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Abstract

We revisit the alternating-moduli paradigm for constructing symmetric-key primitives with a focus on constructing
efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating-moduli paradigm
of Boneh, Ishai, Passelegue, Sahai, and Wu (TCC 2018) enables the construction of various symmetric-key primitives
with the common characteristic that the inputs are multiplied by two linear maps over different moduli.

The first contribution focuses on efficient two-party evaluation of alternating-moduli pseudorandom functions
(PRFs), effectively building an oblivious PRF. We present a generalized alternating-moduli PRF construction along
with methods to lower the communication and computation. We then provide several variants of our protocols with
different computation and communication tradeoffs for evaluating the PRF. Most of our protocols are in the hybrid
model while one is based on specialized garbling. Our most efficient protocol effectively is about 3x faster and
requires 1.3 less communication.

Our next contribution is the efficient evaluation of the one-way function (OWF) f(z) = B -3 (A -2 ) proposed by
Dinur, Goldfeder, Halevi, Ishai, Kelkar, Sharma, and Zaverucha (CRYPTO 21) where A € F3**™ B € F*™, and
-p is multiplication mod p. This surprisingly simple OWF can be evaluated within MPC by secret sharing [x] over
F, locally computing [v] = A -2 [z], performing a modulus switching protocol to 3 shares, followed by locally
computing the output shares [y] = B -3 [v].

We design a bespoke MPC-in-the-Head (MPCitH) signature scheme that evaluates the aforementioned OWF,
achieving state-of-the-art performance. The resulting signature has a size ranging from 4.0 to 5.5 KB, achieving
between 2-3x reduction compared to the prior work. To the best of our knowledge, this is only ~ 5% larger than
the smallest signature based on symmetric-key primitives, including the latest NIST post-quantum cryptography
competition submissions. We also show that our core techniques can be extended to build very small post-quantum
ring signatures for rings of small to medium size, which are competitive with state-of-the-art lattice-based schemes.
Our techniques are in fact more generally applicable to set membership in MPCitH.
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1 Introduction

We revisit the line of work on building basic cryptographic primitives such as one-way functions (OWFs) [Lev85],
pseudorandom generators (PRGs) [BMS2, Yao82], and pseudorandom functions (PRFs) [GGM84] that allow efficient
evaluation in a distributed setting. Traditionally, instantiations of these basic cryptographic primitives have taken two
approaches as described in [ABG™ 14]. The first is the reductionist approach where the security of the construction can
be reduced to a “standard” set of well-studied computational assumptions such as the hardness of factoring, discrete
logarithm, or learning with errors (LWE). The second is a direct construction approach where the construction itself
is considered to be the computational assumption. Indeed, many of today’s most widely used primitives follow the
direct approach (e.g., AES, SHA).

The reductionist approach comes with several benefits—it improves our theoretical understanding of how various
computational hard problems are related and allows the cryptographic community to focus its cryptanalytic efforts on a
small set of assumptions. With the test of time, newer assumptions become widely accepted and eventually considered
standard by the community. Unfortunately, the benefit of this approach often comes at a large cost to efficiency: often
resulting in orders of magnitude worse efficiency compared to the direct construction approach (consider the efficiency
gap between SHA-256 and discrete-logarithm-based hash functions). Moreover, with the looming threat of quantum
computers, many of the existing standard assumptions are at risk of becoming insecure which, in turn, motivates the
investigation of new cryptographic assumptions.

The security of the direct or new constructions, while often not reducible to a standard assumption, are often
based on a set of principles that are developed and refined as the problem is studied. The canonical example of this
is linear and differential cryptanalysis of symmetric-key cryptography. Other examples include early lattice-based
constructions such as NTRU [HPS98]. In many cases, these schemes first developed security principles which, in
time, were refined into a small set of underlying (standard) assumptions.

An additional benefit of direct constructions is that they allow for an added degree of flexibility to conform to
a changing set of requirements. This is particularly true in this work where we are focused on designing and using
symmetric-key primitives that are extremely efficient to evaluate in the multi-party setting. Indeed, it seems unlikely
that assumptions and constructions designed for a wildly different set of constraints would be ideal for this setting.
An added advantage of the direct approach is that this flexibility often allows the construction to lack the algebraic
structure that a quantum computer could exploit. In some cases algebraic techniques such as Grobner bases can still
apply. However, this still requires exploiting specific structure in the construction which is not always present. This is
contrasted by traditional assumptions such as factoring or discrete logarithm which have a large amount of structure.
With the increased use of secure multi-party computation (MPC) and the looming approach of quantum computers,
there has been a need to consider a new set of assumptions that meet a new set of requirements. In particular, primitives
such as ring signatures [RSTO1], oblivious pseudorandom functions (OPRFs) [NR97, FIPROS], verifiable random
functions (VRFs) [MRV99], blind signatures [Cha82], and more lack efficient constructions that meet one or more
of these requirements. This work is focused on using new symmetric-key techniques and novel protocol designs to
implement these applications using MPC, or the zero-knowledge compiler known as MPC-in-the-head [IKOSO07].

MPC-friendliness. There are two main categories of efficient MPC protocols, based on garbling (round optimal
but large communication overhead) and based on linear secret sharing (communication efficient but round complexity
grows with the depth of the circuit). Garbling-based approaches typically have prohibitively high overheads making
them impractical for most applications as also noted in [DGH"21]. Ideally, we want to design primitives that can be
evaluated in just one round trip (the minimum required) using protocols based on linear secret sharing.

There has been a long line of work in this direction, with a focus on modifying existing symmetric-key primitives
to make them MPC-friendly [ARST 15, GRRT16, DEG' 18, AGP*19,DGGK21, G®@SW23]. Despite making progress
towards MPC-friendliness, these constructions still suffer from a large communication overhead and/or large round
complexity [BIPT18]. To understand the reason behind the unsatisfactory progress in constructing MPC-friendly
symmetric-key primitives, it helps to understand the high-level strategy underlying the cryptanalysis of symmetric-key
primitives. A popular approach is differential cryptanalysis [BS91] for block ciphers which analyses the effect that
a change in the input has on the output. By making sufficiently many queries, one may be able to later distinguish
the output from a uniformly random string. The depth of the function is correlated with the difficulty of building a



distinguisher and low-depth functions are expected to be less secure, conflicting with the goal of MPC-friendliness.

Deep yet shallow. A key observation made by [BIP™ 18] is that the notions of depth required by MPC and security
against cryptanalysis are in fact very different. Starting with this observation, they propose the alternating-moduli
paradigm which mixes linear functions over different moduli. One can build concretely efficient MPC protocols to
evaluate such functions, where the number of rounds needed only depends on the number of piecewise linear functions.
The same function when expressed as a polynomial over a single modulus has a much higher degree, making it resistant
to cryptanalysis. This key observation allowed them to build a depth-2 weak PRF (wPRF) which can be evaluated in
just one round trip, given a preprocessing phase. Their construction has mostly resisted initial cryptanalysis, with
some (easily fixable) attacks requiring a large number of samples found in [CCKK21]. This work was followed by the
work of Dinur ef al. [DGH*21] who proposed a new OWF, PRG, and a weak PRF based on the same paradigm and
showed that one could construct efficient MPC protocols to evaluate them leading to a very efficient round-optimal
oblivious pseudorandom function. They also showed that the OWF could be used to build a post-quantum signature
scheme with good concrete efficiency albeit still larger than the state-of-the-art using symmetric-key primitives.

Good but not great. While prior works designed efficient protocols based on the OWF/wPRFs that were proposed,
they still either fell short of beating the state-of-the-art or suffered from other limitations. Despite being able to design
cryptographic primitives from the ground up, it is unsatisfactory that these protocols are not “the best.” In particular, the
signature scheme from [DGH™21] has a much larger size than the state-of-the-art 4-7 KB. More advanced primitives
such as ring signatures and verifiable random functions have remained relatively unexplored. Moreover, the 2PC
protocols for evaluating these symmetric-key functions required significant time to generate the required correlated
randomness while the main phase of these protocols have more communication than one would have desired.

1.1 Our Contributions

We emphasize that the goal of this work is to revisit the alternating-moduli paradigm and show that when protocols
are carefully designed, such that they exploit the structure of alternating-moduli primitives, they can indeed achieve
state-of-the-art performance. In light of the limitations discussed above, we make the following contributions.

New candidate wPRF. We investigate bottlenecks in the (weak) PRF candidates and propose a new candidate in
Section 3. Our wPRF requires less communication and effectively a third of the number of oblivious transfers (OTs)
when evaluated in MPC. While the work of [DGH™"21] proposed a protocol with good performance for the main
phase, it omitted relatively large cost of generating correlated randomness. The careful design of our new wPRF
candidate optimizes the end-to-end cost of the protocols while at the same time achieving better performance in the
main phase. Our construction allows one to instantiate it with O()\) amortized evaluation time while prior works
[BIP*18, DGH*21] mandated O()\?) time. While previous works [BIPT18, DGH"21] have primarily focused on
using linear secret sharing, and dismissed garbling-based approaches, we show that using specialized garbling schemes
leads to competitive protocols that offer an interesting trade-off between the computation and communication.

New cryptanalysis and generalized wPRF candidate. We present new cryptanalysis of different constructions in
Section 3. Similar to [BIP* 18], we show that the hardness of our wPRFs is connected to the hardness of solving sparse
multivariate polynomials over 5, or in its dual form, the hardness of interpolating sparse multilinear polynomials. This
analysis suggests a generalized construction based on solving a system of sparse multilinear polynomial equations over
a small finite field and might, with time, form the basis of an underlying cryptographic assumption.

Fastest OPRF and wPRF protocols. In Section 4 we describe our wPRF protocols and report their performance
metrics in Section 4.6. When compared to the prior alternating-moduli wPRF of [DGH"21], our implementation is
an order of magnitude faster, due in part to the implementation itself and the structure of the new wPRF. Compared
to commonly used LowMC construction, we observe that our protocols have far fewer rounds of interaction (2 versus
14 to 88) and are 3 to 20 times faster. Indeed, even compared to DDH-based OPRF protocols, our protocols are an



order of magnitude faster and require only slightly more communication. Concretely, our fastest protocol requires just
2 rounds, 7.7 microseconds, and 100 bytes of communication in the amortized setting.

Small post-quantum signatures from symmetric-key assumptions. We begin Section 5 by revisiting the digital
signature scheme from [DGH™21] and build a specialized MPC-in-the-Head (MPCitH) protocol targeting the same
OWEF, giving us signature sizes ranging from 4.0 to 5.5 KB. To the best of our knowledge, this gives the second smallest
signature (only 5% larger than the smallest) based on symmetric-key/MPCitH techniques.' This also addresses an
implicit open question in [DGHT21] about whether a specialized proof system for the alternating-moduli OWF can
lead to better performance. In this process, we also offer additional insights into the security of the alternating-moduli
OWEFE, which serves as a useful guideline when introducing additional structure.

Smallest post-quantum ring signatures. In Section 5.1, we extend our digital signature scheme to a ring signature
scheme by introducing a simple yet powerful technique to prove disjunctions of the same relation in MPCitH. Our ring
signature grows linearly in the size of the ring, but for small to medium-sized rings, we are concretely smaller than the
state-of-the-art. For larger rings, most MPCitH-based signatures, including ours, can be combined with the compiler
by Goel et al. [GGHAK22] to build ring signatures whose size only grows logarithmically in the ring size.

1.2 Overview

We propose a new weak PRF in the alternating-moduli paradigm [BIPT18]. For n, m,t = O(\), our construction is
defined as
F(k‘, Cﬂ) =B ‘3 (A ) [k‘ ®9 .’K])

where z,k € F% are the input and key, A € F5**" is a random matrix, B € F{*™ is a compressing random matrix,
and -, ®, are multiplication and component-wise multiplication modulo p. This differs from the prior constructions
[BIPT 18] which can be defined as F/(A,x) := B(Ax) where the matrix A is interpreted as the key. We conjecture
that the core hardness of these constructions stems from three components.

1. The input and key are non-linearly combined modulo two.
2. Modulo two summations of subsets are taken.
3. Modulus conversion is followed by a public compressing linear map B.

Observe that both our construction and the construction of [BIP™ 18] follow these three phases. In particular, the
matrix-vector multiplication of [BIP™ 18] can be viewed as performing (1) component-wise multiplication with each
row of the matrix, followed by (2) summation. When viewed this way, observe that the summations in (2) are over
disjoint sets, i.e., > j (A; ® z);. This is in contrast with our construction where we take random summations over a
common combined input vector (k ® x). In a sense our construction is reusing the hidden variable of k;x; many times
while [BIPT 18] uses it in a single term.

When interpreted in the MPC context, recall that linear operations are essentially free while multiplications require
communication.? The number of multiplication terms of [BIP™ 18] is proportional to the size of A, i.e., O()\Q), and as
such, O(\?) communication is required. The work of [DGH"21] gave specialized protocols for the wPRF of [BIP* 18]
which reduced the communication complexity to O(A) in the amortized setting. In particular, [DGH'21] proposed
modifying the key matrix A to be circulant, i.e., each row is a shift of the previous, which allows one efficiently
multiply K - = for many x with an amortized O(\) communication overhead. However, we show that the process of
generating the correlated randomness for this multiplication still requires O(\?) work with relatively high constants.

In contrast, our construction only performs n = O(\) multiplications in step (1) and therefore can completely
sidestep the need for this expensive correlated randomness. Moreover, we show how the parties can use the fact that

'We compared against submissions to the most recent NIST call for additional post-quantum digital signature schemes. See Post-Quantum
signatures zoo for easy comparison.

2That is, given a modulo p secret sharing of v € [} and public M € ]F;"X", the parties can compute M -, v without any communication.
However, multiplication of two secret-shared scalars requires communication.


https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
https://pqshield.github.io/nist-sigs-zoo/wide.html
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the key is typically static to generate reuseable correlated randomness (i.e., n OTs) to compute shares of (k ® x) for an
unbounded number of z. The main complexity of our protocols is how shares of A (k ® z) are converted from modulo
2 to modulo 3. We show that this can be done with m = O(\) communication and m OTs which can be generated with
sublinear communication using pseudoradnom correlation generators [BCG™19b, RRT23]. Compared to [DGH™'21],
our techniques require less correlated randomness. The final setup of our protocol is for the parties to locally apply
the Fs-linear map B to their F%* secret sharing of (A - (k ® z)). To improve efficiency, we propose instantiating A
and B such that multiplication can be done in linear time while maintaining their desired security properties.

We give two additional variants of this protocol. The first switches the order of the moduli. That is, the wPRF is
defined as F'(k,xz) = B -3 (A -3 [k ®3 x]). The resulting protocol is conceptually similar. The primary advantage of
this protocol is for MPC applications where the output should be in binary secret sharing format [MRR20, BDG*22].
Our second variant is based on a specialized garbling scheme. The main advantage of this protocol is that it does
not require any OT correlations when performing modulus conversion. However, it comes at the expense of requiring
O(A\?) communication to compute (k ® z). We believe this construction is interesting when only a few evaluations are
performed. For details on our protocols we refer to Section 4. We also implement our MPC protocols and report their
performance in Section 4.6. Overall, we observe a 3 to 20 times reduction in running time compared to alternatives
such as [DGH"21, ARS™15] while substantially reducing the communication overhead. Indeed, compared to the
DDH-based OPRF [Mea86], our construction is an order of magnitude faster with comparable communication.

Beyond proposing the new wPRF and the associated MPC protocols, we adapt existing techniques to determine
parameters for the wPRF. Compared to [BIP* 18, DGH™21], we observe that the parameters ., m, ¢ must be increased
a moderate amount. However, we give techniques to mitigate this increased parameter size, and in some cases even
allow for less communication overhead. Our analysis suggests that the most relevant attack on the construction is a
reduction to subset sum [DGH'21]. In particular, given an input-output pair (z,y = F(k,x)), one can define the
intermediate vector w := A(k ® x). Viewing A as a linear code and letting P be the associated parity check matrix,
the adversary has the constrains that Pw = 0 and Bw = y. One can solve for w using subset sum solvers which
have running time O(2°-33™). For some of our parameter regimes we show that the adversary must consider multiple
samples and present a new extension of subset sum to this setting. We refer to Section 3.5 for details.

Lastly, we build upon the work of [BIP™18] to show that the hardness of our construction essentially boils down
to the hardness of solving sparse multivariate polynomials. In particular, we present an equivalent representation of
our wPRF and show that a key recovery attack for the construction directly corresponds to solving a system of sparse
multilinear equations over 5. This also leads us to a generalized framework for instantiating alternating-moduli weak
PRFs where the distribution of input space can be varied to capture various constructions.

Signatures. Given that the alternating-moduli OWF (AM-OWF) was designed with the efficient evaluation within
MPC in mind, i.e., low non-linear depth but high algebraic degree, it is natural to try to build a signature scheme using
the MPC-in-the-head paradigm. In particular, the AM-OWF of [DGH™21] is defined as

f(z) =B 3 (A1)

for some n,m,t € O(\) where € F¥ is the input, A € F5"*" is an expanding random matrix, and B € F{*"™ is
a compressing random matrix. The hardness of inverting this function stems from the non-linearity of changing the
modulus between multiplying by A and B. One interpretation of this problem is that Be is an LPN instance with
correlated noise vector e = Ax.

To build a signature in the MPCitH paradigm, the verification key is the output y = f(x) = B(Axz) on some
uniformly random input x, and a signature is simply a proof of knowledge of a preimage x. Indeed, this was the
exact approach taken in the prior work [DGH"21], where they used the KKW proof system [KKW18] resulting in
signatures with sizes ranging from 10.3 to 13.3 KB, which are still 2-3x larger than the best known signatures from
symmetric-key assumptions. The issue is that the KKW proof system has a generic way of handling the preprocessing
material needed for the MPC, that is oblivious to the function being evaluated. These checks on preprocessed material
account for a significant chunk of the overall proof size.

The MPCitH protocol that we design is very close to the KKW proof system, except for the way in which we handle
preprocessing checks. Instead of using a cut-and-choose strategy, we use an idea from [CCJ23] that has the prover
first commit to the inputs, and (possibly maliciously generated) preprocessing material. The verifier then permutes



the preprocessing material and forces the prover to use this ordering when executing the online phase of the MPC
protocol. We then show that for any choice of (incorrect) preprocessing material, a malicious prover who does not
know a valid preimage, has a very low probability of producing an accepting proof. Although the high level ideas
are borrowed from the prior work, the concrete hard problem that we consider is very different and hence demands a
completely separate, non-trivial analysis. Instead of using a ball-and-bins analysis as done in [CCJ23], we view the
problem through the lens of error correcting codes, which enables us to give much cleaner bounds in comparison to
the prior work which relied on conjectures that were confirmed for their parameters by explicitly computing them via
python scripts (Section 3.6.2).

Ring signatures. A ring signature allows a party to sign a message while remaining anonymous amongst a chosen
set of (say) ¢ parties. Given a signature scheme, there is a generic way to construct ring signatures by providing a
zero-knowledge proof for the statement:

“I know a signature o on the message m that verifies under a public key pk; for some i € [{].”

The challenge, however, lies in minimizing the concrete overhead introduced on top of a single signature, when trying
to prove membership of the public key pk; € {pky,..., pk,}. The state-of-the-art in post-quantum ring signatures are
lattice-based schemes [LNS21, ESZ22], which build concretely efficient zero-knowledge proofs for set membership
adapted to the lattice setting.

The only competing alternative appears to be based on MPCitH [GGHAK?22], where the ring signature size grows
as O(log ¢) but they are concretely worse than [LNS21, ESZ22]. This can be attributed to two main factors:

* They use Picnic [CDG17] as the core signature scheme which is quite large ~ 42 KB when instantiated with
NIST L5 parameters.?

* Although the signature size is O(¢), the concrete constants are still quite high for small to medium-sized rings.

The former issue can be handled easily by replacing Picnic with either the signature scheme we propose or another
newer and smaller MPCitH-based signature scheme (see Figure 9). This would yield concretely good signatures that
are competitive with lattice-based schemes at large ring sizes. However, we observe that in many practical scenarios,
small to medium-sized rings are used. For instance, in the ring signatures protocol used by Monero as part of RingCT,
the number of public keys used in the anonymity set was only very recently upgraded from 11 to 16.* We close this gap
in the literature for small to medium-sized rings using a simple yet powerful idea (Section 5.1). When combined with
our signature scheme described above, this yields competitive post-quantum ring signatures for rings of size < 32.

At a high level, our strategy is to interpolate a polynomial Y (X) such that Y (i) = pk, for ¢ € [¢] and have
the prover show that the public key they know (i, pk;, @(X)) satisfies Y (X) — pk; = Q(X)(X — 4) for some
degree ¢ — 2 polynomial Q(X). The verifier then checks that this equation holds at a random point 7 in the field.
With overwhelming probability, we are then guaranteed that the claimed polynomial and public key indeed satisfy the
relation above. However, this is not sufficient by itself, as the prover has to now show that ¢ € [¢]. We obtain this for free
when the public keys can be interpreted as field elements in GF(p*) for some prime p. This is indeed the case for the
AM-OWF and other MPCitH signatures based on AES, LowMC, Rainy, AIM [AESO1,ARS™15,DKR ™22, KHS"23].
Instead of secret sharing i over GF(pt), the prover shares it over GF(¢), and if ¢ is a power of p, the parties in the
MPC, can locally embed their shares in GF(p') by appending Os. Note that this immediately guarantees that i can be
expressed using log,, £ digits and this also does not leak any information about : as the verifier already knows that any
honest prover uses an i € GF(¥).

2 Preliminaries

We use [n] to denote the set {1, 2, ...,n}. The computational and statistical security parameter is denoted by A, o € N.
A probability is noticeable if it is not negligible, and overwhelming if it is equal to 1 — negl()) for some negligible

3https://microsoft.github.io/Picnic/
“https://github.com/monero-project/research-lab/issues/79.
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function negl()\). For a set S, we write s < S to indicate that s is sampled uniformly at random from S. For a random
variable D, we write d <— D to indicate that d is sampled according to D. We use A(X,Y) to denote the statistical
distance between two random variables X and Y and Ay (x,y) to denote the hamming distance between two vectors
z,y € {0,1}*. For two ensembles of random variables {Dp »}ren, {D1,) }ren, we write Dy = D; to indicate that
for all PPT A, it holds that

Pr [A(d)=1]—- Pr [Ad)=1]| <

[(N).
d(—’DQA d(—Dl’)\ + neg ( )

[N

We use [z] to denote an additive sharing of = and overload this with arithmetic operations such as multiplication
and addition to show operations applied on individual shares by the parties in the MPC. We will also write [z], to
denote the share of the i-th party. When useful, we will explicitly state the field I, that is being secret shared over as
[«]?. We use {(a, b) to denote the inner product of two vectors a, b € [}, and © to denote their Hadamard product.

Here we recall the definition of universal hash families and the leftover hash lemma. Let H.,(X) denote the
min-entropy of a random variable X and U,, denote the uniform distribution over {0, 1}".

Definition 2.1 (Strong Extractors). A function f : {0,1}" x {0,1}¢ — {0,1}™ is said to be a strong (k, €) extractor,
with seed length d, if for all random variables X on {0, 1}", independent of Uy, with H,(X) > k,

A(f(Xa Ud)7 Um) S E.

Definition 2.2 (Universal Hash Families). A family # of hash functions of size 2¢ from {0, 1}" to {0, 1}™ is said to
be universal if, for every x,y € {0,1}" with x # v,

Pr [h(x) = h(y)] < 27™.

P [h(e) = h(y)] <

Definition 2.3 (Leftover Hash Lemma [HILL99]). Let X be a random variable with H,(X)
{0,1}™ be a universal hash family of size 2¢. If m = k — 2log(¢ 1), then h(x) is a strong (
length d and output length m.

>k,andH : {0,1}" —
k, ) extractor, with seed
Definition 2.4 (¢g-ary entropy). For any integer ¢ > 2 and real 2 € [0, 1], the g-ary entropy function is defined as
Hy(x) = zlog, (¢ — 1) — zlog, (v) — (1 — x)log, (1 — z).

Definition 2.5 (Volume of Hamming Ball [GRS23]). Let ¢ > 2and 0 < r/n < 1 — 1/q. Then the volume of a
Hamming ball of radius r in F? satisfies ¢/7s("/mn=0(") < Vol (r,n) < ¢fa(/mn,

We refer to Honest-Verifier Zero-Knowledge Argument of Knowledge as HVZKAoK and define it below. Given
a two-party interactive protocol between PPT algorithms A with input @ and B with input b where only B gets an
output, we introduce two random variables: (A(a), B(b)) denotes the output of the protocol, and View(A(a), B(b))
denotes the transcript of the protocol.

Definition 2.6. An HVZKAoK with soundness error ¢ for an NP language £ C {0, 1}* and corresponding relation
Re C {0,1}* x {0,1}* is an interactive protocol between a prover P and verifier V that satisfies the following
properties:

* Perfect Completeness. For every (z,w) € R, the verifier always accepts the interaction with an honest prover
Pr((P(a, w),V(z)) = 1] = 1.

« e-Soundness. For every PPT algorithm P that satisfies Pr[(ﬁ(x),Y(x)) = 1] = € > ¢, there exists an
extractor algorithm Ext which, given rewindable black-box access to P, outputs a valid witness w’ for z in time

poly(\, 1/(€ — €)).

* Honest-Verifier Zero-Knowledge. An argument of knowledge is (computationally, statistically, perfectly)
HVZK if there exists a PPT simulator Sim such that for every (z,w) € Rz, Sim(z) = View(P(z,w),V(x)),
where = denotes computational, statistical, or perfect indistinguishability between the distributions.



Gap-HVZK. A gap honest-verifier zero-knowledge argument of knowledge [CKY09, CCJ23] with gap £’, where
L’ D L is an NP language with relation Rz, is defined as an honest-verifier zero-knowledge argument of knowledge,
with the following relaxation of e-soundness: the extractor Ext is only guaranteed to output a witness w’ such that
(x,w") e L.

Weak Pseudorandom Function (WPRF). A function family F' : L x X — ) with key space K, input space X,
and output space ) (implicitly parameterized by security parameter \) is said to be a weak pseudorandom function if
for any ¢ = poly() it holds that

{(Iiv F(kv xi)}ie[q] e {(I“ yz)}ze[q]

where k <+ K, z; < X,and y; <+ ).

Pseudorandom Function (PRF). A function family F' : K x X — ) with key space /C, input space X, and output
space ) (implicitly parameterized by security parameter )) is said to be a (strong) pseudorandom function if for any
PPT adversary A we have
P Flk) = 11— P O =1 < [(A
| Pr A J= PriA ]| < negl(A),
where A”(*) and AF(*>) denote A has oracle access to F'(k,-) and f(-) respectively, and F denotes the set of all
functions from X to ).

3 Symmetric-Key Primitives from Alternating Moduli

We now move on to the design, analysis, and implementation of our new weak PRF and the associated MPC protocols.
To better understand our new construction we first review closely related MPC-friendly (weak) PRFs.

3.1 Prior Constructions and Their Shortcomings

Low-MC PRP. One of the popular constructions is the Low-MC block cipher [ARS™ 15] which follows a similar
structure as standard block ciphers such as AES. Unlike our constructions, Low-MC is a permutation and therefore
faces additional constraints that all operations must be invertible given the key. In addition, Low-MC is a PRP which
implies that it is a strong PRF and must be secure for adaptively chosen z, not just random. For an input x € F”,
Low-MC is computed iteratively using the round function s; 1 := f;(k;, s;) fori € [r] where s; = x and the final
output is computed as F(k,x) = s,41. Typically, » € [14,2)]. The round function f;(k;, s;) can be computed in
three phases. First, a non-linear and invertible Fy transformation is applied to the state. In particular, the current state
s; € FY is reinterpreted as g; € G™ where G = F3 and m = n/3. Let IP be the permutation group over G — G. A
constant element ¢ € P is applied to each G element in g;, i.e., g, := ¢- g;, and g/ is then reinterpreted as an F% vector
s;. Next, a linear and invertible Fy transformation is applied, s/ := A, - s, for a public A; € F3*". Finally, the round
key k; € F% is added to the state which defines the output of the round, i.e., s;1+1 := s/ + k;. When implementing
Low-MC, computing the action of ¢ € P is implemented in MPC as a binary circuit over F3. The authors give a
specific value of ¢ which can be implemented as («, 3,7) = (@ 8y, a® 8 & ay,a ® B @ v & af) using three
parallel AND gates and six “free” XOR gates.

As with the hardness of alternating-moduli paradigm, the security of Low-MC stems in part from two operations
that are each non-linear with respect to the other, matrix multiplication - : F"*" x F" — F" and the permutation
group action - : P x G™ — G™. Unlike the alternating-moduli paradigm, only a single element ¢ € PP is applied to
the state as opposed to, for example, a matrix B € P™*™_ However, multiplying by such a B appears to necessitate
significant work in the MPC setting since it is non-linear over the secret sharing group G. To mitigate the minimal use
of operations in P, Low-MC applies many iterations of the round function. The primary shortcoming of Low-MC is
the necessity of r ~ 14 invocations of the round function, each of which requires 2 rounds of communication, O(n)
OT correlations, and O(n?) work. Ideally, this could be reduced to effectively performing the round function once.



A weak PRF from [ABG*14]. Akavia et al. proposed the first weak PRF that follows a similar structure as ours.
Their construction defines the key and input to be k = (b € F*, A € F;*") and x € F¥, respectively. First the
matrix-vector product Az is computed followed by computing a public disjunctive normal form (DNF) formula g on
the result, i.e., F'(k,z) = g(Axz @ b). A DNF formula can be computed as a layer of OR gates followed by AND
gates, i.e., for some public (¢,e,c) such that ¢ = poly(n) and e,c € {0,1}'*™, the function can be expressed as
g(z) = N_, V-1 €ij(z; @ ci,j). Bogdanov and Rosen [BR17] showed that any DNF formula g can be represented
as arational function of degree at most O(log n), which in turn implies that f can be distinguished in quasi-polynomial
time O(poly(tn - 2'°2(1)12(n))) While it may be possible to instantiate g to have a large enough ¢ to have exponential
security in practice, the concrete efficiency is unlikely to be competitive with alternatives.

A weak PRF from [BIPT18] Boneh et al. propose a weak PRF with exponential security that can be computed by
depth 2 circuits with mixed moduli. In particular, they consider the function F(K,z) = ¢g(K -2 x) where g(w) =
> ;w;mod 3, and w := K - € 5" is a binary vector that is embedded into F%* component-wise in the natural
way. As discussed later, [BIP' 18] proposes to restrict K to be a circulant (or toeplitz) matrix. The works of [BIPT18,
DGH™21] show that various types of learning algorithms provably cannot learn this function. They additionally show
that it can not be approximated by any low-degree polynomial. This result follows from the result of [Raz87, Smo87]
showing that MOD,, can not be approximated by any low depth mod g circuit, where p, ¢ are distinct primes. The work
of [DGH™21] proceed to give several extensions to their core construction. The first is support for multiple output
bits. The function is defined as F/(K, z) := B -3 (K -2 «) where K is a square matrix and B is a compressing matrix.
In particular, one can view B as a generator matrix for a linear code that has high minimum distance. The best-known
attacks for this construction attempt to distinguish by detecting a linear bias in the output. However, these attacks
scale exponentially in the minimum distance of B [BIP*18]. We note that the structure of this weak PRF is identical
to the aforementioned OWF. Indeed, [DGH'21] based their OWF on the weak PRF construction of [BIP™ 18] where
the key K is replaced with a public random matrix. The work of [DGH"21] also conjectures that the 5, F3 can be
replaced by any distinct prime fields IF,,, F,. The core hardness of the problem appears unaffected with all known
attacks performing equally poorly on larger moduli. However, Fo, F3 (and F3, F9) appear to be the most efficient
choice due to yielding more efficient modulus conversion protocols. The work of [BIPT18] suggests choosing the
key K € F}"*" to be a square cirulant matrix, which in turn allows one to express K in O(\) space and, as we will
see below, enables efficient matrix-vector products in the two-party setting [DGHT21]. With some exception that we
will discuss later, choosing K with this distribution does not appear to degrade security for the parameters used by
[BIPT18,DGH™21],i.e., n = m = 2\, t ~ 0.6\

For implementing this weak PRF in MPC, [BIP" 18] and [DGH™21] have considered two settings: honest-majority
three party and semi-honest two party. First the Fy secret-shared inputs [K] and [2]° are multiplied® together to
obtain [w]® := [K]*[#]°. The exact method used to compute this depends on the setting and is discussed below.
Once the sharing of w = K - = is computed, the parties perform a modulus switching protocol where the shares [[w]]2
are converted into [w]”. The work of [DGH™21] suggests that one can preprocess a random double sharing []°, [r]*
for a uniform r € ', using some protocol and to reveal w’ := [r]* + [w]. Using [r]°, it is then possible to subtract
off r from w’ to obtain [w]>. The final step of the protocol is to locally compute [ f(K, z)]* := B -3 [w]’. The outline
above requires two missing steps, efficiently computing a sharing of K - z and generating random modulus conversion
double sharings [r]?, [r]°. Next, we discuss how [DGH™21] suggests this can be done.

In the honest-majority three-party setting, the inner product between two vectors can be computed with O(1)
communication [AFL*16], which implies that [w]® = [2]* - [K]? can be computed with linear communication
overhead, i.e., O(n 4+ m). Similarly, it is possible to have one of the parties generate [r]°, [r]* locally and then only
reveal w’ to the other parties, i.e., O(m) communication. In the two-party setting the situation is more complicated
due to not having an O(1) communication inner product protocol. However, when evaluating the wPRF for a fixed
key K for many inputs, one can amortize this cost. In particular, for bits b1, ...,b, € Fs and a fixed vector A € F3?,
one can use correlated OT protocols, e.g., IKNP [IKNP03], SoftSpoken OT [Roy22], or silent OT [BCG™19a, RRT23]
to generate the secret sharings Hbl-AHQ. Moreover, silent OT can achieve this with an amortized cost of ¢ bits of
communication when ¢ is sufficiently large. Alternatively, SoftSpoken OT achieves ¢ - % communication for any

5When the inputs are plaintext, more efficient multiplication can be used.
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constant c, e.g., ¢ = 4. In particular, this corresponds to a subfield VOLE protocol with Fs as the subfield and Faom as
the extension. When K is circulant, one can set A := K; € Fym and generate sharings of [[xy) - A] and locally rotate

these to obtain [[xy) - K] and sum them to compute [Kz("]. We note that [DGH*21] only mentions the technique
above in passing and does not implement or report on its performance. Instead, they focus on the setting with (free)
preprocessed correlated randomness where [Kz] can be computed using other methods (which also leverage the fact
that K is circulant). The work of [DGH'21] does not explicitly state how to generate modulus conversion double
sharings and again assumes (free) preprocessing for [[r]]z, [[rﬂg. A natural choice would be using OT or the more recent
work of [IKNZ23]. Looking forward, we will offer improvements to these technique in Section 4.

A PRF from [BIP'18]. In addition to the weak PRF construction previously discussed, Boneh et al. proposed an
extension for upgrading the their conjectured weak PRF to a strong/plain PRF. First they show that one can distinguish
their weak PRF in the strong/adaptive setting where the adversary can choose the input z. In particular, their adaptive
attacks leverage highly correlated inputs such as having small hamming distance. This suggest the use of an error
correcting code to ensure that all inputs have high minimum distance. The most efficient solution would be to encode
the input using the same modulus as the input to the weak PRF, i.e., F(A,2) = B -3 (A -5 [G -2 z]) where G is the
generator matrix. This could be implemented in MPC with no communication and very little overhead. Unfortunately
this approach does not work as this can be viewed as a transformation on only the key, i.e., F(A’,x) = B -3 (A’ -5 x)
where A’ = A -3 G. Therefore, the same attack applies to this construction. The work of [BIP" 18] also shows that the
adaptive attacks on their wPRF can be extended to a relatively large class of multiplicative depth-2 circuits. Given this
negative result, [BIP™ 18] turn their attention to depth-3 circuits. They conjecture that performing the linear code over
a different modulus does result in strong security and propose a candidate PRF construction. We refer to [BIPT 18] for
a detailed discussion.

3.2 Insecure Plus/XOR Construction

As a starting point we first introduce a candidate construction that is ultimately determined to be insecure. The aim of
this example is to demonstrate how subtle changes to the construction can result in significant security ramifications.
Moreover, we believe it is instructive to know what does not work as well as what does. Given the advancements of
f(z) =B -5 (A - z) being an OWF, a natural question to ask is whether it possible to use f to construct another, more
efficient, weak PRF. From the efficiency perspective, such an f can be evaluated in the plain two-party setting with
linear communication due to the only non-linear step consisting of O(n) modulus conversion gates since A is now
public. Arguably the simplest candidate would be

F(k,r) =B 3 (A2 (k@ 1)),

where k and x are binary vectors and & denotes addition over . To attack the candidate above, it is not hard to see
that it suffices to provide an attack for the following single-bit output variant

F(k,2) =1" 3 (A (k@ 2))

where 1% denotes the all-one vector of appropriate dimension. We now show that this function is indeed learnable.
It will be useful for us to represent F3 as the set {—1,0, 1} in the natural way. A simple observation is that one can
emulate addition over Fy using multiplication over F3 by relying on the mapping ¢(z) = x + 1 (arithmetic in F3),
which maps 0 — 1 and 1 — —1. Let y = F'(k, x) be an input-output pair from the wPRF candidate above. It follows
by inspection that if we use the notation Z; = ¢(z;) and k; = ¢(k;) for j € [n], we can write the following

where arithmetic operations are done over F5. Since input is known in the wPRF game, by plugging in the input values
we can compute each T;. Moreover, each S; is a monomial over k = (k1,. .., ky), i.., S; is simply a subset product
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of components of k& where the subset only depends on A (and is independent of 2). We can now recover the key in
two steps. First, given that ¢ is a linear function, after gathering enough samples we can use Gaussian elimination to
recover each S; € {—1,1} for i € [m]. In the next step, we use .S; to recover the key. To do so, recall that each .S; is
a monomial of components of k. Because multiplication over 3 (for the set {—1,1}) is isomorphic to addition over
IF5, it follows that

A 2 k= (¢_1(Sl)7 AR ¢_1(Sm)) € {07 1}m.

Since A is a random expanding matrix we can recover k by Gaussian elimination, as desired. We remark that one can
rely on a similar argument to show that the following candidate

F(k,z) =B 3 (A - (k|z))

is also insecure, which is obtained by replacing the XOR operation in the plus construction with concatenation (and
appropriately modifying the row dimension of the public matrix A).

3.3 Our Constructions

An alternative view of [BIPT18]. Leading up to our main construction (Definition 3.2), let us first reconsider the
weak PRF of Boneh et al. [BIPT 18] defined as F(K,z) := B -3 (K -2 z) where 2 € F} is the input, K € Fy"*" is
the key (typically square and circulant), and B € F{*"™ is a public compressing matrix. Observe that this function can
be computed as F(K, z) := B -3 [A -5 (k Oy 2’)] where for n/ := nm, the vectors k’, 2/ € F}}' are the appropriately
unrolled version of K, z. In particular, let k., +; = K;; and 2’ := xx...x be m copies of x. Computing the
component-wise product of these two vectors provides all of the terms required to compute K -5 . All that remains
is to perform the summations corresponding to the rows of K. This can be achieved using an appropriately defined
public matrix A € F5"*"™. In particular, A will be the (compressing) repetition code, or equivalently it will look
like a staircase with consecutive runs of n ones in each of the m rows. We argue that this formulation more explicitly
describes the construction as it separates the additive and multiplicative steps. An additional benefit of the explicit
formulation is that the n’ = nm = O(\?) scalar multiplications between secret vectors k', x’ are apparent.

Our weak PRF. Instead of asking if we can reduce the overhead of the Boneh et al. construction, it will be more
instructive to ask if there are any methods for plausibly improving the hardness of the function. The most natural
option is to remove all structures from k', 2/, A.. If A is the repetition code of [BIPT 18, DGH™21], then wj is the sum
Doicnl+(i—1ym Tiki = 2 ic(n TiKi1,i+;. As demonstrated in Section 3.2, the alternating-moduli paradigm becomes
insecure if each w; is not the combination of O(A) multiplications and additions for each w;. As such, choosing a
circulant K with dimension O()\) in some sense appears to be the most succinct option while remaining secure, i.e.,
each input bit z; for i € [n] is multiplied by each (independent) key bit K ;, leading to nm = O(A?) terms where
the summations are taken over disjoint sets and x;, K, ; each appear once.

However, we observe that this is by no means the only option. Let us remove the constraints on x’, k' € ]Fg'/
such that they are uniformly distributed and replace A € F*n with a code with high minimum distance, e.g., A
is uniform. Observe that each w; is now a linear combination of the x}k; terms. In expectation, each w; will be
the summation of n’ = nm = O()\?) terms. In light of the known cryptanalysis, this construction appears overly
conservative in that the w; terms only need to be a sum of O(\) terms while at the same time not having small linear
dependency. We have now defined our new (2, F3)-wPRF which is a generalization of the Boneh ez al. wPRF. In
particular, we can write the implicit construction above more formally as follows:

Definition 3.1. Let n,m,t € N, our (F3, F5)-wPRF construction is F'(k,z) := B -5 (A -3 [k ©2 x]) where z, k € F}
and A € F"*", B € F{*™ are uniformly distributed.

The weak PRF construction of Boneh et al. is then defined by requiring that x, k, A have repetitive structure
along with defining n = O()\?). However, we will argue that the problem for uniform x, k, A remains hard even
when n = O()). One interpretation of our result is that prior works perform O(\?) multiplications followed by
multiplication with a repetition code while our construction more efficiently amortizes the multiplications by replacing
the repetition code with a high minimum distance code, i.e., our construction more diligently uses the limited number
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of multiplications that are available. As with Boneh et al. [BIP™18], one can similarly generalize our construction to
any prime field.

Definition 3.2 (Generalized weak PRF). Let n,m,t € N, and let p, ¢ be distinct primes. Our (F,,F,)-wPRF is
defined as F(k,x) := B -4 (A -, [k ©p z]) where 2,k € Fy and A € F;"*™, B € F,*™ are uniformly distributed.

Following the same analysis as [BIPT 18], we conjecture that our depth-2 weak PRF can be compiled into a (strong)
PREF by first encoding the input using an error correcting code with a different modulus than the key. In particular, we
conjecture that Definition 3.3 is a PRF for appropriately chosen n, m, ¢, d.

Definition 3.3 (Generalized PRF). Let n,m,t,d € N, and let p, ¢ be distinct primes. Our (F,, F,,, F)-PRF is defined
forz € Fas F(k, ) := B -4 (A [k ®, (G - (z,1))]) where k € F? and G € Fy *(“"D A ¢ Frixn B ¢ Fixm
are uniformly distributed.

The core intuition behind this construction is that known attacks against our weak PRF and the weak PRFs of
[BIP™18] in the adaptive setting heavily rely on PRF evaluations for highly correlated inputs, e.g., having small
hamming distance. The work of [BIP™18] proposes a compiler that they define as encoded input. The core idea is to
restrict the adversary’s choice of inputs to the underlying weak PRF so that highly correlated inputs are not allowed. A
natural example of such an encoding is encoding the input using a linear error correcting code G. The most efficient
option for doing this is to perform the encoding in F,,. However, the work of [BIP* 18] shows that this does not work
as one can recast this encoded input function as a new instance of the underlying weak PRF with a different A matrix.
This recasting crucially relies on the fact that A and G are over the same modulus and therefore compose into a new
matrix A’. Given this observation, they suggest sampling G over a different modulus and performing an additional
round of modulus conversion of G - (z, 1) from F,, to F,, before multiplying it with the key. To ensure that the output
remains pseudorandom for all-zero input, 1 is appended to x.

3.4 Optimizations

We consider two optimizations with the aim of improved efficiency of our wPRF when evaluated in the two-party
setting where the key k is fixed for many inputs (1), ..., (9. Due to the generality of our construction, both can be
framed as changing the distribution of the key k or input . We provide a description of our protocols in Section 4.

Structured input z. For now, let us focus on the (Fy,F3)-wPRF where 2(*) k € F}. We consider the general
methods for computing (") ® k, i.e., component-wise multiplication.

Reusable key OTs. Given that £ is fixed, a natural protocol for computing [ - x(i)}] is to preprocess a random OT
for each bit k1, .., k,, of the key. These can then later be derandomized using standard techniques to generate the
sharing [% - x(i)]] using only O(n) communication and minimal computation. The advantage of this approach is that
no per evaluation OTs are required. When combined with our OT-based modulus switching, we will show that we need
only m = 2\ OTs per evaluation. Alternatively, when combined with our custom garbled circuit modulus-switching
protocols, no per evaluation OTs are needed at all. However, we will see that the disadvantage of this approach is that
it requires 7 = 4\ bits of communication, and as a result, this approach will have more communication (but fewer
OTs) compared to the protocol of [DGH'21] with n = 2 bits of communication.

Nonreusable input OTs. To bring down the overall communication, we make the observation that the input x can
have a smaller “effective” size of just A bits. First we change the distribution of z such that for some & € F*, one
can express x as s copies of &, i.e., x = (&||#]|...||#). We will then be able to efficiently multiply each bit of &; with
corresponding s bits of the key, i.€., ki, kiyn/s, ..., using subfield VOLE. In particular, when using silent VOLE in
the amortized setting, the communication complexity is essentially independent of s. As a result, the total amortized
communication for computing x ® k with s = 4 is just \ = n/s bits, a 4 to 2 times reduction depending on the
protocol. However, this change implies that n/s = X additional VOLE correlations will be consumed per evaluation.
We note that for small s, these silent VOLE correlations can be packed together such that computing A/s of them
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can be computed at the effective computational cost of a single random OT. Finally, as we see later, we note that for
[BIPT18,DGH™"21], applying similar optimizations results in their schemes being insecure due to certain weaknesses
associated with the use of the circulant key K.

Structured key & over F3. In the case of (F3, F2)-wPRF it will be advantageous for us to restrict the key & which
would typically be in F% to lay in the binary subset. The operations of multiplying A -5 (k ®3 2:) will still be performed
modulo three. We conjecture that this variant is as secure given that n is increased to compensate for the loss of entropy
in the key. When combined with the reusable key OTs optimization above, this enable x ® k to be computed with half
the communication complexity of the original method.

3.5 Security Analysis and Parameter Selection

Here we show that the plausible security of our weak PRF is connected to the hardness of solving sparse multivariate
polynomials over [F5. Building on prior works, we proceed to using combinatorial methods to analyze our construction,
with a focus on a reduction to subset sum problem.

Polynomial representation. The security of our construction is closely related to the hardness of solving sparse
multivariate polynomials. Indeed, in Section 3.2 we presented a weakened variant of our construction that can be
broken when viewed as a problem over multivariate polynomials. Recall that for £ = 1 our construction can be written
as F(k,x) = b" -3 (A -3 [k ®2 z]). Observe that one can emulate addition over F5 using multiplication over F3 by
relying on the mapping ¢(x) = x + 1 (arithmetic in F3), which maps 0 — 1 and 1 — —1 (we also use the notation
z; = ¢(x;) and k; = ¢(k;) for j € [n]). Then, F(k, ) can be rewritten as

m

Zbi ) ¢*1(H Rty = Zbi . (H kj9T 1) = Z H ki — Zbi'
7j=1 =1 Jj=1 =1

i=1 i=1 j=1
——
P

The term P is public and hence can be computed by the adversary. Thus, the hardness of our weak PRF construction
boils down to the pseudorandomness of the following: F'(k,z) = > " | ;;1 l%;” *7 where operations are done over
F3. For any input x, the weak PRF output is simply a sparse multilinear polynomial over F3 (where the polynomial
is defined by the input and public parameters), so a key recovery attack for the construction directly corresponds to

solving a system of sparse multilinear equations over Fs.

A generalized construction. Building upon the idea above, we now describe a simple framework to instantiate new
weak PRFs based on the hardness of solving a system of sparse multilinear equations over a finite field of (small)
size. First, we fix a finite field ;, and two dimensions m and n. Let ;" be the key space and let D be a distribution
over m x n binary matrices. The construction can be succinctly described as follows: F'(k,X) = >7"  []i_, k;“,
where all operations are done over IF,,. Note that m is the number of terms in the polynomial and the ith term in the
polynomial simply corresponds to a subset product over the components of the key k according to the ith row of the
input X. For instance, the preceding construction (with public matrix A) is an instantiation of the framework above
with the field F3, and the distribution D is obtained by sampling = < {0, 1}" and setting the ith row of X as A; © z.

On the duality of polynomial representation. We remark that in the polynomial representation outlined above, one
can alternatively put Z; = ¢(z;) in the base and obtain the following representation of F’ (a similar representation
can be found for F as well): F'(k,z) = >, H;.Lzl fj“ " Note that in this representation, a key recovery attack
would correspond to interpolating sparse multilinear polynomials. While the connection between symmetric-key
primitives (based on the alternating-moduli paradigm) and the hardness of interpolating sparse multilinear polynomials
has already been observed by [BIPT 18], neither of [BIPT18] or [DGH™21] considered the dual problem of solving a
system of sparse multilinear polynomial equations for their constructions.
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We present several possible parameterizations of our wPRF. The most efficient known attacks [DGH™21] are based
on a reduction to subset sum problem [HJ10,BCJ11, BBSS20]. We will review the core reduction which focuses on
the AM-OWE. We then discuss how this applies to the wPRF where the key is effectively the AM-OWF input.

Subset sum attack. At a high level, the main idea to attack the AM-OWF can be described in two steps. In the
first step, inverting the OWF is reduced to a specialized subset-sum problem. In the second step, modern subset-sum
solving algorithms such as [HJ10, BCJ11, BBSS20] are modified in a way that they enable us to solve the resulting
specialized subset-sum problem and invert the OWF. We focus on the first step, as the modification step can be done
via standard algebraic and combinatorial techniques.

Let y € FY be an output of the OWF on an input 2 € F%, and let w = A -5 z be the intermediary evaluation.
Observe that there is an (m — n) x m parity check matrix P such that w = A -5 z iff w lies in the kernel of P.
So, for any intermediary evaluation w we have P - w = 0 and B -3 w = y. We now aim to find w by a reduction
to subset sum. Denoting the i-th unit vector by e;, note that if we can find a set of indices I C [m] such that
(XierP2ei, > ;e Brsei) = (0,y), then we can invert the OWF simply be solving A - z = Y, e;. Therefore,
we have a reduction to the subset sum problem with the target (0, y) € F3'~" x F% and m variables B, ..., Bm,
where we associate 3; = 1 with (P 2e;, B3 e,»). We point out that this problem can also be seen as a special case of
generalized knapsack problem for the additive group (F5'~" x F4, +), for which search-to-decision reductions with
different parameter setting have been proposed by [MM11].

As mentioned in [DGH™21], a slightly modified version of [HJ10] needs 2°-337™ time and 2%-2°6™ space (ignoring
polynomial factors in m) to invert the OWF. In addition, the algorithm of [BBSS20] (with slight modification) runs in
20-283m time and space. Overall, to achieve s-bit security one needs to set m > 3.53s. Thus, a suggested choice of
the parameters (n,m, t) in terms of \ for the AM-OWF would be (), 3.53\, A/ log, 3).°

One-to-one parameters. We now present a conservative parameter set for our wPRF constructions given the subset
sum attack. One can rely on the OWF attack described above to break our (Fz,F3)-wPRFE. Consider fixing some
input-output pair (x,y = F(k, x)) and observe that this can be viewed as an instance of the OWF applied to the key k.
For each x; = 0, it is clear that k; does not have any impact on the output of the wPRF. Thus, on average, one needs to
double the key/input size to prevent the subset sum attack from recovering k given a single (z, y) sample. We propose
the following parameter setting for our (Fo, F3)-wPRF to get A bits of security: n = 2\, m = 7.06\,t = 2)\/log, 3,
which is simply doubling the parameters in OWF setting to thwart the subset sum attacks. In particular, both key
and input will be 2-bit strings. For the (I3, F5)-wPRF we propose n = 2A/log,(3), m = 7.06)\/log,(3),t = 2.
Indeed, in the restricted single wPRF sample setting, it is not hard to show that the hardness of the OWF implies the
hardness of a key recovery attack. Recall that the parameters of the OWF imply that it is approximately one-to-one.
As such, for any given  we should expect there to be one value for  ® k that is consistent with any given sample.
Hence, we denote the parameters above as one-to-one. When generalized beyond the artificial constraint of a single
sample, one can view each sample (z1,¥1), ..., (24, yq) as defining a related OWF instance, where the OWF input k&
and parameter A are “subsetted” by ;.

Many-to-one parameters. Unlike the OWF, recall that given a sample (x, y), non-invertability is not a requirement
of a wPRF with respect to arbitrary key k’. Building on this observation we propose to deviate from the OWF
parameter regime and consider the setting where there are many consistent x ® k for any given (x,y). Specifically,
we define n = 4\, m = 2X\,t = A\/log,(3) for the (F2,F3)-wPRF and n = 4\/log,(3),m = 2A,t = A for the
(F3,F2)-wPRF. Focusing on the (Fy, F3)-wPRF, observe that for any given sample (z,y), there is a set Z,, , := {z |
y=B-(A-2)Az®ax = z} representing the valid k ® z preimages. For the parameter regime above, it holds that
|Z| = O(2*). Indeed, consider the A’, k' where A’ consists of the columns of A indexed by 4 such that z; = 1 and
k' consists of k;. For the average case of |z| = 2\, we have A’ € F;**™ and therefore the size of Z is precisely the
sizeof W ={w |y =B -3wAw € Fy}. Thatis, W is defined by the binary codewords of a random ¢ x m linear
codes (viewing B as the parity check matrix) and therefore we would expect |[W| ~ (2/3)m3m~t > 2m—1.6t 5 24
Therefore the adversary has no advantage in recovering k given a single sample.

%More aggressive parameter have also been proposed, e.g., (X, 3.13\, A/ log, 3) [DGHT21].
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Consider g samples (M), yM), ... (2@ 4(@) Let w® := A - (k® 2(*) and observe that given A, B, 2(*), one
can compute A’ € FI"*" B’ € thanL such that (w®, ..., w@) = A’-kand (y, ...,y @) = B"- (wD, ..., w(®).

Therefore, assuming ¢ is sufficiently large, one can define P as the parity check matrix of A’ and solve the
following subset sum problem (> .., Pe;, > ;. B'e;) = (0,y) to recover w = ) ., e; and therefore k. However,
the running time for this problem with the best-known subset sum solver [BBSS20] is O(2°-3374). Based on the
discussion above, ¢ must be at least 2 and therefore the running time is at least O(2°-33722}) = O(21-35}),

Parameters for optimizations. In Section 3.4 we propose two alterations to the construction. The first proposes
to restrict « to be s copies of # € F?, i.e., n = sA. The main attack that this alteration impacts is the potential
improved efficiency for sparse polynomial. As with the prior works, our scheme can be framed as the problem
of interpolating sparse polynomials, i.e., F'(k,x) = > ", H?Zl 95;-4” " The efficiency of these solvers require
evaluating the polynomial at specific values, e.g., roots of unity. Therefore, one must ensure that sufficiently few of
such points coincide with the random weak PRF inputs, z(1), ..., (). Given that at most ¢ = 2*° queries are made,
we conjecture that such techniques remain exponential time. Indeed, [BIP* 18] shows that if such attacks are effective,
then learning with rounding (LWR) [BPR12] for similar parameters is broken. Should a large bound on ¢ be desired,
one can increase n or decrease s accordingly to maintain the security margin between 2"/* and q.

We note that similar optimizations should not be applied to the protocol of [DGH'21] with a circulant key. In
particular, when the wPRF is defined as F(K,z) = B -3 (K -2 ) and K is circulant, the scheme suffers from a
vulnerability when z is symmetric, i.e., x = (Z||Z). Due to the symmetry of both = and K, the intermediate value
w = K -z will also be symmetric, i.e., w = (w||w). Given that B is close to a rate 0.5 matrix, i.e., m/2 = t, the
attacker can efficiently solve for w and thereby recover w, rendering the scheme insecure. To prevent this, the work of
[DGH™21] requires z to be uniform over n = 2\, which results in symmetric x occurring with negligible probability,
unlike the case of n = A. The second security-relevant optimization we suggested is the restriction of the key k € F3
for the (F3,F5)-wPREF to lie in the binary subset. As we discussed before, this halves the communication complexity
of computing * ® k£ when implemented using reuseable key OTs technique. We are not aware of any attacks that can
take advantage of this distribution change beyond relatively trivial attacks. To mitigate the impact of these, we suggest
increasing the key length by log,(3), i.e., n = 4.

Other attacks. Another potential avenue of attack would be utilizing Grobner basis to solve a system of multilinear
polynomial equations. However, in its plain format, the algorithmic cost of such an attack is quite high and it does
not seem to impact the security of our wPRF constructions. Both [BIP™18] and [DGH™21] argued that appropriately
designed alternating-moduli constructions cannot be approximated by low-degree polynomials. Moreover, they give
conjectures that this extends to rational functions as well. Assuming that the equivalent conjecture for our construction
holds, it appears implausible that generic algebraic techniques will be effective for our parameters. On the flip side,
we are not aware of any other algebraic attack that particularly exploits the extra structure/information provided by
the wPRF and hence we suggest setting parameters based on subset sum. Finally, we refer to the analysis in [BIPT18,
DGH™21] for additional attacks that leverage some common structure to all of our schemes. For example, one can
break the security if B has small minimum distance, if one is able to efficiently enumerate all w for a fixed y, if one
is able to detect bias in the output bits, or if one can leverage the parity of z,y, along with attacks based on LPN,
and connections to learning theory [BIP™ 18, DGH'21]. However, these attacks are not significantly impacted by our
changes and are less efficient than the subset sum attack.

3.6 Properties of the AM-OWF

We now focus on proving some useful properties for the AM-OWF of [DGH™21], which will be helpful for our
constructions in Section 5. Recall that the AM-OWF is defined as f(x) = B(Axz) where A € F;"™ and B € F5*™
are fixed public matrices chosen uniformly at random, and Az is interpreted as a binary vector in 5*. Roughly
speaking, our core lemma shows that when the input size is made slightly larger than the output, the statistical distance
between the distribution of the output of the AM-OWF on a uniformly random input and the uniform distribution is
negligible. At the same time, we show that a uniformly random value from % lies in the image of the OWF with
overwhelming probability. We will then use this lemma to prove the hardness of various problems closely related to
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the AM-OWF that will allow us to reduce the size of our post-quantum signature scheme. We begin by proving that
the family of AM-OWFs is universal.

Lemma34. Let H = {hap : {0,1}" — {0,1}11°83 | A € F}"*", B € F*""; rank(A) = n} be a family of hash
functions such that ha g(xz) = B -3 (A - ), then H is a universal hash family.

Proof. Observe that rank(A) = n and hence A is an injective mapping. Define the group G as G = (F%, +) and
observe that h o g(z) is basically a subset sum over m group elements g1, . .., g, Where g; denotes the ith column of
B. Let w = Az and w’ = Ay. Since w # w’ (because x # y and A is an injective mapping), there is at least one
index i such that w; # w}. Without loss of generality, let i = 1 and w; = 0. Observe that

t t t t
Prlhan(e) = has®)] =Pr | wi g =Y wl-g| =Prlg =Y wi-gi =Y wi-g;] =IGI"" =37,
=1 =1 =2 =2

where the third equality follows from the fact that g; is distributed uniformly and independently from others, and the
proof is complete. O

By appealing to the leftover hash lemma, we have the following corollary. Intuitively, Corollary 3.5 shows that
if we swap the output of the AM-OWF with a uniformly random string of the same size, even a computationally
unbounded adversary fails to distinguish them with some noticeable probability.

Corollary 3.5. Let ha B < H, as defined in Lemma 3.4 and n > tlog 3+w(log \), then ha B is a strong (n, negl(\))
extractor with output length tlog 3.

In addition to being close to the uniform distribution, we will now show that the AM-OWF covers an overwhelming
fraction of the output domain F%.

Lemma 3.6. For any hag < M, let Oy, , = {haB(z)|lx € F3} denote the covering of ha s. Then, with
overwhelming probability over the choice of ha B, we have |Op, 5|/3" > 1 — negl(A).

Proof. Suppose this was not true, then we would have A(ha 8(Uk), Uriogs) > 1/poly()), hence contradicting

Lemma 3.4. Thus, the output of the AM-OWF must cover an overwhelming fraction of the output domain. O

3.6.1 Variants of the AM-OWF

We next define three variants of the AM-OWF and show that they are at least as hard as inverting the AM-OWE.
Recall that in the OWF game, a challenger samples A < F7**", B « F{*"™, and = < F% and computes an instance
(A, B,y = B(Ax)). The adversary is tasked with finding any « such that B(Ax) = y. The advantage of an adversary
in this game is the probability with which it outputs such an z.

Systematic form. To improve the efficiency of our protocols using the AM-OWF, we wish to use the AM-OWF in
systematic form, i.e., the adversary is given (A, B, x) where all entries are sampled uniformly at random except for the
bottom-most n X n entries of A and the right-most ¢ x ¢ entries of B, which are replaced with I,, and I; respectively.
‘We now prove that this new game is just as hard the original OWF game.

Lemma 3.7. Given an adversary A that wins the systOWF game with noticeable advantage, there exists an adversary
A’ that wins the OWF game with noticeable advantage.

Proof. Given an instance from the OWF game (A, B, y), let M1, M, be defined as the matrices such that AM; =
[IA] and M,B = [B|It] A’ then provides the adversary A with (AM;, MB35 = Msyy). M; and M; are
in fact the inverses of the bottom-most square and right-most square of A and B respectively, which exist with
noticeable probability as these matrices are full rank with noticeable probability and and is easy to compute using
standard Gaussian elimination. Thus, when A responds with & such that MyB(AM; %) = §, which happens with
non-negligible probability, A" outputs z = M Z. O
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Anti solution. Due to technical reasons in our protocols, we also need to argue that it is difficult to find an anti
solution. We define another game (antiOWF) which is identical to the OWF game, except the adversary needs to
output an x such that B(1 & (Ax)) = y and now argue that this as hard as the OWF game.

Lemma 3.8. Given an adversary A that wins the antiOWF game with noticeable advantage, there exists an adversary
A’ that wins the OWF game with noticeable advantage.

Proof. Given an instance from the OWF game (A, B, y), provide the adversary A’ with (A, B, g = B{1}" — y).
With noticeable probability, the new instance is indistinguishable from an honestly sampled instance by Corollary 3.5
and Lemma 3.6, as the distribution of the image is close to uniformly random and the AM-OWF covers a noticeable
fraction of F4. Hence, A outputs 2 such that B(1 & Ax) = g with probability at least ec’. A’ then outputs z as the
solution to OWF challenge (A, B, y). It is easy to see that if B(1 & Az) = ¢, then B(Az) = y because the flip
operation can be emulated in F3 as B(1 — (Ax)) where Az is first embedded in Fs. O

Approximate solution. We define a final game approxOWF(n, m, t), which is identical to the OWF game but with
a relaxed requirement on the solution where the adversary is given (A, B,y), and must output (x,v,v’) such that
v= Az, y=Bv,and Ay (v,v") < 1. In fact, our result holds for any A (v,v") < O(1).

Lemma 3.9. Given an adversary A that wins the approxOWF(n, m + 1,t) game with noticeable advantage, there
exists an adversary A’ that wins the OWF game with noticeable advantage, for a slightly smaller OWF (n, m, t) game.

Proof. Given an OWF challenge (A,B,y), A’ first guesses a random position j € [1,m + 1], hoping this is the
position that .4 will cause an edit. A’ then computes an approxOWF (n, m + 1, t) instance by:

1. inserting a random row a <— [ at the j-th position of A to get A;
2. inserting a random column b < F} at the j-th position of B to get B; and

3. § + y+ b.'[j], where v'[j] is the j-th entry of v’ and sampled uniformly at random from F3 as a guess for the
modified entry.

Observe that this new instance always has a solution in the approxOWF(n, m + 1, t) game, and the statistical distance
from the uniform distribution over % is upper bounded by 1/poly()) (Corollary 3.5). Thus A will continue to output
a solution with non-negligible probability on this new instance. Suppose A’’s guess was correct for the modified entry
and let A’s output be (x, v,v’) and ¥ be identical to v, except with the j-th entry deleted. Then it is easy to see that
(z,7) is a solution to the OWF challenge given to A’ O
3.6.2 Combinatorial Analysis

Similar to [CCJ23], we compute a bound on the success probability of a cheating prover who is free to choose the
correlations used in the MPCitH. Although the high-level approach is the same, we use very different techniques,
relying on the properties of error correcting codes.

Definition 3.10 (Combinatorial bound - informal). A real p € (0,1) is a combinatorial bound, if for every incorrect
witness z, and every pair (r, ') € F§* x F%*, the probability over a random permutation 7 that x satisfies the following
equations:

e =200-7(")+(1—-2)On(r) withz =7(r) ®v,and v = Ax
* B =y
is upper-bounded by p.

We begin by making a few observations. As also noted in [CCJ23], for all possible combinations of r, r/, the effect
of the share conversion step can be mapped to one of three different actions:

* Identity (copy): v; = v;, whenever r; = 7.
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* Flip (flip): v; = 1 ® v;, whenever r; € {0,1} Ar; # rl.
* Constant 2 (const2): v; = 2, whenever r;, = 2.

A malicious adversary who does not use a valid witness = will arrive at a v such that Bv # y. Therefore, the only
way to satisfy Bv' = y is to modify enough positions of v, to make it a codeword. Since we permute the randomness
used, the actions chosen by the adversary are permuted before being used. Intuitively, the larger the number of flips,
the lower the probability that a permutation aligns the flips with the positions that need to be modified.

We begin with the observation that B can be viewed as the parity-check matrix of a random linear code where
instead of checking whether the parity is 0, we check that it is . Therefore, Bv' = y if and only if v’ is a codeword.
Because B is a random linear code, it has good distance with high probability. Therefore, the possible values of
v’ are sufficiently spread out. Suppose that the minimum number of flip and const2 operations required to reach a
particular word v’ from v are 41 and d5 respectively. Then the number of permutations that map v to v’ is given by
(m — 81 — 62)1911 62! < (m — H)! 6!, where § = §; + d2. Over the choice of permutations, the probability that the
adversary successfully lands on a particular word is upper bounded by 1/ (7;) Thus, if we can upper bound the number
of codewords, at a distance § from v, and take a union bound over all of them, we obtain the adversary’s probability
of successfully cheating using a configuration with § modifications.

Few flips (0 < 6 < d/2). If the minimum distance of B is d, then within any hamming ball of radius < d/2, there
is at most one codeword. Thus, if the adversary modifies fewer than d/2 positions, there is at most one codeword that
satisfies Bv' = y.

Many flips (d/2 < § < m). This case is more tricky because there are now (potentially) many codewords on the
hamming ball of radius . It is easy to see that the total number of words on the hamming ball is (?) However, any
codeword is at least a distance d away from any other codeword. Therefore, for every codeword that we try to fit on the
hamming ball, there are some number of words adjacent to this codeword that cannot also be a codeword. Formally,
this set of adjacent words can be described as Bs = {¢ | Ay (v',¢) < d A Ag(v,c) = §}. Without loss of generality,
we can choose v to be the origin {0}™ and v = {0}™~9||{1}°1]|{2}°2, where §; + 52 = &. The description of Bs
can be simplified as Bs = {c | wt(c) = A wt(c —v’) < d}. We can now compute a lower bound on |Bs| and hence
an upper bound on Cj, the number of codewords at a distance J. Observe that we enumerate over words in Bs by first
choosing an o < min(d/2,d, m — 0) subset of the 0 positions that will be flipped to either 1 or 2 and then restoring
the weight to ¢ by zeroing out an «a-sized subset of the 1/2 positions. In addition, one can flip the 1/2 positions to
2/1, in each of the above configurations. It follows that

min(d/2,6,m—3) min(d—2a,0—a)

sz > (")) 2 ()

a=0 B=1

Therefore, C5 = [('})/|Bs[] is an upper bound on the number of codewords on the hamming ball of radius 4.
To finish the argument, we simply take a union bound over all the codewords on the hamming ball to obtain an
m

upper bound on the probability of successfully landing on some codeword, ps < Cs/ ( 5 ) By explicitly plotting the
combinatorial bound for the parameters of the AM-OWF, we can see that |Bs| > (?), in the regime where 0 < d/2
and 6 > m—d/2.” In other words, a single code word and its adjacent words are sufficient to cover the entire hamming

ball. This is illustrated in Figure 1.

Anti solution. Observe that if the adversary found an z such that B(1 @ Ax) = y, then they could chose all
operations to be flip,® and succeed every single time. However, based on Lemma 3.8, we know that this is as hard
as the OWF game itself. Looking ahead, when we build a zero-knowledge proof of knowledge of a preimage of the
AM-OWF, we actually only achieve a weakened notion of knowledge soundness that extracts either a preimage or an
anti solution. Since we have shown that both of these problems are hard, it suffices to compile our MPCitH protocol to

7In fact, there is only one codeword on a hamming ball at distance § > m — d* for some d* > d/2, as seen in Figure 1.
8The adversary could also choose all operations to be const2, but with overwhelming probability {2} is not in the code.
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Figure 1: The blue line denotes combinatorial bound for different values of ¢ for the parameters (m, d) = (452, 35).
The dotted orange line is 1/ (':;), the probability with which an adversary succeeds in landing on a particular codeword
0 hamming distance away. The gap between the two curves highlights the impact of a growing number of codewords
on the adversary’s chance of success. Importantly, the best strategy is for the adversary to make as few flips as possible
(or flip almost all but a few) to avoid detection.

a signature scheme. Similar to [CCJ23], we further relax the soundness notion to an appropriately defined approximate
notion, where the extractor is able to find an « such that B(Ax) = v, and there exists a v" such that Bv' = y and
Apg(v,v") < f for an appropriately chosen f. By appealing to Lemma 3.9, we know that for f = O(1), this problem
is also hard, thus in each parallel repetition of the MPCitH protocol, the chance of the adversary cheating is smaller,
thereby requiring fewer repetitions.

4 Protocols and Evaluation

We focus on the semi-honest two party setting where the input z and key %k are each known to each of the two
parties, respectively. The structure of our weak PRF lends itself to particularly efficient implementation in this setting.
However, we note that other settings such as where x, k are secret shared can easily be implemented using similar
techniques. Malicious security can be achieved but we leave an efficient specification of this to future work. Our
protocols will assume that the output should be secret shared. In the case of an OPREF, it is straightforward to reveal
the result to the party with x.

4.1 Review of Silent OT/VOLE/OLE

To fully appreciate the design decision of our protocols it is important to understand how silent OT and VOLE protocols
work [BCGT19a, BCGT19b, RRT23]. At the root of these protocols is the computational hard problem known as
syndrome decoding. For a secret random sparse vector e € 5, and a public error correcting code generator matrix
G € F3*”, the syndrome decoding assumption state that (G, G - e) is indistinguishable from (G, ) for a uniform 7.
Note that n < v, e.g., v = 2n, and therefore GG - e compresses e. Security of this assumption typically holds if G has
high minimum distance [RRT23].

The silent OT/VOLE is a two party protocol with a sender and a receiver. In its simplest formulation the goal
is for the receiver to hold random vectors a € Fy, B € FJ, and the sender to hold scalar A € Fyx and a vector
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C € FZ, such that B + C = aA. One can view B, C' as a secret sharing of aA. The protocol proceeds by having the
receiver sample a sparse vector @ € 5 while the sender samples a random A € Fyx. The parties generate a secret
sharing of GA € [, using a punctured PRF technique [BCG™'19a]. Leveraging the sparsity of @, this only requires
O(Mlog(n/\)) communication, where typical parameters have v ~ 220, Let C, B € [FY, denote the shares of aA.
The idea is to then compress these vectors to geta = G-@, B = G- B, C = G - C. Since multiplication by G is linear,
the correlation B + C' = aA still holds. However, by the syndrome decoding assumption, a will be pseudorandom.
This protocol can more generally be referred to as (S, E)-subfield VOLE where we have a subfield S and an extension
field E = S for some o. The correlation B = C' + aA holds for a € S” and B,C € E", A € E. The description
above is of course for S = Fy and 0 = .

As we mentioned before, one can efficiently multiply many scalars 2, ..., 2(9) € S by a vector k € S™ using
subfield VOLE. The parties first generate a (S, S"*)-subfield VOLE correlation of size ¢ where A = k. The receiver
can then send the difference x — @ and have the sender update their correlation such that B + C' = xk. One can
obtain random one-out-of-two OT from (Fy, Fy»)-subfield VOLE. Random OT refers to the correlation where the
sender holds random strings m; o, m; 1 while the receiver holds a bit a; and the string m; ,,. This can be achieved
by defining sender messages m; o = H(C;), m1,1 = H(C; + A) where the receiver knows random choice bit a,; and
message m; o, = H(B;). This can be generalized to one-out-of-p OTs by performing a (F,, F,,_)-subfield VOLE and
defining m; ; = H(C; + jA). While possible to instantiate with any p, the implementation will be most efficient
when p is a power of two. In this case GF(p) operations can efficiently be implemented. Finally, one can obtain a
random binary OLE correlation from a random OT correlation, where the receiver holds xg, yo € F2 and the sender
holds z1,y1 € Fy such that g + 21 = yoy1. From a single random OT (mqg, m1), (a, m,), the parties can define
Yo = a,y1 = Isb(mo + my),zg = Isb(my,), x1 = Isb(my).

4.2 Secret-Sharing-Based F3; — [, Modulus Conversion

We now describe how to perform modulus conversion from [w]® € F% to [v]* € Fz, where v = w mod 2. For
simplicity, let m = 1 and the inputs of the two parties Py, Py are shares (wp, w1) such that w = wq +3 wy. The truth
table T of w mod 2 is described in Table 1. Py with input wy will use the wg-th row of T', denoted as T'[wy, :], as the

w1
0 1 2
00 1 O
Wo 1 0 0 1
211 0 0

Table 1: Truth table 7" of wq @ wy where wq, wy € Fg

sender input in a 1-out-of-3 OT and P; will pick up T'[wg, w1 ], using wy as the receiver input. Looking ahead, we will
actually want the parties to obtain shares of T'[wg, w;]. To achieve this, Py can simply choose a random r € {0, 1}
and use T[wo, :] @ r as its input to the OT. By correctness, P; will receive T'[wg, w1] @ r. In particular, let us assume
the parties hold a 1-out-of-3 random bit OT, where P, holds random message bits mg, m1, mo € Fy while P; holds a
random choice ¢ € [F5 and the corresponding message m.. These will be used to mask the truth table 7". That is, Py
will sample mask 7 and send ¢ € 3 where

to = my +T[w0,0] + r,
t1 =my + T[’wo, 1] +,
to = mo + T[’wo,Q] + .

P can therefore compute
21 = ty, +3 My, = Two,w1] +37 = (wmod 2) +3r

and P, can compute zg = r and therefore we have zg @ z; = (w mod 2).
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Reducing the communication. As an optimization, we do not need to send ¢(. The idea is that if the receiver wants
to learn T[ug, 0] it can set its share as mg. That is,

z1 = if (u3 = 0) then my else &, +3 My,

= U1,0 '3 tul + My, -

The sender can now define r appropriately as r := mq + T'[wg, 0]. In the case of w; = 0, we have z; = mg and
20 =+ T'[wo, 0], and therefore we get the right result. The other cases are the same with the randomness of the mask
r coming from my.

Protocol. Figure 2 presents protocol in the 1-out-of-p OT hybrid setting, where we assume p > 3. Below, we present
how to implement such OTs.

Theorem 4.1. The protocol 1l y1.3_,5-cony Securely realizes the Fs — Fo modulus conversion functionality in the binary
OLE hybrid model.

Proof. The simulation is to send uniformly random values. The case of a corrupt F; is simple, y; acts as a one-time
pad key. Consider a corrupt P;. Observe that the g, ¢; values are masked by two unknown messages. Since these
message values are uniform in the view of Py, so are the ¢ values. O

We give two conceptual methods for constructing random 1-out-of-3 OTs for single-bit messages. The first is
based on standard OT while the second is based on subfield VOLE.

Iot-32-conv: F3 — F3 modulus conversion from 1-out-of-p OT

Setup: The parties generate a random 1-out-of-p bit OT with (mo, ..., mp—1) € F5 held by Py and (¢, m¢) € Fp, x Fa held by P;.

Eval:
1. Py inputs wg € F3 and P; inputs wy € Fs.
2. Letw; o, w;,1 € IF5 be the bit decomposition of wj, i.e., w; = wj o + 2w; 1.
3. Py sends d = wi; — c¢cmod pto FPy.
4. Py computes

* Yo = Wo,0 D My
ety = vg @ Mmgq1 @ wo,o Dwp,1 @1

* t1 =vo B Myay2 O won
and sends (tg,t1) to P;.
5. P compute v; = (U}l)o . to) D (w171 . tl) DT1,0DT1,1-

6. P; outputs v;.

Figure 2: Our protocol for F3 — 5 modulus conversion from 1-out-of-p OT correlations.

From 1-out-of-2 OT. The generic method for constructing 1-out-of-2* OTs is to generate k 1-out-of-2 OTs. The
random message corresponding to ¢ € For will then be the hash of the messages indexed by the bit decomposition of
c. However, given that only three messages are used by Figure 2, we present an optimized approach without the need
for additional hashing.
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We can build a 1-out-of-3 OT for bit messages from binary OLE or equivalently 1-out-of-2 OT. Each 1-out-of-3
OT consumes 2 binary OLEs/OTs. Recall that a binary OLE correlation is defined as a pair of tuples (z,yo) and
(21, 1), held by Py and P respectively, which satisfy xg ® 1 = yo - y1. An OLE can be obtained from standard
random OT as discussed in Section 4.1. It is possible to partially derandomize an OLE correlation by allowing P; to
change their y; to be a chosen value, y;. The parties will now hold correlation (x, yj, ], y;) where x(, z, y( are
random and y7 is chosen by P;. A random binary OLE correlation can be converted into a chosen one if P; sends
d = (y1 @ y7), and the parties update their share as z(, = xg @ yo - d, Y = Yo, ) = 1. We will derandomize two
OLEs using P;’s u1 € F3. This value is represented using two bits (uLo, u1,1) such that uy; = w10 +32-3uq,;. Letus
define the resulting OLEs as (xq, z1, Yo, U1,0), (Z(, 21, Yo, u1,1). We will define the random 1-out-of-3 OT messages
(in this case single bits) as

/
mo = Xo ® xg,
/
my = 2o D Yo D z,

/ /
mo = Zo D xyDygp-

From subfield VOLE. We observe that it is possible to further optimize the modulus conversion protocol above by
leveraging the capabilities of subfield VOLE. The rational for using binary OLE is that one can efficiently generate this
correlation from highly optimized 1-out-of-2 silent OT protocols. However, such protocols can also directly generate
1-out-of-p OTs by first constructing a (F,,F,-) subfield VOLE and then hashing the extension field elements. For
our use case, the most natural choice would be to set p = 3 and ¢ such that 2* ~ p°. This would in turn allow the
derandomization message to be a single [F5 element, resulting in a total of 3.58 bits of communication instead of 4.
However, this comes at a high cost due to the requirement of the silent VOLE protocol using a modulus that is not CPU
friendly. One would optimize subfield VOLE using bit decomposition techniques but the computation cost will likely
remain high, e.g., 5 times slower by our estimates. As such, we do not think this communication optimization is worth
the computation pessimization. We suggest an alternative that essentially halves the computational cost of the already
optimized OLE protocol while retaining the same communication overhead of 4 bits. The idea is relatively simple, set
p=4and ¢ = \/2. Since F, operations naturally map to CPU instructions, one can implement an (IF4, Fyx )-subfield
VOLE with essentially the same overhead as (Fo, Fyx)-subfield VOLE used to generate the binary OLEs. By directly
using subfield 4 to perform n modulus conversions, only n subfield VOLE correlations are required instead of 2n
OTs and therefore the preprocessing cost is halved.

Concurrent work. We would like to point out the concurrent work [IKNZ23] for constructing [F3 to F5 conversion
protocols in the OT hybrid model. Their optimized construction showed that they can generate a modulus conversion
preprocessing pair ([r]*, [#]°) using an amortized 1.33 OLEs/OTs and 3.08 bits of communication, or at the cost of
18 OLEs/OTs and 2.55 bits. This pair can then be used to convert [w]® into [w]” using an additional 1.58 = log,(3)
bits of communication, totaling 4.66 or 4.13 bits per modulus conversion. Our techniques on the other hand require
two OLEs/OTs or one 'y VOLE and only 4 bits of communication. Alternatively, one F5 VOLE and just 3.58 bits of
communication. Although their construction can allow for fewer OLEs, e.g., 1.33 versus 2, the surrounding protocol
is more complicated and therefore it is not clear which would be more efficient in practice. Moreover, our 4 approach
is more efficient while sending less data. We leave determining the concrete cost of our communication-optimized
F3-VOLE approach to future work.

4.3 Secret-Sharing-Based (I3, F,)-wPRF Protocol

Given that we aim to have secret-shared output and binary sharings are standard, we begin with our (F3, F)-wPRF
which outputs a vector over [Fo. In addition, we will consider the optimized variant where the key is binary. Following
the analysis in Section 3.5, we increase the input dimension to n = 4. In particular, we will evaluate

F(k,2) =B 2 (A -3 [k ©x])

where k € F3,z € F§, A € F;*" B € Fy**".
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We consider two primitives for building these protocols, oblivious transfer and garbled circuits. Our first protocol
will only make use of the former while the latter will use both. In all cases we choose to optimize the overall overhead
of the protocols in terms of computational, communication, and round complexity. Where it does not add additional
overheads, we will make use of a prepossessing phase. This primarily takes the form of generating oblivious transfer
correlations which can later be used in the main protocol.

Reusable key correlations. Our first technique use oblivious transfer to multiply & ® z. This can be achieved by
having the party holding k act as the OT receiver with k; as their choice bit.” This choice allows us to perform these
OTs ahead of time, once k is fixed but before x is known, and later reuse them for each input x. The OT sender
will provide two messages, (S;, s; +3 x;), where s; is sampled uniformly at random. Therefore the sender will learn
fi = si +3 (k; -3 ;). Let us interpret s, f as the individual shares of [u]® where u = k ©3 2. Given this F% sharing
of k ®3 z, the parties can locally multiply with the public matrix A € F7"*", i.e., [w]? := A5 [u] = A 3 [k O3 z].

Theorem 4.2. The protocol of Figure 3 evaluates the (Fs,Fo)-wPRF of Definition 3.2 with semi-honest security in
the ot-3—s2-conv hybrid model where Py inputs the key k and P inputs © and they receive [F(k, )] as output.

OT-based (FF5, F5)-wPRF protocol with shared output.

Setup:
1. Py inputs k € F5.

2. The parties perform n random OTs where Py is OT receiver with choice bit k;. P receives two random strings 0 ¢, 04,1 € {0, 1}A
and Py receives o i, .

3. Let G0, G;4,1 denote stateful PRGs with 3 output held by P; with seeds o; 0, 04,1 respectively.

4. Let G, denote a stateful PRG with F3 output held by Py with seed o; .

1. Py inputs x € F%.
2. The parties run the setup for IIpt-3_2-cony for m conversions.
3. Pj computes

(@) ho,; < G fori € [n]

(b) hi,; < G;1fori e [n]

(©) f:=x—3ho—3h1
(d) wy:=A-3hg

4. Py computes
(@) t; < G fori € [n]
() wo:=A-3(kOf)+3t)
5. Pp, Py invoke Ilpt-3_2-conv With w; as the input for P;. Let v; be the output for P;.

6. P; outputs Bo;.

Figure 3: Our (F3, F3)-wPRF protocol based on OLE with plaintext inputs and secret-shared output.

Proof. Consider a corrupt Py. Their view consists of the random OT strings o; , € {0,1}*,a,c € F3*™ f € F}
and their view of Ilot-3-,9-cony- The simulation will send uniformly random strings for each of these. Recall that P
knows either s; or h; while the other is uniformly distributed due to ¢; g%, being uniformly distributed. Therefore,

°If one does not employ the binary key optimization, this can be generalized to a one-out-of-three OT as used later.
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over the random choices of 0; 1g,, f is uniformly distributed and independent of z. Finally, we invoke the simulator
for Ilgt-3—2-conv- Now consider a corrupt P;. Their view consists of the OT strings ¢ and their view of Ilpt-3—9-conv-
The proof is complete by noting that o and [t-3—9-cony can be simulated. ]

Overheads. Assuming the setup phase is reused, the protocol consumes 2m random OT/OLE correlations. When
generated using a silent OT protocol [BCG™19a, BCG™19b, RRT23], the amortized cost of the OTs would be o\
computation and less than one bit of communication. The main phase of the protocol derandomizes the OLEs using
two bits of communication and while sending to, t3 (two bits), totaling to a combined 2m + (2m + n) log,(3) bits.
We also note that the recent development of OT protocols with constant overhead by Boyle et al. [BCG™23] implies
that our share conversion protocol can be evaluated in constant amortized work, independent of the security parameter
A. Moreover, if A, B are implemented using linear-time encodable codes, the overall running amortized time of our
protocol is O() work per evaluation.

OT-based (F,, F3)-wPRF protocol with shared output.

Setup:
1. Py inputs k € F3.

2. The parties perform n random OTs where Py is OT receiver with choice bit k;. Py receives two random strings o5 0, 04,1 € {0, 1}/\
and Py receives o g, .

3. Let G0, G;,1 denote stateful PRGs with F2 output held by P; with seeds o 0, 04,1 respectively.

4. Let G/, denote a stateful PRG with IF2 output held by Py with seed o 1, .

1. Py inputs x € F3.
2. The parties preprocess/generate m random OTs where Py holds s € ]ngm and Py holds d € F5*, s’ = (Sd; 15+ Sdypy,m)-
3. Py computes

(a) hO,i <+ Gi,O fori € [n]

(b) hi,i < Gy fori € [n]

© f=xDhoDh

(d) u:=A-2hg
€ d:=udd

and sends f,d to Py.
4. Py computes
(@) gi « G fori € [n]
b)) v:i=A2 (kO f)®g)
() t:=v—3s0—381
(d) w:=B -3 (55,15 56,,m)

and sends £ to Py.

5. Pj computes g := B -3 [s’ +3 (¢t ® d)].

6. Py outputs w and Pj outputs g.

Figure 4: Our (I3, F3)-wPRF protocol based on OLE with plaintext inputs and secret-shared output.
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4.4 OT-Based (I, F3)-wPRF Protocol

We present an OT-based protocol in Figure 4 for our (IF3,F3)-wPRF where the inputs are known to the respective
parties and the output is shared. Compared to the previous case, this protocol achieves better computational efficiency
at the expense of having a mod 3 output domain. However, for applications such as OPRF this has little impact.
Conceptually, the protocol works in a similar way. First shares of « - k£ are computed using (preprocessed) OTs based
on the key. The parties additionally generate m random OTs with strings in F3. These are used to make the Fy to F3
modulus conversion. Since the inputs are already binary, each mod gate requires only one OT as opposed to two OLEs
in the previous protocol. In the amortized setting, this protocol requires m OTs, two rounds of interaction and 2.6m+n
bits of communication per evaluation. To convert the secret-shared-output protocol to an OPRF, an additional 1.6¢ bits
of communication and zero additional rounds are required.

Theorem 4.3. The protocol of Figure 4 evaluates the (Fo, F3)-wPRF of Definition 3.2 with semi-honest security in
the random OLE/OT hybrid model where Py inputs the key k and Py inputs x and they receive [F(k, x)] as output.

Proof. The simulation of the protocol is to send uniformly random messages. Consider a corrupt Fy. Their view
consists of f, d. The former is uniformly distributed given that either h¢ ; or h; ; is uniformly distributed. The latter is
uniformly distributed due to d being uniform. Now consider a corrupt P;. Their view consists of ¢, which is uniformly
distributed due to either sg; or s; ; being uniformly distributed. The simulation of the output distribution trivially
follows from the correctness of the protocol. O

4.5 Specialized Garbling

We now describe a specialized garbling scheme [Yao86] for evaluating our wPRE. We present this protocol only for
the (IFy, F3)-wPRF but note that this can be generalized in a natural way. The core idea is that we can utilize free XOR
with specialized unary gates for performing the modulus conversion step. As before, the parties will preprocess OTs
using the key as the choice bit. P, will act as the garbler with A < {0, 1}* being the global free-XOR key [KS08].
Instead of garbling labels for = and k, the party P; will generate garbled labels L; <+ {0,1}* where L; is the zero
label for z; - k;. In particular, the parties will use the preprocessed OTs for k with messages (L;, L; ® x;A). The party
Py will learn L, = L; & (x;k;)A. The parties Py, Py can multiply these labels with A to obtain U;, U/ respectively.
P, garbles a unary gate that maps the zero label to a random r; € F3 value while one label is mapped to r; +3 1.
Unlike in traditional garbling, we desire the output of the mod gate to be a single F'5 element and as such the garbled
table can be much smaller. In particular, with the use of the point-and-permute technique the garbled table can be a
single F3 element. We will restrict the free-XOR key A to have a 1 in its least significant bit. As such, for the least
significant bits of U;, U/ we have

wi = Isb(U;) & Isb (7))
= Isb(U;) ® Isb(U; @ u; A)
= |Sb<Ul) D |Sb(Ul) D uﬂSb(A).

We wish to translate this secret sharing into an F3 sharing with the same underlying value. For now, let us assume that
Py knows u; = 0. Py can define r; = —H (U;). If Py has U/ = U,, i.e., u; = 0, then they can also derive r; which
forms a secret sharing of zero. However, if Py holds the one label U/ = U; @ A, then they will need assistance to
compute r; + 1. This is done by sending a garbled table containing the difference between r; + 1 and H (U/). Lastly,
it is important that P, does not know the underlying value. However, in the explanation above we assume F, can
conditionally add the difference based on the underlying value. This can be circumvented using the point-and-permute
technique. The full protocol is given in Figure 5. The overhead of this protocol is An + log,(3)m bits and requires no
OTs after the initial set of OTs for the key. Indeed, this makes conceptually sense due to the garbler not needing OTs
for their input, i.e., 2. We note that this protocol can easily be extended to the (F3, F2)-wPRF. First the free-XOR can
be generalized to work over the F3x extension field as opposed to [Fox, see [BMR16]. The unary gates can then consist
of two 1-bit values.
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Theorem 4.4. The protocol of Figure 5 evaluates the (Fo, F3)-wPRF of Definition 3.2 with semi-honest security in the
random oracle and random OT hybrid model where Py inputs the key k and Py inputs x and they receive [F(k,x)] as
output. We assume that H : {0,1}* — F3 is a random oracle.

Proof. The simulation of the protocol is to send uniformly random messages. The simulation follows the standard
free-XOR garbling argument. Essentially, a corrupt P can only distinguish if they query the random oracle at some
input U @ A. If no such query is made, the simulator can replace all such queries with uniformly random values and
then simulation follows immediately. Assuming the adversary makes such a query, then they have essentially guessed
A. However, this can only happen with negligible probability. O

Garbling-based (Fo, F3)-wPRF protocol with shared output.

Setup:
1. Pyinputs k € F3.

2. The parties perform n random OTs where Py is OT receiver with choice bit k;. P receives two random strings 0 ¢, 04,1 € {0, 1}A
and Py receives o; i, .

3. Let G;,0,Gj,1 denote stateful PRGs with [F, 5 output held by Py with seeds o; 0, 05,1 respectively.

4. Let G/, denote a stateful PRG with IF,x output held by Py with seed o 1, -

1. Py inputs x € F3.
2. P; computes

(@) A« {0,132 11
(b) ho,i < G fori € [n]
(©) hi,i < G;,1fori € [n]
d f:=zADho®h
() U:=A-2ho
(®) ri:=—H(U; & Isb(U;)A) 43 Isb(u;) for i € [n]
(g) §; = —r; 4+ 1sb(U;) —3 H(U; + Isb(U;)A) for i € [n]
) ¢g:=B-3r

and sends f, 6 to Po.

3. Py computes

(@) gi « G} fori € [n]
& U =Az(kof)eg)
(©) v; := H(U]) +3 Isb(U/)8; for i € [n]
d w:=B-3v

4. Pp outputs w and P; outputs g.

Figure 5: Our (Fq, F3)-wPRF protocol based on garbling with plaintext inputs and secret-shared output.

4.6 Protocol Evaluation

We implement our wPRF protocols for the OPRF setting as well as plaintext inputs and secret-shared output. We build
on [RR] and intend to open source the implementation. The protocols generate all correlated randomness via silent
OT techniques. We compare their performance to the alternating-moduli protocol of [DGH*21] and our GMW-based
implementation of LowMC [ARS™15]. Our LowMC implemention employs various optimizations such as transposed
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representation, vectorization, and precomputed key schedule. LowMC offers a variety of parameters that give tradeoffs
between computational overhead, round complexity, and number of OTs/OLEs that are required. We parameterize
it as (n,m,k,d,r) € {(256,63,128,128,14), (128,3,128,128,88)}. Running times were obtained on a core i7
consumer-grade laptop with 16GB RAM. Each party is executed on a separate thread with network communication
being simulated, i.e., minimal communication overhead. Given that our protocol is 2 rounds, one can easily estimate
the cost of network communication by dividing the communication by the bandwidth plus network latency.

Protocols with the key OT optimization perform a setup phase where OTs for each bit of the key are performed.
This reusable correlated randomness allows the parties to compute shares of (k ® x). Alternatively, our input-OTs
protocol for multiplying (k®x) requires more OTs but less communication. We implement two version of our modulus
conversion protocol Ilst.5_y9-cony for the (F5, Fo)-wPRF protocol which uses m F4-VOLE correlations or 2m OT/OLE
correlations. We refer to each as F4-VOLE and F5-OLE respectively. The modulus conversion for (Fy, F3)-wPRF
requires just m OT/OLE correlations. The final protocol uses garbling techniques to implement modulus conversion
and does not require any additional OTs beyond the reusable OTs for the key.

OPREF. In Figure 6 we report the metrics for our protocol when used as an OPRF in comparison to related works. We
consider the setting where a succinct setup phase is performed. During this phase, the key is known but the evaluation
points, i.e., z, are not. For [DGH'21] and our protocols in Figure 6, we separate the preprocessing p and online o
metrics as p + o.

Scheme Assumption r Communication (bits)  time (us)
[ADDS21] R(LWE) & SIS 2 224 -
[SHB23] Legendre PRF  +3 4224 -
[BKW20] CSIDH 3 221 -
[Bas23] SIDH 2 225 -
[HHM124] CSIDH +2 42174 -
[ADDG24] AM-[BIP+18] 2 3,821 151,000
[DGH'21] AM-[DGH*21] 2 65+1,252 25.4+6.1
OT - (F2,F3)-wPRF AM 2 38+ 916 7.0+0.4
Fy-OLE - (F3,F,)-wPRF | AM 2 384 1,173 14.640.4
F,-VOLE - (F3,F,)-wPRF | AM 2 38+1,173  7.1+04
Garbling AM 3 215 0+4.0
\ [Mea86] \ DDH 2 512 121

Figure 6: We summarize comparison of our distributed wPRF protocols against other OPRF protocols. We consider
the setting where multiple (adaptive) evaluations for a fixed key are performed. r denotes the round complexity and
+ denotes that additional rounds and communication are required to set up the protocols. Communication reports the
end-to-end amortized communication (including any preprocessing) per evaluation in bits.

The most efficient protocol is our OT-based (Fa, F3)-wPRF protocol (Figure 4) with the input-OT optimization. It
requires 7.0 microseconds per amortized evaluation and a total of two rounds, including the preprocessing. Excluding
the succinct setup phase (7.0us and 38 bits), the amortized communication cost is 916 = A + m + (m + t) log,(3)
bits and 0.4us for (n,m,t) = (4X,2X, A/ log,(3)) and A = 128, see Section 3.5. This protocol requires A + m
OLEs/OTs per evaluation which form the dominant computational cost, 7.0ps compared to 0.4us of online time.
The prior protocol [DGH'21] based on alternating moduli requires an amortized total of 32.9us and 1,317 bits of
communication, a 3.7x and 1.4x improvement. Due to lack of implementation, for their online time we use their
reported plaintext running time of 6.1xs [DGH™'21], however, our implementation technique would likely lower this
closer to our 0.4us. Regardless, the bulk of the running time improvement comes from our protocol requiring fewer
OTs. Moreover, our 128 input OTs are of 4 bit strings while [DGH™21] uses 256 OTs of 256 bit strings. When properly
implemented, this results in an almost 256/4 = 64 x faster OT generation due to multiplying smaller vectors with the
syndrome decoding matrix. The lowest communication OPRF protocol is based on DDH [Mea86]. It is extremely
communication-efficient, requiring just two curve elements to be sent. However, DDH is insecure in the post-quantum
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setting and, unlike ours, does not lend itself to secret-shared output. Moreover, it requires an order of magnitude
more time which makes it less attractive when performing many evaluations. However, for a single evaluation DDH
[Mea86] remains the best option. We also consider our (F3, F2)-wPRF but observe that the communication overhead
is worse than our (F2, F3)-wPRF while it remains competitive in terms of computation when F4-VOLE is used. The
communication overhead is due to requiring disproportionately larger parameters and the mod operation being less
efficient. Finally, we consider the garbling-based protocol of Figure 5. This protocol has the interesting advantage
that it only requires OT correlations in the setup phase where the key is set. In particular, one OT per bit of the key
is performed. All subsequent evaluations of the protocol can be implemented with only calls to the random oracle.
The advantage of this is highlighted when only a small number of evaluations are performed. In this regime the
sublinear OT protocols have relatively high computational/communication overhead due to the hidden constants. The
communication overhead of this protocol is 215 = An + (m + t) log,(3).

OPRF with shared output. For this analysis we will continue to assume z is known to one party while k is known
to the other. The parties will receive a secret sharing of F'(k, ). We report our findings in Figure 7. As above, we
divide the running time of the protocol into the time to generate the OT correlations and the online time. As can be
seen in Figure 7, the main cost is OT generation, requiring between 15 to 30 times more time than the online phase.

Comm. Online OT time
Scheme Optimization r ) #OTs
(bits) (us) (us)
- 14 10,584 7.5 5,292 151.4
LowMC [ARST15]

- 88 3,168 12.6 1,584 45.0
(F2,F3)-wPRF [DGH™21] - 2 1,126 6.1 640 25.4
Input OTs 2 790 0.4 384" 7.3
(F2,F3)-wPRF Key OTs 2 1,174 0.4 256 7.0
Key OTs, garbling® | 1 32,768 41 0 0
Key OTs, F2-OLE 2 1,151 0.4 512 14.6

(]F;;, Fz)-WPRF
Key OTs, F4-VOLE 2 1,151 0.4 256 7.1

Figure 7: Comparison of our distributed wPRF protocols with secret-shared output against LowMC [ARS™15] when
performing ¢ = 22° concurrent evaluations. r denotes the round complexity excluding a reusable setup. Times
reported are amortized per evaluation, and T denotes estimated running time.

As with the OPRF performance numbers, we observe that our (Fy, F3)-wPRF with the input-OTs optimization
performs the best, requiring a total of 7.97us and just 38 + 790 bits of online communication, where the 38 bits of
communication is for the OT generation. The next most efficient protocol is our (Fy, F3)-wPRF but with the key-OT
optimization which reduces the number of OTs required at the expense of more communication. However, despite
requiring 50% fewer OTs, we observe a minimal decrease in running time. This is because the input-OT optimization
makes use of a VOLE correlation for short strings, i.e., 4 bits, while OT/OLE requires generation of a VOLE correlation
for 128 bit strings. When properly implemented, this essentially translates to a 128/4 = 32 improvement in running
time for the matrix multiplication step in the VOLE protocol, which is the main overhead. Thus, we generally suggest
only using the input-OT optimization for the (Fy, F3)-wPRF. However, a major drawback of the (Fy, F3)-wPRF with
secret-shared output is that the output shares and values are mod 3. This is highly non-standard and if shared output
is desired, more postprocessing would be required. A more natural (and efficient) option is for the wPRF to naively
output the desired share format, e.g., (F5, F2)-wPRF. We only implement this protocol with the key-OT optimization.
The protocol requires 0.4us and between 7 to 14us of online and OT generation time, respectively. The protocol
requires 1, 151 bits of online communication and 52 bits for OT generation. One could consider using the input-OT
optimization to lower the communication overhead but this would require implementing F3 silent OT/VOLE which has
higher computational cost, approximately 5x by our estimates. Compared to [DGH™21], our protocols perform better
in communication, running time, and the number of OTs used. When compared to LowMC [ARS™15], our online
phase is between 7 and 13 times faster. When profiling both implementations, we observe that almost all of the time is
spent in the matrix-vector multiplication routine. Given that [ARS™ 15] requires many more such multiplications, their
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running time should be worse. Additionally, their protocol requires substantially more OTs/OLEs, a factor between
20 and 3 times depending on the parameters used.

S Post-Quantum Signatures and Ring Signatures

We use the MPC-in-the-head framework [IKOSO07] and instantiate it with the alternating-moduli OWF proposed in
[DGH™21], which is in turn based on [BIP*18]. Instead of using a generic compiler such as [KKW18], we aim to
compute the same circuit but use a bespoke MPC protocol, tailored to the AM-OWF, allowing us to shrink the size by
2-3x, when compared to [DGH™21].

Overview. Our MPC protocol is quite simple and proceeds as follows. The [V parties start with an additive sharing
of z and can locally compute Ax. They then engage in a share conversion procedure to convert shares of v = Ax to
shares of v/ € FZ". We do this by using preprocessed randomness of the form ([r]?, [r]*), where r € F*. To convert
the shares, parties mask shares of x with shares of 7 in Fy, reconstruct 4 r, and then compute [v'], = v®[1 — r]? +

(1-v)® [[7"]]3. The parties finish the protocol by computing Bv' and reconstructing the output. However, the main
difficulty is in efficiently compiling this MPC protocol to a publicly verifiable proof of knowledge of a preimage of
the AM-OWF. One can of course use generic techniques such as the KKW [KKW 18] or ZKB++ [CDG™" 17] proof
systems as done in [DGH™'21], and although they produce competitive signature sizes, they are still larger than more
recent post-quantum signatures based on symmetric-key assumptions [FJR22,CCJ23,AMGH23,KZ22,BBdSG*23].
We use a technique similar to [CCJ23] to handle the preprocessing for free and design a bespoke MPCitH protocol
for proving knowledge of the preimage of the AM-OWEF. The high-level idea is as follows. We allow the prover to
freely choose (potentially malicious) correlations ([[r]}z, [[r]]g), but demand that the correlations are permuted using
a uniformly random permutation 7 that is chosen by the verifier.!® This allows use to completely avoid any checks
on the preprocessed correlations, as we are able to bound the probability with which a prover can cheat for the very
specific circuit we are interested in. The rest of the protocol proceeds as described above. The full zero-knowledge
proof of knowledge protocol is specified in Figure 8. A signature scheme can then be constructed by applying the
Fiat-Shamir heuristic, where the random coins provided by the verifier is replaced by a random oracle hash of the
protocol transcript and the message being signed.

Our security proof proceeds in a manner very similar to that of [CCJ23]. We first note that Kales and Zaverucha
[KZ20] showed that there was an attack on signature schemes using Fiat-Shamir heuristic on 5-round MPC-in-the-
Head protocol. The core observation is that a malicious prover can cleverly resample verifier challenges in the second
and fourth round such that the cost of finding a forgery is reduced to

1
costiorge = min 5.1

T1,T2:T1+T2=T ET (T) p’(l — p)T_i + Ng

1=T1 \1

where p is the combinatorial bound. We handle this by making the combinatorial bound very small, allowing us to use
(approximately) the same number of repetitions as if this attack did not exist. We now define an analogous f-strongly
invalid witness and combinatorial bound.

Definition 5.1 (f-strongly invalid witness). We say that z € F} is an f-weakly valid witness if there exists v’ € F%’
such that Ax = v, Bv' = y, and either Ay (v,v") < for Ag(1@wv,v") < f. If z is not an f-weakly valid witness,
then it is an f-strongly invalid witness.

Definition 5.2 (Combinatorial bound). A combinatorial bound for the zero-knowledge protocol of Figure 8 with
parameters (n, t,m) is areal p = p(t,m, f) € (0, 1) such that for any f-strongly invalid witness = € F%, and for any
pair of vectors (r,r') € F5* x Fy",

Pr B =y|v=Az,v' =70")+ (zdn(r) o (1 -2r(r"))] <p(t,m, f),

m<Perm,,

where Perm,,, denotes the set of all permutations of {1,...,m}.

10This technique of using shuffled correlations was first observed in [CCJ23].
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zkPoK of a Preimage of the AM-OWF

Inputs: The prover and the verifier have matrices A € F7"** and B € ]ngm and a vector y € FX. B = [B|I] is in systematic form
and the prover knows a vector  such that B(Az) = y.

Round 1. The prover emulates the preprocessing phase and commits to the inputs:
1. Sample a random seed seed*.

2. Using seed™ as the root of a depth-log N GGM-PRF [GGM84], produce leaves {(seed;, 0;) }ic[n]-

3. Fori € [N — 1], expand seed; to obtain the i-th pseudorandom share of x € Fg, seF', andt € ]Fg" Set state; = seed;.
4. For the N-th party set:
* [s] 5 to be a pseudorandom share.
* ly =205 o
[ty =5 — " [t]; mod 3.
* state; = seed v ||[x] 5 ||[t] 5 -
5. Compute and send h = H(comy,...,comy ), where com; = Commit(seed;; o;).
Round 2. The verifier samples a permutation 7 of m elements and sends it to the verifier.
Round 3. The prover now emulates the execution of the MPC protocol and commits to intermediate wire values.
1. Compute intermediate wire values:
o [v] = Alz].
* [E =[] @ [x(s)]
¢z @f\lezi.
e [W]=2z4(1-22)®[n(t)] mod 3.
e [y] = B[v'] mod 3.
+ Set msg; = ([];. [y],)-
2. Compute b’/ = H(msgy, ..., msgy)-
3. Send h/ and z(1), which is the first (m — K) entries of z, to the verifier.

Round 4. The verifier chooses a position ¢* € [N] to not open and sends it to the prover.

Round 5. The prover sends (state;, 07;);-;= and com;x.

Verification. Verifier accepts if all of the below checks pass.
1. Fori € [N]\ ¢*, compute com; = Commit(state;, o;) and recover the i-th party’s shares of x, s, and ¢, using state;.
2. For all but the 7*-th share, compute
o [v] = Alx].
* [El =@ [x(s)]-
o W] =20 +(1-2:D) @ [x(t)M] mod 3.
o [@] =y -B['®] mod 3.
o 23 = [P = [x(t)P].
e [y] = B[v'] mod 3.
3. Recompute msg;« = (2 Bixix [2];,y — 32,2+ [v]; mod 3).

Check if h = H(comy,...,comy) and b’ = H(msgy,...,msgy).

Figure 8: A 5-round zero-knowledge proof of knowledge of a preimage of the AM-OWE.
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We are now ready to state the main theorem of soundness for Figure 8, which we prove subsequently.

Theorem 5.3. Let Commit be a non-interactive commitment scheme and H be a collision-resistant hash function.
Let p be a combinatorial bound for the protocol in Figure 8. Then the protocol in Figure 8 is a gap honest-verifier
zero-knowledge argument of knowledge for the relation R such that ((A,B,y),z) € R iff B(Az) = y. The gap
relation R' is such that (A, B, y),x) € R' if B(Az) = y and x is an f-weakly valid witness. The soundness error
of the proof is at moste = p+ 1/N — p/N.

Proof. We need to show that the interactive zero-knowledge proof is complete, honest-verifier zero-knowledge, and
that the soundness error is at most €. Completeness is easy to see from the description of the protocol.

Honest-Verifier Zero-Knowledge. To prove that the protocol is honest-verifier zero-knowledge we show that the
MPC protocol described in Figure 8 is secure against a semi-honest adversary corrupting up to n — 1 parties. The
simulator works as follows:

* Sample a uniformly random position ¢* < [n] and a uniformly random permutation 7 <— Perm,,,.
 Carry out Round 1 of Figure 8 honestly, using a uniformly random value for x.

* In Round 3, compute shares of z and y for all i # i* as described. To compute the message sent by the i*-th
party, first sample z «<— %', and compute [2];. = z @ix- [2]; and [y];. =y — >, ]

To see that this is a good simulator, note that the distribution of the 7,7’ and their shares is identical to that of a real
execution. Given any N — 1 shares of v and r, the distribution of z is uniformly random and hence the distribution of
z is also identical to a real execution. Next, the shares of y are fully determined given z and the shares of r,r’, and
z. Indeed, the ¢*-th party’s share of y is not consistent with this but the commitment to the ¢*-th party’s state is never
opened. Also note that msg,. is indeed consistent with the views that are opened. Finally, due to the hiding property
of the commitment scheme, the simulation is computationally indistinguishable from a real execution.

Soundness. Let P be a malicious prover which manages to generate an accepting proof with probability € > e.
Then there exists an extractor Ext, which when given black-box access to A with rewinding capabilities, can extract a
witness @ such that it is a weakly valid witness (Definition 5.1). Let R denote the randomness used by P to generate
the first round commitment % and let  be a possible realization of R. Let Succ denote the even that P succeeds in
convincing V. By the hypothesis, we have

L _p
Pr[Succg| =é>e = - - —.
r[Succg]| =€ > ¢ p+N N
Fix an arbitrary value o € {0, 1} such that (1 — )€ > &, which exists since £ > . We say that a realization r of the
prover randomness is good if
Pr{Succs | R=1] > (1 — a)é.

Furthermore, by the splitting lemma [PS00], we have Pr[Ris good | Succs] > a. Let Tj be the transcript of a
successful execution of the zero-knowledge proof with P, r denote the random coin used by P in the first round and
dy denote the fourth-round message of the verifier. If r is good, then

Pr[Succg |[R=7r]> (1 —a)é > > %,
which implies that there necessarily exists a second successful transcript 77, with a different fourth-round message
dy # dp. As we will demonstrate later, given (Tp,T7), it is possible to extract a triplet (x, r, ") consistent with both
transcripts, where x is a weakly valid witness, and (7, ') is the preprocessing material used by the prover. Let (g, dp)
and (71, d1 ), with dy # d; denote the verifier challenges used in successful transcripts Tj and 71, respectively. Denote
the fifth-round messages in these transcripts by ({state;, ;}izq,,comg,) and ({state}, o;};2q,,comg, ). Suppose
3i € [N]\ {do,d1} such that (state;, ;) # (state}, ;). Then one of the following must be true:
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* The committed values are different:
com; = Commit(state;, ;) # Commit(state}, ;) = com,
but since both of these transcripts verify, this implies that the prover has found a collision for H.

* The commitments are identical:
com; = Commit(state;, o;) = Commit(state], o;) = com,
but this violates the binding property of the commitment scheme.

Therefore, it must be the case that {state;, 0; };2d,,4, = {state}, o} }ixd,,q4, . Furthermore, since dy # d1, they jointly
define a unique tuple (state;, o;);[n], from which we can extract the witness 2 and the preprocessing material (7, 7")
used by the prover.

Finally, we show that if  is a strongly invalid witness, then Pr[Succs | R = 7] < ¢, contradicting our assumption
that 7 is good. Let us denote BadPerm the event (defined over a random choice of permutation 7, and for the fixed
value of (z,r,7")) that Ax = v and Bv' = gy, where v/ = (') + (2 @ 7(r)) ® (1 — 2w (+')). By definition of the
combinatorial bound (Definition 5.2), we have Pr[BadPerm| < p. We can rewrite our desired inequality as

Pr[Succp | R = r] = Pr[Succs A BadPerm | R = r] 4+ Pr[Succ; A ~BadPerm | R = r]
<p+(1—p)-Pr[Succp | R =r A —-BadPerm].

If we can show that Pr[Succs | R = r A —=BadPerm] < 1/N, then we are done. For the sake of contradiction,
assume that Pr[Succp | R =1 A ﬁBadPerm} > 1/N. Since Pr[Succp | R = r] > ¢, using the same argument as
earlier, given a successful transcript T, with fourth-round message do, there must exist a second successful transcript
T1 with identical first three rounds but fourth-round message d; # do Moreover, TO and T1 must be consistent and
uniquely define a tuple (state;, Gi)ie[n]- Since we condition on the same randomness R = 7, the h in the second

round corresponding to transcripts (To, Tl) and (7o, T1) must be identical and therefore, by the collision resistance
of H, (state;, 5;);e[n] = (state;, 05);en]. Now, using Tp, we can reconstruct the messages sent by all parties using
a strategy similar to verifying the transcript to obtain {még?}ie[ ~]- Similarly, using 77, we obtain {még}}ie[ N]-

~ ~ . .. ~ 0 o
Because T and T share the same first three rounds, using a similar argument as above {msg; }, EIN\{do.d1} =

{msgV} PN\ {doyd }* Note that Wh'en we rec.:overed m"sggo,'vs'/e set [yl g, = y - > 2do [wl;- B.ecal{se we started with
the assumption that x is a strongly invalid witness and conditioned on not using a bad permutation, it must be true that
mNSgg0 #* mNSg}jo as otherwise we have actually found a valid witness. But this also means that we have found two

different inputs {msg} };c(n] and {msg; };c () that hash to the same value, contradicting the collision resistance of H.
Thus Pr[Succs | R =7 A —BadPerm] < 1/N and hence,

PrSuccs] <p+ (1 - p)%,

when x is a strongly invalid witness. The remaining proof and description of the extractor is identical to that of
[FIR22,CCJ23] and we omit it here. L]

Proof size. The prover sends the following to the verifier in the proof of knowledge of the preimage of the AM-OWE.
» Commitments h and A’ of size 2 bits each
* The co-path of i* of size Alog IV bits

e com;« of size 2\ bits

The N-th shares of x and ¢ of size (n 4+ m log 3) bits

e z of size m — ¢ bits
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where the h, h’ commitments across all 7 parallel executions can be combined into one commitment of size 2 each.

IZE = 4 log N) + 2 - 1 :
S A +7( Mlog )-i—\ﬁ/—#\f;%- w ‘*‘w)
h,h! PPRE key com; « TN Compressed z tN

In Figure 9, we report sizes of our signature scheme for the parameter sets listed below. We expect performance
similar to [CCJ23] during signing/verification. We also note that because our MPC-in-the-Head is based on additive
secret sharing, the hypercube technique from [AMGH 23] can be used to scale up to a larger number of parties while
remaining computationally efficient.

Scheme Size (KB) Assumption
[HBD*22] (Fast) 16.68
SHA-256

[HBD*22] (Short) 7.67

[CCJ23] (Fast) 12.5/11.3

[CCJ23] (Medium-1) 9.7/8.8

. RSD/f-almost-RSD over Fy

[CCJ23] (Medium-2) 9.1/8.3

[CCJ23] (Short) 8.6/7.8

[AMGH*23] (Fast) 14.4/9.7

[AMGH*23] (Short) 9.7/6.9

SD over Fy /o5
[AMGH™23] (Shorter) | 7.5/5.5 2/Fass

[AMGH *23] (Shortest) 6.0/4.5

[BBASG*23] (Fast) 6.2/5.6
AES/EM-AES

[BBASG*23] (Short) 4.9/4.5
[KZ22] (Fast) 5.8 .

Rainy
[KZ22] (Short) 4.4
[ARZV123] (Fast) 7.7
[ARZV*23] (Short) 5.5 .

MinRank

[ARZV*23] (Shorter) 4.9
[ARZV*23] (Shortest) 4.4
[KHS 23] (Fast) 5.8
[KHS 23] (Short) 4.8

AIM
[KHS 23] (Shorter) 4.1
[KHS*23] (Shortest) 3.8
This work (Fast) 5.5
This work (Balanced) 4.6 AM-OWF
This work (Shortest) 4.0

Figure 9: Comparison of our work against state-of-the-art signature schemes based on symmetric-key assumptions.
For the work of [ARZV 23], we report the maximum signature sizes of the hypercube variant. EM-AES refers to
AES in Even-Mansour mode.

Parameters. In [DGH21], the authors propose (n,m,t) = (), 3.53\, A/ log 3). However, for the relaxed notion of
soundness that our zero-knowledge proof achieves, we actually require that it must be hard to find an f-weakly valid
witness for the AM-OWF (Definition 5.1). The parameter f is set such that the combinatorial bound is made as low as
possible in order to minimize the impact of the attack from [KZ20] on the signature size. As well will show later, this
in turn determines the value of n, m, and ¢. During our search for parameters, we also identified an important metric
that must be paid attention to when introducing any form of additional structure in B.

We target 128-bit security with the following parameters, a) Fast: (18,193), b) Balanced: (13,1723), and c)
Short: (9,65536) reported as (7, N), where N is the number of parties and 7 is the number of parallel repetitions.

34



Using Equation 5.1, we set f = 11, and now determine n,m,¢ such that it is still hard to find an f-weakly valid
witness. To ensure that the covering lemma (Lemma 3.6) still holds we fix n = tlog 3 + 10.

Choosing ¢ and m. We choose ¢ and m such that if we sample a uniformly random value, it is not an f-weakly valid
witness with overwhelming probability. The reason we use this strategy is because there does not seem to be a good
way to choose inputs such that the output of Az lies close to the codewords of B. Indeed if there existed a strategy
that did better than simply trying at random, then we can extend the approxOWF reduction (Lemma 3.9) to the setting
where A (v,v") < f and break the AM-OWF for the parameters proposed in [DGH'21]. Thus, when introducing
any additional structure in B, it must be the case that the codewords must be sufficiently spread out at least on average.

Coming back to the choice of ¢t and m, a random linear code approaches the GV bound. Therefore, the number
of codewords of B is approximately 3™ /¢™a(?/™)™ where d is the minimum distance of B. The fraction of volume
occupied by all words within hamming distance f of codewords of B is therefore given by ge(f/m)m=Hq(d/m)m
which we set to be smaller than 27128 as this is also the probability with which a random word is within hamming
distance f of a codeword. This gives us ¢ = 135, m = 450, and n = 224.

5.1 Post-Quantum Ring Signatures

An efficient proof of knowledge for the AM-OWF also serves as a building block for ring signatures [RSTO1] and Ring
CT [Noel5]. The work of [GGHAK?22] introduced generic compilers to lift MPCitH proof for a single NP statement
to a disjunction of multiple NP statements, where the additional cost on top of a single MPCitH proof only grows
logarithmically in the number of statements. Although the compiler is asymptotically very good, we observe that there
is an initial startup cost resulting in a larger than necessary overhead when there are a small number of statements. In
this section, we provide concretely more efficient protocols in the few statements regime.

Overview. The goal of a ring signature is to convince a verifier that a message was signed by one party out of a set
of ¢ parties. Recall that in the case of the AM-OWF-based signature scheme, the public keys lie in F4. A signer needs
to produce a proof that they know z; such that y; = B(Aux;) lies in some set of public keys (y1,y2,...,y¢). Our
strategy is to extend the MPC protocol at the beginning of Section 5 as follows. Recall that at the end of the MPC
protocol computing the AM-OWF on input z;, all parties hold shares of y;. All that is left to do is to prove that parties
hold a secret sharing of some y; € (y1, .. ., y¢). First interpret the public keys (y1,y2,- - -, y¢) as elements in the field
GF(3?) and interpolate a degree-(£ — 1) polynomial Y (X ) such that Y (i) = ;. Y (X) satisfies the following property
forall i € [¢],

Y (X) = (X —)Q(X) + yi, 5.2)

where Q(X) is a polynomial of degree at most (¢ — 2) and i is interpreted as an element of GF(3) in a natural sense
of ternary decomposition. Observe that Y (X)) can be computed by the verifier, Q(X) can be computed by the prover
and secret shared with the parties in the first round, and the parties hold shares of Y (i) = y; by the end of round
3.'" In round 4 of the MPC protocol in Figure 8, we have the verifier send a random point 7 + GF(3!) and have
the parties evaluate Equation 5.2 at this point. Note that the verifier can actually compute all powers of r, and thus
Y (r) can be computed by the verifier. The parties can compute shares of Q(r) and (r — ) through local operations on
their shares in verifiable manner. Finally, given access to one Beaver triple, the parties can multiply Q(r) and (r — 4)
to obtain shares of the RHS of Equation 5.2, which can be revealed to ensure that the reconstructed value matches
Y (). We note that the probability with which the verifier samples a bad r such that Y (X) — y; # Q(X)(X — 4) but
Y(r)—y = Q(r)(r —1),is < £/|F%| as a polynomial of degree ¢ — 1 has at most £ — 1 roots.

An astute reader might have observed that we are not done yet, because the prover could have used any i € GF(3?)
not restricted to ¢ € [¢]. In fact, a prover could use a public key y* by choosing i* to be a root of the polynomial
Y (X) — y*. An naive solution is to demand a range proof on ¢ via the ternary analogue of bit decomposition where

the prover shows that i can be represented using logz £ many I3 elements (bg, b1, ..., blog, ¢). The parties would be
provided with secret shares of b; in GF(3") and they check that a) i = Z;(ffé b; - 37 and b) b; € {0,1,2}, which

TBecause we no longer have the public key in the clear, we cannot exploit the systematic form for compression.
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requires two additional multiplications to verify that b;(b; — 1)(b; — 2) = 0. Instead, we propose a way to carry out
this range check for free, as long as / is a power of 3.2

Our main observation is that a verifier already knows that i € [/], therefore instead of secret sharing i € GF(3"),
we can share it in GF(¢) without any loss of privacy. Later, when evaluating Equation 5.2, the parties then locally
embed these shares in GF(3") by simply appending (¢ — logs ¢) zeros. Thereby, adding just 7 log ¢ bits to the final
signature size. Although the above construction is simple, it performs surprisingly well (Figure 10) and highlights
the advantage of using a flexible framework such as MPCitH. Note that we were forced to use powers of 3 due to the
structure of the public keys in the AM-OWEF. Instead one could use a OWF with binary output such as [KZ22], which
has slightly larger signature sizes, but will still have competitive signature sizes in addition to being able to support
powers of 2.

Ring Size: 23 26 212 Assumption
[LLNW16] 52 MB 94 MB 179 MB SIS
[TKSt19] | >124KB >900KB 61 MB Ring-SIS
[ESLL19] 41 KB 58 KB 256 KB M-LWE and M-SIS
[EZST19] 29 KB 34 KB 148 KB M-LWE and M-SIS
[GGHAK?22] 46 KB 50 KB 59 KB LowMC
[LNS21] < 16 KB < 18 KB < 19KB | Ex-M-LWE and M-SIS
Ring Size: 11 2% 210 Assumption
[ESZ22] 9 KB 11 KB 18 KB M-LWE and M-SIS
Ring Size: 9 27 729 Assumption
This work 6.2 KB 8.9KB 113.0 KB AM-OWF

Figure 10: Comparison of ring signature sizes for different ring sizes. The sizes of lattice-based ring signatures except
for [ESZ22] were obtained from [ESLL19]. The work of [ESZ22] provides benchmarks for different ring sizes, we
therefore compare against this work separately. For our work, we use the short parameters (Section 5) and benchmark
over the closest powers of 3.

5.2 Size of Ring Signature

The above technique in fact works generically for disjunctions of the same relation in any MPCitH-based proof system,
by first interpreting the statement being proved as a field element GF(p') for some prime p. Below, we quantify the
overhead introduced on top of a single proof.

In the MPCitH proof, the prover now additionally needs to generate Beaver triples as part of the preprocessing
material. This can be done using the sacrifice-based technique from [DPSZ12,DKL*13,LN17]. The communication
can further be optimized by using PRG seeds to generate the shares of Beaver triples. Let ([a], [b], [c]) be the Beaver
triple such that a.b = ¢, then [a], [b] of all N parties can be set to be the output of the PRG as the correlation should
indeed be uniformly random. Similarly, [c] can also be set to the output of the PRG, but with the share of N-th party
[y =c— Zfi—ll [c], implying that the additional communication in the MPCitH per beaver triple is just one field
element. In our protocol, we only need one Beaver triple per iteration of the MPC proof. Using a sacrifice check for
each iteration of the MPCitH requires 27 Beaver triples in total and therefore, the communication per iteration in the
preprocessing phase is two field elements during the check and two additional field elements as the view of parties
in the MPC. During the online phase, parties hold shares of the coefficients of the ¢ — 1 coefficients of Q(X) from
Equation 5.2, each of which adds one field element to the communication per iteration of the MPCitH proof. Finally,
when parties multiply Q(r) and (r — i), they broadcast two field elements. Thus, the communication overhead of

12The ring size can (albeit wastefully) be padded to the next largest power by inserting random keys sampled as the output of a random oracle.
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the online phase of MPCitH is (¢ + 1) field elements per iteration. The total proof size grows linearly in ¢ and the
incremental cost of adding a statement to the disjunction is = 7t log 3 bits.

SIZE = |HMPCitH‘ + 7 log 3(t(£ — 14+ 6 ) + 10g3 é)
Q(X) Multiply i

Compiling with [GGHAK22]. For rings of small to medium size, our protocol outperforms state-of-the-art ring
signatures but for larger rings the sizes can get very big (Figure 10). However, [GGHAK22] devised a concretely
efficient compiler to prove set-membership in various MPCitH proofs which uses Merkle trees in a black-box manner
to reduce computational and communication overhead. Their sizes are roughly 42 + 1.5 x log ¢ KB for a ring of size /,
but the 42 KB is the size of a single signature using LowMC, with the KKW proof system. Since then, there has been
tremendous progress in building signatures using MPCitH, bringing sizes down to ~ 5 KB for a single signature. We
expect that using their compiler with any of the KKW-style proof systems from Figure 9 would yield ring signatures
that only grow logarithmically in the ring size and are competitive with state-of-the-art lattice-based ring signatures.
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