
Faster Private Decision Tree Evaluation for

Batched Input from Homomorphic Encryption

Kelong Cong1∗ , Jiayi Kang2 , Georgio Nicolas2 , and Jeongeun Park3∗

1 Zama, Paris, France
kelong.cong@zama.ai

2 COSIC, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be

3 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
jeongeun.park@ntnu.no

Abstract. Privacy-preserving decision tree evaluation (PDTE) allows
a client that holds feature vectors to perform inferences against a de-
cision tree model on the server side without revealing feature vectors
to the server. Our work focuses on the non-interactive batched setting
where the client sends a batch of encrypted feature vectors and then
obtains classi�cations, without any additional interaction. This is useful
in privacy-preserving credit scoring, biometric authentication, and many
more applications.
In this paper, we propose two novel non-interactive batched PDTE proto-
cols, BPDTE_RCC and BPDTE_CW, based on two batched ciphertext-
plaintext comparison algorithms, our batched range cover comparison
(RCC) comparator and the constant-weight (CW) piece-wise compara-
tor, respectively. When comparing 16-bit batched encrypted values to a
single plaintext value, our comparison algorithms show a speedup of up
to 72× compared to the state-of-the-art Level Up (CCS'23). Moreover,
we introduced a new tree traversal method called adapted SumPath, to
achieve O(1) complexity of the server's response, whereas Level Up has
O(2d) complexity for a depth-d tree and the client needs to look up
classi�cation values in a table. Overall, our PDTE protocols attain the
optimal server-to-client communication complexity and are up to 17×
faster than Level Up in batch size 16384.

Keywords: Machine learning · Private Decision Tree Evaluation · Ho-
momorphic encryption.

1 Introduction

In the era of big data, machine learning (ML) has emerged as a powerful tool to
connect data and extract valuable information. Many well-known companies such
as Amazon, Microsoft and IBM are present in this market by providing machine
learning as a service (MLaaS). Namely, the cloud server holds a pre-trained

∗ Work partially done while the author was at COSIC, KU Leuven.

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0002-1093-7978
https://orcid.org/0000-0002-3240-9009
https://orcid.org/0000-0002-0557-3540

2 Cong et al.

machine learning model and provides useful service by performing inference with
clients' data.

However, clients' data may be con�dential and sharing it in the clear with
the server can threaten their privacy. This leads to rising interests in privacy-
preserving machine learning protocols [34,12,11,23]. This work focuses on Private
Decision Tree Evaluation (PDTE) [29,11,23,1,18,28], where the server holds a de-
cision tree classi�cation model and the client obtains the inference result without
revealing the input data.

In particular, the focus of this work is on non-interactive batched PDTE.
Non-interactive implies the client sends a query and receives the output without
additional interactions with the server. This allows the client to stay o�ine
during the evaluation process and achieve full outsourcing. Two recent works,
SortingHat [11] and Level Up [23] use homomorphic encryption (HE) for non-
interactive PDTE. In particular, SortingHat uses schemes such as TFHE [10],
FINAL [3] and outperforms for single-query scenarios, while Level Up employs
the levelled BFV [5,14] scheme, which supports homomorphic evaluations in a
SIMD (Single-Instruction Multiple-Data) manner.

Batched PDTE allows evaluations of the same decision tree for multiple sam-
ples in parallel. Precisely, for a �xed decision tree held by the server and a client
with multiple feature vectors as inputs, batched PDTE allows the client to send
and receive once, instead of sending these feature vectors over and over to get
the inference result of each. This could be useful in PDTE applications, e.g.,
when a bank outsources a credit-scoring decision tree and needs evaluations for
various applicants without revealing their pro�les [32,9,19].

Our work focuses on the batched PDTE using BFV, and our newly-proposed
protocols, BPDTE_RCC and BPDTE_CW, outperform Level Up for large batch
sizes (e.g. > 2100). Since PDTE consists of ciphertext-plaintext comparisons
in decision nodes and a tree traversal procedure for aggregation, these build-
ing blocks are improved in Section 3 and Section 4, respectively. In Section 3,
we propose two batched ciphertext-plaintext comparisons, our batched RCC
comparator and the constant-weight piece-wise comparator, which are based on
the prior RCC comparator [23] and folklore bit-wise comparator [15,22,23]. By
fully exploiting the fact that batched encrypted values are compared to a single
plaintext value, we achieve up to over 72× speedup for 16-bit numbers while
maintaining a low multiplicative depth.

Moreover, Level Up uses SumPath for tree traversal, where the amortized
response of the server is O(2d) for a decision tree of depth d and the client needs
to look up classi�cation values in a table. This further restricts the extension of
decision tree evaluations to tree ensembles. Therefore, we introduce an adapted
SumPath in Section 4, where the amortized response of the server is O(1) at
the cost of O(log2 d) multiplicative depth. By combining the adapted SumPath
with batched ciphertext-plaintext comparisons, our two batched non-interactive
PDTE protocols, BPDTE_RCC and BPDTE_CW, avoid the client looking up
classi�cation values and are also up to 17× faster than Level Up in batch size
16384.

Faster PDTE for Batched Input from HE 3

1.1 Related Work

In interactive PDTE, the client and server communicate multiple rounds and
perform a secure two-party computation. Previous protocols in [8,4,30,2] fall
into this category, and an enlightening survey of PDTE was presented in [18].
With su�cient bandwidth, decision tree training is also feasible, as in [33,20].
Interactive protocols, however, do not support computation outsourcing since
the client needs to be online during the evaluation.

For non-interactive PDTE, SortingHat and Level Up are the respective state-
of-art using non-batched FHE such as TFHE and batched data via BGV/BFV.
Other prior works include [31] and [28] using additive homomorphic encryption,
[21] that improves non-interactive comparisons, [1] that uses private information
retrieval (PIR) in tree traversal, and Tueno et al. [29] that �rstly made non-
interactive PDTE practical. A concurrent work [26] evaluates binary decision
trees in a ciphertext-ciphertext operation setting based on CKKS and proposes
a decision tree training method. Their protocol uses the SIMD packing method
to run a protocol per an input e�ciently by mapping one tree model into one
ciphertext, therefore, the purpose of using SIMD packing is di�erent to ours.

2 Preliminaries

2.1 Notation

Bold symbols such as a denote arrays of elements. The notation a[i] denotes the
i-th element in a, and a[i, j] denotes the sub-array from the i-th element to the
j-th element (both inclusive) in a. The �rst element in the array has index 1.
The notation 1f denotes the binary output of evaluating the condition f , which
equals 1 if f holds and 0 otherwise.

2.2 Decision Trees

A decision tree represents a function T : X −→ {0, . . . , k − 1} which maps an
n-dimensional feature vector into a classi�cation value. The function T contains
m decision nodes organized hierarchically in depth d, together with m+1 leaves,
each associated with a value in {0, . . . , k − 1}. Table 1 presents a complete list
of symbols used in a decision tree.

The decision tree evaluation amounts to traversing a path from the root
node to a resulting leaf, whose associated classi�cation value is returned as the
output. Precisely, each decision node compares an input feature xi to a pre-
trained threshold value yj , yielding b← 1xi≥yj

. If b = 1, the evaluation proceeds
to the right child node; otherwise, it moves to the left child node. As such, the
evaluation path contains at most d decision nodes and ends up in an output leaf,
whose corresponding classi�cation value is returned.

4 Cong et al.

2.3 Levelled Homomorphic Encryption

Levelled homomorphic encryption (LHE) such as BGV [6] and BFV [5,14] al-
lows evaluations of bounded-depth circuits without knowing the secret key. In
practice, applications with higher multiplicative depth necessitate larger LHE
parameters, consequently resulting in higher communication, storage and compu-
tation costs. Hence, algorithms with reduced multiplicative depth are preferred
for LHE.

For BGV/BFV, the ring R = Z[X]/
(
XN + 1

)
where N is a power of 2 is

widely used. With a plaintext modulus t and a ciphertext modulus q ≫ t, the
plaintext space is Rt = R/tR and the ciphertext space is Rq × Rq where Rq =
R/qR. For a prime t that satis�es t mod 2N = 1, the polynomial

(
XN + 1

)
splits

into N linear factors modulo t. Therefore, according to the Chinese Reminder
Theorem, there exists an isomorphism Rt

∼= FN
t between the plaintext space

Rt and N copies of Ft, with each termed a slot [27]. This enables encoding
and encrypting messages in N slots into a single ciphertext and performing
homomorphic operations over encoded values in a SIMD manner.

2.4 PDTE and Tree Traversal

Suppose the server holds a pre-trained decision tree model T , and a client wants
to evaluate T on his feature vectors without disclosing them to the server or
interactions during the evaluation. This necessitates a non-interactive PDTE,
which could be achieved using homomorphic encryption.

In the homomorphic evaluation T , a homomorphic comparison in a decision
node gives an encrypted bit Enc(b)← Enc(1xi≥yj

). Since the server cannot infer
the value of b from Enc(b), determining which child node (left or right) to evaluate
is infeasible unless a costly PIR procedure is incorporated [1]. Otherwise, both
child nodes of every decision node must be evaluated, resulting in evaluations of
all the m decision nodes in T .

Table 1: List of symbols for a decision tree

Symbol Meaning

T Decision tree
d Depth of decision tree
m Number of decision nodes

y = {y1, . . . , ym} Thresholds for decision nodes
X Collection of feature vectors
n Dimension of a feature vector
s Bitlength of a feature

x = {x1, . . . , xn} Input feature vector
k Number of classi�cation values

v = {v1, . . . , vm+1} Classi�cation values associated with leaf nodes

Faster PDTE for Batched Input from HE 5

Tree traversal is a data-oblivious procedure to aggregate evaluation results of
these m decision nodes. In previous works, SortingHat employs Path Conjugation
for tree traversal, which is also used in [30]. On the other hand, Level Up [23]
employs another SumPath method, which is also used in [18,28,29].

In Path Conjugation, every decision node is associated with two values: a
node value v and a control bit b comparing some feature value to a threshold
value. The node value is determined by the node value and the control bit of the
previous decision node, as illustrated in Figure 1a. As such, the leaf node is also
associated with a node value, which equals one for the desired output leaf and
zero otherwise.

In SumPath, every edge is assigned an edge cost determined by the control
bit of the previous decision node, as illustrated in Figure 1b. Since each leaf node
is connected to the root in a unique path, summing up the edge costs along this
path yields the path cost of a leaf node. As such, only the path cost of a desired
output leaf equals to zero, and for all other leaves path costs are non-zero values.

vL = v ·(1−b) vR = v · b

v, b← 1xi≥yj

(a) Path Conjugation, where v denotes
the value stored in a node

b← 1xi≥yj

r · b r · (1− b)

(b) SumPath, where r is a random num-
ber or 1

Fig. 1: Two oblivious tree traversal methods

2.5 Oblivious Binary Codes Comparison

Binary encoding for an integer x ∈ [0, L − 1] is generally classi�ed into two
categories: binary representation BR(x) of length log2 L, or a constant-weight
encoding CWh,ℓ(x) of weight h and bit length ℓ. In the latter category, the bit

length ℓ is determined by the relation
(
ℓ
h

)
≥ L, which approximates to ℓ ∈

O(h
√
h!L+ h) [22]. Notably, CW1,L(x) yields the one-hot encoding of x.

Constant-Weight Equality Operator Typically, the bitlength ℓ in constant-
weight codes is higher than log2 L in the binary representation. However, constant-
weight codes support oblivious equality checks of a low multiplicative depth [22].
Precisely, the equality check for a = CWh,ℓ(a) and b = CWh,ℓ(b) can be achieved

6 Cong et al.

by evaluating

h′ :=

ℓ∑
i=1

a[i] · b[i]

EQ(a, b) =
1

h!

h−1∏
i=0

(h′ − i),

(1)

where the multiplicative depth is 1+ ⌈log2 h⌉ and the number of multiplications
is ℓ+ h− 1.

Range Cover Comparison (RCC) Operator This constant-weight equality
operator can furthermore be combined with a range cover representation [25,17]
to obtain a low-depth comparator, as proposed by Mahdavi et al. in Level Up [23].
Precisely, given a, b ∈ [0, 2s − 1], computing

GT(a, b) =

{
1, if a > b

0, otherwise

is equivalent to checking whether the point a lies in the range [b+1, 2s − 1], i.e.

GT(a, b) = 1a∈[b+1,2s−1].

This leads to the following de�nition of an interval tree where points and ranges
can be e�ciently represented, as visualized in Figure 2.

De�nition 1 (Adapted from [25,23]). Let T be a binary interval tree whose
leaf nodes contain elements in [0, 2s−1]. A range cover RC(b+1, 2s−1) contains
the set of nodes in T such that (1) it contains at most one node in each level
(2) its set of children at the leaf level is exactly [b+ 1, 2s − 1]. A point encoding
PE(a) contains the set of nodes from leaf a to the root (except the root itself).

root

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 2: A binary interval tree containing [0, 7]. For example, the point encoding of
the number 5 is PE(5) = {1, 10, 101} and the range cover of [1, 7] is RC(1, 7) =
{1, 01, 001}.

As observed in [25], if a /∈ [b+1, 2s− 1], then RC(b+1, 2s− 1)∩PE(a) = ∅;
otherwise, they will intersect at one and only one node. As RC(b + 1, 2s − 1)

Faster PDTE for Batched Input from HE 7

contains at most s elements (one node at each level), this comparison contains
at most s equality checks of i bits for i = 1, 2, . . . , s, i.e.

GT(a, b) =

s∑
i=1

EQ
(
RC(b+ 1, 2s − 1)[i], PE(a)[i]

)
, (2)

assuming RC(b+1, 2s−1)[i] has i digits. In Level Up [23], the s numbers in range
cover are encoded using CWh,ℓ(·) where the weight h is small (such as 2 or 4),

and the ℓ is the lowest number satisfying
(
ℓ
h

)
≥ 2s. Then their equality checks

are performed using Equation (1). As such, this comparator contains s·(ℓ+h−1)
multiplications in multiplicative depth 1 + ⌈log2 h⌉.

Folklore Bit-Wise Comparator The folklore comparator compares the bi-
nary representations of two numbers bit-by-bit [15,22,23]. Precisely, bit-wise com-
parisons can be achieved with degree-2 polynomials, i.e. for a, b ∈ {0, 1},

θEQ(a, b) = 1− (a− b)2

θGT (a, b) = (1− a) · b.

Then using recursion, Algorithm 1 compares two numbers of bit length s us-
ing 2s − 1 multiplications, and the lowest multiplicative depth to realize this
algorithm is (1 + log s).

Algorithm 1 Folklore bit-wise comparator

Input: a = BR(a),b = BR(b) ∈ {0, 1}s
Output: GT(a, b)
1: function BitwiseComp(a,b)
2: if s = 1 then
3: return θGT (a[1],b[1])
4: else
5: return θGT (a[1],b[1]) + θEQ(a[1],b[1]) ·BitwiseComp(a[2, s],b[2, s])
6: end if
7: end function

3 Batched Ciphertext-Plaintext Comparisons

In the batched PDTE, a client encrypts N feature vectors {x(1),x(2), . . . ,x(N)}
and queries about the inference results for each of them using the decision tree
T with thresholds y. In the SIMD evaluation of a decision node, the server ho-

momorphically compares features {x(1)
i ∈ x(1), x

(2)
i ∈ x(2), . . . , x

(N)
i ∈ x(N)} to

a threshold value yi ∈ y. Since threshold values are stored in the server in plain-
texts, this amounts to performing a batched ciphertext-plaintext comparison.

This section proposes two methods for batched ciphertext-plaintext compar-
isons with improved performance.

8 Cong et al.

3.1 Batched ciphertext-plaintext RCC comparator

The RCC comparator for two numbers of s bits, as described in (2), contains
at most s equality checks whose operands are of i bits for i = 1, 2 . . . , s. In
Level Up, these equality checks are performed using the constant-weight operator
in Equation (1). This allows comparing batched encrypted values to various
plaintext values.

In our batched ciphertext-plaintext comparison using RCC, batched encrypted
values are compared to the same plaintext value. For this scenario, we follow the
procedure above and optimize a subcomponent, the constant-weight equality op-
erator in Equation (1). This further leads to a distinct ciphertext packing method
from Level Up, which improves the amortized communication and storage.

Ciphertext-Plaintext Constant-Weight Equality Operator Given a =
CWh,ℓ(a) and b = CWh,ℓ(b), the equality operator in Equation (1) is data-
oblivious to both a and b, demonstrating its suitability for ciphertext-ciphertext
comparisons.

In the ciphertext-plaintext scenario, the equality check only needs to be data-
oblivious to a. Therefore, Equation (1) can be further simpli�ed into

EQ(a, b) =
∏
b[i]=1

a[i], (3)

and its homomorphic evaluation requires (h− 1) ciphertext-ciphertext multipli-
cations in depth ⌈log2 h⌉ and zero ciphertext-plaintext multiplications.

Our Ciphertext Packing Although the ciphertext packing method in Level Up
naturally supports our batched ciphertext-plaintext RCC comparator, its storage
and communication cost could be further improved, as pointed out in the Future
Work section of [23]. In line with this, we introduce another ciphertext packing
method, as depicted in Figure 3.

Precisely, let N denote the number of SIMD slots for given BFV parameters,
our method allows to pack N values for one feature {x(1), x(2), . . . , x(N)} into
BFV ciphertexts. Subsequently, these s-bit values are compared to a plaintext
threshold value y.

As explained in Section 2.5, comparing two values is equivalent to checking
the intersection between the point encoding of one element and the range cover of
the other. In our method, point encodings of features are encrypted and packed,
and the range cover of the threshold y is in plaintext.

For each feature x(i), its point encoding PE
(
x(i)

)
is a length-s vector and

the component x
(i)
(j) = PE

(
x(i)

)
[j] contains j bits where j = 1, . . . , s. Each x

(i)
(j)

is further encoded using constant weight hj into CWhj ,ℓj

(
x
(i)
(j)

)
of length ℓj .

Since the bit-length of x
(i)
(j) is independent of i and decreases as j decreases, the

Hamming weight for encoding is also independent of i and hs = max(hj). The

Faster PDTE for Batched Input from HE 9

bit length ℓj is determined by the relation
(
ℓj
hj

)
≥ 2j , which approximates to

ℓj ∈ O(hj

√
hj !2j + hj), as explained in Section 2.5. For simplicity, the ℓj bits in

CWhj ,ℓj

(
x
(i)
(j)

)
are denoted as x

(i)
(j,k) = CWhj ,ℓj

(
x
(i)
(j)

)
[k] where k = 1, . . . , ℓj .

ℓs ciphertexts

ℓj ciphertexts

ℓ1 = 1 ciphertext

...

...

x(1) · · · x(i) · · · x(N)

x
(1)

(s) x
(i)

(s) x
(N)

(s)

x
(1)

(s,1) x
(i)

(s,1) x
(N)

(s,1)

...
...

...
...

...
...

x
(1)

(s,ℓs)
x
(i)

(s,ℓs)
x
(N)

(s,ℓs)
...

...
...

x
(1)

(j) x
(i)

(j) x
(N)

(j)

x
(1)

(j,1) x
(i)

(j,1) x
(N)

(j,1)

...
...

...

x
(1)

(j,ℓj)
x
(i)

(j,ℓj)
x
(N)

(j,ℓj)

...
...

...

x
(1)

(1) x
(i)

(1) x
(N)

(1)

x
(1)

(1,1) x
(i)

(1,1) x
(N)

(1,1)

Fig. 3: Our method of packing N values for one feature {x(1), x(2), . . . , x(N)} of
s bits into BFV ciphertexts, which will be compared to one plaintext threshold
value y using our batched RCC comparator.

In practice, Hamming weight hs are small numbers. For example, two com-
mon choices of hs in the Level Up implementation are 2 and 4. Therefore, we
choose hs = hs−1 = · · · = hj′ for some small j′, and the Hamming weight
hj steadily decreases with decreasing j until h1 = 1. Therefore, the length

ℓj ∈ O(hj

√
hj !2j + hj) decreases exponentially with j. As such, the amortized

storage for our ciphertext packing is

ℓs + ℓs−1 + . . .+ ℓ1
N

≪ s · ℓs
N

,

and the right-hand side (RHS) corresponds to the amortized storage for Level Up
ciphertext packing.

Homomorphic Evaluation of our Batched RCC Comparator On the
other hand, the range cover RC(y_range) determined by y contains maximum s

10 Cong et al.

numbers, each with bit precision ranging from 1 to s. Section 2.5 details y_range
for the GT comparator, and for GE, LT and LE comparators, the y_range can
be constructed similarly. Denote RC(y_range)[j] of j bits as yj , which are
encoded using constant weight hj into CWhj ,ℓj

(
y(j)

)
with binary components

y(j,k) = CWhj ,ℓj

(
y(j)

)
[k] where k = 1, . . . , ℓs.

As such, our ciphertext-plaintext constant-weight equality operation gives

EQ(x
(i)
(j), y(j)) =

∏
y(j,k)=1

x
(i)
(j,k), (4)

which contains hj − 1 ciphertext-ciphertext multiplications in depth log2 hj .
Similar to Equation (2), the comparison result can be obtained from

COMP(x(i), y) =

s∑
j=1

EQ(x
(i)
(j), y(j)) (5)

where COMP is predetermined choice of GT,GE, LT or LE.
Overall, our batched ciphertext-plaintext RCC comparator requires∑s

j=1(hj − 1)

N
<

s · (hs − 1)

N

ciphertext-ciphertext multiplications at depth log2 hs and zero ciphertext-plaintext
multiplications. The RHS corresponds to the number of ciphertext-ciphertext
multiplications of the RCC comparator in Level Up, which also requires s·ℓs

N
ciphertext-plaintext multiplications.

3.2 Batched Ciphertext-Plaintext Constant-Weight Piece-Wise
Comparator

Inspired by this bit-by-bit comparison in Algorithm 1, we propose a piece-by-piece
comparator for constant-weight codes, which is only oblivious to one operand
and is therefore suitable for ciphertext-plaintext comparisons.

Let a = CWh,ℓ(a) and b = CWh,ℓ(b), and suppose encryptions {Enc(a[i]), 1 <
i ≤ ℓ} and the plaintext b are given. The �rst piece in a is from its most signif-
icant bit (inclusive) to the position of the �rst one in b (exclusive).

If there is any number one in this �rst piece, then GT(a, b) = 1. This con-
dition is checked by summing all elements in this piece to obtain a number
x ∈ {0, 1, . . . , h}. Then evaluating the function θGTZero(x, h) = 1− 1

h!

∏h
i=1(i−x)

returns one if x ∈ {1, . . . , h} and zero if x = 0.
Otherwise, if the �rst one in a has the same position as b, we compare

the code in lower digits piece-by-piece recursively. The complete algorithm is
presented in Algorithm 2, and the minimum multiplicative depth to realize it is

⌈log2 ((h+ 1) + (h− 1 + 1) + . . .+ (2 + 1) + 1)⌉ =
⌈
log2

(
(h+4)(h−1)

2 + 1
)⌉

.

The ciphertext packing strategy for the constant-weight piece-wise compara-
tor is presented in Figure 4. Compared to the ciphertext packing for the RCC
comparator in Figure 3, no point encoding is needed, hence the amortized storage
ℓ
N is also lower for comparable choices of Hamming weight hs and h.

Faster PDTE for Batched Input from HE 11

Algorithm 2 Constant-weight piece-wise comparator

Input: a = CWh,ℓ(a),b = CWh,ℓ(b) ∈ {0, 1}ℓ
Output: GT(a, b)
1: function PiecewiseComp(a,b, h)
2: c← [i | b[i] = 1] ▷ c is an ordered array of size h
3: if h = 1 then
4: return

∑c[1]−1
i=1 a[i]

5: else
6: α← θGTZero(

∑c[1]−1
i=1 a[i], h)

7: return α+(1−α)·a
[
c[1]

]
·PiecewiseComp(a

[
c[1]+1, ℓ

]
,b

[
c[1]+1, ℓ

]
, h−1)

8: end if
9: end function

ℓ ciphertexts

x(1) · · · x(i) · · · x(N)

x
(1)

(−,1) x
(i)

(−,1) x
(N)

(−,1)

...
...

...
...

...
...

x
(1)

(−,ℓs)
x
(i)

(−,ℓs)
x
(N)

(−,ℓs)

Fig. 4: Our method of packing N values for one feature {x(1), x(2), . . . , x(N)} of
s bits into BFV ciphertexts, which will be compared to one plaintext threshold
value y using the constant-weight piece-wise comparator. Each feature x(i) is
encoded using constant weight h into CWh,ℓ

(
x(i)

)
of length ℓ, and its binary

components CWh,ℓ

(
x(i)

)
[k] are denoted as x

(i)
(−,k), with the �rst subscript indi-

cating no point encoding is applied.

12 Cong et al.

3.3 Benchmarking Batched Ciphertext-Plaintext Comparisons

For the experiment, we assume a client sends ciphertexts corresponding to N
values of s bits each, which will be compared to a plaintext value in the server.
After the homomorphic evaluation, the client receives a ciphertext whose SIMD
slots encode the N comparison results.

We consider four methods for such batched ciphertext-plaintext comparisons:
1) the RCC operator in [23] with the same plaintext values in all slots, 2) our
batched RCC in Section 3.1, 3) the folklore bit-wise comparator with the same
plaintext values in all slots and 4) our constant-weight piece-wise comparator in
Section 3.2.

Table 2 presents their performance for input bitlength 8 and 16. Speci�cally,
the performance of 1) and 3) are obtained from running the Level Up implemen-
tation4, and 2) and 4) are implemented using Microsoft SEAL [24].

In summary, our methods 2) and 4) provide computation time ranges from
4.8× to over 72× faster than prior methods 1) and 3) while maintaining compa-
rable communication costs and multiplicative depth.

Table 2: Performance of di�erent batched ciphertext-plaintext comparators in
BFV with N = 214 and t = 65537. The multiplication depth refers to the depth
of ciphertext-ciphertext multiplications. Non-applicable parameters are denoted
as ⊥.

Amortized
Computational Time

Amortized Client-to-server
Communication Cost

Multiplicative
Depth

s = 8 s = 16 s = 8 s = 16 s = 8 s = 16

RCC [23]
h = 2 245 µs 8340 µs 45 kb 1342 kb 1 1

h = 4 188 µs 1526 µs 20 kb 136 kb 2 2

h = 8 ⊥ 1308 µs ⊥ 70 kb 3 3

Our batched
RCC

hs = 2 19 µs 41 µs 11 kb 180 kb 1 1

hs = 4 39 µs 82 µs 8 kb 38 kb 2 2

Folklore
bit-wise [23]

⊥ 457 µs 1982 µs 1 kb 3 kb 3 4

Constant-weight
piece-wise

h = 2 10 µs 18 µs 3 kb 52 kb 2 2

h = 4 37 µs 39 µs 1 kb 5 kb 4 4

4 Tree Traversal Methods

From homomorphic evaluations of decision nodes and tree traversal, the server
obtains an encrypted value Enc(rj) for each leaf j, where 1 ≤ j ≤ m + 1. This

4 https://github.com/RasoulAM/private-decision-tree-evaluation

https://github.com/RasoulAM/private-decision-tree-evaluation

Faster PDTE for Batched Input from HE 13

value rj indicates whether the leaf j is the output leaf, and we denote the array
of rj as r.

In Path Conjugation, the result vector rc is a unit vector whose inner prod-
uct with v yields the predicted classi�cation. The encrypted classi�cation value
is sent to the client. However, this unit vector in Path Conjugation comes with
a price: it requires an expensive RLWEtoRGSW conversion [11] procedure in
TFHE. Let w denote the multiplicative depth of a ciphertext-plaintext compar-
ison algorithm in BFV, instantiating Path Conjugation in BFV leads to a high
multiplicative depth O(d · w).

On the other hand, SumPath returns the encryption of rs to the client, whose
value is zero for the output leaf and non-zero otherwise. The client decrypts,
obtains the index of the output leaf, and looks up its corresponding classi�cation
value. Its instantiation in both TFHE and BFV is fast and straightforward, and its
low multiplicative depth O(w) enables PDTE using practical BFV parameters.

However, compared to Path Conjugation, the server-to-client communication
in SumPath is O(m) larger. Besides, integrating decision trees into a tree en-
semble [7,16] is a widely used technique to improve prediction accuracy. Since
SumPath requires the client to look up the classi�cation value for every decision
tree, its applicability for private evaluations of tree ensembles is strongly limited.

Then a natural question is whether there is a tree traversal method that not
only achieves low multiplicative depth but also yields a unit result vector with
reasonable computation costs. This leads to our adapted SumPath method.

4.1 Our Adapted SumPath Method

The edge cost computation in SumPath is visualized in Figure 1b. Our adaption
of SumPath follows from this observation: when the parameter r in Figure 1b is
set to be 1 for all decision nodes, the path cost of every leaf counts the number
of unsatis�ed conditions in the path from the root to that leaf. As such, the path
cost of the desired leaf equals zero, and the path costs of all the other leaves are
in {1, . . . , d− 1}.

Since the function

θEQZero(x, d) =
1

(d− 1)!

d−1∏
i=1

(i− x)

maps zero to one and any elements in {1, . . . , d−1} to zero5, evaluating θEQZero(·, d)
on the path cost of each leaf maps the result vector rs in SumPath into the desired
unit vector denoted as ras.

As such, using our adapted SumPath for tree traversal leads to multiplicative
depth O(w + log2 d) for PDTE, where w is the multiplicative depth for one
homomorphic comparison in BFV.

5 This function is also used in the concurrent work [26] to integrate decision trees into
random forests.

14 Cong et al.

Optimization: Tree Truncation Since the server knows the classi�cation
values in leaves v in plaintext, the procedure above can be optimized. Precisely,
in the inner product ras ·v, the components in ras that correspond to zero labels
do not contribute. Therefore, these leaves can be truncated from the decision tree,
obviating the need to compute their path costs and evaluations of θEQZero(·, d).
The visualization of the tree truncation technique is included in Appendix A.

By renaming the most abundant label to zero, at least 1
k leaves have zero

classi�cation values and can be truncated. Moreover, badly trained models may
contain decision nodes whose children leaves both have zero classi�cation values.
These nodes can also be truncated without impacting the �nal output.

5 Batched Private Decision Tree Evaluation

5.1 Security Model

Our work considers the client/server scenario, where a cloud server holds a pre-
trained decision tree model T and a client holds multiple input feature vectors
{x(1),x(2), . . . ,x(N)} and wants to know the inference result with T for each of
them. The goal is to protect input privacy such that the server would not be able
to learn the clients' input values. Guaranteeing model privacy is out of the scope
of this paper: a client with enough resources may be able to reverse-engineer the
server-side cloud model after a given number of queries. Moreover, the protocol
should be non-interactive to allow full outsourcing computations to the server.

Our threat model is similar to prior works, where the server is an honest-
but-curious adversary. This implies that the server always follows the protocol
strictly but may attempt to deduce information from the client's inputs.

5.2 Protocol

For setup, the server performs a tree truncation to T to get Trun(T) and re-
ceives the necessary keys (e.g. relinearization keys) from the client. Under the
standard circular security assumption, these keys do not leak information about
the client's secret key. Our batched PDTE protocol is as follows.

1. The client sends encryptions of N input feature vectors to the server.

2. For j-th decision node where 1 ≤ j ≤ m, the server homomorphically com-
pares encryptions of N feature values and the plaintext threshold yj in an
SIMD manner. Section 3 provides two methods for such comparisons. The
output Enc(bj) is a ciphertext encoding N binary numbers in its SIMD slots.

3. The server performs adapted SumPath to {Enc(bj)}j=1,...,m in T , whose
homomorphic inner product with v gives a ciphertext. The SIMD slots of
this ciphertext are N classi�cation values

4. The client decrypts this ciphertext to obtain these N classi�cation values,
one for each feature vector.

Faster PDTE for Batched Input from HE 15

Security of Batched PDTE Clients' feature vectors, comparison results of
decision nodes, and classi�cation labels are all encrypted using BGV schemes
with 128-bit security parameters. Its semantic security (IND-CPA) ensures the
server (honest but curious) cannot infer corresponding plaintexts, preserving the
client's privacy.

5.3 Implementation and Performance

We implement two versions of our batched PDTE protocol using di�erent com-
parators: BPDTE_RCC using our batched RCC comparators in Section 3.1, and
BPDTE_CW using constant-weight piece-wise comparators in Section 3.2. These
protocols are evaluated on UCI datasets [13] and compared with the state-of-art
prior works [11,23].

Experimental Details We use the same UCI datasets as in prior works: Breast,
Heart, Spam and Steel. Furthermore, we apply a tree truncation procedure to
reduce server computation without in�uencing the output. Table 3 presents the
key properties of these datasets. Our implementation uses the Microsoft SEAL

Table 3: Characteristics of UCI datasets used in our evaluation, where # Deci-
sion Nodes/Leaves (before|after) gives the number of decision nodes/leaves
in each model before and after tree truncation if that number changes.

Features n Depth d
Decision
Nodes m

Leaves

Breast 30 7 15 16|8

Heart 13 3 4 5|3

Spam 57 11 108|107 109|52

Steel 33 5 5 6|1

library (v4.1.1) [24], which supports BFV in the SIMD manner and it is also used
by Level Up. For SortingHat and Level Up, we use the implementation provided
by the authors. Experiments are conducted on a desktop with an Intel Core
i7-13700 CPU and 32GB of RAM using a single thread.

Results and Discussion We compare our batched PDTE protocol with prior
works in terms of amortized server computation time including comparisons and
tree traversals, and amortized query size, i.e., the client-to-server communica-
tions. The amortized server-to-client communication is lower than 1kb for all
protocols and therefore not listed.

Table 4 and Table 5 compare the amortized performance of di�erent PDTE
protocols with batch size 16384 for input feature bit-length s = 11 and s = 16,
respectively. This corresponds to the scenario where the client sends encryptions

16 Cong et al.

of 16384 feature vectors {x(1),x(2), . . . ,x(16384)} and wants to know the clas-
si�cation output for each of them. The large batch size is useful in practice,
for example, when a bank outsources a credit-scoring decision tree and needs
to evaluate numerous applicants securely. For completeness, we also compare
PDTE protocols with di�erent batch sizes in Appendix B. Since the maximum
bit-length supported by SortingHat is 11, SortingHat is not listed in Table 5.
Moreover, for s = 11, BPDTE_CW outperforms BPDTE_RCC in both commu-
nication and computation, hence BPDTE_RCC is not listed in Table 4.

As for BFV parameters, BPDTE_CW and BPDTE_RCC use larger param-
eters than Level Up to provide higher depth. Precisely, Level Up uses SumPath,
where the amortized response of the server is O(m) and the client needs to
look up classi�cation values in a table. On the other hand, BPDTE_CW and
BPDTE_RCC use the Adapted SumPath method, where the amortized response
of the server is O(1) at the cost of O(log2 d) multiplicative depth.

As a remark, it is possible to combine our batched ciphertext-plaintext com-
parators with SumPath for PDTE, which requires the same BFV parameters
as in Level Up and therefore attains better communication and computational
performance. However, with this O(m) response, the client needs to perform a
table lookup to obtain classi�cation values and the extension to tree ensembles
is restricted.

In summary, with batch size 16384, SortingHat is about 103 slower than
those supporting SIMD operations. Compared to Level Up, BPDTE_RCC and
BPDTE_CW are 1.5× to 17× faster overall and have comparable query sizes.
For large precision (e.g. s = 16), BPDTE_RCC provides slightly lower query
sizes than BPDTE_CW (e.g. 0.73×) at the expense of slightly higher computa-
tion costs (e.g. 1.4− 2×).

Table 4: Amortized performance of di�erent PDTE protocols with batch size
16384 and input feature bit-length s = 11, where SortingHat uses TFHE with
N = 211, Level Up uses BFV with N = 213 and BPDTE_CW with h = 2 uses
BFV with N = 214

SortingHat (s = 11) Level Up (s = 11, h = 4) BPDTE_CW (s = 11, h = 2)

C
om
parison

Traversal

Q
uery

Size

C
om
parison

Traversal

Q
uery

Size

C
om
parison

Traversal

Q
uery

Size

Breast
7 ms 178 ms

960 kb
139 µs 117 µs

310 kb
9 µs 139 µs

90 kb

Total: 185 ms Total: 256 µs Total: 148 µs

Heart
3 ms 47 ms

416 kb
156 µs 25 µs

135 kb
3 µs 18 µs

117 kb

Total: 50 ms Total: 181 µs Total: 21 µs

Spam
69 ms 1283 ms

1824 kb
378 µs 1089 µs

589 kb
78 µs 1326 µs

513 kb

Total: 1352 ms Total: 1467 µs Total: 1404 µs

Steel
3 ms 59 ms

1056 kb
125 µs 34 µs

341 kb
4 µs 12 µs

297 kb

Total: 62 ms Total: 159 µs Total: 16 µs

Faster PDTE for Batched Input from HE 17

Table 5: Amortized performance of di�erent PDTE protocols with batch size
16384 and input feature bit-length s = 16, where Level Up uses BFV with N =
213, BPDTE_RCC with hs = 4 and and BPDTE_CW with h = 2 both use BFV
with N = 214

Level Up (s = 16, h = 4) BPDTE_RCC (s = 16, hs = 4) BPDTE_CW (s = 16, h = 2)

C
om
parison

Traversal

Q
uery

Size

C
om
parison

Traversal

Q
uery

Size

C
om
parison

Traversal

Q
uery

Size

Breast
583 µs 159 µs

968 kb
75 µs 139 µs

1140 kb
17 µs 138 µs

1560 kb

Total: 742 µs Total: 214 µs Total: 155 µs

Heart
309 µs 34 µs

420 kb
20 µs 18 µs

494 kb
4 µs 18 µs

676 kb

Total: 343 µs Total: 38 µs Total: 22 µs

Spam
1857 µs 1595 µs

1839 kb
536 µs 1501 µs

2166 kb
118 µs 1489 µs

2964 kb

Total: 3452 µs Total: 2037 µs Total: 1607 µs

Steel
262 µs 46 µs

1065 kb
25 µs 12 µs

1254 kb
6 µs 12 µs

1716 kb

Total: 308 µs Total: 37 µs Total: 18 µs

6 Conclusion

In this work, we proposed two batched ciphertext-plaintext comparisons, our
batched RCC comparator and the constant-weight piece-wise comparator. Com-
pared to directly applying previous methods to this scenario, our evaluation of
these comparison operators shows a speedup of up to 72× for 16-bit numbers
while maintaining comparable communication costs and multiplicative depth.

These batched ciphertext-plaintext comparisons, together with our adapted
SumPath tree traversal method, lead to two non-interactive PDTE protocols,
BPDTE_RCC and BPDTE_CW. Compared to the prior state-of-art [23], these
protocols not only avoid the client looking up classi�cation values in a table but
also demonstrate an enhanced performance of up to 17× in batch size 16384.

Acknowledgments. This work is partially supported by the Research Council KU
Leuven under the grant C24/18/049, CyberSecurity Research Flanders with reference
number VR20192203. The authors would also like to thank Dr. Svetla Nikova for the
valuable discussions and Prof. Frederik Vercauteren for helpful feedback on this paper.

18 Cong et al.

References

1. Azogagh, S., Delfour, V., Gambs, S., Killijian, M.: PROBONITE: private one-
branch-only non-interactive decision tree evaluation. In: Brenner, M., Costache,
A., Rohlo�, K. (eds.) Proceedings of the 10th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, Los Angeles, CA, USA, 7 November 2022.
pp. 23�33. ACM (2022). https://doi.org/10.1145/3560827.3563377

2. Bai, J., Song, X., Cui, S., Chang, E.C., Russello, G.: Scalable private decision
tree evaluation with sublinear communication. In: Suga, Y., Sakurai, K., Ding,
X., Sako, K. (eds.) ASIACCS 22. pp. 843�857. ACM Press (May / Jun 2022).
https://doi.org/10.1145/3488932.3517413

3. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: Faster
FHE instantiated with NTRU and LWE. In: Agrawal, S., Lin, D. (eds.) ASI-
ACRYPT 2022, Part II. LNCS, vol. 13792, pp. 188�215. Springer, Cham (Dec
2022). https://doi.org/10.1007/978-3-031-22966-4_7

4. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classi�cation over
encrypted data. In: NDSS 2015. The Internet Society (Feb 2015). https://doi.org/
10.14722/ndss.2015.23241

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868�886. Springer, Berlin, Heidelberg (Aug 2012). https://doi.org/
10.1007/978-3-642-32009-5_50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309�325.
ACM (Jan 2012). https://doi.org/10.1145/2090236.2090262

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5�32 (2001). https://doi.org/
10.1023/A:1010933404324

8. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM
CCS 2007. pp. 498�507. ACM Press (Oct 2007). https://doi.org/10.1145/1315245.
1315307

9. Chern, C., Lei, W., Huang, K., Chen, S.: A decision tree classi�er for credit assess-
ment problems in big data environments. Inf. Syst. E Bus. Manag. 19(1), 363�386
(2021). https://doi.org/10.1007/S10257-021-00511-W

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3�33. Springer, Berlin,
Heidelberg (Dec 2016). https://doi.org/10.1007/978-3-662-53887-6_1

11. Cong, K., Das, D., Park, J., Pereira, H.V.L.: SortingHat: E�cient private deci-
sion tree evaluation via homomorphic encryption and transciphering. In: Yin, H.,
Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022. pp. 563�577. ACM Press
(Nov 2022). https://doi.org/10.1145/3548606.3560702

12. Cong, K., Geelen, R., Kang, J., Park, J.: Revisiting oblivious top-k selection
with applications to secure k-nn classi�cation. Cryptology ePrint Archive, Report
2023/852 (2023), https://eprint.iacr.org/2023/852

13. Dua, D., Gra�, C.: UCI Machine Learning Repository (2017), http:
//archive.ics.uci.edu/ml

14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), https://eprint.iacr.org/2012/144

https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1145/3560827.3563377
https://doi.org/10.1145/3488932.3517413
https://doi.org/10.1145/3488932.3517413
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1145/1315245.1315307
https://doi.org/10.1007/S10257-021-00511-W
https://doi.org/10.1007/S10257-021-00511-W
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://eprint.iacr.org/2023/852
https://eprint.iacr.org/2012/144

Faster PDTE for Batched Input from HE 19

15. Hao, Y., Qin, B., Sun, Y.: Privacy-preserving decision-tree evaluation with low
complexity for communication. Sensors 23(5), 2624 (2023). https://doi.org/10.
3390/S23052624

16. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics,
Springer (2009). https://doi.org/10.1007/978-0-387-84858-7

17. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M.
(eds.) ACM CCS 2013. pp. 669�684. ACM Press (Nov 2013). https://doi.org/10.
1145/2508859.2516668

18. Kiss, Á., Naderpour, M., Liu, J., Asokan, N., Schneider, T.: SoK: Modular and
e�cient private decision tree evaluation. PoPETs 2019(2), 187�208 (Apr 2019).
https://doi.org/10.2478/popets-2019-0026

19. Liu, W., Fan, H., Xia, M.: Credit scoring based on tree-enhanced gradient boosting
decision trees. Expert Syst. Appl. 189, 116034 (2022). https://doi.org/10.1016/J.
ESWA.2021.116034

20. Lu, W., Huang, Z., Zhang, Q., Wang, Y., Hong, C.: Squirrel: A scalable
secure two-party computation framework for training gradient boosting deci-
sion tree. In: Calandrino, J.A., Troncoso, C. (eds.) 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023.
pp. 6435�6451. USENIX Association (2023), https://www.usenix.org/conference/
usenixsecurity23/presentation/lu

21. Lu, W., Zhou, J.J., Sakuma, J.: Non-interactive and output expressive private
comparison from homomorphic encryption. In: Kim, J., Ahn, G.J., Kim, S., Kim,
Y., López, J., Kim, T. (eds.) ASIACCS 18. pp. 67�74. ACM Press (Apr 2018).
https://doi.org/10.1145/3196494.3196503

22. Mahdavi, R.A., Kerschbaum, F.: Constant-weight PIR: Single-round keyword PIR
via constant-weight equality operators. In: Butler, K.R.B., Thomas, K. (eds.)
USENIX Security 2022. pp. 1723�1740. USENIX Association (Aug 2022)

23. Mahdavi, R.A., Ni, H., Linkov, D., Kerschbaum, F.: Level up: Private non-
interactive decision tree evaluation using levelled homomorphic encryption. In:
Meng, W., Jensen, C.D., Cremers, C., Kirda, E. (eds.) ACM CCS 2023. pp. 2945�
2958. ACM Press (Nov 2023). https://doi.org/10.1145/3576915.3623095

24. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL (Jan 2023), mi-
crosoft Research, Redmond, WA.

25. Shi, E., Bethencourt, J., Chan, H.T.H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: 2007 IEEE Symposium on Security and Pri-
vacy. pp. 350�364. IEEE Computer Society Press (May 2007). https://doi.org/10.
1109/SP.2007.29

26. Shin, H., Choi, J., Lee, D., Kim, K., Lee, Y.: Fully homomorphic training and
inference on binary decision tree and random forest. Cryptology ePrint Archive,
Report 2024/529 (2024), https://eprint.iacr.org/2024/529

27. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. DCC 71(1),
57�81 (2014). https://doi.org/10.1007/s10623-012-9720-4

28. Tai, R.K.H., Ma, J.P.K., Zhao, Y., Chow, S.S.M.: Privacy-preserving decision trees
evaluation via linear functions. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.)
ESORICS 2017, Part II. LNCS, vol. 10493, pp. 494�512. Springer, Cham (Sep
2017). https://doi.org/10.1007/978-3-319-66399-9_27

29. Tueno, A., Boev, Y., Kerschbaum, F.: Non-interactive private decision tree evalua-
tion. In: Singhal, A., Vaidya, J. (eds.) Data and Applications Security and Privacy

https://doi.org/10.3390/S23052624
https://doi.org/10.3390/S23052624
https://doi.org/10.3390/S23052624
https://doi.org/10.3390/S23052624
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.2478/popets-2019-0026
https://doi.org/10.2478/popets-2019-0026
https://doi.org/10.1016/J.ESWA.2021.116034
https://doi.org/10.1016/J.ESWA.2021.116034
https://doi.org/10.1016/J.ESWA.2021.116034
https://doi.org/10.1016/J.ESWA.2021.116034
https://www.usenix.org/conference/usenixsecurity23/presentation/lu
https://www.usenix.org/conference/usenixsecurity23/presentation/lu
https://doi.org/10.1145/3196494.3196503
https://doi.org/10.1145/3196494.3196503
https://doi.org/10.1145/3576915.3623095
https://doi.org/10.1145/3576915.3623095
https://github.com/Microsoft/SEAL
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1109/SP.2007.29
https://doi.org/10.1109/SP.2007.29
https://eprint.iacr.org/2024/529
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/978-3-319-66399-9_27
https://doi.org/10.1007/978-3-319-66399-9_27

20 Cong et al.

XXXIV - 34th Annual IFIP WG 11.3 Conference, DBSec 2020, Regensburg, Ger-
many, June 25-26, 2020, Proceedings. Lecture Notes in Computer Science, vol.
12122, pp. 174�194. Springer (2020). https://doi.org/10.1007/978-3-030-49669-2_
10

30. Tueno, A., Kerschbaum, F., Katzenbeisser, S.: Private evaluation of decision trees
using sublinear cost. PoPETs 2019(1), 266�286 (Jan 2019). https://doi.org/10.
2478/popets-2019-0015

31. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. PoPETs 2016(4), 335�355 (Oct 2016). https://doi.org/10.
1515/popets-2016-0043

32. Zhang, D., Zhou, X., Leung, S.C.H., Zheng, J.: Vertical bagging decision trees
model for credit scoring. Expert Syst. Appl. 37(12), 7838�7843 (2010). https://
doi.org/10.1016/J.ESWA.2010.04.054

33. Zheng, W., Deng, R., Chen, W., Popa, R.A., Panda, A., Stoica, I.: Cerebro: A plat-
form for multi-party cryptographic collaborative learning. In: Bailey, M., Green-
stadt, R. (eds.) USENIX Security 2021. pp. 2723�2740. USENIX Association (Aug
2021)

34. Zuber, M., Sirdey, R.: E�cient homomorphic evaluation of k-NN classi�ers.
PoPETs 2021(2), 111�129 (Apr 2021). https://doi.org/10.2478/popets-2021-0020

https://doi.org/10.1007/978-3-030-49669-2_10
https://doi.org/10.1007/978-3-030-49669-2_10
https://doi.org/10.1007/978-3-030-49669-2_10
https://doi.org/10.1007/978-3-030-49669-2_10
https://doi.org/10.2478/popets-2019-0015
https://doi.org/10.2478/popets-2019-0015
https://doi.org/10.2478/popets-2019-0015
https://doi.org/10.2478/popets-2019-0015
https://doi.org/10.1515/popets-2016-0043
https://doi.org/10.1515/popets-2016-0043
https://doi.org/10.1515/popets-2016-0043
https://doi.org/10.1515/popets-2016-0043
https://doi.org/10.1016/J.ESWA.2010.04.054
https://doi.org/10.1016/J.ESWA.2010.04.054
https://doi.org/10.1016/J.ESWA.2010.04.054
https://doi.org/10.1016/J.ESWA.2010.04.054
https://doi.org/10.2478/popets-2021-0020
https://doi.org/10.2478/popets-2021-0020

Faster PDTE for Batched Input from HE 21

A Tree Truncation

For the decision tree in Figure 5, applying the tree truncation gives Figure 6.

r1 r2 r3 r4 r5 r6 r7 r8result r:

0classi�cation values v: 1 0 0 1 0 0 1

Fig. 5: An example decision tree in depth d = 3 with m = 7 decision nodes,
m+1 = 8 leaves and k = 2 classi�cation values. In its PDTE, the server obtains
an encrypted value Enc(rj) for each leaf j, where 1 ≤ j ≤ 8

r2 r5 r8result r:

classi�cation values v: 1 1 1

Fig. 6: The truncated decision tree in Figure 5, where the tree contains 6 decision
nodes instead of 7 and the result vector contains 3 elements instead of 8.

B Performance Comparison between Di�erent Batch

Sizes

In batched PDTE with batch size a, the client sends encryptions of a feature
vectors {x(1),x(2), . . . ,x(a)} and wants to know the classi�cation output for each
of them. This appendix discusses PDTE running times for a �xed decision tree
T but di�erent a.

22 Cong et al.

For SortingHat with N = 211, Level Up with N = 213 and h = 4, BPDTE_CW
with N = 214 and h = 2 (i.e. PDTEs in Table 4), Figure 7 compares their run-
ning times for the Heart model with 11-bit feature precision. Since SortingHat
does not support SIMD packing, the total running time scales linearly with
a, assuming their FHE parameters are �xed. In Level Up, components of 712
features are packed in one ciphertext in their implementation, hence the total
running time is a step function with step 712. In BPDTE_CW, components of
214 features are packed in one ciphertext, hence the total running time is a step
function with step 214.

As shown in Figure 7, for PDTEs of the Heart model, SortingHat is the
fastest for batch sizes from 1 to ∼ 10, Level Up is the fastest for batch sizes
from ∼ 10 to ∼ 2100, and BPDTE_CW is the fastest for batch sizes larger than
∼ 2100. PDTEs of other models attain similar behaviour, but intersection points
for the optimal PDTE will di�er.

Fig. 7: Computation time (comparison+tree traversal) for the Heart model of
di�erent PDTE protocols with input feature length s = 11 and di�erent batch
sizes in x-axis.

	Faster Private Decision Tree Evaluation for Batched Input from Homomorphic Encryption

