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Problems in the complexity class NP are not all known to be solvable, but are verifiable given
the solution, in polynomial time by a classical computer. The complexity class BQP includes all
problems solvable in polynomial time by a quantum computer. Prime factorization is in NP class,
and is also in BQP class, owing to Shor’s algorithm. The hardest of all problems within the NP class
are called NP -complete. If a quantum algorithm can solve an NP -complete problem in polynomial
time, it would imply that a quantum computer can solve all problems in NP in polynomial time.
Here, we present a polynomial-time quantum algorithm to solve an NP -complete variant of the
SUBSET − SUM problem, thereby, rendering NP ⊆ BQP . We illustrate that given a set of
integers, which may be positive or negative, a quantum computer can decide in polynomial time
whether there exists any subset that sums to zero. There are many real-world applications of our
result, such as finding patterns efficiently in stock-market data, or in recordings of the weather or
brain activity. As an example, the decision problem of matching two images in image processing is
NP -complete, and can be solved in polynomial time, when amplitude amplification is not required.

I. INTRODUCTION

The complexity class P (Polynomial time) includes all
computational problems that are known to be solvable in
polynomial time by a classical computer [1]. Those that
are not all known to be solvable, but verifiable given the
solution, in polynomial time by a classical computer, con-
stitute the complexity classNP (Non-deterministic Poly-
nomial time) [1]. The complexity class BQP (Bounded-
error Quantum Polynomial time) includes all computa-
tional problems that are known to be solvable in poly-
nomial time by a quantum computer, where a bounded
probability of error is allowed [2].

A problem that is in NP as well as BQP is the prime
factorization problem, i.e. finding the prime factors of a
given positive integer. This means that the prime factor-
ization problem is not known to be solvable in polynomial
time by a classical computer, but it is known to be solv-
able in polynomial time using Shor’s algorithm [3] by a
quantum computer.

The hardest of all problems in NP are called NP -
complete. Specifically, an NP -complete problem is one,
which any problem in the NP class can be reduced to
in polynomial time. The prime factorization problem
is in NP , but not known to be NP -complete. The
SUBSET − SUM problem is to decide, given a set S
of integers, whether a subset of the integers sums to a
target sum X [1]. A variant of this problem is to decide,
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given a set S of integers, which may be positive or nega-
tive, whether a subset sums to X = 0. This variant of the
SUBSET −SUM problem is known to be NP -complete
[4], and is what we shall consider here.

There is no known BQP -algorithm for an NP -
complete problem. If an NP -complete problem is shown
to be solvable in polynomial time by a quantum com-
puter, it would essentially mean that all problems in NP
are solvable in polynomial time by a quantum computer.
In other words, a BQP -algorithm for an NP -complete
problem would imply NP ⊆ BQP , i.e. the complexity
class NP lies in the complexity class BQP .

In this work, we present a polynomial-time quantum
algorithm for the aforementioned NP -complete decision
version of the SUBSET−SUM problem. Existing quan-
tum algorithms for the SUBSET − SUM problem at-
tain improvements in time complexity, that is still ex-
ponential in the size of the problem [5, 6]. There are
polynomial-time quantum algorithms but with restrictive
assumptions [7], pseudo-polynomial time classical algo-
rithms using dynamic programming [8] or polynomial-
time classical approximation algorithms [9] for the prob-
lem. “Whether P = NP” is literally a million-dollar
problem [10]. We prove here that NP ⊆ BQP , by pre-
senting a BQP -algorithm for the NP -complete variant of
the SUBSET − SUM problem, without any restriction
or approximation or assumption.

There are many real-world applications of our result,
such as finding efficiently whatever patterns exist in
stock-market data, or in recordings of the weather or
brain activity [11]. Some concrete examples of real-world
NP -complete problems are listed in Ref. [10], such as
finding a DNA sequence that best fits a collection of
fragments of the sequence, finding a ground state in the
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Ising model of phase transitions, finding optimal protein
threading procedures, finding Nash equilibriums with
specific properties in a number of environments, and de-
termining if a mathematical statement has a short proof.
All these problems can be solved by a quantum computer
in polynomial time, owing to our result here.

II. METHOD

The decision problem has a given set S of inte-
gers, which may be positive or negative. The prob-
lem is to find whether there is a subset of these in-
tegers that sums to zero. For example, given a set
S = {5, 9,−3, 450,−295,−2}, the answer is yes, since
the subset {5,−3,−2} sums to zero.
Consider that our given set S has N integers. Then,

we would use logM := ⌈logN⌉ number of qubits to index
the N integers of the set S. For example, if the set S has
5 integers, then we start with logM = 3 qubits, and use
5 levels: |0⟩ = |000⟩, |1⟩ = |001⟩, |2⟩ = |010⟩, |3⟩ = |011⟩,
and |4⟩ = |100⟩ to index the 5 integers of the set. We ini-
tializeN number of data registers, each of ⌈logN⌉ qubits,
to |0⟩, |1⟩, |2⟩, . . . , |N−1⟩, respectively. Then, we gener-
ate all possible permutations of 0, 1, 2, . . . , N−1 by using
NC2 = N(N − 1)/2 number of single-qubit ancilla reg-
isters, each initialized to the state |+⟩ = 1√

2
(|0⟩+ |1⟩),

and applying ⌈logN⌉ number of controlled swap gates on
each combination of two data registers, with one ancilla
register as control qubit. Please see circuit in Figure 1.

We then have the below state in the data registers,

FIG. 1. Quantum circuit using controlled swaps to create a
superposition of all permutations of 0, 1, . . . , N−1 for N = 5.

upon tracing out the ancilla qubits, with
∑

k βk = 2
NC2 :

ξN =
1

2NC2

∑
k

βk|ζk⟩⟨ζk|. (1)

Box 1. Improved Quantum Phase Estima-
tion (IQPE).

We start with an initial state |Λ0⟩|uj⟩, where
|uj⟩ is the j-th eigenstate of the Hermitian
matrix Γ, that we exponentiate, and |Λ0⟩ :=√

2
T

∑T−1
ι=0 sin

π(ι+ 1
2 )

T |ι⟩ for some large T . The

initial state |Λ0⟩ can be prepared upto some
error ϵΛ in time poly log2(T/ϵΛ) (see Section
A of Supplementary material of Ref. [12]).
We apply the conditional Hamiltonian evolution∑T−1

ι=0 |ι⟩⟨ι| ⊗ eiΓιt0/T on the initial state in both
registers, and then apply quantum Fourier trans-
form (QFT) on the first register to obtain the

state
∑T−1

p=0 νp|j |p⟩|uj⟩. Defining the estimate r̃p

of the p-th eigenvalue rp of Γ as r̃p := 2πp
t0

, we

can relabel the Fourier basis states |p⟩ to obtain∑T−1
p=0 νp|j |r̃p⟩|uj⟩. If the phase estimation is per-

fect, we have νp|j = 1 if r̃p = rj , and 0 otherwise.
So, we obtain the state |r̃j⟩|uj⟩, from which we
get the estimate of rj upon measuring the first
register. This quantum phase estimation method
errs by ε = O(1/t0) in estimating rj [12], where
ε/2 is the error in trace distance (see just before
Section A and just before Theorem 6 in the Sup-
plementary material of Ref. [12]).

In general, for n = N − 1, N − 2, . . . , 1, we can simply
trace out from the state ξN , the last N −n data registers
of ⌈logN⌉ qubits each, to get:

ξn =
1

2NC2

∑
j

γj |ζj⟩⟨ζj |, (2)

where now
∑

j γj = 2
NC2 . We create N copies of unitary:

U =


e2πiϕ0 0 . . . 0

0 e2πiϕ1 . . . 0
·
·

·
0 0 . . . e2πiϕM−1

 , (3)

where the phases ϕ0, . . . , ϕN−1 are the N integers from
the set S, divided by 2π, and ϕN , ϕN+1, . . . , ϕM−1 = 0,
if N < M .
Phase estimation algorithm is known to obtain the

phase of a given eigenstate of a unitary efficiently in
polynomial time, depending on the desired accuracy of
the phase estimate [2]. We will instead use what is called
an improved quantum phase estimation (IQPE) method
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from Ref. [12], which is outlined in Box 1. We can then
perform phase estimation on the unitary U⊗n for the
eigenstates ξn, since all the sums (denoted by φj ’s) of the
possible combinations of the phase factors ϕ0, . . . , ϕN−1

are captured with U⊗n, n = 1, 2, . . . , N . We do this,
starting from the state |Λ0⟩ in a register and the state ξn
in another register, to obtain the state:

ρn =
1

2NC2

∑
j

γj |φ̃j⟩⟨φ̃j | ⊗ |ζj⟩⟨ζj |, (4)

where φ̃j is the estimate of φj . We next exponentiate the
state in the first register to get a unitary and estimate the
phase of the eigenstate |0⟩ of this unitary to know if there
is any sum of zero. If this phase estimate is non-zero for
any n, we output “Yes”; else, we output “No”.

III. ALGORITHM

Our algorithm is as follows:

1. Given the set S of N integers, s0, s1, . . . , sN−1,
create N copies of a diagonal unitary (3), where
ϕq = sq/(2π), ∀ q = 0, 1, . . . , N − 1, and ϕq =
0, ∀ q = N,N + 1, . . . ,M − 1 if N < M .

2. Initialize N number of data registers, each of
⌈logN⌉ qubits, to |0⟩, |1⟩, . . . , |N − 1⟩, respec-
tively, and generate all possible permutations of
0, 1, . . . , N − 1 by using NC2 = N(N − 1)/2 num-
ber of ancilla qubits, each in the state |+⟩ =
1√
2
(|0⟩+ |1⟩), and applying ⌈logN⌉ number of con-

trolled swap gates on each combination of two
data registers, with one ancilla as control qubit, as
shown in Figure 1 for N = 5. The resulting state in
the data registers, denoted collectively as register
B, upon tracing out the ancilla qubits, is (1). Start
the next step with n = N .

3. Trace out from the state ξN , the last N − n data
registers of ⌈logN⌉ qubits each, to get the state (2).
Initialize a register A to the state |Λ0⟩ of ℓ qubits,
and identify ξn as register B now. Perform (im-
proved) quantum phase estimation of the unitary
U⊗n, with registers A and B as input, to obtain
the state (4).

4. The effective state in the first register A only is:

σ =
1

2NC2

2ℓ−1∑
m=0

αm|φ̃m⟩⟨φ̃m|, (5)

where
∑

m αm = 2
NC2 . Notice that σ is a 2ℓ × 2ℓ

diagonal matrix in its eigenbasis {|φ̃m⟩}. It is re-
quired to know if α0 is zero here. Thus, exponen-
tiate the density matrix σ, by repeated application

of the following to the unknown state σ in register
A and a known state ς in a register C [13, 14]:

TrA
[
e−iS∆t(σ ⊗ ς)eiS∆t

]
= ς − i∆t[σ, ς] +O(∆t2), (6)

to obtain the unitary e−iσt, where S is the swap
operator, which is sparse and so, e−iS∆t can be per-
formed efficiently [12, 15]. Then, perform phase es-
timation of the eigenstate |φ̃0⟩ = |0⟩ of the unitary.
The phase estimation process requires controlled-

e−iσt operations
∑T−1

ι=0 |ι⟩⟨ι| ⊗ e−iσtι/T (for some
T ), that is done by acting the conditional swap op-
erator |ι⟩⟨ι|⊗ e−iStι/T on |ι⟩⟨ι|⊗σ⊗ ς instead, and
tracing out σ. Note that the eigenvalues of S are

±1, so that W 1/T = W 21/T = W 22/T = W 23/T . . .,
where W = e−iSt, if we use say t = 2π. If this
phase estimate α̃0 is zero, proceed to the next step,
else output the decision “Yes” as the solution, and
terminate the algorithm.

5. Undo the steps 4 and 3 to revert back register B to
ξn. Go back to step 3 for n := n− 1, if n > 1.

6. Output the decision “No” as the solution.

IV. ALGORITHM COMPLEXITY

Below, we analyse the complexity of our algorithm to
demonstrate that it can be run on a quantum computer
in polynomial time rather than exponential time:

1. Since the unitary U , and so, the Hamiltonian A,
is a sparse matrix, U = eiAτ can be implemented
efficiently in O(log(M)s2τ) = O(log(M)τ) steps
[12, 15], where

A =


2πϕ0 0 . . . 0
0 2πϕ1 . . . 0

·
·

·
0 0 . . . 2πϕM−1

 (7)

is an (s = 1)-sparse matrix. The N copies of the
unitary U can be created in parallel.

2. The controlled swap operations on ⌈logN⌉ qubits
of each data register can be performed parallelly,
and there are NC2 = N(N − 1)/2 = O(N2) such
sets of controlled swaps, yielding a complexity of
O(N2) for this step.

3. Since we use the improved phase estimation
method from Ref. [12], and we perform this for upto
the N number of unitaries U⊗n, n = 1, 2, . . . , N ,
we have τ = O(1/δ) in step 1 times N , where δ is
the estimation precision error. Otherwise, the com-
plexity of the phase estimation in this step is dom-
inated by the quantum Fourier transform (QFT),
that takes O(ℓ2) steps. Since there are upto N it-
erations, the complexity of this step is O(Nℓ2).



4

FIG. 2. Density matrix exponentiation (DME) [13, 14] and
improved quantum phase estimation (IQPE) [12].

4. The density matrix exponentiation can be done
with z = O(t2ϵ−1) copies of the density matrix,
where t = z∆t and ϵ is error determining the de-
sired accuracy [13]. The circuit depth required for
the density matrix exponentiation is O(log(2ℓ)z) =
O(ℓt2/ϵ) [14]. As we use the improved phase es-
timation method from Ref. [12] with error µ, the
complexity of this step is O(ℓ/(ϵµ2)), since t =
O(1/µ) [13]. Since we perform this step for up
to N states, the overall complexity of this step is
O(Nℓ/(ϵµ2)). See Figure 2.

5. Undoing the previous 2 steps is trivial, since we
need to just apply the conjugate transpose of the
corresponding unitary operation in each case. We,
therefore, ignore the complexity of this step.

6. This step does not contribute to overall complexity.

Thus, the dominant overall complexity of our algo-
rithm is O(log(M)τℓNz) = O(log(M)Nℓ/(δϵµ2)), which
is obtained by multiplying the complexities of steps 1 and
4, since steps 1-3 are required to be repeated to generate
every copy of the density matrix required in step 4. Here,
we must check how ℓ, δ, µ and ϵ scale with N .
Note that the use of the improved quantum phase es-

timation method from Box 1, as opposed to the conven-
tional method from Ref. [2], makes the time variable τ in
step 3 above not directly dependent on ℓ (although the
quantity T is equal to 2ℓ), as long as ℓ is at least as many
qubits as required for the estimation precision error δ.
Now, it may appear that the required estimation error

in step 4 is µ = O(1/t) = O((1/2
NC2) × (2

NC2/2ℓ)) =
O(1/2ℓ) for the algorithm to distinguish 0 and 1/2ℓ cor-
rectly (noting that we take ℓ ≥ NC2 later, which ensures

α0/2
NC2 , if non-zero, is always larger than 1/2ℓ). This

means that our algorithm will always output the correct
decision, if we have t = O(1/µ) = O(2ℓ), which is ex-
ponential in ℓ. However, our algorithm need not output
the correct decision all the time, but at least 2/3rd of the
time, to be BQP .
Now, as mentioned before, the estimation error in

Ref. [12], and so µ here, is twice the error in trace dis-
tance. Then, µ/2 gives the maximum probability of esti-
mation error, since the trace distance between two states

gives the maximum difference in probability of any mea-
surement on the two states (see just above Eq. (3) in
Ref. [16]). Also, if the error ϵ in simulating e−iσt is an
error in trace distance (as defined in Eq. (3) in Ref. [16]),
it needs to be less than or equal to 1/6 for the simulation
to be successful with a probability of at least 2/3 (see
proof of Theorem 2 in Ref. [16]). The estimation error
δ from step 3 is also twice the error in trace distance,
so that δ/2 determines the maximum probability of es-
timation error in step 3. Moreover, let υ be the error in
simulating each copy of the unitary U in step 1. Since
this error is in trace distance [15], it also determines the
maximum probability of simulation error for each U in
step 1. As the errors would accumulate, we must ensure:

Nυ + δ/2 + 2ϵ+ µ/2 ≤ 1/3, (8)

where the factor N arises because there are N copies
of the unitary U created. Taking υ = δ = µ = ϵ for
simplicity, the combined success probability would then
be 1 − (N + 3)ϵ ≥ 2/3. Further, since we have upto
N iterations, we need to have (1− (N + 3)ϵ)N ≥ 2/3 to
ensure that our algorithm is BQP . Since for large N , the
quantity (N + 3)ϵ needs to be small for this to hold, we
can effectively write that we must have 1−N(N +3)ϵ ≥
2/3, which yields ϵ ≤ 1/(N(N + 3)). In fact, this is also
why the various errors have been added in (8). Since
steps 1-3 are repeated z times, to obtain z copies of the
state required for step 4, we should ideally have in (8):

z(Nυ + δ/2) + 2ϵ+ µ/2 ≤ 1/3. (9)

However, using a value of z = O(t2/ϵ) = O(1/ϵ3) raises
the upper bound to ϵ, required to satisfy the above in-
equality, and so, we use the worst-case z = 1 to get an up-
per bound to ϵ to consider. Also, note that we must have
t/(6ϵ) ≥ π in step 4 (see Theorem 2 in Ref. [16]), which
implies ϵ ≤ t/(6π) = O(1/(6πµ)), that, in turn, yields

ϵ ≤ O(1/
√
6π) with µ = ϵ. Clearly, ϵ ≤ 1/(N(N+3)) sat-

isfies this requirement. Thus, the estimation error prob-
ability in step 4 needs to be µ/2 = ϵ/2 ≤ 1/(2N(N +3)),
regardless of ℓ, and we need not have µ = O(1/2ℓ), but
T = 2ℓ, for our algorithm to be BQP .
Besides, the density matrix exponentiation method

used in step 4 is efficient, providing exponential speedup
to our algorithm when the matrix being exponentiated is
of low rank [13]. We use the same number of qubits ℓ in
register A for all values of n upto N . A suitable choice
of ℓ is ℓ ≥ NC2. Although after step 3, the number of
non-zero entries in register B is NPn = N !/(N − n)!,
that in register A is NCn = N !/(n!(N − n)!), which is

always much less than 2
NC2 . Clearly, for all values of

n = 1, 2, . . . , N , the density matrix σ in step 4 is then of

low rank. Taking ℓ ≥ NC2 also ensures α0/2
NC2 (that

if non-zero, is at least n!(N − n)!/2
NC2) is always larger

than 1/2ℓ, as mentioned earlier. This is because each γj
in (4) is at least (N−n)!, and there are nPn = n! number
of ζj ’s, that, representing the same subset of the set S,
have the same value of φj .
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Thus, if we take M = N (for when ⌈logN⌉ = logN),
ℓ = NC2 = O(N2) and ϵ = δ = µ = O(1/N2), our
algorithm has a complexity of O(log(M)Nℓ/(δϵµ2)) =
O(N11 log(N)), which is indeed polynomial, and not ex-
ponential, in N .

V. DISCUSSION

While classical algorithms for NP -complete problems
take at least O(2N ) steps in the worst case, the common
quantum algorithms achieve quadratic speedup over clas-
sical algorithms [17], using a technique called amplitude
amplification [18, 19], that is based on Grover’s search al-
gorithm [20]. By contrast, we achieve exponential quan-
tum speedup, using the density matrix exponentiation
method in step 4. Our overall algorithm takes only
O(N11 log(N)) steps. For example, in quantum imaging,
the decision problem of matching two images is known
to be NP -complete [21]. It is known to have a quadratic
quantum speedup, again using amplitude amplification
based on Grover’s search [22, 23]. However, this prob-
lem can be solved by a quantum computer in polynomial
time using density matrix exponentiation, without need-
ing amplitude amplification.

Note that NCn ≤ NCN/2 ∀n ∈ [1, N ] and NCN/2 ≥
2N/2. This reveals that if we do not use density ma-
trix exponentiation in step 4, and rather use conventional
quantum state tomography to estimate the density ma-
trix σ, we would obtain a best of quadratic quantum
speedup, scaling as 2N/2, as is obtained with Grover’s
search for NP -complete problems. However, our use
of density matrix exponentiation technique in step 4 to
know α0 for eigenstate |0⟩ of the low rank density matrix
σ allows for achieving an exponential quantum speedup
to solve the NP -complete decision problem.
Note that in step 1, there are infinitely many possible

integer sums that are mapped to the fixed phase inter-
val (−2π, 2π) through U⊗n. Thus, there can be many
sums that are too close to zero as phases to be distin-
guishable in step 3. So, α0 in step 4 can be incorrectly
non-zero, when it was supposed to be zero, affecting the
decision of the algorithm. However, α′

0 needs to be larger

than O(2ℓ/N2) = O(2
NC2/N2) in step 4 for µ to exceed

O(1/N2), where α′
0/2

ℓ = α0/2
NC2 . This is because we

have α′
0/2

ℓ ≤ O(1/N2) for µ ≤ O(1/N2). If the maxi-
mum estimation error probability in step 3 is δ/2, where
δ = O(1/τ) ≤ O(1/N2), we have α′

0 ≤ O(NCN/2/N
2) <

O(2
NC2/N2), since the total number of sums for a given

n is maximum for n = N/2. So, our algorithm cannot
output a wrong decision with a probability exceeding 1/3.

VI. CONCLUSION

To summarise, we presented here the first BQP -
algorithm for anNP -complete variant of the SUBSET−
SUM problem, thereby, proving NP ⊆ BQP . There are
existing BQP -algorithms, such as Shor’s algorithm, for
problems, such as prime factorization, that are known to
be in NP but not NP -complete. For NP -complete prob-
lems, the usual approaches achieve a quadratic quantum
speedup over classical algorithms, using amplitude am-
plification, based on Grover’s search. In our algorithm,
we achieve an exponential quantum speedup by using
density matrix exponentiation, without requiring ampli-
tude amplification. Our work ensures that many real-
world computationally difficult problems can be solved
efficiently in polynomial time by quantum computers,
including but not limited to finding patterns in stock-
market data, matching two images in image processing,
or finding optimal protein threading procedures.
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