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ABSTRACT
Functional Encryption (FE) allows users to extract specific function-

related information from encrypted data while preserving the pri-

vacy of the underlying plaintext. Though significant research has

been devoted to developing secure and efficient Multi-Input Func-

tional Encryption schemes supporting diverse functions, there re-

mains a noticeable research gap in the development of verifiable

FE schemes. Functionality and performance have received consid-

erable attention, however, the crucial aspect of verifiability in FE

has been relatively understudied. Another important aspect that

prior research in FE with outsourced decryption has not adequately

addressed is the fairness of the data-for-money exchange between

a curator and an analyst. This paper focuses on addressing these

gaps by proposing a verifiable FE scheme for inner product com-

putation. The scheme not only supports the multi-client setting

but also extends its functionality to accommodate multiple users

– an essential feature in modern privacy-respecting services. Ad-

ditionally, it demonstrates how this FE scheme can be effectively

utilized to ensure fairness and atomicity in a payment protocol,

further enhancing the trustworthiness of data exchanges.

CCS CONCEPTS
• Security and privacy → Key management; Access control;
Privacy-preserving protocols; Public key encryption.

KEYWORDS
Blockchain, Fairness, Functional Encryption, Verifiable Decryption

1 INTRODUCTION
Functional Encryption (FE) is a powerful cryptographic paradigm

that revolutionizes secure data processing by enabling fine-grained

access control and computation on encrypted data. This innovative

approach aims to strike a delicate balance between privacy preserva-

tion and functionality, allowing data owners to selectively disclose

specific information while keeping the remainder confidential.

FE schemes leverage a key generation algorithm that yields

decryption keys with remarkable capabilities. Each decryption

key dk𝑓 is associated with a function 𝑓 . Unlike traditional cryp-

tographic techniques, applying dk𝑓 to a ciphertext Enc(𝑥) does
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not recover the original value 𝑥 , but instead reveals the evalua-

tion 𝑓 (𝑥), while preserving the confidentiality of 𝑥 . Initially, FE

constructions enabled computation over a single ciphertext, but re-
cent advancements [8, 22] have introduced a more versatile notion

known as multi-input FE (MIFE). In MIFE schemes, given cipher-

texts Enc(𝑥1), . . . , Enc(𝑥𝑛), a user can utilize dk𝑓 to obtain the result

of 𝑓 (𝑥1, . . . , 𝑥𝑛).

Although significant research efforts in FE have focused on con-

structing secure and efficient MIFE schemes and supporting various

functions, there is a noticeable gap in the literature when it comes

to developing verifiable FE schemes. The need for verifiable FE

schemes arises from the requirement to ensure the integrity and

trustworthiness of the decryption process, particularly in scenarios

involving untrusted decryptors or when interactingwith potentially

compromised entities. Addressing this gap in research is essential

as it advances the field of FE toward more comprehensive and trust-

worthy solutions, bridging the divide between functionality and

verifiability. Through verifiable decryption, a user can verify that

the functional decryption was honestly computed without having

access to the underlying decryption key. This feature is of para-

mount importance in cases where the decryptor is an untrusted

third party. Satisfying the property of verifiable decryption in FE,

is an important step towards assuming stronger threat models, by

removing trust from, traditionally, fully trusted entities.

Fair Payments: Another important issue that has not been ad-

dressed adequately by prior research in the context of FE with

outsourced decryption is the fairness of the data-for-money ex-

change between a curator and an analyst. The curator collects

user-encrypted data and presents them in an appropriate form to

an analyst, who wishes to purchase a weighted average of these

data, under the assumption that neither of them should be trusted. If

a malicious analyst is given the functional decrypted results he may

cheat the provider and not pay. After all, he owns the decrypted

data thus violating fairness. For a similar reason, the analyst cannot

pay in advance as the curator may never release the promised data.

In this work we leverage the verifiability of functional decryption

to develop a protocol that ensures that no party can cheat the other;

in particular, data is delivered if and only if an appropriate payment

is made, essentially making the protocol atomic.
While fair exchange poses a fundamental challenge that necessi-

tates the involvement of a trusted third party, our approach utilizes
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the Blockchain network to eliminate the requirement for such an

intermediary. Specifically, we introduce a payment protocol that

leverages blockchain technology to establish a secure and transpar-

ent framework for transactions between a curator and an analyst.

This protocol enables the exchange of functional output for mon-

etary compensation, ensuring a fair and atomic payment process

that eliminates the need for trust in the curator or any external

intermediaries. Furthermore, through the implementation of simple

blockchain transactions where most of the data is transferred off-

chain, we not only streamline the payment process but also reduce

costs, making it more economical and efficient.

Use cases: We consider data marketplaces as a practical motiva-

tion for our protocols. The development of services that have access

to large amounts of user-generated data has led to the emergence of

data-exchange marketplaces, where owners of data can receive re-

wards for the data they offer to third parties. One example includes

crowd-sensing applications [25], in which data collected through

devices of participating users are analyzed and made available to

requestors or the broader public. Another example includes the

smart electricity grid in which “smart meters”, devices deployed at

home locations, can provide real-time monitoring of electricity con-

sumption thus balancing the use of energy and costs and benefiting

both users and electricity providers [18].

Marketplace applications of this form typically use a service

provider or curator who administers the data-sharing infrastruc-

ture. At a high level, the curator receives user data, processes them

accordingly, and delivers aggregates to requestors of this informa-

tion. However, the success of these data marketplaces depends on

addressing several key concerns about data confidentiality, output

verifiability, and fairness.

• Data Condidentiality: The key factor to the success of these

applications is user participation. However, collecting informa-

tion from user devices or smart meters has important privacy

implications, since contributed data may be strongly related

to user activities and daily routines. Guaranteeing data pri-

vacy and confidentiality is of utmost importance to ensure that

sensitive data is not exposed or misused by third parties.

• Verifiability of results: As requestors of information rely on

the accuracy and quality of the purchased data to make in-

formed decisions, ensuring that the provided data is verifiable

is crucial to maintaining trust between the data curator and

buyers. Hence no buyer or requestor of data should be tricked

to purchase wrong or falsified results.

• Fairness is also a key consideration, ensuring that data curators
receive appropriate compensation for supplied data and that

buyers will get the data they paid for. As the existence of a

centralized authority that monitors the exchange of money-

for-data is not desirable, it is important that the right tools are

developed to ensure that no party can cheat the other.

By prioritizing the verifiability of results, atomicity of transac-

tions, and fairness, our verifiable FE protocol can be used to foster

trust, encourage participation, and promote the growth of reliable

marketplaces for data exchange.

Contribution: Our contribution can be summarized as follows:

C1: We endow the FE protocol of Castagnos et al. [13] with a

multi-client feature. This new construction aims at allowing

the users and the key curator a better management of the

ciphertexts accessible by the analyst.

C2: Our construction includes a verification method to ensure

the correctness of the computation the analyst receives. Ad-

ditionally, we provide a variant to extend the protocol to 𝑛

users, encrypting their data separately.

C3: We also propose a blockchain-based payment protocol be-

tween a curator and an analyst that can be used to trade the

functional output for an appropriate amount. Our payment

protocol ensures fairness and atomicity of payments without

placing any trust in the curator or other third parties. Ad-

ditionally, it uses only simple blockchain transactions thus

reducing cost and enhancing the efficiency of the payment

process.

2 RELATEDWORK
(Verifiable) Functional Encryption: FE was first introduced

by Boneh et al. in [9] as a generalization of Public-Key Encryp-

tion (PKE). Since then, numerous new definitions and different

approaches have been proposed [22, 23, 30]. As its name suggests,

functional encryption schemes are usually implemented with a

limited set of functions for a specific use case. In our work, we

focus on Inner Product Functional Encryption (IPFE), in which the

function is the inner product for a given vector. Prior to our work,

numerous IPFE protocols have been proposed, based on different

hardness assumptions. Among these, the learning with error (LWE)

problem has been very popular [1, 2, 6] for its security against

quantum attacks. However, the structure of the ciphertexts makes

it difficult to design an efficient verification method, and none of
these cryptosystems has been endowed with such a feature. An-

other popular approach is the use of the Decisional Diffie-Hellman

problem (DDH) [2, 6, 13, 24], or related assumptions. The inter-

est of these constructions is the efficiency and simplicity of their

algorithms. Moreover, the ciphertexts being elements of a cyclic

group, designing a verification feature based on zero-knowledge
proof (ZKP) on a discrete logarithm is extremely practical.

Meanwhile, several recent works address the problem of verifi-

able decryption in FE and propose generic methods. Among them,

we cite the work of Badrinarayanan et al. [7] that formally defines

for the first time the need for a verification method for FE. They

provide a method of constructing a verifiable protocol from any

FE scheme, including IPFE. However, this construction is primarily

theoretical and lacks efficiency in terms of real use-case application.

Subsequently, recent protocols have introduced a more pragmatic

approach [28, 29], showing that verifiable IPFE can also be practical.

However, the use cases they consider primarily focus on malicious

users. This differs from our approach.

As this works address the trust issues between two parties, it is

important to mention the existence of decentralized IPFE [3, 14]. In

a decentralized setup, data holders do not rely on a trusted authority

for key management, which solves the privacy issues of classical

IPFE. This field has been widely studied in the past few years and,

despite being more resource-demanding than previous schemes,

some practical works have been designed [16]. However, this setup
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requires constant online participation from the users, as well as

being more computationally expensive.

The purpose of this article is to demonstrate the practicability

of verifiable FE in a real use case scenario, namely fairness in data

marketplaces. We chose to work on the centralized construction

of Castagnos et al. [13], which has the advantage of proposing a

protocol with efficient decryption hence more suitable to our use

case. Thereunder, we present some background knowledge and

state-of-the-art in contingent payments.

Contingent Payments: Several works in the literature use the

blockchain to exchange data and rewards, where a seller can sell

any verifiable information for some payment in cryptocurrencies.

For example, in [26], a smart contract is used to handle transferred

data and payments by the collector. A similar approach is followed

in [19], however, the underlying assumption is that data consumers

and the service providers do not collude with each other. Fair-

swap [20] tries to eliminate these problems through proofs of mis-

behavior that aim at reducing the transaction cost in case of a

cheating participant.

A characteristic of smart contract-based solutions is that typ-

ically all data have to go through the smart contract, increasing

monetary costs and resulting in rather inefficient systems. Our work

overcomes this by requiring only the actual payment transaction

to use the blockchain network while most of the protocol steps

take place offchain. We do this by relying on hash time-lock scripts

(HTLC), a simpler solution for trustless fair payment, that can be

used to transfer assets to the recipientif the pre-image of a target

hash value is provided. However, to achieve this, the FE protocol

must be enhanced with a verifiability property. We consider this

another important contribution of this work.

Similarly to our proposal, Zero Knowledge Contingent Pay-

ments [27] can be used to exchange a secret for a fee. This was later

extended in [11], allowing a seller to receive payment once a certain

service has been rendered. Our work resembles these protocols in

the sense that the secret to be exchanged is the key that can be used

to unlock the purchased FE data.

3 PRELIMINARIES
This section outlines the requirements for understanding this paper.

We first define the notation and mathematical background neces-

sary for the FE constructions before introducing the concept of

blockchain, which serves as the foundation for our protocol.

Notation: For 𝑚 ∈ N∗, [𝑚] is the set {1, . . . ,𝑚}. Vectors are
denoted in bold lowercase letters. The inner product between two

vectors x = (𝑥1, . . . , 𝑥𝑛) and y = (𝑦1, . . . , 𝑦𝑛) is ⟨x, y⟩ = 𝑥1𝑦1 +

. . . + 𝑥𝑛𝑦𝑛 and their Hadamard product is x ◦ y = (𝑥1𝑦1, . . . , 𝑥𝑛𝑦𝑛).

For a set X, we use 𝑥 $←− X if 𝑥 is sampled uniformly at random

from X and 𝑥 ← DX,𝜎 if 𝑥 is sampled from the standard Gaussian

distribution in X for deviation 𝜎 . A PPT adversary ADV is a

randomized algorithm for which there exists a polynomial 𝑃 (𝑥 ) s.t.

for all input 𝑥 , the running time of ADV(𝑥 ) is bounded by |𝑃 (𝑥 )|.
A function 𝑓 : N ↦→ R is said negligible if ∀𝑐 ∈ N, ∃𝑥0 ∈ N such

that ∀𝑥 ≥ 𝑥0, 𝑓 (𝑥 ) < 𝑥−𝑐 . We denote 𝑛𝑒𝑔𝑙 (·) an arbitrary negligible

function.

3.1 Inner Product Functional Encryption
An Inner Product Functional Encryption (IPFE) scheme enables

users to calculate the inner product between a vector of plaintexts

and a vector for which they possess the functional decryption key,

without exposing the plaintexts.

Definition 3.1 (Inner Product Functional Encryption (IPFE)). An
IPFE scheme for a message spaceM and a vector spaceY is a tuple

IPFE = (Setup, Enc,KeyGen,Dec) such that:

• Setup
(
1
𝜆
)
: The setup algorithm Setup is a probabilistic algo-

rithm that on input the security parameter 𝜆, outputs a master

public and private key pair (mpk,msk).
• Enc (mpk, x): The encryption algorithm Enc is a probabilistic
algorithm that on input themaster public keympk and amessage

x = (𝑥1, . . . , 𝑥𝑛) ∈ M, outputs a ciphertext c.
• KeyGen (msk, y): The key generation algorithm KeyGen is a

deterministic algorithm that on input the master secret keymsk
and a vector y ∈ Y, outputs a functional decryption key dky.
• Dec

(
dky, c

)
: The decryption algorithm Dec is a deterministic

algorithm that on input a functional decryption key dky and a

ciphertext c, outputs the inner product of y on the plaintexts

⟨x, y⟩.
An IPFE scheme is said to be correct if the following equality

holds:

𝑃𝑟 [Dec
(
dky, c

)
̸= ⟨x, y⟩ | [(mpk,msk)← Setup

(
1
𝜆
)
] ∧

[c← Enc (mpk, x)] ∧ [dky ← KeyGen (msk, y)]] = 𝑛𝑒𝑔𝑙(𝜆)

Remark that the decryption key in definition 3.1 depends only

on the vector y and not on any specific ciphertext. This means

that anyone with access to the functional decryption key dky can
retrieve the quantity ⟨x, y⟩ for any message x. However, some

scenarios require narrowing the capability of a key to a determined

set of data. One way to achieve this is to create a dependency

between the decryption key and the encryption, which makes dky
specific to a restrained set of ciphertexts. An FE scheme with this

feature is called multi-client.

Definition 3.2 (Multi-Client Inner Product Functional Encryption).
An MCIPFE scheme for a message spaceM and a vector space Y
is a tupleMCIPFE = (Setup, Enc,KeyGen,Dec) such that:

• Setup
(
1
𝜆
)
: The setup algorithm Setup is a probabilistic algo-

rithm that on input the security parameter 𝜆, outputs a master

public and private key pair (mpk,msk);
• Enc (mpk, x, ℓ): The encryption algorithm Enc is a probabilistic
algorithm that on input the master public key mpk, a message

x = (𝑥1, . . . , 𝑥𝑛) ∈ M and a label ℓ , outputs a ciphertext c(ℓ);
• KeyGen (msk, y, ℓ): The key generation algorithm KeyGen is a

deterministic algorithm that on input the master secret keymsk,
a vector y ∈ Y and a label ℓ , outputs a functional decryption

key dky;

• Dec
(
dky(ℓ), c(ℓ

′
)

)
: The decryption algorithm Dec is a determin-

istic algorithm that on input a functional decryption key dky(ℓ)

and a ciphertext c(ℓ
′
)
, outputs the inner product ⟨x, y⟩ if ℓ = ℓ′,

and ⊥ otherwise.
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In the remainder of the article, we avoid the notations dky(ℓ) and
c(ℓ) if there is no ambiguity, and use the classical notation dky and
c instead.

The notion of MCIPFE originally comes from the need of users to

encrypt their data separately, hence the namemulti-client. Different
clients could be registered in the same system but encrypt their data

under their own encryption key, or label. In this article, we take

this feature for another purpose: restraining the set of ciphertext

accessible to a given decryption key. The construction that follows

this definition is detailed in section 5.2.

3.2 Zero-knowledge proofs
In this paper, we use non-interactive zero-knowledge (NIZK) to

prove knowledge and relations over discrete logarithm values with-

out the need for interaction. A zero-knowledge proof is an interac-

tive protocol between a prover 𝑃 and a verifier𝑉 , where the prover

tries to convince the verifier about the validity of a statement with-

out the verifier learning anything beyond this fact. Zero-knowledge

proofs can be made non-interactive using the Fiat-Shamir heuristic.

We will be using the following standard notation introduced by

Camenisch et al. [10] in describing such a proof. We will denote by:

𝜋 = 𝑁𝐼𝑍𝐾{(𝑟,𝑢, 𝑣) : 𝐶 = 𝑔𝑟ℎ𝑢 ∧ 𝐼 = 𝑔𝑣}
a non-interactive zero-knowledge proof, where the prover tries to

convince the verifier that it knows 𝑟,𝑢 and 𝑣 such that𝐶 = 𝑔𝑟ℎ𝑢 and

𝐼 = 𝑔𝑣 . The variables 𝑟,𝑢, 𝑣 inside parentheses will denote private

values, while𝐶 and 𝐼 on the right will constitute public information

available to the verifier𝑉 . Once 𝜋 is created,𝑉 can test the validity

of the proof submitted by the prover.

3.3 Blockchain
We assume the existence of a public ledger (blockchain) which will

be used as the means to exchange data for payments. Payments

are made and sent to addresses that are created privately by users.

Addresses are bound to user public keys and transactions must be

signed to be considered authentic. The ledger keeps track of the

list of coins associated with each address and is considered to be

a trustworthy bulletin board that only allows for appending new

transactions.

The ledger is updated based on user transactions and provides an

interface Transfer (𝐴, 𝐵, 𝑣) that enables the transfer of 𝑣 coins from
one address 𝐴 (with an associated verification key pk𝐴) to another

address 𝐵 (with an associated verification key pk𝐵 ), as long as the
secret key sk𝐵 is known. This interface allows users to transact

among themselves.

As the ledger is typically a linked list data structure, any attempt

to modify an existing transaction will result in a chain of updates;

however this cannot happen without consensus by the majority of

the peers maintaining the ledger. This property gives the blockchain

its immutable and transparent character.

4 SYSTEM AND THREAT MODEL
System Model: The system model we consider consists of three

entities: (i) Key Curator (C), (ii) Users (U), (iii) Analyst (A).

• Key Curator (C):We assume the existence of an authority C,
which is responsible for the Setup phase and the generation of

the decryption keys upon request of an analyst for a specific

vector.

• Users (U): LetU = 𝑢1, . . . , 𝑢𝑛 be a set of users holding sensitive

data. They each encrypt their data under the public parameters

generated by the curator and send them to the latter. The 𝑛

users involved in the system individually encrypt their sensitive

data into ciphertext using the public parameters generated by

C. Then, they send their encrypted data to the curator.

• Analyst (A): We consider an external data analyst A who

expects the result of selective computation on the data held by

the users. A interacts with the curator and sends functional

queries to C .

Threat Model: The curator C generates the master key through

the Setup phase and administers the data collection infrastructure.

We consider a typical crowd-sensing scenario in which users submit

their data and obtain rewards for them (see for example [17]). Hence,

C has access to all data. However, consumers of these data are not
expected to trust the curator to provide them with the correct

results. Therefore, we do not require C to be trusted by an analyst

A and consider the possibility that C sends the wrong decryption

key to mislead the results of the analyst or that he does not send the

data at all during the transaction. On the user side, we reasonably

consider that the users are honest in the data they provide, but they

are not compelled to trust each other.

In terms of security, we assume that the curator does not collude

with the analyst, as this would provide the analyst with access to

all user data. This assumption is reasonable in our use case since

we address the problem of exchanging data for a fee between the

curator and the analyst.

Concerning this exchange, we expect the scheme to meet the

following security requirements (i) Atomicity/Fairness: either both
the analyst and the curator respectively get a correct decryption

and payment, or the transaction is aborted and neither party gets

anything. Essentially, it is crucial to ensure that the curator is not

paid without the correct computation of the functional query, and

the analyst cannot evade payment after obtaining the correct com-

putation result from the curator. (ii) Confidentiality: computation

results should be protected against eavesdroppers or malicious en-

tities looking to acquire information about plaintexts associated

with ciphertexts.

We highlight again that users trust the curator with their data

as they have already been rewarded for them. Furthermore, this

is required in a classical IPFE setup: given the capability to gener-

ate a decryption key for arbitrary vectors, C can compute trivial

inner products on the ciphertexts hence recovering the plain data.

The construction of IPFE schemes that do not rely on a trusted

authority requires a decentralized setup [3, 14]. In this type of con-

struction, the users themselves generate the decryption keys which

implies a constant online involvement and is not suitable for the

fair-exchange application we propose.

5 CONSTRUCTING A VERIFIABLE MCIPFE
Consider a scenario where a data analyst wants to perform selective

computations on sensitive data x = (𝑥1, . . . , 𝑥𝑛) held by a single user.

In this scenario, a key curator runs the Setup algorithm, sets mpk
as public information, and keeps msk secret. The user encrypts
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the message x into a ciphertext c = (𝑐1, . . . 𝑐𝑛)← Encrypt (mpk, x).
The analyst, who has access to c, wants to calculate ⟨y, x⟩ for a
vector y. Therefore, she sends a request to the curator to obtain

the functional decryption key dky. The curator, given the analyst’s

vector y and secret key msk, produces the decryption key dky
through KeyGen and sends it back to the analyst. Finally, the latter

can use Decrypt to obtain the result.

In this scenario, we require the decryption key dky to be specific
to a ciphertext or set of ciphertexts. This restriction permits better

access control and is recommended in the use case we consider,

where an analyst purchases specific results. This can be achieved

using an MCIPFE construction that we defined in definition 3.2.

Further down, we begin with the basic scheme of Castagnos

et al. [13] and note its limitations and security concerns for our

system model. Then we extend it by adding a multi-client feature

in section 5.2 and multi-user support in section 5.3. Finally, we

consider verifiable decryption in section 5.4.

5.1 Construction of Castagnos et al.
To present our contribution, we first recall the IPFE scheme of

Castagnos et al. [13] in protocol 1. Mark that the system model

supported by this protocol admits a single user.

In previous constructions [1, 4, 15] based on Additive-ElGamal

encryption scheme [5], the decryption procedure relies on comput-

ing a discrete logarithm in a cyclic group. This problem is known

to be hard in the general case, hence the correctness of the pro-

tocols requires length restrictions on the exponent size. In terms

of practical use, this appears to be a serious issue, as it requires

strict limitations on the size of the messages as well as the set of

decryption keys that can be delivered to analysts. The IPFE con-

struction presented in this section relies on a DDH group with an

easy DL subgroup. In short, it consists in generating a cyclic group

𝐺 together with a subgroup 𝐹 of𝐺 such that the discrete logarithm

is easy to compute in 𝐹 but hard in 𝐺 . We detail this primitive in

appendix A.

First of all, the curator runs the Setup algorithm to generate

public parameters pp = (𝑝, 𝑠, 𝑓 , 𝑔, ℎ), secret keys s = (𝑠1, . . . , 𝑠𝑛), t =
(𝑡1, . . . , 𝑡𝑛) and public keys (ℎ1, . . . , ℎ𝑛). The user generates a noise

𝑟 and encrypts data with Encrypt algorithm, i.e. the message 𝑥𝑖
is encrypted into 𝑐𝑖 = 𝑓 𝑥𝑖ℎ𝑟

𝑖
under the public key ℎ𝑖 . The user

eventually obtains a ciphertext c = (𝑐0, 𝑐1, . . . , 𝑐𝑛), where 𝑐0 is a hint

for the decryption.

Protocol 1 (IPFE over Z under the DDH-𝑓 assumption [13]).

Following definition 3.1, this protocol consists in 4 algorithms (Setup,
Encrypt,KeyGen,Decrypt), described in fig. 1.

The pair of algorithms (Gen, Solve) is detailed in definition A.2 and
the choice of the deviation 𝜎 is discussed together with the security
analysis in appendix B.

Setup
(
1
𝜆, 1𝜇 , 𝑛

)
:

Set pp := (𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ) ← Gen
(
1
𝜆, 1𝜇

)
Sample 𝛼 ←↪ DZ,𝜎 and s, t←↪ DZ𝑛,𝜎
for 1 ≤ 𝑖 ≤ 𝑛 do

Compute ℎ𝑖 ← 𝑔𝑠𝑖ℎ𝑡𝑖

end
return msk = (s, t) and mpk = (pp, ℎ := 𝑔𝛼 , ℎ1, . . . , ℎ𝑛)

Encrypt (mpk, x):
Sample 𝑟 ←↪ DZ,𝜎
for 1 ≤ 𝑖 ≤ 𝑛 do

Compute 𝑐𝑖 ← 𝑓 𝑥𝑖ℎ𝑟
𝑖

end
return c = (𝑐0 = (𝑔𝑟 , ℎ𝑟 ) , 𝑐1, . . . 𝑐𝑛)

KeyGen (msk, y):
Compute sy ← ⟨y, s⟩ and ty ← ⟨y, t⟩
return dky =

(
y, sy, ty

)
Decrypt

(
mpk, dky, c

)
:

Compute cy ←
∏𝑛

𝑖=1
𝑐
𝑦𝑖
𝑖
/
(
(𝑔𝑟 )sy (ℎ𝑟 )ty

)
Compute sol← Solve

(
𝑝, pp, cy

)
if sol ≥ 𝑝/2 then

sol← sol − 𝑝
return sol

Figure 1: Castagnos et al. IPFE algorithms [13]

Correctness: Let us verify that Decrypt
(
mpk, dky, c

)
indeed outputs

⟨y, x⟩.

cy =

𝑛∏
𝑖=1

𝑐
𝑦𝑖
𝑖
/

( (
𝑔𝑟

)sy (
ℎ𝑟

)ty )
=

𝑛∏
𝑖=1

(
𝑓 𝑥𝑖

(
𝑔𝑠𝑖 · ℎ𝑡𝑖

)𝑟 )𝑦𝑖
/

(
𝑔𝑟 ⟨y,s⟩ℎ𝑟 ⟨y,t⟩

)
= 𝑓 ⟨y,x⟩𝑔𝑟 ⟨y,s⟩ℎ𝑟 ⟨y,t⟩/

(
𝑔𝑟 ⟨y,s⟩ℎ𝑟 ⟨y,t⟩

)
= 𝑓 ⟨y,x⟩

Then compute Solve
(
𝑝, pp, cy

)
= Solve

(
𝑝, pp, 𝑓 ⟨y,x⟩

)
= ⟨y, x⟩.

On the other hand, consider an external user, e.g. a data an-

alyst, who wants to perform computations on the data x. Since
this protocol is designed for the inner product, the output can be

⟨y, x⟩ = 𝑦1𝑥1 + . . . + 𝑦𝑛𝑥𝑛 for a valid vector y chosen by the ana-

lyst. The analyst then sends a request y to the curator, who runs

the KeyGen algorithm to provide the functional decryption key

dky = (⟨y, s⟩, ⟨y, t⟩), where s, t are the secret keys. By running

the Decrypt algorithm, the analyst can finally retrieve the desired

quantity ⟨y, x⟩ = 𝑦1𝑥1 + . . . + 𝑦𝑛𝑥𝑛 .

Limitations: We motivate the construction of protocol 2 by

highlighting several limitations of the previous construction con-

cerning the properties expected by our system model. First of all,

the protocol of Castagnos et al. is not multi-client, i.e. the functional
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decryption key (⟨y, s⟩, ⟨y, t⟩) generated by the curator is not specific
to a ciphertext, hence giving the possibility to the data analyst to get

more information than the one she originally requested. Secondly,

this scheme has been designed for a set of linearly independent

requested vectors small enough not to endanger the security of the

plaintexts, as detailed below. The set of a functional decryption

key is much bigger in a MCIPFE scheme, due to label dependency.

However, allowing the generation of numerous decryption keys

brings forth a different security vulnerability on the secret keys

themselves. Finally, this protocol only supports a single user. Hence

we design in protocol 3 a variant supporting 𝑛 users encrypting the

data independently.

Multi-Client Feature: The multi-client construction presented

in definition 3.2 allows a user to encrypt messages through different

labels and divide the set of encrypted data into smaller subsets. In

protocol 2, this feature allows the curator to add a dependency

between the decryption key and the ciphertext. Therefore, an an-

alyst holding a decryption key dky(ℓ) ← KeyGen (𝑚𝑠𝑘, y, ℓ) can
only compute ⟨y, x⟩ for x encrypted under the same label ℓ . Con-

secutively, to restrict the access of a data analyst to a set of data,

it is necessary to change the label of further encrypted data. In

particular, if the curator wishes to sell a single computation, it is

possible to deliver a functional decryption key specific to a single

ciphertext encrypted with a specific label.

5.2 Adding Multi-Client Support
Now, we introduce our corresponding MCIPFE construction fol-

lowing definition 3.2. We propose a new decryption key generation

allowing the curator to output a functional decryption key that

depends on a specific set of ciphertexts, encrypted under a common

label. First of all, this construction requires a preliminary encoding

of this label.

Label Encoding: To construct an MCIPFE, we design an en-

cryption and decryption procedure that allows a user to encrypt a

ciphertext under a specific label ℓ ∈ N. To ensure this specificity

hence the security of the protocol, it is necessary to verify that,

given a decryption key for a label ℓ , an adversary can not forge a

decryption key for another label ℓ′. As the decryption key from

protocol 1 is an inner product, the multi-client decryption key can

not be linear in ℓ . Therefore, we consider an encoding method

Ecd : Z→ Z𝑛 ; ℓ ↦→ (ℓ1, . . . , ℓ𝑛) where each ℓ𝑖 depends non-linearly

on ℓ . This idea has already been proposed by Abdalla et al. [2] for
the general case using on a pseudo-random function PRF(𝑖, ℓ) as
a basis for their encoding. However, this general approach is not

the best choice for our protocol which relies on a public encod-

ing. Therefore, we believe that the use of a hash function would

be sufficient to guarantee the non-linearity of the encoding and

the unforgeability of a label ℓ , as detailed in theorem B.4, while

providing better performances and better flexibility on the choice

of labels.

Specification: we use a simple first and second pre-image resis-

tant cryptographic hash function 𝐻 : {0, 1}∗ → Z𝑛 ·𝑝 . The output
of the hash ℎ can be split afterwards into 𝑛 components of range 𝑝

with a canonical projection 𝜋 : ℎ := ℎ𝑛−1∥. . . ∥ℎ0 ↦→ (ℎ𝑛−1, . . . , ℎ0).

Eventually, given as input a label ℓ , we define the following encod-

ing algorithm:

Ecd : {0, 1}∗ → Z𝑛 ·𝑝 → Z𝑛𝑝
ℓ ↦→ 𝐻 (ℓ) ↦→ (ℓ1, . . . , ℓ𝑛)

Protocol 2 (MCIPFE scheme under the DDH-𝑓 assumption).

Our multi-client variant of protocol 1, consists of 4 algorithms (Setup,
Encrypt,KeyGen,Decrypt) described in fig. 2.

Setup
(
1
𝜆, 1𝜇 , 𝑛

)
:

Set pp = (𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ) ← Gen
(
1
𝜆, 1𝜇

)
Pick 𝛼 ←↪ DZ,𝜎 and s, t←↪ DZ𝑛,𝜎
for 1 ≤ 𝑖 ≤ 𝑛 do

Compute ℎ𝑖 ← 𝑔𝑠𝑖ℎ𝑡𝑖

end
return msk = (s, t) and mpk = (pp, ℎ := 𝑔𝛼 , ℎ1, . . . , ℎ𝑛)

Encrypt (mpk, x, ℓ):
Pick 𝑟 ←↪ DZ,𝜎
Encode (ℓ1, . . . , ℓ𝑛)← Ecd (ℓ)
for 1 ≤ 𝑖 ≤ 𝑛 do

Compute 𝑐𝑖 ← 𝑓 𝑥𝑖ℎ
𝑟 ℓ𝑖
𝑖

end
return c(ℓ) = (𝑐0 := (𝑔𝑟 , ℎ𝑟 ) , 𝑐1, . . . , 𝑐𝑛)

KeyGen (msk, y, ℓ):
Encode (ℓ1, . . . , ℓ𝑛)← Ecd (ℓ)
Compute sy ←

∑𝑛
𝑖=1

𝑠𝑖𝑦𝑖 ℓ𝑖 and ty ←
∑𝑛
𝑖=1

𝑡𝑖𝑦𝑖 ℓ𝑖

return dky(ℓ) = (y, sy, ty)

Decrypt
(
mpk, dky(ℓ

′
), c(ℓ

′
)

)
:

Compute cy ←
∏𝑛

𝑖=1
𝑐
𝑦𝑖
𝑖
/
(
(𝑔𝑟 )sy (ℎ𝑟 )ty

)
Compute sol← Solve

(
𝑝, pp, cy

)
if sol ≥ 𝑝/2 then

sol← sol − 𝑝
return sol

Figure 2: MCIPFE algorithms

The pair of algorithms (Gen, Solve) is detailed in definition A.2 and
the choice of the deviation 𝜎 is discussed together with the security
analysis in appendix B.
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Correctness: Let us verify that Decrypt
(
mpk, dky(ℓ

′
), c(ℓ)

)
indeed

outputs ⟨y, x⟩ if and only if ℓ = ℓ′.

cy =

𝑛∏
𝑖=1

𝑐
𝑦𝑖
𝑖
/

( (
𝑔𝑟

)sy (
ℎ𝑟

)ty )
=

𝑛∏
𝑖=1

(
𝑓 𝑥𝑖

(
𝑔𝑠𝑖 · ℎ𝑡𝑖

)𝑟 ℓ𝑖 )𝑦𝑖 /(𝑔𝑟 ∑
𝑠𝑖𝑦𝑖 ℓ

′
𝑖 ℎ𝑟

∑
𝑡𝑖𝑦𝑖 ℓ

′
𝑖

)
= 𝑓 ⟨y,x⟩𝑔𝑟

∑
𝑠𝑖𝑦𝑖 ℓ𝑖ℎ𝑟

∑
𝑡𝑖𝑦𝑖 ℓ𝑖 /

(
𝑔𝑟

∑
𝑠𝑖𝑦𝑖 ℓ

′
𝑖 ℎ𝑟

∑
𝑡𝑖𝑦𝑖 ℓ

′
𝑖

)
= 𝑓 ⟨y,x⟩𝑔𝑟

∑
𝑠𝑖𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )ℎ𝑟

∑
𝑡𝑖𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )

Then compute sol← Solve
(
𝑝, pp, cy

)
that is

sol = Solve
(
𝑝, pp, 𝑓 ⟨y,x⟩𝑔𝑟

∑
𝑠𝑖𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )ℎ𝑟

∑
𝑡𝑖𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )

)
= ⟨y, x⟩ iff 𝑔𝑟

∑
𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )(𝑠𝑖+𝛼𝑡𝑖 ) = 1

This last equality is obviously achieved if ℓ = ℓ′. In the case ℓ ̸=
ℓ′, some values of (𝑟, y, s, 𝛼, t) can inevitably output a valid result.
However, we argue in appendix B that without the knowledge of 𝑟, 𝛼, s
and t, a malicious analyst can neither forge such a tuple (𝑟, y, s, 𝛼, t)
nor verify the validity of an output, rendering the decryption useless.
Considering this observation, we assume that the algorithm outputs
⊥ if ℓ ̸= ℓ′. This concludes the correctness.

This construction being similar to the previous one, the curator

starts by running the Setup algorithm to generate the public param-

eters (𝑝, 𝑠, 𝑓 , 𝑔, ℎ), the secret keys s, t and the public keys ℎ1, . . . , ℎ𝑛 .
As mentioned earlier, the user chooses a label ℓ and encrypts data

with Encrypt, generating a ciphertext c = (𝑐0, 𝑐1, . . . , 𝑐𝑛), where 𝑐0
is a hint used for the decryption. Now, consider an analyst wishing

to retrieve ⟨y, x⟩ for a vector y. She sends the curator a request y for
the ciphertext c of x, which provides the functional decryption key

dky = (∑ 𝑠𝑖𝑦𝑖 ℓ𝑖 ,
∑
𝑡𝑖𝑦𝑖 ℓ𝑖 ) – output of KeyGen, for the label ℓ under

which x is encrypted. By running theDecrypt algorithm, the analyst

can finally retrieve the desired quantity ⟨y, x⟩ = 𝑦1𝑥1 + · · · + 𝑦𝑛𝑥𝑛 .

5.3 Supporting Multiple Users
The proposed protocol features the multi-input paradigm, allowing

a user to evaluate a multi-linear function, namely the inner prod-

uct, on a vector of plaintexts x = (𝑥1, . . . , 𝑥𝑛). To fully exploit this

construction, we extend the algorithms to 𝑛 different users, who

encrypt their data separately. In short, for users 𝑢1, . . . , 𝑢𝑛 , we gen-

erate a master public key with 𝑛 componentsmpk = (pk1, . . . , pkn)
so that a user 𝑢𝑖 can produce a ciphertext 𝑐𝑖 encrypting the plain-

text 𝑥𝑖 under the key pki. These ciphertexts are then merged into a

vector c = (𝑐1, . . . , 𝑐𝑛) for an analyst to perform computations on

plaintexts produced by different users.

Protocol 3 (MCIPFE scheme for multiple users). The 𝑛-users
variant of our MCIPFE protocol 2 consists in a set of users 𝑢1, . . . , 𝑢𝑛
and four algorithms (Setup, Encrypt,KeyGen,Decrypt) described in
fig. 3.

Setup
(
1
𝜆, 1𝜇 , 𝑛

)
:

Set pp = (𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ) ← Gen
(
1
𝜆, 1𝜇

)
Pick 𝛼 ←↪ DZ,𝜎 and s, t←↪ DZ𝑛,𝜎
for 1 ≤ 𝑖 ≤ 𝑛 do

Compute ℎ𝑖 ← 𝑔𝑠𝑖ℎ𝑡𝑖

end
return msk = (s, t) and mpk = (pp, ℎ := 𝑔𝛼 , ℎ1, . . . , ℎ𝑛)
Encrypt ((𝑢1, . . . , 𝑢𝑛) ,mpk, x, ℓ):
Encode (ℓ1, . . . , ℓ𝑛)← Ecd (ℓ)
for each user 𝑢𝑖 , 𝑖 ∈ [𝑛] do

Pick 𝑟𝑖 ←↪ DZ,𝜎 and compute 𝑐𝑖 ← 𝑓 𝑥𝑖ℎ
𝑟𝑖 ℓ𝑖
𝑖

𝑢𝑖 outputs (𝑔𝑟𝑖 , ℎ𝑟𝑖 , 𝑐𝑖 )
end
Set 𝑐0 := ((𝑔𝑟1 , . . . , 𝑔𝑟𝑛 ) , (ℎ𝑟1 , . . . , ℎ𝑟𝑛 ))
return c := (𝑐0, 𝑐1, . . . , 𝑐𝑛)

KeyGen (msk, y, 𝑐0):
Encode (ℓ1, . . . , ℓ𝑛)← Ecd (ℓ)
Compute dky ←

∏𝑛
𝑖=1

(𝑔𝑟𝑖 )𝑠𝑖𝑦𝑖 ℓ𝑖 (ℎ𝑟𝑖 )𝑡𝑖𝑦𝑖 ℓ𝑖

return dky

Decrypt
(
mpk, dky(ℓ

′
), c(ℓ)

)
:

Compute cy ←
∏𝑛

𝑖=1
𝑐
𝑦𝑖
𝑖
/dky(ℓ

′
)

Compute sol← Solve
(
𝑝, pp, cy

)
if sol ≥ 𝑝/2 then

sol← sol − 𝑝
return sol

Figure 3: Multi-users MCIPFE algorithms

Correctness: Let us verify that Decrypt(mpk, dk𝑦, c) indeed outputs
⟨y, x⟩.

cy =

𝑛∏
𝑖=1

𝑐
𝑦𝑖
𝑖
/

(
𝑛∏
𝑖=1

(𝑔𝑟𝑖 )𝑠𝑖𝑦𝑖 ℓ
′
𝑖 (ℎ𝑟𝑖 )𝑡𝑖𝑦𝑖 ℓ

′
𝑖

)
=

𝑛∏
𝑖=1

(
𝑓 𝑥𝑖

(
𝑔𝑠𝑖 ℓ𝑖 · ℎ𝑡𝑖 ℓ𝑖

)𝑟𝑖 )𝑦𝑖
/

(
𝑔
∑
𝑟𝑖𝑠𝑖𝑦𝑖 ℓ

′
𝑖 ℎ

∑
𝑟𝑖𝑡𝑖𝑦𝑖 ℓ

′
𝑖

)
= 𝑓 ⟨y,x⟩𝑔

∑
𝑟𝑖𝑠𝑖𝑦𝑖 ℓ𝑖ℎ

∑
𝑟𝑖𝑡𝑖𝑦𝑖 ℓ𝑖 /

(
𝑔
∑
𝑟𝑖𝑠𝑖𝑦𝑖 ℓ

′
𝑖 ℎ

∑
𝑟𝑖𝑡𝑖𝑦𝑖 ℓ

′
𝑖

)
= 𝑓 ⟨y,x⟩ if ℓ𝑖 = ℓ′𝑖 , ∀𝑖 ∈ [𝑛]

Finally compute Solve
(
𝑝, pp, cy

)
= Solve

(
𝑝, pp, 𝑓 ⟨y,x⟩

)
= ⟨y, x⟩ if

ℓ = ℓ′. We refer the reader to protocol 2 for the case ℓ ̸= ℓ′.

We motivate this construction by the need to encrypt the data

independently. Indeed, it would be straightforward to construct a

multi-user scheme from protocol 2 by having the users to compute

a common noise 𝑟 usingmulti-party computation (MPC) techniques.

However, it would require an additional online computation from

the users, that does not fit our application case.
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5.4 Verifiable decryption for MCIPFE
We now focus on the verification steps we have added to protocol 2.

We propose a method that an analyst can use to verify the correct-

ness of the decryption key dky provided by the curator. In case the

analyst receives an incorrect value for dky during a transaction,

he can either cancel the transaction or request a refund from the

curator.

Functional Decryption Key Verification: A cryptographic pro-

tocol needs to meet several security assumptions to guarantee data

privacy. Among these requirements, achieving ciphertext indistin-

guishability guarantees that a ciphertext does not reveal any infor-

mation about the plaintext. However, in such cases, how can an

external user confirm that a given ciphertext is a valid encryption?

This question is particularly important in the field of operations

on encrypted data, such as functional encryption or homomorphic

encryption, where an external party requests the output of a spe-

cific function. This question has been widely studied [21] due to

the growing trend of multi-party computation (MPC).

In fig. 4, we propose a verification method for protocol 2 based

on the discrete logarithm (DLOG). This algorithm is followed by a

ZKP on DLOG to guarantee no additional leakage is produced on

the messages or the secret key. Given an encryption c of the user’s
data, assume that an analyst wishes to purchase the encryption∏𝑛

𝑖=1
𝑐
𝑦𝑖 ℓ𝑖
𝑖

. Recall that this encryption satisfies the equality

𝑛∏
𝑖=1

𝑐
𝑦𝑖 ℓ𝑖
𝑖

= 𝑓 ⟨y,x⟩𝑔𝑟
∑
𝑠𝑖𝑦𝑖 ℓ𝑖ℎ𝑟

∑
𝑡𝑖𝑦𝑖 ℓ𝑖

= 𝑓 ⟨y,x⟩ · gy

To verify that the analyst retrieves the correct result, it is suf-

ficient to verify that the decryption key dky is indeed the right

decryption key for the requested vector y. We thereunder design

the fig. 4, which allows an analyst to check this correctness exclu-

sively using the information known to her.

Verify
(
mpk, dky, 𝑐0 = (𝑔𝑟 , ℎ𝑟 ) , ℓ

)
:

Encode (ℓ1, . . . , ℓ𝑛)← Ecd (ℓ)
Compute 𝑣 ←∏𝑛

𝑖=1
ℎ
𝑦𝑖 ℓ𝑖
𝑖

Compute gy ←
∏
(𝑔𝑟 )sy (ℎ𝑟 )ty

return 1
[
log𝑔(𝑣) = log𝑔𝑟 (gy)

]

Figure 4: MCIPFE verification algorithm

To perform the verification, the analyst needs access to the hint 𝑐0
of the ciphertext of interest, with both the public and the functional

decryption key. These are all public, hence the verification does not

impact the security of the protocol. Considering her vector y, the
analyst computes:

𝑛∏
𝑖=1

ℎ
𝑦𝑖 ℓ𝑖
𝑖

=

𝑛∏
𝑖=1

(
𝑔𝑠𝑖ℎ𝑡𝑖

)𝑦𝑖 ℓ𝑖
=

𝑛∏
𝑖=1

(
𝑔𝑠𝑖+𝛼𝑡𝑖

)𝑦𝑖 ℓ𝑖
= 𝑔

∑𝑛
𝑖=1

𝑦𝑖 ℓ𝑖 (𝑠𝑖+𝛼𝑡𝑖 )

On the other hand, mark that:

gy = 𝑔𝑟syℎ𝑟 ty = 𝑔𝑟
∑𝑛

𝑖=1
𝑠𝑖𝑦𝑖 ℓ𝑖ℎ𝑟

∑𝑛
𝑖=1

𝑡𝑖𝑦𝑖 ℓ𝑖
= 𝑔𝑟

∑𝑛
𝑖=1

𝑦𝑖 ℓ𝑖 (𝑠𝑖+𝛼𝑡𝑖 )

The analyst accepts the functional decryption key if log𝑔𝑟 (gy) =

log𝑔(𝑣) for 𝑣 =
∏𝑛

𝑖=1
ℎ
𝑦𝑖 ℓ𝑖
𝑖

.

ZKP on DLOG: Since the discrete logarithm is not easy in 𝐺 , the

analyst cannot compute log𝑔𝑟 (gy) or log𝑔(𝑣). However, by using a

ZKP she can ensure that the two quantities are indeed equal without

leaking information about their actual values.

Decryption key verification for multi-users: Considering the
multi-users protocol 3, we would like to adapt the verification

method to guarantee the analyst the correctness of the decryption

key. However, the verification process for multi-users is not as

straightforward as the single-user construction, and Figure 4 cannot

be extended naturally to the multi-user construction. We therefore

propose to substitute themethod in Figure 4with a system of𝑛 ZKPs.

This is not prohibitive as 𝑛 ciphertexts 𝑐𝑖 have to be transmitted

anyway, but does constitute a better method for multi-user key

verification. Recall that, for s = (𝑠1, . . . , 𝑠𝑛), t = (𝑡1, . . . , 𝑡𝑛) hidden

to the analyst, 𝑔𝑟𝑖 for 𝑖 ∈ [𝑛] included in 𝑐0, and y = (𝑦1, . . . , 𝑦𝑛)

generated by the analyst, the decryption key is of the form dky =

𝑔⟨r◦y,s⟩ℎ⟨r◦y,t⟩ , where ⟨r ◦ y, s⟩ = ∑
𝑟𝑖𝑦𝑖𝑠𝑖 and ⟨r ◦ y, t⟩ =

∑
𝑟𝑖𝑦𝑖𝑡𝑖 .

Following, we claim that it is sufficient for the analyst to know that

the correct secret keys s, t were indeed used for the generation of

dky. Hence we rely on the following ZKP:

𝜋𝑖 = 𝑁𝐼𝑍𝐾{(𝑠𝑖 , 𝑡𝑖 ) : ℎ𝑖 = 𝑔𝑠𝑖ℎ𝑡𝑖 ∧ dky = 𝑔⟨r◦y,s⟩ℎ⟨r◦y,t⟩}, 𝑖 ∈ [𝑛].

6 FE[R]CHAIN
Having defined the verifiability aspects of our protocol, we now

consider the fairness issue arising by malicious behavior. For ex-

ample, if the analyst is given dky, she may cheat the curator and

not pay. After all, she has the decrypted data. Similarly, the analyst

may not be motivated to pay in advance as the curator may never

release dky.
To ensure fairness, C will not release dky to the analyst A but

instead will pick a random value 𝑘 and encrypt dky into 𝑐 = (dky)𝑘 .
Then it will commit to 𝑘 and extend the verifiability proof 𝜋 of the

previous section by showing that i) it knows a commitment to 𝑘

which encrypts dky, and ii) dky is correctly formed. In particular,

the curator will create a proof 𝜋 which is given by:

𝜋 = 𝑁𝐼𝑍𝐾{(𝑠𝑖 , 𝑡𝑖 , 𝑘, 𝑟, dky) : ℎ𝑖 = 𝑔𝑠𝑖ℎ𝑡𝑖 , 𝑖 ∈ [𝑛] ∧

dky = 𝑔⟨r◦y,s⟩ℎ⟨r◦y,t⟩ ∧

𝑐 =
(
dky

)𝑘 ∧ 𝑧 = 𝑘𝑑 }
This zero-knowledge proof can be built using conventional sigma

protocols to demonstrate the knowledge of representing discrete

logarithms. These protocols are founded in the DH assumption and

do not rely on any trusted setup [10].

The values 𝑐 and 𝑧 as well as the proof 𝜋 are sent to the analyst

offchain (notice that dky is still not released). Additionally, the

blockchain is not utilized yet. The blockchain will only be used to

exchange 𝑑 for an appropriate amount of money as shown next. In

this context, the blockchain operates solely as a medium to facilitate

the monetization of 𝑑 . This approach enables the deferral of costly

blockchain operations and optimization of transactions used.
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Table 1: Gas cost related to different functions in the smart
contract (AVG_GAS_PRICE=32.44Gwei, 1 ETH = 1854.94 USD)

GAS USD
initiateSwap space546612space space32.9space

completeSwap space156176space space9.4space

refundSwap space94560space space5.69space

Getting paid for the data: At this point the analyst A checks

the proof 𝜋 . If everything verifies, she posts to the blockchain a time-

locked transaction 𝑇A→𝐶 which says that A offers 𝑣𝑎𝑙 amount of

cryptocurrency to curator C under the condition that “C presents

a pre-image 𝑑 to the committed value 𝑧 (= 𝑘𝑑 ) within some time

window 𝑡”; if the conditions are not satisfied the coins return to

A. More precisely, the transaction 𝑇A→𝐶 has an output of 𝑣𝑎𝑙

coins that can be redeemed by a (future) transaction 𝑇 if one of the

following is true:

(1) 𝑇 is signed by C and contains a valid 𝑑 , or

(2) 𝑇 is signed by A and the time window 𝑡 has expired.

The transaction𝑇A→𝐶 is satisfied if C posts a transaction𝑇C→𝐴

that contains 𝑑 . This would satisfy condition 1 of 𝑇A→𝐶 and so

𝑣𝑎𝑙 coins are transferred to C. If C does not act within the time

window 𝑡 , then A can sign and post a transaction 𝑇 that returns

the 𝑣𝑎𝑙 coins back to her.

This concludes the onchain phase of the protocol. Notice that only
a single value 𝑑 is transmitted by the curator! As the transaction

does not depend on the actual data to be transferred (since these

were exchanged offchain), this makes the protocol very efficient.

Once the analyst receives 𝑑 , she computes 𝑧1/𝑑 to recover 𝑘 first,

and 𝑐1/𝑘 to recover dky. Then she uses dky to obtain the final result

𝑓 ⟨x,y⟩ as explained in the previous sections.

Gas Cost Analysis: We implemented a prototype for the pro-

posed smart contract with three main functions: initiateSwap,
completeSwap, and refundSwap. The initiateSwap function is

utilized by the initiator (analyst A) to initiate a new swap. To cre-

ate the swap,A is required to provide various parameters, including

a unique swapId, the curator C’s address, a commitment to the en-

cryption key, and a timelock value. Additionally, the initiator must

transfer the specified amount of money along with the function

call.

The completeSwap function is invoked by C to disclose the com-

mitted key and claim the funds. It verifies that the opened key

matches the committed key stored in the contract. Upon success-

ful verification, the funds are transferred to C accordingly. The

refundSwap function is called byA to refund the funds if the time-

lock has expired and the swap has not been completed.

To get gas cost estimations, we tested the contract on Ethereum

Ropsten test network. The gas cost results for the deployment

and function calls on the smart contract together with their corre-

sponding price in USD are presented in Table 1. These results are

calculated based on the ethereum exchange rate 1 ETH = 1854.94

USD and the average gas price 32.44 Gwei = 32.44 · 10−9 ETH on

June 7th, 2023
1
.

1
https://ycharts.com/indicators/ethereum_average_gas_price

Notice that the above protocol can be further optimized to sup-

port multiple purchases. If the analyst is interested in obtaining

many functional results, all of these can be “encrypted” with the

same key by the curator. Thus with a single onchain transaction,

the analyst can obtain all these different results, effectively reducing

the amortized cost per transaction even more.

7 CONCLUSION
In this paper, we designed a multi-client verifiable FE scheme for

inner products. While the emphasis in recent research has primarily

been on functionality and performance, the importance of verifi-

ability in FE is understudied. Satisfying the property of verifiable

decryption in FE, is an important step towards assuming stronger

threat models, by removing trust from, traditionally, fully trusted

entities. Additionally, our construction’s easy decryption procedure

makes the overall scheme efficient.

Thiswork further contributes by proposing a design of a blockchain-

based payment protocol between a curator and an analyst that can

be used to trade the functional output for an appropriate amount.

Our payment protocol ensures fairness and atomicity of payments

without placing any trust in the curator or third parties. This con-

tribution promotes the practical use of FE schemes.
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A DECISIONAL DIFFIE-HELLMANWITH AN
EASY SUBGROUP

This section presents the structure of a DDH-𝑓 group and the

hard problem our construction relies on. First, recall the classical

(Decisional) Diffie-Hellman hardness assumption (DDH).

Definition A.1 (Decisional Diffie-Hellman (DDH)). Let 𝐺 = ⟨𝑔⟩ be
a cyclic group or order 𝑞, generated by 𝑔. Let ℎ ∈ 𝐺 , and 𝑥1, 𝑥2 ∈
Z𝑞 . Distinguish between (𝑔𝑥1 , 𝑔𝑥2 , 𝑔𝑥1 ·𝑥2 ) and (𝑔𝑥1 , 𝑔𝑥2 , ℎ) with non

negligible probability.

This problem has been widely studied and used in the field of

functional encryption. However, it causes limitations for practical

use, in particular for primitive relying on the Additional ElGamal.

To overcome these limitations, Castagnos et al. [13] has introduced
a variant of this problem, relying on a subgroup with easy discrete

logarithm.

Definition A.2 (DDH group with an easy DL subgroup). A DDH

group with an easy DL subgroup is a pair of algorithms (Gen, Solve)
defined as:

• Gen
(
1
𝜆, 1𝜇

)
: Takes as input two security parameters 𝜆 and 𝜇, for

𝜆 ≤ 𝜇. Outputs public parameters pp = (𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ), where 𝑝
is a random 𝜇-bit prime,𝐺 = ⟨𝑔⟩ is a finite group of order 𝑛 = 𝑝𝑠

and 𝑔𝑐𝑑(𝑝, 𝑠) = 1. Additionally, 𝑠̃ is an upper bound for 𝑠 such

that the distribution of {𝑔𝑟 , 𝑟 $←− {0, . . . , 𝑠 ·𝑝}} is computationally

indistinguishable from the uniform distribution on𝐺 . Moreover,

the DL problem is easy on 𝐹 = ⟨𝑓 ⟩, the subgroup of 𝐺 of order

𝑝 .

• Solve (𝑝, pp, 𝑋 ): A deterministic algorithm that solves the DL

problem in 𝐹 in a polynomial time, that is:

Pr[𝑥 = 𝑥 ′ ∥ pp $←− Gen(1𝜆, 1𝜇 ), 𝑥
$←− Z𝑝 ,

𝑋 ← 𝑓 𝑥 , 𝑥 ′ ← Solve(𝑝, pp, 𝑋 )] = 1

The cryptographic primitives based on cyclic groups often rely

on the DDH hardness assumption. Our scheme inherits a similar

problem based on the DDH-𝑓 construction.

Definition A.3 (Decisional Diffie-Hellman with an easy DL sub-

group (DDH-𝑓 )). Let (𝑝, 𝑠, 𝑔, 𝑓 ,𝐺, 𝐹 ) ← Gen
(
1
𝜆, 1𝜇

)
. Let 𝑥,𝑦

$←

Z𝑛 and𝑢
$← Z𝑛 . Given 𝑔𝑥 and 𝑔𝑦 , distinguish 𝑔𝑥𝑦 from 𝑔𝑥𝑦 𝑓 𝑢 with

non negligible probability.

Castagnos and Laguillaumie [12] have studied the DDH-𝑓 prob-

lem in depth and prove that this assumption, despite being weaker

than the classical DDH, is still a hard problem in the general case.

B SECURITY ANALYSIS
This section provides a security analysis for our MCIPFE protocol 2

and extends it to the multi-users variant. Secondly, we prove the

security of our use-case protocol regarding the threat model defined

in section 4.

B.1 Security of the MCIPFE construction
We start with a reminder of the security definition that an IPFE

scheme should meet to give a security analysis for both our con-

struction and the verification.

Definition B.1 (IPFE Indistinguishability-Based Security). For an
IPFE scheme IPFE = (Setup, Enc,KeyGen,Dec), a challenger C and

a PPT algorithm ADV, define the IND-CPA game extended to IPFE

as follows:
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IND-CPA Security

Initialize:

C runs mpk,msk ← Setup
(
1
𝜆, 1𝜇

)
and sends mpk to

ADV;

Query:
ADV sends a polynomial number of encryption requests

for chosen plaintexts and eventually sends two distinct

plaintexts x0, x1 to C;

Challenge:

C picks 𝛽
$←− {0, 1} and sends c𝛽 ← Enc

(
mpk, x𝛽

)
toADV;

Functional query:
ADV sends a polynomial number of encryption requests

for freshly chosen plaintexts and a polynomial number of

decryption key requests for vectors y1, . . . , y𝑡 such that

⟨x0, y𝑖 ⟩ = ⟨x1, y𝑖 ⟩;
Guess:
ADV outputs a guess 𝛽′ ∈ {0, 1} on the value of 𝛽 with an

advantage 𝜖(𝜆).

IPFE is said to be 𝜆-IND-CPA secure if and only if the advantage

𝜖(𝜆) =
�� 1
2
− 𝑃𝑟 [𝛽′ = 𝛽]

��
is negligible.

We admit that the original construction of Castagnos et al. [13]
is IND-CPA secure (theorem B.2).

Theorem B.2. The IPFE protocol 1 is IND-CPA secure under the
DDH-𝑓 assumption of definition A.3 for 𝜎 > 𝑠 · 𝑝3/2 · 𝜆1/2 with
⌈log𝑝⌉ = 𝜇.

We now argue that our protocol 2 is IND-CPA secure in the sense

of IPFE and prove the following theorem B.3.

Theorem B.3. LetMCIPFE be the construction presented in proto-
col 2. ThenMCIPFE is IND-CPA secure under the DDH-𝑓 assumption.
It follows that its multi-user variant given in protocol 3 is also IND-
CPA secure.

Proof. To prove theorem B.3 we rely on a combination of games

(definition B.1), G0 denoting the IPFE game for protocol 1 and G1
the IPFE game for protocol 3. We assume two algorithms A and B
are executed simultaneously but independently in which A is the

adversary of a challenger C in game G0 and B is also the challenger

of adversary A in game G1. We prove that if A wins then B also

wins, i.e. the advantage of A is bounded by the advantage of B.
Since protocol 1 is assumed to be IND-CPA, the advantage of B in

G0 is negligible, and so is the advantage of A in game G1, which
concludes.

Setup of game G0 : First, C generatesmpk,msk← Setup
(
1
𝜆, 1𝜇

)
and sends mpk to B. The latter picks two messages x1, x2 ∈ Z𝑛

and sends them to C. C flips a random coin 𝑏 ∈ {0, 1}, encrypts
cb ← Encrypt (mpk, xb) and sends cb back to B.

Setup of gameG1 :B samples at random a label ℓ
$←− Z and encodes

it into (ℓ1, . . . , ℓ𝑛)← Ecd (ℓ). She creates a new master public key

mpkB ← (ℎ
ℓ−1
1

1
, . . . , ℎ

ℓ−1𝑛
𝑛 ), where ℓ−1

𝑖
is the inverse of ℓ𝑖 modulo

𝑝 − 1, and sends it to A. Remark that mpkB is a valid public key, as

ℎ
ℓ−1𝑖

𝑖
= 𝑔𝑠𝑖 ℓ

−1
𝑖 ℎ𝑡𝑖 ℓ

−1
𝑖 and 𝑠𝑖 ℓ

−1
𝑖

follows a Gaussian distribution DZ,𝜎 ′
where 𝜎′ ≥ 𝜎 . The same stands for 𝑡𝑖 . Eventually, she sends mpkB

to A.
Queries: The challenge ciphertext cb is a valid encryption for game

G1 under label ℓ . Therefore, A can send functional key queries for

vectors y1, . . . , yn such that ⟨yi, x0⟩ = ⟨yi, x1⟩. Each corresponding

decryption key skyi = (yi, syi , tyi ) in game G0 is a valid decryption

key in game G1 for the label ℓ .
Guess: The game G1 corresponding to the security game for proto-

col 2,A guesses the value of𝑏 with an advantage 𝜖A. Subsequently,B
guesses the value of 𝑏 in game G0 with the same advantage 𝜖B = 𝜖A.
Since we assumed protocol 1 to be IND-CPA secure (theorem B.2),

our construction protocol 2 is IND-CPA secure. □

We now address the problem of the unforgeability of the decryp-

tion key mentioned in the proof of correctness of protocol 2.

Theorem B.4. Given a decryption key dky(ℓ
′
) for a vector y and

label ℓ′, we show that an analyst A can not recover a usable result
from a ciphertext c(ℓ) for ℓ ̸= ℓ′

Proof. As stated, the decryption algorithm leads to ⟨x, y⟩ iff
𝑔𝑟

∑
𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )(𝑠𝑖+𝛼𝑡𝑖 ) = 1. Recall that A knows 𝑔𝑟 and ℓ , that are pub-

lic information from c(ℓ), the public key 𝑔𝑠𝑖+𝛼𝑖 for 𝑖 ∈ [𝑛] and (𝑦𝑖 , ℓ′𝑖 )
that are information she owns. For each 𝑖 ∈ [𝑛], (𝑔𝑟 , 𝑔𝑠𝑖+𝛼𝑡𝑖 , 𝑔𝑟 (𝑠𝑖+𝛼𝑡𝑖 ))
is a DDH triplet. According to the DDH hardness assumption, the

analyst can not distinguish 𝑔𝑟 (𝑠𝑖+𝛼𝑡𝑖 ) from 𝑔𝑑 for 𝑑
$←− Z𝑞 with

non-negligible probability. Consequently, A can not adaptively

choose y and ℓ so that 𝑔𝑟
∑
𝑦𝑖 (ℓ𝑖−ℓ ′𝑖 )(𝑠𝑖+𝛼𝑡𝑖 ) = 1, unless 𝑦𝑖 (ℓ𝑖 − ℓ′𝑖 ) = 0

mod 𝑝 for every tuple 𝑦𝑖 , ℓ𝑖 , ℓ
′
𝑖
. However, the hash function used

for the encoding being pre-image resistant, it is not possible for

A to choose the label ℓ accordingly. This concludes the proof of

unforgeability. □

B.2 Security of the fair payment protocol
Theorem B.5. Let SIG = (KeyGen, Sign,Vrfy) be an unforgeable

signature scheme used to sign blockchain transactions, and DLOG is
hard. If the proof 𝜋 is sound and zero-knowledge, then the protocol
described in section 6 is a fair payment protocol.

Proof. Consider first the case of a malicious curator whose goal

is to cheat an honest analyst by getting a reward and releasing no

data, or by releasing erroneous data. Such an attack can be modeled

by a security game (details omitted due to space restrictions) in

which the adversary wins the game if (i) he can extract a valid key-

pair which can now be used to sign a new blockchain transaction,

thus redeeming another entity’s money, or (ii) obtain a payment

for the wrong data. The first attack can only happen if forging

signatures is possible. Similarly, obtaining payment for invalid data

is also infeasible as this would break the verifiability property of

the FE scheme or the soundness property of the ZK proof system.

Hence in both cases, the malicious curator fails.

In a similar manner, a malicious analyst can cheat if she can re-

cover a valid signing key and use it to sign a bitcoin transaction on
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behalf of another user. However, this is prevented by the unforge-

ability of the signature scheme. Neither can she post a transaction

containing a smaller payment as the curator would abort and not

post the transaction that releases the decryption exponent 𝑑 . Fi-

nally, the security of the DLOG problem and the zero-knowledge

property of the proof 𝜋 guarantee that a malicious analyst cannot

recover 𝑑 from the received commitment or the proof 𝜋 . □
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