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Abstract. In this paper, we study the problem of lower bounding any
given cost function depending on the false positive and false negative
probabilities of adversaries against indistinguishability security notions
in symmetric-key cryptography. We take the cost model as an input, so
that this becomes a purely information-theoretical question.
We propose power bounds as an easy-to-use alternative for advantage
bounds in the context of indistinguishability with asymmetric cost func-
tions. We show that standard proof techniques such as hybrid arguments
and the H-coefficient method can be generalized to the power model, and
apply these techniques to the PRP-PRF switching lemma, the Even-
Mansour (EM) construction, and the sum-of-permutations (SoP) con-
struction.
As the final and perhaps most useful contribution, we provide two meth-
ods to convert single-user power bounds into multi-user power bounds,
and investigate their relation to the point-wise proximity method of
Hoang and Tessaro (Crypto 2016). These method are applied to obtain
tight multi-user power bounds for EM and SoP.

Keywords: Information-theoretic security · Asymmetrical statistical costs ·
Power bounds · Multi-user security

1 Introduction

In the formal security analysis of cryptographic systems, the power of an adver-
sary is always measured by the advantage that it achieves over a naive approach
to attacking the system. For example, for indistinguishability games, the advan-
tage of an adversary is the probability that it correctly identifies the real oracle,
minus the probability that it mistakes the ideal oracle for the real one.

Traditionally, starting with the work of Goldwasser and Micali [14], a cryp-
tosystem is considered to be secure if the advantage of all adversaries is a neg-
ligible function of the security parameter. However, in order to translate formal
analysis into practical guidance, concrete estimates are often necessary. For ex-
ample, at Crypto 1994, Bellare, Kilian and Rogaway [3] studied the security of
the cipher block chaining mode, quantifying precisely how the advantage depends
on the number of queries made by the adversary. A complete concrete treatment
of symmetric-key cryptography was given by Bellare et al. [2], and concrete secu-
rity has since become the norm in symmetric-key cryptography [4, 5, 25]. In the



same direction of bringing formal analysis closer to reality, Bellare, Boldyreva
and Micali [1] have proposed that advantages should be bounded in a multi-user
security model. Similarly, but in the context of symmetric-key provable security,
a multi-key security model was proposed by Mouha and Luykx [21] at Crypto
2015. Many other refinements of the security model have been proposed, for ex-
ample taking into account computational aspects such as preprocessing [13] and
memory limitations [12].

There is one aspect of the security model that has not been subject to further
refinement: the notion of advantage itself. In this paper, we argue that it can be
useful to measure the power of adversaries in a different way because security
games often exhibit asymmetric statistical costs. For example, in a real attack,
the value of the target must always be weighted against processing costs. If the
expected gains of the attack (for example measured in dollars) are negative, then
the adversary will not proceed. Conversely, if the value of the target is immense,
then making mistakes matters little to the adversary. In other words, we argue
that – given a realistic cost model – security bounds should allow users (and
adversaries) to predict the expected gain or loss of attacking the system, i.e.
provide a concrete answer to the question ‘is the attack worthwhile?’

In this paper, we study this question in the indistinguishability setting for
symmetric-key constructions and take the cost model as an input, so that it
becomes a purely information-theoretical problem: what is the optimal trade-off
between false positives and false negatives, for a given cost function? This issue is
intrinsically related to multi-user security, because the presence of multiple users
implicitly tilts the cost function towards more tolerance for statistical errors.
Indeed, standard definitions such as [21] consider it sufficient to compromise the
security of a single user.

Related work. For information-theoretic indistinguishability games, the maxi-
mum possible advantage is equal to the statistical distance between the transcript
distributions produced over the course of the game. Several alternative distances
or contrast functions have been considered in previous work, but this was always
for purely technical reasons. For example, Dai, Hoang and Tessaro [9] show that
using the χ2-divergence can be a powerful tool to obtain tighter bounds on the
statistical distance.

Perhaps not surprisingly, alternatives to the statistical distance have proven
to be useful to obtain multi-user security bounds from single-user bounds. If
users are independent, then a folklore result says that the multi-user advantage
is at most u times larger than the single-user advantage. There are currently
only a handful of known ways to avoid this factor without resorting to a dedi-
cated multi-user security analysis (such as for example done in [16] for the sum-
of-permutations construction). At Crypto 2016, Hoang and Tessaro [17] have
shown that point-wise proximity can sometimes be lifted from the single-user
to the multi-user setting. This technique was refined to approximate point-wise
proximity by the same authors at Eurocrypt 2017 [18]. The only other general
method is the squared-ratio method from Crypto 2023 by Chen, Choi and Lee [7].
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However, all of these methods still have significant limitations. The squared-
ratio method is limited to independent users, and it only reduces the multi-user
security loss to a factor

√
u and cannot avoid a factor of u loss for bad events.

Point-wise proximity can be used to show that there is no multi-user security
degradation and is applicable even when there are dependencies between users
such as in the ideal permutation model, but it comes with technical limitations.
For example, the bound must be a super-linear function of the number of queries.
Some of the technical limitations can be overcome using approximate point-wise
proximity, at the cost of making proofs more difficult.

Perhaps the most important limitation of all of these techniques is that they
require a detailed analysis of transcript probabilities, which is typically much
more difficult. Single-user hybrid proofs, on the contrary, are easy to understand
because the advantages for intermediate steps add up and are easy to bound by
analyzing the probabilities of bad events. This is an important reason why the
statistical distance remains popular, despite the fact that it does not lift well to
multi-user bounds.

Contribution. We propose power bounds as an easy-to-use alternative for ad-
vantage bounds in the context of indistinguishability. These bounds limit the
statistical power (one minus the false negative rate) of any statistical test in
terms of its false positive rate. A power bound implicitly lower bounds the cost
of all distinguishing attacks in any cost model. It is shown that standard proof
techniques (such as hybrid arguments, bounding bad events and the H-coefficient
method) have natural counterparts for power bounds. To demonstrate that these
bounds are no more difficult to obtain than advantage bounds for many construc-
tions, we derive power bounds for the Even-Mansour and sum-of-permutations
constructions. It is also shown that ‘good’ (linear) power bounds automatically
lift to the multi-user setting. This allows us to deduce the first tight multi-user
advantage bound for the sum-of-permutations construction.

From a probability theorist’s point of view, we essentially apply the Neyman-
Pearson theory of hypothesis testing to information-theoretic security and ex-
plore the consequences. As we explain in Section 3, this classical theory describes
hypothesis tests as a decision-theoretic problem based on two types of errors.
The first error probability is the false positive rate α, i.e. the probability that
the null hypothesis is falsely rejected. The second error probability is the false
negative rate β, or the probability that the alternative hypothesis is incorrectly
rejected. A power bound is simply any upper bound of the form 1 − β ≤ f(α)
(in statistics, 1−β is called the power of a test, which is equal to the probability
that the null hypothesis is correctly rejected).

As the error probabilities α and β are both determined by the critical region
of the hypothesis test, and the adversaries’ cost is increasing in α and β, there
is a trade-off between them. For any statistical cost function C of the error
probabilities α and β, the power bound implies the lower bound C (α, β) ≥
C (α, 1 − f(α)). This bound is tight if f is tight. Traditional advantages only
yield a tight bound if C is a symmetric function. More precisely, the maximum
advantage attack minimizes the cost function C (α, β) = α + β. However, in
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many practical applications, the cost function C is not symmetric in α and β.
For example, it could take the form C (α, β) = wα α + wβ β, where wα and wβ
are positive weights that for instance express the cost of false positives and false
negatives in dollars.

It may seem nontrivial to obtain power bounds for realistic constructions,
but in Section 4 we show that standard proof techniques can be generalized. For
example, Theorem 4 shows that the power bound of a hybrid system with non-
decreasing power bounds f and g is given by g ◦ f . Theorem 5 shows how bad
events can be ruled out by bounding their probabilities in the usual way. The
widely used H-coefficient technique of Patarin [23] and its generalization by Chen
and Steinberger [6] are extended to power bounds by Theorem 7. An interesting
aspect of our extension is that it suggests that the H-coefficient technique should
not be over-used, in the sense that one should avoid excluding bad events to the
point that the probability ratio for good transcripts becomes greater than one.
As our applications show, this is often feasible and results in better power bounds
– which in turn is important to obtain a good multi-user bound.

Our first applications beyond the PRP-PRF switching lemma, which we use
as a running example, are presented in Section 5. We first consider the classical
Even-Mansour construction [11], arguably the simplest construction to build a
pseudorandom permutation from a public permutation. Given an n-bit permu-
tation π, as well as an n-bit key K, the Even-Mansour construction EMK [π] is
defined by

EMK [π](M) = π(M ⊕K)⊕K .

A tight power bound for Even-Mansour can be obtained by a simple hybrid
argument. If the ideal world is taken as the null hypothesis, then the power
bound we obtain is given by (with N = 2n)

1− β ≤ α

1− 2qp
N

,

where q is the number of construction queries and p is the number of queries made
to π. This implies the standard advantage bound, but provides more detailed
information in the face of asymmetric statistical costs. An important difference
in our security proof is the way the bad events are defined. They are defined in
a way such that they never appear in the real world, unlike in traditional proofs
for advantage bounds of the Even-Mansour construction such as [21].

The second application we consider is the sum-of-permutations construction
proposed by Bellare et al. [4] and Hall et al. [15]. The SoP construction turns
block ciphers into pseudorandom functions with security beyond the birthday-
bound barrier, i.e., above 2n/2. Given an n-bit (keyed) pseudorandom permuta-
tion π, the sum-of-permutations is defined by

SoP[π](M) = π(0‖M) + π(1‖M) .

Again, interestingly from a technical point of view, our approach requires that
the bad events only happen in one of the two worlds – but this is almost always
possible by redefining the events.
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Our final and perhaps most useful contribution from a proof-technical point
of view are two methods to convert single-user power bounds into multi-user
power bounds. Both are presented in Section 6. The first method is based on
the observation that linear power bounds imply point-wise proximity as defined
by Hoang and Tessaro [17] and, conversely, point-wise proximity implies a linear
power bound. This equivalence allows us to lift linear single-user power bounds
to multi-user power bounds, though the technical conditions from [17] related to
the dependence of the bound on the number of queries still apply. We apply this
result to obtain the multi-user power bound of the EM construction. Another
consequence of this result is that our proof techniques for power bounds can be
used to obtain point-wise proximity estimates in an easier way.

The second and more interesting method is proposed in Section 6.2. It still
assumes that the single-user power bound is linear, and additionally assumes
that users are independent. The latter condition is satisfied for standard model
proofs. The benefit of this method is that it completely removes the technical
conditions related to the dependence of the bound on the number of queries
that are required by the proof of Hoang and Tessaro [17] – without making
the analysis more complicated, as done in [18]. Since it applies to linear power
bounds, this result can also be understood as a way to obtain tighter point-wise
proximity estimates with fewer assumptions. We apply the second method to
the sum-of-permutations construction to obtain multi-user power bounds. Our
bound implies the first tight advantage bound for this construction. This should
be compared to previous partial results by Shen and Hoang [16] based on a dedi-
cated multi-user analysis, and Choi et al. [8] relying on the modular squared-ratio
technique. Shen and Hoang have established a bound that is independent of the
number of users u and is of the form

√
nq/N . However, their analysis is dedi-

cated and based on the χ2-method, which requires calculating the expectation.
Therefore, their approach cannot be easily applied to more difficult construc-
tions. Moreover, their bound is not quite tight, as there is still a loss by a factor√
n. Choi et al. avoid this loss, but their bound still contains terms of the form√
uq2/N2 and relies on an irregular security model where the ideal world oracle

is forbidden to output zero (and with a difficult proof).

2 Notation

Throughout this paper, we work with probabilities on a finite sample space
T with its power set 2T as the space of events. In this context, a probability
distribution is a function P : 2T → [0, 1] such that P (T ) = 1. In information-
theoretical security proofs, T is typically the set of all possible transcripts that
can be produced during the course of some security game.

In the following, we will consider indistinguishability security games. In terms
of probability theory, a deterministic information-theoretical distinguisher is the
same as a hypothesis test between two transcript distributions P and Q. Tradi-
tionally, indistinguishability insecurity is measured by the statistical distance

∆
(
P ; Q

)
= max
R⊆T

∣∣P (R)−Q(R)
∣∣ .
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This is the same as the maximum advantage over all possible distinguishers, i.e.
hypothesis tests with critical regionR. It is not difficult to see that the maximum
is achieved for some R with P (R) ≥ Q(R).

Although advantages are symmetric, in our setting, the choice of either P or
Q as the null hypothesis is actually important. In Section 3 we will introduce
other measures of insecurity that are not symmetrical in P and Q. For this
reason, we will use the phrase ‘distinguisher from P to Q’ to emphasize that P
is taken to be the null hypothesis.

3 Asymmetrical statistical costs

In the Neyman-Pearson theory of hypothesis testing [22], distinguishing between
two distributions P and Q is interpreted as a statistical decision problem. The
goal is to minimize two types of statistical errors. Assume that P is the null
hypothesis, and Q the alternative – i.e. a distinguisher from P to Q. For every
hypothesis test, there exists a critical region R such that the null hypothesis is
rejected if the sample is in R.

The first type of errors are false positives: the null hypothesis P is rejected,
even though it is true. Note that, as is common practice, we consider rejecting
the null hypothesis a positive outcome. The probability of these errors is equal to
α = P (R). The error probability α is also called the significance level of the test.
The second type of errors are false negatives, meaning that the null hypothesis
is accepted in spite of the alternative being true. The false negative probability
is β = 1−Q(R). The probability 1− β = Q(R) is called the power of the test.

The advantage of a distinguisher with critical region R is equal to Q(R) −
P (R) = (1 − β) − α. In Section 3.1, we argue why it is interesting to upper
bound the power of distinguishers rather than just their advantage. A few basic
properties of power bounds are discussed in Section 3.2. A first application to
the PRP-PRF switching lemma is given in Section 3.3.

3.1 Bounding the power of a hypothesis test

Since choosing a smaller critical regionR decreases α but increases β, there exists
a trade-off between the two types of errors. From a decision-theoretic point of
view, one should chooseR to minimize some application-dependent cost function
C (α, β). It is reasonable to assume that C is non-decreasing in both arguments.
An example is the function

C (α, β) = α+ β .

Minimizing this expression with respect to R is equivalent to maximizing the
advantage, since C (α, β) = 1− (Q(R)−P (R)). However, in many applications,
the cost function C is not symmetric in α and β.

Example 1 (Asymmetrical costs). Suppose a malicious actor wants to deploy a
critical vulnerability at scale, but does not know which targets are vulnerable1.

1 Realistic examples are provided by weak-key attacks on block ciphers.
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For simplicity, assume that half of all users are vulnerable. To test for vulner-
ability, the actor develops a distinguishing attack. In practice, exploiting the
vulnerability comes at some cost (for example computational) that can often be
expressed in monetary terms. Assume that the marginal cost is $1. If the value
of an average target is $10, then the cost function is

C (α, β) = $9α+ $1β .

The cost of a false negative is the $1 marginal cost of exploiting the vulnerability.
Every false positive comes at a $9 cost, i.e. a $10 opportunity cost (missed
target) minus a $1 saving because the vulnerability does not have to be used.
This example ignores the costs of the distinguisher itself. In the information-
theoretical setting, one can conservatively assume that these costs do not depend
on α and β. In the computational setting, this may not be the case. .

Let f be an increasing function so that 1− β ≤ f(α) for all possible distin-
guishers from P to Q with false positive rate α and false negative rate β. For
any non-decreasing cost function C , one has a corresponding lower bound

C (α, β) ≥ C (α, 1− f(α)) .

Hence, after minimizing with respect to α, our upper bound 1−β ≤ f(α) gives a
lower bound on the cost of any distinguisher – no matter how costs are defined.
This is one reason why we argue that power bounds are the right way to deal
with asymmetrical statistical costs. There are also more concrete reasons for
investigating power bounds. For example, it can be shown that in some cases
single-user power bounds lift to multi-user bounds without loss of tightness.
These applications will be discussed in Section 3.4.

3.2 Some properties of power bounds

Before we begin analyzing specific problems, a few properties of power bounds
are worth pointing out. First, given a bound of the form 1 − β ≤ f(α) for
distinguishers from P to Q, one can always deduce a bound on the statistical
distance:

∆
(
P ; Q

)
= max

R

∣∣Q(R)− P (R)
∣∣ ≤ sup

α
f(α)− α .

Indeed, the maximum is achieved for some R such that Q(R) ≥ P (R) and if
P (R) = α, then Q(R) ≤ f(α). The advantage is symmetric in P and Q, so one
might conclude that – for the purpose of deriving advantage bounds – the choice
of the null hypothesis matters little. However, this is not the case: a good choice
of the null hypothesis can make multi-user security proofs much simpler.

Since it so important throughout this paper, it is worth discussing the asym-
metry between the null hypothesis and the alternative hypothesis in more detail.
If the problem was symmetric, then one would expect the best distinguisher from
Q to P to be obtained by replacing the critical region of the best distinguisher
from P to Q by its complement. The best possible critical region is characterized
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by Theorem 1, i.e. the Neyman-Pearson lemma. In this result, Rt is the optimal
critical region among all tests from P to Q with false positive rate P (Rt). The
false positive rate can be decreased by reducing the threshold t.

Theorem 1 (Neyman-Pearson lemma). Let P and Q be distributions on a
finite set T with probability mass functions p and q. For all t > 0, let

Rt =
{
x ∈ T

∣∣ p(x) ≤ t q(x)
}
.

If S is a subset of T such that P (S) ≤ P (Rt), then Q(S) ≤ Q(Rt).

Proof. The result is well known, but we provide the proof for completeness to
help the reader familiarize with our notation. The definition of Rt implies the
following inequalities:

Q(S \ Rt) ≤
1

t
P (S \ Rt) ,

P (Rt \ S) ≤ tQ(Rt \ S) .

It follows from S = (Rt ∩ S) ∪ (S \ Rt) that

Q(S) = Q(Rt ∩ S) +Q(S \ Rt) ≤ Q(Rt ∩ S) +
1

t
P (S \ Rt)

The condition P (S) ≤ P (Rt) implies that P (S \ Rt) ≤ P (Rt \ S). Hence,

Q(S) ≤ Q(Rt ∩ S) +
1

t
P (Rt \ S) ≤ Q(Rt ∩ S) +Q(Rt \ S) .

It follows that Q(S) ≤ Q(Rt), as claimed.

Let R∗t denote the optimal critical region for tests from Q to P . Assume,
without loss of generality, that the boundary p(x) = tq(x) contains no points
x. In this case, the complement of R∗t is equal to R1/t. The asymmetry of the
problem is then clear from the fact that, in most cases, R1/t 6= Rt. Nevertheless,
equality always holds in the singular case t = 1. This corresponds to α = β,
maximizing the advantage.

Despite the asymmetry of hypothesis testing, a power bound for distinguish-
ers from P to Q can always be converted to a power bound for distinguishers
from Q to P . The idea is to take the complement of the critical region, as above.
For all the power bounds that we prove in this paper, the following result pro-
vides an essentially tight bound when P and Q swapped. Note, however, that
the two bounds will typically be completely different.

Theorem 2. If f is an increasing function such that 1 − β ≤ f(α) for all
distinguishers from P to Q with false positive and false negative rates α and β,
then every distinguisher from Q to P with false positive and false negative rates
α′ and β′ satisfies 1− β′ ≤ 1− f−1(1− α′).
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Proof. Let T denote the sample space of P and Q. Let us construct a test from
Q to P by using T \ R as the rejection region. Since Q(R) ≤ f(P (R)) for any
set R, we have

α′ = Q(T \ R) = 1−Q(R) ≥ 1− f(P (R)) ,

Since f is increasing, it follows that P (R) ≥ f−1(1− α′). Hence,

1− β′ = P (T \ R) = 1− P (R) ≤ 1− f−1(1− α′) .

This is the desired result.

3.3 Example: PRP-PRF switching lemma

The PRP-PRF switching lemma [3, 5, 19] is one of the most widely used results
for proving the birthday-bound security of symmetric-key constructions. The
lemma bounds the advantage of distinguishing a uniform random function ρ from
a uniform random permutation π on a domain of size N and using q queries as
q(q − 1)/N . Theorem 3 gives an upper bound of the form 1− β ≤ f(α) for this
problem.

Theorem 3. Let ρ be a uniform random function and π a uniform random
permutation, both on a domain of size N . For every distinguisher from ρ to π
with error probability α and power 1−β that makes at most q ≤

√
2N+1 queries,

1− β ≤ α

1− q(q−1)
2N

.

Proof. Since the resulting bound is non-decreasing in q, we can assume that the
distinguisher never queries duplicate inputs. Hence, under the null hypothesis,
the transcript consists of q outputs of ρ. In the ideal world, it consists of q
outputs of π. Let P denote the distribution of transcripts for ρ. The probability
that a transcript is in the rejection region R is equal to

α = P (R) ≥ |R|
Nq

,

since every input-output pair occurs with probability 1/N , independently of
other pairs. Here, we use the fact that the rejection region does not contain
transcripts with duplicate inputs. Let Q denote the distribution of transcripts
for π. The probability that the transcript is in the rejection region R is

1− β = Q(R) ≤ (N − q)!
N !

|R| .

Indeed, there are (N − q)! permutations with q specified outputs, assuming the
outputs are distinct. Hence, every transcript contains q distinct outputs has
probability (N − q)!/N ! under Q. If two of the outputs in a transcript are equal,
then its probability is always zero. Hence, we obtain an upper bound.
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The lower bound on 1− β and the upper bound on α can now be combined
to obtain the result. Substituting the upper bound |R| ≤ Nq α into the upper
bound on 1− β yields

1− β ≤ Nq (N − q)!
N !

α .

The simplified bound follows from the inequality

Nq (N − q)!
N !

≤
q−1∏
i=1

1

1− i
N

≤ 1

1−
∑q−1
i=1

i
N

=
1

1− q(q−1)
2N

,

where the second inequality only works if q(q − 1) < 2N .

Despite the fact that the PRP-PRF switching lemma is quite simple, it al-
ready leads to several interesting conclusions. Figure 1 compares Theorem 3 to
the bound obtained from the advantage, which corresponds to

1− β ≤ α+
q(q − 1)

2N
. (1)

As can be seen from Figure 1, the gap between both bounds is proportional to
1 − α. This means that it is considerably more difficult to achieve a low error
probability α than one might expect from the advantage bound. Taking a closer
look at the problem reveals why this is the case. The only way to reject the null
hypothesis that the primitive is a uniform random function, is to note the absence
of collisions. However, there is always a chance that the absence of collisions is
just bad luck. Hence, if one wants to be highly confident (low α) in the decision,
the power cannot be too high.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

α

1
−
β

Power bound for q(q − 1)/N = 1

Advantage

Theorem 3

Fig. 1. Comparison of the advantage-based bound for the PRP-PRF switching lemma
and Theorem 3. The relative tightness loss increases as q decreases.

If the null and alternative hypothesis are swapped, i.e. the null hypothesis
is that the primitive is a uniform random permutation, then the results are
completely different. By Theorem 2, for this case we have

1− β ≤ 1−
(

1− q(q − 1)

2N

)
(1− α) ≤ q(q − 1)

2N
+

(
1− q(q − 1)

2N

)
α .
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It turns out that this is essentially tight, and for a good reason: if even a single
collision is observed, then the null hypothesis can be rejected with certainty
(power equal to one). This case corresponds to the first term in the bound. The
overall power of the test still depends on α, but only in a trivial way: if no
collision occurs, then the decision is down to random guessing. This corresponds
to the second term in the bound.

In Section 6, we will see that Theorem 3 implies a multi-user security bound
that does not incur a security loss. However, if the advantage bound is used
or if one chooses the uniform random permutation as the null hypothesis, then
the resulting multi-user advantage bound would be worse by a factor equal to
the number of users. In the next section, we discuss the applications of power
bounds – including multi-user security – in more detail.

3.4 Applications of power bounds

Power bounds can be used to lower bound the cost of an attack in any given
cost model. In this section, we illustrate the practical relevance of asymmetric
cost models using three case-studies. In each case, we use counter mode as the
motivating example. Counter mode is widely used, including in TLS 1.3 as a
component of the AES-GCM mode [24]. It can be shown that the power bound
for distinguishers from an ideal encryption algorithm to counter mode is the
same as the PRP-PRF switching bound:

1− β ≤ α

1− σ(σ−1)
2N

,

where σ <
√

2N is the total number of blocks encrypted. The proof of this result
relies on a hybrid argument, and will be given as Example 2 in Section 4.1.

In the examples below, we are interested in determining the concrete se-
curity margin offered by counter mode against aribtrary information-theoretic
adversaries. This is a question that must be answered, for example, to determine
acceptable data-limits. The current data limits for TLS are based on the analysis
of Luykx and Patterson [20], which relies on mac-security and indistinguishabil-
ity advantage bounds for AES-GCM. In TLS, the number of verification queries
is equal to one so that it is sufficient to consider confidentiality. There are several
ways to quantify confidentiality. The following examples discuss two commonly
used approaches: indistinguishability and message-recovery security. The first
approach based on indistinguishability is not a realistic model for applications
such as TLS and mainly serves to illustrate the use of power bounds to lower
bound the cost of attacks.

Indistinguishability. The analysis of Luykx and Patterson [20] uses indistinguis-
ability advantages as a proxy for the confidentiality security margin of AES-
GCM. For instance, for a security margin of 2−30, they argue that at most 240

records of length 214 bytes can be safely encrypted. It is natural to ask what the
meaning of this security margin 2−30 is, and if it is sufficient or too conservative.
We argue that no conclusion can be made without additional context.
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To illustrate this, we introduce a hypothetical cost model for indistinguisha-
bility and demonstrate how to use analyze the profitability of adversaries in this
model using the counter mode power bound. The cost model depends on sev-
eral important parameters such as the value T of correctly distinguishing the
target and the cost E associated with a false positive. These costs should be
adjusted based on the prior probability of the real and ideal world respectively.
For example, the adversary might seek to minimize the average cost

C (α, β) = C + αE − (1− β)T ≥ C + E

(
α−min

{
1,

α

1− ε

}
T

E

)
,

with C the fixed cost of the distinguisher and ε = σ(σ− 1)/(2N). Here, we have
used that 1− β ≤ 1, i.e. the power bound should not exceed one. This model is
not necessarily realistic – a more detailed model should account for other factors
such as risk aversion – but it is sufficient to obtain a meaningful interpretation of
the security margin. Note that the analysis below also applies to the left-or-right
variant of indistinguishability, where the adversary must determine which one
of two distinct messages was encrypted. In this case, T is the reward in case of
a correct guess, and E is the cost of an incorrect guess.

If T/E ≥ 1 − ε, then the minimum cost is C − T + (1 − ε)E. Otherwise, it
is C. Indeed, α 7→ α−min{1, α/(1− ε)}T/E is piecewise linear with minimum
at α = 1− ε when T/E ≥ 1− ε. Hence, as illustrated in Figure 2, the attack is
profitable (has a negative cost) if and only if (T −C)/E > 1−ε. This is different
from the result that one obtains based on the standard advantage bound, as
shown in Figure 2. Indeed, the power bound 1 − β ≤ α + ε obtained from the
advantage (cf. Equation (1)) suggests that the attack is profitable whenever
T > C/ε, but this is often too conservative. For instance, suppose C = $1,
T = $2048 and E = $5000. Since (T − C)/E < 1/2, the bound above suggests
that the attack is not profitable unless ε ≥ 1/2, corresponding to 254 records
of length 214 bytes. However, the advantage bound suggests that the attack is
profitable as long as $2048 > $1/ε, or equivalently ε > 2−11. Hence, an analysis
based on the advantage bound would incorrectly suggest that only 249 records
may be safely encrypted.

It can be argued that for many applications that rely on confidentiality,
indistinguishability is mostly used as a proxy for the worst case rather than as
a realistic security model. Hence, in the next paragraph we discuss the more
practical message-recovery security model.

Message-recovery security. Suppose that an unknown message can take 2b pos-
sible values, with b ≥ 0 not necessarily an integer. Message-recovery security can
be defined by a game in which the adversary must output a list of α2b candidate
values for this unknown message, in other words, the adversary eliminates the
remaining (1−α)2b values. The message may be partially known or even chosen
by the adversary, and the adversary is given access to the encryption of other
chosen messages. In the most extreme case, we require that messages must be
recovered uniquely, i.e. α = 2−b.

12
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Fig. 2. Shaded areas correspond to values of T and E for which the attack is profitable
based on the tight power bound (left) or on the advantage bound (right). Results are
shown for two different values of ε.

It is easy to see that a message-recovery attack implies a distinguisher from an
ideal encryption scheme to the real encryption mode. Indeed, the distinguisher
can run the message-recovery attack to recover a known message that was sam-
pled uniformly at random from a set of size 2b. If the key-recovery attack cuts this
down to α2b candidates, then the probability that the distinguisher incorrectly
concludes that the ideal world is real, is at most α2b/2b = α. The probability
that the distinguisher correctly identifies the real world, i.e. the power 1 − β,
is the probability that the message-recovery attack succeeds. Hence, for counter
mode, the success probability of a message-recovery attack is at most

α

1− σ(σ−1)
2N

,

for σ <
√

2N . Here, α represents the factor by which the number of message
candidates is reduced. For example, if the adversary has to uniquely recover b
bits that can take an arbitrary value, then α = 2−b. The main takeaway from
this bound is that if ε = σ(σ − 1)/2N < 1, then the probability of successfully
recovering the message is 2−b

(
1 + ε+O(ε2)

)
. This should be compared with the

standard advantage bound, which yields an upper bound of 2−b+ ε. In contrast,
the power bound from above shows that recovering a large number of message
bits is effectively infeasible as long as σ <

√
2N . In this setting, the data limits

proposed by Luykx and Patterson are too conservative.

Multi-user security. In Section 6 of this paper, we show that upper bounds of
the form 1−β ≤ c α automatically imply tight multi-user security power bounds
in the standard model. As shown above in Section 3.2, this in turns implies tight
multi-user advantage bounds. For example, our Theorem 13 implies the following
informal statement. From a probability theory point of view, the number of
queries q mentioned in the claim below is simply a restriction on the probability
space.
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Fig. 3. Success probability for a b-bit message recovery attack on counter mode. The
dashed lines correspond to power bounds obtained from standard advantage bounds.
The bottom black line is the baseline success probability of uninformed guessing (2−b).

Claim (Informal). Given a single-user power bound 1−β ≤ c(q)α for q queries,
the multi-user power bound for u independent and identical users making a total
of q queries is given by

1− β′ ≤ α′ max
q1 + ···+ qu≤ q

q∏
i=1

c(qi) ,

where α′ and β′ are the multi-user false positive and negative rates, respectively.

Variants of this result with some dependency between the users, such as a
shared public cryptographic primitive, will also be obtained. Given the strength
of such results, one might expect power bounds 1− β ≤ f(α) to be much more
difficult to prove. However, this is not the case: it will be shown in Section 4
that common proof techniques for advantages such as hybrid arguments and the
H-coefficient method have analogues for power bounds. These techniques will
help to simplify proofs – including that of Theorem 3.

4 Proof techniques

In this section, we extend the most commonly used proof techniques to the
asymmetric setting. More precisely, in Section 4.1 we show how to use hybrid
arguments with power bounds. Hybrid arguments are often used to exclude ‘bad
events’, so we discuss this specific case in Section 4.2 and illustrate it by giving
an alternative and shorter proof of Theorem 3. Finally, Section 4.3 extends the
H-coefficient method of Patarin [23].

4.1 Hybrid arguments

Probably the most widely used technique in provable security is the ‘hybrid
argument’, or equivalently the triangle inequality for the total variation distance.

14



That is, for distributions P , Q and X on the same domain,

∆
(
P ; Q

)
≤ ∆

(
P ; X

)
+ ∆

(
X ; Q

)
.

Power bounds are not additive. However, as shown by Theorem 4, the hybrid
argument has a natural generalization: the power bound for distinguishers from
P to Q is the functional composition of the bounds for distinguishers from P to
X and from X to Q.

Theorem 4. Let P , Q and X be distributions on a common domain. If every
distinguisher from P to X with false positive and negative rates α1 and β1 satis-
fies 1−β1 ≤ f(α1), and if every distinguisher from X to Q with false positive and
negative rates α2 and β2 satisfies 1 − β2 ≤ g(α2) with f and g non-decreasing,
then for all distinguishers from P to Q

1− β ≤ g(f(α)) ,

with α the false positive rate and β the false negative rate.

Proof. The proof is straightforward. Since f and g are non-decreasing functions,

1− β = Q(R) ≤ g(X(R)) ≤ g(f(P (R))) ≤ g(f(α)) ,

where we choose α1 = P (R), β1 = 1−X(R), α2 = X(R) and β2 = 1−Q(R).

An interesting consequence of Theorem 4 is that when multiple hybrid argu-
ments are applied sequentially, in general the order matters. This is again related
to the asymmetry of hypothesis testing.

Example 2 (Counter mode). To illustrate Theorem 4, we prove the security
of the nonce-based counter mode based on a uniform random permutation π
(see Figure 4). Let us take an ideal encryption scheme as the null hypothesis,
with transcript distribution P . The transcript distribution of counter mode will
be denoted by Q. To prove a power bound, define an intermediate transcript
distribution X equal to the distribution of transcripts produced by counter mode
based on a uniform random function ρ.

Under the assumption that nonces are unique, the input to the random func-
tion ρ is always fresh. Hence, it is clear that P and X are actually indistinguish-
able. That is, 1 − β1 ≤ f(α1) with f(α1) = α1 for all distinguishers from P
to X with false positive rate α1 and false negative rate β1. Indeed, recall that
1 − β1 = α1 corresponds to pure guessing. By a standard reduction argument,
any distinguisher from X to Q can be turned into a distinguisher from ρ to π
that makes at most σ queries, where σ is the total number of blocks encrypted
with counter mode. Hence, by Theorem 3, every distinguisher from X to Q with
false positive rate α2 and false negative rate β2 satisfies 1− β2 ≤ g(α2), where

g(α2) =
α2

1− σ(σ−1)
2N

.
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Fig. 4. Nonce-based counter mode using a uniform random permutation π.

By Theorem 4, the bounds from P to X and from X to Q can be combined to
obtain the following bound for any distinguisher from P to Q:

1− β ≤ g(f(α)) =
α

1− σ(σ−1)
2N

,

where α is the false positive rate and β the false negative rate. .

4.2 Excluding bad events

Let P be a distribution on T and E an event with nonzero probability. We
denote the distribution of P conditioned on E by PE . That is,

PE(A) =
P (A ∩ E)

P (E)
,

for all subsets A of T . For distinguishers from P to PE , we have the following
result. In Theorem 5, the event E is denoted by T \B. This refers to the fact that,
when proving power bounds, B is a ‘bad event’ that we would like to exclude
from consideration.

Theorem 5. Let P be a distribution on T and let B ⊆ T be some event with
P (B) ≤ ε. For all distinguishers from P to PT \B,

1− β ≤ α

1− ε
,

with α the false positive rate and β the false negative rate.

Proof. Let R be the critical region of the distinguisher. By definition,

1− β = PT \B(R) =
P (R \B)

P (T \B)
≤ P (R)

1− P (B)
≤ α

1− ε
,

where we use α = P (R) and P (B) ≤ ε in the last inequality.
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Let us stress again that the choice of P as the null hypothesis in Theorem 5
is essential. Swapping P and PT \B would result in a significantly worse bound
of the form 1 − β ≤ α + ε. Despite its simplicity, Theorem 5 often simplifies
proofs considerably. We illustrate this by giving a significantly shorter proof of
Theorem 3. The proof in Example 3 is more intuitive, and more similar to typical
proofs of advantage bounds for distinguishers between uniform random functions
and uniform random permutations.

Example 3. As in Theorem 3, let ρ be a uniform random function and π a
uniform random permutation. Assume that q distinct queries are made, and let
T denote the set of all possible transcripts of length q. Denote the distribution of
transcripts for ρ by P and the distribution of transcripts for π by Q. Intuitively,
the only difference between ρ and π is that collisions may occur between the
outputs of ρ but not between the outputs of π. Formally, if B is the set of all
transcripts that contain a collision, then Q = PT \B . Since every pair of outputs
of ρ collides with probability 1/N , the union bound gives

P (B) ≤ 1

N

(
q

2

)
=
q(q − 1)

2N
.

Hence, by Theorem 5, for all distinguishers from P to Q,

1− β ≤ α

1− q(q−1)
2N

,

with α the false positive rate and β the false negative rate. .

4.3 H-coefficient technique

Many security proofs in symmetric-key cryptography rely on the H-coefficient
technique of Patarin [23]. In this section, we develop asymmetric variants of this
result that can be used to prove power bounds.

First, we recall the classical H-coefficient theorem as described by Chen and
Steinberger [6]. In the following, T = Tg t Tb denotes a partition of T into
subsets Tg and Tb. These are typically called ‘good’ and ‘bad’ sets of transcripts.
To simplify the statement, we reformulate it in terms of distributions rather than
probability mass functions.

Theorem 6 (H-coefficient technique). Let P and Q be distributions on
T = Tg t Tb. If Q(Tb) ≤ εb and P (E) ≥ (1− εg)Q(E) for all E ⊆ Tg, then

∆
(
P ; Q

)
≤ εg + εb .

Proof. Since our description is slightly more general than that of Chen and
Steinberger [6], we give a proof for completeness. The partition of T induces a
partition of any critical region R = RgtRb with Rg = R∩Tg and Rb = R∩Tb.
The advantage is equal to

∆
(
P ; Q

)
≤ max

R
Q(R)− P (R) = max

R
Q(Rb) +Q(Rg)− P (Rg)− P (Rb) ,
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where the maximum is over all R such that Q(R) ≥ P (R). Using the fact that
Q(Rb) ≤ εb and P (Rb) ≥ 0, one gets

∆
(
P ; Q

)
≤ εb + max

R
Q(Rg)− P (Rg) ≤ εb + εg max

R
Q(Rg) ,

The result follows from the fact that Q(Rg) ≤ 1.

In most applications of Theorem 6, the lower bound P (E) ≥ (1 − εg)Q(E)
for subsets E of Tg is obtained by lower bounding the ratio

p(τ)

q(τ)
≥ 1− εg ,

for all transcripts τ in Tg with q(τ) 6= 0. More generally, however, it is sufficient
to bound the expectation of min{1, p(τ )/q(τ )} for a random variable τ with
distribution Q. This is the special case described by Chen and Steinberger [6]
and is known as the expectation method.

The following theorem extends the H-coefficient technique to our setting, so
that it can be used to obtain bounds of the form 1−β ≤ f(α). The proof is only
slightly more complicated.

Theorem 7. Let P and Q be distributions on T = Tg t Tb. If Q(Tb) ≤ εb and
P (E) ≥ (1− εg)Q(E) for all E ⊆ Tg, then for every distinguisher from P to Q,

1− β ≤ εb +
α

1− εg
,

with α the false positive rate and β the false negative rate.

Proof. Let R be the critical region of the distinguisher. As in the proof of The-
orem 6, the partition of T induces a partition R = Rg tRb. By definition,

1− β = Q(R) = Q(Rg) +Q(Rb) ≤ Q(Rg) + εb .

To deal with the term Q(Rg), we will divide by α = P (R). It can be assumed
that α 6= 0, since if P (R) = 0 then also Q(Rg) = 0 so that the bound holds.
Dividing by α gives

Q(Rg) = α
Q(Rg)

P (R)
= α

Q(Rg)

P (Rg) + P (Rb)
≤ α Q(Rg)

(1− εg)Q(Rg) + P (Rb)
,

where we have used P (Rg) ≥ (1−εg)Q(Rg). The result follows from the obvious
lower bound P (Rg) ≥ 0, since the result is trivial for Q(Rg) = 0 and

Q(Rg) ≤ α
Q(Rg)

(1− εg)Q(Rb)
≤ α

1− εg
.

Plugging this into the bound 1− β ≤ Q(Rg) + εb yields the result.
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There is an important difference in how we will apply Theorem 7 compared
to typical uses of the H-coefficient theorem. In proofs of advantage bounds, Q is
often chosen as the ideal world transcript distribution. This makes it easier to
obtain the bound Q(Tb) ≤ εb, but it is not a good way to deal with bad events
in the asymmetric setting. Instead, as we will see in Section 5, is is often easier
to take P as the ideal world transcript distribution and exclude bad events using
a hybrid argument.

More generally, it is our view that Theorem 7 should be used sparingly and
with great care when proving power bounds. In particular, one should avoid using
the term εb to deal with bad events that could have been excluded using a hybrid
argument. Indeed, this is an additive term that worsens the multi-user bound.
This contrasts with proofs of advantage bounds, where is it not uncommon to
use Theorem 6 to exclude bad events from the ideal world that are just as likely
to happen in the real world. In Section 5, we will encounter an example of this
in the context of the Even-Mansour construction.

4.4 Hybrid with the H-coefficient technique

In this section, we provide a solution to the problem of the constant term εb
introduced in Theorem 7. This approach works in general when the bad events
only happen in one of the two worlds, but this can be achieved in many cases by
redefining the events. Indeed, suppose 1−β ≤ f1(α) ≤ α/(1−εg) for distinguish-
ing from the ideal world without bad events. If 1− β ≤ f2(α) for distinguishing
the ideal world without bad events from the actual ideal world, then one gets

1− β ≤ f2(α)

1− εg
.

For most of the practical constructions, if such bad events exist, then these
usually only appear in the ideal world. However, our approach below can also
handle the case when the bad events only appear in the real world.

Theorem 8. Let P and Q be distributions on T = Tg t Tb. If P (Tb) ≤ εb,
Q(Tb) = 0, and P (E) ≥ (1− εg)Q(E) for all E ⊆ Tg with εb + εg < 1, then for
every distinguisher from P to Q,

1− β ≤ α

1− εb − εg
,

where α is the false positive rate and β the false negative rate.

Note that this result is the general case that can be applied to most practical
constructions.

Proof. Let R be the critical region of the distinguisher. As before, the partition
of T induces a partition R = RgtRb. Define B as the transcripts where the ‘bad
events’ occur, which is the set of transcripts that we would like to exclude from
consideration. If every distinguisher from P to PT \B satisfies 1 − β1 ≤ f1(α1)
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and every distinguisher from PT \B to Q satisfies 1−β2 ≤ f2(α2), then based on
Theorem 4 every distinguisher from P to Q satisfies

1− β ≤ f2(f1(α)) .

Hence, it is sufficient to find f1 for distributions P and PT \B and f2 for distri-
butions PT \B and Q. We will first start with f1. By Theorem 5, we obtain

1− β1 = PT \B(R) ≤ α1

1− εb
.

Now it remains to find f2, note that taking B = Tb, we have

1− β2 = Q(R) = Q(Rg) .

To deal with the term Q(Rg), we will divide by α2 = PT \B(R \ Tb). It can be
assumed that α2 6= 0, since if P (R \ Tb) = 0 then also Q(Rg) = 0 so that the
bound holds. Dividing by α2 gives

Q(Rg) = α2
Q(Rg)

PT \B(R \ Tb)
= α2

Q(Rg) · P (T \ Tb)
P (R \ Tb)

≤ α2
Q(Rg)

Q(Rg)(1− εg)
=

α2

1− εg
,

where we have used P (R \ Tb) = P (Rg) ≥ (1 − εg)Q(Rg) and P (T \ Tb) ≤ 1.
Plugging f1 and f2 into Theorem 4, yields

1− β ≤ α

(1− εb)(1− εg)
≤ α

1− εb − εg
,

using the fact that 1/(1− x)× 1/(1− y) ≤ 1/(1− x− y).

4.5 Converting power bounds to advantage bounds

In Section 3.2, it was already explained how power bounds can be turned into
advantage bounds in general. If the methods from Sections 4.2 to 4.4 are used,
then one often obtains a power bound for distinguishers from P to Q of the form

1− β ≤ α

1− ε1
+ ε2 , (2)

with ε2 = 0 in the best case. Since the bounds we obtain in Sections 5 and 6 are
all of this form, it is useful to show here that (2) implies

∆
(
P ; Q

)
≤ ε1 + ε2 .

To see this, note that the power is at most one. Hence, by applying the general
principle from Section 3.2 to (2), we get

∆
(
P ; Q

)
≤ max
α∈ [0,1]

min

{
α

1− ε1
+ε2−α, 1

}
≤ max
α∈ [0,1]

min

{
α

1− ε1
−α, 1

}
+ε2 ,

Since 1− ε1 ≤ 1, the maximum is achieved at α = 1− ε1. Hence, the advantage
is upper bounded by 1− (1− ε1) + ε2 = ε1 + ε2.
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5 Applications

In this section, we apply the proof techniques from Section 4 to more complicated
constructions. More precisely, in Section 5.1 we derive power bounds for the
Even-Mansour construction [11] using a simple hybrid argument. Compared to
traditional proofs of advantage bounds for this construction such as [21], our bad
events are defined in a more careful way so that the H-coefficient method is not
necessary. In Section 5.2, we obtain power bounds for the sum-of-permutations
construction [4, 15].

5.1 Even-Mansour construction

The Even-Mansour EM construction [11] is used to build a secure pseudorandom
permutation based on a public permutation. We consider the version that only
uses a single key, but our analysis carries over to the case with two keys.

Let n be a non-negative integer and π a permutation on {0, 1}n. The Even-
Mansour construction is a family of permutations EMK [π] : {0, 1}n → {0, 1}n
indexed by a key K in {0, 1}n and based on the permutation π. Given a plaintext
M , the corresponding ciphertext is equal to

EMK [π](M) = π(M ⊕K)⊕K ,

with ⊕ the exclusive-or operation on bitstrings of length n. Theorem 9 gives an
upper bound on the power of any distinguisher for the EM construction, with
EM as the alternative hypothesis. The security model for the Even-Mansour
construction is the standard sprp security notion with oracle access to the public
permutation π, so we do not describe it in detail here. Queries made to π are
called primitive queries, the others are construction queries.

Theorem 9. Let n be a non-negative integer, N = 2n, K a uniform random
variable on {0, 1}n and π a uniform random permutation on {0, 1}n. For every
distinguisher (with oracle access to π) from a uniform random permutation to
EMK [π] that makes q construction queries and p primitive queries,

1− β ≤ α

1− 2pq
N

,

where α is the false positive rate and β the false negative rate.

Compare Theorem 9 to the bound obtained from the advantage [11, 17],
which corresponds to

1− β ≤ α+
2pq

N
.

As in the case of the PRP-PRF switching lemma, the gap between both bounds
is proportional to 1− α. As before, it is considerably more difficult to achieve a
low error probability α than one might expect from the advantage bound. From
our bound, low α means that the power cannot be too high.
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Proof of Theorem 9. Since the resulting bound is non-decreasing in q and p, we
can assume that the distinguisher never queries duplicate inputs. Every tran-
script contains the result of at most q construction queries and at most p primi-
tive queries, both bidirectional and suitably ordered. We also include the key in
the transcript; this can only improve the distinguisher. In terms of the security
game, the keys are disclosed after the distinguisher finishes its interaction with
the oracles but before it outputs its decision. In the ideal world the key is a
uniform random dummy.

Let P denote the distribution of transcripts for the uniform random permu-
tation and Q the distribution of transcripts for Even-Mansour. Intuitively, the
property that distinguishes Even-Mansour from a uniform random permutation
is that if the input of a construction query collides with the input of a primitive
query, then the output of this construction query must collide with the output
of the primitive query. One has a similar property for the outputs.

Formally, let B be the set of all transcripts containing a construction query
(M,C) and a primitive query (u, v) so that one of the following conditions holds:

BAD1 : M ⊕ u = K and C ⊕ v 6= K ,

BAD2 : M ⊕ u 6= K and C ⊕ v = K .

Readers familiar with the proof of Mouha and Luykx [21] or other proofs in the
advantage setting will note that our bad events are defined differently, and this
is important. The goal of our bad events is to bring the ideal world closer to the
real world. Hence, we only want to exclude events that do not happen in the real
world. In particular, we use a hybrid argument with PT \B as the intermediate
transcript distribution.

To apply Theorem 5, we need to bound P (B). Since the dummy key is uni-
form random and independent of all queries, there are at most pq keys satisfying
BAD1. A similar argument can be made for BAD2. Hence, by the union bound,

P (B) ≤ 2pq

N
.

Hence, by Theorem 5, for all distinguishers from P to PT \B ,

1− β ≤ α

1− 2pq
N

:= f(α) ,

with α the false positive rate and β the false negative rate. To complete the
proof, we still need to verify that PT \B = Q. First, it is easy to see that PT \B
and Q have the same support. The result then follows from the observation that
all transcripts in the support have the same probability. The theorem follows by
by applying Theorem 4 with g(α) = α and f as above.

5.2 Sum-of-permutations construction

The sum-of-permutations construction was first proposed by Bellare et al. [4] and
by Hall et al. [15]. This construction is used to build a pseudorandom function
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from a block cipher. In this section, we consider the variant based on a single
permutation with domain separation. The easier variant with two independent
block ciphers is analyzed in the full version of this paper.

Let n be a non-negative integer and π a permutation on n bits. The sum-of-
permutations construction is a family of functions SoP[π] : {0, 1}n−1 → {0, 1}n
based on the (secret) permutation π. For an input M in {0, 1}n−1, it returns

SoP[π](M) = π(0‖M)⊕ π(1‖M) .

In practice, π is instantiated with a block cipher and one relies on its prp security
to replace it by a uniform random permutation using a hybrid argument.

The security model for the sum-of-permutations construction is the standard
prf security notion, i.e. the construction is compared to a uniform random func-
tion on {0, 1}n−1. Theorem 10 gives an upper bound on the power of any test
that distinguishes SoP from a uniform random function.

Theorem 10. Let N = 2n with n ≥ 12. For every distinguisher from a uniform
random function to the SoP[π] construction instantiated with a uniform random
permutation π, making q ≤ N/58 queries,

1− β ≤ α

1− q
N

,

where α is the false positive rate and β the false negative rate.

Proof. The transcript consists of q input-output pairs. Since the resulting bound
is non-decreasing in q, we can assume that all the inputs are distinct. Let P
denote the distribution of transcripts for a uniform random function ρ, and Q
the distribution for SoP[π].

Intuitively, the only difference between ρ and SoP[π] is that the zero bitstring
0n may be output by ρ but not by SoP[π]. Formally, let B be the set of all
transcripts that contain a zero bitstring. In particular, we use a hybrid argument
with PT \B as the intermediate transcript distribution. Since every output of ρ
appears with probability 1/N , we have

P (B) ≤ q

N
.

Hence, by Theorem 5, for all distinguishers from P to PT \B ,

1− β ≤ α

1− q
N

:= f(α) ,

with α the false positive rate and β the false negative rate. To complete the proof,
we still need to show that PT \B and Q are equal. For this, we rely on a result of
Dutta, Nandi, and Saha [10, Section 3.3], which shows that Q(E) ≥ PT \B(E) for
all events E. However, it is easy to see that PT \B and Q have the same support,
so we can conclude that PT \B and Q are equal. The theorem follows by applying
Theorem 4 with g(α) = α and f as above.
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6 Multi-user security

In this section, we propose two methods to convert single-user power bounds
into multi-user power bounds. The first method is based on the idea of point-
wise proximity due to Hoang and Tessaro [17], and is described in Section 6.1.
However, one limitation of this method is that the power bound must satisfy some
nontrivial conditions. Therefore, in Section 6.2, we propose another method that
requires users to be independent but that avoids the limitations of point-wise
proximity.

6.1 From point-wise proximity

In this section, we present a first method to convert single-user power bounds
into multi-user power bounds. It based on the point-wise proximity method of
Hoang and Tessaro [17]. Unlike the method that we propose in Section 6.2, it
is also applicable when there is some dependency between different users, such
as a shared primitive. However, it has limitations of its own: the power bound
must be linear and the dependence on the number of queries must satisfy some
nontrivial conditions. In addition, the result in Section 6.2 yields a slightly better
bound.

Let us recall the definition of point-wise proximity [17, Definition 1]. Two
probability mass functions p and q on a set T satisfy ε-point-wise proximity if,
for all x in T ,

q(x)− p(x) ≤ ε q(x) .

Note that this is equivalent to a ratio bound of the form p(x)/q(x) ≥ 1− ε, the
same as in the H-coefficient method (see Section 4.3). The following result shows
that in some cases a power bound implies point-wise proximity. The converse is
also true: point-wise proximity always implies a strong power bound. This follows
from Theorem 7 with εb = 0. However, direct point-wise proximity estimates
are more difficult to obtain because this requires analyzing the probabilities of
individual transcripts.

Theorem 11. If every distinguisher from P to Q with false positive and negative
rates α and β satisfies 1− β ≤ α/(1− ε), then the probability mass functions of
P and Q satisfy ε-point-wise proximity.

Proof. By the given power bound, we have Q(R) ≤ P (R)/(1 − ε) for all crit-
ical regions R, including R = {x}. Hence, if p and q are the probability mass
functions of P and Q respectively, then

(1− ε) q(x) ≤ p(x) .

Equivalently, q(x)− p(x) ≤ ε q(x).

From the point of view of Theorem 11, power bounds may be used as an
efficient way to prove point-wise proximity estimates. For example, a typical
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point-wise proximity estimate for the PRP-PRF switching problem is not to
different from the proof of Theorem 3 – computing the probability of every
transcript. However, to derive a power bound, we can simply exclude collisions
using a hybrid argument as in Example 3.

In this section, our main interest in Theorem 11 is that Hoang and Tes-
saro [17, §3.3] have shown that a single-user point-wise proximity estimate can
be turned into a multi-user point-wise proximity estimate.

Multi-user security of EM. To illustrate how this works, consider the multi-
user security of the Even-Mansour construction. The bound follows immediately
from the single-user bound, since the proof of Theorem 9 already established
point-wise proximity (by Theorem 11). This is formalized in Theorem 12.

Theorem 12. Let N = 2n with n ≥ 1, K1, . . . ,Ku independent uniform random
variables on {0, 1}n and π1, . . . , πu independent uniform random permutations
on {0, 1}n. For every distinguisher (with oracle access to π1, . . . , πu) from u
independent uniform random permutations to the EMKi [π1], . . . ,EMKi [πu] con-
structions that makes in total q construction queries and p primitive queries,

1− β ≤ α

1− 4q(p+q)
N

.

where α is the false positive rate and β the false negative rate.

Proof. Let us recall from the proof of Theorem 9 that P is the distribution of
transcripts for ideal world (πI , π) and Q is the distribution of transcripts for
real world (EMK [π], π). From Theorem 9 and Theorem 11, the probability mass
functions of P and Q satisfy ε(p, q)-point-wise proximity with ε(p, q) = 2qp

N .
Since this bound satisfies (i) ε(x, y) + ε(x, z) ≤ ε(x, y + z), for all non-negative
integers x, y, z, and (ii) ε(·, z) and ε(z, ·) are non-decreasing functions for every
non-negative integer z, [17, Lemma 3] give us that

q(x)− p(x) ≤ 2 · 2q(p+ q)

N
q(x) .

The result follows since point-wise proximity implies a strong power bound.

We note that this bound is essentially the same as the one from Theorem 9,
with an additional factor two and the additive term q. This additive term plays
a significant role for the case of the EM construction. The O(q2/N) term takes
into account collisions on the keys across multiple users, which allows to easily
distinguish and is therefore tight.

We would like to stress once more the importance of giving security using
power bounds, as opposed to advantage bounds. The bound obtained from the
dedicated analysis by Mouha and Luykx [21] corresponds to

1− β ≤ α+
2q(p+ q)

N
,
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and the bound obtained by naively using the hybrid argument in the classical
advantage setting [17] on the single-user result corresponds to

1− β ≤ α+
2uq(p+ q)

N
.

The gap between these bounds and ours is proportional to 1 − α. The lower
the value of α, the more important the power bound becomes compared to the
advantage bounds.

6.2 Independent users

In this section, we provide an alternative way to deduce multi-user power bounds
from single-user power bounds. It requires the assumption that users are inde-
pendent, but it gives a tighter bound than point-wise proximity and more impor-
tantly does not make any assumptions about how the single-user bound depends
on the number of queries. It is, however, necessary to assume that the single-user
power bound is linear in the false positive rate. That is, f(α) ≤ a(q)α, with a an
arbitrary function of the number of queries q. This means that our result in this
section can also be understood as a way to obtain point-wise proximity bounds
without assumptions on ε(q) = 1− 1/a(q).

In the multi-user setting with u users, it can be assumed that P and Q are
distributions on a set T = T1×T2× · · · × Tu. Although this implies that queries
for different users are kept in separate parts of the transcript, this does not
mean that we neglect their order. Indeed, the queries may be numbered. If the
u users are independent, then P and Q are related to the marginal single user
distributions P1, . . . , Pu and Q1, . . . , Qu as follows:

P (E1 × E2 × · · · × Eu) = P1 (E1)P2 (E2) · · ·Pu (Eu) ,

Q(E1 × E2 × · · · × Eu) = Q1(E1)Q2(E2) · · ·Qu(Eu) .

This will be denoted by P = P1 ⊗ P2 ⊗ · · · ⊗ Pu and Q = Q1 ⊗Q2 ⊗ · · · ⊗Qu.
In the multi-user setting, it important to be precise about the dependence of

the single-user bound on the number of queries. For this reason, in the following
results, we always mention the number of queries made by the distinguisher and
write 1− β ≤ f(α; q) if that number is q. From the point of view of probability
theory, this is simply a restriction on the critical region of the hypothesis test.
The precise definition of this restriction does not actually matter for the theorems
that we prove.

In the remainder of this section, we prove Theorem 13. Despite the inde-
pendence assumption, which is rather strong from a probability theory point of
view, the proof is subtle. There are two issues that we have to address:

(i) Although users are independent, the critical region is not a product of subsets
of T1, . . . , Tu. Indeed, from the Neyman-Pearson lemma (Theorem 1), we see
that there is no reason to expect this for the optimal test. This corresponds
to the fact that the adversary can, of course, use the result of a query for
one user as the input to a query for another user.
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(ii) Although the total number of queries is fixed to q, we do not know the
number of queries made to each user individually. This means that the critical
region can contain, for every user, transcripts with up to q queries. In fact,
this is precisely why a naive hybrid argument leads to a loss proportional to
the number of users.

The main idea of the proof is to establish the result first under the assumption
that every transcript in the critical region contains exactly qi queries to user i.
This is easy, and essentially follows the point-wise proximity proof. To deal with
the second problem above, we partition the critical region into subsets that each
contain only transcripts with a specific number of queries to every user. The new
idea here is that power bounds apply to distributions, which is different from the
perspective of probability mass functions that is adopted when using point-wise
proximity. This allows us to keep track of the probability of all the sets in the
partition, and is the reason why our result does not require any assumptions
(such as super-linearity) on the query-dependence.

Theorem 13. For i = 1, . . . , u, let Pi and Qi be distributions on the same
domain. If every distinguisher from Pi to Qi making q queries satisfies 1 −
βi ≤ ai(q)αi for false positive and negative rates αi and βi, then for every
distinguisher from P1 ⊗ P2 ⊗ · · · ⊗ Pu to Q1 ⊗Q2 ⊗ · · · ⊗Qu making q queries,
it holds that

1− β ≤ α max
q1+···+qu = q

q∏
i=1

ai(qi) ,

with α the false positive rate and β the false negative rate.

The following lemma establishes the first part of our claim, namely a power
bound for distinguishers that make a predetermined number of queries to every
user.

Lemma 1. For i = 1, . . . , u, let Pi and Qi be distributions with the same do-
main. If every distinguisher from Pi to Qi making q queries satisfies 1 − βi ≤
ai(q)αi for false positive and negative rates αi and βi, then for every distin-
guisher from P1 ⊗ P2 ⊗ · · · ⊗ Pu to Q1 ⊗Q2 ⊗ · · · ⊗Qu that makes qi queries to
user i,

1− β ≤ α
u∏
i=1

ai(qi) ,

with α the false positive rate and β the false negative rate.

Proof. Theorem 11 shows that the bounds 1− βi ≤ ai(q)αi establish point-wise
proximity between Pi and Qi. Put more simply, for every event Ei,

Qi(Ei) ≤ ai(qi)Pi(Ei) .

Since P = P1⊗ · · · ⊗Pu and Q = Q1⊗ · · · ⊗Qu, multiplying these bounds gives

Q(E1 × · · · × Eu) ≤
u∏
i=1

ai(qi)P (E1 × · · · × Eu)
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Since this bound works when the events Ei are singletons, it works for every
transcript. Hence, if R is the critical region, then also Q(R) ≤ αP (R).

The first part of the proof is now complete. Using Lemma 1, we can now
proceed with the partition argument.

Proof of Theorem 13. The idea of the theorem is to apply Lemma 1. However,
we must first partition the critical region R according to the number of queries
that were made for each user. Let Rq1,...,qu be the subset of R containing all
transcripts with qi queries for user i. This gives the following partition of R:

R =
⊔

q1+···+qu=q
Rq1,...,qu .

In terms of probabilities, we have

1− β = Q(R) =
∑

q1+···+qu=q
Q(Rq1,...,qu) ,

where Q = Q1 ⊗ · · · ⊗Qu. Lemma 1 shows that

Q(Rq1,...,qu) ≤ P (Rq1,...,qu)

u∏
i=1

ai(qi) .

By taking the maximum and using linearity, we obtain

1−β ≤

(
max

q1+···+qu=q

u∏
i=1

ai(qi)

) ∑
q1+···+qu=q

P (Rq1,...,qu) ≤ α max
q1+···+qu=q

u∏
i=1

ai(qi) .

This the desired result.

Note that our result achieves a better point-wise proximity estimate com-
pared to the results of Hoang and Tessaro [17]. Indeed, in our case, the function
a(q) can be an arbitrary function, while the ε(q) function in [17] needs to be
super-linear. The main reason is because we maximize over all q1 + · · ·+ qu = q
to pull

∏u
i=1 ai(qi) out of the summation in the last step of our proof, which

is natural from the point of view of power bounds. Indeed, in the case when
ε(q) = q/N + c with c some small constant, then Hoang and Tessaro’s result
does not hold any more since q1/N + c + q2/N + c > (q1 + q2)/N + c, whereas
our result still works.

To illustrate Theorem 13, we prove a multi-user variant of the PRP-PRF
switching lemma. The power bound we prove in the following example implies
the strongest possible advantage bound. This is unlike the pointwise proximity
method of Hoang and Tessaro [17], which loses a factor of two.

Example 4. In the multi-user variant of the PRP-PRF switching lemma, we have
independent uniform random permutations π1, . . . , πu and independent uniform
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random functions ρ1, . . . , ρu. In Theorem 3 (and in Example 3) we showed that
for all distinguishers from ρi to πi making at most qi queries,

1− βi ≤
αi

1− qi(qi−1)
2N

,

where αi is the false positive rate and βi the false negative rate. By Theorem 13,
we get the overall power bound

1− β ≤ α max
q1+···+qu≤ q

u∏
i=1

1

1− qi(qi−1)
2N

≤ max
q1+···+qu≤ q

α

1−
∑u
i=1

qi(qi−1)
2N

.

Here we have used the fact that 1/(1− x)× 1/(1− y) ≤ 1/(1− x− y). Clearly,∑u
i=1 qi(qi − 1) ≤ q(q − 1). Hence, we get the bound

1− β ≤ α

1− q(q−1)
2N

,

which is exactly the same as the single-user bound. .

Multi-user security of SoP Finally, we consider the multi-user security of SoP.
The easier variant with two independent block ciphers is analyzed in the full
version of this paper.

Theorem 14. Let N = 2n with n ≥ 12. For every distinguisher from u inde-
pendent uniform random functions to multiple SoP[πi] constructions instanti-
ated with independent uniform random permutations π1, . . . , πu, making in total
q < N queries and at most N/58 queries per user,

1− β ≤ α

1− q
N

.

where α is the false positive rate and β the false negative rate.

Proof. The ideal world consists of independent uniform random functions ρ1, . . . , ρu.
In Theorem 10 we showed that for all distinguishers from ρi to SoP[πi] making
at most qi queries,

1− βi ≤
αi

1− qi
N

,

where αi is the false positive rate and βi the false negative rate. From Theorem 10
we obtain the upper bound

1− β ≤ α max
q1+···+qu≤ q

u∏
i=1

1

1− qi
N

≤ max
q1+···+qu≤ q

α

1−
∑u
i=1

qi
N

,

using the fact that 1/(1− x)× 1/(1− y) ≤ 1/(1− x− y). Therefore, we obtain
the following bound:

1− β ≤ α

1− q
N

,

which is exactly the same as the single-user bound.
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We note that this bound is the same as the one in Theorem 10. To our
knowledge, this is the first time a tight multi-user security bound of the SoP
construction is proven. This is a significant improvement over the previous result
by Choi et al. [8], which corresponds to (assuming the ideal world never outputs
0n)

1− β ≤ α+
26u1/2q2

N2
+

49u1/2(n+ 1)2

N
,

and the bound obtained by naively using the hybrid argument on the single-user
results obtained by Dutta et al. [10]:

1− β ≤ α+
uq

N
.

The dedicated multi-user analysis of Hoang and Shen [16] yields the bound

1− β ≤ α+
8n1/2q

N
.

We see that Theorem 14 improves the corresponding advantage bound by a
factor of 8n1/2, which was left as an open problem by Hoang and Shen. One can
argue that the improvement is small, with the caveat that this can be important
in the concrete setting. Nevertheless, the SoP construction has evaded simple
multi-user security proofs for nearly two decades and many previous articles
have attempted to make relatively small improvements as a side-result.

Importantly, unlike the dedicated proof from [16], our proof is modular in the
sense that we can instantly get tight multi-user security from tight single-user
security. Also note that both the χ2-method (used by Hoang and Shen) and the
square-ratio method (used by Choi et al.) require calculating the expectation,
which is usually more difficult. In contrast, our technique is easy to apply to
more difficult constructions. It is worth highlighting that there is currently no
modular solution for the multi-user security of the SoP construction using other
methods. As Chen et al. [7] have already pointed out, this is because of the
fact that the advantage bound of SoP is dominated by the bad event that the
ideal world returns a zero output, while this cannot happen in the real world.
This event gives a term uq/N for the multi-user security using the squared-ratio
method [7]. Choi et al.’s result [8] is based on a different security model where
the ideal world is forbidden to return 0n as output. It is not certain whether this
assumption about the model can have a major impact on practical applications.
When using power bounds, no additional assumptions need to be made.
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