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Abstract. Vector Commitment (VC) enables one to commit to a vector, and then the
element at a specific position can be opened, with proof of consistency to the initial com-
mitment. VC is a powerful primitive with various applications, including stateless cryp-
tocurrency. Recently, matrix commitment Matproofs (Liu and Zhang CCS 2022), as an
extension of VC, has been proposed to reduce the communication and computation com-
plexity of VC-based cryptocurrency. However, Matproofs requires linear-sized public pa-
rameters, and the aggregated proof size may also increase linearly with the number of
individual proofs aggregated. Additionally, the proof updating process involves the third
party, known as Proof-Serving Nodes (PSNs), which leads to extra storage and commu-
nication overhead. In this paper, we first propose a multi-dimensional variant of matrix
commitment and construct a new matrix commitment scheme for two-dimensional matrix,
called 2D-Xproofs, which achieves optimal aggregated proof size without using PSNs. Fur-
thermore, we present a highly maintainable three-dimensional scheme, 3D-Xproofs, which
updates all proofs within time sublinear in the size of the committed matrix without PSNs’
assistance. More generally, we could further increase the matrix dimensionality to achieve
more efficient proof updates. Finally, we demonstrate the security of our schemes, showing
that both schemes are position binding. We also implement both schemes, and the results
indicate that our schemes enjoy constant-sized aggregated proofs and sublinear-sized public
parameters, and the proof update time in 3D-Xproofs is 2.5× faster than Matproofs.

Keywords: Vector commitment · Matrix commitment · Stateless cryptocurrency.

1 Introduction

Vector Commitment (VC) [13,8] allows one to compute a commitment C for a vector m =
(m1,m2, . . . ,mn) and later can generate the opening proofs π1,π2, . . . ,πn for all positions. With
the commitment C and a proof πi, any verifier can check the correctness of the element mi

positioned at i. VC serves as a foundational tool for various applications, including stateless
cryptocurrency. In the VC-based stateless cryptocurrency, instead of storing the entire ledger
state (the information of all accounts and historical transactions), the validators only need to
store the commitment of a vector representing the account balances from all cryptocurrency users.
Specifically, when initiating a coin transfer, the payer submits a transaction, showing its account
balance and proving it is adequate. Upon receiving the transaction, the validator checks the
correctness of the balance by using the corresponding balance proof and the account commitment.
If the verification succeeds and the transfer coins are less than the payer’s balance, this transaction
will be stored in a new block. Finally, all accounts synchronize to update their local proofs based
on the new block information.

To achieve a better balance between storage, communication and computation, numerous
VC-based schemes [1,4,9,11,14,17,19,20] have been proposed to meet various properties, such as
conciseness, aggregatable, easily updatable, and maintainable. In particular, Matrix Commitment
(MC) and its instantiated scheme Matproofs, proposed by Liu et al [14], stand out as the only
VC construction that satisfies all properties. However, the size of the aggregated proof is not
constant in Matproofs, either increasing linearly with the number of individual proofs aggregated
or sublinearly with respect to the size of the matrix, i.e. O(min{b,

√
n}), where b is the number of

aggregated proofs and n is the number of committed elements. Recently, BalanceProofs [20], based
on polynomial commitments, achieves a constant size for both individual proofs and aggregated
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Table 1. Comparisons with the existing easily updatable VCs
Scheme pp Individual Aggregated Aggregate Verify aggregated Open all Update all

size proof size proof size proofs time proof time proofs time proofs time
Edrax[9] O(n) O(logn) × × × O(n) O(nlogn)

aSVC[19] O(n) O(1) O(1) O(blog2b) O(blog2b) O(n) O(n)
Pointproofs[11] O(n) O(1) O(1) O(b) O(b) O(nlogn) O(n)
Hyperproofs[17] O(n) O(logn) O(log(blogn)) O(blogn) O(blogn) O(nlogn) O(logn)∗

Matproofs[14] O(n) O(1) O(min{b,
√
n}) O(b+min{

√
n, b}) O(b+min{

√
n, b}) O(nlogn) O(

√
n)∗

BalanceProofs[20] O(n) O(1) O(1) O(blog2b) O(blog2b) O(nlogn) O(
√
nlogn)∗

Two-layer[20] O(n) O(1) O(min{b,
√
n}) O(blog2b) O(blog2b) O(nlogn) O(n1/4logn)∗

2D-Xproofs O(
√
n) O(1) O(1) O(b+min{

√
n, b}) O(b+min{

√
n, b}) O(nlog

√
n) O(

√
n)

3D-Xproofs O(n2/3) O(1) O(1) O(b+min{n1/3, b}) O(b+min{n1/3, b}) O(n2/3logn1/3) O(n1/3)

Note: The number of committed elements is n, and the number of aggregated individual proofs is b. The symbol “∗”
indicates that the process of updating all proofs relies on the assistance of PSNs. The proof size and time complexity are
evaluated by group elements and group exponentiations/field operations, respectively.

proofs. However, in its two-layer varaints scheme, the size of the aggregate proof is still not
constant. Moreover, all existing schemes [9,11,14,17,19,20] require public parameters of linear
size, that is, O(n).

In particular, during the process of updating proofs, two important properties are of concern:
being easily updatable and maintainable. We know that a VC scheme is easily updatable if the up-
date process can be executed for new elements based on the old commitment and proofs, without
needing involvement with the old elements. To alleviate computational burden on cryptocurrency
user, many schemes [14,17,20] utilize the third party Proof-Serving Nodes (PSNs) to update all
proofs. If PSNs enable efficient updates of all proofs within sublinear time, we refer to such VC
schemes as maintainable. However, the use of third-party PSNs may introduce additional storage
and communication overhead, as well as potential security risks, to the stateless cryptocurrency
system. Therefore, making a VC scheme highly maintainable, by eliminating PSNs and improving
proof update efficiency, is highly meaningful.

In this paper, we further explore the design of matrix commitment schemes, aiming to address
the following question:

How to design an easily updatable and highly maintainable commitment scheme without relying
on PSNs, while achieving constant-sized aggregated proofs and sublinear-sized public parameters?

1.1 Our Contributions

In this paper, we provide a positive solution to the above question. We propose new multi-
dimensional matrix commitment schemes, 2D-Xproofs and 3D-Xproofs, which have constant-sized
aggregated proofs and sublinear-sized public parameters. Additionally, both schemes allow cryp-
tocurrency users to efficiently update all proofs only within sublinear time in the matrix size,
without third-party PSNs, when Xproofs serves as the basis for a stateless cryptocurrency. A brief
comparison with previous works is shown in Table 1. In more detail, our main contributions are
summarized as follows:

• We propose a new matrix commitment scheme 2D-Xproofs with optimal proof size and min-
imal public parameter size. Specifically, the individual proofs and aggregated proofs are of
constant size O(1), which consist of only two group elements. The size of public parameters is
sublinear in the size of the committed matrix. In addition, the efficiency of proof updates in
2D-Xproofs without using PSNs closely rivals that of Matproofs [14] when PSNs are employed.
• We further obtain a three-dimensional scheme 3D-Xproofs, which also enjoys constant-sized

aggregated proofs and sublinear-sized public parameters. Furthermore, in the 3D-Xproofs
scheme, the update speed for all proofs is 2.5× faster than Matproofs [14]. In particular, we
could increase the dimensionality further to achieve even more efficient proof updates.
• We provide a security analysis for our schemes, demonstrating that they satisfy position

binding. Additionally, we implement 2D-Xproofs, 3D-Xproofs, and Matproofs [14] and perform
a comprehensive evaluation and comparison. The result demonstrates that our schemes have
optimal communication overhead and improved storage and computation costs compared to
the-state-of-the-art Matproofs [14].
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1.2 Related Work

The vector commitment schemes based on the Merkle tree [15] and k-ary Verkle tree [12] store
messages within its leaf nodes. In the event of a message update, the cost of updating the proof
incurs only O(logn) computational overhead, rendering the scheme maintainable. However, up-
dating the commitment requires the old information of the updated message, making it not easily
updatable. Furthermore, proofs from binary or multi-way Merkle trees are challenging to aggre-
gate, and the proof size is directly linked to the tree’s height.

Vector commitment schemes based on RSA [4,1] of this kind support batch openings for mul-
tiple positions within the vector and can directly generate batch proof for a set of positions. Both
commitment and proof sizes remain constant. However, while proofs generated by this scheme do
support aggregation, the efficiency of aggregation is relatively low and typically necessitates the
utilization of Shamir’s Trick technique. Furthermore, the time complexity for updating all proofs
after a change in a single entry is O(n), thus it is not maintainable. The proofs of the Pointproofs
[11] and the VC of [19] schemes are of constant size and support aggregation. Additionally, both
of these schemes are easily updatable but not maintainable.

Edrax [9] is based on polynomial commitment, which is easily updatable. However the size of
the proofs is not constant, and it is not aggregatable and maintainable. Hyperproofs [17] is based
on the PST commitment [16], which is easily updatable and maintainable. However the size of its
proofs is not constant, and it requires the use of the inner-product argument (IPA) [6] to achieve
proofs aggregation. Balanceproofs [20] is easily updatable, and its basic scheme has a constant
size of individual proof and aggregated proof. Although it achieves sub-linear updates for all
proofs, it is not efficient enough. The two-layer scheme of Balanceproofs improves the efficiency of
updates for all proofs, but the aggregated proofs cannot maintain a constant size. Matproofs [14]
is easily updatable, aggregatable, and maintainable. However, the size of its aggregated proofs is
not constant. Although these schemes [17,14,20] can update all proofs in sublinear time, they all
require the introduction of PSNs. This is because when an entry is updated, it affects the proofs
at all positions. By using PSNs, the shared components of all proofs are calculated only once and
then distributed to all positions. Therefore, it is only by introducing PSNs and increasing certain
communication costs that maintainability can be achieved.

2 Preliminaries

For any n ∈ N, let [n] = {1, 2, ..., n}. Let λ denote the security parameter. Let α denote a vector
of length n. For any position (i, j) ∈ [n]× [n], we denote by Mij the entry corresponding to the
position (i, j) of M. For any S ⊆ [n] × [n], we denote M[S] = {Mij}(i,j)∈S . For any i ∈ [n] and
j ∈ [n], we denote by Mi∗ and M∗j the entries in the same row i and same column j respectively,
and denote α[−i] = α[[n]\{i}].

2.1 Bilinear Pairings

A probabilistic polynomial-time (PPT) algorithm BG(1λ) takes a security parameter λ as input
and outputs a bilinear context bg = (p,G1,G2,GT , e, g1, g2), where G1, G2 and GT are multi-
plicative cyclic groups with prime order p ≈ 2λ, and e : G1 × G2 → GT is a bilinear pairing,
satisfying the following properties:

• Efficiently computable: There is a polynomial-time algorithm to compute e(g1, g2) for all
g1 ∈ G1 and g2 ∈ G2.

• Bilinearity: For any g1 ∈ G1, g2 ∈ G2 and α, β ∈ Zp: e(gα1 , g
β
2 ) = e(g1, g2)

αβ .
• Non-degeneracy: For g1 and g2 being generators of G1 and G2 respectively, holds that:
e(g1, g2) ̸= 1.

2.2 Security Assumptions

ℓ-wBDHE* problem [11]. Let bg = (p,G1,G2,GT , e, g1, g2) ← BG(1λ) be a bilinear context
generated using a bilinear group generator. The ℓ-wBDHE* assumption [3,5,7] states that the
probability of a probabilistic polynomial-time (PPT) adversary successfully solving a variant of
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the weak bilinear Diffie-Hellman exponent problem is negligible. This assumption holds in the
generic bilinear group model, which provides a reasonable level of security for cryptographic
protocols relying on bilinear pairings:

Given : gα1 , g
α2

1 , ..., gα
ℓ

1 , gα
ℓ+2

1 , ..., gα
3ℓ

1 , gα2 , g
α2

2 , ..., gα
ℓ

2 , where α
$← Zp

Compute : gα
ℓ+1

1

The algebraic group model(AGM)[11,14]. Our security proofs adopt an AGM+ROM model,
which combines the algebraic group model (AGM) [10] and the random oracle model (ROM) [2]. In
AGM, adversaries are limited to algebraic operations and have access to group elements, including
their bit representations. However, they can only produce new group elements by applying group
operations to the received elements. Specifically, when given a set of group elements I1, ..., In ∈ G,
the adversary must output the corresponding exponents e1, ..., en ∈ Zp in order to construct a
new group element O =

∏
j = 1nI

ej
j .

In the ROM, cryptographic hash functions are modeled as truly random functions with an
output space Zp. In our protocol, all parties can interact with these hash functions solely through
Oracle queries.

2.3 Matrix Commitment

We extend the matrix commitment cryptographic primitive proposed by Liu et al.[14], which
allows one to commit to a two-dimensional or three-dimensional matrix and generate the opening
proofs for any specific position (i, j) ∈ [n]× [n] or (i, j, k) ∈ [n]× [n]× [n]. A matrix commitment
scheme consists of the following seven algorithms:

• Setup(1λ, 1n): It takes a security parameter λ and the upper limit n for every coordinate in
the two-dimensional or three-dimensional matrix as inputs and then outputs a set of public
parameters, which can be accessed by all subsequent algorithms.
• Commit(M): It takes an n× n two-dimensional or n× n× n three-dimensional matrix M as

inputs and outputs the commitment C.
• UpdateCommit(pos, δ, C): It takes an increment δ for updating the message at any position
pos→ (i, j) ∈ [n]× [n] or pos→ (i, j, k) ∈ [n]× [n]× [n] and current commitment C as inputs,
then outputs the updated commitment C ′.
• Prove(pos,M): It takes any position pos and the messages M as inputs, and outputs a proof
πpos for the entry Mpos.
• UpdateProof(pos1, pos2, δ, πpos2): It takes an increment δ for updating the message Mpos1 at

position pos1, as well as another position pos2 with its corresponding old proof πpos2 as inputs,
and outputs the updated proof π′

pos2
for position pos2.

• AggregateProof(C, S,M[S], {πpos}pos∈S): It takes commitment C, a set of positions S ⊆ [n]×
[n] or S ⊆ [n] × [n] × [n] and their corresponding messages M[S] and proofs {πpos}pos∈S as
inputs, then outputs aggregated proof Ω̂ for M[S].
• Verify(C, S,M[S], Ω̂): It takes commitment C, any positions set S with its corresponding

messages M[S] and their aggregated proof Ω̂ as inputs, and verifies the correctness of the
proof Ω̂ concerning the commitment C.

Definition 1 (Correctness of Opening). For all λ, n > 0, matrix M, and any position pos,

Pr


pp← Setup(1λ, 1n),
C ← Commit(M),
πpos ← Prove(pos,M) :
Verify(C, {pos},Mpos, πpos) = 1

 = 1.

Definition 2 (Correctness of Commitment Update). For all λ, n > 0, matrix M, any
position pos, and incremental updating δ. The value of Mpos is updated to M′

pos = Mpos + δ,

Pr


pp← Setup(1λ, 1n),
C ← Commit(M),
C ′ ← UpdateCommit(pos, δ, C),
C ′′ ← Commit(M′) :
C ′ = C ′′

 = 1.
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Definition 3 (Correctness of Proof Update). For all λ, n > 0, matrix M, any position pos1,
pos2 and incremental updating δ. The value of Mpos1 is updated to M′

pos1
= Mpos1 + δ, Then

Pr


pp← Setup(1λ, 1n),
πpos2 ← Prove(pos2,M),
π′
pos2
← UpdateProof(pos1, pos2, δ, πpos2),

π′′
pos2
← Prove(pos2,M

′) :

π′
pos2

= π′′
pos2

 = 1.

Definition 4 (Correctness of Proof Aggregation). For all λ, n > 0, matrix M, and any set
of positions S ⊆ [n]× [n] or S ⊆ [n]× [n]× [n],

Pr


pp← Setup(1λ, 1n),
C ← Commit(M),
πpos ← Prove(pos,M),

Ω̂ ← AggregateProof(C, S,M[S], {πpos}pos∈S) :

Verify(C, {pos}pos∈S ,M[S], Ω̂) = 1

 = 1.

Definition 5 (Position Binding). For all λ, n > 0, and any PPT adversary A,

Pr

pp← Setup(1λ, 1n),

(C, (πb, Sb,Mb[Sb])b=0,1)← A(pp) :
(Verify(C, Sb,Mb[Sb], πb) = 1)b=0,1 ∧M0[S0 ∩ S1] ̸= M1[S0 ∩ S1]

 ≤ negl(λ).

3 Two-Dimensional Matrix Commitment Scheme

3.1 Overview

The Xproofs scheme commits to a multi-dimensional matrix consisting of messages, and we will
describe the scheme using a two-dimensional matrix as an example. In the two-dimensional matrix
commitment scheme 2D-Xproofs, a matrix of size N is committed, where N = n × n and n ∈ N
is an integer value. During the committing phase, commitments are generated for every row
and every column of the matrix, resulting in n row commitments Crow = {crowi}i∈[n] and n
column commitments Ccol = {ccolj}j∈[n]. These 2n values from bilinear group G1 constitute the
commitment C = (Crow, Ccol).

In the 2D-Xproofs, each position is uniquely determined by row and column coordinates. In
other words, the proof for each position is composed of positions that intersect with this position
in the two-dimensional matrix. Therefore, to open the commitment at the position (i, j) ∈ [n]×[n],
a two-dimensional individual proof consisting of two parts, namely a row proof πrowj and a column
proof πcoli , is computed, which respectively determines that the entry exists in the specific row
and column commitments (see Figure 1. for an example). Specifically, in the verification of the
two-dimensional individual proof πij = (πrowj , πcoli), the row proof πrowj is used to verify the
correctness of the entry with respect to the ith-row commitment crowi , and the column proof
πcoli is used to verify the correctness with respect to the jth-column commitment ccolj .

The proofs {πrowj , πcoli}(i,j)∈S
for a set of position entries in the two-dimensional matrix

can be aggregated into a single proof of the form (Ωrow, Ωcol), at this point, all the proofs are
aggregated into just two elements from a bilinear group G1, and the set of |S| proofs can be
verified together. In our construction, these two elements in the aggregated proof can be further
compressed into a single element from G1, resulting in an even smaller size of the aggregated
proof. We will discuss this in more detail as follows.

The individual proof of each entry (πrowj , πcoli) in the two-dimensional matrix depends solely
on the row and column in which the entry is located, i.e., {Mkℓ : k = i} and {Mkℓ : ℓ = j}. When
an entry is updated, only the entries in the row and column need to update their proofs, while
the entries at other positions in the matrix are not affected. Our design minimizes the changes
to the proofs of other entries as much as possible, enabling all proofs to update efficiently.
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2D Matrix M

=

individual proof

,

row proof and column proof

Fig. 1. 2D-Xproofs for 3× 3 matrix (n = 3)

3.2 Construction

The details of our scheme 2D-Xproofs are described as follows:

• Setup(1λ, 1n): It takes a security parameter λ and an integer n as inputs. Generate a bilinear
group context bg = (p,G1,G2,GT , e, g1, g2) using BG(1λ). Sample α, β ← Zp, and output the
public parameters pp = (pp1, pp2)

pp1 = {gα1 , g
αnα[−1]
1 , gβ1 , g

βnβ[−1]
1 }, pp2 = {g2, gα2 , g

β
2 },

where α = (α, α2, ..., αn), β = (β, β2, ..., βn). Note that α and β are private keys, and never
be revealed to the public. After the Setup phase is completed, α and β can be destroyed.
• Commit(M): It takes the message M ∈ Zn×n

p as inputs, computes the row commitment and
column commitment

Crow = {crowi}i∈[n] = {g
∑

j∈[n] Mijα
j

1 }i∈[n],

Ccol = {ccolj}j∈[n] = {g
∑

i∈[n] Mijβ
i

1 }j∈[n],

and outputs the commitment C = (Crow, Ccol).
• UpdateCommit(i, j, δ, C): It parses the commitment as C = ({crowi}i∈[n], {ccolj}j∈[n]). For any
(i, j) ∈ [n]×[n] and δ ∈ Zp, update the ith-row commitment c′rowi = crowi ·gδα

j

1 and jth-column
commitment c′colj = ccolj · g

δβi

1 respectively.
• Prove(i, j,M): It takes a position (i, j) ∈ [n] × [n] and message matrix M as inputs, and

computes an individual proof πij = (πrowj , πcoli), which consists of a row proof πrowj and

a column proof πcoli . The row proof πrowj = g
∑

q∈[n]/{j} Miqα
n+1−j+q

1 = g
αn+1−jMi∗[−ij]α[−j]
1

depends on Mi∗\Mij (i.e., all entries in ith-row except for the (i, j) entry). The column proof

πcoli = g
∑

p∈[n]/{i} Mpjβ
n+1−i+q

1 = g
βn+1−iM∗j [−ij]β[−i]
1 depends on M∗j \Mij (i.e., all entries

in jth-column except for the (i, j) entry.
• UpdateProof(i, j, k, ℓ, δ, πkℓ): It takes an updated position (i, j) ∈ [n] × [n] and a position
(k, ℓ) ∈ [n] × [n] with its individual proof as inputs, and parses the individual proof as
πkℓ = (πrowℓ , πcolk). When Mij is updated to Mij + δ, the updates to the individual proof
can be discussed in the following cases:

– When i = k and j ̸= ℓ, the entry (i, j) being updated is in the same row as entry (k, ℓ).
Therefore, the update to Mij only affects the row proof πrowℓ of the entry (k, ℓ). The
row proof is updated to π′

rowℓ
= πrowℓ · gδα

n+1−ℓ+j

1 . In this case, the algorithm outputs
π′
kℓ = (π′

rowℓ
, πcolk).

– When j = ℓ and i ̸= k, the entry (i, j) is in the same column as entry (k, ℓ). Therefore,
the update to Mij only affects the column proof πcolk of the entry (k, ℓ). Similarly, the
column proof is updated to π′

colk
= πcolk · g

δβn+1−k+i

1 . In this case, the algorithm outputs
π′
kℓ = (πrowℓ , π

′
colk

).
– In other cases, the individual proof does not need to be updated.

• AggregateProof(C, S,M[S], {πij}(i,j)∈S): It takes a commitment C = ({crowi }i∈[n], {ccolj}j∈[n]),
a set of individual proofs {πij}(i,j)∈S as inputs. To prevent the proofs from being forged by
adversaries, the individual proofs should be aggregated with two Hash Functions H and H ′.
The aggregation of the proofs is carried out in the following steps:

– Firstly, the individual proofs located in the same row or the same column are aggregated
based on the row or column respectively. The proofs of every row are aggregated as
π̂rowj =

∏
j∈Sj

π
rj,i
rowj , and the proofs of every column are aggregated as π̂coli =

∏
i∈Si

π
ri,j
coli

.
Where for all i ∈ Si and j ∈ Sj , the hash values rj,i and ri,j are computed as rj,i =
H((j, i), crowi , Si) and ri,j = H((i, j), ccolj , Sj) respectively.
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– Then, the proofs that have been aggregated from different rows can be further aggregated
into one proof Ωrow, specifically, Ωrow =

∏
i∈[p] π̂

r′1
rowj . Similarly, the proofs that have been

aggregated from different columns can also be further aggregated into one proof Ωcol,
specifically, Ωcol =

∏
j∈[q] π̂

r′2
coli

. Where [p] and [q] represent the sets of rows and columns
of the matrix involved in the AggregateProof algorithm. For all i ∈ [p] and j ∈ [q],
the hash values r′1 and r′2 are computed as r′1 = H ′(i, {crowi , Si,M[Si], π̂rowj}i∈[p]) and
r′2 = H ′(j, {ccolj , Sj ,M[Sj ], π̂coli}j∈[q]) respectively.

Finally, this algorithm outputs the aggregated proof Ω̂ = (Ωrow, Ωcol).
• Verify(C, S,M[S], Ω̂): During the verification phase, we need to consider two cases:

– When |S| = 1, only the proof Ω̂ = πij = (πrowj , πcoli) for the entry in position (i, j) needs
to be verified. This algorithm checks two equations:

e(crowi , g
αn+1−j

2 )
?
= e(πrowj , g2) · g

αn+1Mij

T ,

e(ccolj , g
βn+1−i

2 )
?
= e(πcoli , g2) · g

βn+1Mij

T .

– When |S| > 1, this proof Ω̂ = (Ωrow, Ωcol) is used to verify all entries in a set of positions
(i, j) ∈ S. Also, this algorithm checks two equations: This equation is verified for all row
proofs:

p∏
i=1

e(crowi , g

∑
j∈Sj

αn+1−jrj,i

2 )r
′
1

?
= e(Ωrow, g2) · g

αn+1 ∑p
i=1

∑
j∈Sj

Mijrj,ir
′
1

T ,

and this equation is verified for all column proofs:

q∏
j=1

e(ccolj , g

∑
i∈Si

βn+1−iri,j

2 )r
′
2

?
= e(Ωcol, g2) · g

βn+1 ∑q
j=1

∑
i∈Si

Mijri,jr
′
2

T .

In either case, if both equations hold, output 1; otherwise, output 0.

3.3 Minimizing the Size of 2D-Xproofs

Using this 2D-Xproofs construction, the individual proof for a single entry and the aggregated
proof for multiple entries in the matrix only contains two elements from a bilinear group G1. Even
more interestingly, these two elements in the proof πij = (πrowj , πcoli) output by the Prove(i, j,M)
algorithm can be further aggregated into one element from a bilinear group G1. This aggregated
proof can be computed as πij = π

r′′1
rowj ·π

r′′2
coli

. At this point, the correctness of the aggregated proof
πij to the commitment C can be verified as

e(crowi , g
αn+1−j

2 )r
′′
1 · e(ccolj , g

βn+1−i

2 )r
′′
2

?
= e(πij , g2) · g

αn+1Mijr
′′
1 +βn+1Mijr

′′
2

T .

Where the hash values r′′1 and r′′2 are computed as r′′1 = H ′′({j, crowi , Si,M[Si], π̂rowj}i∈[p]) and
r′′2 = H ′′({i, ccolj , Sj ,M[Sj ], π̂coli}j∈[q]) respectively. Where, |p|, |q| = 1.

In addition, the aggregated proof Ω̂ = (Ωrow, Ωcol) output by the AggregatePr oof(C, S,M[S], {πij}(i,j)∈S)
algorithm also has similar property. The two elements in the proof can be further aggregated as
Ω̂ = Ω

r′′1
row · Ωr′′2

col using the hash function H ′′. The correctness of the aggregated proof Ω̂ to the
commitment C can be verified as

(

p∏
i=1

e(crowi , g
∑

j αn+1−jrj,i
2 )r

′
1)r

′′
1 · (

q∏
i=1

e(ccolj , g
∑

j βn+1−iri,j
2 )r

′
2)r

′′
2

?
= e(Ω̂, g2) · g

αn+1 ∑p
i=1

∑
j Mijrj,ir

′
1r

′′
1 +βn+1 ∑q

j=1

∑
i Mijri,jr

′
2r

′′
2

T

Where the hash values r′′1 and r′′2 are computed as r′′1 = H ′′({i, crowi , Si,M[Si], π̂rowj}i∈[p]) and
r′′2 = H ′′({j, ccolj , Sj ,M[Sj ], π̂coli}j∈[q]) respectively.

Using this construction, our scheme minimizes the size of the aggregated proof to just one
element from a group G1.
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3.4 Security Analysis

Theorem 1 (Position Binding). Under the ℓ − wBDHE∗ assumption, no PPT adversary in
the AGM+ROM model can open 2D-Xproofs to two different values at the same positions, except
with a negligible probability. Therefore, the above scheme 2D-Xproofs is position binding.

Proof. In our 2D-Xproofs scheme, the aggregation of proofs is performed in two steps: 1. ag-
gregating the proofs within the same row/column separately; 2. aggregating the proofs between
different rows and between different columns. The process of aggregating proofs in our scheme is
similar to the Pointproofs scheme. The two steps in the aggregation process are the aggregation
within the same commitment and the aggregation across different commitments.

Analysis of same-commitment aggregation. Based on the Gorbunov et al.[11], the formal
analysis of aggregation within the same commitment involves the following two steps:

Step 1 : “H-lucky” query. Considering an adversary who generates any query (∗, C, S,m[S])
based on the hash function H acting as a random oracle, it must output z ∈ Zn

p , y ∈ Zn−1
p such

that
C = g

z⊤a+αny⊤a[−1]
1 = g

∑
i∈[n] ziα

i+
∑

j∈[n−1] yjα
n+1+j

1 .

When m[S] ̸≡p z[S] and (m[S]−z[S])⊤t ≡p 0 holds, it is referred to as a “H-lucky” query, where
t = (H(i, C, S,m[S]) : i ∈ S). The probability of a query being “H-lucky" is at most 1/p. Here
we use the fact that the query to H fixes (S,m[S], z[S]).

The probability of a successful “H-lucky” query for the adversary is at most qH/p, where qH
represents the number of queries. Next, let’s assume that this scenario never happens.

Step 2 : computing gα
n+1

1 . In this step, we demonstrate that an algebraic adversary cannot
break the ℓ− wBDHE∗ to compute gα

n+1

1 .
The successful adversary outputs C, {Sb,mb[Sb], π̂b}b=0,1, together with z, y such that C =

g
z⊤a+αny⊤a[−1]
1 . Since m0[S0∩S1] ̸= m1[S0∩S1], it implies that m0[S0] ̸= z[S0] or m1[S1] ̸= z[S1].

Let (S∗,m∗, π̂∗) be such that

m∗[S∗] ̸= z[S∗] and Verify(C, S∗,m∗[S∗], π̂∗) = 1.

Since π̂∗ is a valid proof, it satisfies the verification equation:

e(C, g
∑

i∈S∗ αn+1−iti
2 ) = e(π̂∗, g2) · gα

n+1m∗[S∗]⊤t
T ,

where ti = H(i, C, S∗,m∗[S∗]). This indicates

C
∑

i∈S∗ αn+1−iti = π̂∗ · gα
n+1m∗[S∗]⊤t

1 .

The left side of the equation can be split into two parts: one that involves gα
n+1

1 and another
that does not. The left side of the equation can be written as:

(g
αn+1z[S∗]⊤t
1 ) · (g

∑
i∈S∗ αn+1−iz[−i]⊤a[−i]ti

1 ) · (gα
ny⊤a[−1]

∑
i∈S∗ αn+1−iti

1 ).

Move the part that involves gα
n+1

1 to the right side of the equation, resulting in:

(g
∑

i∈S∗ αn+1−iz[−i]⊤a[−i]ti
1 ) · (gα

ny⊤a[−1]
∑

i∈S∗ αn+1−iti
1 ) · (π̂∗)−1 = g

αn+1(m∗[S∗]−z[S∗])⊤t
1 .

Since m∗[S∗] ̸= z[S∗] and we assume that there are no H-lucky queries, it must hold that
(m∗[S∗] − z[S∗])⊤t ̸≡p 0. Therefore, we can compute the inverse r modulo p and obtain gα

N+1

1

on the right side of the equation. Since the left side of the equation can be computed based on
the adversary’s output and ga1 , gα

Na[−1]
1 , gα

2na
1 , we can compute gα

n+1

1 .
Analysis of cross-commitment aggregation. Our scheme also satisfies the proof binding

for cross-commitment aggregation. As referenced by Gorbunov et al.[11], the formal analysis of
proof binding for cross-commitment aggregation can be divided into the following three steps:

Step 1 : “H-lucky” query. The analysis in this step is the same as that of same-commitment
aggregation.

Step 2 : “H ′-lucky” query. Considering an adversary who generates any query (∗, {Cj , Sj ,mj [Sj ]}j∈[ℓ])
based on the hash function H ′ acting as a random oracle, it must output {zj ,yj}j∈[ℓ], such

thatCj = g
z⊤
j a+αny⊤

j a[−1]

1 . When
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∃j : (mj [Sj ]− zj [Sj ])
⊤tj ̸≡p 0 and

ℓ∑
j=1

(mj [Sj ]− zj [Sj ])
⊤tjt

′
j ≡P 0

holds, it is referred to as a “H ′-lucky” query, where tj = (H(i, Cj , Sj ,m[Sj ]) : i ∈ Sj) and
t′j = (H ′(j, {Cj , Sj ,mj [Sj ]) : j ∈ [ℓ]). A query is “H ′-lucky" with probability at most 1/p. Here
we use the fact that the query to H ′ fixes {(Sj ,mj [Sj ], zj [Sj ])}j∈[ℓ].

Step 3 : computing gα
n+1

1 . The outputs of winning adversary contain {Cb
j}j∈[ℓb] for b = 0, 1,

zbj , and yb
j , such that Cb

j = g
zb⊤
j a+αnyb⊤

j a[−1]

1 . The winning conditions specifies j0 and j1 such
that C0

j0 = C1
j1 . Regardless of what the adversary outputs, we will set z1j1 = z0j0 and y1

j1 = y0
j0 .

We can argue in the same way as we do with same-commitment aggregation. Let ∗ = 0 or 1, such
that

m∗
j∗ [S

∗
j∗ ] ̸= z∗j∗ [S

∗
j∗ ] and Verify({C∗

j , S
∗
j ,m

∗
j [S

∗
j ]}j∈[ℓ∗], π∗) = 1.

When ℓ∗ = 1, we can demonstrate using the same approach as same-commitment aggregation. If
the verification passes, we can obtain a similar equation

(g

∑ℓ∗
j=1

∑
i∈S∗

j
αn+1−iz∗

j [−i]⊤a[−i]tj,it
′
j

1 ) · (g
∑ℓ∗

j=1 αny⊤
j a[−1]

∑
i∈S∗ αn+1−itj,it

′
j

1 ) · (π̂∗)−1

= g
αn+1 ∑ℓ∗

j=1(m
∗
j [S

∗
j ]−z∗

j [S
∗
j ])

⊤tjt
′
j

1 .

Since both “H-lucky” queries and “H ′-lucky” queries do not exist, we must have

(m∗
j∗ [S

∗
j∗ ]− z∗j∗ [S

∗
j∗ ])

⊤tj∗ ̸≡p 0 and

ℓ∗∑
j=1

(m∗
j [S

∗
j ]− z∗j [S

∗
j ])

⊤tjt
′
j ̸≡p 0.

Then, we can compute gα
n+1

1 using the same method as same-commitment aggregation.
Therefore, in both cases of same-commitment aggregation and cross-commitment aggregation,

the ℓ− wBDHE∗ assumption cannot be broken. Our 2D-Xproofs satisfies position binding.

3.5 Efficiency Analysis

We let the total number of positions be N = n2. The space complexity and computational
complexity analysis of the 2D-Xproofs scheme are as follows.
Public parameters size. We incorporate the commitment as a part of the public parameters
in our proposal. Consequently, the public parameters consist of two components: 1. the public
parameters required for committing, opening, updating, and verifying; 2. the commitment values.
Therefore, the public parameters are consist of 6

√
N − 2 elements in G1 and 2

√
N + 1 elements

in G2.
Proof size. In 2D-Xproofs, each proof πij = (πrowj , πcoli) consists of 2 elements. Hence, the proofs
are of constant size. For any S ⊆ [

√
N ]× [

√
N ], the aggregated proof still contains only 2 elements

in G1. By employing our further optimization approach, it is possible to reduce the aggregated
proof to just a single element in G1.
Computational complexity. Next, the time complexity is analyzed, focusing on the theoretical
analysis of the number of multiplications, exponentiations, and pairing operations involved in each
process.

• Commitment generation and update. The cost of Commit(M) is 2
√
N product of

√
N

exponentiations in G1, and the cost of UpdateCommit(i, j, δ, C) is two exponentiations in G1.
• Proofs generation. For any (i, j) ∈ [

√
N ]× [

√
N ], Prove(i, j,M) outputs a individual proof

πij = (πrowj , πcoli). The cost of computing πrowj and πcoli are two product of
√
N exponen-

tiations in G1. When computing all individual proofs at once, we need to compute all row
proofs and column proofs. Fortunately, Tomescu [18] shows that, for any i ∈ [

√
N ], computing

all proofs in time O(
√
Nlog

√
N). Therefore, the time required to compute all proofs is in

O(Nlog
√
N).

• Proofs aggregation. For any S ⊆ [
√
N ]× [

√
N ], their |S| row proofs and |S| column proofs

are aggregated respectively. Therefore, it requires 2(|S| +min{|S|,
√
N}) exponentiations in

G1.
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• Proofs verification. Verifying an individual proof requires 2×3 pairings and 2×1 exponenti-
ations in G2, and verifying an aggregated proof requires 2(|S|+min{|S|,

√
N}) exponentiations

and 2(|S|+min{|S|,
√
N}+ 2) pairings.

• Proofs update. Updating an individual proof requires executing the Update Proof(i, j,
k, ℓ, δ, πkℓ) algorithm, which involves 2 exponentiations in G1 to update row proofs and col-
umn proofs respectively. When an entry in the matrix is updated, it only affects the proofs
at 2
√
N − 2 positions. Therefore, updating all the proofs requires a total of 2

√
N − 2 expo-

nentiations in G1.

4 Three-Dimensional Matrix Commitment Scheme

Our three-dimensional matrix commitment scheme 3D-Xproofs is obtained by committing to a
three-dimensional matrix, achieving even better update efficiency. This transformation comes at
a certain cost, as the total size of public parameters and commitment will increase, but it is still
sublinear. Additionally, the aggregation and verification time for proofs will be slightly slower
than the 3D-Xproofs scheme, but it remains efficient. Similar to the 2D-Xproofs scheme, in the
3D-Xproofs scheme, the proof for each position is composed of positions that intersect with this
position in the three-dimensional matrix. Therefore, when an update occurs at a certain position,
it only affects 3N1/3−3 positions. We denote the three directions in the three-dimensional matrix
as x, y, and z, respectively. The algorithm description of the 3D-Xproofs is as follows.

• Setup(1λ, 1n): It takes a security parameter λ and an integer n as inputs. Generate a bilinear
group context bg = (p,G1,G2,GT , e, g1, g2) using BG(1λ). Sample α, β, γ ← Zp, and output
the public parameters pp = (pp1, pp2)

pp1 = {gα1 , g
αnα[−1]
1 , gβ1 , g

βnβ[−1]
1 , gγ1 , g

γnγ[−1]
1 , }, pp2 = {g2, gα2 , g

β
2 , g

γ
2 },

where α = (α, α2, ..., αn), β = (β, β2, ..., βn), and γ = (γ, γ2, ..., γn).
• Commit(M): It takes the message matrix M ∈ Zn×n×n

p as inputs, computes the x commit-

ment Cx = {{g
∑

i∈[n] Mijkα
i

1 }j∈[n]}k∈[n], the computation method for y commitment and z
commitment are similar to that of Cx. Outputs the commitment C = (Cx, Cy, Cz).
• UpdateCommit(i, j, k, δ, C): It parses the commitment as C = (Cx, Cy, Cz). For any (i, j, k) ∈
[n] × [n] × [n] and δ ∈ Zp, update the x commitment, y commitment, and z commitment
respectively.

• Prove(i, j, k,M): It takes a position (i, j, k) ∈ [n] × [n] × [n] and message m as inputs, and
computes an individual proof πijk = (πx, πy, πz), which consists of a x proof, a y proof and

a z proof. The x proof πx = g
αn+1−iM∗jk[−ijk]α[−i]
1 depends on M∗jk \Mijk (i.e., all entries

in {(∗, j, k)}∗∈[n] except for the (i, j, k) entry). The computation method for πy and πz are
similar to that of πx.

• UpdateProof(i, j, k, ℓ,m, n, δ, πℓmn): It takes a position (i, j, k) ∈ [n]×[n]×[n] and an individual
proof as inputs, and parses proof as πℓmn = (πx, πy, πz). Similar to the 2D-Xproofs scheme,
when Mijk is updated to Mijk + δ, it is only necessary to update the proofs at positions
(i, j, k) and (ℓ,m, n) that are located on the same coordinate axis.

• AggregateProof(C, S,M[S], {πijk}(i,j,k)∈S): It takes the commitment C = (Cx, Cy, Cz), a set
of individual proofs {πijk}(i,j,k)∈S as inputs. Similarly, the proofs should be aggregated with
two Hash Functions H and H ′. The aggregation of these proofs follows a similar approach to
the 2D-Xproofs scheme and consists of the following two steps:

– Firstly, the proofs located in the same coordinates are aggregated based on the x, y, and
z coordinates respectively. Obtain the values π̂x, π̂y, and π̂z using the hash function H.

– Then, the proofs aggregated from different coordinates can be further aggregated into one
proof. Obtain the values Ωx, Ωy, and Ωz using the hash function H ′.

Finally, this algorithm outputs the aggregated proof Ω̂ = (Ωx, Ωy, Ωz).
• Verify(C, S,M[S], Ω̂): During the verification phase, we also need to consider two cases:

– When |S| = 1, only the proof Ω̂ = πijk = (πx, πy, πz) for one entry in position (i, j, k)
needs to be verified. Similar to the 2D-Xproofs scheme, this verification process requires
three equations.

– When |S| > 1, this proof Ω̂ = (Ωx, Ωy, Ωz) is used to verify all entries in a set of positions
(i, j, k) ∈ S. Correspondingly, the verification process also requires three equations.
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4.1 Analysis

3D-Xproofs scheme still satisfies the correctness of opening, aggregation, proof update, and com-
mitment update, which can be directly derived. Additionally, the security analysis of the 3D-
Xproofs is similar to 2D-Xproofs, and it also satisfies position binding under both same-commitment
aggregation and cross-commitment aggregation. We let the total number of positions be N = n3.
The space complexity and computational complexity analysis of the 3D-Xproofs scheme are as
follows:
• Public parameters size. The public parameters still consist of two parts: the public pa-

rameters and the commitments. The public key consists of 6N1/3 − 3 elements in G1 and
3N1/3 + 1 elements in G2, while the commitment consists of 3N2/3 elements in G1.
• Poof size. The proof and the aggregated proof are still of constant size, with each proof

containing 3 elements in G1.
• Proofs aggregation and verification. The aggregation of |S| proofs requires 3(|S| +
min{|S|, N1/3}) exponentiations in G1. Verifying an individual proof requires 3 × 3 pair-
ings and 3 × 1 exponentiations in G2, and verifying an aggregated proof requires 3(|S| +
min{|S|, N1/3}) exponentiations and 3(|S|+min{|S|, N1/3}+ 2) pairings.
• Proofs and commitments update. When a certain position is updated, it affects the

proofs of 3N1/3 − 3 positions. Therefore, only 3N1/3 − 3 exponentiations are required to
complete the updates for all proofs. The commitments can be updated by performing only 3
exponentiations in G1.
Note that we could further increase the matrix dimensionality to achieve more efficient proof

updates. Here, we omit the details of further expansion.

5 Applications to Blockchain

In blockchain networks such as Ethereum, which are based on account architecture, the initiator
of a transfer creates a transaction (TX) when initiating a transfer request. At this point, the
TX includes the account balance of the sender as well as the amount being transferred. All these
transactions, known as TXs, undergo validation by block proposers and are subsequently packaged
into a new block. Once this new block receives consensus from the majority of block validators,
it is formally added to the blockchain. To ascertain the validity of transactions, both block
proposers and validators traditionally necessitate the storage of the complete account balances
across the entire blockchain — a representation of the state of the blockchain. Nevertheless, in
stateless cryptocurrencies, the block proposers and validators no longer retain the entire state
of the blockchain, resulting in a significant reduction in storage overhead. We will elucidate the
utilization of Xproofs in realizing stateless cryptocurrencies.

Based on the implementation scheme of Pointproofs [11], efficient aggregation and batch ver-
ification of proofs from different TXs can be achieved. However, the time required for all users
to locally synchronize the proofs is O(N). The solution implemented based on Edrax [9] and Hy-
perproofs [17] reduces the time for updating all proofs to O(logN). However, the implementation
based on Hyperproofs requires IPA [6] to achieve proofs aggregation, and the size of the proofs
is not constant but rather dependent on the number of accounts. The implementation based on
Matproofs [14] and Balanceproofs[20] support efficient aggregation and verification. However, the
size of the aggregated proof is not constant, and the efficient updating of proofs relies on PSNs.
Without PSNs, all accounts would need to perform local computations for proof updates.

5.1 Xproofs-based Solution

In our Xproofs approach, all account balances are structured into a matrix. The Setup algorithm
generates public parameters for the entire stateless blockchain system, followed by employing the
Commit algorithm to commit to the matrix, and subsequently store the commitment values and
public parameters within the blockchain system. Subsequently, the Prove algorithm generates
proofs for the balances of all users individually. Users retain and manage their proofs locally.
When users initiate a transaction (TX), the transaction includes both TX information and proofs
corresponding to account balances. Block proposers utilize the Verify algorithm to validate such
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proofs. These proofs can be aggregated into one proof of constant size using the AggregateProof
algorithm and verified all at once. Subsequently, the UpdateCommit algorithm is employed to
update the commitments. Once verified TXs are packaged into a new block, upon receiving vali-
dation and consensus from the majority of validators, all users utilize the UpdateProof procedure
to synchronize their local balances and proofs.

5.2 Evaluation and Comparisons

Public parameters size. In the implementation based on Xproofs, commitments are a part of
public parameters. The size of the public parameters is sub-linearly related to the number of
accounts, reducing the storage overhead.
Proofs size. In our implementation, the size of the proof for each account is constant. Further-
more, when processing multiple transactions, it is possible to aggregate the proofs of multiple
accounts. The size of the aggregated proof is constant, consisting of only 2 or 3 elements in G1.
Aggregation and verification time. The aggregation and verification of our implementation
do not require the use of additional argument systems. Although the aggregation and verification
time of our scheme are slightly higher than the Matproofs [14] scheme, it is still efficient.
Update of commitment and proofs. In our scheme, commitment updates are efficient, re-
quiring only 2 or 3 exponentiations in G1. Proof updates do not require the use of PSNs, avoiding
the introduction of additional nodes and reducing communication overhead. The updates for all
account proofs only require performing 4

√
N −4 or 9N1/3−9 exponentiations in G1, respectively

in the 2D-Xproofs and 3D-Xproofs schemes.

6 Performance Evaluation

In this section, the performance of Xproofs in stateless blockchain applications is evaluated. Specif-
ically, a comparative analysis is conducted among 2D-Xproofs, 3D-Xproofs, and Matproofs. The
implementation of 2D-Xproofs, 3D-Xproofs, and Matproofs is carried out using the Python pro-
gramming language and the pypbc library. We use the PBC-0.5.14 library with a type A elliptic
curve for pairing-based primitives to achieve 128-bit security and the SHA-256 hash function. We
deploy our experiments on the machine with Intel(R) Core(TM) i5-11500 @ 2.70 GHz RAM 4
GB and Ubuntu 18.04.

6.1 Evaluation

The time cost of opening all proofs. In our two Xproofs schemes, the computational cost of
each position’s proof is uniform. On the other hand, in the Matproofs scheme, the computation
cost of individual global proofs is higher. However, every

√
N positions share the same individual

global proof. Consequently, as observed from Figure 2(a), we set the total number of accounts
N = 29, 210, 211, 212, 213, and open all proofs, with the vertical axis representing the time required
to open all proofs. The total time required to open all positions and generate proofs in the 2D-
Xproofs scheme is comparable to that of the Matproofs scheme. However, due to the lower time
cost of generating each proof in the three-dimensional scenario, our 3D-Xproofs scheme exhibits
significantly better performance, being approximately 3× faster than other schemes.
The time cost of proof aggregation. In our 2D-Xproofs scheme, proofs need to be aggregated
separately by rows and columns, resulting in a total of 2(|S| + min{|S|,

√
N}) exponentiations

in the G1 group. Similarly, in the 3D-Xproofs scheme, 3(|S|+min{|S|, N1/3}) exponentiations in
the G1 group are required due to the need to aggregate proofs along three dimensions. However,
in the Matproofs scheme, aggregating the |S| individual proofs requires |S| + min{|S|,

√
N} ex-

ponentiations in the G1 group. Therefore, as observed from Figure 2(b), we set the total number
of accounts N = 10000 and the number of proofs to be aggregated |S| = 29, 210, 211, 212, 213.
The vertical axis represents the time required for proof aggregation. During the proof aggrega-
tion phase, the performance of the Matproofs scheme is approximately 1.5− 2.5× faster than the
Xproofs scheme.
The time cost of proof verification. In the verification phase, whether it is verifying individual
proofs or aggregated proofs, both our 2D-Xproofs and Matproofs schemes only require two equa-
tions and have similar computational complexity. However, the 3D-Xproofs scheme requires an
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Fig. 2. Performance comparison

additional verification equation. Therefore, as observed from Figure 2(c), we set the total number
of accounts N = 10000 and the number of proofs to be aggregated |S| = 29, 210, 211, 212, 213. 2D-
Xproofs and Matproofs exhibit comparable performance during the verification process. However,
the 3D-Xproofs scheme incurs approximately a 0.5× increase in time overhead.

The time cost of proof update. When the balance of a specific account is updated, the
proofs of all other accounts need to be updated as well. Therefore, achieving sublinear time
for updating all proofs is necessary. In the Matproofs scheme, there are two cases: 1. Proofs in
the same sub-vector as the updated position only require updating the individual local proofs,
and these

√
N proofs share the same local commitment, thus requiring only one update to the

local commitment. 2. Proofs in different sub-vectors from the updated position do not require
updating individual local proofs, and every sub-vector shares the same individual global proof,
which only needs to be computed once every

√
N individual proof. From this perspective, the

time complexity for updating all proofs in the Matproofs scheme appears to be O(
√
N). However,

in practical scenarios, even though reducing the complexity by allowing certain proofs to share
the same elements, each user still needs to perform local computations for the shared values. To
achieve sublinear time complexity in the Matproofs scheme, it is necessary to introduce PSNs
to compute new proofs and share the updated proofs with other users. However, this approach
introduces additional communication overhead and involves third-party PSNs. In our Xproofs
scheme, the impact of updating one proof on the individual proofs of other users is minimized.
In the two-dimensional case, it only affects 2

√
N − 2 proofs, and in the three-dimensional case,

it only affects 3N1/3 − 3 proofs. Therefore, our scheme achieves sublinear time for updating all
proofs without needing PSNs. As shown in Figure 2(d), we set the total number of accounts
N = 29, 210, 211, 212, 213 and update all proofs. Without the assistance of PSNs, the update time
in the Matproofs scheme remains linear, whereas, with the assistance of PSNs, its performance is
comparable to that of the 2D-Xproofs scheme. However, our 3D-Xproofs scheme exhibits better
efficiency in proof updates, approximately 2.5× faster than other schemes. Furthermore, with an
increasing number of users, the performance of our 3D-Xproofs scheme will be even better.

Size of individual proof and aggregated proof. In the individual proofs, our 2D-Xproofs
scheme comprises two elements in G1 per position, namely the row proof and the column proof.
Similarly, in the 3D-Xproofs scheme, each proof consists of three elements in G1. Lastly, in the
Matproofs scheme, each individual proof consists of three elements in G1. In the aggregated proofs,
our Xproofs scheme achieves the same optimal result as the Pointproofs scheme by minimizing the
proof size, resulting in only one element in G1 for the aggregated proof of a set. However, in the
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Matproofs scheme, the local commitments in the proof do not support aggregation. Therefore, in
the worst case, the number of elements in the aggregated proof can reach

√
N + 2. Therefore,

as observed from Figure 2(e), we set the total number of accounts N = 10000 and the number
of proofs to be aggregated |S| = 29, 210, 211, 212, 213. The size of the aggregated proofs in our
2D-Xproofs and 3D-Xproofs schemes is significantly smaller than that of the Matproofs scheme. In
the worst case, the size of aggregated proofs in the Matproofs scheme is approximately 4.78KB,
related to the total number of accounts N . On the other hand, the 2D-Xproofs scheme consistently
maintains a size of 0.093KB, while the 3D-Xproofs scheme maintains a size of 0.148KB.

7 Conclusions

In this paper, we propose Xproofs, an easily updatable and highly maintainable commitment
scheme without relying on PSNs. Xproofs scheme achieves the optimal proof size and more efficient
proof update efficiency than Matproofs, while introducing a small amount of aggregation and
verification overhead. Additionally, the commitment values in Xproofs are not constant, but we
include the commitment as part of the public parameters, resulting in a sublinear overall size of
the public parameters. How to reduce the commitment values to a constant size while maintaining
the advantages of our scheme is a problem worth addressing.
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