown of Pando when
b = 50, 000 for different n.

batch size ktx/sec CPU bandwidth
100 2.49 62% 18.1MB/s

1,000 23.9 140% 18.8MB/s
5,000 117.54 186% 19.1MB/s

10,000 203.59 288% 19.4MB/s
15,000 344.47 (peak) 364% 19.7MB/s

(m) CPU and bandwidth usage of Pando (0.8)
for n = 91 with different batch sizes. Maxi-
mum CPU usage is 400%.

committee ktx/sec CPU bandwidth
0.2n 256.17 172% 5.9MB/s
0.4n 238.8 186% 10.7MB/s
0.6n 222.56 248% 15.2MB/s
0.8n 203.59 288% 19.4MB/s

n 190.30 (peak) 344% 24.3MB/s

(n) CPU and bandwidth usage of Pando for
n = 91 and b = 10, 000 for different com-
mittee sizes. Maximum CPU usage is 400%.

instance vCPU memory bandwidth batch peak tps
(GiB) (Gbps) size (ktx/sec)

m5.2 8 32 up to 10 - -
m5n.2 8 32 up to 25 5,000 62.57
m5.4 16 64 up to 10 100 1.22
c5.4 16 32 up to 10 100 1.6

(o) Peak throughput of Pando for n = 1, 000 using different
instance types.

Figure 4: Performance of the protocols.

much lower. For instance, for n =1,000, Pando (0.4) can
support f < 0.29n.

We summarize our evaluation results below.
• We were able to run Narwhal and Star using up to

100 replicas. Experiments beyond 100 replicas cannot be
successfully launched on the VMs we used. We believe
this is in part due to the low-end VMs (only 4 vCPUs).
In contrast, we were able to run Pando using up to 500
replicas using the same low-end VMs and 1,000 replicas
on VMs with only slightly better configuration.
• If we set the committee size of Pando as n, the perfor-

mance of Pando is marginally lower than that of Narwhal
and Star. If the committee size is lower than n, the

performance of Pando starts to increase significantly due
to lower communication and computational cost.
• By setting up a committee size of lower than n, Pando

is significantly faster than existing protocols (but ϵ is also
larger than the setup with a larger n). For example, for
n = 91, the peak throughput of Pando (0.8) for f = 30
is 81.01% higher than Pando (1) and 28.22% higher than
Star. Even for n = 500, Pando (0.4) still achieves a peak
throughput of 158 ktx/sec.
• We conducted experiments for 1,000 replicas using dif-

ferent VMs. Our observation is that for a small-scale
network, and CPU is usually the bottleneck of the sys-
tem. In contrast, for the large-scale network, the network

12

bandwidth is the bottleneck.
Comparison of Pando, Narwhal, and Star. We first assess
the peak throughput of Pando, Narwhal, and Star. We were
not able to successfully run Narwhal and Star for a network
beyond 100 replicas as we met a frequent “connection
refused” error due to high communication costs. We believe
this is mainly because our experiments are launched on low-
end VMs with restricted network bandwidth. Accordingly,
our comparison focuses on the setting for n < 100. We
report the peak throughput of Pando (1), Pando (0.8), Star,
and Narwhal in Figure 4a and latency vs. throughput for
n = 31, 61, 91 in Figure 4b-4d. Our results show that the
performance of Pando (1) is only marginally lower than Star
and consistently higher than Narwhal. This is expected as
Pando (1) has a committee size of n, so the communication
and computational costs are almost identical to conventional
protocols. Compared to Star, Pando (1) uses CBC instead
of wCBC for the transmission process so the overhead is
slightly higher. Additionally, Pando involves more compu-
tation due to VRF, so the performance is lower.

Pando (0.8) already consistently outperforms other pro-
tocols. For example, the peak throughput of Pando (0.8)
for n = 91 is 81.01% higher than Pando (1) and 28.22%
higher than Star. The improvement is caused by both lower
communication and lower computation. Namely, the κ term
for the communication becomes more insignificant as n
grows.
Pando with different committee sizes. We assess latency
vs. throughput for Pando for n = 91 by varying the
committee size as 0.2n to n. As shown in Figure 4e, the
performance of Pando is higher when the committee size is
smaller. This is expected as having a small committee size
will lower both communication and computational costs.
The cost is that for a network of 91 replicas, ϵ has to
be larger for smaller committee sizes, as summarized in
Table 2.
Analysis of CPU and bandwidth usage. To understand
why Pando starts to outperform existing protocols even with
a committee of 0.8n replicas, we further assess the CPU and
bandwidth usage of Pando for n = 91. In Figure 4m, we
evaluate Pando (0.8) for different batch sizes until it achieves
the peak throughput. It can be seen that the CPU usage
and bandwidth usage grow as b grows. When CPU is fully
used, the throughput does not grow anymore. Additionally,
in Figure 4n, we fix the batch size as 10, 000 and vary the
size of the committee. Among these experiments, Pando (n)
is the only instance that achieves its peak throughput, in
which case the CPU usage is maximized. For other cases, as
the committee size is smaller, the CPU usage and bandwidth
usage are also lower and the protocol achieves its peak
throughput using an even larger batch size.
Latency vs. throughput. We assess latency vs. throughput
of Pando for n = 100, 200, 300, 400, 500. For these scala-
bility tests, we run five replicas on each VM. We choose
0.2n and 0.4n as the committee sizes and report the results
in Figure 4f-4j. In general, the performance degrades as
n grows. This is expected and similar results have been

reported in all prior works. For a committee size of 0.4n,
all of our experiments are completed within 50 seconds (the
highest occurs when n = 500). If we choose a committee
size of 0.2n, the experiments are completed within 30
seconds. For n = 200, the latency and peak throughput of
Pando (0.2) are 4.9 seconds and 2,812 ktx/sec, respectively.
This result is achieved with a batch size of around 80,000.
As there are 200 replicas in total, 16,000 ktx are proposed
so such a throughput is thus expected.
Scalability and latency breakdown. We report the peak
throughput of Pando for n = 100 to 500 in Figure 4k. The
throughput degrades significantly as n grows. We believe
this is mainly because of the high communication cost and
we started to meet the error of “connection refused” for
n > 300. To further assess the results, we report the latency
breakdown of the transmission process and the consensus
process in Figure 4l. An interesting finding is that when
n is large enough (in our case n ≥ 100), the latency of
the consensus process is even higher than the transmission
process. This is mainly because the size of the certificate
is very large as we instantiate each QC using a set of
signatures. We believe this overhead can be further reduced
using approaches such as aggregate signatures.
Experiments using 1,000 replicas. We conducted experi-
ments using 1,000 replicas and were not able to obtain any
throughput using the same m5.xlarge VMs. We thus used
different types of VMs to run the protocol. As summarized
in Figure 4o, unlike small-scale experiments in which the
CPU is usually the bottleneck, the network bandwidth is
the bottleneck of the system for our 1,000-replica exper-
iments. For VMs with higher network bandwidth (e.g.,
m5n.2xlarge instance with 8 vCPU, 32GB memory, and
up to 25 Gbps bandwidth), we were able to launch the
experiments and Pando achieves a throughput of up to 62.57
ktx/sec. For VM with better configuration but lower net-
work bandwidth (e.g., c5.4xlarge instance with 16 vCPU,
32GB memory, and up to 10 Gbps bandwidth), Pando only
achieves a throughput of 1.6 ktx/sec, as we were not able
to run the experiments with a larger batch size (again due
to the “connection refused” errors).

8. Conclusion

We present Pando, the first practical and scalable
BFT from committee sampling. To this end, we have
provided new communication-efficient and computation-
efficient building blocks for BFT, including block transmis-
sion, atomic broadcast, and state transfer—all of which are
of independent interest.

References

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and
J. Yellick, “Hyperledger fabric: A distributed operating system for
permissioned blockchains,” in EuroSys, 2018.

13

[2] E. Buchman, “Tendermint: byzantine fault tolerance in the age of
blockchains,” 2017.

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[4] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in CCS. ACM,
2016, pp. 17–30.

[5] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: A fast
blockchain protocol via full sharding,” in CCS, 2018, pp. 931–948.

[6] S. Rahnama, S. Gupta, R. Sogani, D. Krishnan, and M. Sadoghi,
“Ringbft: Resilient consensus over sharded ring topology,” in EDBT,
2022, pp. 2:298–2:311.

[7] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Scaling byzantine fault-tolerant replication
to wide area networks,” in DSN. IEEE, 2006, pp. 105–114.

[8] T. Crain, C. Natoli, and V. Gramoli, “Red belly: A secure, fair and
scalable open blockchain,” in Symposium on Security. IEEE, 2021,
pp. 466–483.

[9] C. Stathakopoulou, T. David, M. Pavlovic, and M. Vukolic, “[solu-
tion] mir-bft: Scalable and robust BFT for decentralized networks,”
J. Syst. Res., vol. 2, no. 1, 2022.

[10] C. Stathakopoulou, M. Pavlovic, and M. Vukolić, “State-machine
replication scalability made simple (extended version),” in Eurosys,
2022.

[11] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Narwhal and tusk: a dag-based mempool and efficient bft consen-
sus,” in Eurosys, 2022, pp. 34–50.

[12] N. Giridharan, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman,
“Bullshark: DAG BFT protocols made practical,” in CCS, 2022.

[13] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-ng:
Fast asynchronous bft consensus with throughput-oblivious latency,”
in CCS, 2022.

[14] S. Duan, H. Zhang, X. Sui, B. Huang, C. Mu, G. Di, and X. Wang,
“Dashing and star: Byzantine fault tolerance from weak certificates,”
in Eurosys, 2024.

[15] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-NG:
Fast asynchronous bft consensus with throughput-oblivious latency,”
in CCS, 2022, pp. 1187–1201.

[16] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM (JACM), vol. 35, no. 2,
pp. 288–323, 1988.

[17] E. Boyle, R. Cohen, and A. Goel, “Breaking the o(
√

n)-bit barrier:
Byzantine agreement with polylog bits per party,” in PODC, 2021,
pp. 319–330.

[18] V. King and J. Saia, “Breaking the o(n2) bit barrier: scalable byzan-
tine agreement with an adaptive adversary,” Journal of the ACM
(JACM), vol. 58, no. 4, p. 18, 2011.

[19] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren,
and E. Shi, “Communication complexity of byzantine agreement,
revisited,” in PODC, 2019, pp. 317–326.

[20] T.-H. H. Chan, R. Pass, and E. Shi, “Sublinear-round byzantine
agreement under corrupt majority,” in PKC, 2020, pp. 246–265.

[21] G. Tsimos, J. Loss, and C. Papamanthou, “Gossiping for
communication-efficient broadcast,” in CRYPTO, 2022.

[22] E. Blum, J. Katz, C.-D. Liu-Zhang, and J. Loss, “Asynchronous
byzantine agreement with subquadratic communication,” in TCC.
Springer, 2020, pp. 353–380.

[23] A. Bhangale, C.-D. Liu-Zhang, J. Loss, and K. Nayak, “Efficient
adaptively-secure byzantine agreement for long messages,” in Asi-
acrypt. Springer, 2022, pp. 504–525.

[24] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” TOCS, vol. 20, no. 4, pp. 398–461, 2002.

[25] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of BFT protocols,” in CCS, 2016, pp. 31–42.

[26] M. K. Reiter, “Secure agreement protocols: Reliable and atomic group
multicast in rampart,” in CCS, 1994, pp. 68–80.

[27] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable
and secure distributed programming. Springer Science & Business
Media, 2011.

[28] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in PODC,
2019.

[29] X. Wang, S. Duan, J. Clavin, and H. Zhang, “Bft in blockchains: From
protocols to use cases,” ACM Computing Surveys (CSUR), 2022.

[30] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making BFT protocols
really adaptive,” in IPDPS. IEEE, 2015, pp. 904–913.

[31] J. Li and D. Maziéres, “Beyond one-third faulty replicas in byzantine
fault tolerant systems.” in NSDI, 2007.

[32] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine
replication with high throughput and embedded reconfiguration,” in
OPODIS, 2014, pp. 91–106.

[33] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: a
scalable and decentralized trust infrastructure,” in DSN. IEEE, 2019,
pp. 568–580.

[34] S. Duan and H. Zhang, “Foundations of dynamic bft,” in Security
and Privacy (SP), 2022, pp. 1317–1334.

[35] X. Sui, S. Duan, and H. Zhang, “Marlin: Two-phase BFT with
linearity,” DSN, 2022.

[36] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback,” in FC, 2022, p. 296–315.

[37] N. Giridharan, F. Suri-Payer, M. Ding, H. Howard, I. Abraham, and
N. Crooks, “Beegees: Stayin’ alive in chained BFT,” in PODC, 2023,
pp. 233–243.

[38] X. Sui, S. Duan, and H. Zhang, “BG: A modular treatment of BFT
consensus,” TIFS, 2024.

[39] S. Duan, K. Levitt, H. Meling, S. Peisert, and H. Zhang, “ByzID:
Byzantine fault tolerance from intrusion detection,” in SRDS. IEEE,
2014, pp. 253–264.

[40] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, “Damysus: stream-
lined bft consensus leveraging trusted components,” in Eurosys, 2022,
pp. 1–16.

[41] R. Neiheiser, M. Matos, and L. Rodrigues, “Kauri: Scalable bft
consensus with pipelined tree-based dissemination and aggregation,”
in SOSP, 2021, pp. 35–48.

[42] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling byzantine agreements for cryptocurrencies,” in SOSP,
2017, pp. 51–68.

[43] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theoretical Computer Science, vol. 777, pp. 155–183, 2019.

[44] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,”
arXiv preprint arXiv:2003.03052, 2020.

[45] D. Larimer, “Delegated proof-of-stake (dpos),” 2014.

[46] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure
multi-party computation,” in STOC, 1996, pp. 639–648.

[47] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin, “Ef-
ficient multiparty computations secure against an adaptive adversary,”
in Eurocrypt. Springer, 1999, pp. 311–326.

[48] C. Liu, S. Duan, and H. Zhang, “Epic: Efficient asynchronous bft
with adaptive security,” in DSN, 2020.

14

[49] H. Zhang, C. Liu, and S. Duan, “How to achieve adaptive security
for asynchronous bft?” UPDC, vol. 169, pp. 252–268, 2022.

[50] J. Sousa, E. Alchieri, and A. Bessani, “State machine replication for
the masses with bft-smart,” in DSN, 2014, pp. 355–362.

[51] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” JACM, vol. 32, no. 2,
pp. 374–382, 1985.

[52] H. Zhang and S. Duan, “PACE: Fully parallelizable bft from repro-
posable byzantine agreement,” in CCS, 2022.

[53] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols.” in CCS, 2020.

[54] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding
dumbo: Pushing asynchronous bft closer to practice,” NDSS, 2022.

[55] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous bft
made practical,” in CCS. ACM, 2018, pp. 2028–2041.

[56] S. Duan, X. Wang, and H. Zhang, “Practical signature-free asyn-
chronous common subset in constant time,” in CCS, 2023.

[57] H. Zhang, S. Duan, B. Zhao, and L. Zhu, “Waterbear: Practical asyn-
chronous bft matching security guarantees of partially synchronous
bft,” in Usenix Security, 2023.

[58] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you
need is DAG,” in PODC. ACM, 2021, pp. 165–175.

[59] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in CRYPTO. Springer,
2001, pp. 524–541.

[60] Narwhal and Tusk, “Narwhal and tusk,” 2021. [Online]. Available:
https://github.com/MystenLabs/narwhal

Appendix A.
Proof of Correctness

A.1. The Transmission Process

(Chernoff Upper Tail Bound). Suppose {Xn} is the
independent {0, 1}-random variables, and X =

∑
i Xi.

Then for any τ > 0:

Pr (X ≥ (1 + τ)E(X)) ≤ exp

(
−τ ·min{τ, 1} · E(X)

3

)
Lemma 1. Let α = 1

3−ϵ be the fraction of faulty replicas in
the system and ϵ is a small constant where 0 < ϵ ≤ 1

3 , δ be
the desired failure probability. If the number of the replicas
in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ), then with

probability 1−negl(κ), the number of faulty replicas in the
committee is less than t = κ/3 and the number of correct
replicas in the committee is more than 2κ/3.

Proof. We model the committee election process as a c-
times independent and repeated experiment, where c is
the size of the committee; in the one-time experiment, a
determinate replica is chosen randomly to be a committee
member. This is equivalent to the process in which each
replica calls ComProve() to check whether it is a com-
mittee member. Suppose Pi be the determinate committee
member chosen in the i-th experiment, it is either correct
or corrupt. Let the random variable Xi be 1 if Pi is faulty
and Xi be 0 otherwise. Since n is sufficiently large, a faulty
replica is chosen for the committee in a single experiment

x 1 0
Pr(Xi = x) α 1− α

TABLE 3: Distribution of random variable Xi.

with a fixed probability α, so Pr (Xi = 1) = α, for each
i = 1, 2, · · · , c, as shown in Table 3.

Let the random variable Y such that Y = X1 + · · · +
Xc. Then Y represents the total number of faulty replicas
chosen in the c-times independent and repeated experiments.
Based on the above analysis and probability theory, we have
E(Y) = αc. According to the Chernoff Bound, we have

Pr
(
Y ≥ c

3

)
= Pr (Y ≥ (α+ ϵ)c)

= Pr
(
Y ≥ (1 +

ϵ

α
)E(Y)

)
≤ exp{−ϵ2E(Y)

3α2
}

= exp{−cϵ2

3α
}

≤ δ (since c ≥ 3α

ϵ2
log

1

δ
)

The failure probability of the protocol δ is a negligible
function in some statistical security parameters. As a special
case, assuming that ϵ is a arbitrarily small positive constant,
0 < ϵ < 1

3 and the mining difficulty parameter is pmine =
3α
ϵ2n ln 1

δ , then δ = e−ω(log κ) would be a negligible function.
The lemma thus holds.

Corollary 1. Let α∗ be the fraction of correct replicas in the
system that holds some value v. If we sample a committee
of 3α

ϵ2 ln 1
δ = O(κ) size, α∗κ committee members hold value

v with probability 1− negl(κ).

Lemma 2. In the transmission process, if Pi receives κ− t
signatures from committee Ci

t,e for (e, h, i), then with prob-
ability 1 − negl(κ), at least f + 1 correct replicas in the
system have received the proposed message M from Pi and
the hash of M is h.

Proof. Towards a contradiction, we assume fewer than f+1
correct replicas have received M . Suppose at most f <
(1/3− ϵ)n correct replicas in the system have received the
proposed message M from Pi, and the hash of M is h. After
these correct replicas call ComProve(), fewer than (1/3−
ϵ)κ replicas in Ci

t,e have received M since pmine = κ/n.
According to Lemma 1, there are at most κ/3 faulty replicas
in Ci

t,e with probability 1−δ. If Pi receives κ− t signatures
from Ci

t,e for (e, h, i), at least κ− t = 2κ/3 replicas in Ci
t,e

have received M . This leads to a contradiction as there are
only κ replicas in the committee. The lemma thus holds.

Corollary 2. In epoch e of the consensus process, given that
each committee has at most t faulty replicas, the following
holds: 1) if a correct replica receives κ − t (PREPARE)
messages with hash h from C2

c,le, at least f + 1 correct
replicas in the system have received the (PROPOSE) message
where the proposed block b satisfies hash(b) = h. 2) if a
correct replica receives κ− t (COMMIT) messages with hash

15

https://github.com/MystenLabs/narwhal

h from C3
c,le, at least f + 1 correct replicas in the system

have received κ (PREPARE) messages from C2
c,le and set their

lockedQC to qc for (2, h, le).

Lemma 3. Let α = 1
3 − ϵ be the fraction of faulty replicas

in the system, δ be the desired failure probability and ϵ be a
small constant and 0 < ϵ < 1

3 . If the number of the replicas
in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ), then with

probability 1− 2+3ϵ
1−3ϵ ·δ

3−9ϵ
ϵ , there exists at least one correct

replica in the committee.

Proof. We bound the probability that there exists at most
one correct replica in each committee. Since n is sufficiently
large, the probability that one faulty replica be elected as
a committee member is α = 1

3 − ϵ (correspondingly, the
probability that one correct replica is elected as a committee
member is 1−α = 2

3+ϵ). Let c the the size of the committee.
Then the probability that no more than one correct replica
is elected as a committee member is:

(
1

3
− ϵ

)c

+ c ·
(
2

3
+ ϵ

)
·
(
1

3
− ϵ

)c−1

=

(
1

3
(1− 3ϵ)

)c

+ c · 2 + 3ϵ

1− 3ϵ
·
(
1

3
(1− 3ϵ)

)c

=
1

3c
· (1− 3ϵ)

c
+

c

3c
· 2 + 3ϵ

1− 3ϵ
· (1− 3ϵ)

c

≤2c

3c
· 2 + 3ϵ

1− 3ϵ
· (1− 3ϵ)

c

≤2 + 3ϵ

1− 3ϵ
· (1− 3ϵ)

3α
ϵ2

ln 1
δ (since c =

3α

ϵ2
ln

1

δ
)

≤2 + 3ϵ

1− 3ϵ
· exp

(
−9α

ϵ
ln

1

δ

)
=
2 + 3ϵ

1− 3ϵ
· δ

3−9ϵ
ϵ

=O
(
δ

3−9ϵ
ϵ

)

Lemma 4. Let α = 1
3 − ϵ be the fraction of faulty replicas

in the system, δ be the desired failure probability, and ϵ be
a small constant where 0 < ϵ < 1

3 . If the number of the
replicas in the committee is greater than 3α

ϵ2 ln 1
δ = O(κ),

then with probability 1 − δ
1
9
−ϵ2

ϵ2 , there exist at least t + 1
correct replicas in the committee where t = κ/3.

Proof. We bound the probability that there are no more than
κ/3 + 1 correct replicas in the committee. Since n is suffi-
ciently large, the probability that one faulty replica is elected
as a committee member is α = 1

3 − ϵ (correspondingly, the
probability that one correct replica is elected as a committee
member is 1 − α = 2

3 + ϵ). Let c be the committee size.

Then the probability that there are no more than c/3 + 1
correct replicas in the committee is:

Pr

(
Y ≥ 2c

3

)
= Pr

(
Y ≥ (α+

1

3
+ ϵ)c

)
= Pr

(
Y ≥ (1 +

1
3 + ϵ

α
)E(Y)

)
≤ exp{−

(13 + ϵ)E(Y)

3α
}

= exp{−
(13 + ϵ)c

3
}

≤ δ
1
9
−ϵ2

ϵ2 (since c ≥ 3α

ϵ2
log

1

δ
)

Corollary 3. In the transmission process, if Pi receives κ−t
signatures from committee Ci

t,e for the tuple (e, h, i), the
probability that none of correct committee members have

received M is δ
1
9
−ϵ2

ϵ2 .

Lemma 5. In the transmission process for any epoch e, if a
QC qcj is formed where Pj is the sender, with the probability
of 1−negl(κ), at least f +1 correct replicas have received
the proposal from Pj .

Proof. The probability that t+1 correct committee members
in Cj

t,e have received the proposal from Pj is the same as the
fact that there exist fewer than κ− t correct replicas in the
committee. According to Lemma 1, the probability is 1− δ
and δ is a negligible function. Then following an argument
similar to that for Lemma 2, this lemma holds.

Lemma 6. Assuming that at least f + 1 correct replicas
have received a proposal from Pj , with the probability of
1− negl(κ), the state transfer fails such that some correct
replicas fail to receive the proposal from Cj

s,e.

Proof. State transfer fails if the committee Cj
s,e does not

have any correct replica that has previously received the
proposal from Pj . The probability is the same as that there

are fewer than t+ 1 correct replicas in Cj
s,e, i.e., δ

1
9
−ϵ2

ϵ2 by
Lemma 4, a negligible function.

A.2. The Consensus Process

Lemma 7. If a correct replica Pi receives κ− t matching
messages from C3

c,e in epoch e, the (PROPOSE, b, e′, qchigh)
message by a correct leader in epoch e′ > e satisfies
height(qchigh) ≥ e. Additionally, at least t + 1 correct
replicas in C2

c,e′ accept the (PROPOSE) message only if
height(qchigh) ≥ e.

Proof. We know that Pi receives κ− t matching messages
from C3

c,e. According to Corollary 2, at least f + 1 correct
replicas in the system have set their lockedQC to a QC qc
for (2, h, e). Now, in any epoch e′ > e, at the beginning of
epoch e′, a committee C1

c,e is sampled, and the committee
members send their lockedQC to the leader. According to
Corollary 1, the leader will receive the QC and update its

16

qchigh accordingly. If the leader provides qchigh, the height
of which is lower than e, at least f + 1 correct replicas in
the system have set their lockedQC to qc. According to
Corollary 1, at least t + 1 correct replicas in C2

c,e will not
accept the (PROPOSE) message. The lemma thus follows.

Lemma 8. If a correct replica Pi has received κ− t match-
ing (COMMIT) messages from C3

c,e in epoch e, in which the
QC is for (2, h, e), any correct replica eventually receives
a QC for (2, h, e).

Proof. As Pi has received κ − t matching (COMMIT) mes-
sages from C3

c,e for (2, h, e), at least κ− 2t ≥ t+1 correct
replicas have sent (COMMIT) messages. According to our
protocol, every replica in C3

c,e that has not sent a (COMMIT)
message will also send a (COMMIT) message after receiving
t+1 matching messages. Therefore, Pj eventually receives
κ − t matching (COMMIT) messages and obtains a QC for
(2, h, e).

Theorem 1 (Safety). Let the probability that each committee
has more than t faulty replicas be δ and the probability that
the hash function is not collision-resistant be 0. If a correct
replica a-delivers a message m before a-delivering m′, then
with probability 1− O(δ2), no correct replica a-delivers a
message m′ without first a-delivering m.

Proof. As the input of each epoch is a set of QCs and correct
replicas only a-deliver messages sequentially, no correct
replica will a-deliver any value m that has already been
a-delivered.

Now we assume that a correct replica Pi a-delivers m
in epoch e1 and a-delivers m′ in epoch e2 and e2 > e1.
Another correct replica Pj a-delivers m in e′1 and m′ in e′2
and e′2 < e′1. We prove the correctness by contradiction.

Without loss of generality, we assume e1 < e′2 (the
correctness follows vice versa). We show that if Pi a-
delivers m in epoch e1, Pj also a-delivers m′ in e1, m = m′.

If Pi a-delivers m, there are two cases: Case 1) Pi has
received κ− t matching signatures for (2, h, e1) from C3

c,e1
in epoch e1, where h is the hash of m; Case 2) Pi has a-
delivered some value in epoch e′ > e1 and then a-delivers
m via the ObtainMissing() function. Similarly, if Pj a-
delivers m′, there are two cases: Case 3) Pj has received
κ−t matching signatures for (2, h′, e1) from C3

c,e1 in epoch
e1, where h′ is the hash of m′; Case 4) Pj has a-delivered
some value in epoch e′′ > e1 and then a-delivers m via the
ObtainMissing() function. In the following, we show that
in any combination of the two cases, m = m′.
Case-1: Case 1 (for Pi) and Case 3 (for Pj). As the
committee C3

c,e1 has κ replicas among which at most κ/3
replicas are faulty with probability 1−negl(κ), at least one
correct replica has sent a signature for both (2, h, e1) and
(2, h′, e1), a contradiction. Additionally, according to the
collision-resistance of the hash function, m = m′.
Probability of safety violation for Case-1: According
to the definition, a correct replica in C3

c,e1 will never
send signatures for inconsistent values. Pi receives κ − t
matching messages for (2, h, e1) from C3

c,e1 . Let the set

of κ − t replicas that send matching (COMMIT) messages
be S1. Meanwhile, Pj receives κ − t matching messages
for (2, h′, e1) from C3

c,e1 . Let the set of replicas that send
κ− t matching messages be S2. According to the proof in
Theorem 1, a safety violation occurs only when S1 or S2

has fewer than κ− 2t correct replicas.
There are two sub-cases if safety is violated: 1) none of

S1 or S2 has any correct replicas; 2) there is at least one
correct replica Pk in S1 and there is at least one correct
replica Pℓ in S2 and k ̸= ℓ.

For sub-case 1 (Case-1-SC1), faulty committee members
can already cause a safety violation. The probability SC1
occurs only if the C3

c,e1 committee has fewer than t + 1
correct replicas. By Lemma 4, the probability of safety

violation of sub-case 1 is: Pr(Case-1-SC1) = δ
1
9
−ϵ2

ϵ2 .
We now analyze sub-case 2 (Case-1-SC2). First, this

case causes a safety violation only if there are fewer than
κ− t correct replicas so the probability is p1 = δ.

Second, we analyze the probability that sub-case 2 leads
to a safety violation. Since Pk has sent a (COMMIT) message
for (2, h, e1), it has previously received κ − t matching
(PREPARE) messages for (1, h, e1) from C2

c,e1 . Let the set
of replicas be S3. Meanwhile, as Pℓ has sent a (COMMIT)
message for (2, h′, e1), it has previously received κ − t
matching (PREPARE) messages for (1, h′, e1) from C2

c,e1 . Let
the set of replicas be S4. The probability that there does
not exist a correct replica in S3 ∩ S4 is the same as the
probability that the C2

c,e1 committee has fewer than κ − t
correct replicas, i.e., p2 = δ.

Put them together, the probability that sub-case 2 leads
to a safety violation is: Pr(Case-1-SC2) ≤ p1p2 = δ2.

The probability that Case-1 leads to a safety violation is
then:

Pr(Case-1) = Pr(Case-1-SC1) + Pr(Case-1-SC2)

≤ δ
1
9
−ϵ2

ϵ2 + δ2.

Case-2: Case 1 (for Pi) and Case 4 (for Pj). If Pj a-
delivers some value m′′ in epoch e′′ > e1, m′′ consists of
proposals between the height of qchigh (in the (PROPOSE)
message) and e′′. We first show that the height(qchigh) ≥
e1. Then, we show that Pj will eventually receive a QC for
epoch e1in the ObtainMissing() function and then a-deliver
m′. Finally, we show m = m′.

We begin with height(qchigh) ≥ e1. If Pi receives κ− t
matching (COMMIT) messages in epoch e1, by Lemma 7, in
the proposal of any epoch greater than e1, at least t + 1
correct replicas will not accept a (PROPOSE) message for
height(qchigh) < e1 with probability 1 − negl(κ). Now,
assume that when Pj a-delivers some value in epoch e′′,
the height of the qchigh in the (PROPOSE) message is lower
than e1. Therefore, at least κ − t replicas in C2

c,e′′ have
accepted the (PROPOSE) message and created a signature.
This is a violation as at least t+1 correct replicas in C2

c,e′′

will not accept the message.
We now show that Pj eventually obtains a QC for

(2, h, e1) for epoch e1 in the ObtainMissing() function.

17

According to Lemma 8, Pj eventually obtains a QC for
(2, h, e1). After that Pj has either received m′ from the
leader such that the hash of m′ is h, or synchronized m′

from other replicas.
According to the collision-resistance of the hash func-

tion, m = m′.
Probability of safety violation for Case-2: Pi receives
κ − t matching (COMMIT) messages from C3

c,e1 in epoch
e1. Additionally, Pj a-delivers some value in epoch e′′ and
the height of the qchigh in the (PROPOSE) message is lower
than e1. At least κ − t replicas in C2

c,e′′ have accepted the
(PROPOSE) message with qchigh. Among them, fewer than
κ− 2t are correct. In a partially synchronous environment,
the probability that this occurs is the same as the probability
that C2

c,e′′ has fewer than κ− t correct replicas, i.e., p1 = δ.
There are three sub-cases for C3

c,e1 in epoch e1: there
are fewer than t + 1 correct replicas in C3

c,e1 ; there are at
least κ − t correct replicas in C3

c,e1 ; there are fewer than
κ− t correct replicas in C3

c,e1 . The probability of the three

sub-cases is δ
1
9
−ϵ2

ϵ2 (by Lemma 4), 1− δ, δ, respectively.
Sub-case 1 (Case-2-SC1) directly leads to a safety viola-

tion. By Lemma 4, the probability that there are fewer than

t + 1 correct replicas in C3
c,e1 is: δ

1
9
−ϵ2

ϵ2 . Meanwhile, any
committee C∗

c,e for e1 < e < e′′ has at least κ − t correct
replicas. The probability that each C∗

c,e has at least κ − t
correct replicas is 1 − δ. Together with the case that there
are fewer than κ−t correct replicas in C2

c,e′′ , the probability
that SC1 leads to a safety violation is:

Pr(Case-2-SC1) < p1 · δ
1
9
−ϵ2

ϵ2

= δ
1
9
ϵ2 .

For sub-case 2 (Case-2-SC2), Pi receives κ−t matching
(COMMIT) messages for (2, h, e1). Among them, at least κ−
2t messages are sent by correct replicas. Any correct replica
Pk in the κ− 2t set has received κ− t matching (PREPARE)
messages for (1, h, e1). According to Corollary 2, at least
f + 1 correct replicas receive κ − t matching (PREPARE)
messages for (1, h, e1). According to the protocol, these f+
1 correct replicas will not vote for qchigh. Therefore, sub-
case 2 leads to a safety violation when 1) C2

c,e′′ has fewer
than κ− t correct replicas; 2) there are at least κ− t correct
replicas in C3

c,e1 ; 3) there are fewer than κ−t correct replicas
in C2

c,e1 ; 4) Any committee C∗
c,e for e1 < e < e′′ has at

least κ − t correct replicas. The probability of 1), 2), 3)
is δ, 1 − δ, δ, respectively. Therefore, the probability that
sub-case 2 leads to a safety violation is:

Pr(Case-2-SC2) < δ(1− δ)δ = δ2(1− δ) < δ2.

Sub-case 3 (Case-2-SC) leads to a safety violation when
both sub-case 3 occurs and there are fewer than κ−t correct
replicas in C2

c,e′′ . Meanwhile, any committee C∗
c,e for e1 <

e < e′′ has at least κ− t correct replicas. Therefore,

Pr(Case-2-SC3) < δ2.

To conclude, the probability that Case-2 leads to a safety
violation is:

Pr(Case-2) = Pr(Case-2-SC1) + Pr(Case-2-SC2)

+ Pr(Case-2-SC3)

< δ
1
9
ϵ2 + δ2 + δ2 = O(δ2).

Case-3: Case 2 (for Pi) and Case 3 (for Pj). Correctness
is similar to Case-1 (i.e.,case 1 for Pi and case 4 for Pj)
and we omit the details here.
Probability of safety violation for Case-3: The analysis
for this case is similar to that for Case-1 and we omit the
details.
Case-4: Case 2 (for Pi) and Case 4 (for Pj). Both Pi and
Pj a-deliver some value in epoch greater than e1. Here,
there are two sub-cases: 1) at least one correct replica Pℓ

has received κ− t (COMMIT) messages in epoch e1; 2) none
of the correct replicas has received κ−t (COMMIT) messages
in epoch e1. In the first sub-case, we know that the height
of qchigh in the (PROPOSE) message by a correct leader for
any epoch greater than e1 must be greater than e1 according
to Lemma 7. In this case, since e′ > e1 and e′′ > e1, the a-
delivered message will not consist of any value for epoch e1.
According to Lemma 8, both Pi and Pj eventually receive
the same qc for epoch e1. It is then not difficult to see that
m = m′. In the second sub-case, the case is identical to
case 1 for some correct replicas and case 3 for some correct
replicas. It is then not difficult to see that m = m′.

As Pj a-delivers m in epoch e1, e1 = e′1. We also know
that Pj a-delivers m′ in e′2 and Pi a-delivers m′ in epoch e2.
Therefore, e′2 < e2. Following a similar argument as above,
we know that if Pj a-delivers m′ in e′2, Pi must have a-
delivered m′ in e′2 as well, a contradiction with e′2 < e2.
Probability of safety violation for Case-4: The analysis
for this case is similar to that for Case-2 and we omit the
details.

Lemma 9. In every epoch e, if at least one correct replica
Pi receives κ − t (COMMIT, h, e,−) messages with the
same h, every correct replica Pj eventually receives κ − t
(COMMIT, h, e,−) messages.

Proof. We assume that ∆ is properly set up. If a correct
replica Pi receives κ−t (COMMIT, h, e,−) messages with the
same h, the messages are sent from committee members in
C3

c,e. As the committee C3
c,e has at least t+1 correct replicas,

all correct replicas will eventually receive t + 1 (COMMIT)
messages with the same h and any correct replica that has
not sent a (COMMIT) message will send one to all replicas.
Therefore, every correct replica Pj eventually receives κ− t
(COMMIT, h, e,−) messages.

Lemma 10. In every epoch e, if at least one correct replica
Pi receives κ− t (COMMIT, h, e,−) messages with the same
h, for the block b proposed by the leader (the hash of b is
h and the QCs with the lowest epoch number in b is e′),

18

at least one correct replica has already a-delivered some
values in any epoch lower than e′.

Proof. If at least one correct replica Pi receives κ − t
(COMMIT, h, e,−) messages with the same h, at least t+ 1
replicas in C2

c,e have sent (PREPARE) messages with the same
h, among which at least one is correct. According to the
IsValid(b) function, every correct replica in C2

c,e sends a
(PREPARE) message only if it has completed every epoch
lower than e′. The lemma thus holds.

Lemma 11. If a correct replica Pi queries
ObtainMissing(ce, le,m), the function eventually returns
some m.

Proof. Pi iterates every e ∈ [ce, le] and there are two cases:
some QCs We has already been included in m; QCs are
not included in m. For the first case, m[e] is set as We.
We now focus on the second case. In this case, Pi has not
completed epoch e, but the proposer (leader in epoch le)
believes that epoch e has already been completed. Here,
Pi simply waits for the proposal of epoch e, and we show
that Pi eventually obtains the proposed block b. According
to Lemma 10, at least one correct replica has completed
epoch e. Furthermore, according to Lemma 9, Pi eventually
receives κ− t matching (COMMIT, h, e,−) messages. Based
on the hash value h, Pi is able to obtain the original proposal
b (possibly synchronized from other replicas).

Theorem 2 (Liveness). Let the probability that each com-
mittee has more than t faulty replicas be δ. If a correct
replica a-broadcasts a message m, then all correct replicas
eventually a-deliver m with probability 1 − δ2E , where E
is an epoch number.

Proof. If a correct replica Pi a-broadcasts a message m in
epoch e, it has received κ − t (COMMIT, h, e,−) messages
with the same h. According to Lemma 9, any correct replica
eventually receives κ − t (COMMIT, h, e,−) messages with
the same h. Furthermore, Pi either directly a-delivers some
value or obtains some value from the ObtainMissing()
function. According to Lemma 11, every correct replica
eventually obtains some m. The collision resistance of the
hash function ensures that the value of every correct replica
a-delivers is m.

Consider the case where the leader is correct and the
leader proposes m in epoch e, liveness is violated only if
none of C2

c,e and C3
c,e have at least κ − t correct replicas.

By Lemma 1, the probability of this case is δ2.
According to the protocol, replicas will move to a new

view if replicas do not a-deliver any value in epoch e. We
also additionally require every correct leader to propose a
value for epoch e even if it enters a new epoch e′ > e.
Without loss of generality, assuming that the correct leader
proposes m in epoch 1 and every correct leader continues to
propose m if m has not been a-delivered yet. After GAT, the
probability that m is not a-delivered is therefore bounded
by δ2E , where E is the number of epochs after m was
submitted and the leader in these epochs are correct.

Appendix B.
Complexity Analysis

We discuss the communication complexity of Pando.

Lemma 12. The communication complexity of the transmis-
sion process is O(Ln2 + κ2n2).

Proof. The communication complexity of this process is
bounded by the function InitEpoch(e), where the leader Pi

sends a message (PROPOSAL, e,M, qci) to all replicas. Each
qci consists of κ digital signatures so the length is O(κ2). As
there are n such instances, the communication complexity
is shown as follows.

n∑
i=1

O
(
n(L+ κ2)

)
= O(Ln2 + κ2n2)

Lemma 13. The communication complexity of our atomic
broadcast protocol is O(|M |n+κ2n), where |M | is the size
of input. The communication complexity of the consensus
process in Pando is O(κ2n2).

Proof. In the (NEW-VIEW) phase, κ committee replicas send
their lockedQC to the leader. The size of lockedQC is κ2,
so the communication of this phase is O(κ3).

In the (PROPOSE) phase, the leader broadcasts its pro-
posal M and the evidence of its identity (VRF evaluation),
and a QC to all replicas. The length of the VRF evaluation
is O(κ) and the length of the QC is O(κ2), so the commu-
nication is O(|M |n+ κ2n+ κ3).

In the (PREPARE) and (COMMIT) phases, κ replicas broad-
cast their signatures to n replicas, so the communication is
O(κ2n).

The communication complexity of the atomic broadcast
protocol is thus O(|M |n+κ2n+κ3). As we consider n > κ,
the complexity is O(|M |n+ κ2n).

Using the atomic broadcast protocol in the consensus
process, the input consists of n− f QCs and the length of
each QC is O(κ2). Therefore, the communication complex-
ity is thus O(κ2n2).

Lemma 14. The communication complexity of state transfer
protocol is O(Lκn2 + κ2n2).

Proof. In the state transfer process, κ replicas are sampled
for each j and each sampled replica sends a proposal
and a VRF evaluation to all replicas. The communication
complexity is shown as follows.

n∑
i=1

O (κn(L+ κ)) = O(Lκn2 + κ2n2)

19

Appendix C.
Safety and Liveness of Pando

Theorem 3 (Safety). Let the probability that each committee
has more than t faulty replicas be δ. If a correct replica de-
livers a transaction tx before delivering tx′, then no correct
replica delivers a transaction tx′ without first delivering tx
with probability 1−O(δ2).

Proof. Safety of atomic broadcast (i.e., consensus process)
ensures that any correct replica a-delivers a set of QCs in
every epoch. For any qcj , every correct replica obtains M ,
the hash of which is h according to Lemma 5. Every correct
replica a-delivers the same set of transactions in O in every
epoch. As correct replicas deliver transactions in O in the
same deterministic order and correct replicas will not deliver
the same transaction twice, the theorem thus holds.

By Theorem 3, the probability that safety is violated for
Pando is the same as that for the atomic broadcast protocol.
By Theorem 1, the probability is O(δ2).

Theorem 4 (Liveness). Let the probability that each com-
mittee has more than t faulty replicas be δ. If a transaction
tx is submitted to all correct replicas, then all correct

replicas eventually deliver tx with probability 1−O(δ
1
9
−ϵ2

ϵ2).

Proof. If a transaction tx is submitted to all correct replicas,
eventually in some epoch, tx will included in the proposal
by at least one correct replica. As the network is eventually
synchronous, the qc for the proposal containing transaction
tx will eventually be received by all correct replicas. At
least n−f QCs will be a-delivered in the consensus process
according to the liveness of atomic broadcast (Theorem 2),
among which at least f + 1 QCs are proposed by correct
replicas. Therefore, it is not difficult to see that tx will be
eventually a-delivered by correct replicas.

Liveness is violated under three cases: 1) No value is
a-delivered in the consensus process; 2) Some value is a-
delivered in the consensus process but no correct replica
has received the corresponding proposal; 3) Some value is
a-delivered in the consensus process, at least one correct
replica has received the proposal, and the state transfer fails.

According to Theorem 2, the probability that no value
is a-delivered in the consensus process is δ2E . If the trans-
action m is a-delivered, liveness is then violated under two
cases: 1) No correct replica has received the corresponding
proposal; 2) At least one correct replica has received the
corresponding proposal, and the state transfer fails.

Given each QC, the probability that no correct replicas

have received the corresponding proposal is p1 = δ
1
9
−ϵ2

ϵ2 by
Corollary 3. Additionally, by Lemma 6, the probability that

state transfer fails is p2 = δ
1
9
−ϵ2

ϵ2 .
Therefore, the probability that liveness is violated for

our protocol is: p1 + (1− p1)p2 = O(δ
1
9
−ϵ2

ϵ2).

20

	Introduction
	Related Work
	System Model and Building Blocks
	Building Blocks

	Motivation and Overview
	Review of Existing De-coupling Approaches
	The Scalability Bottlenecks
	Technical Overview

	The Pando Protocol
	The Generic Workflow
	The Transmission Process
	The Consensus Process
	State Transfer
	Correctness and Complexity

	Analysis of Probability of Achieving Safety and Liveness
	Implementation and Evaluation
	Conclusion
	References
	Appendix A: Proof of Correctness
	The Transmission Process
	The Consensus Process

	Appendix B: Complexity Analysis
	Appendix C: Safety and Liveness of Pando

