
Cougar: Cubic Root Verifier Inner Product
Argument under Discrete Logarithm Assumption

Hyeonbum Lee, Seunghun Paik, Hyunjung Son, and Jae Hong Seo⋆

Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{leehb3706, whitesoonguh, dk9050rx, jaehongseo}@hanyang.ac.kr

Abstract. An inner product argument (IPA) is a cryptographic primi-
tive used to construct a zero-knowledge proof system, which is a notable
privacy-enhancing technology. We propose a novel efficient IPA called
Cougar. Cougar features cubic root verifier and logarithmic communica-
tion under the discrete logarithm (DL) assumption. At Asiacrypt2022,
Kim et al. proposed two square root verifier IPAs under the DL assump-
tion. Our main objective is to overcome the limitation of square root
complexity in the DL setting. To achieve this, we combine two distinct
square root IPAs from Kim et al.: one with pairing (Protocol3; one was
later named Leopard) and one without pairing (Protocol4). To construct
Cougar, we first revisit Protocol4 and reconstruct it to make it compatible
with the proof system for the homomorphic commitment scheme. Next,
we utilize Protocol3 as the proof system for the reconstructed Protocol4.
Finally, to facilitate proving the relation between elliptic curve points
appearing in Protocol4, we introduce a novel Plonkish-based proof sys-
tem equipped with custom gates for mixed elliptic curve addition. We
show that Cougar indeed satisfies all the claimed features, along with
providing a soundness proof under the DL assumption. In addition, we
implemented Cougar in Rust, demonstrating that the verification time of
Cougar increases much slowly as the length of the witness N grows, com-
pared to other IPAs under the DL assumption and transparatent setup:
BulletProofs and Leopard. Concretely, Cougar takes 0.346s for verification
in our setting when N = 220, which is a 50× speed-up from BulletProofs.

1 Introduction

Zero-Knowledge Proof (ZKP) is one of the privacy-enhancing technologies
spotlighted by many international organizations and others [48]. ZKP is a proto-
col allowing a prover to convince a verifier that a statement is true without leak-
ing any additional information [35]. ZKP schemes are employed as foundational
components in various cryptographic applications, including identification [28,
23], verifiable computation [9, 11, 56, 14], range proofs [18, 25], confidential trans-
actions [54, 18, 40, 25, 34], and incrementally verifiable computation [17, 19]. To

⋆ Corresponding Author.

2 Lee et al.

Schemes Comm. Prover Verifier Assumption Setup Pairing
Updatable IPA[26] O(log2N) O(N) O(log2N) DL, DPair Trusted Yes

Dory[45] O(log2N) O(N) O(log2N) SXDH Trustless Yes
Bulletproofs[13, 18] O(log2N) O(N) O(N) DL Trustless No

Leopard[43, 42] O(log2N) O(N) O(
√
N) DL Trustless Yes

Protocol4[43] O(log2N) O(N) O(
√
N log2N) DL Trustless No

TENET[44] O(
√

log2N) O(N · 2
√

log2 N) O(N/2
√

log2 N) DL, DPair Trustless Yes
This Work O(log2N) O(N) O(3

√
N
√

log2N) DL Trustless Yes
Comm., Prover, and Verifier mean cost of communication, prover computation, and ver-
ifier computation, respectively. Pairing means requirement of pairing-friendly groups.

Table 1. Comparison Table of IPAs for length-N vectors

this end, ZKP for proving the satisfiability of the arithmetic (AC) is essential,
and several constructions have been proposed [39, 13, 18, 8, 32, 21, 36, 24].

Among them, one notable approach is to utilize an inner product argu-
ment (IPA) as a building block of the ZKP scheme [13, 18, 21, 45, 25]. Bootle
et al. [13] first proposed an IPA with logarithmic proof size under the discrete
logarithm (DL) assumption, and later, Bünz et al. [18] improved the IPA, which
is called Bulletproofs. In [21], Bünz et al. proposed a paradigm for constructing
ZKPs by applying a polynomial commitment scheme (PCS), which can be seen
as a specialized form of IPA, to a polynomial interactive oracle proof (PIOP)
system. Following this paradigm, the complexity of ZKPs heavily relies on that
of the IPA. Hence, the efficient construction of an IPA is crucial for designing
efficient ZKPs.

Bulletproofs is a widely known IPA because of its efficient proof size and
lack of reliance on trusted parties. However, one of the main drawbacks of Bul-
letproofs is its linear verification cost, which makes it challenging to apply in
certain applications, such as verifiable computation and incrementally verifiable
computation. To avoid linear verification, Daza et al. [26] proposed a sublin-
ear verifier IPA using bilinear pairing. However, the sublinear IPA [26] requires
a trusted setup, which means that a trusted third party is necessary to gen-
erate a common reference string (CRS), whereas Bulletproofs does not. After,
Lee [45] proposed a sublinear pairing-based IPA, called Dory, without a trusted
setup. However, Dory depends on stronger cryptographic assumptions, such as
the symmetric external Diffie-Hellman (SXDH) assumption.

Without relying on more cryptographic assumptions than Bulletproofs, Kim
et al. [43] proposed two square root verifier IPAs, pairing-based IPA (Protocol3)
and pairing-free IPA (Protocol4). Both IPAs provide linear prover and logarithm
communication, equivalent to Bulletproofs. In [42], Kim et al. presented opti-
mizations and a concrete implementation of Protocol3, which is called Leopard.

Contribution. In this paper, we introduce the first cubic root verifier and loga-
rithmic communication IPA, called Cougar, under the DL assumption with trans-
parent setup. Our IPA maintains the same assumptions and setup as previous
IPAs, such as [13, 18, 43]. In Table 1, we provide a comparison on computation
and communication complexity between previous IPA proposals and ours.

Cubic Root Verifier Inner Product Argument 3

To achieve cubic root verifier, we deepen our understanding of previous
paring-free IPA Protocol4 from the lens of a two-tier commitment scheme. From
this, we present a generalization of Protocol4 and improve its verifier’s complex-
ity by combining with Leopard in the second layer. With these framework-level
improvements, we also propose novel techniques to efficiently deal with relations
between elliptic curve points in Protocol4. First, we present a Plonkish-based
proof system tailored for these relations, which utilizes new custom gates for
mixed elliptic curve group operations. Moreover, we present a Plonk-friendly en-
coding method for a homomorphic PCS, enabling an efficient consistency check
between committed vectors and intermediate wire values in AC.

We prove that Cougar satisfy the claimed features under the DL assumption.
Furthermore, we also conducted experimental analyses of Cougar by implement-
ing it in our experimental environment. We compared Cougar with other previous
IPAs under the same setting: BulletProofs and Leopard. We showed that the ver-
ification cost of Cougar increases much slower than these two prior works as the
length of the witness vectors increases.

1.1 Technical Overview

Two-tier Commitment with Proof. We first revisit Protocol4, pairing-free
square root verifier IPA [43]. The main idea of Protocol4 is a two-tier commitment
scheme with a proof for the second layer. The two-tier commitment scheme
comprises two layers. In the first layer, mn-length vectors are compressed into
n elliptic curve points using a parallel Pedersen commitment scheme with a
m-dimensional commitment key. Subsequently, these n elliptic curve points are
interpreted as 3n-length vectors in the embedding field. In the second layer,
these vectors are further compressed into a single elliptic curve point through a
Pedersen commitment scheme with a 3n-dimensional commitment key.

The proof of the second layer is intricately connected to the commitment
scheme used in the second layer. Concretely, the proof should ensure knowledge of
the first layer results and the elliptic curve relation between them. To address this
issue, homomorphic commitment and a related proof system are required. From
this viewpoint, we generalize the second layer commitment from the Pedersen
commitment to any homomorphic commitments.

Proof for Elliptic Curve Relation. The second layer proof is about the el-
liptic curve relation. The proof is constructed by decomposing the elliptic curve
relation to the arithmetic relation over the embedding field and then adapting
the proof system for the arithmetic relation. In [43], they adopted a projective
representation for the arithmetization of the elliptic curve operation because of
the simple expression of complete addition. On the other hand, if we employ
affine representation for the second layer, then the length of the commitment
key for the second layer can be reduced to 2n. In particular, [60] proposed an
efficient proof for the complete addition formula between two points with affine
representation using a Plonkish proof system. However, group operations in affine
representation are inefficient for the prover because of costly modular inversions.

4 Lee et al.

To avoid this while benefiting from the reduced 2n-length commitment key, we
present a novel Plonkish-based proof for the mixed addition, i.e., an addition
between curve points of different projective and affine representations. Our con-
struction is based on a well-known complete addition formula [53] that is widely
used in many implementations of elliptic curves, so the additional computational
overhead for constructing an execution trace becomes negligible.

Plonk-Friendly Extended Polynomial Commitment Scheme. In the proof
of the second layer, the prover claims knowledge of vectors and the corresponding
elliptic curve relation. Constructing a proof system that satisfies both conditions
is intricate because the elliptic curve relation is associated with all committed
vectors. To address this, we propose a Plonk-friendly extended PCS constructed
from a homomorphic PCS compatible with Plonkish proof system for elliptic
curve operations. Concretely, the new PCS helps to show the consistency of
committed vectors and wire polynomials from Plonkish arithmetization.

Cubic Root Verifier Inner Product Argument. From the above results,
we conclude that the protocol features O(log2 mn) communication and O(m +
∥VEval(n log2 m)∥), where ∥VEval(n log2 m)∥ is the verifier complexity of Eval, the
evaluation protocol of the PCS for degree O(n log2 m) polynomials. Then, we
apply Leopard evaluation protocol, which features square root verifier complex-
ity. Finally, we set the parameters m = 3

√
N and n =

3
√
N2, where N is the

length of the witness vectors. Then, the total verifier complexity is O(m +
∥VEval(n log2 m)∥) = O(3

√
N + 3

√
N
√

log2 N), which is the cubic root of N .

1.2 Related Works

ZK Argument based on Discrete Logarithm Setting. Groth [38] first
proposed a sublinear ZK argument for AC under the DL assumption, and Seo
[55] improved it. These works also feature constant round complexity. Later
works [13, 18, 21, 45, 25, 43] focus on reducing communication complexity (to log-
arithmic scale) rather than round complexity (allowing logarithmic complexity).
Starting from Bulletproofs [13, 18], various works have been proposed to im-
prove the verifier complexity of Bulletproofs [45, 25, 43, 27]. In a different view
point, Kim et al. [43] proposed a sublogarithmic communication ZK argument
for the first time, and then Lee et al. [44] enhanced it from a linear verifier cost
to a sublinear one with sublogarithmic communication. Furthermore, Zhang et
al. [61] proposed an efficient framework for IPA to handle arbitrary length of
vectors directly, and some works [33, 59] proposed improved IPAs for specific
applications.

ZK Argument based on Unknown order group. DL-based ZK arguments
feature a small proof size but require a large verification cost. To handle this,
cryptographic groups with an unknown order are also considered. In this setting,
Búnz et al. constructed the first transparent ZK argument with logarithmic proof
size and verifier cost simultaneously [21]. Under the generic group model on

Cubic Root Verifier Inner Product Argument 5

unknown order setting, Arun et al. [4] proposed a ZK argument with a constant
proof size. However, both schemes feature quasi-linear prover complexity.

ZK Argument based on Lattice Setting. To overcome vulnerability against
quantum computer-aided attacks, several ZK arguments from cryptographic as-
sumptions on lattice have been proposed. Baum [5] proposed the first ZK ar-
gument for AC having sub-linear communication cost under the hardness of
the short integer solution (SIS) problem. Bootle [16] proposed a plausibly post-
quantum non-PCP approach ZK argument that has first poly-logarithmic com-
munication cost and improved [5]. Lyubashevsky [47] presented a ZK argument
system for the computations between integer commitments. Recently, Bünz [20]
showed that the protocol of Bulletproofs [18] can be instantiated with plausibly
post-quantum commitments from lattice hardness assumptions (SIS/R-SIS/M-
SIS). Some other works [6, 3] presented interactive ZK proof systems under the
hardness of the SIS problem or ring learning with errors (RLWE), which im-
proved the proof size or inefficiency of the sampling technique. Although all
these works have improved the communication cost up to poly-logarithm, it is
still larger than ZK arguments based on the DL assumption.

ZK Argument based on Collision Resistant Hash function. In another
direction for post-quantum security, ZK schemes based on cryptographic hash
functions [2, 10, 8] have also been proposed. These earlier works require quasi-
linear prover complexity. Later, Bootle et al. [15] proposed a tensor IOP com-
bined with a cryptographic hash function, achieving asymptotically linear prover
time. Golovnev et al. [37] improved the idea of Bootle et al. by employing a new
linear-time encodable code. Recently, Orion [58] is further proposed as a system
that performs better than Brakedown in terms of the soundness, proof size, and
verifier’s complexity, and Zhang et al. [62] optimized the works [2, 10] to reduce
the prover and verifier’s computation cost and the proof size.

Organization. Section 2 provides some preliminary definitions about argument
of knowledge and various types of commitment schemes, such as two-tier com-
mitments, homomorphic commitments, or polynomial commitments, and a brief
overview of Plonkish. In Section 3, we revisit and generalize Protocol4 to con-
struct our cubic root verifier IPA, Cougar. Section 4 introduces further opti-
mization techniques for instantiating Cougar in terms of both asymptotic and
concrete efficiencies. Our implementation results are provided in Section 5.

2 Preliminary

2.1 Definitions and Notations

We first define the notations used in the paper. [ℓ] denotes a set of integers
from 1 to ℓ. We denote a negligible function as negl : N → R, which satisfies
that: for any c ∈ N, there exists Nc such that negl(λ) < 1/λc for all λ > Nc. For

6 Lee et al.

a prime p, we denote asymmetric bilinear groups of order p, G1,G2, and Gt with
a non-degenerated bilinear map e : G1 ×G2 → Gt. We use additive notation to
describe group operations on G1, G2, and Gt. To denote a scalar multiplication,
we denote [k]G for a scalar k ∈ Zp and G ∈ G. We prefer to use upper and
lowercase letters to denote group elements and field elements, respectively. We
use bold font to represent vectors in Zm

p or Gm. For a vector a ∈ Zm
p and i ∈ [m],

we use ai(non-bold style letter with a subscript i) to denote the i-th element of a.
We use ∥ notation to represent concatenation of two vectors, i.e., for a, b ∈ Zm

p ,
a ∥ b = (a1, . . . , am, b1, . . . , bm). For a, b ∈ Zm

p and G,H ∈ Gm, we use the
following vector notations:

– Component-wise addition : a + b = (a1 + b1, . . . , am + bm) ∈ Zm
p and

G+H = (G1 +H1, . . . , Gm +Hm) ∈ Gm.
– Component-wise product : a ◦ b = (a1b1, . . . , ambm) ∈ Zm

p .
– Multi-Scalar Multiplication : [x]G =

∑
i∈[m][xi]Gi ∈ G.

– Inner Pairing Product : E(G,H) =
∑

i∈[m] e(Gi, Hi) ∈ Gt, where G ∈
Gm

1 and H ∈ Gm
2 .

Parallel Multi-Scalar Multiplication. Let a ∈ Zm×n
p be a matrix and G ∈

Gm be group elements. We denote [a]G := ([a1]G, . . . , [an]G), where ai ∈ Zm
p

is the i-th column vector of matrix a.

Argument System for Relation R. Let R be a polynomial-time verifiable
relation consisting of common reference string (CRS), statement, and witness,
denoted by σ, x, and w respectively. An interactive argument system for re-
lation R consists of three probabilistic polynomial-time algorithms (PPTs), a
key generation algorithm K, a prover algorithm P, and a verifier algorithm V.
The K algorithm takes the security parameter λ and outputs CRS, which is
the input of P and V. P and V generate a transcript interactively, denoted by
tr ← ⟨P(σ, x, w),V(σ, x)⟩. At the end of the transcript, V outputs a bit, 0 or 1,
which means reject or accept, respectively.

Argument of Knowledge. An argument of knowledge (AoK) is a special case
of an argument system that satisfies the properties of completeness and wit-
ness extractability. As previous works did [18, 43], we consider witness-extended
emulation [46] for the latter, which is equivalent to knowledge soundness.

Definition 1 (Perfect Completeness). Let (K,P,V) be an argument system
and R be a polynomial-time verifiable relation. We say that the argument system
(K,P,V) for the relation R has perfect completeness if, for every PPT adversary
A, the following probability equation holds:

Pr

 tr ← ⟨P(σ, x, w),V(σ, x)⟩
tr is accepting

∣∣∣∣∣∣
σ ← K(1λ);
(x,w)← A(σ)
∧(σ, x;w) ∈ R

 = 1

Cubic Root Verifier Inner Product Argument 7

Definition 2 (Computational Witness Extended Emulation). Let (K,P,V)
be an argument system and R be a polynomial-time verifiable relation. We say
that the argument (P,V) has computational witness-extended emulation if, for
every deterministic polynomial prover P∗, which may not follow P, and all pairs
of interactive polynomial-time adversaries (A1,A2), there exists a polynomial
time emulator E, the following probability equation holds:∣∣∣∣∣∣∣∣∣

Pr

[
A1(tr) = 1

σ ← K(1λ); (x, s)← A2(σ);
tr ← ⟨P∗(σ, x, s),V(σ, x)⟩

]
−

Pr

[
A1(tr) = 1 ∧
(σ,w, x) ∈ R

σ ← K(1λ); (x, s)← A2(σ);
(tr, w)← EO(σ, x), tr is accepting

]
∣∣∣∣∣∣∣∣∣ < negl(λ)

The emulator E can access the oracle O = ⟨P∗(σ, x, s),V(σ, x)⟩, which outputs
the transcript between P∗ and V. E permits to rewind P∗ at a specific round and
rerun V using fresh randomness. s can be considered as the state of P∗, which
includes randomness.

Definition 3. We say that the argument system (K,P,V) is an argument of
knowledge for relation R if the argument has (perfect) completeness and (com-
putational) witness-extended emulation.

Trusted Setup. In some arguments, the key generation algorithm takes a trap-
door that should not be revealed to anyone, including the prover and verifier.
In this case, CRS generation should be run by a trusted third party. A setting
requiring a trusted party is called the trusted setup.

Non-interactive Argument in the Random Oracle Model. We call an
interactive argument a public coin if V outputs without decision bits constitut-
ing a uniformly random message without dependency of P’s messages. Fiat and
Shamir [29] proposed a method to transform any public coin interactive argu-
ment into a non-interactive one using the random oracle model. The approach
involves replacing V’s random messages with random oracle outputs, where the
inputs are derived from previous messages at that point.

Assumptions. Let G be a group generator that takes security parameters λ
and then outputs G, describing a group of order p.

Definition 4 (Discrete Logarithm Relation Assumption). We say that G
satisfies the discrete logarithm relation (DLR) assumption if, for all non-uniform
polynomial-time adversaries A, the following inequality holds:

Pr

[
a ̸= 0 ∧ ga = 1G

∣∣∣∣∣ (p, g,G)← G(1λ), g $← Gn;
a← A(g, p, g,G)

]
≤ negl(λ)

It is well-known that the discrete logarithm relation (DLR) assumption is
equivalent to the discrete logarithm (DL) assumption [18, 43].

8 Lee et al.

Definition 5 (Commitment Scheme). A commitment scheme C consists of
three PPT algorithms: a key generation Gen, a commitment Com, and an open
Open. A commitment scheme C = (Gen,Com,Open) over a message space M, a
random space R, and a commitment space C is defined by:

– Gen(1λ, ℓ)→ ck : On input security parameter λ and dimension of message
space ℓ, sample commitment key ck

– Com(ck,m; r)→ C : Take commitment key ck, message m ∈ M, and ran-
domness r ∈ R, output commitment C ∈ C

– Open(ck,m, r, C)→ 0/1 : Take commitment key ck, message m ∈ M, ran-
domness r ∈ R, and commitment C ∈ C output 1 if Com(ck,m; r) = C, 0
otherwise.

Since the Open algorithm can be described by using Com algorithm, we omit the
Open algorithm from the commitment scheme C. Now, we call C = (Gen,Com) a
commitment scheme if the following properties hold:

Binding: For any expected PPT adversary A,

Pr

[
m0 ̸= m1

∣∣∣∣ ck← Gen(1λ, ℓ); (m0, r0,m1, r1)← A(ck)
∧C0 = C1where Ci = Com(ck,mi; ri)

]
≤ negl(λ)

Hiding: For any expected PPT adversary A = (A1,A2)∣∣∣∣∣∣Pr
b = b′

∣∣∣∣∣∣
ck← Gen(1λ, ℓ); (m0,m1, state)← A1(ck);

b
$←{0, 1}, r $←R,

C ← Com(ck,mb; r); b
′ ← A2(ck, C, state),

− 1
2

∣∣∣∣∣∣ ≤ negl(λ)

Additionally, we call a commitment scheme C is (additively) homomorphic if the
following property holds:
(Additive) Homomorphic: For any commitment key ck ← Gen(1λ, ℓ) and
pairs of message-randomness (m0, r0), (m1, r1) ∈ M × R, the following equality
holds: Com(ck,m0; r0) + Com(ck,m1; r1) = Com(ck,m0 +m1; r0 + r1)

Homomorphic Vector Commitment Schemes. A homomorphic vector com-
mitment scheme is a homomorphic commitment for N -dimensional message, etc.
ZN
p or GN . We introduce two widely used homomorphic vector commitment

schemes: Pedersen vector commitment [49] and AFGHO group commitment [1].

Pedersen vector commitment. Pedersen vector commitment CPed = (GenPed,ComPed)
is a commitment scheme over message space ZN

p . Pedersen vector commitment
provides perfect hiding and computational binding under the DL assumption.
Specially, we sometimes use subscript Ped, p for Pedersen commitment over group
Gp of order p to distinguish base group.

AFGHO group commitment. AFGHO group commitment CGC = (GenGC,ComGC)
is a commitment scheme over message space GN

1 . CGC uses a bilinear pairing for
the commitment algorithm.

Cubic Root Verifier Inner Product Argument 9

– GenPed(1
λ, N)→ (G, H):

1. Sample G
$←GN and H $←G

2. Output ck = (G, H) ∈ GN ×G

– ComPed((G, H),a; r)→ C:

1. Compute C = [a]G+ [r]H
2. Output C ∈ G

– GenGC(1
λ, N)→ (F ,K):

1. Sample F
$←GN

2 and K $←Gt

2. Output ck = (F ,K) ∈ GN
2 ×Gt

– ComGC((F ,K),G; r)→ C:

1. Compute C = E(G,F) + [r]K
2. Output C ∈ Gt

Fig. 1. Homomorphic Vector Commitment Schemes

Two-tier Commitment Scheme. A two-tier commitment is a commitment
scheme for a two-dimensional array, e.g. Zm×n

p . Using two-tier commitment
scheme has some merits. To construct an IPA with a two-tier commitment,
the size of the common reference string (CRS) can be reduced sublinear of
N = mn, concretely, O(n + m). This reduced CRS leads to a reduction in
the verification cost of IPA [22, 45, 43, 42]. A two-tier commitment scheme is
constructed by combining two distinct commitment schemes C1 = (Gen1,Com1)
and C2 = (Gen2,Com2). For a matrix in Zm×n

p , commit m row vectors using the
first commitment algorithm Com1 in parallel. After then, with regard m commit-
ments from Com1 as a message of Com2, use the second commitment algorithm
Com2, and output it.

Definition 6 (Two-tier Commitment Scheme). Let C1 = (Gen1,Com1) and
C2 = (Gen2,Com2) be commitment schemes over (message,commitment,randomness)
space (Zn

p ,C1,R1) and (Cm
1 ,C2,R2) respectively. Then, the commitment scheme

C = (Gen,Com) over space ((Zm×n
p ,C2,R1 × R2) is called as a two-tier commit-

ment scheme based on C1 and C2 defined by:
– Gen(1λ,mn)→ ck = (ck1, ck2):

1. Run Gen1(1
λ, n)→ ck1

2. Run Gen2(1
λ,m)→ ck2

3. Return ck = (ck1, ck2)

– Com(ck,M ; (r, rf))→ C:
1. Compute Com1(ck1,Mi; ri)→ Ci,∀i
2. Compute Com2(ck2,C; rf)→ C
3. Return C

Specially, we use roman-style to denote commitment from two-tier commit-
ment schemes. In terms of IPA, the binding property of the commitment is
sufficient for ensuring soundness. So, we omit the randomness r in the commit-
ment algorithm, which does not affect the binding property. Hereafter, we simply
write Com(ck,M) to describe the commitment algorithm for a message M .

Pairing-based Two-tier Commitment Scheme. From two commitment
schemes C1 = (GenPed,ComPed) and C2 = (GenGC,ComGC) over spaces (Zmn

p ,Gn
1 ,G1)

and (Gm
1 ,Gm

2 ,Gt) respectively, one can construct a homomorphic two-tier com-
mitment scheme. The homomorphic two-tier commitment is widely used for con-
structing sublinear verifier IPA schemes [22, 45, 43]. The homomorphic property
helps to apply the folding technique in Bulletproofs; however, this construction
is restricted to a choice of a base group: pairing-friendly elliptic curves.

10 Lee et al.

Polynomial Commitment Scheme. A polynomial commitment scheme (PCS) [41,
21] is a special case of the commitment scheme that commits the given poly-
nomial within the specific degree bound d. PCS allows convincing polynomial
evaluation without opening the polynomial itself. Concretely, PCS contains an
argument system Eval = (K,P,V) for the following relation:

REval =

{
(ckPC, C ∈ C, z, y ∈ Zp, d ∈ N; f ∈ Z≤d

p [X]) :
C = Com(ckPC, f(X)) ∧ y = f(z)

}
(1)

The formal definition of PCS is given as below:

Definition 7 (Polynomial Commitment Scheme). A polynomial commit-
ment scheme PCS = (Gen,Com,Eval) consists of key generation algorithms Gen,
commitment algorithm Com, and argument system Eval for the relation REval. We
call PCS = (Gen,Com,Eval) is a polynomial commitment scheme if the following
properties hold:

– The commitment scheme (Gen,Com) satisfies the binding property.
– The argument system Eval is an AoK for the relation REval in Eq. (1)

2.2 Plonkish: Proof for Elliptic Curve Relation

In Protocol4, one of the main bottlenecks was checking the relation between
elliptic curve points. More precisely, for elliptic curve points Li, Ri, Pi+1, Pi ∈
E(Zp) which are in fact commitments of corresponding messages, and a scalar
xi ∈ Zp, the relation of the form Pi+1

?
= [x−1

i]Li +Pi + [xi]Ri should be ensured
during the protocol. However, due to its construction, the commitment scheme
to produce each curve point is no longer homomorphic, so [43] took a strategy
to convert the relation into the AC. To this end, rather than using the affine
coordinate representation, they attempted to represent each elliptic curve point
as the projective coordinate representation, where the complete point addition
formula is known [53] for prime order short Weierstrass curves.

Plonk [32] is one of the well-known methods to represent the circuit satisfi-
ability of the given AC as the constraints system. By Lagrange interpolation,
the latter can be converted to showing the equality of two polynomials, which
can be proved efficiently by PIOP instantiated by PCS [21]. As shown in [31,
60], Plonk-style arithmetization can efficiently deal with custom gates, which are
arithmetic gates beyond addition or multiplication. For example, Plonkish [60]
supports custom gates and look-up operations, which is an extension of Plonk
by constructing a constraint system about the execution trace for running the
given AC. By utilizing Plonkish with custom gates for elliptic curve operations,
as proposed by [60] for affine representation, we can handle the elliptic curve
relation in Protocol4 more efficiently than the approach of [43]. The design for
the custom gate and execution trace is crucial for efficiency gain. Hence, we
devised new custom gates tailored for Protocol4 and constructed an execution
trace using them, each of which is presented in Section 4.1.

Cubic Root Verifier Inner Product Argument 11

Throughout this paper, we will denote PlonkishEval as the proof system for
Plonkish with the newly designed custom gate for mixed elliptic curve addi-
tion. Let us denote M as the number of columns in the execution trace and
{gi(X1, . . . XM)}Ng−1

i=0 as the custom gates used in the proof system. Here, Ng

denotes the number of types of gates. PlonkishEval takes a commitment key ckPC
for the underlying PCS, selector polynomials {si(X)}Ng−1

i=0 , custom gate polyno-
mials {gi(X1, . . . XM)}Ng−1

i=0 , and permutation polynomials {ri(X)}M−1
i=0 as pub-

lic inputs. For witnesses, PlonkishEval takes wire polynomials {w(i)(X)}M−1
i=0 that

encode each column in the execution trace. Here, polynomials in the public in-
puts encode the configuration of the given AC, whereas each wire polynomial
corresponds to the intermediate value that appeared during execution. We set
the witness polynomials corresponding to each coordinate of elliptic curve points.
The detailed procedure of PlonkishEval is provided in Appendix D.

3 Construction of Cubic Root Verifier IPA

3.1 Reconstruction of Protocol4

In this section, we generalize the IPA Protocol4 [43]. Before describing the
protocol, we focus on the structure of the commitment scheme used in Protocol4.

Doubly-Pedersen Two-tier Commitment Scheme. To remove reliance on
the pairing operation, Kim et al. proposed Pedersen commitment for the el-
liptic curve points, which are already committed by the Pedersen commitment
scheme. This approach can be viewed as a two-tier commitment scheme using
the Pedersen commitment on both the first and second layers. For convenience,
we call this commitment scheme as the Doubly-Pedersen two-tier commitment
scheme. The doubly-Pedersen two-tier commitment process for a ∈ Zm×n

p is as
follows: First, commit each row vector of a using Pedersen vector commitment
on the group of elliptic curve points G = E(Zq) over the field Zq. After the
first layer commitment, one gets n distinct elliptic curve points. For the second
layer commitment, one considers n elliptic curve points in E(Zq) as coordinates
of the field elements in Zq and then recommits them using the Pedersen vector
commitment on the elliptic curve Gq of order q.

Homomorphic Vector Commitment in Second Layer. Contrary to the
homomorphic commitment schemes, such as Pedersen commitment and AFGHO
group commitment, the doubly-Pedersen two-tier commitment scheme does not
have a homomorphic property [43]. For this reason, to apply the folding tech-
nique [13, 18] on the doubly-Pedersen commitment-based IPA, the prover should
send additional proofs to ensure the validity of group operations, which are
brought by Pedersen commitment in the first layer. Because the homomorphic
property of second commitments helps to construct additional proofs efficiently,
we prefer to use homomorphic commitment at the second layer. Additionally,
the role of the second commitment is to compress a large message into single

12 Lee et al.

Protocol.Row

Comm. : O(log2m)
Verifier : O(m)

Protocol.Col

Comm. : O(log2 n)
Verifier : O(log2 n)

AggMEC

Comm. : O(∥ΠEval(n log2m)∥)
Verifier : O(∥VEval(n log2m)∥)

Total Complexity
Comm. : O(log2mn+ ∥ΠEval(n log2m)∥)
Verifier : O(m+ ∥VEval(n log2m)∥)

Eval

PlonkishEval

Fig. 2. Overall Process of the Protocol

commitment, e.g., from ZN
q to C, so that the second commitment satisfies the

compression property; converts a N -dimensional message into a single element.
For a precise description, let us consider the Pedersen commitment scheme

C1 = (GenPed,ComPed) over (Zm
p ,Gp = E(Zq)) at the first layer and a homomor-

phic commitment scheme C2 = (Gen2,Com2) over (Z2n
q ,C) at the second layer.

At the second commitment, we consider group elements (elliptic curve points) as
pair of Zq elements following affine coordinates. Then, we can construct two-tier
commitment scheme CTC = (GenTC,ComTC) as follows:

– GenTC(1
λ,mn)→ ck = (G, ck2):

1. Run GenPed,p(1
λ, n)→ G ∈ Gn

p

2. Run Gen2(1
λ, 2m)→ ck2 ∈ G2m

q

3. Return ck = (G, ck2)

– ComTC(ck = (G, ck2),a ∈ Zm×n
p)→ C ∈ Gq:

1. Compute ComPed,p(G,ai)→ Ci ∈ Gp,∀i ∈ [m]
2. Compute Com2(ck2,C)→ C ∈ C
3. Return C

Using the commitment CTC, we consider IPA for the following relation:

Rm,n
GenPT4 =

{(
G,H ∈ Gm

p , ck2,P ∈ Gq, c ∈ Zp;a, b ∈ Zm×n
p

)
:

P = ComTC((G ∥H, ck2),a ∥ b) ∧ c = ⟨a, b⟩

}
(2)

We intend to construct an IPA in two parts: the reduction part and the proof
of the multi-elliptic curve (MEC) operation part. The reduction part reduces
the argument from the relation Rm,n

GenPT4 to Rm/2,n
GenPT4(Row-reduction) or R1,n

GenPT4

to R1,n/2
GenPT4(Column-reduction). The overall process of the proposed IPA is as

follows: first, the prover and verifier run row-wise reduction Protocol.Row recur-
sively until the row of the witness reaches m = 1. Then, they run column-wise
reduction Protocol.Col recursively until the column of the witness reaches n = 1.
Next is proof for the MEC operation part. In this part, the prover and veri-
fier run AggMEC for ensuring elliptic curve relation between witness vectors. In
this phase, Eval and PlonkishEval are used as subroutines. Notice that both have
verifier complexity ∥VEval(n log2 m)∥. We illustrate the overall process in Fig. 2.

Reduction and Store the States. In the reduction protocol, the prover and
verifier recursively run the reduction process: reduction from an argument for
vectors to those for half-sized vectors. Contrary to Bulletproofs [13, 18] or Leop-
ard [42], the prover and verifier store the history of reduction processes because

Cubic Root Verifier Inner Product Argument 13

Fig. 3. Format of stV and stP

the verifier has not been convinced of the group operation relation between re-
ceived commitments yet. The states stV and stP role recording the history of
the verifier and prover, respectively. stV and stP are used to run the aggregated
multi-elliptic curve operation, AggMEC, which guarantees the validity of the in-
ner value of commitment for every round. We illustrate states stV and stP in
Fig. 3. Hereafter, we denote µ = log2 m and ν = log2 n.

Row-wise Reduction. In row-wise reduction, the P sends crossed inner prod-
uct values cL, cR and commitments L,R, whose messages are pairs of half-sized
witness vectors, to V. Then, V sends challenge x to P. Contrary to other IPAs
based on homomorphic commitments, V cannot update the instance P̂ for the
next round. To resolve this issue, P sends an updated instance P̂ to V. In this
phase, V should verify the well-construction of P̂, but we postpone the verifica-
tion of it and run the row-wise reduction recursively until m = 1. At m = 1, P
and V run Protocol.Col. The description of Protocol.Row is given in Algorithm 1.

Column-wise Reduction. In column-wise reduction, the P sends crossed inner
product values cL and cR. Then, V sends a challenge x to P. The update process
is different from that of row-wise reduction because the first commitment key
is already compressed to a single element, G and H. In order to update the
instance, P parses the vector P to 4 parts and then constructs the half-length
updated vector P̂. At the end of Protocol.Col, P and V additionally run AggMEC
for knowledge of tuples of (L,R,P), which guarantees well-construction of P̂
for all rounds in both row-wise and column-wise reduction. The description of
Protocol.Col is given in Algorithm 2.

Theorem 1. Assume that both Protocol.Col and AggMEC provide perfect com-
pleteness and computational witness-extended emulation. Then, Protocol.Row in
Algorithm 1 has perfect completeness and computational witness-extended emu-
lation under the DL assumption.

Theorem 2. Assume that AggMEC provides perfect completeness and computa-
tional witness-extended emulation. Then, Protocol.Col in Algorithm 2 has perfect
completeness and computational witness-extended emulation under the DL as-
sumption.

14 Lee et al.

Algorithm 1 Protocol.Row
Protocol.Row(G,H, (ckk)

µ
k=s, ckCol,P, c, stV ;a, b, stp)

where ckk = (ckL,k, ckR,k, ckP,k), ckCol = (ckP,k)
µ+ν+1
k=µ+1

1: if m = 1, base case s = µ then:
2: P and V run Protocol.Col(G,H, ckCol,P, c, stV ;a, b, stP)
3: else
4: if stP =⊥ and stV =⊥ then
5: P sets P = [a]G ∥ [b]H and adds (·, ·,P) into the bottom row of stP .
6: V adds (ckP,0, ·, ·,P, ·) into the bottom row of stV .
7: else
8: P refers P in the bottom row of stP
9: end if

Set m̂ = m
2

and a = [aL∥aR], b = [bL∥bR], G = GL∥GR, H = HL∥HR

10: P computes cL, cR and L,R and sends them to V:
L = [aL]GR ∥ [bR]HL, R = [aR]GL ∥ [bL]HR ∈ G2n

p ,
cL = ⟨aL, bR⟩, cR = ⟨aR, bL⟩ ∈ Zp,
L = Com2(ckL,s,L), R = Com2(ckR,s,R) ∈ Gq

11: V chooses x $←Z∗
p and returns it to P

12: P computes P̂ and sends it to V:
P̂ = [x−1]L+ P + [x]R ∈ G2n

p , P̂ = Com2(ckP,s, P̂) ∈ Gq

13: Both P and V update:
Ĝ = GL + [x−1]GR, Ĥ = HL + [x]HR ∈ Gm̂

p , ĉ = x−1cL + c+ xcR ∈ Zp

14: P updates â = aL + xaR, b̂ = bL + x−1bR ∈ Zm̂×n
p .

15: V adds (cks,L,R, P̂, x) into the bottom row of stV .
16: P adds (L,R, P̂) into the bottom row of stP .
17: Both P and V run Protocol.Row(Ĝ, Ĥ, (ckk)

µ
k=s+1, ckCol, P̂, ĉ, stV ; â, b̂, stP)

18: end if

Due to space constraints, we defer the full proof to Appendix. A and B.

Proof of Multi-Elliptic Curve Operation: Algorithm 3. We now explain
how to construct multi-elliptic curve operation arguments AggMEC. Contrary
to [43], we unify and aggregate row-wise and column-wise multi-elliptic curve
operation proofs into a single protocol. That is, AggMEC guarantees the well-
constructed updated instances P̂ from every round of both row-wise and column-
wise reductions. Concretely, AggMEC checks that the k-th row of state tuples
(stV ; stP)k = (ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k)) satisfy the following:

1. Commitment

Lk = Com2(ckL,k,Lk),Rk = Com2(ckR,k,Rk) for k = 1, . . . , µ

Pk = Com2(ckP,k,P k) for k = 0, . . . , µ+ ν − 1 (3)
Pµ+ν = Com2(ck, [a]G ∥ [b]H)

Cubic Root Verifier Inner Product Argument 15

Algorithm 2 Protocol.Col
Protocol.Col(G,H, (ckP,k+µ)

ν
k=s,P, c, stV ;a, b, stP)

1: if n = 1, base case s = ν then:
2: P sends a and b to V
3: V checks c ?

= a · b and set P Pub = [a]G ∥ [b]H ∈ Z4
q

4: P and V run AggMEC(P Pub, stV ; stP)
5: else
6: if stP =⊥ and stV =⊥ then
7: P sets P = [a]G ∥ [b]H and adds (P) into the bottom row of stP

V adds (ckP,µ,P, ·) into the bottom row of stV .
8: else
9: P refers P in the bottom row of stP

10: end if
Set n̂ = n

2
and a = aL∥aR, b = bL∥bR, P = P (q1) ∥ P (q2) ∥ P (q3) ∥ P (q4)

11: P computes cL and cR and sends them to V:
cL = ⟨aL, bR⟩ ∈ Zp, cR = ⟨aR, bL⟩ ∈ Zp.

12: V chooses x $←Z∗
p and returns it to P

13: P computes P̂ and sends it to V:
P̂ = (P (q1)+[x]P (q2) ∥ P (q3)+[x−1]P (q4)) ∈ G2n̂

p , P̂ = Com2(ckP,µ+s, P̂) ∈ Gq

14: Both P and V compute ĉ = x−1cL + c+ xcR ∈ Zp

15: Additionally, P computes â = aL + xaR, b̂ = bL + x−1bR ∈ Zn̂
p .

16: V adds (ckP,µ+s, P̂, x) into the bottom row of stV .
17: P adds (P̂) into the bottom row of stP .
18: Both P and V run Protocol.Col(G,H, (ckP,k+µ)

ν
k=s+1, P̂, ĉ, stV ; â, b̂, stP)

19: end if

2. Elliptic Curve Operation on Gp = E(Zq)

µ−1∧
k=0

(
P k+1 = [x−1

k]Lk+1 + P k + [xk]Rk+1 ∈ G2n
p

)
(4)

µ+ν∧
k=µ

(
P k+1 = (P

(q1)
k + [xk]P

(q2)
k ∥ P (q3)

k + [x−1
k]P

(q4)
k) ∈ Gn/2k−µ

p)
)

(5)

Two Roots of Unity. To construct the protocol, we consider two roots of unity:
one for the commitment part and the other for the execution trace of the elliptic
operation. Using the two roots of unity, we encode vectors into interpolated
polynomial on the power of unities. First, we consider total number d of elements
consisting of message vectors Lk, Rk, and P k of Lk, Rk, and Pk. Since each Lk,
Rk consist of 2n elements for all k ∈ [µ], and P k consists of 2n elements for
k = 0, . . . µ and n/2k−µ−1 for all k = µ+ 1 . . . µ+ ν, the total number d should
be 6nµ+ 4n− 2. We denote the d-th root of unity as ζ.

Next, we consider the root of unity for the execution trace. In Eq. (4) and
(5), the elliptic curve operation consists of 4nµ+ n− 1 complete additions and

16 Lee et al.

Fig. 4. Structure of Wire Polynomial. Best viewed in color.

4nµ+4n−2 multi-scalar multiplications. Each multi-scalar multiplication can be
represented as 2 log2 q complete additions. Then, the total number of complete
additions for Eq. (4) and (5) is at most 8n(µ+1) log2 q. We choose a sufficiently
large integer D that satisfies D ≥ 8n(µ+1) log2 q and d|D (d is a divisor of D).
Next, we define the D-root of unity ξ, which will be used for interpolating the
wire polynomial in Plonkish. Note that ζ = ξt for some t and each ζi and ξi is
the root of the polynomial Xd − 1 and XD − 1 respectively.

Plonk-Friendly Extended Polynomial Commitment Scheme. To prove
the consistency of the wire polynomial and commitments Lk,Rk,Pk, we con-
struct a commitment scheme for the message vectors Lk,Rk and P k considering
compatibility with the polynomial commitment scheme. To this end, we first en-
code vectors Lk,Rk and P k into polynomials FL,k, FR,k, FP,k and then commit
them. The encoding function Enctype takes ξ, index k and a vector a, returning
a polynomial Ftype,k in Zq[X], where type ∈ {L,R, P}. The encoding process
extends 2n vectors to D-degree polynomials. We intend that each encoded func-
tion is activated at different positions. That is, for two encoded functions Ftype1,k1

and Ftype2,k2 with (type1, k1) ̸= (type2, k2), Ftype1,k1(ξ
i)Ftype2,k2(ξ

i) = 0 holds for
all i ∈ [D]. In our setting, decoding of a polynomial Ftype,k can be performed
uniquely when the type type and position k are determined. Furthermore, the
sum of two encoded functions preserves their original non-zero evaluations at ξi.

– EncL(ξ, k ∈ [µ],a ∈ Z≤2n
q)→ FL,k ∈ Zq[X]

Construct degree D polynomial FL,k(X) such that:

FL,k(ξ
i) =

{
a[j − 2n(k − 1)], if i = (3j − 2)t for 2n(k − 1) < j ≤ 2nk

0, otherwise

– EncR(ξ, k ∈ [µ],a ∈ Z≤2n
q)→ FR,k ∈ Zq[X]

Construct degree D polynomial FR,k(X) such that:

FR,k(ξ
i) =

{
a[j − 2n(k − 1)], if i = (3j − 1)t for 2n(k − 1) < j ≤ 2nk

0, otherwise

Cubic Root Verifier Inner Product Argument 17

Algorithm 3 AggMEC
AggMEC(P Pub, ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k))
ckk = (ckL,k, ckR,k, ckP,k), each ckk contains ckPC

1: P and V set A(i) =
∑µ

k=1(L
(i)
k +R

(i)
k) +

∑µ+ν
k=0 P

(i)
k for i ∈ {1, 2}

2: P sets a(i) =
∑µ

k=1(F
(i)
L,k + F

(i)
R,k) +

∑µ+ν
k=0 F

(i)
P,k for i ∈ {1, 2}:

F
(i)
L,k = EncL(ξ, k,L

(i)
k), F (i)

R,k = EncR(ξ, k,R
(i)
k), F (i)

P,k = EncP (ξ, k,P
(i)
k)

3: P construct wire polynomials {w(i)(X)}2i=1 from execution table with public in/out
P Pub and then computes W (1),W (2),Q(1),Q(2) and sends them to V:
q(i)(X) = w(i)(X)−a(i)(X)

Xd−1
,W (i) = ComPC(ckPC, w

(i)),Q(i) = ComPC(ckPC, q
(i))

4: V chooses z, ρ $←Zq and sends them to P.
5: P and V compute:

V =
∑2

i=1(
∑µ

k=1([ρ
4k−2−i]L

(i)
k + [ρ4k−i]R

(i)
k) + ρ4µ(

∑µ+ν
k=0 [ρ

2k−1+i]P
(i)
k))

6: P computes FV (X):
FV =

∑2
i=1(
∑µ

k=1(ρ
4k−2−iF

(i)
L,k + ρ4k−iF

(i)
R,k) + ρ4µ(

∑µ+ν
k=0 ρ

2k−1+iF
(i)
P,k))

7: P sends s, t(1), t(2), r(1), r(2) to V: s = FV (z), t(i) = q(i)(z), r(i) = w(i)(z)

8: V chooses τ $←Zq and sends them to P.
9: P and V set P = V+

∑2
i=1([τ

i]A(i) + [τ2+i]Q(i)) and
y = s+

∑2
i=1(τ

i(r(i) − t(i)(zd − 1)) + τ2+it(i))

10: P set FP = FV +
∑2

i=1(τ
ia(i) + τ2+iq(i))

11: P sets wire polynomials {w(i)}M−1
i=0 ∈ Zq[X] containing w(1) and w(2).

12: P and V set run Eval(ckPC,P, z, y;FP) and Eval(ckPC,W
(i), z, r(i);w(i))for i ∈ {1, 2}

13: P and V run PlonkishEval(ckPC; {si(X), gi(X0, . . . , XM−1)}Ng−1
i=0 , {ri}M−1

i=0 ; {w(i)}M−1
i=0)

– EncP (ξ, k ∈ {0, . . . , µ+ ν + 1},a ∈ Z≤2n
q)→ FP,k ∈ Zq[X]

Construct degree D polynomial FP,k(X) such that:

FP,k(ξ
i) =

{
a[j − 2nk], if i = 3jt for 2nk < j ≤ 2n(k + 1)

0, otherwise

Using the encoding function, we define the commitment Com2 based on the ho-
momorphic polynomial commitment ComPC. The cktype,k consists of four tuples:
(ckPC, ξ, type, k). We describe the commitment Com2 for message a as follows:

– Com2(cktype,k,a = (a(1),a(2)) ∈ Z4n
q)→ A

1. Enctype(ξ, k,a(i))→ F
(i)
type,k for i ∈ {1, 2}

2. ComPC(ckPC, F
(i)
type,k)→ A(i) for i ∈ {1, 2}

3. Output A = (A(1),A(2))

Designated Execution Table. The execution table contains all values {Lk,Rk,
P k} at some position. To construct AggMEC, we allocate each value {Lk,Rk,P k}
at a specific position in two wire polynomials w(1)(X), w(2)(X) following polyno-
mial encoding Enc. Then the wire polynomials w(1)(X) contains x-coordinate of
of the curve points in the affine representation as encoded values. Also, w(2)(X)

18 Lee et al.

contains y-coordinates of the curve points of the curve points. Thus, the non-
zero evaluation of the encoding polynomials F

(1)
type,k and F

(2)
type,k at ξi is equal to

the evaluation of the wire polynomials w(1)(X) and w(2)(X) for all k and type,
respectively. Note that in this section, w(X) denotes w(1)(X) and w(2)(X) as an
integrated notation for convenience.

Consistency Proof. Recall that the goal of AggMEC is to prove the rela-
tions Eq. (3) and Eq. (4), (5). Since the latter two relations can be ensured by
PlonkishEval, we now focus on checking Eq. (3) and the consistency between
Lk,Rk,Pk and the wire polynomial of the execution trace. First, to ensure
consistency of Lk,Rk,P k, we first merge every commitment Lk,Rk,Pk to one
commitment A, whose message polynomial is the sum of encoding polynomials,
a(X) =

∑
Ftype,k(X). Then the difference polynomial w(X) − a(X) is divided

by Xd − 1 due to w(ξi) − a(ξi) = 0 for all i. The verifier can check it by using
Eval after receiving a commitment of the wire polynomial w(X). Furthermore,
we employed V and FV to ensure Eq. (3), i.e., each Lk,Rk,Pk corresponds to the
commitment of Lk,Rk,P k, respectively. Through the randomness ρ chosen by
the verifier, these commitments and the encoding polynomials of Lk,Rk,P k can
be merged into V and FV , respectively. Finally, we aggregate these consistency
checks by constructing P and FP with a randomness τ from the verifier. Then
the verifier can check them all at once by opening them at another random point
z, convincing these relations with negligible soundness error.

Theorem 3. Assume that a polynomial commitment scheme PCS = (Gen,ComPC,Eval)
satisfies all properties of Definition 7 and the homomorphic property. Then,
AggMEC in Algorithm 3 has perfect completeness and computational witness-
extended-emulation.

Due to the space limit, the proof of Theorem 3 is presented in Appendix C.

3.2 Cougar: Cubic Root Verifier IPA

From the above construction, we adopt the homomorphic polynomial com-
mitment scheme LeopardPC in place of ComPC. We call this IPA Cougar. The
description of LeopardPC is given in Appendix E.

Complexity Analysis. In this paragraph, we provide a complexity analysis of
Cougar divided into Protocol.Row, Protocol.Col, and AggMEC.

1. Row-reduction, Algorithm 1

– [Prover Cost]: For commitments L,R and P̂ at i-th round, P computes
O(N2i) Gp operations and O(n log2 m) Gq operations. For updating Ĝ, Ĥ

and â, b̂, ĉ at i-th round, P computes O(m2i) Gp operation and O(n · m2i) Zp

respectively. Then, the total prover cost is O(N) Zp and O(N)Gp operations.

Cubic Root Verifier Inner Product Argument 19

– [Verifier Cost]: For updating Ĝ, Ĥ and ĉ at i-th round, V computes
O(m2i) Gp operation and 2 multiplication in Zp. Then, the total verifier cost
is O(m) Gp and O(log2 m) Zp operations.

– [Communication Cost]: For each round, P sends L, R, P̂, cL, and cR. Then,
the total communication cost is 3 log2 m|Gq|+ 2 log2 m|Zp|.

2. Column-reduction, Algorithm 2

– [Prover Cost]: For a inner product cL and cR at i-th round, the prover
computes O(n

2i) Zp operations. For updating P̂, â, b̂, and ĉ at i-th round, P
computes O(n

2i) Gp and Zp operations, O(n
2i log2 m) Gq operations. Then,

the total prover cost is O(n log2 m) Gq operations.

– [Verifier Cost]: For updating ĉ at each round except the final round, V
computes 2 multiplication in Zp. In the final round, V computes one Zp oper-
ation for verification. Then, the total verifier cost is O(log2 n) Zp operations.

– [Communication Cost]: For each round, the prover sends P̂, cL, and cR.
The total communication cost is log2 n|Gq|+ 2 log2 n|Zp|.

3. Aggregated MEC, Algorithm 3

– [Prover Cost]: From line 1 to 11, P treats at most log2 N polynomials of
degree D. Then, P computes O(D log2 N) = O(n log2 N) operations, includ-
ing Zp, Gp, and Gq. And the cost of Eval and PlonkishEval is O(∥PEval(D)∥).
Then, total prover cost is O(n log2 N + ∥PEval(D)∥).

– [Verifier Cost]: From line 1 to 11, V computes O(log2 N) Gq operations.
And the cost of Eval and PlonkishEval is O(∥VEval(D)∥). Then the total verifier
cost is O(log2 N + ∥VEval(D)∥).

– [Communication Cost]: From line 1 to 11, P sends V 4 Gq elements and 5
field elements. Additionally, for Eval and Plonkish the prover sends O(∥ΠEval(D)∥).
Then total communication cost is O(∥ΠEval(D)∥)

Cubic Root Verifier IPA from Parameter Setting. Let N = mn be the
length of the witness vectors with n =

3
√
N2 and m = 3

√
N . Since Leopard

features (∥PEval(D)∥, ∥VEval(D)∥, ∥ΠEval(D)∥) = (O(D), O(
√
D), O(log2 D)), we

conclude that the Cougar features O(N) prover cost, O(log2 N) communication
cost and O(3

√
N
√
log2 N) verifier cost, which is the cubic root of N .

Theorem 4. Cougar is an IPA, which features O(log2 N) communication cost,
O(N) prover cost and O(3

√
N
√
log2 N) verifier cost where N is length of wit-

ness. Cougar provides perfect completeness and computational witness extended
emulation under the DL assumption.

20 Lee et al.

Proof. The prover, verifier, and communication costs can be checked in the above
analysis. By Theorem 1, Theorem 2, and Theorem 3 and the soundness of Leop-
ard under the DL assumption [42], Cougar satisfies perfect completeness and
computational witness-extended-emulation under the DL assumption. ⊓⊔

4 Cougar-Friendly Constraint System and Optimizations

We present a Plonkish-type constraint system tailored for proving elliptic
curve relations by introducing novel custom gates. In addition, we provide several
optimization techniques for instantiating Cougar, including batching techniques
for some dominant operations and a fine-grained parameter selection for concrete
efficiency. Throughout this section, we denote the degree of an operation as the
depth of the arithmetic circuit with respect to multiplication gates.

4.1 Efficient Constraint System for Elliptic Curve Relations

Custom Gate for Projective-Affine Mixed Operations. To ensure the
elliptic curve relations Eq. (4) and (5), the prover should construct an execu-
tion trace consisting of elliptic curve additions and doublings. As presented in
halo2 [60], the custom gates for them on the affine representation would reduce
the number of input gates. However, many implementations of elliptic curve
groups use group operations on projective coordinates [53] to improve efficiency
by avoiding modular inversions. In particular, they utilize mixed addition to
further reduce the number of field operations needed, which is an elliptic curve
addition for two curve points of a projective representation and an affine repre-
sentation, respectively, returning their sum in projective representation. There-
fore, using custom gates for affine representation would be less efficient compared
to the case without considering constructing an execution trace.

We address this issue by constructing a custom gate for mixed elliptic curve
operations presented in [53]. For a projective point P = (X1, Y1, Z1) and an
affine point Q = (X2, Y2) on the prime-order short Weierstrass elliptic curve
y2 = x3 + b1, the mixed addition P +Q = (X3, Y3, Z3) can be computed by

X3 = (X1Y2 +X2Y1)(Y1Y2 − 3bZ1)− 3b(Y1 + Y2Z1)(X1 +X2Z1),

Y3 = (Y1Y2 + 3bZ1)(Y1Y2 − 3bZ1) + 9bX1X2(X1 +X2Z1),

Z3 = (Y1 + Y2Z1)(Y1Y2 + 3bZ1) + 3X1X2(X1Y2 +X2Y1).

In addition, the point doubling [2]P = (X3, Y3, Z3) can also be performed by

X3 = 2X1Y1(Y
2
1 − 9bZ2

1),

Y3 = (Y 2
1 − 9bZ2

1)(Y
2
1 + 3bZ2

1) + 24bY 2
1 Z

2
1 ,

Z3 = 8Y 3
1 Z1.

1 Of course, [53] provided general results for curves of the form y2 = x3 + ax+ b. We
presented a special case for the sake of efficiency.

Cubic Root Verifier Inner Product Argument 21

Algorithm 4 Double-and-Add for Scalar Multiplication
Input: P = (X,Y, 1) on E : y2z = x3 + axz2 + bz3 defined over Zp and k ∈ Zq.

1: Initialize R← (0, 1, 0)

2: Compute (k1, . . . , k⌈log2 q⌉) ∈ {0, 1}⌈log2 q⌉ such that k =
∑⌈log2 q⌉

i=1 ki2
i−1.

3: For i from ⌈log2 q⌉ to 0 do:
4: Update R← [2]R+ [ki]P .
5: Return R.

Note that these operations are of degree 4, and [53] provided efficient algorithms
for computing them via field additions and multiplications. By using these oper-
ations, we can compute the scalar multiplication on the elliptic curve through the
well-known double-and-add algorithm, which is presented in Algorithm 4. Since
the doubling for the first iteration of the loop always results in the identity point,
we omit it when configuring an execution trace for this operation.

However, the custom gates for mixed elliptic curve operations should be
carefully combined with our two-tier commitment scheme. This is because in
the second layer of the two-tier commitment, each elliptic curve group element
is converted to a tuple of field elements by viewing them as an affine coordinate.
That is, the final result should be presented in affine point representation. For-
tunately, checking the equality of two points P = (X1, Y1, Z1) and Q = (X2, Y2)
can be efficiently done by the following degree 2 operation:

X1 = X2Z1, Y1 = Y2Z1

In addition, since at least one of the two input points should be represented as
an affine coordinate for all operations, such a position would be utilized to hold
values of Li, Ri, and P i for the sake of consistency check procedures during
AggMEC. Therefore, all of these operations can be implemented at most degree
4 ACs, harmonizing well with our Cougar construction.

Efficient Construction of Execution Trace for Scalar Multiplication.
We now construct a Plonkish-style execution trace for these basic operations. By
using them as building blocks, our goal is to give an efficient construction of an
execution trace for the scalar multiplication, which is a dominating operation in
both relations Eq. (4) and (5).

We consider the execution trace for seven columns, where two columns are
assigned for two selectors, S1 and S2, and the remaining ones are for one projec-
tive point P = (X1, Y1, Z1) and one affine point Q = (X2, Y2), respectively. Here,
we used two selectors for representing four types of operations, namely, addition,
addition by identity, doubling, and equality check, that would be encountered
during the scalar multiplication. For each operation, we assign the values of se-
lectors as (S1, S2) = (1, 1), (0, 1), (1, 0), and (0, 0), respectively. Of course, it is
more natural to employ four selectors corresponding to these four operations; we
decided to use two selectors to reduce the number of columns. Moreover, because
the outputs of mixed addition and doubling are points in projective coordinate,

22 Lee et al.

Fig. 5. Description of the execution trace for computing [6]P.

we assign the output of these operations to the next row of columns for storing
projective points. This also saves the number of columns. To help understand,
we provide an execution trace for checking Q = [6]P in Fig. 5. In this figure,
[k]P (i) means the ith coordinate of the point [k]P , and the prime symbol means
the affine representation of the point. The points without the prime symbol are
the projective representations. For the general case Q = [k]P for k ∈ Zq, exactly
2⌈log q⌉ rows are sufficient for constructing the execution trace.

We note that these custom gates can be efficiently calculated by running the
algorithms introduced by [53, Algorithm 8, 9] in the Lagrange domain.

Compatibility with Plonk-Friendly Encoding. By using the above con-
struction, the prover can construct the intended execution trace for ensuring the
elliptic curve relations. However, in order to make the execution trace compati-
ble with the plonk-friendly encoding technique, the prover should carefully place
each L, R, and P in the right position for each ζi.

To address this, we take a closer look at the equations in each relation, Eq. (4)
and (5). First, in the k’th round of the row reduction (Eq. (4)), the prover should
construct an execution trace for ensuring the relation

Pk+1,i = [x−1
k]Lk+1,i + Pk,i + [xk]Rk+1,i

for the challenge xk and each i’th coordinate of P k+1, Lk+1, P k, and Rk+1,
respectively. To this end, the prover can compute this in order of computing (1)
L̃k+1,i := [x−1

k]Lk+1,i, (2) R̃k+1,i := [xk]Rk+1,i, (3) P̃k+1,i := L̃k+1,i + Pk,i +

R̃k+1,i, and checking (4) Pk+1,i = P̃k+1,i. Here, the permutation argument is re-
quired for processing the third step because the outputs of the first step (L̃k+1,i)
and the second step (R̃k+1,i) should be referred to. According to our construc-
tion, each first and second step requires 2⌈log q⌉ rows, and each Lk+1,i and Rk+1,i

appear at the first row of each position. Hence, by computing L̃k+1,i + Pk,i first
during the third step, the prover can coordinate each Lk+1,i, Rk+1,i, and Pk,i

with the period of 2⌈log q⌉. Of course, the remaining rows after the fourth step
can be filled with an appropriate number of dummy operations, e.g., copying the
check operations in the fourth step. Therefore, the execution trace for convincing
the whole Eq. (4) can be constructed by successively iterating the above process
over each coordinate and reduction stage.

Cubic Root Verifier Inner Product Argument 23

The execution trace for the column reduction (Eq. (5)) can also be con-
structed in a similar manner, or even simpler. For the k’th round of reduction,
the prover needs to convince the following relation

Pk+1,i = P
(q1)
k,i + [xk]P

(q2)
k,i , Pk+1,i+l = P

(q3)
k,i + [x−1

k]P
(q4)
k,i ,

for the challenge xk and each coordinate of P k+1, P
(q1)
k , P (q2)

k , P (q3)
k , and P

(q4)
k ,

respectively. Here, we assumed that the length of P k+1 is 2l and that for each
P

(qj)
k is l. Similar to above, the prover can compute this by computing (1)

P̃k+1,i := [xk]P
(q2)
k,i +P

(q1)
k,i , and checking (2) Pk+1,i = P̃k+1,i. The same procedure

suffices for computing Pk+1,i+l. In this case, the permutation argument is not
required, and the construction of the execution trace can be done in the same
way as above using dummy operations appropriately.

To sum up, by aggressively exploiting dummy operations to adjust the po-
sitions of the coordinates of each Lk,Rk, and P k, the prover can construct an
execution trace compatible with the proposed Plonk-friendly encoding technique.

Reducing Dummy Rows. Although the above-mentioned method can con-
struct the desirable execution trace, the excessive use of dummy operations
makes it longer, which increases the computational cost for running LeopardPC.Eval
on both the prover and verifier. For this reason, we present a more efficient con-
struction of the execution trace by reducing dummy rows as much as possible.

We note that in the column reduction process, each component of P k is
not needed to be placed with the same period as that for the row reduction.
Recall that the goal of Plonk-friendly encoding is to facilitate the check of the
membership of each Lk, Rk, and P k on the wire polynomial. Thus, we place
each P k in the column reduction with the same period as Lk, Rk, and P k in
the row reduction. This would not require modification in the previous AggMEC
algorithm, while saving 2dn rows during constructing the execution trace.

In addition, we place each Lk,Rk, and P k in the same order of their in-
dex to simplify the indexing. For the row reduction, we placed input vectors
Lk+1,Rk+1, and P k with a period of 2⌈log2 q⌉. On the other hand, because the
order of recorded components for column reduction does not match with the
input vector, we instead place the output P k+1 of the process with the same
period. However, in this case, the output P µ+1 of the last row reduction, i.e., the
input of the first column reduction, is not recorded. We mitigate this by man-
ually recording each component of P µ+1 into the execution trace with dummy
rows containing these components. To match the period, we add an appropriate
number of dummy rows except for the last component Pµ+1,2n. This is because
the next component Pµ+2,1, the output of the first column reduction, should be
separated from Pµ+1,2n with the period.

Remark that the execution trace should contain at least (6n log2 m+4n−2)d
rows because it should contain each Li, Ri, and P i, i.e., this approach gives
an execution trace with an optimal number of rows. We illustrated the final
construction of the execution trace in Fig. 6. This figure depicts a concrete case
when log2 q = 256, i.e., each Lk,i, Rk,i, and Pk,i is placed with a period of 512.

24 Lee et al.

Fig. 6. Final construction of the execution trace.

4.2 More Optimization Tricks

Batched Execution of LeopardPC.Eval. During AggMEC, the prover needs to
execute LeopardPC.Eval on several polynomials and various evaluation points. In
fact, by employing the techniques used in [17, 12], these processes can be done in
a batched manner. To convince the verifier that the evaluations of several polyno-
mials f1(X), . . . , fk(X) at different evaluation points u1, . . . , uk are v1, . . . , vk,
respectively, it suffices to show the existence of polynomials q1(X), . . . , qk(X)
such that fi(X)− vi = qi(X)(X − ui). Following the idea of [17, 12], the prover
(1) constructs q̂i(X) :=

∑k
i=1 r

i−1
1 qi(X) for a random challenge r1 received from

the verifier, (2) commits q̂(X), (3) opens f1(X), . . . , fk(X), and q̂(X) at another
random point r2 provided by the verifier, sending w1 := f1(r2), . . . , wk := fk(r2)
and wk+1 := q̂(r) to the verifier. Now, the verifier convinces the prover’s claim
if wk+1 =

∑k
i=1 r

i−1
1

wi−vi
r2−ui

holds.
We note that a single run of LeopardPC.Eval suffices for the third step through

random linear combination on the commits of each polynomial. More precisely,
for a random challenge r3 received from the verifier, it suffices to ensure that the
evaluation of f̂(X) =

∑k
i=1 r

i−1
3 fi(X) + rk3 q̂(X) at r2 is

∑k
i=1 r

i−1
3 wi + rk3wk+1.

Since LeopardPC is a homomorphic commitment, the commitment of f̂ can be
computed from those of f1, . . . , fk and q̂, i.e., the verifier can be computed itself.

Thus, only a single execution of LeopardPC.Eval suffices for AggMEC, along
with a constant number of group operations on Gt for merging commitments.

Concrete Parameter Selection for Verifier’s Computation Cost. Under
the suggested parameter in Section 3.2, the verifier cost of Cougar becomes cu-
bic root with respect to the length of the witness vectors. However, when we
consider the efficiency on concrete parameters, the huge constant in front of
D = O(n log2 m) leads to inefficiency, which requires the proper choice of m
and n parameters to reduce D. To give a way to select m and n, we provide a
concrete size of D, which is determined by m, n, and q.

D = 12n log2 m log2 q + 4n log2 q︸ ︷︷ ︸
Protocol.Row

+(4n− 4) log2 q︸ ︷︷ ︸
Protocol.Col

.

Cubic Root Verifier Inner Product Argument 25

That is, for small N , the term log2 q would dominate the verifier’s computation
cost, so the parameters (m,n) should be selected carefully.

To this end, first recall that the verifier’s computational costs consist of
(1) checking c = a · b in the last of Protocol.Col through 2 log2 N field op-
erations, (2) computing A(1), A(2), and V through multi-scalar multiplication
of length O(log2 N) each on Gt during AggMEC, (3) running several times of
LeopardPC.Eval during PlonkishEval, and (4) checking the output of the AC for
Plonkish is [a]G∥[b]H through multi-scalar multiplication of length 2m on Gp.
Among them, we will focus on the third and fourth terms, whose computational
cost depends on the choice of m,n for a fixed N = mn. Note that a single run of
LeopardPC.Eval for a polynomial of length D requires multi-scalar multiplication
of
√
D on both G1 and G2. With the batching technique, a single execution of

LeopardPC.Eval suffices during the entire AggMEC. Thus, if we denote the unit
cost of each group operation in Gp, G1, and G2 as cp, c1, and c2, respectively,
finding the optimal parameter is equivalent to solving the following optimization
problem:

minimize C := (c1 + c2)
√

12n log2 q log2 m+ (8n− 4) log2 q + cp · 2m,

subject to N = mn.

Since dealing with C directly would be rather cumbersome because of the log2 m
and (8n− 4) log2 q in the radical symbol, we instead consider minimizing

Ĉ = (c1 + c2)
√
12n log2 q log2 N + 8n log2 q + cp · 2m,

by replacing each term with log2 N and 8n log2 q, respectively. Now if we set
n = N

m , A = 2
√
log2 q, and B = 3N log2 N + 2N , then we obtain

Ĉ = A · c1 + c2
2

√
B

m
+A · c1 + c2

2

√
B

m
+ cp · 2m. (6)

Hence, applying the AM-GM inequality in Eq. (6) yields the following inequality:

Ĉ ≥ 3 · 3

√
2cp ·

(
c1 + c2

2

)2

A2B = 6cp
3

√
3

(
c1 + c2
2cp

)2

log2 q
3

√
N

(
log2 N +

2

3

)
,

and equality holds when

m =
3

√
A2B

4

(
c1 + c2
2cp

)2

=
3

√(
c1 + c2
2cp

)2

(3N log2 N + 2N) log2 q. (7)

We note that such parameter choice ensures that the computational com-
plexity of the verifier is O(3

√
N log2 N), which is a slight improvement from

O(3
√
N
√
log2 N) in Theorem 4. In addition, to avoid the case when m > N , we

select m = N if the R.H.S. of Eq. (7) surpasses N .

26 Lee et al.

Merging Multiscalar Multiplications on Gt. The previous paragraph ad-
dressed the number of required group operations on Gp, G1, and G2. We now
move our focus to that on Gt. Although the asymptotic required number of
Gt during the whole protocol is O(log2 N), the effect of them on the concrete
efficiency of the verifier would become non-negligible because of the relatively
expensive unit cost for the group operation. We can precisely count the input
length of each multiscalar multiplication on Gt during AggMEC as follows:

– 3 log2 m+ log2 n+ 1 for computing each A(i), i ∈ {1, 2}.
– 6 log2 m+ 2 log2 n+ 2 for computing V.
– 5 for computing P = V+ [τ]A(1) + [τ2]A(2) + [τ3]Q(1) + [τ4]Q(2).
– 36 for random linear combination during the batching technique.
– 2 log2 D for the final process of LeopardPC.Eval.

Our strategy to address this is to merge multiscalar multiplications on Gt into a
single but longer multiscalar multiplication. We note that the cost of multiscalar
multiplication is sublinear to the length of the input vector [50].

To this end, we observed that with the batched evaluation technique, the
verifier does not need to compute P earlier. Computing them before running the
batched LeopardPC.Eval at the end of AggMEC is sufficient. In addition, if we
take a closer look at the batching process, we can figure out that the verifier
computes the linear combination of a bulk of commitments before running the
final process. Finally, at the end of LeopardPC.Eval, the verifier needs to check the
consistency of the final commitment by using challenges and other commitments
communicated during the protocol (line 18 in Algorithm 6). We note that the
former two processes can be delayed because they do not affect the process of the
remaining protocol except for the last batched LeopardPC.Eval. Hence, the verifier
can postpone these multiscalar multiplications and merge them to the last part of
LeopardPC.Eval. Moreover, note that V and [τ]A(1)+[τ2]A(2) share the same base
group points: L(c)

i ,R
(c)
i , and P

(c)
i for c ∈ {1, 2}. Thus, it suffices for the verifier to

compute a multiscalar multiplication of length (2 log2 D+6 log2 m+2 log2 n+40)
at the last of LeopardPC.Eval.

5 Implementation Results

We implemented Cougar with a famous half-pairing cycle of curves: BN254
and Grumpkin. For PCS, we utilize LeopardPC instantiated with BN254. We used
the Fiat-Shamir transformation [29] to make them non-interactive. Every code
was written in Rust, and every experiment was done in the following setting: a
single thread of an AMD EPYC 7543P (2.8GHz) CPU with 512GB RAM.

5.1 Parameter Selection

For selecting m,n from the given N , we used the formula introduced in Eq. (7)
with measuring coefficients cp, c1, and c2 on our choice of elliptic curves. To this
end, we first measured the ratio of unit group operations in our experimental

Cubic Root Verifier Inner Product Argument 27

experiments, namely, Gp for Grumpkin and G1,G2 for BN254. We evaluate the
time elapsed for 1 million group operations in each group. For cp = 1, we obtain
c1 = 1.0 and c2 = 3.2 with an 1-sigma error from 100 runs of the experiments.
In addition, since points in the Grumpkin curve can be represented as a tuple
of 254-bit integers, we set log2 q = 256, which is the closest power of two from
254. We report the choice of m,n, and D for N = 210 to N = 220 in Table 2.

N 210 211 212 213 214 215 216 217 218 219 220

m 28 29 29 29 210 210 210 211 211 211 213

n 22 23 23 24 24 25 26 26 27 28 28

D 217 217 218 219 219 220 221 222 223 224 224

Table 2. Selected parameters m,n and corresponding D for witnesses of length N . We
set N around 210 to 220. Each parameter is chosen by the formula in Eq. (7).

5.2 Evaluation Results

We implemented Cougar by following the algorithms described in the paper,
with optimization tricks in Section 4.2. For elliptic curve operations in BN254
and Grumpkin, we used halo2curves crate [51] of version 0.6.1. In addition,
we utilized some parts of halo2_proofs crate [52] of version 0.3.0 to deal with
polynomials during AggMEC. For more detailed information, we recommend the
reader refer to our source code2.

For comparison, we also implemented BulletProofs [18] and Leopard [43, 42]
under our experimental setting and conducted the same experiments as above.
In order to implement Bulletproofs, we chose the Secp256k1 curve, which is used
in many cryptocurrencies. On the other hand, to implement Leopard we chose
the BLS12-381 curve, which is a well-known pairing friendly curve. We used
halo2curve crate of the same version as above and blstrs crate [30] of ver-
sion 0.7.1 for Secp256k1 and BLS12-381, respectively. We note that Secp256k1,
BLS12-381, and BN254 are known to provide 127-bit, 117-bit, and 102-bit secu-
rity for the DL assumption, respectively. For implementing Leopard, we followed
several optimization tricks introduced by [42].

We report the time elapsed for proof generation and verification on each
IPA. We also provide the proof size for each scheme. We conducted for various
N from 210 to 220. The evaluation results for each IPA are presented and visu-
alized in Table 3 and Fig. 7, respectively. From this figure, we can observe that
the verification time of Cougar increases slowly than that for BulletProofs and
Leopard, though the time for small N = 210 or 211 surpasses the cost for them.
To further support this, we also conducted linear regression on the verification
time in log scale for each log2 N . We note that for the regression coefficients α̂, β̂
such that log2 y = α̂ log2 x + β̂, we have that y = 2β̂ · xα̂, i.e., the coefficient
α̂ for slope indicates the exponent of the verification cost with respect to N .
As shown in the figure, the regression results fit well with the measured data.

2 https://github.com/Cryptology-Algorithm-Lab/Cougar

28 Lee et al.

Fig. 7. Evaluation results of each IPA. We present log-log plots of each quantity for
various N from 210 to 220. The solid line in the verification time indicates the linear
regression for each IPA in log-log plot. Best viewed in color.

N
Proving time (s) Verification time (s) Proof Size (KB)

BPs Leopard Cougar BPs Leopard Cougar BPs Leopard Cougar
210 0.91 0.44 206.5 0.04 0.02 0.06 0.76 11.58 50.14
211 1.73 0.64 221.8 0.07 0.02 0.08 0.82 12.74 52.51
212 3.37 1.24 452.6 0.11 0.02 0.09 0.89 13.89 54.11
213 6.59 1.86 854.8 0.20 0.03 0.10 0.95 15.04 55.71
214 13.03 3.64 902.4 0.38 0.03 0.12 1.02 16.19 58.08
215 25.83 5.58 1842 0.70 0.04 0.13 1.09 17.34 59.68
216 51.10 11.25 3315 1.27 0.05 0.15 1.15 18.50 61.28
217 101.5 18.14 7014 2.48 0.06 0.21 1.22 19.65 64.42
218 201.8 36.11 13051 4.55 0.08 0.23 1.28 20.80 66.02
219 401.6 60.12 26646 8.71 0.09 0.30 1.35 21.95 67.62
220 801.2 120.1 27866 17.34 0.13 0.35 1.42 23.10 69.98

Table 3. Evaluation results of each IPA for various N from 210 to 220.

Concretely, the mean squared error for each scheme is given by 0.006, 0.013, and
0.009, respectively. The regression coefficients (α̂, β̂) for BulletProofs, Leopard
and Cougar, are (0.887,−13.758), (0.282,−8.777), and (0.243,−6.465), respec-
tively. We guess that the coefficient α̂ is less than the theoretically estimated
values (α̂ = 1, 1/2 and 1/3 for each scheme, respectively) because the computa-
tional complexity for mutliscalar multiplication is O

(
N

log2 N

)
for input vectors

of length N . Nevertheless, this result indicates that the rate of increase in the
verification cost for Cougar is slower than that of BulletProofs and Leopard.

In contrast to Bulletproofs and Leopard, one can figure out that the proving
time of Cougar increases stepwise. This is because the proving time of Leopard
highly depends on D. As shown in Table 2, the rate of the increase in D is
slower than N , and more importantly, this tendency exactly coincides with the
tendency of the proof generation time depicted in Fig. 7.

Cubic Root Verifier Inner Product Argument 29

6 Concluding Remarks

We presented Cougar, the first cubic root verifier, logarithmic size proof IPA
under the DL assumption and transparent setup. Our construction is based on
two square root verifier IPAs, Protocol3 and Protocol4, by smoothly combining
them with novel techniques for proving relations on elliptic curve points. In par-
ticular, we introduced a novel custom gate for mixed point addition, which is of
independent interest. Through experiments, we demonstrated that the verifica-
tion cost of Cougar increases much slower than two previous IPAs, BulletProofs
and Leopard, under the same DL assumption and transparent setup.

We leave some challenges for improving Cougar. First, although the pro-
posed Cougar improved the asymptotic complexity over prior works, it shows
worse concrete efficiency for a practical choice of N . Although our results on
linear regression indicate that the verification cost of Cougar becomes cheaper
than Leopard when log2 N > 60, making this crossing point smaller would be
a challenging yet important problem. In addition, since Cougar utilized Plonk-
ish, it cannot handle a large N where the corresponding D exceeds the allowed
number of roots of unity, e.g., 228 in BN254. To mitigate this, employing other
constraint systems, such as SuperSpartan [57] or HyperPlonk [24], that do not
rely on Lagrange interpolation would be possible. We leave it to future work.
Finally, the proving cost of Cougar is too expensive compared to previous IPAs.
We suspect that this is because of the expansion of the committed vectors led by
Plonk-friendly encoding during Protocol.Row and Protocol.Col. Mitigating this
would significantly improve the prover’s cost, and we also leave it as future work.

References

1. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako
Ohkubo. Structure-preserving signatures and commitments to group elements. J.
Cryptol., 29(2):363–421, 2016.

2. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. Ligero: Lightweight sublinear arguments without a trusted setup. In
ACM CCS 2017, pages 2087–2104. ACM, 2017.

3. Xavier Arnal, Abraham Cano, Tamara Finogina, and Javier Herranz. How to avoid
repetitions in lattice-based deniable zero-knowledge proofs. In Secure IT Systems,
pages 253–269. Springer, 2022.

4. Arasu Arun, Chaya Ganesh, Satya V. Lokam, Tushar Mopuri, and Sriram Sridhar.
Dew: Transparent constant-sized zksnarks. Cryptology ePrint Archive, Report
2022/419, 2022. https://eprint.iacr.org/2022/419.pdf.

5. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth,
and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for
arithmetic circuits. In Advances in Cryptology – CRYPTO 2018, pages 669–699.
Springer, 2018.

6. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. In Public-
Key Cryptography – PKC 2020, pages 495–526. Springer, 2020.

30 Lee et al.

7. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness
of a shuffle. In EUROCRYPT 2012, volume 7237 of LNCS, pages 263–280. Springer,
2012.

8. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero
knowledge with no trusted setup. In Annual International Cryptology Conference,
pages 701–732. Springer, 2019.

9. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in zero knowledge.
In CRYPTO 2013, volume 8043 of LNCS, pages 90–108. Springer, 2013.

10. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P Ward. Aurora: Transparent succinct arguments for r1cs. In
EUROCRYPT 2019, volume 11476 of LNCS, pages 103–128. Springer, 2019.

11. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von Neumann architecture. In USENIX Security
2014, pages 781–796, 2014.

12. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial com-
mitment schemes for multiple points and polynomials. Cryptology ePrint Archive,
2020.

13. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log
setting. In EUROCRYPT 2016, volume 9666 of LNCS, pages 327–357. Springer,
2016.

14. Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune Jakobsen, and Mary Maller.
Arya: Nearly linear-time zero-knowledge proofs for correct program execution. In
ASIACRYPT 2018, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings,
Part I, volume 11272 of LNCS, pages 595–626. Springer, 2018.

15. Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with
sublinear verification from tensor codes. In Theory of Cryptography: 18th Interna-
tional Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020, Pro-
ceedings, Part II 18, pages 19–46. Springer, 2020.

16. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.
A non-pcp approach to succinct quantum-safe zero-knowledge. In Advances in
Cryptology – CRYPTO 2020, pages 441–469. Springer, 2020.

17. Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
IEEE Symposium on Security and Privacy 2018, pages 315–334. IEEE Computer
Society, 2018.

19. Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Re-
cursive proof composition from accumulation schemes. In TCC 2020, Durham,
NC, USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of LNCS,
pages 1–18. Springer, 2020.

20. Benedikt Bünz and Ben Fisch. Multilinear schwartz-zippel mod n and lattice-
based succinct arguments. In Theory of Cryptography Conference, pages 394–423.
Springer, 2023.

21. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark
compilers. In EUROCRYPT 2020, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of LNCS, pages 677–706. Springer, 2020.

Cubic Root Verifier Inner Product Argument 31

22. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely.
Proofs for inner pairing products and applications. In ASIACRYPT 2021, Singa-
pore, December 6-10, 2021, Proceedings, Part III, volume 13092 of LNCS, pages
65–97. Springer, 2021.

23. Mike Burmester, Yvo Desmedt, and Thomas Beth. Efficient zero-knowledge iden-
tification scheme for smart cards. Comput. J., 35(1):21–29, 1992.

24. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk
with linear-time prover and high-degree custom gates. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
499–530. Springer, 2023.

25. Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong
Seo. Bulletproofs+: Shorter proofs for a privacy-enhanced distributed ledger. IEEE
Access, 10:42067–42082, 2022.

26. Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. Updateable inner product
argument with logarithmic verifier and applications. In PKC 2020, volume 12110
of LNCS, pages 527–557. Springer, 2020.

27. Moumita Dutta, Chaya Ganesh, and Neha Jawalkar. Succinct verification of com-
pressed sigma protocols in the updatable srs setting. In IACR International Con-
ference on Public-Key Cryptography, pages 305–336. Springer, 2024.

28. Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity. J.
Cryptol., 1(2):77–94, 1988.

29. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages
186–194. Springer, 1987.

30. Filecoin. blstrs, 2024. https://github.com/filecoin-project/blstrs.
31. Ariel Gabizon and Zachary J Williamson. Proposal: The turbo-plonk program

syntax for specifying snark programs, 2020.
32. Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations

over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, Report 2019/953, 2019. https://eprint.iacr.org/2019/
953.pdf.

33. Shang Gao, Zhe Peng, Feng Tan, Yuanqing Zheng, and Bin Xiao. Symmeproof:
Compact zero-knowledge argument for blockchain confidential transactions. IEEE
Transactions on Dependable and Secure Computing, 2022.

34. Shang Gao, Zhe Peng, Feng Tan, Yuanqing Zheng, and Bin Xiao. Symmeproof:
Compact zero-knowledge argument for blockchain confidential transactions. IEEE
Transactions on Dependable and Secure Computing, 20(3):2289–2301, 2023.

35. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

36. Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S
Wahby. Brakedown: Linear-time and field-agnostic snarks for r1cs. In Annual
International Cryptology Conference, pages 193–226. Springer, 2023.

37. Alexander Golovnev, Jonathan Lee, Srinath TV Setty, Justin Thaler, and Riad S
Wahby. Brakedown: Linear-time and post-quantum snarks for r1cs. IACR Cryptol.
ePrint Arch., 2021:1043, 2021.

38. Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO
2009, volume 5677 of LNCS, pages 192–208. Springer, 2009.

39. Jens Groth. On the size of pairing-based non-interactive arguments. In EURO-
CRYPT 2016, volume 9666 of LNCS, pages 305–326. Springer, 2016.

32 Lee et al.

40. Aram Jivanyan. Lelantus: Towards confidentiality and anonymity of blockchain
transactions from standard assumptions. Cryptology ePrint Archive, Report
2019/373, 2019.

41. A Kate, G M Zaverucha, and I Goldberg. Constant-size commitments to polyno-
mials and their applications. In ASIACRYPT 2010, volume 6477 of LNCS, pages
177–194. Springer, 2010.

42. Sungwook Kim, Gwangwoon Lee, Hyeonbum Lee, and Jae Hong Seo. Leopard:
Sublinear verifier inner product argument under discrete logarithm assumption.
IEEE Transactions on Information Forensics and Security, 18:5332–5344, 2023.

43. Sungwook Kim, Hyeonbum Lee, and Jae Hong Seo. Efficient zero-knowledge ar-
guments in discrete logarithm setting: Sublogarithmic proof or sublinear verifier.
In ASIACRYPT 2022, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part II,
volume 13792 of LNCS, pages 403–433. Springer, 2022.

44. Hyeonbum Lee and Jae Hong Seo. TENET: sublogarithmic proof and sublinear
verifier inner product argument without a trusted setup. In Advances in Informa-
tion and Computer Security - 18th International Workshop on Security, IWSEC
2023, Yokohama, Japan, August 29-31, 2023, Proceedings, volume 14128 of Lecture
Notes in Computer Science, pages 214–234. Springer, 2023.

45. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner prod-
ucts and polynomial commitments. In TCC 2021, Raleigh, NC, USA, November
8-11, 2021, Proceedings, Part II, volume 13043 of LNCS, pages 1–34. Springer,
2021.

46. Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party compu-
tation. Journal of Cryptology, 16(3):143–184, 2003.

47. Vadim Lyubashevsky and Ngoc Khanh Nguyen. Practical lattice-based zero-
knowledge proofs for integer relations. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1051–1070, 2020.

48. OECD. Emerging privacy-enhancing technologies. OECD Digital Economy Papers,
(351), 2023.

49. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO 1991, volume 576 of LNCS, pages 129–140. Springer,
1991.

50. Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal
on Computing, 9(2):230–250, 1980.

51. PSE. halo2curves, 2024. https://github.com/privacy-scaling-explorations/
halo2curves.

52. PSE. halo2_proofs, 2024. https://github.com/zcash/halo2/tree/main/halo2_
proofs.

53. Joost Renes, Craig Costello, and Lejla Batina. Complete addition formulas for
prime order elliptic curves. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, volume 9665 of LNCS, pages 403–428. Springer, 2016.

54. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In IEEE Symposium on Security and Privacy 2014, pages 459–474.
IEEE, 2014.

55. Jae Hong Seo. Round-efficient sub-linear zero-knowledge arguments for linear al-
gebra. In PKC 2011, volume 6571 of LNCS, pages 387–402. Springer, 2011.

56. Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. Proving the
correct execution of concurrent services in zero-knowledge. In OSDI 2018, Carls-
bad, CA, USA, October 8-10, 2018, pages 339–356. USENIX Association, 2018.

Cubic Root Verifier Inner Product Argument 33

57. Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems
for succinct arguments. Cryptology ePrint Archive, 2023.

58. Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with
linear prover time. In Annual International Cryptology Conference, pages 299–328.
Springer, 2022.

59. Tsz Hon Yuen, Muhammed F Esgin, Joseph K Liu, Man Ho Au, and Zhimin Ding.
Dualring: generic construction of ring signatures with efficient instantiations. In
Annual International Cryptology Conference, pages 251–281. Springer, 2021.

60. zcash. The halo2 book, 2022. https://zcash.github.io/halo2/.
61. Jianning Zhang, Ming Su, Xiaoguang Liu, and Gang Wang. Springproofs: Efficient

inner product arguments for vectors of arbitrary length. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 67–67. IEEE Computer Society, 2023.

62. Zongyang Zhang, Weihan Li, Ximeng Liu, Xin Chen, and Qihang Peng. Ligerolight:
Optimized iop-based zero-knowledge argument for blockchain scalability. IEEE
Transactions on Dependable and Secure Computing, 2023.

A Proof of Theorem 1

Proof. (Completeness) For a base case m = 1, the completeness is held by the
completeness of Protocol.Col and AggMEC. Let us consider the case m > 1. In
this case, we show that if the input (G,H, ckP,s,P, c;a, b) belongs to Rm,n

GenPT4,
then the updated input (Ĝ, Ĥ, ckP,s+1, P̂, ĉ; â, b̂) belongs to Rm/2,n

GenPT4. Following
the P algorithm, we get the following equations:

ĉ = x−1cL + c+ xcR = ⟨aL, x
−1bR⟩+ ⟨a, b⟩+ ⟨xaR, bL⟩ = ⟨â, b̂⟩

P̂ = [x−1]L+ P + [x]R

= x−1[aL]GR ∥ [x−1bR]HL + [a]G ∥ [b]H + [xaR]GL ∥ x[bL]HR

= âĜ ∥ b̂Ĥ

P̂ = Com2(ckP,s+1, P̂) = ComTC((Ĝ ∥ Ĥ, ckP,s+1), â ∥ b̂)

Therefore, we can conclude that updated input (Ĝ, Ĥ, ckP,s+1, P̂, ĉ; â, b̂) belongs
to Rm/2,n

GenPT4.
(Witness-extended-emulation) For the computational witness-extended emula-
tion, we construct an expected polynomial time extractor ERow whose goal is to
extract a witness by using a polynomially bounded tree of accepting transcripts.
To this end, we utilize the general forking lemma [13], which is stated as follows:

Theorem 5 (General Forking Lemma). Let (K,P,V) be a (2µ + 1)-move,
public coin interactive protocol with µ challenges x1, . . . , xµ in sequence. Let
ni ≥ 1 for i ∈ [µ]. Consider an (n1, . . . , nµ)-tree of accepting transcripts with
challenges in the following format. The tree has depth µ and N =

∏µ
i=1 ni leaves.

The root of the tree is labeled with the statement. Each node of depth i has exactly
ni children, each labeled with a distinct value of the i-th challenge xi.

Let E be a witness extraction algorithm that succeeds with probability 1 −
negl(λ) for some negligible function negl(λ) in extracting a witness from an

34 Lee et al.

(n1, . . . , nµ)-tree of accepting transcripts in probabilistic polynomial time. As-
sume that

∏µ
i=1 ni is bounded above by a polynomial in the security parameter

λ. Then, (K,P,V) has witness-extended emulation.

ERow takes public inputs (G,H, (ckk)
µ
k=1, ckCol,P, c, stV ;a, b, stP). By premise,

ERow exploits two PPT extractors ECol and EMEC , that extract witness a, b ∈
Z1×n
p and stP respectively. Note that stP consists of tuples of commitments

(Lk,Rk,P k), which satisfies the Eq. (3) and (4).
We show how to extract witness a, b from accepting transcripts. By the

general forking lemma, it is sufficient to construct an extractor ERow that extracts
a witness from a suitable tree of accepting transcripts in probabilistic polynomial
time. We begin with (4, . . . , 4︸ ︷︷ ︸

log2 m

)-tree of accepting transcripts. Since the number

of leaves of the tree is polynomially bound, 4log2 m, we can apply the general
forking lemma.

First, for the base case m = 1, the extracted witness a, b from ECol satisfies
the desire condition so that ERow outputs the a, b in polynomial time.

In the case m > 1, we construct extractor ERow by inductively extrac-
tion. That is, retrieves s-round witness a(s), b(s) ∈ Zm/2s×n

p from next steps
a(s+1), b(s+1) ∈ Zm/2s+1×n

p recursively.
First, ERow run ECol and get extracted witnesses a(µ), b(µ) ∈ Z1×n

p , which is

valid witness for the relationR1,n
GenPT4. Now, we assume that âi, b̂i ∈ Zm/2s+1×n

p is
valid witness of instance (Ĝi, Ĥi, P̂i, ĉi), that are updated instance using chal-
lenge xi for the relation Rm/2s+1,n

GenPT4 . From the tree of accepting transcript, we
can get 4 instance-witness pairs:(Ĝi, Ĥi, P̂i, ĉi; âi, b̂i). Furthermore, the ERow

can get s-round prover’s commitments L,R,P, P̂ and their messages L,R,P , P̂
from s-round transcripts and EMEC respectively. From 3 distinct tuples, ERow

can construct the following linear system:x−1
1 1 x1

x−1
2 1 x2

x−1
3 1 x3

LP
R

 =

P̂ 1

P̂ 2

P̂ 3

 =

[â1]Ĝ1 ∥ [b̂1]Ĥ1

[â2]Ĝ2 ∥ [b̂2]Ĥ2

[â3]Ĝ3 ∥ [b̂3]Ĥ3

 (8)

Since the right-hand side of Eq. (8) is decomposed by Ĝ = GL + [x−1]GR and
Ĥ = HL + [x]HR and each G and H are not effected by challenge x, ERow can
get represented vectors l, r,p ∈ Zm/2s×2n

p of L,R,P ∈ G2n under base G ∥H.
Let ERow parse l, r,p to 4 segments l(t),p(t), r(t) ∈ Zm/2s×n/2

p where t ∈ [4]. Let
the representation vectors put on Eq. (8). Then

[x−1
i l(1) + p(1) + xir

(1)]GL = [â]GL (9)

[x−1
i l(2) + p(2) + xir

(2)]GR = [x−1
i â]GR (10)

[x−1
i l(3) + p(3) + xir

(3)]HL = [b̂]HL (11)

[x−1
i l(4) + p(4) + xir

(4)]HR = [xib̂]HR (12)

Cubic Root Verifier Inner Product Argument 35

By DL assumption on G, the representation vectors of both side should be
equivalent. From Eq.(9), Eq.(10) and Eq.(11), Eq.(12), we get

− l(1) + xi(l
(2) − p(1)) + x2

i (p
(2) − r(1)) + x3

i r
(2) = 0

− l(4) + xi(l
(3) − p(4)) + x2

i (p
(3) − r(4)) + x3

i r
(3) = 0

for x1, . . . , x4. Then each terms of xk
i should be zero. Let p(i) denote ãL = p(1),

ãR = p(2), b̃L = p(3), b̃R = p(4). Then, we can obtain the following equation:

x−1
i cL + c+ xicR = ĉ = ⟨â, b̂⟩

= x−1
i ⟨ãL, b̃R⟩+ ⟨ã, b̃⟩+ xi⟨ãR, b̃L⟩

(13)

Similarly, x1, . . . , x4 guarantees c = ⟨ã, b̃⟩. Therefore, the extracted witnesses ã

and b̃ is valid witness for the relation Rm/2s,n
GenPT4 . By inductively retrieving process

and general forking lemma, ERow can extract witness vectors a and b. ⊓⊔

B Proof of Theorem 2

Proof. (Completeness) For a base case m = 1, the completeness can get straight-
forward by our premise: completeness of AggMEC and (G,H, ck1,P, c;a, b) ∈
R1,1

GenPT4. Let consider the case m > 1. In this case, we show that if the input
(G,H, ckP,µ+s,P, c;a, b) belongs toR1,n

GenPT4, then the updated input (G,H, ckP,µ+s+1, P̂, ĉ; â, b̂)

belongs to R1,n/2
GenPT4. Following the P algorithm, we get the following equations:

ĉ = x−1cL + c+ xcR = ⟨aL, x
−1bR⟩+ ⟨a, b⟩+ ⟨xaR, bL⟩ = ⟨â, b̂⟩

P̂ = (P (q1) ∥ [x]P (q4)) + (P (q2) ∥ [x−1]P (q3))

= [aL]G ∥ [x−1bR]H + [xaR]G ∥ [bL]H = [â]G ∥ [b̂]H

P̂ = Com2(ckν , P̂) = ComTC((G ∥ H, ckν),a ∥ b)

Therefore, we can conclude that updated input (G,H, ckP,µ+s+1, P̂, ĉ; â, b̂) be-
longs to R1,n/2

GenPT4.
(Witness-extended-emulation) For the computational witness-extended emula-
tion, we construct an expected polynomial time extractor ECol whose goal is
to extract a witness by using a polynomially bounded tree of accepting tran-
scripts. ECol takes public inputs (ppν , G,H,P, c, stV ;a, b, stP). By premise, ECol

exploits a PPT extractor EMEC , that extract stP which consists of commitments
(P k)

µ+ν+1
k=µ+1, which satisfies Eq. (5) and Pk = Com2(ckν ,P k) In the similar way

in proof of Theorem 1, we show that how to extract witness a, b from accepting
transcripts. By the general forking lemma, it is sufficient to construct an extrac-
tor ERow that extracts a witness from a suitable tree of accepting transcripts in
probabilistic polynomial time. We begin with (3, . . . , 3︸ ︷︷ ︸

log2 n

)-tree of accepting tran-

scripts. Since the number of leaves of the tree is polynomially bound, 3log2 n, we
can apply the general forking lemma.

36 Lee et al.

First, in the base case n = 1, the P sends witnesses a, b to V and V check
the relation directly. That means the witness a and b belongs to transcripts and
ECol can extract them.

Now we consider the case n > 1. We construct extractor ECol by inductively
extraction. That is, retrieves s-round witness a(s), b(s) ∈ Z1×n/2s

p from next
round witnesses a(s+1), b(s+1) ∈ Z1×n/2s+1

p recursively.
First, ECol can extract final round witnesses a(ν+1) and b(ν+1). We assume

that â, b̂ ∈ Z1×n/2s+1

p is valid witness of instance (G,H, P̂i, ĉi), that are affected
by challenge xi for the relation R1,n/2s+1

GenPT4 . From the tree of accepting transcript,
we can get 3 instance-witness pairs:(G,H, P̂i, ĉi; âi, b̂i). Furthermore, ECol can
get k-round prover’s commitments (P, P̂) and their message (P , P̂) from tran-
script and EMEC respectively. From 2 distinct tuples, ECol can construct follow-
ing linear system:[

1 x1

1 x2

] [
P (q1)

P (q2)

]
=

[
[â1]G
[â2]G

]
,

[
1 x−1

1

1 x−1
2

] [
P (q3)

P (q4)

]
=

[
[b̂1]H

[b̂2]H

]
(14)

By DL assumption, ECol solves the linear equation and then get the repre-
sentation p(q1),p(q2) ∈ Zn/2s+1

p of P (q1),P (q2) ∈ Gn/2s+1

under base G and
p(q3),p(q4) ∈ Zn/2s+1

p of P (q3),P (q4) ∈ Gn/2s+1

under base H respectively. Then
p = p(q1) ∥ p(q2) ∥ p(q3) ∥ p(q4) is naturally representation of P . Let p(qi) denote
ãL = p(q1), ãR = p(q2), b̃L = p(q3), b̃R = p(q4). In the similar way in Eq. (13) of
Theorem 1, 3 distinct challenges guarantee extracted vectors ⟨ã, b̃⟩ is equal to
the value c. Therefore, the extracted witnesses ã and b̃ is valid witness for the
relation R1,n/2s

GenPT4. By inductively retrieving process and general forking lemma,
ECol can extract witness vectors a and b. ⊓⊔

C Proof of Theorem 3

Proof. (Completeness) Assume that the input ckk, (Lk,Rk,Pk, xk); (Lk,Rk,P k)
satisfies Eq. (3), (4), and (5). By the homomorphic property of polynomial com-
mitment scheme and perfect completeness of Eval and PlonkishEval, V accepts
both Eval and PlonkishEval. Therefore, we are shown the completeness of AggMEC.
(Witness-Exetended Emulation) For the computational witness-extended emu-
lation, we construct an expected polynomial-time extractor EMEC whose goal
is to extract a witness by using a polynomially bounded tree of accepting tran-
scripts. EMEC takes public inputs ckk, (Lk,Rk,Pk, xk) and returns witness vec-
tors (Lk,Rk,P k) satisfying Eq. (3), Eq. (4), and Eq. (5).

By the general forking lemma, it is sufficient to construct an extractor EMEC

that extracts a witness from a suitable tree of accepting transcripts in probabilis-
tic polynomial-time. We begin with a (6 logm+ 2 log n+ 2, 5)-tree of accepting
transcripts. Since the number of leaves in the tree is polynomially bounded, we
can apply the general forking lemma [18].

Cubic Root Verifier Inner Product Argument 37

By our premise, one can construct a PPT extractor EEval for PCS.Eval. In
addition, since the above premise implies that the PlonkishEval is an AoK, one can
construct a PPT extractor EPlonkish for PlonkishEval that extracts wire polynomials
{w(i)(X)}M−1

i=0 . The EMEC uses them as sub-routines.
First, for i ∈ {1, 2}, the EMEC gets FP (X) and w(i)(X) by feeding EEval with

(ckPC,P, z, y) and (ckPC,W
(i), z, r(i)), respectively. From the 5 transcripts from

distinct challenge τ , the EMEC extracts FV , a polynomial a(i)(X), and quotient
polynomials q(i)(X) by regarding the following relation as a polynomial with
respect to τ of degree 4: FP = FV +

∑2
i=1(τ

ia(i) + τ2+iq(i)). Note that w(i)(X),
a(i)(X), and q(i)(X) satisfy a(i)(z) = w(i)(z)− q(i)(z)(zd − 1) for i ∈ {1, 2}.

From the 6 logm+2 log n+2 transcripts from distinct challenge ρ, the EMEC

extracts polynomials F
(i)
L,k, F

(i)
R,k, F

(i)
P,k by regarding the following relationship as

a polynomial with respect to ρ of degree 6 logm+ 2 log n+ 1:

FV =

2∑
i=1

(
µ∑

k=1

(
ρ4k−2−iF

(i)
L,k + ρ4k−iF

(i)
R,k

)
+ ρ4µ

(µ+ν∑
k=0

ρ2k−1+iF
(i)
P,k

))
.

The extracted polynomials satisfy the following relation:

L
(i)
k = ComPC(ckPC, FL,k), R

(i)
k = ComPC(ckPC, FR,k), P

(i)
k = ComPC(ckPC, FP,k) (15)

Finally, EMEC outputs L(i)
k ,R

(i)
k ,P

(i)
k by decoding F

(i)
L,k, F

(i)
R,k, F

(i)
P,k respectively.

It remains to check that these extracted vectors are valid witnesses satisfying
all relations from Eq. (3) to (5). First, by the extraction process, the extracted
vectors L

(i)
k ,R

(i)
k ,P

(i)
k satisfy Eq. (15), so does Eq. (3). In addition, by the con-

struction of A(i), the polynomial a(i) is equal to the sum of F (i)
L,k, F

(i)
R,k, F

(i)
P,k, i.e.

a(i) =
∑µ

k=1(F
(i)
L,k+F

(i)
R,k)+

∑µ+ν
k=0 F

(i)
P,k. This implies that the evaluations of wire

polynomial w(i) at appropriate ξi contain those of F (i)
L,k, F

(i)
R,k, F

(i)
P,k, where each

value matches with the values of L(i)
k ,R

(i)
k ,P

(i)
k at the corresponding positions

for i ∈ {1, 2}. Furthermore, the wire polynomials {w(i)(X)}M−1
i=0 extracted from

EPlonkish ensure that L
(i)
k ,R

(i)
k ,P

(i)
k satisfy the relation Eq. (4) and Eq. (5).

To sum up, the extracted vectors L
(i)
k ,R

(i)
k ,P

(i)
k are actually the valid wit-

nesses, concluding that AggMEC satisfies computational witness extended emu-
lation. ⊓⊔

D Plonkish Arithmetization with Custom Gates

In this section, we provide supplementary description of Plonkish for elliptic
curve operations.

We first provide a basic idea of Plonk arithmetization. For each gate in the
circuit, Plonk constructs a constraint equation according to the type, e.g., addi-
tion or multiplication, of the gate. To represent this, Plonk adopts an auxiliary
variable called the selector that indicates which types of gates are enabled or
not in the current gate. To ensure that the given two gates are connected, Plonk
exploits the constraints using a permutation, which ensures that the values in

38 Lee et al.

the wires that connecting gates do not change after permutation on them. With
Lagrange Interpolation for left inputs, right inputs, outputs, and selectors sep-
arately, using a cyclic group generated by the D-th root of unity ξ of Zq, all
constraint equations except the permutation constraints can be expressed as a
single polynomial equation. Note that in this section, [ℓ] denotes a set of integers
from 0 to ℓ− 1.

Plonkish generalizes Plonk by handling all the values occurred in the execu-
tion of the circuit as the execution trace ZD×M

q . Each row represents the inputs,
outputs, or auxiliary values occurred in the corresponding execution step. This
execution trace can be represented as a sequence of polynomials by applying
Lagrange interpolation with respect to each column. Each gate can be written
as polynomial comprised of column polynomials that are engaged to the current
gate. After then, arguments for gate identity and permutation can be constructed
using these polynomials. Formally, let {w(i)(X)}M−1

i=0 be the polynomials that
represents the execution trace of the given circuit, which correspond to the col-
umn polynomials mentioned. For the number Ng of the types of gates in the
circuit, we denote {ci(X)}Ng−1

i=0 as the gate polynomials for the circuit. Each gate
polynomial can be represented as ci(X) = gi(w

(0)(X), w(1)(X), . . . , w(M−1)(X))

for some M -variate polynomial gi. Let us define {si(X)}Ng−1
i=0 as the selector

polynomials.
In addition, for the permutation argument, we denote a permutation σ :

[D] × [M] → [D] × [M]. σ(i, j) = (σ(i, j)1, σ(i, j)2) is equivalent to w(i)(ξj) =
w(σ(i,j)1)(ξσ(i,j)2). Suppose D = 2k and δ is a T -th root of unity, where T ·2S+1 =
q with odd T and k ≤ S. We use δi · ξj as the label for a value corresponding to
(σ(i, j)1, σ(i, j)2), as mentioned in [60]. Define IDi(ξ

j) = δi ·ξj that is an identity
polynomial of w(i)(ξj) and ri(ξ

j) = δσ(i,j)1 · ξσ(i,j)2 . The idea behind the permu-
tation argument technique is the fact that

∏D−1
h=0

∏M−1
i=0

w(i)(ξh)+u1IDi(ξ
h)+u2

w(i)(ξh)+u1ri(ξh)+u2
is

equal to 1 when w(i)(ξj) = w(σ(i,j)1)(ξσ(i,j)2) for random values u1, u2. We can
check the details for the technique in [7].

Plonkish is a protocol for arithmetic circuit satisfiability, and the circuit sat-
isfiability is ensured when (1) w(i)(ξj) = w(σ(i,j)1)(ξσ(i,j)2) for i ∈ [D], j ∈ [M]

and (2)
∑Ng−1

i=0 si(X)ci(X) = 0 mod XD − 1. As shown in several studies [31,
32, 60], the relations can be efficiently proved by the Polynomial IOP instanti-
ated by PCS [21]. In short, to check polynomial relations, the prover commits
polynomial and then the verifier sends random point as challenge. After then, the
prover responds evaluations. To verify the responds, the prover and verifier run
Eval interactive proof. Thanks to the Fiat-Shamir transform, interactive proof
Eval can be converted to non-interactive proof system.

We provide a brief idea of [32] to construct the polynomial relation covering
both (1) and (2) as follows: First, in line 3, the prover computes z(X), which is
the interpolation of the values obtained by multiplying

∏M−1
i=0

w(i)(ξh)+u1IDi(ξ
h)+u2

w(i)(ξh)+u1ri(ξh)+u2

one by one for h ∈ [D]. Then, as shown by [7], z(X) satisfies z(ξX)/z(X) =∏M−1
i=0 (w(i)(X) + u1IDi(X) + u2)/

∏M−1
i=0 (w(i)(X) + u1ri(X) + u2) mod XD − 1

and z(ξ0) = 1 for random challenges u1, u2. Hence, by combining these con-

Cubic Root Verifier Inner Product Argument 39

straints and the gate constraints by another random challenge u3, the prover
computes t(x), as described in line 5. Now, checking that t(ξi) = 0 for i ∈ [D]
is sufficient to convince the relations (1) and (2), which can be done by several
runs of Eval. We describe Plonkish protocol in Algorithm 5.

Throughout the algorithm, note that committing t(X) and q(X) in line 5
would require a longer commitment key than D, namely, deg(t(X)) ·D. Since the
degree of all polynomials appearing in Cougar is at most D except them, directly
increasing the length of ckPC would lead to inefficiency in the computational cost
for both the prover and verifier. To avoid this, as did in halo2 library [60], we
parse t(X) and q(X) into polynomials of degree at most D and commit them
separately. More precisely, if we denote dt as the larger one among the maximum
degree of the used custom gate and the number of columns, then the degrees of
t(X) and q(X) are D · dt and D · (dt − 1), respectively. In this case, we denote
t1(X), . . . , tdt

(X) and Q1(X), . . . qdt−1(X) as unique polynomials of degree at
most D satisfying t(X) =

∑dt

i=1 X
D(i−1)ti(X) and q(X) =

∑dt−1
i=1 XD(i−1)qi(X).

In this setting, the prover sends commitments Ti and Qj from each ti(X) and
qj(X) in line 5, and later be requested to open each of them at the random
challenge u4 provided by the verifier.

From the perspective of the verifier, it can compute values expected to be
T (u4) and Q(u4) by combining received evaluation points in line 6. However,
Eval cannot directly proceed with t(X) and q(X) because they are not commit-
ted. To mitigate this, we assume that the prover additionally sends evaluation
points t̂1 := t1(u4), . . . , t̂dt := tdt(u4) and q̂1 := q1(u4), . . . , q̂dt−1 := qdt−1(u4) to
the verifier. Then the verifier checks

ρ1
?
=

dt∑
i=1

t̂i · ud(i−1)
4 , ρ2

?
=

dt−1∑
i=1

q̂i · ud(i−1)
4

and run Eval(ckpc, Ti, u4, t̂i; ti(X)) and Eval(ckpc, Qj , u4, q̂j ; qj(X)) for i ∈ [dt]
and j ∈ [dt − 1], respectively.

Indeed, this modification carries additional communications of (2dt−3) group
elements in Gt and additional (2dt − 3) executions of LeopardPC.Eval. In partic-
ular, the prover needs to compute each Ti and Qj , i.e., requiring more compu-
tations. Nevertheless, with the batching technique presented in Section 4.2, the
computational cost for the verifier would be significantly reduced compared to
the case when we use the commitment key of length dt ·D.

PlonkishEval. Using the constraints system described in Section 4.1, we can con-
struct the polynomial gMA for mixed elliptic point addition, which takes five
polynomials {w(i)(X)}4i=0 corresponding to each column as inputs. With two
selector polynomials s1(X), s2(X), we denote PlonkishEval as an instantiation of
Plonkish with the custom gate polynomial gMA.

40 Lee et al.

Algorithm 5 PlonkishEval

PlonkishEval(ckPC, {si(X), gi(X0, . . . , XM−1)}Ng−1
i=0 , {ri(X)}M−1

i=0 ; {w(i)(X)}M−1
i=0)

Precompute: CIDi = ComPC(ckPC, IDi(X)), Cri = ComPC(ckPC, ri(X)), i ∈ [M]

1: P sends W (i) = ComPC(ckPC, w
(i)(X)) to V

2: V chooses u1, u2
$←Zq and sends it to P

3: P sends Z = ComPC(ckPC, z(X)) to V where

z(X) =H0(X) +

D−2∑
j=0

(
Hj+1(X)

j∏
h=0

M−1∏
i=0

w(i)(ξh) + u1IDi(ξ
h) + u2

w(i)(ξh) + u1ri(ξh) + u2

)
.

Hj(X) =
∏

i ̸=j,i∈[D]

X − ξi

ξj − ξi for all j ∈ [D].

4: V chooses u3
$←Zq and sends it to P.

5: P sends T = ComPC(ckPC, t(X)), Q = ComPC(ckPC, q(X)) to V where

t(X) =

Ng−1∑
i=0

si(X)gi(w
(0)(X), . . . w(M−1)(X)) + u3 · z(X)

M−1∏
i=0

(w(i)(X) + u1IDi(X) + u2)

− u3 · z(ξX)

M−1∏
i=0

(w(i)(X) + u1ri(X) + u2) + u2
3 · (z(X)− 1)H0(X)

q(X) =
t(X)

zH(X)
, where zH(X) =

D−1∏
i=0

(X − ξi).

6: V chooses u4
$←Zq and sends it to P.

7: P sends {αi = w(i)(u4)}M−1
i=0 , β = z(u4), γ = z(ξu4),

{ϕi = IDi(u4)}M−1
i=0 , and {ψi = ri(u4)}M−1

i=0 to V.
8: V evaluates ρ1 and ρ2 = ρ1/zH(u4) using the values received from P

ρ1 =

Ng−1∑
i=0

si(u4) · gi(α0, . . . , αM−1) + u3 · β
M−1∏
i=0

(αi + u1 · ϕi + u2)

− u3 · γ
M−1∏
i=0

(αi + u1 · ψi + u2) + u2
3 · (β − 1)H0(u4)

9: P and V set run Eval(ckPC, T, u4, ρ1; t(X)), Eval(ckPC,W (i), u4, αi;w
(i)(X))i∈[M],

Eval(ckPC, Q, u4, ρ2; q(X)), Eval(ckPC, Z, u4, β; z(X)), Eval(ckPC, Z, ξu4, γ; z(X)),

Eval(ckPC, CIDi , u4, ϕi; IDi(X))i∈[M], and Eval(ckPC, Cri , u4, ψi; ri(X))i∈[M].

Cubic Root Verifier Inner Product Argument 41

E Polynomial Commitment Scheme from Leopard

In this section, we provide details about the LeopardPC, which is a key ingre-
dient to instantiate Cougar. Remark that [43, Section E.1.] provided a basic idea
for constructing this; we present the full description for the sake of completeness.

LeopardPC is a natural tweak of Protocol3 [43] as a PCS. The construction idea
is basically the same as the PCS introduced by [17], which was built upon Bul-
letProofs. More precisely, we can construct PCS from IPA by regarding the point
evaluation of the polynomial as an inner product between the coefficient vector
and the vector comprised by the powers of the evaluation point. The asymptotic
communication and computation complexities of Eval from this approach are the
same as those of the underlying IPA. Note that Protocol3 features square root
verifier cost and logarithmic communication cost; hence so does LeopardPC.Eval.

Following the above approach, we provide the full description of LeopardPC
as follows: Let (G1,G2,Gt) be a bilinear group, where G1 = E(Zp). For a poly-
nomial a(X) ∈ Z<mn

p [X] and positive integers m,n ∈ N, we will denote its
coefficient vector as a ∈ Zmn

p , namely, a = (a0, . . . , amn−1) such that a(X) =∑mn−1
i=0 aiX

i. LeopardPC = (Gen,Com,Eval) over a message space Z<mn
p [X] and

a commitment space Gt is defined as follows3:

– Gen(1λ)→ ckPC ∈ Gm
1 ×Gn

2 .
– Com(ckPC = (G,H), a(X))→ P := (G⊗H)a ∈ Gt.

In addition, Eval = (K,P,V) is an interactive argument system for the fol-
lowing relation:

RLeopardPC.Eval =


 ckPC = (G,H) ∈ Gm

1 ×Gn
2 ,

C ∈ Gt, z, y ∈ Zp, d ∈ [mn];
a(X) ∈ Z<mn

p [X]

 :
C = (G⊗H)a

∧
y = a(z)


A typical strategy to cope with the above relation is to modify the above relation
into that for IPA: For z = (1, z, . . . , zmn−1), we can rewrite a(z) = ⟨a, z⟩. For
this reason, the construction of Eval is almost identical to Protocol3 except for
some modifications regarding the fact that z is also known to the verifier. The
precise description of LeopardPC.Eval is given in Algorithm 6. Here, bit(k) refers
to the bit decomposition of a number k.

We now show that LeopardPC is indeed the PCS, i.e., satisfying the conditions
in Definition 7, under the DL assumption. In fact, G⊗H in the above relation
can be seen as the commitment key of the Pedersen vector commitment defined
over the group Gt, along with a certain structure. Since the binding property
of the Pedersen vector commitment depends on the DLR assumption, one can
expect that the same holds for LeopardPC under a structure-aware version of the
DLR assumption.

3 We will not consider hiding property because zero-knowledge property is unnecessary
in our context.

42 Lee et al.

Algorithm 6 LeopardPC.Eval

LeopardPC.Eval(ckPC = (G,H) ∈ Gm
1 ×Gn

2 , P ∈ Gt, z, y ∈ Zp;a ∈ Zmn
p)

where m = 2µ and n = 2ν

1: V picks U $←Gt and sends it to P
2: P and V set P0 = P + [y]U , G0 = G,H0 = H.

Additionally, P set a0 = a and z0 = [zm(i−1)+(j−1)] ∈ Zm×n
p

3: for i = 0, . . . , µ− 1 do
4: P parses ai, zi, and Gi to

ai = [ai,L ∥ ai,R], zi = [zi,L ∥ zi,R], Gi = Gi,L∥Gi,R

5: P computes:
Li = [ai,L](Gi,R ⊗H) + [⟨ai,L,zi,R⟩]U ∈ Gt

Ri = [ai,R](Gi,L ⊗H) + [⟨ai,R,zi,L⟩]U ∈ Gt

6: P sends Li, Ri to V
7: V chooses ri

$←Z∗
p and sends it to P

8: P computes:
ai+1 = ai,L + r−1

i ai,R, zi+1 = zi,L + rizi,R ∈ Zm/2i+1×n
p

Gi+1 = Gi,L + [ri]Gi,R ∈ Gm/2i+1

1

Pi+1 = [ri]Li + Pi + [r−1
i]Ri ∈ Gt

9: end for
10: for j = 0, . . . , ν − 1 do
11: P sets i = j + µ and then parses ai, zi, and Hj to

ai = ai,L ∥ ai,R, zi = zi,L ∥ zi,R, Hj = Hj,L∥Hj,R

12: P computes:
Li = [ai,L](Gµ ⊗Hj,R) + [⟨ai,L,zi,R⟩]U ∈ Gt

Ri = [ai,R](Gµ ⊗Hj,L) + [⟨ai,R,zi,L⟩]U ∈ Gt

13: V chooses ri
$←Z∗

p and sends it to P
14: P computes:

ai+1 = ai,L + s−1
j ai,R, zi+1 = zi,L + sjzi,R ∈ Zn/2j−1

p

Hj+1 = Hj,L + [sj]Hj,R ∈ Gn/2j+1

2

Pi+1 = [si]Li + ·Pi + [s−1
i]Ri ∈ Gt

15: end for
16: P sends a = aµ+ν ∈ Zp to V
17: V computes:

r[k + 1] = ⟨bit(k), (r0, . . . , rµ+ν−1)⟩ for k = 0, . . .m+ n− 1
Parse r to rrow ∥ rcol where rrow ∈ Zm

p and rcol ∈ Zn
p

G = ⟨rrow,G0⟩, H = ⟨rcol,H0⟩, z = rrowz0rcol

18: V checks:
P0 +

∑
i∈[µ+ν]([ri]Li + [r−1

i]Ri) = e([az]G,H)

Cubic Root Verifier Inner Product Argument 43

For this reason, we first provide a definition of generalized discrete logarithm
relation (GDLR) assumption, which was previously defined in [43, Definition 8].
For simplicity, we denote Gb as a bilinear group generator that takes the security
parameter λ and outputs a bilinear group (G1,G2,Gt) of order p, generators g, h
for G1 and G2, respectively, and a pairing operator e.

Definition 8. For m,n ∈ N and the security parameter λ ∈ N, let GDLRsp be
a sampler defined by

GDLRsp(1λ) : (p, g, h,G1,G2,Gt, e)← Gb(1λ);G
$←− Gm

1 ;H
$←− Gn

2 ;

Output (p,G⊗H,Gt),

Then, we say that GDLRsp satisfies the general discrete logarithm relation (GDLR)
assumption if all non-uniform polynomial-time adversaries A, the following in-
equality holds:

Pr

[
a ̸= 0 ∧ ga = 1Gt

(p, g ∈ Gm×n
t ,Gt)← GDLRsp(1λ)
a← A(p, g,Gt)

]
where 1Gt is the identity of Gt and negl(λ) is a negligible function in λ.

As shown by [43, Theorem 5], if the DL assumption on both G1 and G2 hold,
then the GDLR assumption also holds. In addition, by assuming the GDLR
assumption, the binding property of LeopardPC holds immediately.

Now it remains to check that LeopardPC.Eval is an AoK for the relation
RLeopardPC.Eval. As we mentioned, this relation can be understood as a special case
of that for Protocol3, and Algorithm 6 is in fact almost identical to Protocol3. We
note that Protocol3 satisfies perfect completeness and computational witness-
extended emulation under the GDLR assumption [42]. In fact, we made the
same modifications as [17] for constructing LeopardPC.Eval, without considering
zero-knowledge. That is, the proof strategies for computational witness-extended
emulation of ours and theirs are identical, except for replacing the DLR assump-
tion with the GDLR assumption. We refer to [42] and [17] for more detailed
information.

To sum up, LeopardPC satisfies all conditions in Definition 7 under the DL
assumption on G1 and G2. In addition, it does not require the trusted setup
and features squared root verification cost and logarithmic communication cost
with respect to the length of the witness. Therefore, it is a desirable PCS for
instantiating Cougar.

