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Abstract—This article defines a new post-quantum
hard problem called Q-Problem. This Q-Problem is
then used to design a post-quantum key-independent
cryptography scheme. In the key-independent cryp-
tography scheme, the keys of each communicating
entity are hidden, and the encryption and decryption
processes are performed using only random private
keys.

I. INTRODUCTION

Cryptography has to evolve in tandem with
digital communication and computation to adapt
to emerging threats and harness technological ad-
vancements to safeguard data integrity, confidential-
ity, and availability. The current array of encryption
techniques, including RSA, El Gamal, and Elliptic
Curve Cryptography (ECC), stands as the corner-
stone of secure communication. These algorithms
are secure against classical attacks due to their
underlying computational complexity, e.g., integer
factorization and discrete logarithms, setting high
standards for security. However, the emergence of
quantum computing poses a profound threat to these
established encryption methods.

Quantum computing introduces a revolutionary
paradigm in computation, leveraging the princi-
ples of quantum mechanics to process informa-
tion in ways fundamentally different from classical
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computers. This emerging technology offers un-
precedented computational power. Algorithms such
as Shor’s algorithm for integer factorization and
Grover’s algorithm for database search optimiza-
tion were proposed to harvest the computational
power of quantum computers. For instance, Shor’s
algorithm can factorize large integers in polynomial
time, which is a task that is prohibitively time-
consuming for classical computers and forms the
basis of the security in RSA and similar encryp-
tion schemes. The ability of quantum computers
to efficiently execute Shor’s algorithm undermines
the security of most traditional encryption tech-
niques. Public-key cryptographic systems, which
protect everything from Internet communications to
financial transactions, could be decrypted without
the private key, exposing sensitive information to
quantum-powered adversaries. This imminent threat
highlights the urgent need to develop quantum-
resistant cryptography, also known as post-quantum
cryptography, to ensure the continued security of
our digital infrastructure. In response to the quan-
tum threat to classical cryptography, researchers
and industry leaders are actively developing en-
cryption methods capable of withstanding quan-
tum computational attacks. These quantum-resistant
algorithms typically rely on mathematical prob-
lems that are considered challenging for both clas-
sical and quantum computers to solve. Promi-
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problems
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Encryption schemes based on the
introduced Q-Problem F−1(c) −−−−−−−−→ multiple m (uniform distribution)

Fig. 1: Q-Problem illustration.

nent approaches include lattice-based cryptogra-
phy [1], hash-based cryptography [2], and multivari-
ate polynomial cryptography [3], each demonstrat-
ing promising quantum-resistant properties. While
quantum computing presents significant risks to
existing encryption techniques, the implementation
and performance of most proposed post-quantum
cryptographic systems introduce considerable com-
plexity. This challenge demonstrates the delicate
balance between enhancing security and maintain-
ing efficiency in the post-quantum era.

This article presents two main contributions.

1) A new hard problem, called Q-Problem, that
could be used in post-quantum encryption.

2) An innovative post-quantum key-independent
cryptographic scheme.

The post-quantum, key-independent cryptographic
scheme that uses the Q-Problem addresses com-
plexity challenges and offers a novel approach to
securing digital communications against quantum
computing threats. The scheme’s core concept is
built around a newly defined challenge, known as
the Q-problem, which conceals each entity’s keys
through encryption based only on the exchange of
distinct private keys. By parameterizing complexity,
the scheme allows for the dynamic adjustment of
cryptographic hardness, ensuring an optimal bal-
ance between computational efficiency and robust
security in both classical and post-quantum en-
vironments. This adaptable mechanism marks a
significant advancement in the pursuit of robust,
quantum-resilient encryption.

II. NEW POST-QUANTUM HARD PROBLEM
CALLED Q-PROBLEM

The emergence of quantum computers renders
traditional cryptographic hard problems like fac-
torization and discrete logarithms vulnerable, un-
dermining their security foundations. Consequently,
a new set of complex problems—such as those
based on lattice structures, code theory, hash func-
tions, multivariate polynomials, and isogenies has
emerged as the basis for quantum-resistant encryp-
tion methods. These problems, despite their current
robustness, rely fundamentally on their computa-
tional complexity. Thus, encryption techniques built
upon them ultimately aim to provide one solution
to Equation (1).

c = F−1(m) (1)

When quantum computers are fully realized, the
aforementioned problems can easily solve this equa-
tion regardless of its complexity because each ci-
phertext maps to only one plaintext.

This article introduces a novel post-quantum hard
problem, termed the Q-Problem, which arises when
Equation (1) has multiple solutions. In this scenario,
a single ciphertext corresponds to a broad set of
valid plaintexts, making it difficult for an attacker,
even with quantum computational power, to identify
the correct plaintext from among many possibilities
(see Figure 1). Q-Expressions (Qe) could take forms
such as z = x × y mod p, or z = x + y mod p,
or z = xy mod p, where x and y are random and
unknown. In each of these cases, numerous pairs
of values for x and y produce the same z, with no
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discernible pattern to determine which pair is the
intended target.

Leveraging this Q-Problem, this article proposes
a new encryption technique that offers an additional
advantage, i.e., the encryption scheme is not tied to
a fixed encryption key. Instead, a key is generated
randomly during the encryption process and is used
only once. In Q-Probleme, the attacker challenge is
to find x and y from the equation z = x⋆y mod p,
where x and y are unknown and both of them have
no relation with p. Of course, without any other
equation or information to help him guess x and y.

We define the Q-problem (QP) as follows:

QP⇔



▷ F () = {Qe1, Qe2, . . . , Qen}
▷ Qei : xi ⋆ yi mod p | ⋆ : +,×, exp
▷ Both xi and yi are hidden
▷ ∀ (Qei, Qej) initial or derived :
at least var(xi) ̸= var(xj)
∨ var(yi) ̸= var(yj)
▷ ∀ Qei, (xi, yi) θ p = ⊥
▷ Given z,∀ Qei :
#SolsEq.( z = x ⋆ y mod p) >> 1

Var: for variable,⊥means that p (or part of p) has
no relation with x nor with y; x and y are unknown
elements or composed arithmetic expressions of
unknown elements. Qe can also be a single random
value v with v ̸= v′ for two different inputs.

The challenge in Q-problem can be defined as
follows:

Q-problem: Given p and z, find x and y where
x ⋆ y mod p = z.

Initial and derived Q expression:
Let us take the following example, F () :
(Qe1, Qe2, Qe3) = (x + c, y + c, x × y) where c
is a constant. This initial F () verifies Q-Problem
definition where Qei ∩ Qej = {e} | e ∈ {x, y, c}.
But if we derive new Qe from F (), we will find
Qe4 = Qe1 − Qe2 = x − y. Now, the pair
(Qe3, Qe4) does not verify Q-Problem definition
because Qe3 ∩ Qe4 = {x, y}, it is (x and y) and
not (x or y). The attacker can get the hidden values
x and y by using Qe3 and Qe4.

Connected/Disconnected Q-Problem (C/DQP):
If we have var(xi) = var(xj) or var(yi) =

var(yj), this is a connected Q-Problem. If
∀ (Qei, Qej) : var(xi) ̸= var(xj) and var(yi) ̸=
var(yj), we have a disconnected Q-Problem, i.e.
there is no common elementary variable between
any two Q expressions of F ().

Totally/Partly Q-Problem (T/PQP):
We mean the vertical change, i.e., two outputs of
two different inputs. Let z1 and z2 be two outputs of
two different inputs t1 and t2. By default, we have
z ̸= z′, in addition, if (xt1 ̸= xt2∨ yt1 ̸= yt2) ∀ Qe,
it is a partly Q-Problem (PQP).

In totally Q-Problem (TQP), z ̸= z′, and (xt1 ̸=
xt2 ∧ yt1 ̸= yt2) ∀ Qe.

Fully/Partially probabilistic Q-Problem
(F/PPQP):
We mean the horizontal change i.e., two different
outputs of the same input. Let z and z′ be two
outputs of the same input t, we have z ̸= z′,
and (x ̸= x′ ∨ y ̸= y′) ∀ Qe. This is a partially
probabilistic Q-Problem (PPQP).

In fully probabilistic Q-Problem (FPQP), z ̸= z′,
and (x ̸= x′ ∧ y ̸= y′) ∀ Qe.

In deterministic Q-Problem (DQP), z = z′. For
operations that are not repetitive such as generating
a public key, it is sufficient for x and y to be
unknown.

We note that: F/PPQP ⇒ T/PQP
Perfect Q-Problem:

We call Perfect Q-Problem (FQP) if we have a
fully probabilistic Q-Problem FPQP and if we de-
compose it, we always obtain an FPQP until the
last decomposition i.e., getting a non-divisible Q-
expression.

To understand this concept, let us give the fol-
lowing example. Let c be a constant (for example,
a secret key) and r be a random variable for each
execution of π with π = c × r1 + cr2 . If we
put x = c × r1 and y = cr2 , so π = x + y is
FPQP. However, if we move down another level of
decomposition, we will put x = r1 and y = c for
the first part (previously x). At this level, x ̸= x′,
where x′ = r′1, but y = y′ = c. In this level, π is
only PPQP. Therefore, π is not FQP.

OTP encryption and Q-Problem:
It is known that in OTP we use a one-time encryp-
tion key. For example, if Enc(m) : c = m ⊕ k1
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and c′ = m ⊕ k2 for the same input m, we find
that x = x′ = m. Therefore, this example of OTP
is not fully probabilistic but a partially probabilistic
Q-problem. To Convert it from PPQP to FPQP, we
can for example fragment the message m randomly
into two parts. Thus, c = (m1 ⊕ k1,m2 ⊕ k2), that
gives x = m1 ̸= x′ = m′

1 and y = k1 ̸= y′ = k2,
same think for the second part. Therefore, we need
to use two keys for each message instead of one.

Examples
Let us take RSA, c = me mod n where e is
the public key. Since e is known, RSA is not QP.
Furthermore, e is depends on n where e × d ≡ 1
mod ϕ(n).

Let us take ElGamal, c = (m × hr, gr) where
h = gk is the public key and k is the secret key.
The first part belongs to QP, x = m (unknown) and
y = hr (unknown because r is hidden). Since g is
public, the second part gr does not belong to QP.

Let us take Gentry’s FHE scheme (DGHV) that
is written as c = m + 2r + qp where r and q are
random for each encryption and p is a secret key. It
can be considered that this scheme belongs to the
Q-Problem, if we put x = m+2r and y = qp, then
c = x+y verifying all conditions of the Q-Problem
including FPAP. After decomposing y = qp to x =
q and y = p, DGHV scheme is no longer FPAP.

The ideal Q-Problem scheme
The ideal Q-Problem scheme (IQP) is DFQP
which means a disconnect and perfect Q-Problem.
An example of IQP is what we illustrated above,
a Message-Fragmentation based OTP encryption
scheme (MFOTP). In this scheme, cm = (c1, c2) =
(m1 ⊕ k1,m2 ⊕ k2) where m1 and m2 are two
random fragments of m, k1 ̸= k2 even with the
same plaintext m (so it is FQP). Q expressions
(ciphertexts) c1 and c2 have no common variable
(so it is DQP).

III. KEY-INDEPENDENT CRYPTOGRAPHY

This section presents the details of a new cryp-
tographic scheme, KIE, which relies on the Q-
Problem for its security. We present two implemen-
tations of KIE: one for classical computing and the
other is a post-quantum cryptography.

Alice Public: (n, ϕ(n)) Bob

Secret: m
Private: ea and da

Private: eb and db

Compute c = mea
Send c

Compute c′ = ceb
Send c′

Compute c′′ = (c′)da
Send c′′

Compute m = (c′′)db

Fig. 2: Classical scheme of KIE encryption and
decryption.

A. KIE for Classical Computing

Finding large prime numbers remains a challenge
in several cryptography fields. In the proposed Clas-
sical KIE (C-KIE) key exchange protocol, Alice
and Bob must agree on a random modulus n,
which defines the finite set Zn, within which the
message m must be an element. As depicted in
Figure 2, Alice encrypts m using her secret key ea
and sends the resulting ciphertext c to Bob. Bob
then encrypts c again using his secret key eb and
sends the new ciphertext c′ back to Alice. At this
stage, Alice decrypts c′ using her private key da
and forwards the intermediate result c′′ to Bob, who
finally decrypts it with his private key db to reveal
the original message m.

The use mode of the C-KIE process is similar
to RSA, as illustrated in Figure 3, where the main
difference is that ϕ(n) is public in C-KIE, and the
private keys are the randomly selected pairs (e, d).
This approach facilitates secure message exchange
without the need for pre-established large prime
numbers or key sharing.

C-KIE is particularly efficient in low-resource
environments, e.g., the Internet of Things (IoT),
where encryption can be initiated by simply sharing
a large random n. The ability to choose random
keys and encrypt each message mi with randomly
distinct selected key pairs (ei, di) enhances C-
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KIE’s robustness compared to traditional asymmet-
ric cryptography schemes.

B. Post-Quantum KIE Cryptography

Quantum computing poses significant threats to
cryptographic systems that are based on the discrete
logarithm problem. C-KIE addresses the factoriza-
tion challenge by making ϕ(n) public while keeping
(e, d) private. Consequently, the security of C-KIE
depends on the practical difficulty of solving the
discrete logarithm problem. As illustrated in Fig-
ure 2, the ciphertext c′ is derived from c through
the exponentiation c′ = ceb , where both c and c′

are known. In the presence of quantum attacks,
eb becomes vulnerable, allowing an adversary to
potentially uncover the private message m from c′′.

To mitigate this, a new post-quantum KIE (Q-
KIE) technique, illustrated in Figure 4, is designed
to obscure both the base and the exponent, thus
transforming it into a more challenging discrete
logarithm problem. In Figure 4, the blue color
indicates a piece of shared information, the red
color indicates a piece of secret information and the
black indicates newly generated information. The
encryption here utilizes a Secret Message Holder
(SMH) approach. Bob sends the SMH (c1 =
xe3 , c2 = xe4) to Alice, where x is Bob’s secret
random value in Zn (with x > 1), and (e3, e4) are
his secret random exponents in Zϕ(n). As depicted
in Figure 4, Alice encrypts her message m by
raising c1 and c2 to her secret random exponent

r, yielding cr1 and c−r
2 . She then multiplies cr1 by

m1
e1 to produce c3 and c−r

2 by m2
e2 to generate

c4. Upon receiving c3 and c4, Bob computes c5 and
c6 and sends them back to Alice. In the final stage
of this protocol, Bob extracts the messages m1 and
m2. A simplified Python code demonstrating this
scenario, along with an explanation of the running
mode of Q-KIE, is hosted on https://t.ly/MQWMk.
The proposed Q-KIE scheme eliminates the need
for a public key sharing process and offers the
flexibility of encrypting each message with distinct
private primitives.

IV. KIE SECURITY ANALYSIS

Asymmetric cryptosystems that depend on the
computational difficulty of processes such as factor-
ization or discrete logarithms will become vulnera-
ble in the future due to the immense computational
power of quantum computers, which can effectively
solve many of these problems. Shor’s algorithm
exemplifies such quantum capabilities. For instance,
the factorization problem, which has a complexity
of O(exp(L1/3(logL)2/3)) on classical computers,
is drastically reduced to O(L3) on quantum com-
puters for factoring non-prime integers N of L bits.

Shor’s method relies on a period-finding rou-
tine on a quantum computer. A function f :
(x1, . . . , xn) 7−→ f(x1, . . . , xn) is periodic, of
period (ω1, . . . , ωn), if f(x1 +ω1, . . . , xn +ωn) =
f(x1, . . . , xn) for all tuples (x1, . . . , xn) in the
domain of f .
Factorization problem: Given an RSA modulus
N = p× q, find primes p and q.

Choose a random integer α ∈ ZN , without
loss of generality, we assume that gcd(α,N) = 1
otherwise, this yields the factorization of N and the
factorization problem is solved.

Consider the univariate function f(x) = ax

mod N . The period-finding algorithm determines
a period ω such that f(x + ω) = f(x). Conse-
quently, ω is a multiple of the order of α mod-
ulo N . Specifically, this relationship holds because
f(x+ ω) = f(x) if and only if αω ≡ 1 (mod N).

If ω is a multiple of λ(N) where λ(N) de-
notes Carmichael’s function, then Miller’s algorithm
yields the factorization of N . Otherwise, repeat the

https://github.com/kadakada/Q-KIE
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Alice Public: (n, ϕ(n)) Bob

Secret: m = (m1, m2)
Private Keys: (r, e1, e2)

Private Keys: (e3, e4, x)

Start Encryption

Compute: c1 = xe3

c2 = xe4Send (c1, c2)

c3 = c1
r ×me1

1

c4 = c2
−r ×me2

2

Send (c3, c4)
c5 = x× c3

e4×d3 × c4
= x×me2

2 × (m1
e4×d3)e1

c6 = x× c3 × c4
e3×d4

= x×me1
1 × (m2

e3×d4)e2

Send (c5, c6)

c7 = [m1
2 × c1

−d1 , (m2
−e2 × c5)

d1 ]
c8 = [m2

2 × c2
−d2 , (m1

−e1 × c6)
d2 ] Send (c7, c8)

m1 =
(
c7[0]

d3 × c7[1]
)a

a = (d3 × (e4 + 2))−

m2 =
(
c8[0]

d4 × c8[1]
)b

b = (d4 × (e3 + 2))−

Fig. 4: Post-quantum independent key encryption scheme, private keys of both sender and receiver are
randomly generated in each encryption.

process with another α, get the period ωα, and
update ω as ω ←− lcm(ω, ωα), until ω is a multiple
of λ(N).
Discrete logarithm problem: Given a Diffie-
Hellman modulus gx = y mod p, find x.

Shor’s algorithm addresses the discrete logarithm
problem by finding an integer x satisfying the
equation gx = y mod n, where g is a generator
of the multiplicative group of integers modulo n, y
is an element of this group, and p is the modulus.

The process of solving the discrete logarithm
problem using Shor’s algorithm involves several
steps, outlined as follows:

1) Quantum Fourier Transform: The algorithm
employs the quantum Fourier transform to as-
certain the period r of the function f(a) = ga

mod p, where a is an arbitrary integer. The

period r is the smallest positive integer for
which gr ≡ 1 mod p.

2) Period Finding: At the heart of Shor’s algo-
rithm is the quantum computation for efficient
period finding. By preparing states in a super-
position and evaluating f in this superposed
state, the algorithm leverages the quantum
Fourier transform to extract information re-
garding r.

3) Computing the Discrete Logarithm: Given the
period r, the algorithm proceeds to compute
the discrete logarithm x as follows:

a) If r is even and gr/2 ̸≡ −1 mod n, it is
possible that gr/2 − 1 and gr/2 + 1 yield
clues towards finding x.

b) Given y = gx, we search for x such that
yr ≡ (gx)r ≡ 1 mod n. If r is even, we
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(b) Second test with p = 101 and
x = 5, 10, 15, 20, . . . , p− 1.

20 40 60 80 100
X

0

20

40

60

80

Z

test 3

(c) Third test with p = 101 and
x = 5, 10, 15, 20, . . . , p− 1.
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(d) Forth test with p = 101 and
x = 5, 10, 15, 20, . . . , p− 1.

Fig. 5: Illustrating the random distribution of z = xy even if x are regular values;
p = 101, x = 5, 10, 15, 20, . . . , p− 1.

have yr/2 ≡ ±1 mod n, which provides
insights into the structure of x.

4) Modular Exponentiation: Efficient quantum
modular exponentiation is critical for applying
Shor’s algorithm effectively to solve both the
factoring and the discrete logarithm problems.

In essence, Shor’s algorithm utilizes the quantum
mechanical properties to solve the discrete loga-
rithm problem by relating the order of y with re-
spect to g to the period r identified by the quantum
algorithm.

The Q-KIE technique is considered robust against

quantum computers because it does not depend
on the difficulty of the factorization problem by
considering p and q already known. Furthermore,
making ϕ(n) public shifts the challenge to another
problem, namely the discrete logarithm problem.

The discrete logarithm problem involves finding
x in the equation gx = y when g and y are known.
Several studies prove that it is possible to solve
this problem using future generations of quantum
computers. This directly affects the widely used
encryption techniques, such as RSA; since e is
public, an attacker can choose a message m and
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compute c = me, he now knows that cd = m,
where d is the secret key.

Q-KIE states that x and y are unknown, so the
adversary knows only z in xy = z. We analyze this
problem in the presence of quantum computers.

Consider the bivariate function f : (x1, x2) 7−→
gx1 × yx2 .

gx1 × yx2 = gx1+ω1 × yx2+ω2 (2)

The period finding routine finds a pair (ω1, ω2) such
that f(x1+ω1, x2+ω2) = f(x1, x2). This implies:
gω1 × yω2 = 1G ⇐⇒ gω1+k×ω2 = 1G and thus
ω1+k×ω2 ≡ 0, or k×ω2 ≡ −ω1( mod (p−1)).
There are p pairs (ω1, ω2) that produce this result.
If each result is equally likely, then there is only
a 1/p probability that (ω1, ω2) ≡ (0, 0)( mod p).
On the (q− 1)/q probability that it is not zero, the
solution to the discrete logarithm problem is given
by k = −ω1/ω2 mod (p− 1).

Regarding Equation (2), we observe that knowing
g is necessary to continue looking for x because if g
is unknown, the adversary needs to choose a random
value. In this case, the adversary will obtain for each
chosen g a new x different from the original value.

Set p = 11, x = 6, y = 4, and z = 9 in xy ≡ z
mod p, Table I shows an example of z = 9 for
different pairs of (x, y).

TABLE I: Exp: p = 11, x = 6, y = 4, and z = 9
such xy ≡ z mod p

x
y 2 3 4 5 6 7 8 9

2 4 8 5 10 9 7 3 6
3 9 5 4 1 3 9 5 4
4 5 9 3 1 4 5 9 3
5 3 4 9 1 5 3 4 9
6 3 7 9 10 5 8 4 2
7 5 2 3 10 4 6 9 8
8 9 6 4 10 3 2 5 7
9 4 3 5 1 9 4 3 5

By knowing only z, the adversary will get many
possibilities for x and y that verify z = xy;
therefore, applying quantum algorithms to get a
solution (x, y) is not effective even if the adversary
can get all solutions (xi, yi) because the adversary
can not check which of these pairs is the correct
one.

5 10 15 20 25 30 35
Z

1

2

3

4

5

6

7

8

S

Fig. 6: Number of samples; S: # of z, z = xy;
x = 2top, y = 2top for p = 37.

Figure 6 illustrates the distribution of samples for
various values of x. For instance, with x = 10,
we observe an average sample rate of 7.80%, in-
dicating that approximately 7.80% of the samples
correspond to values like 102, 103, and so forth,
where zi = 10yi for yi in the range [2, p]. For
p = 37, the Overall Average of Samples (OAS)
for any encrypted message is 4.23% (derived from
(p − 2)2). This ratio changes with varying p; for
example, the pairs (p,OAS) are as follows: (37,
2.56), (43, 2.32), (53, 1.88), (63, 1.36), and (79,
1.25).

Q-KIE involves exchanging data in one of two
forms: z = xx2

1 or z′ = x1 × yx2
1 , where xi

represents unknown values and yi represents known
values. In both scenarios, regardless of the value
of z, there exists a corresponding value z1 such
that z1 = z and z1 = xx4

3 , where x3 ̸= x1 and/or
x4 ̸= x2. Similarly, for z′, there is a z′1 such that
z′1 = z′.

Lemma IV.1. ∀ z ∈ Zp, z = xx2
1 ,∃ z1 = z where

z1 = xx4
3 with x3 ̸= x1 and/or x4 ̸= x2.

Proof. We know that Zp contains exactly ϕ(p− 1)
generators (primitive roots).

Let g1 and g2 two different generators modulo p.
We pick a random value z, ∃ α1 verifies gα1

1 = z
and ∃ α2 verifies gα2

2 = z.

Lemma IV.2. ∀ z ∈ Zp, z
′ = x1 × yx2

1 ,∃ z′1 = z′

where z′ = x3 × yx4
2 with x3 ̸= x1 and/or x4 ̸= x2
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and/or y2 ̸= y1.

Proof. We know that if k is a prime number where
k < p, k generates Z∗

p i.e., Zp = k × i ∀ i ∈ Zp

because i = k × i× k−.
Let k1 and k2 two different prime numbers where

k1, k2 < p.
We pick a random value z, ∃ α1 verifies k1 ×

α1 = z and ∃ α2 verifies k2 × α2 = z.

The described problem is a variant of the discrete
logarithm problem, introducing additional layers
of complexity by making both the base and the
exponent unknown and by not restricting x to be
a generator of the group.

A. Quantum Hard Logarithm Problem

Given a finite cyclic group G of order n, and
an element z ∈ G, the Inverted Discrete Logarithm
Problem (IDLP) is defined as the problem of finding
all pairs of integers (x, y) for which x is not
necessarily a generator of G, and the following
condition is satisfied:

xy ≡ z mod n (3)

where x, y ∈ Z, 1 < x < n, and 1 ≤ y < ϕ(n).
The IDLP is characterized by:

1) Non-Generator Base: The base x is not re-
stricted to generators of the group, permitting
x to potentially generate a proper subgroup of
G or no subgroup at all. This attribute expands
the search space for solutions.

2) Multiple Solutions: Diverging from the tradi-
tional DLP where x is known and a unique y
is sought, the IDLP entertains multiple valid
(x, y) pairs satisfying the equation for a given
z, attributable to the relaxed condition on x
and the unknowns in both x and y.

3) Computational Complexity: The dual un-
knowns and the relaxation of x being a gener-
ator amplify the problem’s complexity.

On the other hand, Shannon’s theorem on perfect
secrecy states that a given cryptographic system
is perfectly secure if and only if every plaintext
is equally likely to produce any given ciphertext.
Shannon’s theorem sets forth three critical condi-
tions for perfect secrecy:

1) The key must be truly random, ensuring that
there is no predictable pattern that an attacker
can exploit.

2) The key must be at least as long as the message
is encrypted so that the key does not repeat.
Repeating keys introduce patterns that can be
analyzed to break the cipher.

3) The key must never be reused in whole or
part, as any reuse also introduces patterns that
compromise secrecy.

Using a One-Time Pad (OTP) offers unbreakable
security in message transmission. With OTP, each
message is encrypted with a unique key gener-
ated specifically for that message and used only
once. Consequently, even if an adversary manages
to intercept and decipher one message, they gain
no advantage in decrypting subsequent messages.
Unlike other encryption methods where compro-
mising a single key could potentially compromise
the security of multiple messages, OTP necessitates
the acquisition of each key for deciphering the
specific corresponding message. This characteristic
significantly amplifies the decryption complexity
for any malicious actor, as they would need to
obtain every unique key for every message to access
the corresponding plaintext. As a result, the KIE
cryptosystem ensures confidentiality and provides
an added layer of protection against potential cryp-
tographic attacks.

Figure 7 proves that a perfect OTP-based KIE
encryption is achieved without any need for a pre-
sharing keys process, unlike the classical OTP. In
KIE, for each message, the sender and receiver
generate new random numbers that are used once
to hold the plaintext based on performing post-
quantum encryption using two types of encapsu-
lations: xy and x× y, where x and y are unknown
giving a large number of possibilities of the used
keys and encrypted message.

B. Optimal Configuration

This subsection gives the preferable Q-KIE con-
figurations to offer robust encryption. To provide
a large key pool, it is preferred to use a prime
number n of the form n = p × 2i + 1 to obtain
ϕ(n) = p×2i, i.e., all odd numbers are not multiple
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Classical OTP encryption Perfect OTP encryption

randomϕ(α, β)
OTP : {k, i = 1, n} −−−−−−−−→

secure channel
←−−−−−−−−

insecure channel

c = Fki(m) randomα(σ),
←−−−−−−−−

insecure channel
c c = Fα,β,σ(m)

m = F−1
ki

(c) −−−−−−−−−−−→
quantum encapsulation

m = F−1
f(α),f(β)(c)

Fig. 7: Classical OTP encryption vs. perfect OTP encryption.

of p and are coprime with ϕ(n). Setting p = 1
offers the best configuration of Q-KIE to encrypt
any 1 < m < n with a key pool equal to the half
of ϕ(n). However, the are only five known prime
numbers of the form 2i + 1.

Another form of n that offers a suitable config-
uration and avoids the challenge of finding large
primes is in the form pj . Since there are only 3,
5, 17, 257 and 65537 known prime numbers of
the form 2i + 1, it is preferable to consider n =
(65537)j . In this case, ϕ(n) = (65537)j−1 × 216

and ϕ(ϕ(n)) = (65537)j−2 × 231, which means
that any m that is a coprime with 65537 could be
encrypted and all the odd numbers coprime with
65537 are valid keys. On the other hand, we observe
that Figure 4 uses the modular inverse of x and m
to compute (c3, c4) and (c7, c8) respectively. Hence,
using multiple primes in Q-KIE mitigates the pool’s
size of x and m. Setting n = (65537)j means that
only m and x are not multiples of 65537 and could
not be encrypted and used as an SMH, respectively.

To provide more complexity in the xei base and
exponent findings, it is preferred to use random non-
generators. This is because the generators provide
distinct values for each exponent i which mitigates
the number of possibilities.

V. CONCLUSION

In light of quantum attack threats, KIE leverages
the Q-Problem, a complex variant of the tradi-
tional discrete logarithm problem. This problem is

based on the computational intricacies of solving
for both the base and the exponent within the
field of modular exponentiation. Its broader and
more flexible scope permits multiple solutions and
does not require x to be a generator, opening new
avenues for research in cryptographic security and
computational number theory.
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