
Vision Mark-32: ZK-Friendly Hash Function Over
Binary Tower Fields

Tomer Ashur1, Mohammad Mahzoun2, Jim Posen3, Danilo Šijačić3

1 3MI Labs, Leuven, Belgium tomer@3milabs.tech
2 Eindhoven University of Technology, Eindhoven, Netherlands mail@mahzoun.me

3 Irreducible. {dsijacic,jimpo}@irreducible.com

Abstract. Zero-knowledge proof systems are widely used in various online applica-
tions. Among these, Zero-Knowledge Succinct Non-Interactive Argument of Knowl-
edge (SNARKs) systems are popular due to their fast verification time and small proof
size. The efficiency of these systems is crucial for usability, leading to the development
of arithmetization-oriented ciphers. In this work, we introduce Vision Mark-32, a
modified version of the Vision cipher, optimized with an efficient Maximum Distance
Separable (MDS) matrix and a reduced number of rounds. We implement a fully-
pipelined Vision Mark-32 permutation on the Alveo U55C FPGA accelerator card,
demonstrating significantly improved hardware efficiency compared to the Poseidon
hash function. Our Vision Mark-32 implementation operates at 250 MHz, utilizing
398,000 Look-Up Tables (LUTs) and 104,000 Flip-Flops (FFs).
Keywords: Vision, SNARKs, Arithmetization-oriented Hash, Zero-Knowledge Proofs,
FPGA, Hardware

1 Introduction
Zero-knowledge (ZK) proof systems are the core components of various applications such as
blockchains, cryptocurrencies, and web3 technologies. Among ZK proof systems, succinct
non-interactive arguments of knowledge (SNARKs), are popular choices particularly due
to their small proof size, fast verification, and viable scalability in blockchain protocols. As
ZK systems are increasingly deployed in different applications, there is a need to enhance
their efficiency. The primary computational bottleneck in ZK systems lies in the underlying
hash functions they employ. Traditional hash functions (e.g., [26, 11] designed over binary
fields are optimized for computational efficiency. However, they have high arithmetization
costs, leading to excessively large trace matrices that lead to poor performance within ZK
systems.

In response, a myriad of arithmetization-oriented ciphers emerged to enhance the
efficiency of hash functions and encryption within advanced cryptographic protocols, such
as ZK systems, fully homomorphic encryption (FHE), and multiparty computation (MPC).
Examples of arithmetization-oriented designs are [6, 27, 15, 1, 16, 41, 23, 34, 22, 17, 19,
33, 45].

For hashing in ZK proof systems, the popular choices are Poseidon [30], which is
analyzed in various works [12, 37, 8, 4, 42], Rescue [2], and XHash [5]. The popular
choices of ZK-friendly hash functions all operate over finite fields of large (≈ 264) prime
characteristic. Diamond and Posen [21] introduce Binius, a novel SNARK, designed
over binary tower fields. Binary fields are widespread in cryptographic algorithms (e.g.
AES [20]) and are known for their computational efficiency. Since Binius operates over
binary fields, the common choices for ZK-friendly hash functions are not usable. Therefore,

mailto:tomer@3milabs.tech
mailto:mail@mahzoun.me
mailto:{dsijacic,jimpo}@irreducible.com


Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 1

there is a need for a ZK-hash function that operates over the binary tower fields. A natural
choice for such function is Vision [2] instantiated in Sponge [10] construction.

In this paper, we specify an instance of Vision, defined over Fan–Paar tower fields [24].
We describe how to implement Vision Mark-32 in hardware efficiently. We write RTL code
in SystemVerilog, and present implementation results on the Alveo U55C datacenter card.

Vision Mark-32 is a Sponge construction instantiated based on the Vision permutation
with a modified number of rounds as the underlying cryptographic primitive. The result of
our implementation can be found in Section 5. Our primary contribution is the introduction
of Vision Mark-32, with an optimized number of rounds and efficient MDS matrix, for an
efficient hashing process within SNARKs. We summarize our contributions as follows:

• Introduce Vision Mark-32: Vision Mark-32 is a sponge construction using a
specific instance of Vision operating over F232 with state size 24. The permutation
used in Vision Mark-32 has fewer rounds than the original Vision design, which
makes it perform better. The security arguments of Vision have been reworked for
Vision Mark-32 to ensure it provides the level of security needed.

• Efficient hardware implementation of inversion using binary towers: We
implement the inversion of field elements over F2m efficiently using binary towers
introduced in [24]. The cost of inversion is then 1.58 times that of multiplication,
improving over the standard approach requiring normal 32 multiplications when
using XGCD or Lagrange theorem.

• Efficient MDS matrix: We introduce an efficient MDS matrix for the linear layer
of Vision Mark-32. The matrix is derived from a systematic Reed-Solomon code
over an affine subspace of the binary field, and admits an efficient multiplication
procedure due to the additive NTT [38].

• Efficient implementation of the linearized affine layer: The linearized affine
polynomial used in Vision is of high degree and is a dense polynomial. Conversely,
the linearized affine polynomial used in Vision Mark-32 requires 32 constant mul-
tiplication, 32 additions, and 32 squaring in F232 . We use a simple and efficient
approach to convert the affine linearized polynomial over F2m to a binary matrix
over F2, which can be seen as 32 multiplications of field elements, and 32 additions
over F232 , this significantly improves the cost of the affine layer.

• Re-evaluation of security of Vision Mark-32 against Gröbner basis attacks:
In [2], the complexity of the Gröbner basis attack was argued by the infeasibility of
computing the Gröbner basis in grevlex order. We improve the security argument by
analyzing the number of solutions of the polynomial system that describes Vision
and show that even if the Gröbner basis calculation in a specific weighted monomial
ordering is free [42, 43, 9], still the degree of the ideal generated by the polynomial
system is large enough to guarantee the security of Vision Mark-32.

Related Work. Arithmetization-oriented designs can be categorized by their performance
in the corresponding applications.

For zero-knowledge proof systems, the performance metrics for the hash functions are
Rank-One Constraint Satisfaction (R1CS) and Plonk for ZK-SNARKs, and Algebraic
Intermediate Representation (AIR) for ZK-STARKs. The performance of the hash functions
is then measured using characteristics of polynomial representation, such as depth, number
of multiplications, etc. Therefore, to obtain a more efficient hash function and simpler
polynomial representation, it is preferred to design primitives that operate over finite fields
of large prime characteristics. Important ZK-friendly hash functions over prime fields are



2

Figure 1: One round of Vision with two steps.

Rescue [2], Rescue-Prime [44], RPO [7], XHash [5], ReinforcedConcrete [32], Monolith [29],
Poseidon [31], Griffin [28], Anemoi [14].

In the case of fully homomorphic encryption, most arithmetization-oriented designs
typically operate over binary fields. Example of designs over F2 are Kreyvium [16],
FLIP [41], FiLIP [40] that are for FHE with bootstrapping. LowMC [1], Rasta [23],
Dasta [34], Fasta [17], Pasta [22], and Chagri [6] for BGV and BFV. Yet, all such designs
are slow and unusable for efficient ZK applications.

2 Preliminaries
In this section, we introduce necessary definitions and theoretical background required to
follow the paper.

2.1 Vision
Vision [2] is a keyed permutation based on the Marvelous design strategy. Vision operates
over F2n and each round consists of two steps that differ only in the linearized affine
polynomial. We denote the input state of the ith round by Si = (si,0, . . . , si,m−1) where
si,j ∈ F2n . Each step in one round of Vision consists of three operations on the state:

• Inverse function: π(si,j) = s−1
i,j .

• Linearized affine polynomial: B(si,j) =
∑n−1

k=0 βjs2k

i,j + βn.

• MDS matrix: L(Si) = M · Si.

The only difference between the two steps is the linearized affine polynomial. The
linearized affine polynomial of the second step has the form:

B(x) = β0x + β1x2 + β2x4 + β3,

which is a sparse polynomial. The linearized affine polynomial of the first step is B−1,
which is dense with a high degree. The round function of Vision is depicted in Figure 1.

2.2 Weil Descent
Let q be a power of a prime number, n be a positive integer, and P ⊆ Fqn [x]. Let
{α0, . . . , αn−1} be a basis of Fqn/Fq, then X =

∑n−1
i=0 αixi. Let p ∈ Fqn [x], define

[p]i ∈ Fq[x1, . . . , xn] by:

p(X) = p(
n−1∑
i=0

αixi) ≡
n−1∑
i=0

αi[p]i mod (xq
0 − x0, . . . , xq

n−1 − xn−1),



Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 3

where deg([p]i) < q for all 0 ≤ i < n. The system

P ′ = {[p]i : p ∈ P, 0 ≤ i < n} ∪ {xq
i − xi : 0 ≤ i < n}

is called Weil descent system of P, and solutions of P in Fqn are same as the solutions of
P ′ in Fq.

2.3 Fake Weil Descent
Fake Weil descent system is introduced in [35] and is a powerful tool to study the hardness
of solving polynomial systems. We use fake Weil descent systems to improve the efficiency
of computing affine linearized polynomials. Let e < qn be a positive integer, xe ∈ Fqn [x],
then xe can be written as:

xe =
n−1∏
i=0

x
e′

i
i ∈ Fqn [x1, . . . , xn],

in base q. Using the same approach, polynomials in Fqn [x] can be written as polynomials
in Fqn [x0, . . . , xn−1]. Let P ⊆ Fqn [x], P ′ ⊆ Fq[x0, . . . , xn−1] the Weil descent system of P ,
and Pf ⊆ Fqn [x0, . . . , xn−1] the fake Weil descent system of P . Then, the solutions of Pf

over Fqn is the same as the solutions of P ′ over Fq up to an isomorphism [35]. We use
fake Weil descent to convert polynomial systems over F2n to polynomial systems over F2
with the equivalent set of solutions. The Sage code for converting a monomial over F2n to
a system of polynomials over F2 is described in Code Listing 11.

Code Listing 1: Sage code for computing the fake Weil descent system of a monomial.
1 F.<a> = GF (2^n)
2 R = PolynomialRing (F, n, names=’X’)
3 X = R.gens ()
4 f = sum(X[i]*a^i for i in range(n))
5 I = R.ideal ([g^p - g for g in X])
6 P = sum( vector (b)*m. reduce (I) for b,m in f^t)

2.4 Binary Towers
The tower of field extensions introduced in [46], and further discussed in [18, 24, 13] is a
recursive construction of fields extensions where each field extension is constructed by using
an irreducible polynomial and the previous field extension. More precisely, let T0 = F2m ,
then the binary tower is defined as:

T1 = T0[x0]/F1(x0)
...

Tn = Tn−1[xn−1]/Fn(xn−1),

where Fi(xi−1) is an irreducible polynomial of degree 2 in Tn−1 and Tn is the finite field
F2m2n . In the design of Vision Mark-32, T0 = F2, and Fi(xi−1) = x2

i−1 + xi−1 · xi−2 + 1
which was shown to be irreducible in [46]. The recursive construction of extension fields
obtains the following binary field tower:

T0 ⊂ T1 ⊂ . . . ⊂ Tn,

1Code is taken from Sage online forum.

https://ask.sagemath.org/question/66060/model-of-polynomial-over-gf2n-as-polynomials-over-gf2/


4

Figure 2: Recursive construction of binary towers.

where Tn is a vector space over T0 with dimension 2n with respect the following lexicographic
basis [21]:

{x0, x1, x0x1, . . . , x0x1 . . . xn−1}.

Each vector v ∈ Tn, of length 2n, can be written as v = v0 +xn−1v1. Arithmetic operations
of the field Tn can be executed more efficiently using the binary towers. An example of
binary tower F23 is described in Figure 2.

We denote the complexity of addition, constant multiplication, multiplication of field
elements, and inversion over F2m2n with An, Cn, Mn, and In respectively. Then, the
complexity of each operation is analyzed in [24] as follows.

Addition. The addition of field elements is cheap regardless of whether using binary tower
fields. For the case of fields with characteristic 2, the addition v1, v2 ∈ Tn, corresponds to
their bitwise XOR v1 ⊕ v2. The complexity of addition is An = 2nA0 where A0 is the cost
of addition over F2m .

Multiplication by constant. Multiplication of v ∈ Tn with the constant xn−1 can be
executed in Θ(2n). The complexity of multiplication with constant is

Cn = C0 + (2n − 1)A0.

Multiplication of field elements. Multiplication of v1 = α1xn−1 + α0 and v2 = β1xn−1 +
β0, is done via three multiplications in Tn−1. In general:

v1 · v2 = (α0β1 + β0α1 + α1β1xn−2)xn−1 + α0β0 + α1β1,

which can be computed by [21]:

α1β1x2
n−1 + (α0β1 + α1β0)xn−1 + α0β0 − α1β1(x2

n−1 + xn−2xn−1 + 1).

The complexity of multiplication is:

Mn = 3nM0 + 6(3n − 2n)A0 + 3n − 1
2 (C0 − A0).

A similar approach to multiplication is also known as Karatsuba method [36], that has
complexity of O

(
nlog2(3)).



Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 5

Squaring. The square of vector v = α1xn−1 + α0 is:(
α2

1xn−2
)

xn−1 + (α2
0 + α2

1).

The complexity of squaring a field element is:

Sn = 2nS0 + n2nA0 + (2n − 1)(C0 − A0).

Inversion. The inverse of a field element v = α1xn−1 + α0 is:

v−1 = (α1xn−1 + α0)−1 =
(
α1∆−1)+ ∆−1(α0 + α1xn−2),

where ∆ = α0(α0 + α1xn−2) + α2
1. Computing the inverse of an element has asymptotic

complexity of O
(
nlog2(3)). For the detailed analysis of the complexity of inversion, we

refer to [24, Section IV].

3 Vision Mark-32
Vision Mark-32 is a hash function instantiating a Sponge construction using the Vision
permutation [2]. Vision Mark-32 has 8 rounds and operates over F232 , with state size of
m = 24, and capacity of c = 8. The security level guaranteed by Vision Mark-32 is 128
bits. In Algorithm 1, the pseudocode of Vision Mark-32 hash function is described. M is
the MDS matrix and its structure is described in Subsection 3.3, and Cr,1, Cr,2 ∈ F24

232 are
round constants for rth round.

Algorithm 1 Underlying permutation of Vision Mark-32 hash function with number of
rounds = 8 and state size = 24.
Input: State S = (s1, . . . , s24) ∈ F24

232

Output: Result of applying Vision Mark-32 permutation on S

1: for r = 1 to 8 do
2: for i = 1 to 24 do
3: S[i] = S[i]−1

4: S[i] = B−1(S[i])
5: S = M · S + Cr,1
6: for i = 1 to 24 do
7: S[i] = S[i]−1

8: S[i] = B(S[i])
9: S = M · S + Cr,2

10: return S

3.1 Inverse Function
The inverse function is the only non-linear operation in the round function of Vision
Mark-32. To efficiently implement inversion over F232 , the construction proposed by
Wiedemann [46] is used. That is, each element of F232 is represented as α = a + x4b,
where a, b ∈ F216 , with the irreducible polynomial F (x4) = x2

4 + x3x4 + 1. To inverse α,
we compute:

α−1 = b∆−1 + ∆−1(a + bx3),

where ∆ = a(a + bx3) + b2. To compute ∆−1, we recursively compute inversion in the
subfield F216 , which itself require inversion in the subfield F28 . This way, inversion is



6

reduced to inversion over F2 which is trivial. In our implementation, the cost of the
inversion operation over F232 is 1.58 times the cost of multiplication, whereas normal
inversion using XGCD requires ≈ 32 multiplications.

3.2 Linearized Affine Layer
The linearized affine layer is one of the main bottlenecks of performance in hardware
implementation. Mainly because of its density and large number of multiplications over
the operating field, F2n . A linearized affine layer over F2n has the form:

B(x) =
n−1∑
k=0

βkx2k

+ βn.

The polynomial B(x) has n terms, and evaluating it directly requires n constant multipli-
cation, n additions, and n squaring in the F232 .

However, B(x) is an affine function over F2. To efficiently compute B(x) for any
x ∈ F2n we convert x to a binary vector V = (V0, . . . , Vn−1) ∈ Fn

2 and transform the
linearzied polynomial to a matrix over F2. Converting monomials of B(x) to their Weil
descent system using Code Listing 1 is time-consuming and impractical. However, to
compute the Weil descent system of B(x), we only need to compute the matrix M1 for the
monomial x2, using M1 we then can compute the matrix for x2i as Mi = M i

1. The matrix
representation of B(x) in GLn(2) is:

M(V ) =
n−1∑
i=0

Bi · Mi(V ) + Bn, (1)

where B is a matrix representing the constant multiplication. The matrix M(V ) can be
computed using n matrix squaring once the matrix M1 is calculated. The Sage code to
convert an affine linearized polynomial to a matrix in GLn(2) is given in Algorithm 2.

Algorithm 2 Algorithm to compute the matrix representation of affine polynomial over
GLn(2).
Input: Affine polynomial B(x) =

∑n−1
k=0 βkx2k + βn.

Output: Matrix M ∈ GLn(2) corresponding to B.
1: M [0] = Matrix of monomial x.
2: M [1] = Matrix of the monomial x2.
3: for i = 2 to n − 1 do ▷ M [i] is the matrix of the monomial x2i .
4: M [i] = M [i − 1] · M [1]
5: for i = 0 to n − 1 do ▷ C[i] is the matrix corresponding to the constant βi.
6: M [i] = C[i] · M [i]
7: return

∑n−1
i=0 M [i] + C[n]

3.3 MDS Matrix
In [38], a novel basis of polynomials over a finite field of characteristic 2 is introduced for
efficient encoding and decoding of Reed-Solomon erasure codes. The same basis is used in
Vision Mark-32 to generate the MDS matrix. We fix a binary field K = F2n with F2-basis
⟨β0, . . . , βn−1⟩. For each j ∈ {0, . . . , 2n − 1}, we define ωj := j0 · β0 + . . . + jn−1 · βn−1,
where (j0, . . . , jn−1) are j’s bits.



Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 7

Writing Ui := ⟨β0, . . . , βi−1⟩ for the i-dimensional F2-subspace generated by the first i
basis elements, we set Wi(X) :=

∏
u∈Ui

(X − u), a subspace polynomial of degree 2i; its
evaluation map Wi : K → K is F2-linear.

Ŵi(X) := Wi(X)
Wi(βi) is its normalized variant; moreover, it satisfies Ŵi(βi) = 1, and is also

F2-linear.
Finally, for each j ∈ {0, . . . , 2n − 1}, we set:

Xj(X) =
n−1∏
i=0

(Ŵi(X))ji ,

where again (j0, . . . , jn−1) are j’s bits. Since each Xj(X) is of degree j, the set

{(X0(X), . . . , X2n−1(X))}

yields a K-basis of K[X].
For a state size of m, U [i][j] will contain Wi(βj), for each i ∈ {0, . . . , ⌈log m⌉} and j ∈

{0, . . . , ⌈log m⌉ + 1}. This information alone is be enough to compute Wi(ωj) for each j ∈
{0, . . . , 2 · log m−1}, using merely some additions, since the Wis are F2-linear (in particular,
additively homomorphic). In order to compute the row Wi(β0), . . . , Wi(β⌈log m⌉+1), given
the respective values of Wi−1 on these points, we use the recursive identity Wi(X) =
Wi−1(X) · (Wi−1(X) + Wi−1(βi−1)). The sage code for computing U [i][j] is described
in Code Listing 2.

Code Listing 2: Sage code for to initialize U[i][j] and normalizing it.
1 # mds_field is a binary tower.
2 U = [[ self. mds_field . from_integer (2^j) for j in range(ceil(log(m ,2))

+ 1)]]
3 for i in range (1, ceil(log(m ,2))):
4 U. append ([U[i - 1][j] * (U[i - 1][j] + U[i - 1][i - 1]) for j in

range(ceil(log(m ,2)) + 1)])
5

6 for i in range(ceil(log(m ,2))):
7 normalization_constant = self. mds_field . from_integer (1) / U[i][i

]
8 U[i] = [U[i][j] * normalization_constant for j in range(ceil(log

(m ,2)) + 1)]

The next step is to expand the matrix horizontally. W [i][j] will contain Ŵi(ωj) for
each i ∈ {0, . . . , ⌈log m⌉} and j ∈ {0, . . . , 2 · log m − 1}. This can be done by only using
additions, having computed the values of U [i][j]. The code for horizontal expanding is
described in Code Listing 3.

Code Listing 3: Sage code for to horizontal expansion of the matrix.
1 W = []
2 for i in range(ceil(log(m ,2))):
3 W_i = [self. mds_field . from_integer (0)]
4 for j in range(ceil(log(m ,2)) + 1):
5 # W_i will contain all subset sums of U[i].
6 W_i += [W_i[k] + U[i][j] for k in range (1 << j)]
7 W. append (W_i [: 2 * self.m])



8

To expand the matrix vertically, X[j][i] will contain Xi(ωj) for each i ∈ {0, . . . , m − 1}
and j ∈ {0, . . . , 2 · log m − 1}. We can again compute these from the Ŵi(ωj) values using
a binary expansion; now multiplying instead of adding. Indeed, this is the definition of Xi.
The sage code to vertically expand the matrix is described in Code Listing 4.

Code Listing 4: Sage code for to vertical expansion of the matrix.
1 X = []
2 for j in range (2 * self.m):
3 X_j = [self. mds_field . from_integer (1)]
4 for i in range(ceil(log(m ,2))):
5 # standard binary expansion , with multiplying instead of

adding
6 X_j += [X_j[k] * W[i][j] for k in range (1 << i)]
7 X. append (X_j [: self.m])

Since the evaluation of a polynomial for the basis [38] is a Reed–Solomon encoding,
multiplication by the matrix X gives us that Reed–Solomon encoding in matrix form. Its
rate is 1/2, i.e., it’s the matrix that takes the novel-basis coefficients of a polynomial of
degree < m and returns its evaluations over the domain (ω0, . . . , ω2m−1). We use the “row
convention”: encoding is multiplying a row vector on the right by a wide matrix.

We obtain a systematic version of the same code by performing row reduction echelon
form (RREF) on G. This code differs from the one above by precomposition with a
K-isomorphism on the message space. Indeed, RREF simply amounts to left-multiplying
the m × 2m matrix by an m × m invertible matrix. The result of RREF has the identity
as its left-hand half and our desired MDS matrix on the right. Indeed, one definition of an
MDS matrix is simply the “nonsystematic” part of a systematic MDS code of rate 1/2.
In other words, it’s the extrapolation matrix, which takes the values of some polynomial
of degree less than m on the set ω0, . . . , ωm−1, and returns the evaluations of the same
polynomial on ωm, . . . , ω2m−1.

3.4 Sponge Construction
Vision Mark-32 sponge is depicted in Figure 3. The state of the permutation consists of
R = 16 rate elements, followed by C = 8 capacity elements in F232 . If the number of field
elements in the message is not a multiple of the rate, it must be padded with the smallest
number of zero elements so the number of field elements in the message is the multiple of
the rate. The first two capacity elements are initialized to the 64-bit little-endian unsigned
integer representing the message byte-length2. The remaining elements are initialized to
zero. The first block is absorbed by overwriting 16 input rate elements with a message
block. The remaining blocks are absorbed by overwriting 16 input rate elements with a
message block and overwriting the 8 input capacity elements with the first 8 output rate
elements of the preceding permutation. A digest is squeezed by reading the first 8 output
rate elements from the final permutation.

4 Security of Vision Mark-32
The security of Vision Mark-32 relies on the security of the Marvelous family [2], and
generic security offered by Sponge constructions. The complexity of different attacks using
state-of-the-art approaches against Vision Mark-32 is described in Table 1.

2the proof for this padding scheme using domain separation can be found in the full version.



Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 9

Table 1: Cryptanalysis Techniques, the required number of rounds shows the number of
rounds to ensure security against a specific attack.

Type of Attack Required Number of Rounds
Differential Cryptanalysis 1
Linear Cryptanalysis 1
Higher Order Differentials 2
Interpolation Attacks 4
Gröbner Basis Attacks 3

4.1 Differential Crytpanalysis

To argue the security of Vision Mark-32 against differential cryptanalysis attacks, we use
the wide trail strategy [20]. For the binary field F232 , the differential uniformity of inverse
function f(x) = x−1 is δ = 2−30. Since the MDS matrix activates 25 S-boxes in each
round, the probability of an N -round differential is 2−750N , and a differential cryptanalysis
attack is not feasible, even for a small number of rounds. For a more detailed analysis of
the Vision family against differential attacks, we refer to [3].

4.2 Linear Cryptanalysis

Similar to the differential cryptanalysis in Subsection 4.1, the security against linear
cryptanalysis is argued using the wide trail strategy. For the binary field F232 , the
linearity of inverse function f(x) = x−1 is λ = 2−15, and the probability of N -round linear
approximation is 2−375N . Therefore, Vision Mark-32 is safe against linear cryptanalysis.
Indeed, since the operating field is large, statistical attacks are not likely to be successful
in breaking the security of Vision Mark-32.

4.3 Interpolation Attacks

The round function of Vision Mark-32 has two mappings of high degree, the inverse
function, and the affine polynomial B−1. Indeed, no matter what direction the system is
modeled as polynomials, either B or B−1 has a high degree. In [3], the upper bound for
the number of rounds that can be attacked using meet-in-the-middle approach is computed
as 3, and for Vision Mark-32, the same security argument works.

Figure 3: Vision Mark-32 sponge hash.



10

4.4 Gröbner Basis Attacks
Arguing the security of a cryptographic primitive against Gröbner basis attacks are usually
done via arguing the hardness of computing the Gröbner basis in grevlex order, which is
believed to be the most efficient way to compute the Gröbner basis for a general system.
The complexity of computing Gröbner basis in grevlex order is:

O
((

n + d

d

)ω)
,

where n is the number of variables in the system, d is the solving degree of the system,
and 2 < ω < 3 is the linear algebra constant. Estimating the solving degree d for
structured systems, such as the systems describing cryptographic hash functions, is not a
straightforward task. In [2], the authors computed the solving degree for a toy version
of Vision with small parameters and extrapolated the behavior of solving degree using
linear regression. Yet, the extrapolation of solving degree is a heuristic approach and its
correctness has not been proven. Recently, in [42, 43, 9] the authors described an approach
to computing the Gröbner basis for free in a tailored weighted term ordering and estimate
the hardness of solving the system as the complexity of transforming such Gröbner basis
to the lex ordering, in which the system is triangular and easy to solve using univariate
polynomial solving and substituting the roots in the rest of the system. In this case, the
complexity of transforming the basis to Gröbner basis in lex order is:

O (nDω) ,

where D is the degree of the ideal formed by the polynomial system that describes the
hash function. The degree D of the ideal of the system represents the number of solutions
to the polynomial system over the algebraic closure of the field and can be estimated using
the Bézout theorem.

Theorem 1 (Bézout Theorem). Let F be a field and let F be the algebraic closure of
F , let f1, . . . , fn ∈ F [x1, . . . , xm] be homogeneous polynomials where degree of fi is di, the
number of solutions of f1 = . . . = fn = 0, is given by:

n∏
i=1

di,

if the ideal ⟨f1, . . . , fn⟩ is zero-dimensional.

The asymptotic complexity of converting a Gröbner basis to lexicographic (lex) mono-
mial order using sparse FGLM algorithm is [25]:

O

(√
6

nπ
D2+ n−1

n

)
. (2)

Complexity of Step 3: When the ideal is zero-dimensional, the Gröbner basis in
lexicographic order is structured according to the shape lemma. This structure includes
a unique univariate polynomial that can be factored and used to solve the entire system
iteratively. Once the unique univariate polynomial is factored, it provides a partial solution
to the system. By iteratively substituting these partial solutions into other polynomials and
similarly factoring them, a complete solution is obtained. To solve a univariate polynomial
system of degree D over the finite field Fp, the Cantor/Zassenhaus algorithm can be used.
This algorithm has a complexity of:

O(D2(log D log log D)(log p + log D)).



Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 11

4.4.1 Determined System

The first approach is to model the Vision Mark-32 as a determined system of polynomials
as described in [2]. Each round can be described as [3]:

S2r−2[j] · B

( 24∑
k=1

M−1[j, k] (S2r−1[k] − Cr,1)
)

− 1 = 0

(S2r−1[j])4 · B
(
S2r−1[j]−1)− (S2r−1[j])4

( 24∑
k=1

M−1[j, k] (S2r[k] − Cr,2)
)

− 1 = 0,

where 1 ≤ j ≤ 24. In total, the polynomial system describing Vision Mark-32 has 384
polynomials in 384 variables, and solving degree of the polynomial system is estimated
to be 1513 [3]. Assuming that Gröbner basis can be computed for free, the degree of the
ideal of Vision for state size m and number of variables n with rate r and capacity c, can
be computed as:

2mn∏
i=1

di = 5rc4 + 4r5c + 52m(n−1).

Therefore, we re-evaluate the complexity of Gröbner basis attack against Vision Mark-32
by analyzing the number of the solutions to the system in Table 1. In any case, the
complexity of the attack is more than an exhaustive search of the input space.

4.4.2 Overdetermined System

In [39], a new approach to analyze the security of the instances of Vision is described. The
modeling proposed in [39] represents Vision as an over-determined system of polynomials.
The premise is that having more equations enhances the performance of solving the system.
Specifically, the model comprises 5m + 14m(N − 1) quadratic equations in 3m + 6m(N − 1)
variables. For Vision Mark-32, this corresponds to a quadratic system of equations with
2472 equations in 1080 variables. Consequently, the degree of regularity of the system is
the smallest non-positive coefficient of the Hilbert series:(

1 − X2)2472

(1 − X)1080 ,

which is 87, and therefore complexity of Gröbner basis attack is lower bounded by:(
87 + 1080

87

)2
≥ 442.

It is important to mention that this complexity is a lower bound for the complexity of the
attack suggested in [39], as the complexity is computed under the assumption that the
resulting system is semi-regular. However, the system is not semi-regular, and the solving
degree in reality would be higher.

5 Implementation
We implement Vision Mark-32 in SystemVerilog targeting Alveo U55C High Performance
Compute Card featuring Xilinx VU47P FPGA. We aim to use a Gen4 PCIe shell with
512-bit interface running at 250 MHz.



12

5.1 Tower field arithmetic
Tower field arithmetic is known for it’s efficiency in hardware. Table 2 shows the resource
cost of basic arithmetic blocks for the 32-bit binary tower. For comparison, we present
the resource cost of a single-cycle 32-bit unsigned integer multiplier. Multiplication and
squaring circuits require a single clock cycle, while the inversion is fully pipelined and
requires 3 cycles.

Table 2: Arithmetic circuit complexity implemented at 250 MHz for: multiply (MUL),
square (SQR) and invert (INV) operations.

Circuit LUT FF CARRY8 Max Freq. [MHz]
32-bit tower MUL 521 0 0 378
32-bit tower SQR 43 0 0 791
32-bit tower INV 821 111 0 280
32-bit integer MUL 1107 0 96 192

We acknowledge that 32-bit integer multiplication can be implemented using 2–3
DSP48E2 units. However, as these are hard IP blocks, i.e. ASIC components within the
FPGA, a more representative comparison in terms of silicon efficiency can be made this
way. We allow the use of fast CARRY8 chains for carry propagation—the critical path
of the integer arithmetic circuits. The single-cycle 32-bit tower multiplier is over 4 times
more efficient in terms of LUT-delay product compared to its unsigned integer counterpart.
Squaring is nearly free in this tower field, whereas integer squaring is approximately the
same as multiplication. Tower field inversion is only 1.58 times more expensive than
multiplication.

Lastly, integer multiplier does not include modular reduction, whereas all tower opera-
tions do so by design.

5.2 Vision Mark-32 permutation
Single round of Vision Mark-32 permutation consists of 48 round constant additions,
48 tower-field inversions, 48 affine linearized polynomial evaluations and 2 MDS matrix
multiplications. We implement a fully pipelined permutation round with 28 stages.

Table 3 shows total resource utilization of a single Vision Mark-32 permutation round
broken down into components.

Table 3: Vision Mark-32 permutation round circuit complexity, implemented at 250 MHz.
Component LUT FF
Inversion 40.2 k 6.8 k
Evaluate B 0.3 k 0.8 k
Evaluate B−1 0.3 k 0.8 k
MDS matrix multiplication 9.2 k 4.6 k
Total 50.0 k 13.0 k

Sponge absorb and squeeze do not use any additional resources other than wiring.

5.3 Performance comparison
Due to the large volume of data that needs to be processed in the context of ZKP throughput
is the most pressing bottleneck. Therefore, fully pipelined implementations are favorable.
We compare 3 fully-pipelined implementations, each capable of performing 400 M hashes
per second. This limitation is dictated by the Gen4 PCIe link, capable of providing 512-bits
at 250 MHz.



Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 13

Table 4 compares fully-pipelined implementation of Vision Mark-32 with Grøstl-256 [26]
and Poseidon [31]. The former is a SHA3 competition finalist, designed with traditional
symmetric cryptography practices. The latter is an arithmetization-friendly hash function.

Table 4: Performance comparison, implemented at 250 MHz. In the comparison, LUT
numbers are reported by Xilinx Vivado 2022.2, the tool we use to synthesize the designs.
Comparison is made in the zero-knowledge setting where the high throughput is the
primary goal (due to the large amounts of data to process). The shell we use operates on
512-bit @ 250 MHz (128Gbps), and in this setting, we can always use multiple layers of
LUTs per layer of FFs, therefore LUTs are the bottleneck.

Hash LUT FF CARRY8 DSP Latency Throughput
Grøstl 132 k 62 k 0 0 82 64 Gbit/s
Vision Mark-32 398 k 104 k 0 0 112 128 Gbit/s
Poseidon 868 k 909 k 79 k 5192 870 128 Gbit/s

LUTs are the bottleneck for both Grøstl and Vision Mark-32. Since Poseidon uses
DSPs it is difficult to make a direct comparison with LUT-only designs. Assuming the
32-bit unsigned multiplier from Table 2 corresponds to 2 DSPs used to implement 32-bit
multipliers we can estimate the LUT cost of the fully-pipelined Poseidon hasher to 3.74
million LUTs. Table 5 provides a comparison in terms of hardware efficiency expressed as
throughput per LUT, as well as qualitative metrics.

As a SHA3 finalist Grøstl has undergone thorough scrutiny of the community and
stood the test of time. Moreover, Grøstl is based on AES, the most scrutinized algorithm
of all. Marvelous design strategy is based on AES design strategy too. On the other hand,
Poseidon is a more novel design.

Unlike Grøstl, Poseidon was designed with efficient arithmetization in mind. However,
64-bit Goldilocks field on which Poseidon is based can be up to 64 times less efficient when
dealing with 1-bit values.

Grøstl-256 is a Merkle–Damgård construction with a 512-bit compression function, and
thus hashes an input of size 256 bits per compression. Both Vision Mark-32 and Poseidon
are Sponge constructions with rates of 512 bits. Despite being arithmetization friendly,
Vision Mark-32 is only 33% less efficient than Grøstl in terms of throughput per LUT.

Table 5: Additional comparisons. Arithmetization-friendly in this context refers to the
underlying finite field that the hash function operates on to be efficiently implemented for
zero-knowledge applications. Poseidon is only defined over fields with prime characteristics
and therefore is less arithmetization-friendly for our use case.

Hash kbps/LUT Arithmetization-friendly
Grøstl 485
Vision Mark-32 322 ✓✓
Poseidon 34 ✓

6 Conclusion
We introduced Vision Mark-32, a hash function for zero-knowledge applications, which is
a sponge construction instantiated with a modified version of Vision with an optimized
number of rounds and an efficient MDS matrix. We implement Vision Mark-32 in hardware,
targeting a popular data center card. We delineated the efficient implementation of each
step. Furthermore, we showed the advantages of tower arithmetic introduced in [24].
Efficient binary operations, especially often prohibitively expensive inversion, open new
venues for design of cryptographic primitives. In this particular instance, we attain



14

hardware efficiency of a fast classical algorithm, while still allowing efficient arithmetization
described in [21].

Acknowledgments
We would like to acknowledge our colleagues at Irreducible, Ben Diamond and Kabir
Peshawaria, for their valuable input, optimizations to the MDS matrix, and assistance
with Sage programming.

References
[1] Martin R. Albrecht et al. “Ciphers for MPC and FHE”. In: Advances in Cryptology –

EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 430–454. isbn: 978-3-662-46800-5.

[2] Abdelrahaman Aly et al. “Design of Symmetric-Key Primitives for Advanced Cryp-
tographic Protocols”. In: IACR Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.
doi: 10.13154/tosc.v2020.i3.1-45. url: https://doi.org/10.13154/tosc.
v2020.i3.1-45.

[3] Abdelrahaman Aly et al. “Design of Symmetric-Key Primitives for Advanced Cryp-
tographic Protocols”. In: IACR Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.
doi: 10.13154/tosc.v2020.i3.1-45. url: https://doi.org/10.13154/tosc.
v2020.i3.1-45.

[4] Tomer Ashur, Thomas Buschman, and Mohammad Mahzoun. Algebraic cryptanalysis
of POSEIDON. Tech. rep. Under submission. 2023.

[5] Tomer Ashur, Al Kindi, and Mohammad Mahzoun. “XHash8 and XHash12: Efficient
STARK-friendly Hash Functions”. In: IACR Cryptol. ePrint Arch. (2023), p. 1045.
url: https://eprint.iacr.org/2023/1045.

[6] Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. “Chaghri - A FHE-
friendly Block Cipher”. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022. Ed. by Heng Yin et al. ACM, 2022, pp. 139–150. doi: 10.
1145/3548606.3559364. url: https://doi.org/10.1145/3548606.3559364.

[7] Tomer Ashur et al. Rescue-Prime Optimized. Cryptology ePrint Archive, Paper
2022/1577. https://eprint.iacr.org/2022/1577. 2022. url: https://eprint.
iacr.org/2022/1577.

[8] Augustin Bariant et al. “Algebraic Attacks against Some Arithmetization-Oriented
Primitives”. In: IACR Transactions on Symmetric Cryptology 2022.3 (2022), 73–101.
doi: 10.46586/tosc.v2022.i3.73-101. url: https://tosc.iacr.org/index.
php/ToSC/article/view/9850.

[9] Augustin Bariant et al. The Algebraic Freelunch Efficient Gröbner Basis Attacks
Against Arithmetization-Oriented Primitives. Cryptology ePrint Archive, Paper
2024/347. https://eprint.iacr.org/2024/347. 2024. url: https://eprint.
iacr.org/2024/347.

[10] Guido Bertoni et al. “On the Indifferentiability of the Sponge Construction”. In:
Advances in Cryptology – EUROCRYPT 2008. Ed. by Nigel Smart. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 181–197. isbn: 978-3-540-78967-3.

[11] Guido Bertoni et al. The Keccak Reference. Keccak Team, 2011. url: https://
keccak.team/files/Keccak-reference-3.0.pdf.

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2023/1045
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1145/3548606.3559364
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2022/1577
https://doi.org/10.46586/tosc.v2022.i3.73-101
https://tosc.iacr.org/index.php/ToSC/article/view/9850
https://tosc.iacr.org/index.php/ToSC/article/view/9850
https://eprint.iacr.org/2024/347
https://eprint.iacr.org/2024/347
https://eprint.iacr.org/2024/347
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf


Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 15

[12] Tim Beyne et al. “Out of Oddity – New Cryptanalytic Techniques Against Symmetric
Primitives Optimized for Integrity Proof Systems”. In: Advances in Cryptology –
CRYPTO 2020. Ed. by Daniele Micciancio and Thomas Ristenpart. Cham: Springer
International Publishing, 2020, pp. 299–328. isbn: 978-3-030-56877-1.

[13] Ian F. Blake et al. Applications of Finite Fields. Ed. by Alfred J. Menezes. The
Springer International Series in Engineering and Computer Science. Springer Sci-
ence+Business Media, 1993.

[14] Clémence Bouvier et al. “New Design Techniques for Efficient Arithmetization-
Oriented Hash Functions: Anemoi Permutations and Jive Compression Mode”.
In: Advances in Cryptology – CRYPTO 2023: 43rd Annual International Cryptol-
ogy Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20–24, 2023,
Proceedings, Part III. Santa Barbara, CA, USA: Springer-Verlag, 2023, 507–539.
isbn: 978-3-031-38547-6. doi: 10.1007/978- 3- 031- 38548- 3_17. url: https:
//doi.org/10.1007/978-3-031-38548-3_17.

[15] Clémence Bouvier et al. New Design Techniques for Efficient Arithmetization-
Oriented Hash Functions:Anemoi Permutations and Jive Compression Mode. Cryp-
tology ePrint Archive, Paper 2022/840. https://eprint.iacr.org/2022/840.
2022. url: https://eprint.iacr.org/2022/840.

[16] Anne Canteaut et al. “Stream Ciphers: A Practical Solution for Efficient Homomorphic-
Ciphertext Compression”. In: Journal of Cryptology 31.3 (2018), pp. 885–916. issn:
1432-1378. doi: 10.1007/s00145-017-9273-9. url: https://doi.org/10.1007/
s00145-017-9273-9.

[17] Carlos Cid, John Petter Indrøy, and Håvard Raddum. “FASTA – A Stream Cipher
for Fast FHE Evaluation”. In: Topics in Cryptology – CT-RSA 2022. Ed. by Steven
D. Galbraith. Cham: Springer International Publishing, 2022, pp. 451–483. isbn:
978-3-030-95312-6.

[18] Stephen D. Cohen. “The explicit construction of irreducible polynomials over finite
fields”. In: Designs, Codes and Cryptography 2.2 (June 1992), pp. 169–174. issn: 1573-
7586. doi: 10.1007/BF00124895. url: https://doi.org/10.1007/BF00124895.

[19] Orel Cosseron et al. “Towards Case-Optimized Hybrid Homomorphic Encryption -
Featuring the Elisabeth Stream Cipher”. In: Advances in Cryptology - ASIACRYPT
2022 - 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part III.
Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13793. Lecture Notes in Computer
Science. Springer, 2022, pp. 32–67. doi: 10.1007/978-3-031-22969-5\_2. url:
https://doi.org/10.1007/978-3-031-22969-5\_2.

[20] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced
Encryption Standard. Springer-Verlag, 2002, p. 238. isbn: 3-540-42580-2.

[21] Benjamin E. Diamond and Jim Posen. Succinct Arguments over Towers of Binary
Fields. Cryptology ePrint Archive, Paper 2023/1784. https://eprint.iacr.org/
2023/1784. 2023. url: https://eprint.iacr.org/2023/1784.

[22] Christoph Dobraunig et al. “Pasta: A Case for Hybrid Homomorphic Encryption”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023.3 (2023), pp. 30–73. doi:
10.46586/TCHES.V2023.I3.30-73. url: https://doi.org/10.46586/tches.
v2023.i3.30-73.

[23] Christoph Dobraunig et al. “Rasta: A Cipher with Low ANDdepth and Few ANDs
per Bit”. In: Advances in Cryptology – CRYPTO 2018. Ed. by Hovav Shacham and
Alexandra Boldyreva. Cham: Springer International Publishing, 2018, pp. 662–692.
isbn: 978-3-319-96884-1.

https://doi.org/10.1007/978-3-031-38548-3_17
https://doi.org/10.1007/978-3-031-38548-3_17
https://doi.org/10.1007/978-3-031-38548-3_17
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/840
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/BF00124895
https://doi.org/10.1007/BF00124895
https://doi.org/10.1007/978-3-031-22969-5\_2
https://doi.org/10.1007/978-3-031-22969-5\_2
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2023/1784
https://doi.org/10.46586/TCHES.V2023.I3.30-73
https://doi.org/10.46586/tches.v2023.i3.30-73
https://doi.org/10.46586/tches.v2023.i3.30-73


16

[24] J.L. Fan and C. Paar. “On efficient inversion in tower fields of characteristic two”. In:
Proceedings of IEEE International Symposium on Information Theory. 1997, pp. 20–.
doi: 10.1109/ISIT.1997.612935.

[25] Jean-Charles Faugère and Chenqi Mou. “Sparse FGLM algorithms”. In: Journal
of Symbolic Computation 80 (2017), pp. 538–569. issn: 0747-7171. doi: https:
//doi.org/10.1016/j.jsc.2016.07.025. url: https://www.sciencedirect.
com/science/article/pii/S0747717116300700.

[26] Praveen Gauravaram et al. “Grøstl - a SHA-3 candidate”. In: Symmetric Cryptography,
11.01. - 16.01.2009. Ed. by Helena Handschuh et al. Vol. 09031. Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009.
url: http://drops.dagstuhl.de/opus/volltexte/2009/1955/.

[27] Lorenzo Grassi et al. Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications.
Cryptology ePrint Archive, Paper 2022/403. https://eprint.iacr.org/2022/403.
2022. url: https://eprint.iacr.org/2022/403.

[28] Lorenzo Grassi et al. “Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Appli-
cations”. In: Advances in Cryptology - CRYPTO 2023 - 43rd Annual International
Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part III. Ed. by Helena Handschuh and Anna Lysyanskaya.
Vol. 14083. Lecture Notes in Computer Science. Springer, 2023, pp. 573–606. doi:
10.1007/978-3-031-38548-3\_19. url: https://doi.org/10.1007/978-3-031-
38548-3\_19.

[29] Lorenzo Grassi et al. Monolith: Circuit-Friendly Hash Functions with New Nonlinear
Layers for Fast and Constant-Time Implementations. Cryptology ePrint Archive,
Paper 2023/1025. https://eprint.iacr.org/2023/1025. 2023. url: https:
//eprint.iacr.org/2023/1025.

[30] Lorenzo Grassi et al. “Poseidon: A New Hash Function for Zero-Knowledge Proof
Systems”. In: 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021. Ed. by Michael Bailey and Rachel Greenstadt. USENIX Association, 2021,
pp. 519–535. url: https://www.usenix.org/conference/usenixsecurity21/
presentation/grassi.

[31] Lorenzo Grassi et al. “Poseidon: A New Hash Function for Zero-Knowledge Proof
Systems”. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 519–535. isbn: 978-1-939133-24-3. url: https://www.
usenix.org/conference/usenixsecurity21/presentation/grassi.

[32] Lorenzo Grassi et al. “Reinforced Concrete: A Fast Hash Function for Verifiable
Computation”. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’22. Los Angeles, CA, USA: Association for
Computing Machinery, 2022, 1323–1335. isbn: 9781450394505. doi: 10 . 1145 /
3548606.3560686. url: https://doi.org/10.1145/3548606.3560686.

[33] Jincheol Ha et al. “Rubato: Noisy Ciphers for Approximate Homomorphic Encryp-
tion”. In: Advances in Cryptology – EUROCRYPT 2022. Ed. by Orr Dunkelman and
Stefan Dziembowski. Cham: Springer International Publishing, 2022, pp. 581–610.
isbn: 978-3-031-06944-4.

[34] Phil Hebborn and Gregor Leander. “Dasta - Alternative Linear Layer for Rasta”.
In: IACR Trans. Symmetric Cryptol. 2020.3 (2020), pp. 46–86. doi: 10.13154/tosc.
v2020.i3.46-86. url: https://doi.org/10.13154/tosc.v2020.i3.46-86.

[35] Ming-Deh A. Huang, Michiel Kosters, and Sze Ling Yeo. “Last Fall Degree, HFE,
and Weil Descent Attacks on ECDLP”. In: Advances in Cryptology – CRYPTO 2015.
Ed. by Rosario Gennaro and Matthew Robshaw. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 581–600. isbn: 978-3-662-47989-6.

https://doi.org/10.1109/ISIT.1997.612935
https://doi.org/https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/https://doi.org/10.1016/j.jsc.2016.07.025
https://www.sciencedirect.com/science/article/pii/S0747717116300700
https://www.sciencedirect.com/science/article/pii/S0747717116300700
http://drops.dagstuhl.de/opus/volltexte/2009/1955/
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://doi.org/10.1007/978-3-031-38548-3\_19
https://doi.org/10.1007/978-3-031-38548-3\_19
https://doi.org/10.1007/978-3-031-38548-3\_19
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2023/1025
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://doi.org/10.1145/3548606.3560686
https://doi.org/10.1145/3548606.3560686
https://doi.org/10.1145/3548606.3560686
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://doi.org/10.13154/tosc.v2020.i3.46-86


Tomer Ashur, Mohammad Mahzoun, Jim Posen, Danilo Šijačić 17

[36] Anatolii Karatsuba and Yu Ofman. “Multiplication of Multidigit Numbers on Au-
tomata”. In: Soviet Physics Doklady 7 (Dec. 1962), p. 595.

[37] Nathan Keller and Asaf Rosemarin. “Mind the Middle Layer: The HADES Design
Strategy Revisited”. In: Advances in Cryptology - EUROCRYPT 2021 - 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II. Ed. by Anne Canteaut
and François-Xavier Standaert. Vol. 12697. Lecture Notes in Computer Science.
Springer, 2021, pp. 35–63. doi: 10.1007/978-3-030-77886-6\_2. url: https:
//doi.org/10.1007/978-3-030-77886-6\_2.

[38] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. “Novel Polynomial Basis
and Its Application to Reed-Solomon Erasure Codes”. In: 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science. 2014, pp. 316–325. doi: 10.1109/
FOCS.2014.41.

[39] Fukang Liu, Mohammad Mahzoun, and Willi Meier. Modelling Ciphers with Overde-
fined Systems of Quadratic Equations: Application to Friday, Vision, RAIN and
Biscuit. Cryptology ePrint Archive, Paper 2024/786. https://eprint.iacr.org/
2024/786. 2024. url: https://eprint.iacr.org/2024/786.

[40] Pierrick Méaux et al. “Improved Filter Permutators for Efficient FHE: Better In-
stances and Implementations”. In: Progress in Cryptology – INDOCRYPT 2019. Ed.
by Feng Hao, Sushmita Ruj, and Sourav Sen Gupta. Cham: Springer International
Publishing, 2019, pp. 68–91. isbn: 978-3-030-35423-7.

[41] Pierrick Méaux et al. “Towards Stream Ciphers for Efficient FHE with Low-Noise
Ciphertexts”. In: Advances in Cryptology – EUROCRYPT 2016. Ed. by Marc Fischlin
and Jean-Sébastien Coron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 311–343. isbn: 978-3-662-49890-3.

[42] Matthias Johann Steiner. A Zero-Dimensional Gröbner Basis for Poseidon. Cryptol-
ogy ePrint Archive, Paper 2024/310. https://eprint.iacr.org/2024/310. 2024.
url: https://eprint.iacr.org/2024/310.

[43] Matthias Johann Steiner. Zero-Dimensional Gröbner Bases for Rescue-XLIX. Cryp-
tology ePrint Archive, Paper 2024/468. https://eprint.iacr.org/2024/468.
2024. url: https://eprint.iacr.org/2024/468.

[44] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. “Rescue-Prime: a Standard
Specification (SoK)”. In: IACR Cryptol. ePrint Arch. (2020), p. 1143. url: https:
//eprint.iacr.org/2020/1143.

[45] Alan Szepieniec et al. The Tip5 Hash Function for Recursive STARKs. Cryptology
ePrint Archive, Paper 2023/107. https://eprint.iacr.org/2023/107. 2023. url:
https://eprint.iacr.org/2023/107.

[46] Doug Wiedemann. “An Iterated Quadratic Extension of GF (2)”. In: The Fibonacci
Quarterly 26.4 (1988), pp. 290–295.

https://doi.org/10.1007/978-3-030-77886-6\_2
https://doi.org/10.1007/978-3-030-77886-6\_2
https://doi.org/10.1007/978-3-030-77886-6\_2
https://doi.org/10.1109/FOCS.2014.41
https://doi.org/10.1109/FOCS.2014.41
https://eprint.iacr.org/2024/786
https://eprint.iacr.org/2024/786
https://eprint.iacr.org/2024/786
https://eprint.iacr.org/2024/310
https://eprint.iacr.org/2024/310
https://eprint.iacr.org/2024/468
https://eprint.iacr.org/2024/468
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107

	Introduction
	Preliminaries
	Vision
	Weil Descent
	Fake Weil Descent
	Binary Towers

	Vision Mark-32
	Inverse Function
	Linearized Affine Layer
	MDS Matrix
	Sponge Construction

	Security of Vision Mark-32
	Differential Crytpanalysis
	Linear Cryptanalysis
	Interpolation Attacks
	Gröbner Basis Attacks
	Determined System
	Overdetermined System


	Implementation
	Tower field arithmetic
	Vision Mark-32 permutation
	Performance comparison

	Conclusion

