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Abstract. This paper achieves fast polynomial inverse operations specif-
ically tailored for the NTRU Prime KEM on ARMv8 NEON instruction
set benchmarking on four processor architectures: Cortex-A53, Cortex-
A72, Cortex-A76 and Apple M1. We utilize the jumping divison steps of
the constant-time GCD algorithm from Bernstein and Yang (TCHES’19)
and optimize underlying polynomial multiplication of various lengths to
improve the efficiency for computing polynomial inverse operations in
NTRU Prime.
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1 Introduction

Bernstein and Yang [9] proposed a fast constant-time GCD algorithms for
preventing leakage of timing information in cryptographic applications. Since
then, many have utilized the algorithm on various cryptographic applications,
e.g., NTRU [12], NTRU Prime [25], BIKE [27], and even ElGamal cryptosys-
tem [15].

NTRU Prime [5] is one of third-round candidates of key-encapsulation mech-
anism (KEM) in NIST’s Post-Quantum Cryptography standardization process.
It has been integrated into OpenSSL [6] and OpenSSH [24], the latter as its de-
fault key-exchange method. In the current implementation of NTRU Prime [5],
computing polynomial inversion takes almost all its key generation time. Since
the standard TLS protocol uses ephemeral key for the forward secrecy property,
it performs key generation for every TLS connection. Accelerating the perfor-
mance of key generation becomes a severe issue.

In this paper, we focus on development for ARMv8. ARM has demonstrated
the popularity of its computing platforms, ranging from the tiniest sensors to
smartphones and data centers. It is clear that ensuring secure communication
among these devices in the age of quantum computers becomes increasingly
critical as time goes on. In order to demonstrate substantial advancement, we
conduct a comparison of the performance of our NTRU Prime key generation
utilizing jumpdivstep with previous approaches employing divstep across various
platforms including Cortex-A53, Cortex-A72, Cortex-A76 and Apple M1.

The Problem In Bernstein–Yang’s GCD algorithm [9], they decompose a GCD
procedure into numerous constant-time “division steps” (divstep). Depending on
the degree of input polynomials, the algorithm iterates a constant number of
divstep. [9] also proposed “jumping division steps” (jumpdivstep) which split a



number of divstepx into the combination of several smaller batches of divstepx
and “jump” through these smaller steps via matrix multiplication where ele-
ments of the matrices are polynomials. They showed jumpdivstep performs the
same procedures with a better asymptotic complexity than divstep. However, to
the best of our knowledge, there is no efficient implementation of jumpdivstep
showing its computational supremacy in the literature. We have identified several
primary challenges in realizing jumpdivstep:

– Polynomial multiplication poses challenges in optimization, particularly due
to the need to explore various techniques tailored to specific length require-
ments.

– The implementation of jumpdivstep requires managing extra objects during
execution. It is therefore unclear how long the polynomials need to be for
jumpdivstep to showcase its complexity advantage.

– Previous research primarily concentrates on optimizing longer polynomials,
as the advantages of Number Theoretic Transforms (NTTs) are more evident
in such cases compared to shorter ones.

– More recursive layers in jumpdivstep theoretically reduce complexity but
also require shorter polynomial multiplications. However, shorter polynomial
multiplications often prefer algorithms with higher asymptotic complexity.
Thus, determining the optimal number of layers for jumpdivstep is nontrivial.

Our Contributions

1. Low complexity algorithm does not always lead to a faster implementation.
Here, we are the first to achieve faster polynomial inversion with jumpdivstep
instead of divstep in a practical application (NTRU Prime).

2. We showcase fast vectorized polynomial matrix multiplications across a range
of polynomial lengths.

3. Across platforms including Cortex-A53, Cortex-A72, Cortex-A76 and Apple
M1, we illustrate that for polynomials of degree as low as 653, jumpdivstep
beats divstepx.

4. We noticeably accelerate sntrup761 keygen (the most common instance and
the default in OpenSSH), saving up to 64% time compared to the fastest
divstep version so far [20].

The code of this work is publicly available at https://github.com/Jumpdivstepsx/
Jumping4Bernstein-YangInversion.git.

Related work Most prior art in NTRU Prime [1,20,27,29,30] focused on op-
timizing the encap and decap (i.e., the polynomial multiplication). Bernstein-
Brumley-Chen-Tuveri [6] had applied Montgemery’s trick to speed up keygen on
average when generating a batch of keys simultaneously in a server. No other
research shows significant speedup in polynomial inversion through the jumping
strategy of [9], which we do even for the smallest NTRU Prime instance.

https://github.com/Jumpdivstepsx/Jumping4Bernstein-YangInversion.git
https://github.com/Jumpdivstepsx/Jumping4Bernstein-YangInversion.git


Table 1. Parameter sets of sntrup

Scheme sntrup653 sntrup761 sntrup857 sntrup953 sntrup1013 sntrup1277

p 653 761 857 953 1013 1277
q 4621 4591 5167 6346 7177 7879

2 Preliminaries

2.1 Streamlined NTRU Prime

Streamlined NTRU Prime (sntrup) [7] is a KEM using the polynomial rings
Fq[x]/(x

p − x− 1) and F3[x]/(x
p − x− 1), where Fq is a finite field constructed

using a prime number q. The other parameter p is also a prime and xp − x− 1
is irreducible in Fq[x]. The parameter sets of sntrup are listed in Table 1. During
key generation, sntrup computes two inversions: invsntrup in Fq[x]/(x

p−x−1)
and inv3ntrup in F3[x]/(x

p − x − 1). The two inversions consume almost all
execution time of the key generation.

2.2 Fast constant-time GCD

The Bernstein-Yang GCD algorithm [9] decomposed the GCD procedure into
a constant number of divstep. In contrast to the traditional GCD that eliminates
the head coefficients at any degree, divstep always eliminates the head coeffi-
cients at the degree-0 position. This leads to extra coefficient reversal processes
for reversing input polynomials such that the degree-0 coefficient in the reversed
polynomial represents the head coefficient in the original polynomial. The algo-
rithm describes the two input polynomials (f, g) as a column vector

[
f g

]T. One
divstep first determines a transition matrix T from the degree-0 coefficients of
inputs (f(0), g(0)) and the their degree difference δ as

T (δ, f, g) =



[
0 1

g(0)
x

−f(0)
x

]
if δ > 0 and g(0) ̸= 0,

[
1 0

−g(0)
x

f(0)
x

]
otherwise,

and then performs a matrix-vector multiplication
[
foutput
goutput

]
= T ·

[
f
g

]
to eliminate

the degree-0 term of the polynomial of higher degree.
For performing a number of consecutive divstep, Algorithm 1 shows divstepx

which iterates n divstep in one function. The two input polynomials f and g are
in reverse order. It outputs the degree difference δ, two modified polynomials f
and g, and the transition matrix transforming the input polynomials to outputs.
In Algorithm 1, f0 and g0 are shorthand of the constant terms f(0) and g(0). The
loop from line 2 to 11 effectively performs n divstep. Line 8 and 9 contain the most
heavy computations. They require multiplication of 6 polynomials (f, g, u, v, q, r)



by constants f0 and g0. Since the loop has n iterations, the two steps resemble
the Schoolbook multiplication for O(n2) operations.

In contrast to the iterative divstepx, jumpdivstep in Algorithm 2 applies
a recursive divide-and-conquer approach to achieve the same functionality as
divstepx. It partitions the n steps into two n/2 steps and calls two jumpdivstep for
the two smaller computations. The whole recursive process can be described as
splitting a tree into balanced subtrees as Figure 5. In each jumpdivstep, it requires
one matrix-matrix multiplication for the output transition matrix at line 10 and
two matrix-vector multiplication to update polynomials (f, g) at line 7 and 9. It
thus needs a multiplication library to compute polynomial multiplication of dif-
ferent lengths in each recursive layer. On the other hand, jumpdivstep can utilize
optimized algorithms, e.g. NTT-based multiplications, to update transition ma-
trices and polynomials. This way its complexity is reduced from O(n2) operations
to O(n log n) operations. We present more details of these optimization in Sec. 4.

Algorithm 1 divstepx (n, δ, f , g)
Input: n ≥ 0, δ ∈ Z
Output: δ, f, g,M ∈ Rq[x]

2×2

1:
[
u v
q r

]
∈ Rq[x]

2×2 ←
[
1 0
0 1

]
2: for i← 1 to n do
3: if δ > 0 and g0 ̸= 0 then ▷ swap
4: δ ← −δ
5: f, g, u, v, q, r ← g, f, q, r, u, v
6: end if
7: δ ← δ + 1
8: g ← (g · f0 − f · g0)/x
9: q, r ← (q ·f0−u ·g0), (r ·f0−v ·g0)

10: u, v ← u · x, v · x ▷ Raise degree
11: end for
12: return δ, f, g,

[
u v
q r

]

Algorithm 2 jumpdivstep (n, δ, f , g)
Input: n ≥ 0, δ ∈ Z
Output: δ, f, g,M ∈ Rq[x]

2×2

1: if n < nthreshold then
2: return divstepx(n, δ, f, g)
3: end if
4: j ← ⌊n/2⌋
5: k ← n− j
6: δ, f ′, g′,M1 ← jumpdivstep(j, δ, f, g)

7:
[
f
g

]
← x−j ·M1 ·

[
f
g

]
+

[
f ′

g′

]
8: δ, f ′, g′,M2 ← jumpdivstep(k, δ, f, g)

9:
[
f
g

]
← x−k ·M2 ·

[
f
g

]
+

[
f ′

g′

]
10: M ←M2 ·M1

11: return δ, f, g,M

Computing Polynomial Inversion We compute reciprocal of polynomial g
in Fq[x]/(x

p − x − 1) by performing GCD on (xp − x − 1, g) as multiplying a
transition matrix by the input vector[

1
0

]
=

[
u v
q r

]
·
[
xp − x− 1

g

]
.

Here the GCD polynomial becomes 1 because xp−x−1 is irreducible. Since the
GCD can be written as

1 = u · (xp − x− 1) + v · g =⇒ 1 ≡ v · g mod (xp − x− 1) , (1)

we get g−1 = v in Fq[x]/(x
p − x− 1).

In divstepx, g and xp − x− 1 together comprise a total of 2p+ 1 coefficients
and a degree difference δ = 1. After performing 2p− 1 steps of divstepx, both g
and xp − x− 1 are eliminated to only one coefficient.



2.3 Chinese Reminder Theorem

In a polynomial ring, the Chinese Remainder Theorem (CRT) presents that

Rq[x]

⟨
∏n

i=0 gi(x)⟩
∼=

Rq[x]

⟨g0(x)⟩
× Rq[x]

⟨g1(x)⟩
× · · · × Rq[x]

⟨gn(x)⟩
∼=

n∏
i=0

Rq[x]

⟨gi(x)⟩
,

where Rq is a polynomial ring and gi(x) are coprime polynomials. This implies
that a significant improvement in polynomial multiplications can be achieved by
efficiently mapping Rq [x]

⟨
∏n

i=0 gi(x)⟩ to
∏n

i=0
Rq [x]
⟨gi(x)⟩ and computing multiplication in∏n

i=0
Rq [x]
⟨gi(x)⟩ . CRT is extensively utilized in Sec. 3.3 for polynomial ring transfor-

mation in NTT.

2.4 The ARMv8 Architecture

In this study, we conduct implementations on the ARMv8 architecture [2].
Besides usual 32- and 64-bit operations, ARMv8 offers a set of instructions for
32 128-bit Single Instruction Multiple Data(SIMD) registers, known as NEON.
Specifically, ARMv8 NEON instructions can be used on two 64-bit, four 32-bit,
eight 16-bit, or sixteen 8-bit integers in each register.

2.5 Modular Arithmetic

We introduce two widely employed reduction algorithms for modular arith-
metic, which are Barrett [3] and Montgomery [22] reductions. In the context
of NTRU Prime, modular reduction after multiplication are critical operations
for efficiency. Therefore, we leverage the implementations of these reductions on
ARMv8, as suggested in [4,20], to accelerate our efforts.

Barrett Reduction Let q be an odd number such that q < R = 2k, and
a, b ∈ Z. Algorithm 3 and Algorithm 4 effectively calculate (a mod q) and (ab

mod q) in Zq, respectively. Considering x ≡ a mod q = a − (round
(

a
q

)
· q),

we implement reduction by substituting one multiplication and one shift for the
division, as shown in Algorithm 3. Algorithm 4 computes (ab mod q) in the
same way. Furthermore, according to [4], when computing a ± bc and one of b
or c is known, the second step of Algorithm 4 can be replaced by mla or mls,
saving one instruction per computation.

Algorithm 3 Barrett reduction
Input: x, 2e < q < 2e+1, R = 2k

Output: x ≡ a mod q, |x| ≤ (q−1)
2

1: d← qrdmulh(a, ⌊ 2
e−1R
q
⌉)

2: d← srsra(d, e)
3: return mlsq(n, d, q)

Algorithm 4 Barrett multiplication
Input: a, b, q, R = 2k

Output: x ≡ ab mod q, |x| ≤ (q−1)
2

1: d← qrdmulh(a, ⌊
bR
q

2
⌉)

2: x← mul(a, b)
3: return mls(x, d, q)



Montgomery Reduction Let q be an odd number, 0 < a, b < q, and R = 2k.
Montgomery multiplication accelerates modulo operation by mapping the mul-
tiplication result into “Montgomery space”. Specifically, from line 1 to 5, Algo-
rithm 5 calculates cR = abR−1 mod q instead of c = ab mod q. In this Mont-
gomery space, one controls the range of value by subtracting some multiple of
q (line 4) to enable the operation of modulo R (line 5). The inverse mapping
process (line 6-9) transforms the numbers in Montgomery space into its origi-
nal form as abR−1 ·R mod q. In general, Montgomery multiplication turns the
modulo q operation to modulo R operation to increase the efficiency in the case
of massive consecutive multiplications.

Moreover, when b is known, we integrate the inversion mapping by preparing
bR mod q and bR mod q · (q−1 mod R) beforehand to control the range of
numbers. Thus, we save one instruction and inversion mapping.

Algorithm 5 Montgomery multiplication for Neon
Input: a, b, q, R
Output: c = ab mod q
1: low ← mul(a, (q−1 mod R))
2: high← qdmulh(a, b)
3: d← mul(low, b)
4: e← qdmulh(d, q)
5: cR ← hsub(high, e)
6:
7: low ← mul(cR, (xq

−1 mod R)) ▷ after operating n-times inner products
8: high← qdmulh(cR, x) ▷ where x is a Rn+1 mod q
9: e← qdmulh(low, q)

10: c← hsub(high, e)

According to prior research [4,11,18], we conclude that Montgomery mod-
ular multiplication is well-suited for divstepx (Algorithm 1), where numerous
multiplications are performed continuously. In contrast, Barrett reduction can
operate directly and takes advantages of fewer instructions when known values,
e.g., constants in NTT-based multiplication, are provided for multiplication.

3 Polynomial Multiplication

We present algorithms for polynomial multiplications over Fq[x] where q is a
prime in this section.

3.1 Karatsuba

Karatsuba multiplications [21] multiplies two polynomials with three half-
length polynomial multiplications and a series of additions and subtractions. Let
f(y) = f0+f1y and g(y) = g0+g1y, where f0, f1, g0, g1 are polynomials in Fq[x],
their product is f(y)g(y) = [f0g0]+[(f0+f1)(g0+g1)−(f0g0+f1g1)]y+[f1g1]y

2.
It splits polynomials into two parts, as f0 + tf1, and then evaluates them at

the points set t = {0, 1,∞}, which explains why we need three multiplications



to compute the product of two polynomials. The asymptotic complexity is well
understood to be nlog2 3 where n is the length of the polynomials.

We utilize Karatsuba in polynomials of relatively shorter lengths where NTTs
has not yet demonstrated an advantage.

3.2 Toom-Cook

Our polynomials can be subdivided into length-N polynomials in a variable
t and evaluated at 2N − 1 different t’s analogous to Karatsuba. This multipli-
cation, named Toom-N , has asymptotic complexity O(nlogN (2N−1)) [13]. While
the complexity of Toom is lower than Karatsuba, it entails more preliminary
computations and so tends to demonstrate advantages only in longer polynomi-
als. Our test results in Sec. 5.1 and Sec. 5.2 indicate that Toom is more efficient
in lengths ranging between 32 and 64, with no suitable utilization when inverting
in F4591761 . However, due to the absence of the need to find roots of unity in Fq,
Toom exhibits greater flexibility compared to NTT. For example, in our imple-
mentation of polynomial multiplication in F653[x] in Sec. 5.4, we adapted Toom
implementation for polynomials of lengths 64 and 128 and achieved satisfactory
performance.

3.3 NTT

In this work, FFT/NTT-based polynomial multiplications not only offer
a divided-and-conquer strategy for multiplication with lower complexity than
Karatsuba and Toom but also leverage the structure of jumpdivstep within the
sequence of updates through trade-off analysis (see Sec. 4.1). It turns out we em-
ploy FFT/NTT-based algorithms in jumpdivstep even for lengths of polynomials
that Karatsuba is faster due to their algorithmic structures.

The NTT-based polynomial multiplication algorithms in Fq[x] consist of
three main phases, as Figure 1. First, depending on the factorization of q−1, the
input polynomials are mapped to some NTT representation, known as Input
Transformation. Subsequently, there is Pointwise Multiplication, where the
products of corresponding points in the NTT representation are computed. Fi-
nally, the temporary result of these multiplications in NTT representation is
converted back to normal representation, called Output Transformation.

Normal representation

Polynomials

Points

Polynomials

Points

NTT representation

Input Transformation Output Transformation

Polynomial multiplication

Pointwise multiplication

Fig. 1. The overview of FFT/NTT-based polynomial multiplication.



We now introduce five common FFT/NTT-based algorithms and provide a
detailed analysis of when to employ each of them.

Cooley-Tukey Based on CRT, we can transform a multiplication into smaller
multiplications in R[x], e.g., R[x]

⟨x2n−c2⟩ →
R[x]

⟨xn−c⟩ ×
R[x]

⟨xn+c⟩ . Specifically, [14,16]

mentioned that R[x]
⟨xn−ζm⟩ can be split and computed with

∏m−1
i=0

R[x]

⟨x
n
m −ζωi

m⟩
to

simplify the overall multiplication cost. Particularly, if there is an element ζ ∈ R
such that ζ2

n−1

= −1, we prefer Cooley-Tukey FFT because applying it to x2n−1
results in splitting down to linear polynomials.

Typically, we apply Cooley-Tukey when Fq has roots of unity of the order of
powers of 2, i.e. 2a|q − 1. Given its concise form, Cooley-Tukey is often favored
for NTT implementations, especially when q− 1 contains an ample number of 2
factors.

Bruun When applying CRT in Rq where q − 1 has few factors of 2, e.g.,
sntrup761, Cooley-Tukey becomes impractical for radix-2 NTTs. In the case,
[20] employed Bruun FFT [10] in NTRU Prime.

The Bruun [10] FFT breaks down a polynomial ring into two distinct rings
with trinomials. It is important to note that Bruun can be applied n times if
2n+1|(q + 1) and q ≡ 3 mod 4. The input transformation in Bruun is

Bruunin :
a0 + a1x+ a2x

2 + a3x
3

⟨x4 + (2β − α2)x2 + β2⟩
⇒ b0 + b1x

⟨x2 + αx+ β⟩
× b2 + b3x

⟨x2 − αx+ β⟩

where
(b0, b1) =(a0 − βa2 + αβa3, a1 + (α2 − β)a3 − αa2) , and

(b2, b3) =(a0 − βa2 − αβa3, a1 + (α2 − β)a3 + αa2) .

We compute (a0 − βa2, a1 + (α2 − β)a3, αa2, αβa3) and assemble them to get
(b0, b1, b2, b3). The format of the output transform is

Bruunout :
b0 + b1x

⟨x2 + αx+ β⟩
× b2 + b3x

⟨x2 − αx+ β⟩
⇒ a0 + a1x+ a2x

2 + a3x
3

⟨x4 + (2β − α2)x2 + β2⟩

where

2(a0, a1) = (b0 + b2 + (b3 − b1)α
−1β, b1 + b3 − (b0 − b2)α

−1β−1(α2 − β)) , and

2(a2, a3) = ((b3 − b1)α
−1, (b0 − b2)α

−1β−1) .

Here, it suffices to compute (b0 + b2, b1 + b3, b0 − b2, b3 − b1) and then multiplies
them by specific constants (α−1, β, α−1β−1, α2 − β).

Good-Thomas The Good-Thomas FFT [17] decomposes a DFT of size N ,
where N = N1N2 and gcd(N1, N2) = 1, into separate DFTs of sizes N1 (repeated



N2 times) and N2 (repeated N1 times).

Xk =

N−1∑
n=0

xne
−−2πi

N nk ⇒ Xk1,k2
=

N1−1∑
n1=0

(

N2−1∑
n2=0

xn1N2+n2N1
e−

2πi
N2

n2k2)e−
2πi
N1

n1k1 ,

where n = n1N2+n2N1, k = 0, 1, 2...N−1, k1 = k mod N1, and k2 = k mod N2.
When N1 ≫ N2, the advantage of the Good-Thomas lies in partitioning a

polynomial into N2 smaller polynomials of size N1, thereby significantly reducing
computational complexity compared to one polynomial of size N . The algorithm
can be recursively applied while all N1 and N2 remain co-prime throughout the
process.

Typically, we employ Good-Thomas when there are relatively small odd roots
of unity in Fq. We utilize Good-Thomas at the initial level decomposing poly-
nomials because it allows us to obtain the smaller NTT instance over smaller
rings.

Rader Rader’s FFT [20,26] converts a DFT in R[x]
⟨xp−1⟩ , where p is a prime, into

computing a cyclic convolution as

Raderin :
R[x]

⟨xp − 1⟩
⇒

p−1∏
i=0

R[x]

⟨x− ωi
p⟩

Moreover, Hwang [19] presented truncated Rader

Truncated Raderin :
R[x]

⟨Φp(x)⟩
⇒

∏
1≤i≤p, gcd(i,p)=1

R[x]

⟨x− ωi
p⟩

,

where Φp(x) is the p-th cyclotomic polynomial for multiplication in sntrup761.
In other words, multiplication in R[x]

⟨Φp(x)⟩ is morphed into pointwise multiplica-

tions in R[x]
⟨x−ωpi ⟩

through the inherent property of the cyclotomic polynomial.
We employ Rader for composing polynomial ring with larger odd roots of

unity in Fq. In the case of sntrup761, r = 17 is a relatively large root of
unity in F4591. Considering the vectorized architecture is suitable for processing
polynomial of length k · (r − 1) · 8, we employ truncated Rader as possible in
sntrup761 as concluded in [19].

Schönhage Schönhage’s trick [23,28] creates the root of -1 by introducing
new variables instead of the approach of splitting roots of unity in other other
FFT/NTT algorithms. For instance, let F be a field and n = n1n2 is a positive
integer. Schönhage’s trick maps F[x]/(xn − 1) to ((F[x][y]/(xn2 − y))/(yn1 − 1).
With lifting F[x]/(xn2 − y) to R := F[x]/(xm − 1) where m is a multiple of n2,
we map the original F[x]/(xn− 1) to R[y]/(yn1 − 1) which is capable for further
NTT mapping.



Schönhage’s algorithm does not rely on the roots of unity in Fq, making it a
general-purpose FFT algorithm. However, because it involves lifting operations,
the length of polynomials in the lifted ring becomes twice as large. Therefore,
we employ Schönhage’s algorithm only when there is no other suitable roots of
unity for other NTT algorithms.

4 Optimizing jumpdivstep

In Sec. 4.1, we analyze the cost of jumpdivstep with respect to input trans-
form, pointwise multiplication, and output transform in multiplication. In Sec. 4.2,
we introduce three different strategies for achieving jumpdivstep and compare
their costs. We remove redundant computation for inversion with jumpdivstep in
Sec. 4.3.

4.1 Decomposing jumpdivstep

Although the complexity of jumpdivstep is lower than divstepx, divstepx can
still outperform jumpdivstep when input step n is small. Bernstein and Yang [9]
pointed out the reason lies in that jumpdivstep keeps all four elements of the
transition matrix while divstepx keeps only v and r. Hence, we optimize the
structure of jumpdivstep and polynomial multiplication algorithms to lower its
cost.

Besides the speed of multiplication algorithms, we minimize the number of
input and output transforms among the 2 matrix-vector and 1 matrix-matrix
multiplication in jumpdivstep. We reuse the input transforms and exploit the
additive property of output transforms to remove redundant transforms. Due
to heavier input/output transforms, NTT-based algorithms have more advan-
tages than Karatsuba or Toom-based algorithms when applying the techniques.
Our experiments in Sec. 5.2 show NTT-based multiplication can result in faster
jumpdivstep even when it is not the fastest multiplication algorithm among our
comparisons.

Let the transition matrices be M1 =

[
u1 v1
q1 r1

]
and M2 =

[
u2 v2
q2 r2

]
in Algo-

rithm 2. It performs two matrix-vector multiplication (MxV) as[
f ′

g′

]
= x−n ×

[
u1 v1
q1 r1

]
×

[
f
g

]
(2)

to update the 2 input polynomials. One MxV requires 6 input transforms, 4
pointwise multiplications, and 2 output transforms. At line 10, the matrix-matrix
multiplication (MxM)

M2 ·M1 =

[
u2 v2
q2 r2

]
×

[
u1 v1
q1 r1

]
(3)

computes the output transition matrix. At this step, we reuse the NTT repre-
sentation of M1 and M2 and thus MxM requires only 8 pointwise multiplications



and 4 output transforms. In a nutshell, we keep the NTT representations of tran-
sition matrices from MxVs and reuse them while doing MxM. Figure 2 depicts
the details of the computation.[

u2 v2
q2 r2

]
Normal representation

[
f ′

g′

]

[
u2 v2
q2 r2

]
NTT representation

[
f
g

] [
f ′

g′

]

[
f ′

g′

]

[
u2 v2
q2 r2

] [
u1 v1
q1 r1

] [
u′ v′

q′ r′

] [
u′ v′

q′ r′

]
×

×

=

=

4x 2x 2x

4x

Fig. 2. MxV and MxM in NTT representation. Red arrows represent input transforms.
Blue arrows represent output transforms.

When the total division steps are a multiple of 3, we save more input and
output transforms by decomposing one jumpdivstep into 3 smaller jumpdivstep.
Figure 3 and Figure 4 show the structure of radix-2 and radix-3 jumpdivstep.
There are 2 consecutive MxM operations in the radix-3 jumpdivstep. Each MxM
saves 8 input transforms by reusing them from previous MxV operations. When
performing two consecutive MxM operations, we keep the results of the first
MxM in NTT representation and then multiply them by the second matrix im-
mediately. It only requires 4 output transforms for the output transition matrix.

Jump

Jump/Div MxV Jump/Div MxV MxM

Fig. 3. radix-2 jumpdivstep

Jump

Jump MxV Jump MxV Jump MxV MxM MxM

Fig. 4. radix-3 jumpdivstep

4.2 Polynomial Representations in jumpdivstep

Since the maximum polynomial degrees of row vectors (u, v) and (q, r) differ
by one in the transition matrix, we present three different strategies for storing
polynomials. These strategies affect the efficiency for performing MxV and MxM



operations. At line 10 in Algorithm 1, divstepx raises the degree of polynomials
(u, v) by one for each iteration and brings an inconsistent of degrees between
the polynomials (u, v) and (q, r). Since raising the degree does not produce new
coefficients for (u, v), we can still store the (u, v) in its original storage with-
out increasing the storage size for coefficients. However, different polynomial
representations affects the efficiency of jumpdivstep.

Saturated divstepx We denote Saturated divstepx as the strategy that suffi-
ciently utilizes all storage of vector registers while keeping coefficients aligned as
possible. Assuming a vector register stores m coefficients, the strategy performs
n steps of divstep where m|n and stores n coefficients for each polynomial. How-
ever, during these steps, the pairs (f, g), (u, q), and (v, r) may not swap or may
have only been swapped once in the first loop during divstep. This leads to (u, v)
being multiplied by x a total of n times. If we store intact coefficients ranging
from degrees-0 to n1 in vector registers, the situation causes overflow. Thus, we
assign the lowest position of the registers as degree-n and perform the multipli-
cation by x by rotating the storage space. The highest coefficient of (u, v) would
rotate back to the lowest position in the vector register when overflow occurs and
the degree-n term is securely saved. Noted that all of the other coefficients would
be 0 in the situation because it occurs only when g0 = 0 throughout the n itera-
tions. When computing MxV and MxM, we split the degree-n term from (u, v)
and perform polynomial multiplication for the rest of the degree-(n−1) parts of
(u, v). Therefore, besides a normal polynomial multiplication of degree-(n− 1),
we need post-processing for the case that (u, v) are single-term polynomials of
degree-n. These multiplications by a single term are processed by conditional
addition. Thus MxV in Saturated divstepx includes 6 input transforms, 4 point-
wise multiplication, 2 output transforms for degree-(n − 1) parts as Eq. 2, and
post-processing for conditionally adding input f and g to updated destination
with masks of degree-n terms from (u, v).

For performing MxM, there are 2 polynomials (u, v) that we need to adjust.
The procedure includes a matrix by matrix multiplication and adjustments on
(u2 · u1, v2 · q1, u2 · v1, v2 · r1, q2 · u1, q2 · v1) :

1.
[
u′ v′

q′ r′

]
=

[
u2 v2
q2 r2

]
×

[
u1 v1
q1 r1

]
.

2. If u2[0] or v2[0] = 1, u2 · u1, v2 · q1, u2 · v1, v2 · r1 has to multiply by xn.

3. If u1[0] or v1[0] = 1, u2 · u1, u2 · v1, q2 · u1, q2 · v1 has to multiply by xn.

4. If both conditions are satisfied, u2 · u1, u2 · v1 don’t have to do any of the
adjustments above.

To make the conditional multiplication in constant time, we use some masks
to represent if u or v is degree-n. Then we do a condition swap on the higher
and lower half of the product polynomials based on the masks. To make as less
adjustments as possible, we modify Saturated divsteps into Sheared divsteps.

Sheared divstepx In Sheared divsteps, we skip the last degree raising
[
u v

]
←[

u v
]
·x from Algorithm 1. This makes (u, v) multiply by x only n− 1 times but



results in different alignment of coefficients for polynomials between (u, v) and
(q, r). In the strategy, the rotation and the mask operations are unnecessary.

The output transition matrix becomes
[
u/x v/x
q r

]
and MxV in Sheared divsteps

is shown as follows:

1.
[
f ′/x
g′

]
= x−n ×

[
u/x v/x
q r

]
×

[
f
g

]
.

2. Multiply f ′/x by x.

MxM is also modified to

1.
[
u′ v′

q′ r′

]
=

[
(u2/x) · x (v2/x) · x

q2 r2

]
×

[
(u1/x) · x (v1/x) · x

q1 r1

]
.

2. Divide u′, v′ by x to obtain u′/x, v′/x, q, r.

However, some products in MxM such as (u2

x · x ·
u1

x · x) + (v2x · x · q1) become
degree-2n polynomials, which is 1 coefficient longer than the storage space and
unfriendly for vectorized NTT algorithms. Therefore, we cannot perform pure
matrix by matrix multiplication in NTT representation. Although it may appear
that there are not many redundant operations in MxV and MxM, this version is
slower than our best strategy in practice. We aim to make all the computations of
MxV and MxM feasible to compute in NTT representation in vectorized storage
space.

Unsaturated divstepx In Unsaturated divstepx, we execute fewer steps of
divstepx than the storage size, e.g., performing n − 1 steps for storage of size
n. This straightforward adjustment effectively eliminates all overhead present in
previous versions.

Within a vectorized hardware structure, we aim to maximize the utiliza-
tion of Unsaturated divstepx. Should the available steps prove insufficient, our
approach involves supplementing them by uniformly substituting some Unsatu-
rated divstepx with Sheared divstepx to attain additional steps.

Comparison Now, we compare the required computations with strategies of
storing (u, v). Assume n is the number of elements in a vector register, and m
is the number of registers for each polynomial in divstepx. In Saturated divstepx,
we first perform m×n steps of divstepx and then we compute two MxV and one
MxM separately. It takes 6 input transforms, 4 pointwise multiplications, and 4
output transforms in one MxV. One MxM takes 8 pointwise multiplications and
8 output transforms. We use a mask vector to check if u or v is the degree of
m ·n. It takes one ceq, one dup, and one orr NEON instruction. Then, we swap
the higher and lower half of the polynomial based on the mask, which takes some
orr, some and, and some mvn instructions. We use one more mask in MxM to
identify if the situation happens in both matrices.

For Sheared divsteps, we also use 6 input transforms, 4 pointwise multipli-
cations, and 2 output transforms in each MxV. Because both (u, v) are 1 degree



Table 2. Operation counts in different methods of jumpdivstep

Operation In Mul Out ceq dup and or mvn ext

MxV
Saturated 6 4 2 2 2 2m 2m 0 0
Sheared 6 4 2 0 0 0 0 0 2m

Unsaturated 6 4 2 0 0 0 0 0 4m

MxM
Saturated 0 8 4 0 0 10m 8m 2(m-1) 0
Sheared 0 8 8 0 0 0 0 0 8m

Unsaturated 0 8 4 0 0 0 0 0 0

short, we compute MxV as matrix-vector multiplication in NTT representation
and use ext instructions to adjust the degree of the result f ′. As for MxM,
it still takes 8 pointwise multiplications, and 8 output transforms. Because all
(u2, v2, u1, v1) are 1 degree shorter than the storage space, we can adjust de-
grees with ext instructions without overflowing storage space when summing up
polynomials.

Unsaturated divstepx computes MxV and MxM as normal multiplications in
NTT representation without processing the overflow situation. It only takes 6
input transforms, 4 pointwise multiplication, 2 output transforms, and some ext
for each MxV. MxM takes 8 pointwise multiplications and 4 output transforms.

We list all operation counts in Table 2. According to the result, unsaturated
divstepx is our best strategy for jumpdivstep and sheared divstepx is the second
choice. Therefore, if the number of layers and radix of each layer is set, we
conclude our approach to jumpdivstep:

1. Use unsaturated divstepx as much as possible.
2. If it still lacks steps, replace unsaturated divstepx with sheared divstepx evenly

to gain the extra steps.

We finally implement jumpdivstep for invsntrup761 as Figure 5.
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Fig. 5. jumpdivstep structure for invsntrup761. Red and orange boxes represent
sheared and unsaturated divstepx, respectively.



4.3 Optimization for Computing Reciprocal Elements

When computing polynomial inversion in a polynomial ring as Eq. 1, we
need only the v polynomial in the resulting transition matrix instead of the full
matrix. Thus we reduce operations in jumpdivstep structure.

We show these reductions through the example jumpdivstep1521 as Figure 5.
In the last jumpdivstep of each layer, we omit the second MxV and conduct a
reduced MxM as [

u′ v′
]
=

[
u2 v2

]
×

[
u1 v1
q1 r1

]
.

In the second layer, we reduce the MxM operation in the first jumpdivstep to[
v′

r′

]
=

[
u2 v2
q2 r2

]
×

[
v1
r1

]
.

In the top layer of jumpdivstep1521, we compute the final v with an inner product

[
v′
]
=

[
u2 v2

]
×
[
v1
r1

]
.

Moreover, since we use the same ring structure for polynomial multiplication in
jumpdivstep762, jumpdivstep759 and jumpdivstep1521, we omit output transforms
after the MxM operation in jumpdivstep762 and jumpdivstep759 and pass the
matrices in NTT representation to jumpdivstep1521 to save further operations.

5 Implementations
In this section, we showcase our optimized Neon implementations for invs-

ntrup761, inv3ntrup761, and invsntrup653. Sec. 5.1 evaluates polynomial
multiplications with different algorithms on various lengths. Sec. 5.2 analyzes
the performance of jumpdivstep regarding the number of recursive layers in in-
vsntrup761. Sec. 5.3 and Sec. 5.4 detail the implementations for inv3ntrup761
and invsntrup653, respectively. Sec. 5.5 compares our jumpdivstep implemen-
tation with divstepx and benchmarks the resulting key generation with other
sntrup761 implementations.

5.1 Base Polynomial Multiplication

In this section, we explore approaches to implement multiplications on var-
ious lengths of polynomials. Table 3 shows the profiles, including input/output
transforms (In/Out) and point-wise multiplication(Mul), of polynomial mul-
tiplication(PxP) as well as the performance of the resulting matrix (MxV
and MxM) and jump operations measuring in Arm Cortex-A72. All the im-
plementations apply to q < 216 except NTT-based multiplications are tailored
to q = 4591.

8x8: The schoolbook multiplication outperforms Karatsuba in our 8x8 im-
plementations. Among our two schoolbook implementations, the Extend version
provides the fastest implementation. This method leverages the SMULL instruc-
tion to multiply two sets of 16-bit integers, yielding two sets of extended 32-bit



Table 3. Cycle counts for various operations in F4591[x]

Length Algorithm In Mul Out PxP MxV MxM Jump

8x8

Schoolbook 0 94 0 94 376 752 1,504
Karatsuba 0 56 0 56 224 448 896
Extend 0 50 0 50 200 400 800

Batched(x8) 0 360 0 360 - - -

16x16 Schoolbook 0 231 0 231 924 1,848 3,696
Karatsuba 0 182 0 182 728 1,456 2,912

32x32
Schoolbook 0 760 0 760 3,040 6,080 12,160

Toom 114 374 462 950 2,762 5,296 10,364
Karatsuba 0 614 0 614 2,456 4,912 9,824

64x64

Schonhage 367 2,319 521 3207 11419 22,104 43,474
Karatsuba 0 1,999 0 1,999 7,996 15,992 31,984

Toom 207 1,295 944 2,446 7,689 14,964 29,514
Rader 1,228 411 570 2,209 6,468 10,480 18,504

128x128

Karatsuba 0 6,998 0 6,998 27,992 55,984 111,968
Schonhage 1,691 4,903 1,521 8,115 27,727 52,072 100,762

Toom 454 3,096 1,896 5,446 17,538 34,168 67,428
Bruun 1,982 2,443 1,764 6,189 19,246 34,528 65,092
Rader 2,908 828 1,240 4,976 14,516 23,216 40,616

768 Good-3 11,022 2,494 5,349 18,865 53,740 85,436 222,520

integers. Subsequently, the addition operation is performed on 32-bit integers
without modular operations. After accumulating all 32-bit products, we bring
results back to 16-bit with Barrett reductions.

Additionally, we develop a batched 8x8 implementation providing better
throughput for performing 8 multiplications in parallel. It based on the same
Extend technique. When performing one schoolbook multiplication, we use the
EXT instruction to align coefficients of different degrees. These data movements
are replaced by accessing registers when storing coefficients of the same degree
from 8 different batches in one register. However, we need extra transpose (TRN)
instructions to rearrange the data before and after the batched multiplication.
The batched implementation is useful since the 8x8 multiplication serves as the
foundation for longer multiplications.

16x16: Karatsuba emerges as the faster option in our 16x16 implementa-
tions. We compare only schoolbook and Karatsuba since Toom16x16 results in a
4x4 sub-multiplication.

32x32: Karatsuba remains the fastest choice among our 32x32 implementa-
tions. Although Toom32x32 uses seven 8x8 multiplications while Karatsuba32x32
uses nine 8x8 multiplications, Toom is slower due to its heavy output transform.

64x64: In 64x64 multiplications, truncated Rader emerges as the fastest
method for q = 4591, while Toom remains the fastest in general cases. For
multiplying polynomials of length 64, NTT-based algorithm shows its advan-
tage since it uses 16 sets of 8x8 for multiplying polynomials of length 64 while
Karatsuba64x64 uses 27. Hence we devise an implementation of truncated Rader,
utilizing the root 17 of q = 4591 to divide a ring of length 128 into 16 rings of
length 8. Then, we perform 16 batches of Extend 8x8.



Table 4. Estimation time for jumpdivstep in different number of layers

invsntrup761 time count MxV+MxM Recip
0 layer divstepx 1521 11,750,719 1 0 11,750,719

1 layer divstepx 251 639,990 1 445,040 4,322,970
divstepx 254 647,588 5

2 layers divstepx 124 151,885 1 688,736 2,551,825
divstepx 127 155,564 11

3 layers
divstepx 62 33,602 2

910,784 1,733,017divstepx 63 34,139 11
divstepx 64 34,500 11

4 layers divstepx 31 8,267 15 1,146,560 1,553,078
divstepx 32 8,561 33

5 layers divstepx 15 2,291 15 1,286,336 1,515,830
divstepx 16 2,409 81

6 layers divstepx 7 681 15 1,363,136 1,498,844
divstepx 8 709 177

128x128: Rader remains the fastest method for 128x128 multiplication. We
include a Bruun implementation for comparison. Bruun128x128 partitions a ring
of 256 coefficients into 16 sets of 16x16 using Cooley-Tukey, resulting in 48 sets
of 8x8 operations with Karatsuba16x16. In contrast, Rader128x128 divides the ring
into 32 sets of 8x8 using a layer of Cooley-Tukey.

5.2 jumpdivstep in F4591[x]/(x
761 − x − 1)

For the multiplicaiton of long polynomials, we use an NTT of size 768 in
jumpdivstep769, jumpdivstep762, and jumpdivstep1521 because they all result in
polynomials of length < 761 in invsntrup761. Since there’s only one additional
layer of radix-3 NTT, we directly apply a radix-3 Good-Thomas approach on
Rader128x128.

In Table 4, we extrapolate the execution time of different layers of jumpdivstep
through Table 3 and the benchmark of divstepx. To elaborate, we accumulate
the total execution time of divstepx in the lowest layer with the cumulative MxV
and MxM execution time. This analysis continues until reaching the maximum
decomposition level that the size of a polynomial is equal to the register size, i.e.,
6 layers in ARMv8. Notably, the expected execution time persistently reduces
as the number of layers of jumpdivstep increases.

5.3 jumpdivstep in F3[x]/(x
761 − x − 1)

For q = 3, we use bit-slice representation for processing 2-bit F3 coefficients,
i.e., place the 2 bits in different registers and perform arithmetic with bit op-
erations simultaneously on 128 coefficients. Therefore, the minimum steps of
divstepx becomes 128 as the size of the registers.

We start jumpdivstep for polynomials of length > 128 and develop 128x128
polynomial multiplication over F3. For performing multiplication with NEON
integer instructions, we first rearrange the 2-bit bit-slice data into 8-bit num-
bers. Then we apply UMULL to multiply 32-bit numbers to 64-bit products, which



is equivalent to 4x4 polynomial multiplication on 8-bit coefficients. While each
register contains 4 32-bit elements, we implement a 16x16 polynomial multi-
plication with a 4x4 schoolbook multiplication on 32-bit elements. We utilize
Karatsuba to build multiplications for longer polynomials based on the 16x16
multiplication.

5.4 jumpdivstep in F4621[x]/(x
653 − x − 1)

We implement invsntrup653, which uses the smallest parameter sets of
NTRU Prime, to show that jumpdivstep consistently outperforms divstepx. Fig-
ure 6 depicts the structure of our invsntrup653 implementation.
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Fig. 6. jumpdivstep structure for invsntrup653

We choose polynomial multiplication of closed 2-powered lengths from Sec. 5.1
when implementing multiplication of non-2-powered lengths. For example, we
utilize Toom64x64 and Toom128x128 for 56x56 and 112x112 polynomial multipli-
cations. For 448x224 and 672x672, we employ a layer of Good-Thomas-3 followed
by 2 layers of Cooley-Tukey, succeeded by 12 sets of Toom64x64.

5.5 Benchmark

Table 5 shows our final results of optimizations. As a result, jumpdivstep
spends only 29% cycle counts to complete an invsntrup761 operation compared
to divstepx on Cortex-A72. Table 5 also shows the advantage of jumpdivstep over
divstepx in inv3ntrup761. jumpdivstep outperforms divstepx even in the smallest
parameter invsntrup653 in NTRU Prime.

While integrating the inversion operations to key generation of NTRU Prime
in Table 6, we exert significant effort on sntrup761 particularly due to its

Table 5. Cycle counts for polynomial inversion in sntrup761 and sntrup631

Inversion Cortex-A53 Cortex-A72 Cortex-A76 M1

invsntrup761 divstepx 5,819,737 4,949,369 2,703,328 851,937
jumpdivstep 2,031,221 1,457,946 1,150,369 317,285

inv3ntrup761 divstepx 839,852 568,323 344,628 199,455
jumpdivstep 625,518 531,825 279,444 154,286

invsntrup653 divstepx 4,286,957 3,640,900 1,985,212 645,106
jumpdivstep 3,342,664 2,351,016 1,819,333 579,342



Table 6. Cycle counts for key generation in sntrup761

sntrup761 Cortex-A53 Cortex-A72 Cortex-A76 M1
ref from supercop [8] 33,504,035 23,837,956 16,958,229 13,449,469

divstepx [20] 6,547,768 5,517,692 3,047,956 1,051,392
jumpdivstep 2,569,555 1,969,656 1,429,813 471,571

jumpdivstep/ref 7.66% 8.26% 8.43% 3.5%
jumpdivstep/divstepx 39.24% 35.69% 46.91% 44.85%

widespread use in OpenSSH. Our implementation spends only 35.69% running
time on Cortex-A72 compared to the version using divstepx as reported in [20],
and 44.85% on M1.
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